WO2015032015A1 - 海洋环流水动能和海洋潮汐水动能发电场发电技术方案 - Google Patents

海洋环流水动能和海洋潮汐水动能发电场发电技术方案 Download PDF

Info

Publication number
WO2015032015A1
WO2015032015A1 PCT/CN2013/001276 CN2013001276W WO2015032015A1 WO 2015032015 A1 WO2015032015 A1 WO 2015032015A1 CN 2013001276 W CN2013001276 W CN 2013001276W WO 2015032015 A1 WO2015032015 A1 WO 2015032015A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
power generation
channel
sea
flow
Prior art date
Application number
PCT/CN2013/001276
Other languages
English (en)
French (fr)
Inventor
冀三阳
Original Assignee
Ji sanyang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ji sanyang filed Critical Ji sanyang
Publication of WO2015032015A1 publication Critical patent/WO2015032015A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy

Definitions

  • seawater kinetic energy short for ocean circulation kinetic energy and ocean tidal water kinetic energy, the same below
  • the technical power generation efficiency is low, it is difficult to form large-scale, high-efficiency production capacity, and it is difficult to meet the needs of social and economic development and social life.
  • seawater kinetic energy generation The use of seawater kinetic energy for power generation has a huge and broad prospect. If breakthroughs can be made in the technology of seawater kinetic energy generation, it will not only be for China, but also for the current economic and social development of the world and the permanent survival of all civilization. It makes a lot of sense.
  • seawater kinetic energy The impact of seawater kinetic energy is enormous.
  • the energy of seawater power generation is longer than the solar energy and wind power generation in terms of quantity and time.
  • the natural dynamics of seawater kinetic energy are within 24 hours of the day, except for the high dynamics of the sea and the low tide of the daily low sea level, which takes about 4 hours of weak dynamics. The remaining 20 hours are in the dynamic flow.
  • the use of wind dynamics and solar thermal energy is much less in time.
  • seawater kinetic energy is the same as solar energy and wind power generation. It is a natural resource with minimal environmental pollution. Therefore, if the power generation energy of seawater kinetic energy is successfully developed, it will be an energy source that can be permanently used by all human beings in the production and living fields. Furthermore, if all civilization consumes coal, oil, and natural gas on Earth after one or two hundred years, the electricity generated by seawater kinetic energy will become a permanent production energy and living energy for all civilization.
  • the physical factors formed by this first major feature are: Although the kinetic energy of seawater has a huge impact, it is consumed by its wave-type, vortex-type, multi-directional flow mode, which means that the impact of seawater kinetic energy is huge. However, because it flows in a wave, vortex, and multi-directional manner, it is difficult to produce power generation equipment.
  • the method I proposed was: repairing a channel for seawater, allowing the seawater to flow in and out of the channel, thereby transforming the wave, vortex, and multidirectional flow of seawater into The basic one-way forward flow method to form seawater kinetic energy to promote the power generation efficiency of power generation equipment. This seawater channel is shown in the figure].
  • the sea channel is like this: It extends from the sea fringe to the middle of the ocean. Two or more strips are a few meters or tens of meters wide. The height is 15 meters above sea level to sea level and the length is tens of kilometers or hundreds of thousands.
  • Such a cement concrete wall of rice, and the spacing of each concrete wall is several tens of meters or several hundred meters, such that the spacing of each concrete wall is the passage through which seawater flows.
  • the seawater flows from the sea channel, and its wave, vortex, and multi-directional flow is transformed into a forward one-way flow with great impact, so that In this seawater channel, a power generation device suitable for seawater kinetic energy is installed, which is the performance of generating kinetic energy for seawater.
  • This type of sea channel can be a unidirectional (water inlet and outlet) seawater channel extending from the coast to the middle of the ocean, as shown in Figure 2. It can also be constructed in the middle of the ocean with two-way (end and exit water) The sea channel is shown in Figure 3.
  • the seawater channel power generation equipment has three components: 1.
  • the concrete square pier is shown in Fig. 4; 2.
  • the cylinder is as shown in Fig. 5; 3.
  • the generator two styles is shown in Fig. 6.
  • the target requirements for the three components are: "Perfusion" in seawater passages is a few meters wide, several meters or ten meters long, and the height is a concrete square pier as high as the sea channel wall.
  • the purpose of this square pier is Install a cylinder with the same height as the square pier on the square pier; the purpose of this cylinder is to install several seawater generators on the cylinder (according to the depth of the seawater); and the generator body is installed in the circle Inside the cylinder (without contact with sea water), the generator wing is mounted outside the cylinder, ie in sea water.
  • the specific standards and requirements for the three components are: 1.
  • the requirements for the concrete square pier are: 1. It is suitable for the installed cylinder (including the internal generator), and the second is required to withstand the strong wind and waves. Have a long life (long life).
  • the requirements for the cylinder mounted on the square pier are as follows: First, it is suitable for the square pier; Second, it has the ability to resist large wind waves; ⁇ £ is the material that has the ability to resist seawater corrosion and is also used for a long period of time. 3.
  • the generator body should be suitable for installation in the cylinder;
  • the generator wing or turbine wing and the seawater flow force in the seawater are suitable for the generator efficiency;
  • the generator wing or turbine wing should have the ability to resist large wind and wave and resist seawater erosion.
  • the generator should be equipped with a reasonable weight stability wheel to overcome the instability of seawater flow to the generator. influences.
  • the second major feature of seawater flow is that it has a wave, vortex, and multi-directional flow pattern, as well as a high and low tide flow pattern. This is what people often say about high tides (including Gaoping). Tide, low tide) phenomenon.
  • the high and low tide of seawater also has a huge kinetic impact. However, this kind of impact is greatly hindered by the flow of high and low tides, and the impact performance is greatly reduced.
  • there is a period of low tide during high tide period and low tide during high tide which makes the sea water impact. Under the force of the high and low tide of the opposite direction and during the hedging period (high tide, low tide), the huge impact of sea water consumption.
  • the seawater in the seawater channel shortens the flat tide time of high and low tides by adjusting the length of the channel, so as to maximize the seawater impact power generation efficiency in the seawater channel; Due to the high tide period and low tide period, there is only a flow time of more than ten hours, and the seawater flow in the sea channel increases due to the length of the channel, and the flow of seawater in the channel is enhanced.
  • the low-level flow Once the seawater reaches a low level, it immediately enters the high tide flow. Once it reaches the high level tide, it immediately enters the low tide flow... This returns to the large impact force and acts on the power generation equipment.
  • the power generation equipment manufactured by a special seawater flow suitable for seawater passages is shown in Fig. 7, to maximize the power generation efficiency of the seawater power plant.
  • the power generation equipment in Fig. 7 has the seawater flow power (additional direction change box) that is received and removed in two directions. Therefore, this power generation equipment is efficient.
  • the above are two characteristics of the sea water flow (multidirectional, vortex, wave and seawater tidal flow of seawater). At the same time, this is also the two difficulties of seawater kinetic energy generation technology and how to solve these two technical difficulties.
  • the fundamental method which is also the two core 4 technologies of the sea channel type power plant.
  • the third technical difficulty of the seawater power plant is:
  • the turbulent sea water shows the turbulence of time, time, time, height and time.
  • This kind of turbulence is the two foundations for building a seawater farm.
  • the application of the sea channel wall and the concrete square pier has the following difficulties: First, due to the turbulent impact of the sea water, the scouring force is large, whether it is the use of shell-type watering methods in the sea or the method of placing modules to build seawater channels and square piers. It is not easy to build successfully. Second, even if the channel wall and square pier are successfully built, it is costly. Therefore, how to build a sea channel wall and a square pier in the turbulent sea water will become the third of the seawater farm. Technical points.
  • the method to be adopted is as follows: Firstly, a plurality of segment shells of a certain volume are prefabricated, and then the shell segments of the segments are connected, and then the concrete mortar is poured on the inner portion of each segment block and poured with the connection. In this way, the goal of building a sea channel wall and a square pier with excellent quality and low cost can be achieved.
