WO2015030213A1 - Extended release particles, method for producing same, molding material and molded article - Google Patents

Extended release particles, method for producing same, molding material and molded article Download PDF

Info

Publication number
WO2015030213A1
WO2015030213A1 PCT/JP2014/072837 JP2014072837W WO2015030213A1 WO 2015030213 A1 WO2015030213 A1 WO 2015030213A1 JP 2014072837 W JP2014072837 W JP 2014072837W WO 2015030213 A1 WO2015030213 A1 WO 2015030213A1
Authority
WO
WIPO (PCT)
Prior art keywords
release particles
sustained
hydrophobic
vinyl monomer
oil phase
Prior art date
Application number
PCT/JP2014/072837
Other languages
French (fr)
Japanese (ja)
Inventor
大島 純治
井上 英明
智子 星野
小林 綾子
Original Assignee
日本エンバイロケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014174056A external-priority patent/JP6355486B2/en
Application filed by 日本エンバイロケミカルズ株式会社 filed Critical 日本エンバイロケミカルズ株式会社
Priority to CN201480047961.6A priority Critical patent/CN105764338B/en
Priority to AU2014312780A priority patent/AU2014312780A1/en
Priority to US14/914,949 priority patent/US20160235068A1/en
Publication of WO2015030213A1 publication Critical patent/WO2015030213A1/en
Priority to AU2018203982A priority patent/AU2018203982A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N51/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds having the sequences of atoms O—N—S, X—O—S, N—N—S, O—N—N or O-halogen, regardless of the number of bonds each atom has and with no atom of these sequences forming part of a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers

Definitions

  • the present invention relates to sustained release particles, a production method thereof, a molding material and a molded product, and more particularly, to sustained release particles capable of sustained release of an antibiotic compound, a production method thereof, a molding material and a molded product.
  • Antimicrobial active compounds such as insecticides, insecticides, antproofing agents, fungicides, preservatives, herbicides, algae control agents, repellents, etc. are microencapsulated to gradually release the antibiotics and maintain their efficacy Particles that guarantee sex are known.
  • the particles may require sustained release depending on the purpose and purpose.
  • the microcapsules obtained by the method described in Patent Document 1 have a problem that the above-described requirements cannot be sufficiently satisfied.
  • An object of the present invention is to provide sustained release particles that are excellent in sustained release and robust, a production method thereof, a molding material and a molded product using the sustained release particles.
  • the inventors of the present invention have made extensive studies on the above-mentioned sustained release particles, a production method thereof, a molding material and a molded product using the sustained release particles, and in the absence of a solvent, the hydrophobicity and Oil phase component for preparing an oil phase component containing a hydrophobic slurry by dispersing an antibiotic active compound substantially insoluble in the hydrophobic polymerizable vinyl monomer in the hydrophobic polymerizable vinyl monomer Sustained release by a production method comprising a preparation step, a water dispersion step of dispersing an oil phase component in water to prepare an aqueous dispersion, and a polymerization step of producing a polymer by suspension polymerization of a polymerizable vinyl monomer.
  • the present inventors have found that it is possible to obtain an excellent and robust sustained-release particle, a molding material and a molded product using the same, and have completed the first invention group.
  • the first invention group is (1) In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic
  • the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of aromatic sulfonic acid and formaldehyde, and / or the polymerizable vinyl monomer is (meth) acrylic acid.
  • the sustained-release particles according to (1) above comprising an ester monomer and a (meth) acrylate crosslinkable monomer, (3)
  • the neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)-
  • the sustained-release particles according to (3) above which contain at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine, (5) It has a two-phase structure formed of a matrix made of a polymer and an antibiotic compound that is substantially insoluble in the monomer for forming the polymer and is dispersed in the matrix.
  • sustained release particles Characterized by sustained release particles, (6) The sustained release particles according to (5) above, wherein both the matrix and the domain are exposed on the surface of the sustained release particles, (7) The sustained release particles according to (5) above, wherein the domain is covered with the matrix, (8) Furthermore, the sustained release particles according to (7) above, wherein the antibiotic compound is attached to the surface of the matrix, (9) The sustained release particles according to any one of (5) to (8) above, wherein the antibiotic compound is a neonicotinoid insecticide, (10) The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained release particles according to (9) above, comprising at least one selected from the group consisting of N-nitroimidazolidin-2-ylideneamine, (11) The sustained release particles according to any one of (1) to (10) above, wherein the sustained release particles are prepared as granules
  • a molding material comprising a thermoplastic resin and the sustained-release particles according to any one of (1) to (11) above, (13) A molded product comprising a thermoplastic resin and the sustained release particles according to any one of (1) to (11) above, (14)
  • a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic
  • An oil phase component preparation step for preparing an oil phase component containing a slurry, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and suspension polymerization of the polymerizable vinyl monomer,
  • the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of aromatic sul
  • the method for producing sustained-release particles according to (14) above comprising an ester monomer and a (meth) acrylate crosslinkable monomer, (16)
  • the suspension according to (14) or (15) above further comprising a step of blending the suspension obtained by the polymerization step and a solid carrier, drying them, and preparing granules.
  • the method for producing sustained-release particles according to any one of (14) to (16) above, wherein the antibiotic compound is a neonicotinoid insecticide, (18)
  • the neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)-
  • the present inventors diligently examined the sustained-release particles of the first invention group, the production method thereof, the molding material and the molded product using the sustained-release particles, and in the absence of a solvent, An oily phase component containing a hydrophobic slurry is dispersed by dispersing an hydrophobic active vinyl compound that is substantially insoluble in the hydrophobic polymerizable vinyl monomer in the hydrophobic polymerizable vinyl monomer.
  • the release of the polymerizable vinyl monomer is controlled by a production method in which a suspension shell polymerization of the polymerizable vinyl monomer and a hydrophobic shell-forming component and a hydrophilic shell-forming component are interfacially polymerized to form a shell covering the suspension polymer.
  • the second invention group is: (1) In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and suspension polymerization of the polymerizable vinyl monomer, A polymerization step for forming a coalescence, and at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell-forming component and a hydrophilic shell-forming component are contained, and the polymerization step Then, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to coat the suspension polymer.
  • controlled release particles (2) The controlled release particles according to (1) above, characterized in that the interfacial polymerization is started simultaneously with the start of suspension polymerization or before the start of suspension polymerization, (3) The sustained-release particles according to (1) or (2) above, wherein the hydrophobic shell-forming component contains a polyisocyanate, and the hydrophilic shell-forming component contains a polyamine, (4) The sustained release particles according to any one of (1) to (3) above, wherein the antibiotic compound is a neonicotinoid insecticide, (5) The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained-release particles according to (4) above, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamines, (6) A matrix composed of a polymer, an antibiotic compound which is substantially insoluble in the mono
  • the shell is made of polyurea, the sustained release particles according to (6) above, (8) The sustained release particles according to (6) or (7) above, wherein an antibiotic compound is attached to the surface of the shell, (9) The sustained-release particles according to any one of (6) to (8) above, wherein the antibiotic compound is a neonicotinoid insecticide, (10) The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained release particles according to (9) above, comprising at least one selected from the group consisting of N-nitroimidazolidin-2-ylideneamine, (11) The sustained release particles according to any one of (1) to (10) above, wherein the sustained release particles are prepared as granules.
  • a molding material comprising a thermoplastic resin and the sustained-release particles according to any one of (1) to (11) above, (13) A molded product comprising a thermoplastic resin and the sustained release particles according to any one of (1) to (11) above, (14)
  • a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic
  • An oil phase component preparation step for preparing an oil phase component containing a slurry, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and suspension polymerization of the polymerizable vinyl monomer,
  • a polymerization step for forming a coalescence, and at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell-forming component and a hydrophilic shell-forming component are contained, and the polymerization step Then, the
  • a method of manufacturing a controlled release particles (15)
  • the interfacial polymerization is started simultaneously with the start of the suspension polymerization or started before the start of the suspension polymerization.
  • the method for producing sustained-release particles according to Item (18) The method for producing sustained-release particles according to any one of (14) to (17) above, wherein the antibiotic compound is a neonicotinoid insecticide, (19)
  • the neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)-
  • the method for producing sustained-release particles according to (18) above comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
  • the sustained-release particles of the first invention group are a hydrophobic polymer that is hydrophobic and substantially insoluble in a hydrophobic polymerizable vinyl monomer in the absence of a solvent.
  • An oil phase component preparation step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and a polymerizable vinyl Since it is obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of a monomer, it is possible to obtain sustained release particles that are excellent in sustained release properties.
  • sustained-release particles of the first invention group sustained-release particles that are robust and excellent in sustained-release properties can be obtained.
  • the sustained-release particles of the first invention group have a two-phase structure formed of a matrix made of a polymer and a domain made of an antibiotic compound and dispersed in the matrix, the antibiotic In addition to excellent sustained release of the active compound and excellent fastness, it is excellent in kneadability with the resin.
  • the molding material of the first invention group contains the above-mentioned sustained release particles, the excellent controlled release property of the antibiotic compound can be imparted to the molded product of the first invention group.
  • the sustained-release particles of the second invention group are hydrophobic, and in the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to a hydrophobic polymerizable vinyl monomer.
  • An oil phase component preparation step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and a polymerizable vinyl Since it is obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of a monomer, it is possible to obtain a sustained-release particle having excellent sustained-release properties and alkali resistance and robustness.
  • sustained-release particles of the second invention group it is possible to obtain sustained-release particles that are robust and excellent in sustained-release properties and alkali resistance.
  • the sustained-release particles of the second invention group are obtained by suspension polymerizing the polymerizable vinyl monomer and interfacially polymerizing the hydrophobic shell-forming component and the hydrophilic shell-forming component. Is formed, the encapsulating rate of the antibiotic compound can be increased, and the alkali resistance of the antibiotic compound is excellent.
  • the sustained-release particles of the second invention group include a matrix made of a polymer and a domain made of an antibiotic compound and dispersed in the matrix. In addition to being excellent in fastness, it is excellent in kneadability with resin.
  • the sustained release particles in the second invention group include a shell covering the matrix, the antibiotic active compound is excellent in sustained release and alkali resistance.
  • the molding material of the second invention group contains the above-mentioned sustained release particles, the excellent controlled release property and the alkali resistance of the antibiotic compound can be imparted to the molded product of the second invention group. .
  • FIG. A1 shows a schematic cross-sectional view of a first embodiment of sustained-release particles of the first invention group.
  • FIG. A2 shows a schematic cross-sectional view of a second embodiment of the first-invented group sustained-release particles (embodiment in which the domains are covered with a matrix and the deposits adhere to the surface of the matrix).
  • FIG. A3 shows a schematic cross-sectional view of a modification of the second embodiment (a mode in which the entire surface of the matrix is exposed).
  • FIG. A4 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A1.
  • FIG. A5 shows an image processing diagram of an SEM photograph of sustained release particles of Example A2.
  • FIG. A6 shows an image processing diagram of the SEM photograph of the sustained release particles of Example A3.
  • FIG. A7 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A4.
  • FIG. A8 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A9.
  • FIG. A9 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A19.
  • FIG. A10 shows the image processing drawing of the SEM photograph of the fracture surface of the strand of Example A20.
  • FIG. A11 shows an image processing diagram of the SEM photograph of the fracture surface of the strand of Example A21.
  • FIG. A12 shows an image processing diagram of a TEM photograph of sustained-release particles of Example A1.
  • FIG. A13 shows an image processing diagram of a TEM photograph of sustained release particles of Example A2.
  • FIG. A14 shows an image processing diagram of a TEM photograph of sustained release particles of Example A3.
  • FIG. B1 shows a schematic cross-sectional view of a third embodiment of the sustained-release particles of the second invention group.
  • FIG. B2 shows a schematic cross-sectional view of a fourth embodiment of sustained-release particles of the second invention group.
  • FIG. B3 shows an image processing diagram of an SEM photograph of the sustained release particles of Example B1.
  • FIG. B4 shows an image processing diagram of an SEM photograph of sustained release particles of Example B2.
  • FIG. B5 shows an image processing diagram of an SEM photograph of sustained release particles of Example B6.
  • FIG. B6 shows an image processing diagram of an SEM photograph of sustained-release particles of Example B30.
  • FIG. B7 shows an image processing diagram of an SEM photograph of sustained-release particles of Example B35.
  • FIG. B8 shows an image processing diagram of a TEM photograph of sustained release particles of Example B2.
  • FIG. B9 shows an image processing diagram of a TEM photograph of sustained release particles of Reference Example B1.
  • FIG. B10 shows an image processing diagram of a TEM photograph of sustained release particles of Reference Example B2.
  • FIG. B11 shows an image processing diagram of a TEM photograph of sustained release particles of Reference Example B3.
  • the method for producing sustained-release particles of the first invention group comprises a hydrophobic and substantially insoluble antibiotic active compound in a hydrophobic polymerizable vinyl monomer in the absence of a solvent.
  • Antibacterial active compounds include insecticides (including ants), insecticides (including ants), sterilization, antibacterial, antiseptic, herbicidal, algae, fungicides and other insecticides (anticides) ), Insecticides (including ant-proofing agents), fungicides, antibacterial agents, antiseptics, herbicides, algae-proofing agents, fungicides, attractants, repellents and rodenticides.
  • antibiotic active compounds such as clothianidin ((E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine), imidacloprid (1 -(6-Chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine), thiacloprid, thiamethoxam ((EZ) -3- (2-chloro-1,3-thiazol-5-ylmethyl) -5-methyl -1,3,5-oxadiazinan-4-ylidene (nitro) amine), neonicotinoid insecticides such as dinotefuran, diamides such as fulbenzamide, chlorantraniliprole, diflubenzuron, teflubenzuron, chlorfluazuron, Insect growth such as tebufenozide, methoxyphenozide, cyromazine Please, acaricides such as clofentezine,
  • fungicides include copper-based fungicides such as basic copper chloride, basic copper sulfate, and oxine copper, silver-based fungicides such as metallic silver, organic sulfur-based fungicides such as polycarbamate, fusalides, and tricyclazole.
  • copper-based fungicides such as basic copper chloride, basic copper sulfate, and oxine copper
  • silver-based fungicides such as metallic silver
  • organic sulfur-based fungicides such as polycarbamate, fusalides, and tricyclazole.