  • the specific methods for how to build seawater channel walls and square piers quickly and well and at low cost are as follows: (1) Rapid construction method of concrete square piers: reinforced concrete is used as material on land, and some lengths are about 12 meters. a well-shaped shell block with a width of about 5 meters and a height of about 10 meters to 20 meters. The pattern is shown in Figure 11. After the block is mature, the block is placed in the sea channel that should be placed (that is, Position of the seawater power generation equipment) After placing the empty shell segments, immediately empty the empty part of the empty shell to cement the concrete mortar (whether or not the steel bars are placed), and then place the empty shell segments one by one. Go up and follow the "filling" mortar until the required width of the square pier is reached, which is the standard square pier (mounting cylinder and generator) height.
  • the upper layer block (equal to the wall of the channel wall) is placed one layer after another and the empty block segment is placed and placed with With the filling of the empty shell segments until the height of the wall required for the sea channel wall, this is a successful construction of a sea channel wall.
  • the following site selection for the construction of a seawater kinetic energy field needs to find out the following hydrological data: 1. The flatness of the bottom of the seabed; 2. The softness and hardness of the bottom of the seabed; 3. The depth of the seawater; 4. The deep water of the seawater Flow direction and strength; 5. Flow direction and intensity of shallow seawater (sea tide). 6. Water temperature of seawater throughout the year; Wind power intensity in the near-field of the seawater power station (including typhoon); 8. Earthquake, tsunami and volcanic factors in the seawater field; 9. Power transmission from the seawater field, etc. The field's environmental quality is optimized and the efficiency of the power plant is maximized.
  • a seawater power plant is an integral power plant composed of multiple seawater channels adjacent and connected; and each seawater channel is arranged in several The seawater seawater generators; and the water flow between the various seawater channels is independent.
  • the connected parts of the sea channel are connected between the channel wall above the water body and each square pier in the channel. If it is a large power plant, it is necessary to set up a water master thousand as shown in Figure 10.
  • the direction of the sea channel of only the tidal water kinetic energy field is: Go directly from the coast to the depth of the ocean, as shown in Figure 2 of this book, which is the extension direction and tide of this type of sea channel wall. The tidal direction is the same. 2. If there is a tide of seawater flowing from deep seawater (ocean circulation) and a tide of ocean tides, and the flow direction of the two flows is different, then the direction of the selected seawater channel is: Select and deep seawater The water flow direction is the same. Choosing such a channel trend may reduce the power generation efficiency of the tidal kinetic energy due to changes in its direction, but the reduction is not very large.
  • the next step is to determine the size of the seawater channel and also to determine the width and length of the seawater channel.
  • the specification of a seawater channel is an important factor in determining the efficiency of a seawater channel.
  • the maximization of a seawater channel's power generation efficiency is composed of three factors: 1. channel width factor; 2. channel length factor; 3. channel The number of individual power generation equipment. Only these three factors are at their best, and this sea channel can achieve maximum power generation efficiency. This requires: 1.
  • the width of this seawater channel should be compatible with the flow rate of seawater in the channel, which should not be too wide or too narrow.
  • the channel wall is less bulky, and the cost is less, but the seawater in the channel is poorly DC, that is, the seawater in the channel has vortex, wave, and multi-directional flow, which cannot be achieved. Maximize power generation efficiency.
  • the width of the channel is too narrow, and the wall of the sea channel is correspondingly more. It is also costly for the wall. Although the seawater of the narrow road is strong, it is not the maximization of efficiency from the overall investment.
  • the optimal width of a seawater channel is:
  • the flow of seawater in the channel must be the widest width after the vortex, wave, and multidirectional flow modes are changed to the basic DC mode, and the widest width is
  • the volume data is determined based on the seawater flow velocity (seawater impact) at the channel site.
  • the sea water flows at a high speed, the impact force is also large, and the sea channel is wider; the sea water flow rate is small, and the sea channel can be narrower.
  • the optimal length of a seawater channel is: 1. Determine the length of the channel before it has been determined; 2. Determine the length according to the seawater flow intensity at this point. The flow rate is faster and the channel can be longer. Slowly, the channel can be shorter; thirdly, how many generator devices are arranged in the channel (see Figure 7) to determine its length, which means that the installed capacity of a mature seawater channel can neither be too much nor too little. If the installed capacity is too much, the impact of the water impact of each individual power generation equipment will not be as strong as it should be. This will not maximize the power generation efficiency, and the installed capacity will be too small to maximize the power generation efficiency.
  • a standard seawater channel with the highest power generation efficiency is: After the individual generator equipment is arranged in the width, length and channel of the sea channel, when the seawater flow in the channel begins to generate power for the generator equipment. At this time, the water flow of the channel is synchronized with the flow of water in the sea. Second, the end of the high tide and the end of the low tide in the channel are also synchronized with these end points in the sea. That is to say, when the tide in the sea flows at the high tide and ends, the seawater in the sea channel is also at the beginning of the high tide period and the end; when the sea tide flows in the low tide period and ends, the sea water The seawater in the channel is also at low tide and its end.
  • the requirements for it are: First, to make reinforced concrete, and second, to extend the depth to the bottom of the water as well as the pier (both ends 3 ⁇ 4 cylindrical) to make it firm.
  • the water part and the water part have the original rectangular structure.
  • the square pier structure shown in Fig. 4 is also costly, but it also has several advantages: 1.
  • High-efficiency infrastructure for power generation; 2 Longer service life (long life) 3 can lay the foundation for the possibility of setting up other settings (such as farmland) on the top floor.
  • the cylinder (see Figure 5) is part of the power generation equipment in the seawater channel.
  • the requirements for it are: First, reinforced concrete members or steel-plastic components; second, the shape can be round or bullet. The third is that the package is a separate component and has the function of not entering water.
  • the advantages of this type of cylinder are: 1 Destructive 2 caused by high wind and strong waves has the function of resisting seawater corrosion. There is also a long-term function 3 for easy hanging j3 ⁇ 4 and bundling with square piers (reserved holes in the square pier); 4 to facilitate the routine maintenance and repair of the motor inside the cylinder. 4. Better installation method of the cylinder: After installing and fixing several generators to be assembled in the cylinder, the generator wing is not installed temporarily, and it is installed in seawater after waiting. It is also installed when the power generation site starts to generate electricity.
  • the package (including the motor) is hoisted and tied with the square pier to form a complete power generation equipment, which is the power generation equipment in the seawater.
  • the optimal structure of the generator more electrodes, slow speed, long wing length and small number, is the three effective ways to achieve a high efficiency of seawater generators, the specific data (electrode, speed, leaf wing) should be based on power generation
  • the flow velocity of the field is determined. When the flow velocity of each power plant (including each seawater channel) is greatly different, the data is determined differently, that is, several types of generators are required.
  • the two methods for constructing the two infrastructures of the seawater power plant are: one is that the channel wall and the square pier are constructed; the other is that one side is connected and the other is the channel wall.
  • the square pier is also under construction, and each square pier is immediately connected to the channel wall of the 411 and the square piers after the construction is completed (the top of the square pier and the channel wall) Top), wait for the later time (after the cylinder on the square pier and the generator are installed) and then make a large area coverage connection.
  • there is no large-scale connection plan there is no such connection.
  • the above eight items are the basic priority methods for implementing a kinetic energy field.
  • the existing seawater tidal dam-type power generation technology needs to repair the dam, which is equivalent to the indirect use of tidal energy.
  • the seawater channel power generation technology directly uses seawater kinetic energy and includes two kinds of kinetic energy, both oceanic and oceanic Tidal kinetic energy, so power generation efficiency is high.
  • the existing tidal dam-type power generation technology uses seawater kinetic energy to be restricted by certain locations, so it is limited in the utilization of seawater energy, and the seawater channel power generation technology is limited in the use of seawater energy.
  • the power plant can be built directly.
  • (3) The construction cost of the sea channel type power plant is high from the field investment, but the electric energy generated is higher than the corresponding.
  • the sea channel type power plant (built) seems to have a poor yield in a short period of time, but its yield is very high in the long run.