  • Melanin biosynthesis inhibitors thiophanate methyl, carbendazine (MBC), benzimidazole fungicides such as dietofencarb, acid amide fungicides such as isothianyl, sterol biosynthesis inhibitors such as triphorine, 1,2-benzisothiazoline-3- And other synthetic inhibitors such as isothiazolone fungicides such as ON, dichromimidine, fluorimide, captan, chlorothalonil, quinotimeoate, oxolinic acid, benchavaricarb isopropyl, diazofamide, and zinc pyrithione.
  • MBC carbendazine
  • benzimidazole fungicides such as dietofencarb
  • acid amide fungicides such as isothianyl
  • sterol biosynthesis inhibitors such as triphorine
  • other synthetic inhibitors such as isothiazolone fungicides such as ON, dichromimidine,
  • 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), cumyluron, carbylate, and other urea chemicals ethoxysulfuron, halosulfuronmethyl, flazasulfuron , Sulfonylureas such as nicosulfuron, thifensulfuron methyl, imazosulfuron, cyclosulfamuron, flucetosulfuron, trifloxysulfuron sodium salt, triazines such as simazine (CAT), atrazine, triadifram, lenacyl, sibulthrin, terbutrin Drugs, amino acids such as glyphosate, phenylphthalimides such as flumioxazin, triketones such as mesotrione, and other drugs such as quinoclamin and pyriphthalide.
  • DCMU 3- (3,4-dichlorophenyl) -1,1-dimethyl
  • the antibiotic compound is preferably a neonicotinoid insecticide from the viewpoint of species selectivity and safety, and zinc pyritine from the viewpoint of versatility and efficacy, more preferably from the viewpoint of poor solubility, Clothianidin, imidacloprid, and zinc pyrithione are preferable, and clothianidin and imidacloprid are more preferable. Particularly preferred is clothianidin from the viewpoint of safety for mammals.
  • Antibiotic active compounds are substantially hydrophobic and, for example, have very low solubility in water at room temperature (20-30 ° C., more specifically 25 ° C.), more specifically,
  • the solubility at room temperature is 1.5 parts by mass / 100 parts by volume of water (15 g / L) or less, preferably 0.5 parts by volume / 100 parts by mass of water (5 g / L) or less, more preferably 0.1 parts by mass / 100 parts by volume of water (1 g / L) or less.
  • the antibiotic compound is substantially insoluble in the polymerizable vinyl monomer, and specifically, for example, at room temperature (20 to 30 ° C., more specifically 25 ° C.) with respect to the polymerizable vinyl monomer.
  • the solubility is extremely small. Specifically, the solubility at room temperature is, for example, 0.1 parts by mass / (use) polymerizable vinyl monomer (mixture) 100 parts by volume (1 g / L) or less, preferably 0.05. It is 100 parts by mass (0.5 g / L) or less by mass parts / (used) polymerizable vinyl monomer (mixture).
  • the melting point of the antibiotic compound is, for example, 80 ° C. or more, preferably 100 ° C. or more. If the antibiotic compound is a compound that does not contain a metal atom, it is, for example, 300 ° C. or less.
  • polymerizable vinyl monomer examples include (meth) acrylic acid ester monomers, aromatic vinyl monomers, vinyl ester monomers, maleic acid ester monomers, vinyl halides, vinylidene halides, nitrogen-containing vinyl monomers, and crosslinkable monomers. Etc.
  • Examples of (meth) acrylic acid ester monomers include methacrylic acid esters and / or acrylic acid esters, specifically, (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid. n-propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate (i-BMA / i-BA), tert-butyl (meth) acrylate, (meth) acrylic acid (Meth) acrylic acid alkyl ester in which the alkyl moiety such as n-pentyl, n-hexyl (meth) acrylate and cyclohexyl (meth) acrylate has a linear, branched or cyclic alkyl moiety having 1 to 6 carbon atoms And, for example, alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth)
  • (meth) acrylic acid alkyl ester more preferred is a (meth) acrylic acid alkyl ester having an alkyl moiety having 1 to 6 carbon atoms, and particularly preferred is isobutyl methacrylate (i-BMA).
  • aromatic vinyl monomer examples include styrene monomers (monovinylbenzene) such as styrene (vinylbenzene), p-methylstyrene, o-methylstyrene, ⁇ -methylstyrene, and ethylvinylbenzene.
  • styrene monomers such as styrene (vinylbenzene), p-methylstyrene, o-methylstyrene, ⁇ -methylstyrene, and ethylvinylbenzene.
  • styrene and ethyl vinylbenzene are used.
  • vinyl ester monomers examples include vinyl acetate and vinyl propionate.
  • maleate ester monomers examples include dimethyl maleate, diethyl maleate, and dibutyl maleate.
  • Examples of the vinyl halide include vinyl chloride and vinyl fluoride.
  • Examples of the vinylidene halide include vinylidene chloride and vinylidene fluoride.
  • nitrogen-containing vinyl monomer examples include (meth) acrylonitrile, N-phenylmaleimide, vinylpyridine, and the like.
  • crosslinkable monomer examples include mono- or polyethylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate, such as 1,3-propanediol di (meth) acrylate, 1, Alkanediol di (meth) acrylates such as 4-butanediol di (meth) acrylate and 1,5-pentanediol di (meth) acrylate, such as trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate ( (Meth) acrylate crosslinkable monomers such as alkane polyol poly (meth) acrylate such as PETA / PETM), for example, allyl (meth) methacrylate, triallyl (iso) cyanurate Le monomers, such as divinyl benzene, aromatic crosslinking monomers such as trivinyl
  • the polymerizable vinyl monomer can be used alone or in combination.
  • the glass transition temperature is, for example, 30 ° C. or higher, preferably 50 ° C. or higher.
  • the polymerizable vinyl monomer is selected so that
  • the polymerizable vinyl monomer is, for example, substantially hydrophobic, and specifically has, for example, extremely low solubility in water at room temperature. More specifically, the solubility at room temperature is, for example, 10 parts by mass / 100 parts by volume of water (100 g / L) or less, preferably 8 parts by weight / 100 parts by volume of water (80 g / L) or less.
  • the entire polymerizable vinyl monomer that is, a mixture of different types of polymerizable vinyl monomers
  • Oil phase component preparation process In the oil phase component preparation step, an antibiotic compound that is hydrophobic and substantially insoluble in the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer in the absence of a solvent. By doing this, an oil phase component containing a hydrophobic slurry is prepared.
  • the polymerizable vinyl monomer and the antibiotic compound described above are blended and stirred without blending a solvent (a hydrophobic organic solvent such as hexane, toluene, ethyl acetate). Thereby, a hydrophobic slurry is prepared. The hydrophobic slurry is included in the oil phase component.
  • a solvent a hydrophobic organic solvent such as hexane, toluene, ethyl acetate
  • a disperser such as a paint shaker, a homodisper (high-speed disperser), a bead mill (including a batch type bead mill), a ball mill, or a rod mill is used.
  • Dispersers can be used alone or in combination.
  • a disperser a batch type bead mill is preferably used from the viewpoint that it can be used in a wide viscosity range and can be used for large-scale industrial production.
  • the antibiotic compound is wet-ground by the dispersion described above.
  • the polymerizable vinyl monomer can be added to the antibiotic compound, or alternatively, the polymerizable vinyl monomer can be divided and added to the antibiotic compound.