  • bridge-type power generation equipment used in seawater kinetic energy power generation field.
  • the so-called bridge-type power generation equipment is: 1. First, prefabricated with reinforced concrete on land, a diameter of about 10 meters or 15 meters and a length of 50 meters. , 100 meters or 200 meters and other types of cylinders, the inner diameter of this cylinder can be 3 ⁇ 4 meters or 12 meters. The purpose of this cylinder is to install one or four in the cylinder.
  • the cylinders are installed with a plurality of water motives (corresponding to the long conveyor shaft) in front, rear, left and right directions; and the water motor bodies are installed in the cylinder.
  • the wing is installed outside the cylinder and is also in seawater.
  • the specific style is the generator equipment of this style consisting of multiple water motives and the total engine in the right half of Figure 7 of the present specification. Here, it is only Four directions of water motives are to be installed in the four directions of the cylinder.
  • the cylinder when the cylinder is installed as a power generation device in seawater, the water is not supplied into the cylinder (cylinder manufacturing technology, mixing Cylinder strength manufactured by the manufacturing technology , the sealing is also excellent), and this cylinder is to be prefabricated to install a number of reserved holes for the turbine shaft. 2, after the prefabricated reinforced concrete cylinder is made, then install the corresponding number on the cylinder After a water motor and a total generator (the total generator can be connected in one direction or four directions in four directions), this is a complete assembly of the bridge-type power plant. 3, when a complete After the bridge-type power generation equipment is assembled, it can be erected and installed anywhere in the ocean.
  • Such a bridge-type seawater power generation device or a bridge-type power generation field is suitable for implementation in a sea area with strong sea current and strong flow force, and is relatively capable of obtaining better power generation efficiency; that is, such a bridge column
  • the seawater power generation equipment and power plant are not suitable for the construction of a seawater kinetic energy field in any sea area, like the seawater channel power generation technology. It is only suitable for sea areas with certain conditions.
  • This kind of bridge type power generation equipment and power generation field It also has its shortcomings; the water motive is often in constant change due to the constant flow rate of seawater; the frequent changes in the speed of the water motor will cause the current and voltage instability, which requires To take advantage of the corresponding technical measures to overcome this shortcoming, in order to achieve good power generation.
  • This power generation equipment used in seawater passages can be completely used for building power stations on land rivers and inland.
  • River construction power stations have advantages and advantages.
  • the rivers of the continental continent, whether small, medium, large or extra large, are natural water channels on both sides of the river (the difference from the sea channel is here. Therefore, when such a pier type power generation device (the name of a power generation device used in a seawater channel in a natural river) is built in a river, each power generation device is a generator set, and a plurality of generator sets are formed.
  • a power station When using this type of pier-type power generation equipment to build a power station on a land river, there are three advantages, advantages. : 1.
  • pier-type hydroelectric power station which means no matter a village , a township, a city or county, or a province, a state, a state, as long as there are rivers, and its river flow has the power to generate electricity, it will easily and cost-effectively build miniature, small, medium, large in these locations.
  • pier-type hydropower stations In some places, the piers for power generation can also be used as bridges for the construction of people and vehicles. This is also a bridge pier for power generation and traffic (passenger and vehicle) 3. Power stations built on land rivers using bridge-type power generation equipment have a long service life, that is, their long life.
  • the degree of typhoon damage to the seawater power plant will be much reduced. That is to say, if a typhoon power-reducing bridge is built at a typhoon landing site, as long as a typhoon-reducing bridge is built (the size is different, its function is different), the typhoon damage will be reduced to 50 or more.
  • the typhoon forms the wave height to the shore. It is 5-10m. After repairing the typhoon force reduction bridge, the height of the sea wave hitting the seawater field will be slowed down to 2-5m high waves.
  • the so-called typhoon force reduction bridge is: a bridge that reduces the impact of typhoons. Its structure is: In the corresponding direction and length of the typhoon coming from the seawater kinetic energy field, construct a full bridge pier consisting of a plurality of long piers, and then use the bridge of the appropriate pier for the water part of each pier. After connecting the bridge piers, this is the so-called typhoon force reduction bridge.
  • This typhoon force reduction bridge The striking feature of the structure is that its bridge deck is like the aircraft's take-off and landing deck on the aircraft carrier, which is both low at the front and raised at the rear; thus, when the big waves impact the bridge, the impact of the waves will be greatly weakened.
  • typhoon force-reducing bridge his other main function is that the bridge hole in the middle of each pier has normal flow of sea water with or without typhoon, and the flow in this bridge hole basically has a negative impact on seawater power generation equipment. It only reduces the impact of typhoon waves when the typhoon comes due to the piers and bridge decks (with no load-bearing function) blocking typhoons and wind waves.
  • this area will not only build a typhoon force-reducing bridge with high typhoon impact, even if the seawater power station is protected by the typhoon force-reducing bridge, It will be damaged by the typhoon.
  • the power generation field in this area will have a certain negative effect on the power generation function of seawater generators during the typhoon time. The negative effect is that the power generation field is in the normal period without typhoon.
  • the generator wing or turbine wing is at a normal speed, and the current and voltage generated by it are also relatively stable; however, when the typhoon wind waves act on the power plant and its generator or turbine, these power generation
  • the speed of the machine or the turbine rises many times rapidly, and the result of the increase of these speeds is that the current and voltage generated by it rises accordingly; and the increase of the current voltage is too high, which may cause a large disadvantage to its corresponding transmission line> transmission equipment. Running, even damage to these lines and equipment.
  • the current and voltage generated by the dam can be damaged on the transmission line and the transmission equipment.
  • the device is equipped with a device that can quickly reduce the effect of the typhoon wind and waves on the generator wing or the turbine wing when the typhoon wind and waves impact the generator wing or the turbine wing.
  • the speed of these wings is also slowed down. This is because the current and voltage generated by the generator during the typhoon time are basically the same as when there is no typhoon or its transmission line and the transmission equipment can withstand its current and voltage.
  • this slowing wing or turbine wing speed device is: 1. If the generator wing or turbine wing is three blade wings or two blade wings, it can be made to be rotatable.
  • the active wing (base active), and the base of the wing can be fitted with a moderately eccentric steel spring.
  • the role of this spring is; in non-typhoon, its role is to enable the blade to be subjected to seawater impact. It can respond normally to the direction of the force; when the typhoon is coming, the wing wing is affected by the typhoon wind and wave, and the force of the blade wing will be further increased.
  • a device such as a running gear position on a car can be installed on the total generator of a seawater generator device.
  • the device also has high-speed, medium-speed, low-speed gears; the function of this device is; when the generator is in a typhoon, Its ability
  • the generator speed is the normal running speed; when the typhoon acts, it can automatically change the generator speed to medium or low speed. This means that the device can make the seawater generator form when the typhoon vigorously pushes the generator.
  • the high speed becomes the normal running speed.
  • Figure 4 is a component diagram of seawater power generation equipment.
  • Figure 5 is a component diagram of seawater power generation equipment.
  • Figure 6 Generator can be two types of generators, but also a component diagram of seawater power equipment.
  • FIG. 8 Figure 8 The tide in the sea is very weak during the high tide, and the flow of seawater in the channel continues to flow at a higher speed because it has not been level with the high tide in the sea (inward) ) Figure. 9, Figure 9 The tide in the sea is weak during the low tide, when the seawater flow in the channel is still at a higher speed because it has not been level with the low tide in the sea. (outward) map. 10, Figure 10 – A complete schematic diagram of a power plant with a water main road (without seawater power generation equipment).
  • Figure 11 is a cross-sectional view of a section of a component of a seawater power plant prefabricated with reinforced concrete on land (a style of a segment of a standard well-shaped square pier).
  • Figure 12 is a schematic cross-sectional view of a wall segment of a seawater channel wall prefabricated with reinforced concrete on land.
  • Figure 13 is a cross-sectional view of the prefabricated seawater channel wall block prefabricated casing for connection style.

Abstract

一种海洋环流水动能和海洋潮汐水动能发电场发电技术方案,包括在海洋中修建海水通道,在海水通道内安装适合通道内海水流动的发电设备。该技术方案克服了海水多向式、旋涡式、波浪式和潮汐式的流动方式,将海水的流动方式转变成基本直流的方式,将海水的冲击力直接转变成巨大的电能。

Description

说明书
海洋环流水动能和海洋潮汐水动能发电场发电技术方案
1技术领域: 再生性资源循环利用技术
2海水动能发电技术的世界研究
利用海水动能(海洋环流水动能和海洋潮汐水动能的简称, 下同)迸行发电 的技术研究,世界各国都在进行,但限于海水动能发电技术的几个难点没有克服, 因此一些海水潮汐发电技术发电效率较低,难以形成大规模的、大效率的生产能 力, 难以满足社会经济发展和社会生活用电的需求。
3海洋动能发电的前景
利用海水动能进行发电, 是有很巨大很广阔的前景, 如果现在在海水动能发 电技术上能够获得突破, 那将不仅对中国, 也会对世界现阶段的经济与社会发展 以及全人类的永久生存产生极大的意义。
( 1 ) 海水动能的冲击力巨大无比, 海水发电的能量不但从数量上也从时间 上与太阳能发电、 风力发电相比, 都比后者时间长。 海水动能的自然动态每天 24小时内, 除每天高海平潮和每天低海平潮占去约 4个小时的弱动态下, 其余 20 个小时都是在大动态的流动。 而风力动态和太阳光照热能的利用在时间上要 少得多。
( 2) 从循环再生利用资源上讲, 海水动能发电同太阳能、 风能发电利用一 样, 是属于无限循环利用的环境污染性极小的自然资源。因此海水动能的发电能 量如果得到成功开发, 它将是全人类可永久利用于生产领域和生活领域的能源。 进一步说,如果全人类在一、二百年后把地球上的煤炭、石油、天然气消耗殆尽, 而海水动能产生的电力就会成为全人类永久性的生产能源和生活能源。
4海洋水动能发电的技术难点和海洋水动能发电的核心技术 海洋动能发电的技术难点有三个, 怎么解决呢?
海洋动能发电有三个技术难点和解决这三个技术难点的具体办法如下: 1、 海水的数量是巨大的, 海水流动的冲击力也是巨大的。 可是海水流动的 方式与江河流动的方式完全不同。江河水流动的方式是从一个方向一直流向另一 个方向, 而海水流动的方式有时是一直朝一个方向流动, 有时会改变方向朝另外 的方向流动。其流动方式还是波浪式的或漩涡式的流动方式, 并且各个海域的海 水流动速度与流动方向也有很大的不同, 这是海水流动的第一大特点。这个第一 大特点形成的物理因素是: 海水动能虽有巨大的冲击力, 但是被其波浪式、旋涡 式、 多向式的流动方式所内耗, 这也就是说, 海水动能的冲击力虽然巨大, 但因 它的流动方式是波浪式、 旋涡式、 多向式的, 而使其难以对发电设备产生功效。
怎么把巨.大的海水动能的波浪式、旋涡式、多向式的流动冲击力转化成可作 为推动发电力量的动力? 我提出的方法是: 为海水修一条通道, 让海水在这条通 道内来来去去的流动, 从而把海水流动的波浪式、 旋涡式、 多向式的流动转变成 基本单向向前流动的方式, 以此形成海水动能来推动发电设备的发电效能。这个 海水通道如图】.
海水通道是什么样子呢?
海水通道是这样的: 从海炸边向海洋中间延伸,修建两条或若干条宽度是几 米或几十米, 高度是从海底至海平面以上 15米和长度是几十千米或几百千米的 这样的水泥混凝土墙, 而各条混凝土墙的间距是几十米或几百米, 这样的各个混 凝土墙的间距就是海水要流动的通道。这样的海水通道建成后, 海水再从这个海 水通道中流动吋, 他的波浪式、 旋涡式、 多向式的流动就转变成了向前单向式的 具有巨大冲击力的流动,这样就可在这个海水通道中装上适合海水动能发电的发 电设备, 这就是形成了海水动能发电的效能。这也就是如同修建铁路要机车顺着 铁轨奔驰, 修建公路耍汽车顺着公路奔跑的原理一样, 在这里要海水顺着 "海水 公路"奔跑。 只不过铁路机车和公路汽车运行担负的是运输的目的, 而海水流动 要担负的是推动发电设备的使其产生电能的目的。
这种海水通道样式, 可以是从海岸边向海洋中间延伸的具有单向式(从一端 进出水)的海水通道如图 2, 也可以是在海洋中间修建具有双向式(两端进出水) 的海水通道如图 3。
当把这样的海水通道建成后,就可以在海水通道中装上适合海水动力发电的 发电设备。
这种海水通道发电设备是什么样子呢?
这种海水通道发电设备有三种构件组成: 1、 混凝土方墩如图 4; 2、 圆筒如 图 5 ; 3、 发电机 (两种样式) 如图 6.
对三种构件的目标要求是: 在海水通道中 "灌注 "若千个宽是几米、 长是几 米或十几米, 高是同海水通道墙一样高的混凝土方墩, 这个方墩的用处是要在方 墩上安装固定同方墩一样高的圆筒;而这个圆筒的用处是要在这个圆筒上安装固 定若干个海水发电机 (依海水深浅定数量); 而发电机机体是安装在圆筒内 (不 接触海水), 发电机翼是安装在圆筒外也就是海水中。
对三种构件的具体标准和要求是: 1、 对混凝土方墩的要求是: 一其要与所 安装的圆筒(含筒内发电机) 适合, 二要其具有抗击大风浪的能力, 三要有较 长的使用期(寿命长)。 2、 对安装在方墩上的圆筒的要求是: 一是其与方墩相适 合; 二是有抗击大风浪能力; Ξ£是其材质具有抗海水腐蚀的能力也是使用期长。 3、 对发电机的要求是: 一要发电机机体要与安装在圆筒内相适合; 二要发电机 机翼或水轮机机翼与海水中的海水流动力与发电机效能相适合;三是发电机机翼 或水轮机机翼要具有抗击大风浪能力和抗海水^蚀的能力,四是发电机要配置一 个合理重量 稳定轮, 以尽可能克服海水流动的不稳定性给发电机带来的影响。
以上就是海水通道发电设备的三个构件的基本标准和要求,这些就组成了一 个完整的适合海水通道内水动力发电的单个发电机设备, 如图 7。 以上是海水流动第 大特点, 同时也是海水动能发电的一大难点, 以及如何 解决这个技术难点的根本方法, 最终达到海水动能发电的关键技术之一。
2、 海水流动的第二大特点是海水流动除其具有波浪式、 漩涡式、 多向式的 流动方式外, 还具有高低潮的流动方式, 这也就是人们常说的海潮高低潮(包括 高平潮、 低平潮)现象。 海水这种高低潮的流动方式, 也是有巨大的动能冲击力 的。但是这种冲击力因高低潮的流向是对冲而大大降低了冲击力效能, 再加上高 潮时有一段高平潮期和低平潮时有一段的低平潮期,这就使海水在巨大冲击力下 因高低潮的相向对冲以及在对冲的转向期(高平潮、 低平潮)的过程中, 把海水 巨大的冲击力内耗很多。
怎样把海水巨大的冲击力因高低潮 (包括高平潮低平潮) 的内耗而损失的 这种冲击力保全下来,再成功转变成对发电设备发生巨大的动能功效呢? 在这里 要采取的办法是: 用 "海水通道"的长度来调整海水在 "海水通道" 内流动的过 程 (含吋间) 如图 8、 图 9和用把海水发电机设备制造成具有变动方向功能(变 向箱)的发电机, 就完全能够把巨大的海水动能冲击力转变成具有发电效能的冲 击力:
( 1 ) 用海水通道的长度调整海水在海水通道中流动的过程和 间如图 8图 9.。 图 8图 9所示意的是: 大海中的海水在高平潮和低平潮时海水流动与 "海水 通道"内的海水流动的关系: 当大海中的海水流动在高平潮时间期或低平潮时间 期是处在弱动态下吋,此时海水通道中海水因通道口限流和通道长度因素还在流 动 (进入或流出); 当海水通道内海水流动的海平面与大海中海平面 (指高平潮 和低平潮) 刚要持平时, 此吋大海屮高平潮或低平潮就开始进入下一个流动期, 这时海水通道中的海水也会跟着大海中的海水一同流动。这也就是说海水通道中 的海水因采用调整通道长度的办法而缩短了高平潮和低平潮的平潮时间,迸而实 现海水通道中海水冲击发电效能的最大化;大海中海水流动冲击力因存在高平潮 期和低平潮期, 而只有十几个小时的流动时间, 而海水通道内的海水流动因通道 长度因素而增加、 增强了海水在通道内的流动时问 一一海水达到高平潮后立即 进入低潮流动一一海水达到低平潮后立即进入高潮流动一一达到高平潮立即进 入低潮流动……这样返返复复 大冲击力而作用于发电设备。