  • the polymerizable vinyl monomer is blended separately, first, a part of the polymerizable vinyl monomer is blended with the antibiotic compound, and they are dispersed to prepare a hydrophobic slurry. The remainder of the monomer is blended into the hydrophobic slurry.
  • the blending ratio of the antibiotic compound to the polymerizable vinyl monomer is, for example, 1/99 or more, preferably 10/90, in mass ratio (that is, mass part of antibiotic compound / mass part of polymerizable vinyl monomer). Or more, more preferably 15/85 or more, and for example, 90/10 or less, preferably 75/25 or less, more preferably 70/30 or less, and further preferably 65/35 or less, particularly preferably. Is 60/40 or less.
  • the blending ratio of the antibiotic compound is, for example, 1 part by mass or more, preferably 10 parts by mass or more, more preferably 20 parts by mass or more, with respect to 100 parts by mass of the polymerizable vinyl monomer.
  • it is 900 parts by mass or less, preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 150 parts by mass or less.
  • the content ratio of the antibiotic compound in the oil phase component is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 90% by mass or less, preferably 80% by mass or less, more preferably , 70% by mass or less, and more preferably 60% by mass or less.
  • a dispersant in the above-described dispersion, can be blended if necessary.
  • the dispersant include an amphiphilic polymer type dispersant, a nonionic surfactant (first surfactant), and the like.
  • amphiphilic polymer dispersant examples include, for example, EFKA4008, EFKA4009 (urethane-based polymer dispersant manufactured by Ciba Specialty), DISPERBYK-2164, DISPERBYK-164 (above, functional group for pigment dispersion manufactured by Bic Chemie) Modified copolymer), NUOSPERSE 2008, NUOSPERSE FA-196, NUOSPERSE 657 (above made by Elementis), Floren D-90, Polyflow KL-100, Polyflow KL-700 (above made by Kyoeisha Chemical Co., Ltd.), Homogenol L-95 (Kao) Nonionic amphiphilic polymer type dispersants such as those manufactured by Komatsu Ltd.
  • amphiphilic polymer dispersant examples include, for example, Floren G-900 (carboxyl-modified polymer manufactured by Kyoeisha Chemical Co., Ltd.), Disparon DA-234, Disparon DA-325, Disparon DA-375, Disparon DA-550. And anionic amphiphilic polymer type dispersants such as Disparon AQ-330 (polyether phosphate ester salt manufactured by Enomoto Kasei Co., Ltd.). Furthermore, examples of the amphiphilic polymer type dispersant include cationic amphiphilic polymer type dispersants such as NOPCOSPERTH 092 (manufactured by San Nopco).
  • Nonionic surfactants include, for example, amogen CBH (alkylbetaine), amogen SH (alkylamidobetaine), Neugen 100E (polyoxyethylene oleyl ether), Neugen EA73 (polyoxyethylene dodecylphenyl ether), Neugen ES99 (mono) Polyethylene glycol oleate), Dianol CME (coconut oil fatty acid monoethanolamide), Dianol 300 (coconut oil fatty acid monoethanoldiamide), Sorgen 30 (Sorbitan sesquioleate), Sorgen 40 (Sorbitan monooleate), Sorgen 50 (Sorbitan monostearate), Epan 420 (Polyoxyethylene polyoxypropylene glycol), Epan 720 (Polyoxyethylene polyoxypropylene glycol) Le) (all manufactured by Kao Corporation), and the like.
  • amogen CBH alkylbetaine
  • amogen SH alkylamidobetaine
  • Neugen 100E polyoxyethylene oleyl ether
  • the dispersant is preferably an amphiphilic polymer dispersant, more preferably a nonionic amphiphilic polymer dispersant, an anionic amphiphilic polymer dispersant, and more preferably.
  • nonionic amphiphilic polymer type dispersants and particularly preferred are functional group-modified copolymer dispersants for pigment dispersion and urethane polymer dispersants.
  • the mixing ratio of the dispersant is, for example, 0.1% by mass or more, preferably 1% by mass or more, and for example, 40% by mass or less, preferably 20% by mass or less, with respect to the antibiotic compound. It is.
  • the average particle size of the antibiotic compound in the oil phase component is, for example, 5 ⁇ m or less, preferably 2.5 ⁇ m or less, and for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more.
  • a polymerization initiator is blended together with the preparation of the hydrophobic slurry or after the preparation of the hydrophobic slurry.
  • the polymerization initiator is blended into the prepared hydrophobic slurry.
  • the polymerizable vinyl monomer can be divided and blended with the antibiotic compound. Specifically, a part of the polymerizable vinyl monomer is blended with the antibiotic compound to form a hydrophobic slurry. Then, the polymerization initiator is dissolved in the remainder of the polymerizable vinyl monomer, and this is blended into the prepared hydrophobic slurry.
  • an oil phase component containing a polymerization initiator and a hydrophobic slurry is prepared.
  • polymerization initiator examples include radical polymerization initiators usually used in suspension polymerization, and specific examples include oil-soluble polymerization initiators.
  • oil-soluble polymerization initiator examples include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, diisopropyl
  • Oil-soluble organic peroxides such as peroxydicarbonate and benzoyl peroxide, such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2 And oil-soluble azo compounds such as' -azobis (2-methylbutyronitrile).
  • Polymerization initiators can be used alone or in combination of two or more.
  • the blending ratio of the polymerization initiator is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymerizable vinyl monomer. For example, 5 parts by mass or less, preferably 3 parts by mass or less, more preferably 1.0 parts by mass or less.
  • the blending ratio of the polymerization initiator exceeds the above upper limit, the molecular weight of the polymer may be excessively decreased.
  • the blending ratio is less than the above lower limit, the conversion rate is not sufficiently improved, and unreacted polymerization is performed. In some cases, several% or more of the functional vinyl monomer remains.
  • oil phase component and water are mixed and stirred uniformly to disperse (suspend) the oil phase component in water.
  • an aqueous dispersion (suspension) of the oil phase component is obtained.
  • the conditions for water dispersion are not particularly limited, and for example, it may be carried out at room temperature or by heating.
  • a dispersant (second dispersant) and a surfactant (second surfactant) are blended.
  • dispersant examples include polyvinyl alcohol (PVA), polyvinyl pyrrolidone, gelatin, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, cationized starch, polyacrylic acid and its sodium salt, Water-soluble polymers such as styrene maleic acid copolymer and sodium salt thereof, for example, inorganic dispersants such as tricalcium phosphate, colloidal silica, montmorillonite, magnesium carbonate, aluminum hydroxide, zinc white, and the like.
  • polyvinyl alcohol (PVA) and tricalcium phosphate are preferable. More preferably, polyvinyl alcohol (PVA) is mentioned.
  • the blending ratio of the dispersant is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the oil phase component. 10 parts by mass or less, preferably 5 parts by mass or less.
  • the surfactant is preferably used in combination with the above-described dispersant (second dispersant) in order to effectively prevent aggregation of particles during radical polymerization.