(2)用特制的适合海水通道中的海水流动而制造的发电设备如图 7, 来达 到海水发电场的发电效率最大化。此图 7中的发电设备有接受来、去两个方向的 海水流动动力 (加装变向箱), 因此, 这种发电设备是高效的。
以上是关于大海海水流动的两大特点 (海水的多向式、 漩涡式、 波浪式和 海水的潮汐式流动), 同时, 这也是海水动能发电技术的两大难点以及如何解决 这两个技术难 的根本方法, 这也既是海水通道式发电场的两个核 4 技术。
3、 海水动发电场的第三个技术难点就是: 时时刻刻动荡的海水呈现出时 大、 时小、 时高、 时低的动荡方式, 这种动荡就为修建海水发电场的两个基础设 施既海水通道墙和混凝土方墩造成如下困难: 一是由于海水动荡的冲击力, 冲刷 力大,无论是采用在大海中现场模壳式浇灌办法或是放置模块的办法修建海水通 道和方墩都是不容易成功修建的, 二是即使通道墙和方墩修建成功也是高成本 的, 因此, 如何在吋刻动荡的海水中修建海水通道墙和方墩, 就成为海水发电场 的第三个技术要点。
怎么把海水通道墙和方墩能够在时刻动荡的海水中又快又容易又较低成 本地修建成功呢? 这需要采用的办法是: 先预制一定体积的若干个段块外壳, 然 后再把各个段块外壳连接起来之后, 又对各个段块外壳内空部分现场 "浇灌"混 凝土灰浆并且随连接随灌浇这样的办法, 就能够实现质量优、成本低速度快地修 建海水通道墙和方墩的目标。
如何又快又好又是低成本地修建海水通道墙和方墩的具体方法如下: (1 )混 凝土方墩的快速修建法: 在陆地上以钢筋混凝土为材料、 预制若干个长是约 12 米、 宽约是 5米、 高约是 10米一 20米的井形壳式段块, 其样式如图 11, 段块成 熟之后, 就把段块放置于应放的海水通道中的位置 (也就是海水发电设备的位 置), 放好此空壳段块之后, 再把空壳的空部分立即"浇灌"水泥混凝土灰浆(是 否放置钢筋另定), 然后再一层 层地把空壳段块放上去并随放随 "灌浇"灰浆, 直至达到方墩所要求的髙度, 也就是标准的方墩 (安装圆筒和发电机) 高度。
(2 ) 海水通道墙的快速修建法: 在陆地上以钢筋混凝土为材料, 预制若干 个长是约 14米、 宽是约 5— 6米、 高是约 10— 20米的井形壳式段块其样式如图 12, 段块成熟后, 就把这些壳式段块一块一块地按照要建的海水通道墙位置要求 而放置在应放的需延长的位置 (延长样式如图 13 ), 并一块一块延长至所要延长 的通道长度, 而并且是边放置 (延长)边 "灌浇"空壳段块。 当第一层段块放置 成功并灌浇(灰浆) 完毕之后, 然后是再在第一层段块上面(等于通道墙的部分 墙体)一层一层地继续放置空壳段块并随放置随灌浇空壳段块, 直至放置到海水 通道墙所要求的墙体高度, 这就是一条海水通道墙修建成功了。
5实施建造海水动能发电场的前期准备暨选 lt工作
要建造一个海水动能发电场, 无论是小型或是中型或是大型的, 做好前期的 准备工作或叫前期的水文勘察工作并取得资料,这对于发电场的成功建造和发电 场发电效率是很重要的。 如果场 的不好, 即使发电场建造成功, 但它的发电 效率会有很大差异。
建造一个海水动能发电场的前期选址需查清如下几个水文资料: 1、 海底底 面的平整度; 2、 海底底面的软、 硬度; 3、 海水水体的深浅度; 4、 海水深层水 体的流动方向及强度; 5、 海水浅层 (海水潮汐.) 的流动方向及强度; 6、 海水全 年的水温度; ?、 海水发电场近域的风力强度 (包括台风); 8、 海水发电场区域 的地震、 海啸与火山因素; 9、 海水发电场的电力外输等, 这九项都要尽可能地 符合海水发电场的环境质量优化和发电场效率的最大化。 6实施海水动能发电场的基本 ίΛ¾方法 首先理清海水动能发电场的概况:一个海水发电场是由多个海水通道相邻、 相连而组成的一个整体发电场;而各个海水通道内是布置若干个海水海水发电机 设备的; 而且这各个海水通道之间的水体流动是各自独立的。海水通道各个相连 的部分是其水体以上的通道墙与通道内各个方墩之间连接。 如果是大的发电场, 要设立水主千道如图 10。
要建造一个海水动能发电场, 下面的步骤是较好的 方法:
( 1 )按照本说明书屮有关实施建行海水动能发电场的前期选址 I:作的要求, 査清 9项水文资料之后, 再根据其数据选出最优的适合其所需的客观条件。
(2 ) 无论建多少个发电场, 首先排除地震、 火山因素存在的场址。 其次是 排除台风到境因素的场址, 但如能有建高抗台风的发电场设施、 设备和技术, 则 也可在这种场地建发电场。 但是, 台风临境场地的海水动能(发电效率)和此海 域的电能蕴含量是较高的, 这样才能获得较大的效益。
(3 ) 根据海水动能越大其生产电力效能也越大的原理, 在选择好的海水发 电场址时,除去地震、火山、台风因素以外的场址也既是常规场址的选择要求是: 一要这个场址的深层海水有较大的流动性和浅层海水潮汐有较大的落差性;二要 这些流动性和落差性要较大面积, 也既是此海域的电能蕴含量较大。
(4) 建造一个发电场, 确定海水通道的 "走向"也是发电场发电效能的重 要因素。 1、 只有潮汐水动能的发电场的海水通道的走向是: 从海岸边直接向海 洋深处的方向走去, 如本书图 2所示, 这也既是此类型海水通道墙的延长方向与 潮汐涌潮方向是相同的。 2、 如果在既有深层海水 (大洋环流) 流动的海水走向 又有海洋潮汐的涌潮走向, 并且二者的水流走向有所不同, 这时选择所建海水通 道的走向是: 选择与深层海水的水流方向相同。选择这样的通道走向, 可能会对 潮汐动能因走向有所改变而其发电效率有所降低, 但其降低不是很大。
(5 ) 确定海水通道的 "走向" 后, 下一步是确定海水通道的规格, 也既是 确定海水通道的宽度和长度。一个海水通道的规格, 是决定一个海水通道发电效 率的重要因素, 而一个海水通道发电效率的最大化是由三个因素组成的: 1、 通 道宽度因素; 2、 通道长度因素; 3、 通道内单个发电设备数量因素。 只有这三个 因素都处在最佳状态这个海水通道才能发挥出最大发电效率。 这就要求: 1、 这 个海水通道的宽度要与通道内的海水流动速度相适合, 其不能太宽也不能太窄。 太宽了, 通道墙体积少了, 成本花钱少了, 但是通道内的海水直流性差, 也就是 通道内的海水有旋涡式、 波浪式、 多向式倾向的流动性, 这就不能达到其发电效 率的最大化。通道宽度太窄了, 海水通道墙体相应较多, 也既是墙体花钱成本较 高, 虽说太窄 道的海水直流性强, 但从整体投资上讲也不是效率的最大化。一 个海水通道的最优宽度是: 海水在通道内的流动必须是克服了旋涡式、 波浪式、 多向式流动方式而改变成基本的直流方式之后的最宽宽度,而这个最宽宽度的具 体数据是根据通道现场的海水流动速度大小(海水冲击力)来确定的。海水流动 速度大, 冲击力也大, 海水通道 宽些; 海水流动速度小, 海水通道可窄一些。