  • dodecylbenzene Anionic surfactants such as sodium sulfonate, sodium lauryl sulfate, sodium di-2-ethylhexyl sulfosuccinate, sodium dodecyl diphenyl ether disulfonate, sodium nonyl diphenyl ether sulfonate, a salt of a condensate of aromatic sulfonic acid and formaldehyde, such as Nonionic series such as polyoxyethylene lauryl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene monostearate, polyoxyethylene sorbitan monooleate, polyoxyethylene polyoxypropylene block copolymer Surface active agents, and the like.
  • the blending ratio of the surfactant is, for example, 0.0001 parts by mass or more, preferably 0.001 parts by mass or more, for example, 1.0 parts by mass or less, with respect to 100 parts by mass of the oil phase component. Preferably, it is 0.1 mass part or less.
  • dispersants or the dispersant and the surfactant can be blended, for example, either before or after blending the oil phase component with water, preferably water before blending the oil phase component. Blend in.
  • an aqueous solution of the dispersant or an aqueous solution of the dispersant and the surfactant is prepared.
  • a disperser such as a homomixer, an ultrasonic homogenizer, a pressure homogenizer, a milder, or a porous membrane press-in disperser is used. Is used.
  • the rotation speed is set to, for example, 100 rpm or more, preferably 1000 rpm or more, and for example, set to 10,000 rpm or less, for example, 8000 rpm or less.
  • dispersant second dispersant
  • a dispersant and a surfactant are used in the aqueous dispersion.
  • the droplets of the oil phase component are more stabilized.
  • the blending ratio of water is, for example, 50 parts by mass or more, preferably 100 parts by mass or more, more preferably 150 parts by mass or more, with respect to 100 parts by mass of the oil phase component. It is adjusted to 1900 parts by mass or less, preferably 900 parts by mass or less, more preferably 400 parts by mass or less.
  • a polymerizable vinyl monomer is subjected to suspension polymerization to produce a polymer.
  • the aqueous dispersion is heated to a predetermined temperature.
  • the polymerizable vinyl monomer reacts (specifically, radical polymerization) while stirring the aqueous dispersion so that the aqueous dispersion state of the aqueous dispersion is maintained, and A polymer is produced.
  • Suspension polymerization is in-situ polymerization because all of the polymerizable vinyl monomer that becomes a polymer is only in water-dispersed particles (hydrophobic liquid phase).
  • the aqueous dispersion is heated while stirring, whereby the polymerizable vinyl monomer starts polymerization in the aqueous dispersion particles as it is, and a polymer is formed.
  • Stirring can be performed, for example, with a stirrer having stirring blades.
  • the peripheral speed of the stirring blade is, for example, 10 m / min or more, preferably 20 m / min or more, and 400 m / min or less, preferably 200 m / min or less.
  • the temperature of the aqueous dispersion is, for example, 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and for example, 100 ° C. or lower, preferably 90 ° C. or lower, more preferably 80 ° C. Heat to below °C.
  • suspension polymerization proceeds in a state where the antibiotic compound is incompatible with the polymer.
  • the heating time is, for example, 2 hours or more, preferably 3 hours or more, and for example, 12 hours or less, preferably 8 hours or less. Furthermore, after heating to a predetermined temperature, the temperature can be maintained for a predetermined time, and then heating and temperature maintenance can be repeated to heat in stages.
  • the antibiotic compound In suspension polymerization, the antibiotic compound is substantially insoluble with respect to the polymerizable vinyl monomer, and the antibiotic compound is incompatible with the polymerizable vinyl monomer and / or polymer from the start of polymerization to the end of polymerization. The incompatible state is maintained.
  • the aqueous dispersion after polymerization is cooled, for example, by cooling, and filtered through a 100 mesh filter cloth to obtain an aqueous dispersion (suspension) of sustained release particles.
  • the cooling temperature is, for example, room temperature (20 to 30 ° C., more specifically 25 ° C.).
  • the concentration of the antibiotic compound in the obtained sustained-release particles is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and for example, 50% by mass or less.
  • the amount is preferably 40% by mass or less, and more preferably 35% by mass or less.
  • the content ratio of the sustained release particles in the suspension is determined by the blending amount of the oil phase component and water (or an aqueous solution) in which the oil phase component is dispersed, and specifically, for example, 10% by mass or more, Preferably, it is 20 mass% or more, for example, 50 mass% or less, preferably 40 mass% or less.
  • the average particle diameter of the sustained release particles is, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more, and for example, 20 mm or less, preferably 10 mm or less.
  • the average particle diameter is calculated as the median diameter.
  • sustained-release particles produced by the above-described method for producing sustained-release particles have a two-phase structure formed from a matrix described later and domains described later dispersed in the matrix.
  • aqueous dispersion containing the sustained release particles obtained by the above production method
  • other dispersants thickeners, antifreezing agents, preservatives, microbial growth inhibitors
  • Known additives such as a specific gravity adjusting agent can be appropriately blended.
  • the sustained-release particles thus obtained may be used as they are (suspension), that is, as a suspension, or directly as a powder by spray drying.
  • solid-liquid separation is performed by centrifugation, fuller press, etc., and after washing, if necessary, dried by fluid drying, shelf drying, etc., and if necessary, crushed with an atomizer, feather mill, etc., vibrating sieve, etc.
  • sustained release particles for example, a suspension of sustained release particles is mixed and mixed in a solid carrier, and then dried (granulation step). That is, the method for producing sustained-release particles can further include a granulation step in addition to the oil phase component preparation step, the water dispersion step and the polymerization step.
  • the solid carrier examples include pumice, bentonite, clay, kaolin, talc, acid clay, zeolite, vermiculite, perlite, calcium carbonate, silica sand and the like.
  • the solid carrier is preferably pumice.
  • a commercially available product can be used, and specifically, a kagarite series (natural pumice fine granules, manufactured by Kagarite Kogyo Co., Ltd.) is used.
  • the average particle size of the solid carrier is, for example, 100 ⁇ m or more, preferably 300 ⁇ m or more, and for example, 5.00 mm or less, preferably 2.00 mm or less.
  • the ratio of the suspension of sustained release particles is such that the concentration of the antibiotic compound in the resulting granules (solid carrier and sustained release particles) is, for example, 0.01% by mass or more, Preferably, it is adjusted to be 0.05% by mass or more, for example, 2% by mass or less, preferably 1% by mass or less.
  • the blending ratio of the suspension of sustained release particles (including water) is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the solid carrier. More preferably, it is 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, for example, 10 parts by mass or less, preferably 5 parts by mass or less.
  • the sustained-release particles of the first invention group are a hydrophobic polymer that is hydrophobic and substantially insoluble in a hydrophobic polymerizable vinyl monomer in the absence of a solvent.
  • An oil phase component preparation step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and a polymerizable vinyl Since it is obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of a monomer, it is possible to obtain sustained release particles that are excellent in sustained release properties.
  • the microcapsules obtained by the method described in Patent Document 1 are obtained only by interfacial polymerization, the dispersion medium (solvent) remains in the microcapsules, and therefore the surface hardness becomes insufficient. There is. As a result, when the microcapsule dispersion undergoes a process in which a high shearing force is applied or is stored for a long period of time, the microcapsules may aggregate to make redispersion difficult.
  • the microcapsules are likely to be blocked, and it may be difficult to take out the microcapsules as dry particles.
  • the sustained-release particles of the first invention group have hydrophobic active compounds that are hydrophobic and substantially insoluble in hydrophobic polymerizable vinyl monomers in the absence of a solvent.