2、 一个海水通道的最优长度选择是: 一要在已经确定此通道宽度前提下确定其 长度; 二要依据此处点的海水流动逨度确定长度, 既流速快其通道可长些, 流速 慢其通道可短些; 三要结合通道内布置多少个发电机设备(见图 7 )确定其长度, 这也就是说, 一个成熟的海水通道的装机容量既不能太多也不能太少。装机容量 过多, 各个单个发电设备所受水冲击力的力度达不到应有的力度, 这就达不到发 电效率的最大化, 装机容量太少, 也达不到发电效率的最大化。 总之, 一个标准 的发电效率最大化的海水通道是: 在这个海水通道的宽度、长度和通道内布置完 各个单个发电机设备之后,此时通道内海水流动开始对发电机设备做发电功能的 时候, 这时通道的水体流动, 一是与大海中的水体流动保持同步; 二是通道内的 水体流动的高潮期终结点和低潮终结点与大海中的这些终结点也是保持同步的。 这也就是说, 当大海中海潮处在高潮期流动及其终结时,海水通道内的海水也是 处在高潮期流动及其终结时; 当大海中海潮处在低潮期流动及其终结时,海水通 道中的海水也是处在低潮流动及其终结。这同时也是说, 当大海中高海潮期或低 海潮期己经结束要转向下一个海潮期时,如果此时海水通道内的海水高潮期或低 潮期出现还未完成或过早完成这样的状况, 就必须减少或增加通道的长度, 以实 现一个海水通道的效率最大化的通道长度。
(6)海水通道构件的基本构造、优点和安装。 1、海水通道墙的构造与优点. - 海水通道墙如果用钢筋混凝土制成, 这是要花高成本的, 但是它有几个优点, ① 能高抗大风浪带来的破坏性, 也是维持、保护发电场的高产电力和高发电率所必 有的基本设施。 ②有较长的使用期 (寿命长); ③如果墙基牢固性好, 可为顶层 配建其他设置 (如农田、 住房) 成为可能性打下基础。 2、 海水通道内的混凝土 方墩的构造与优点。混凝土方墩是发电设备的一部分, 也是海水通道设施的一部 分。 对它的要求是: 一是要钢筋混凝土构成, 二是要像桥墩那样向水底下层适当 延伸一些深度(两端 ¾柱形下仲) 以使其牢固。 而水中部分和水上部分呈原长方 形构造见图 4这样的方墩构造也是高成本的,但是它也有几个优点: ①高抗大风 浪带来的破坏性, 也是维护、 保护发电场高产电力和发电高效率的基础设施; ② 有较长的使用期(寿命长)③可为顶层配建其他设置(如农田)成为可能性打下 基础。 3、 圆筒的构造与优点。 圆筒 (见图 5 ) 是海水通道中发电设备的一部分, 对它的要求是: 一是要钢筋混凝土构件或是钢塑品构件; 二是其形状可以是圆形 的, 也可以是子弹头形的; 三是筒子是单独构件并具有不进水的功能。 这种圆筒 的优点是:①高抗大风浪带来的破坏性②有抗海水腐蚀的功能。也有使用期长的 功能③便于吊 j¾并与方墩捆绑组合 (方墩上有预留的孔洞); ④便于筒内电机的 常规养护和维修。 4、 圆筒的较好安装方法: 先把圆筒所要装配的若干个发电机 全部安装固定在筒子内以后 (发电机机翼暂不安装, 其是等以后在海水中安装, 也既是在发电场开始发电时安装), 再用吊装的办法把筒子 (含电机) 吊起并与 方墩捆绑在一起而组成一个完整的发电设备, 既海水中的发电设备。 5、 发电机 的最优构造: 电极多、 转速慢、 叶翼长及数量少, 是实现一个海水发电机高效率 的三个有效途径, 其具体数据 (电极、 转速、 叶翼)要根据发电场的水流速度而 确定, 既各个发电场 (包括各个海水通道)的水流速度有较大差异时, 其数据确 定也有所不同, 也就是要有几种型号的发电机。
(7) 建造海水发电场的两个基础设施既海水通道墙和混凝土方墩的较好方 法是: 一是通道墙与方墩问吋修建; 二是一边修建一边连接, 也就是通道墙在修 建中, 方墩也在修建中 , 并且是每个方墩在修建完成之后就立即与 411应的通道墙 之间和各个方墩之问先迸行初歩的连接 (指方墩顶部和通道墙的顶部), 等以后 的时间(指方墩上的圆筒和发电机安装完毕之后)再进行较大面积的覆盖性连接。 当然, 如果没有大面积的连接规划, 则是没有这项连接。
( 8 ) 海水的深浅对建发电场的影响。 海水的深浅度能不能对发电场造成影 响?一个海域的海水无论深或浅, 只要其流速达到发电所需的要求, 都是能够在 这些海域建发电场的。这就是在海水流速达到发电要求的前提下,深度海水区域 装机容量相应多些, 浅度海水区域的装机容量相应少些。
以上 8项就是实施海水动能发电场的基本优先方法。
7海水通道式发电场发电技术的先进性
海水通道式发电场发电技术与目前各种潮汐拦水坝式发电技术相比,是有很 大的先进性, 在实际发电效果屮也要高出很多倍。 (1 )现有的海水潮汐拦水坝式 的发电技术要修拦水坝, 这等于是间接利用潮汐能,而海水通道式发电技术是直 接利用海水动能, 并且包括两种动能既大洋环流动能和潮汐动能, 所以发电效率 高。 (2 )现有的潮汐拦水坝式发电技术利用海水动能受到一定的地点限制, 所以 在海水能的利用上受限很大, 而海水通道式发电技术在利用海水能上则受限很 小, 也就是只要有海水流动的地点 (包括大洋环流流动和潮汐流动), 都可直接 建发电场。 (3 )海水通道式发电场的建设成本从现场投资上说是高的, 但是其产 生的电能比相应也是高的。 再则, 海水通道式发电场(己建成)从短时期看收益 率好像是差的,但从长时期看其收益率是很高的。(4)从保护人类生存环境上讲, 利用海水通道发电技术多建发电场, 去替代目前世界很多地点的火力发电、核动 力发电(停止火力发电、 核动力发电)是可行的, 并可取得预期的效果一一只要 世界各地海水通道式发电场建设的数量多,最后是海水动能电就成了人类的生产 用电和生活用电。(5 )海水通道式发电场发电技术比现有的海水潮汐拦水坝发电 技术具有先进性的最明显的例子是:用海水通¾式发电技术对现有的潮汐发电站 进行改进, 就^!其发电量增加很多倍。 8 桥柱式发电设备应用于海水动能发电场中的优势性 这里所谓桥柱式发电设备,就是; 1,先在陆地上用钢筋混凝土预制 一个直径约是 10米或 15米和长度是 50米, 100米或 200米等各种型号的圆 筒,这个圆筒内空部分的直径可以 ¾米或者 12米.这个圆筒的用处是要 在圆筒内安装一个或四个在圆筒内全长通的传动轴,而圆筒体的四个方 向既前、 后、 左、 右要分别安装若干个水动机(与长传动机轴相对应); 而这些水动机机体安装在圆筒内,机翼是安装在圆筒外也既是海水中, 具体样式如本说明书附图 7中右半部分的由多个水动机和总发动机所组 成的这种样式的发电机设备,在这里只不过是在圆筒的四个方向要安装 四个方向的水动机.因此,把这个圆筒当做一个发电设备安装在海水中 时,圆筒内是不进海水的(圆筒制造技术上,用混动式制造技术制造的圆 筒强度高、密封性亦优良),并且这个圆筒要预制相应的要安装若干个水 轮机机轴的预留孔. 2,当把预制的钢筋混凝土圆筒制成后,再在圆筒上 安装相应的若干个水动机及总发电机(总发电机可以是四个方向各一个 或四个方向连成总的一个)之后,这也就是一个完整的桥柱式发电设备 组装成功. 3,当一个完整的桥柱式发电设备组装后,就可以随便把它竖 立、 安装在海洋的任何位置;当把若干个桥柱式发电设备安装布置在一 定的海域内(装机容量)之后,这个海域就成了一个完整的桥柱式海水动 能发电场.当然,这个发电场中的各个桥柱式发电设备是不能独立的,它 的水上部分必须是由用钢筋混凝土构筑连接一起的,这样才能使这个海 水发电场具有高抗大风浪的能力.
这样的桥柱式海水发电设备或桥柱式发电场,其适合在有海水海潮 的流动力较强的海域中实施,是比较能够获取较好的发电效能;这也就 是说,这种桥柱式海水发电设备及发电场,不是象海水通道式发电场发 电技术那样,可以适合任何海域的海水动能发电场的建造,而它只适合 一定条件的海区. 这种桥柱式发电设备及发电场,也是有其缺点的;水动机因海水流速 经常处在变化中其转速也是处在经常变化中;水动机转速的经常的变化 又会使其产生的电流、 电压的不稳定性,这就要求采取相应的技术措施 于以克服这种缺点,才能取得良好的发电效果.