  • robust sustained-release particles can be obtained, and as a result, the obtained sustained-release particles are excellent in redispersibility and blocking resistance.
  • sustained-release particles can be applied to various industrial products, for example, indoor and outdoor paints, rubber, fibers, resins (including plastics), adhesives, joint agents, sealing agents, building materials, caulking. It can be added to the agent, wood treatment agent, soil treatment agent, white water, pigment, printing plate treatment liquid, cooling water, ink, cutting oil, cosmetics, non-woven fabric, spinning oil, leather, etc. in the papermaking process.
  • the added amount of the antibiotic compound in the sustained release particles to these industrial products is, for example, 10 mg / kg to 100 g / kg (product mass).
  • thermoplastic resin a powder formulated from sustained-release particles is blended with a thermoplastic resin.
  • a suspension of sustained-release particles is dried and formulated into a powder.
  • the powder and the thermoplastic resin are melt-kneaded to prepare a kneaded product.
  • the kneaded material In order to prepare the kneaded material, specifically, for example, an extruder or a Banbury mixer is used.
  • the extruder for example, a twin screw extruder or a single screw extruder is used.
  • the kneaded material is a molding material for molding a molded product. Specifically, the kneaded material is once cooled and prepared as a pellet-shaped molding material (kneaded material pellet or master batch). On the other hand, the kneaded product is not taken out as a solid molding material, but can be continuously used as it is in a molten state (melt kneaded product) and subjected to molding described later.
  • the content of the antibiotic compound in the powder agent is, for example, 0.01% by mass or more, preferably 0.1% by mass or more, and, for example, 10% by mass or less, preferably, with respect to the thermoplastic resin.
  • a powder agent is mix
  • the content of the antibiotic compound is, for example, 1% by mass or more, preferably, with respect to the thermoplastic resin.
  • the powder is mixed with the thermoplastic resin so as to be 5% by mass or more, for example, 50% by mass or less, and preferably 30% by mass or less, to obtain a master batch.
  • the thermoplastic resin is not particularly limited.
  • polyolefin resin such as polyethylene and polypropylene, polystyrene, polymethyl methacrylate, acrylonitrile / styrene copolymer resin (AS resin), methyl methacrylate / styrene copolymer (MS resin), acrylonitrile / styrene / butadiene copolymer resin (ABS resin), styrene and / or acrylic resins
  • polyethylene terephthalate polyester resins such as polylactic acid, polyamide resins such as 6-nylon, chloride
  • vinyl halide resins such as vinyl resin and vinylidene chloride resin
  • polycarbonate polyphenylene ether
  • polyacetal polyacetal
  • thermoplastic polyurethane thermoplastic polyurethane.
  • thermoplastic resins can be used alone or in combination.
  • the mixture is molded into a molded product from the kneaded product pellets or melt-kneaded product.
  • the molding method for example, injection molding, extrusion molding, inflation molding, pultrusion molding, compression molding, or the like is employed.
  • the powder formulated from sustained-release particles is added to the thermoplastic resin.
  • the powder is not particularly limited as long as it is a resin, and may be added to, for example, a thermosetting resin.
  • a powder can be suitably mixed with a liquid resin such as an epoxy resin or a silicone resin.
  • Such molded articles are used in various applications, for example, building materials such as electric wire cable materials, and electric wire cable coating materials such as gas conduits, and conduit coating materials such as clothing. Used as textile products such as mosquito nets.
  • ⁇ Effect of the molded product of the first invention group> since the sustained-release particles of the powder have a robust two-phase structure formed from a matrix and domains, the powder is not destroyed during kneading and molding, and is dispersed in the molded product or localized on the surface.
  • the molded product to which the above powder is added is excellent in sustained release properties of the antibiotic compound.
  • the above-mentioned molding material contains the above-mentioned sustained-release particles, it is dispersed in the above-mentioned molded product, or localized on the surface, so that the molded product has excellent sustained-release properties of the antibiotic compound. Can be granted.
  • sustained release particles are made into beads with a diameter of 1 mm to 20 mm, and are steadily imparted with antibiotic activity effects such as sterilization to the passing fluid by laying, standing, and fixing in the flow path of fluid (gas, liquid). can do.
  • the sustained-release particles obtained by the above-described method for producing sustained-release particles specifically include the first and second embodiments of the sustained-release particles described below.
  • the sustained-release particles 1 are formed, for example, as spherical particles.
  • the sustained release particles 1 have a two-phase structure formed from a matrix 2 and domains 3 dispersed in the matrix 2.
  • the matrix 2 is made of a polymer obtained from the above-described polymerizable vinyl monomer.
  • Domain 3 consists of the antibiotic compounds described above.
  • the matrix 2 forms a medium or a continuous phase, and a multi-domain structure or a sea-island structure (or a multinuclear structure) in which a plurality of domains 3 are dispersed in an isolated manner is formed. Yes. Further, in the sustained release particles 1, the matrix 2 and the domain 3 are incompatible with each other and form a phase separation structure that separates from each other.
  • the matrix 2 is in a region other than the domain 3 in the sustained release particles 1 and is formed in a shape with the domain 3 removed.
  • the plurality of domains 3 form a dispersed phase in the matrix 2.
  • the shape of the domain 3 is not particularly limited, and is formed in an appropriate shape such as an indefinite shape, a spherical shape, a block shape, or a plate shape.
  • the average value of the maximum length of the domain 3 is, for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, and for example, 20 ⁇ m or less, preferably 10 ⁇ m or less.
  • the domain 3 includes a protrusion 4 that protrudes outward from the inside of the matrix 2.
  • the protrusion 4 is exposed from the surface of the matrix 2. Thereby, both the matrix 2 and the domain 3 are exposed on the surface of the sustained release particles 1.
  • the protrusion 4 has an embedded portion 8 embedded in the surface layer portion of the matrix 2.
  • the protrusions 4 serve to increase the initial sustained release rate of the antibiotic compound in the sustained release particles 1 and remarkably increase the blocking resistance of the sustained release particles 1.
  • the exposure rate of the protrusion 4 with respect to the entire surface of the matrix 2 (that is, the exposure rate of the domain 3) is, for example, 0.1% or more, preferably 1% or more, with respect to the entire surface of the sustained release particles 1. For example, it is 50% or less, preferably 30% or less.
  • the exposure rate of the matrix 2 is a ratio obtained by subtracting the exposure rate of the protrusions 4 from the entire surface of the sustained release particles 1.
  • a hole 6 is formed on the surface of the sustained-release particle 1 by part of the domain 3 being detached (dropped off) from the matrix 2.
  • the hole 6 is formed so as to correspond to the shape of the antibiotic compound constituting the domain 3.
  • sustained-release particles 1 in the above-described production method of the sustained-release particles 1, particularly in the oil phase component preparation step, as the polymerizable vinyl monomer, a (meth) acrylate monomer and (meth) In the water dispersion step, an acrylate-based crosslinkable monomer is not used, and preferably, a salt of a condensate of aromatic sulfonic acid and formaldehyde is not blended as a surfactant (second surfactant).
  • second surfactant second surfactant
  • a combination of an aromatic vinyl monomer and an aromatic crosslinkable monomer is preferably used as the polymerizable vinyl monomer.
  • the content of the aromatic vinyl monomer is 100 parts by mass in total of the aromatic vinyl monomer and the aromatic crosslinkable monomer.
  • 10 parts by mass or more preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and for example, 90 parts by mass or less, preferably 80 parts by mass or less, more preferably, 70 parts by mass or less.
  • a surfactant (second surfactant)
  • a salt of a condensate of aromatic sulfonic acid and formaldehyde is not blended, but preferably a dispersant (second dispersant) is blended.
  • Both the matrix 2 and the domain 3 are exposed on the surface of the sustained release particles 1.
  • the surface of the sustained-release particles 1 is exposed so that the antibiotic compound protrudes outward, and constitutes a protrusion 4.
  • the sustained release particles 1 have a two-phase structure formed from a matrix 2 and a domain 3 and do not have a shell.
  • the blocking resistance can be further improved by the protrusions 4.
  • the antibiotic active compound that forms the exposed protrusions 4 can start the sustained release from the initial stage, and when the protrusions 4 drop off, the antibiotic active compound further releases the initial slow release. Since the release rate is accelerated, the initial sustained release rate of the antibiotic compound can be increased to adjust the sustained release rate of the antibiotic compound.
  • this sustained-release particle 1 is a two-phase formed of a matrix 2 made of a polymer and a domain 3 made of an antibiotic compound and dispersed in the matrix 2. Since it has a structure, it is excellent in sustained release property of the antibiotic compound and excellent in fastness. Therefore, the sustained release particles are excellent in kneadability with the above-described resin.
  • the domain 3 is not exposed on the surface of the sustained release particles 1, and all the domains 3 are included in the matrix 2. That is, in the sustained release particles 1, the antibiotic compound forming domain 3 is covered and protected by the matrix 2.
  • an antibiotic compound is attached to the surface of the matrix 2 in the sustained release particles 1.
  • the deposit 5 made of an antibiotic compound is adhered so as to cover all or part of the entire surface of the matrix 2.
  • the deposit 5 does not have the embedded portion 8 and is in contact with the surface of the matrix 2.
  • attachment 5 is not specifically limited, For example, it is formed in appropriate shapes, such as an indefinite shape, spherical shape, lump shape, and plate shape.
  • the inner surface (contact surface that contacts the surface of the matrix 2) of the deposit 5 forms a concave surface corresponding to the surface (spherical surface) of the matrix 2, specifically, a curved surface that is recessed outward.
  • the deposit 5 is the same size as or smaller than the domain 3, and is, for example, 100% or less, preferably 50% or less with respect to the average value of the maximum length of the domain 3.
  • the average value of the maximum length of the deposit 5 is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more. It is.
  • the coverage of the deposit 5 on the entire surface of the matrix 2 is, for example, 10% or more, preferably 20% or more, and for example, 100% or less, preferably 90% or less.
  • sustained release particle 1 in the water dispersion process of the manufacturing method of the above-mentioned sustained release particle 1, as surfactant (2nd surfactant), aromatic sulfonic acid and formaldehyde are used.
  • a salt of the condensate is blended and / or, in the oil phase component preparation step, a (meth) acrylic acid ester monomer and a (meth) acrylate crosslinking monomer are blended as the polymerizable vinyl monomer.
  • the second surfactant is preferably used in combination with the second dispersant described above.
  • aromatic sulfonic acid examples include benzene sulfonic acid, toluene sulfonic acid, cumene sulfonic acid, naphthalene sulfonic acid and the like.
  • naphthalenesulfonic acid such as ⁇ -naphthalenesulfonic acid and ⁇ -naphthalenesulfonic acid is used.
  • Examples of the cation for forming the salt include a monovalent cation.
  • Examples of the monovalent cation include alkali metal cations such as sodium cation and potassium cation, for example, ammonium cation.
  • alkali metal cations such as sodium cation and potassium cation, for example, ammonium cation.
  • an alkali metal cation is used.
  • the salt of the condensate of aromatic sulfonic acid and formaldehyde include a salt of a condensate of naphthalene sulfonic acid and formaldehyde (naphthalene sulfonic acid formaldehyde condensate sodium salt).
  • naphthalene sulfonic acid formaldehyde condensate sodium salt Commercially available products can be used as the salt of the condensate of aromatic sulfonic acid and formaldehyde.
  • Demol NL ⁇ -naphthalenesulfonic acid formaldehyde condensate sodium salt, 41% aqueous solution, manufactured by Kao Corporation
  • the blending ratio of the salt of the condensate of aromatic sulfonic acid and formaldehyde is, for example, 0.0001 parts by mass or more, preferably 0.001 parts by mass or more, with respect to 100 parts by mass of the hydrophobic slurry.
  • it is 1.0 part by mass or less, preferably 0.2 part by mass or less, and more preferably 0.1 part by mass or less.
  • the content ratio of the (meth) acrylate-based crosslinkable monomer in the polymerizable vinyl monomer is, for example, 10% by mass or more, preferably 30% by mass or more, and, for example, 100% by mass or less.
  • the polymerizable vinyl monomer contains a (meth) acrylate monomer and a (meth) acrylate crosslinkable monomer
  • the polymer of the (meth) acrylate monomer is a (meth) acrylate crosslinkable. It has a crosslinked structure that is crosslinked by a monomer or a polymer thereof.
  • a salt of a condensate of aromatic sulfonic acid and formaldehyde is blended and / or oil in the water dispersion step.
  • (Meth) acrylate monomer and (meth) acrylate crosslinkable monomer are used as polymerizable vinyl monomers in the phase component preparation step, and (meth) acrylate monomer and (meth) acrylate monomer are used in the polymerization step.
  • a crosslinkable monomer is subjected to suspension polymerization. Therefore, it can suppress that the domain 3 which consists of an antibiotic compound is exposed to the surface of the sustained release particle
  • the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of naphthalenesulfonic acid and formaldehyde (preferably sodium salt of formaldehyde condensate of naphthalenesulfonic acid), polymerization is performed. Since the interface between the suspension polymer and the water continuous phase in the process is further stabilized, it is possible to prevent the antibiotic compound from leaking out of the sustained release particles. As a result, the sustained release of the antibiotic compound in the sustained release particles can be adjusted by the blending ratio of the salt of the condensate of naphthalene sulfonic acid and formaldehyde.
  • a salt of a condensate of naphthalenesulfonic acid and formaldehyde preferably sodium salt of formaldehyde condensate of naphthalenesulfonic acid
  • the antibiotic compound particles are dispersed and stabilized in the oil phase. Leakage of the bioactive compound out of the sustained release particles can be suppressed.
  • the sustained release properties of the antibiotic compound in the sustained release particles can be adjusted. .
  • the domain 3 can be covered with the matrix 2 as shown in FIG. Can be attached to the surface of the matrix 2. Therefore, the sustained release particles 1 of the second embodiment are excellent in blocking resistance due to the deposits 5.
  • the attached substance 5 can increase the initial sustained release rate of the antibiotic compound and adjust the sustained release rate of the antibiotic compound.
  • the deposit 5 is attached to the surface of the matrix 2, but the domain 3 is covered with the matrix 2, so the first embodiment including the protrusion 4 is provided.