以上就是所谓的桥柱式海水发电设备及发电场.它的优势优越性是; 不修建拦水坝,不修建海水通道;其使用期也是很长的,其发电效率也是 很高的.所以,如果把它布置在所需的海域中并实施工作,同时又克服了 它的缺点和不利因素,就能获得良好的发电效果. 9海水通道内的发电设备在陆地河流中应用的通用性与优势性 海水通道内使用的发电设备如图 7,如果在地球陆地河流上施用,也是具有通用性 和优势性的. 在海洋中建造海水动能发电场,需要人工修建海水通道和建造海水通道使用的发 电设备,而这种用于海水通道内使用的发电设备,是完全可以用于陆地河流上进行修 建发电站的,并且在内陆河流修建发电站是有优点,优势的. 地球大陆陆地的河流,无论小型的,中型的,大型的或特大型的,其河流的两岸就是天然 的水流通道 (与海水通道的区别这里是淡水通道),因此,把这种桥墩式发电设备 (海水通道内 使用的发电设备在天然河流中使用时的称谓)建造在河流中时,每个发电设备就是一个发电 机组,而多个发电机组就组成一个发电站.使用这种桥墩式发电设备在陆地河流上修建发电 站时,有三个优点,优势: 1.不修建拦水坝,直接在河流中修建,安装多个桥墩式发电设备; 2. 无论是大河流或小河流都可直接修建这样的桥墩式水力发电站,这也就是说无论一个村,一 个乡镇,一个市县,或一个省、 州、 邦,只要有河流,并且其河水流动具备发电的效能,都会轻 易地、 低成本地在这些地点修建微型的、 小型的、 中型的、 大型的等等各种样式的桥墩式水 电站.有些地点甚至可以把发电用的桥墩同时也用作修建人、车通行的河桥桥墩,这也既是一 个桥墩成为发电和通行 (人 车)两用桥墩. 3.使用桥墩式发电设备在陆地河流建成的发电站, 有较长的使用期,也就是其寿命长.
但是,在陆地河流建造桥墩式发电站,也有两点不利因素: 1.在河流中修建多个桥墩式发 电设备,可能阻碍河道的泄洪能力,也是抬高河道的水位线,以至是否会因此造成当地的溃河 灾害; 2.这种桥墩式发电站的发电效能较之拦水坝式发电站是较弱的,以及发电机发电时因 河水流量多少的变化其发电量也会随之变化, 以及其电力输送时其电压也存在不稳定因素. 虽说在陆地河流中修建桥墩式水电站会有两个弱点,但只要尽可能避减克服这两个弱点, 陆地河流的各类流水动能就会得到充分的开发和利用.
10 修建台风减力桥在修建海水动能发电场中的重要性 如果世界各个临海国家既有海岸线的国家,无论亚州的、 美洲的、 欧州的或非洲的等等, 其海岸往往有台风登陆的地点会是海洋水动能(电力能)最大,最强的地点,因此,人们认为有 台风危害严重地点的海水动能是无法利用于发电的.其实,在台风登陆的相应海域 (弱势台风 登陆海域),如果可以进行可修建海水动能发电场,只要在海水动能发电场建成之后,再在发 电场对应台风冲击的方向修建一道台风减力桥,就会使台风危害海水发电场的程度减轻很多. 这就是说在台风登陆地点修建海水动能发电场,只要修建一条台风减力桥 (大小不同,其作用 也不同),就会把台风危害减轻至 50 甚至更多.例如 ,·台风形成到岸海浪高度是 5-10m, 修了 台风减力桥之后, 其海浪冲击海水发电场的高度就会减缓为 2-5m高的海浪。
所谓台风减力桥就是: 减轻台风冲击力的桥。 它的构造是: 在海水动能发电场的台风来 临的对应方向及其长度, 修建一条由多个长条型的桥墩组成的全桥桥墩,然后再把各个桥墩 的水上部分用合适髙度的桥面连接各个桥墩之后, 这就是所谓台风减力桥。这种台风减力桥 构造的显著特点是其桥面象航空母舰上的飞机起降甲板那样,既是前部低,后部翘起;这样, 当大海浪向此桥冲击时, 海浪的冲击力会被削弱很多。
所谓台风减力桥, 他的另一个主要作用是各桥墩中间的桥孔无论有无台风, 都是有海水 在正常流动, 并且这种桥孔中的流动基本上对海水发电设备的不利影响是较低的, 它只是在 台风来临时由于桥墩和桥面 (没有承重功能) 阻挡台风与风浪而降低了台风浪冲击力。
11 在台风登陆区域的海洋中修建海水发电场所使用的发电设备, 需加装 变速装置的必要性
如果在台风登陆区域的海域中修建的海水动能发电场,此场区既使修建了高抗台风冲击 力的台风减力桥, 既使这个海水发电场由于得到台风减力桥的保护, 是不会遭到台风的损坏 的。 但是,这种区域的发电场在台风作用时间其中的每个台风时间都会对海水发电机的发电 功能产生一定的负面作用.这个负面作用是;发电场在无台风的常规时期,其场内的发电机机 翼或水轮机机翼都会处在常规的转速中,而其所产生的电流电压也是较稳定数值;可是当台 风风浪作用于此发电场及其发电机或水轮机时,就会使这些发电机或水轮机的转速迅速上升 很多倍,而这些转速的上升结果就是其产生的电流电压也随之上升;而其电流电压过高上升 就对其相应的输电线路>输电设备可能产生较大的不利运行,甚至会对这些线路及设备产生 损坏性.
为了避减克服台风风浪冲击力对海水发电场中的发电机或水轮机造成的过大转速而致 其产生的电流、 电压可能对输电线路、 输电设备产生的损坏,就可采用在发电机或水轮机上 装配一套装置;而这套装置的作用是能够在台风风浪冲击发电机机翼或水轮机机翼时,这个 装置就可以迅速地将台风风浪冲击发电机机翼或水轮机机翼的作用缩小,而致这些机翼的转 速也随之变慢,这也既是其发电机在台风作用时间所产生的电流、 电压基本与无台风时是持 平或其输电线路、 输电设备能够承受其电流、 电压.
这个减慢发电机机翼或水轮机机翼转速装置的基本构造和安装是; 1,如果发电机机翼或 水轮机翼是三个叶翼或两个叶翼,可以把它制成是可以转动方向的活动性叶翼(基部活动性), 而叶翼的基部可装上适度的偏侧的钢弹簧,这个弹簧的作用是;在非台风时期,其作用是能使 叶翼受到海水冲击力时能够正常应对受力的方向;而在台风来临发生作用时,由于叶翼受台 风风浪冲击力增加,而此时叶翼受力会进一步加大,而这时如果设置的弹簧的承受力小于叶 翼一侧的承受力,这时叶翼一侧(基部)的弹簧会被压缩而致受力方向(海水冲击力方向)发生 变化既叶翼受力面积变窄而其转速变慢. 2,可在一个海水发电机设备的总发电机上装配一个 象汽车上的跑速档位的装置,这个装置也有高速,中速,低速等档位;这个装置的作用是;发电 机在无台风时,其能使发电机转速是正常的运转速度;而在台风作用时,其能使发电机转速自 动变速为中速或低速.这也就是这个装置能使海水发电机在有台风大力推动发电机时形成的 过高转速变成正常的运行转速.
以上就是在台风登陆区域修建的海水动能发电场所使用的发电设备,需加装变速装置的 必要性. 附图说明
I , 图 1海水通道示意图。
2, 图 2海水通道中的海水只能从海水通道的一端流进或流出图。
3 , 图 3两条海水通道合并成一个海水通道之后中间又加了一道隔墙后成为一个 双向海水通道图。
4, 图 4海水发电设备的一个构件图。
5, 图 5海水发电设备的一个构件图。
6, 图 6发电机可以是两种样式的发电机,同时也是海水发电设备的一个构件图。
7, 图 7方墩、 圆筒和发电机组装后的完整的单个海水发电设备图。
8, 图 8大海中的海潮处在高平潮期间其流动性很弱时, 而此时通道内的海水流 动因还未与大海中的高平潮相持平还在较大速度地继续流动 (向内) 图。 9, 图 9大海中的海潮处在低平潮期间其海水流动性很弱时, 而此时通道内的海 水流动因还未与大海中的低平潮相持平还在较大速度地继续流动(向外)图。 10, 图 10—个完整的带有通水干道的发电场示意图(未布置海水发电设备)图。
I I , 图 11在陆地上用钢筋混凝土材料预制的海水发电设备的一个构件的部分段 块 (标准的井字型方墩中的一个段块外壳的样式) 横截面示意图。
12, 图 12在陆地上用钢筋混凝土材料预制的海水通道墙中的一个墙体段块外壳 的样式横截面示意图。
13 ,图 13两块预制的海水通道墙体段块预制外壳进行连接样式的横截面示意图。

Claims

权利要求书 海洋环流水动能和海洋潮汐水动能发电场发电技术方案,其特征 是; 1 在洋海中修建海水通道; 2在海水通道内安装适合通道内海水流 动的发电机设备.
PCT/CN2013/001276 2013-09-03 2013-10-21 海洋环流水动能和海洋潮汐水动能发电场发电技术方案 WO2015032015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310392589.X 2013-09-03
CN201310392589 2013-09-03

Publications (1)

Publication Number Publication Date
WO2015032015A1 true WO2015032015A1 (zh) 2015-03-12

Family

ID=52627667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001276 WO2015032015A1 (zh) 2013-09-03 2013-10-21 海洋环流水动能和海洋潮汐水动能发电场发电技术方案

Country Status (1)

Country Link
WO (1) WO2015032015A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595872A (zh) * 2018-05-07 2018-09-28 深圳供电局有限公司 一种电网在线安全稳定分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319648A (zh) * 2008-07-04 2008-12-10 清华大学 一种垂直轴潮流发电机的导流装置
CN202610776U (zh) * 2012-05-17 2012-12-19 李美茜 海水下发电装置
CN103061959A (zh) * 2013-01-16 2013-04-24 广东海洋大学 一种双通道海流能发电装置
CN103147900A (zh) * 2013-03-15 2013-06-12 江苏中蕴风电科技有限公司 洋流发电用伸缩式聚流管道
CN203146204U (zh) * 2013-03-15 2013-08-21 江苏中蕴风电科技有限公司 一种固定式狭管聚流发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319648A (zh) * 2008-07-04 2008-12-10 清华大学 一种垂直轴潮流发电机的导流装置
CN202610776U (zh) * 2012-05-17 2012-12-19 李美茜 海水下发电装置
CN103061959A (zh) * 2013-01-16 2013-04-24 广东海洋大学 一种双通道海流能发电装置
CN103147900A (zh) * 2013-03-15 2013-06-12 江苏中蕴风电科技有限公司 洋流发电用伸缩式聚流管道
CN203146204U (zh) * 2013-03-15 2013-08-21 江苏中蕴风电科技有限公司 一种固定式狭管聚流发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595872A (zh) * 2018-05-07 2018-09-28 深圳供电局有限公司 一种电网在线安全稳定分析方法

Similar Documents

Publication Publication Date Title
Zhixin et al. The key technology of offshore wind farm and its new development in China
CN101649813B (zh) 水流海浪潮汐动能和风能太阳能发电的综合系统
CN202718815U (zh) 海上漂浮式风力、洋流、太阳能综合发电平台
CN104074670B (zh) 模块化海洋能发电装置
CN202040026U (zh) 一种海上能源综合利用系统
EP2758655B1 (en) Systems and methods for improved water rotors
CN102477933A (zh) 潮汐发电站(超大型)
WO2019090804A1 (zh) 集成于浮式防波堤的摆式波浪能发电装置
CN207261155U (zh) 一种与防波堤沉箱相结合的潮汐能发电装置
WO2009070962A1 (fr) Dispositif de génération d'énergie marémotrice
CN202140233U (zh) 江河水流及海洋洋流发电系统
CN114483452A (zh) 一种融合海洋能、光伏与风能的海上发电装置
Lemonis et al. Wave and tidal energy conversion
Merriam Wind, waves, and tides
CN109340030B (zh) 一种悬挂摆板式浮体消浪发电装置及其使用方法
WO2015032015A1 (zh) 海洋环流水动能和海洋潮汐水动能发电场发电技术方案
CN102304911A (zh) 水平式无坝流水冲击发电站
CN217115953U (zh) 一种融合海洋能、光伏与风能的海上发电装置
CN103381881A (zh) 钢筋水泥结构的漂浮式海上发电平台
CN201685977U (zh) 一种浮动式双体水力发电船
KR20120001971A (ko) 가물막이댐을 이용한 소규모 조력발전 시스템 및 그 시공방법
CN103615350A (zh) 一种江河水流能量转换系统
CN202117848U (zh) 不倒翁式风力及海浪发电装置
CN104819102A (zh) 一种风浪一体的发电装置
CN103557110A (zh) 海洋环流水动能和海洋潮汐水动能发电场发电技术方案

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892881

Country of ref document: EP

Kind code of ref document: A1