  • the sustained-release particles 1 are antibiotics derived from the protrusions 4 in the sustained-release particles even when stored in an alkaline aqueous solution, compared to the sustained-release particles 1 of the first embodiment. Reduction of the concentration of the active compound can be suppressed.
  • a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is contained in the hydrophobic polymerizable vinyl monomer.
  • the oil phase component preparation step for preparing the oil phase component containing the hydrophobic slurry, the water dispersion step for preparing the aqueous dispersion by dispersing the oil phase component in water, and the polymerizable vinyl monomer are suspended. It has a polymerization step for producing a polymer by suspension polymerization.
  • a hydrophobic shell-forming component and a hydrophilic shell-forming component are contained in at least one of the oil phase component preparation step, the water dispersion step, and the polymerization step.
  • an antibiotic compound is dispersed in the polymerizable vinyl monomer to prepare a hydrophobic slurry, and then the hydrophobic slurry and the hydrophobic shell are prepared.
  • An oil phase component including a hydrophobic slurry and a hydrophobic shell forming component is prepared by blending with the forming component.
  • at least one of the water dispersion step and the polymerization step contains a hydrophilic shell-forming component, and more preferably, the hydrophilic shell-forming component in the polymerization step. Is blended.
  • the antibiotic compound the polymerizable vinyl monomer, the hydrophobic shell-forming component, and the hydrophilic shell-forming component will be sequentially described.
  • Antibacterial active compounds include insecticides (including ants), insecticides (including ants), sterilization, antibacterial, antiseptic, herbicidal, algae, fungicides and other insecticides (anticides) ), Insecticides (including ant-proofing agents), fungicides, antibacterial agents, antiseptics, herbicides, algae-proofing agents, fungicides, attractants, repellents and rodenticides.
  • antibiotic active compounds such as clothianidin ((E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine), imidacloprid (1 -(6-Chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine), thiacloprid, thiamethoxam ((EZ) -3- (2-chloro-1,3-thiazol-5-ylmethyl) -5-methyl -1,3,5-oxadiazinan-4-ylidene (nitro) amine), neonicotinoid insecticides such as dinotefuran, diamides such as fulbenzamide, chlorantraniliprole, diflubenzuron, teflubenzuron, chlorfluazuron, Insect growth such as tebufenozide, methoxyphenozide, cyromazine Please, acaricides such as clofentezine,
  • fungicides include copper-based fungicides such as basic copper chloride, basic copper sulfate, and oxine copper, silver-based fungicides such as metallic silver, organic sulfur-based fungicides such as polycarbamate, fusalides, and tricyclazole.
  • copper-based fungicides such as basic copper chloride, basic copper sulfate, and oxine copper
  • silver-based fungicides such as metallic silver
  • organic sulfur-based fungicides such as polycarbamate, fusalides, and tricyclazole.
  • Melanin biosynthesis inhibitors thiophanate methyl, carbendazine (MBC), benzimidazole fungicides such as dietofencarb, acid amide fungicides such as isothianyl, sterol biosynthesis inhibitors such as triphorine, 1,2-benzisothiazoline-3- And other synthetic inhibitors such as isothiazolone fungicides such as ON, dichromimidine, fluorimide, captan, chlorothalonil, quinotimeoate, oxolinic acid, benchavaricarb isopropyl, diazofamide, and zinc pyrithione.
  • MBC carbendazine
  • benzimidazole fungicides such as dietofencarb
  • acid amide fungicides such as isothianyl
  • sterol biosynthesis inhibitors such as triphorine
  • other synthetic inhibitors such as isothiazolone fungicides such as ON, dichromimidine,
  • 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), cumyluron, carbylate, and other urea chemicals ethoxysulfuron, halosulfuronmethyl, flazasulfuron , Sulfonylureas such as nicosulfuron, thifensulfuron methyl, imazosulfuron, cyclosulfamuron, flucetosulfuron, trifloxysulfuron sodium salt, triazines such as simazine (CAT), atrazine, triadifram, lenacyl, sibulthrin, terbutrin Drugs, amino acids such as glyphosate, phenylphthalimides such as flumioxazin, triketones such as mesotrione, and other drugs such as quinoclamin and pyriphthalide.
  • DCMU 3- (3,4-dichlorophenyl) -1,1-dimethyl
  • the antibiotic compound is preferably a neonicotinoid insecticide from the viewpoint of species selectivity and safety, and zinc pyritine from the viewpoint of versatility and efficacy, more preferably from the viewpoint of poor solubility, Clothianidin, imidacloprid, and zinc pyrithione are preferable, and clothianidin and imidacloprid are more preferable. Particularly preferred is clothianidin from the viewpoint of safety for mammals.
  • Antibiotic active compounds are substantially hydrophobic and, for example, have very low solubility in water at room temperature (20-30 ° C., more specifically 25 ° C.), more specifically,
  • the solubility at room temperature is 1.5 parts by mass / 100 parts by volume of water (15 g / L) or less, preferably 0.5 parts by volume / 100 parts by mass of water (5 g / L) or less, more preferably 0.1 parts by mass / 100 parts by volume of water (1 g / L) or less.
  • the antibiotic compound is substantially insoluble in the polymerizable vinyl monomer, and specifically, for example, at room temperature (20 to 30 ° C., more specifically 25 ° C.) with respect to the polymerizable vinyl monomer.
  • the solubility is extremely small. Specifically, the solubility at room temperature is, for example, 0.1 parts by mass / (use) polymerizable vinyl monomer (mixture) 100 parts by volume (1 g / L) or less, preferably 0.05. It is 100 parts by mass (0.5 g / L) or less by mass parts / (used) polymerizable vinyl monomer (mixture).
  • the melting point of the antibiotic compound is, for example, 80 ° C. or more, preferably 100 ° C. or more. If the antibiotic compound is a compound that does not contain a metal atom, it is, for example, 300 ° C. or less.
  • polymerizable vinyl monomer examples include (meth) acrylic acid ester monomers, aromatic vinyl monomers, vinyl ester monomers, maleic acid ester monomers, vinyl halides, vinylidene halides, nitrogen-containing vinyl monomers, and crosslinkable monomers. Etc.
  • Examples of (meth) acrylic acid ester monomers include methacrylic acid esters and / or acrylic acid esters, specifically, (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid. n-propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate (i-BMA / i-BA), tert-butyl (meth) acrylate, (meth) acrylic acid (Meth) acrylic acid alkyl ester in which the alkyl moiety such as n-pentyl, n-hexyl (meth) acrylate and cyclohexyl (meth) acrylate has a linear, branched or cyclic alkyl moiety having 1 to 6 carbon atoms And, for example, alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth)
  • (meth) acrylic acid alkyl ester more preferred is a (meth) acrylic acid alkyl ester having an alkyl moiety having 1 to 6 carbon atoms, and particularly preferred is isobutyl methacrylate (i-BMA).
  • aromatic vinyl monomer examples include styrene monomers (monovinylbenzene) such as styrene (vinylbenzene), p-methylstyrene, o-methylstyrene, ⁇ -methylstyrene, and ethylvinylbenzene.
  • styrene monomers such as styrene (vinylbenzene), p-methylstyrene, o-methylstyrene, ⁇ -methylstyrene, and ethylvinylbenzene.
  • vinyl ester monomers examples include vinyl acetate and vinyl propionate.
  • maleate ester monomers examples include dimethyl maleate, diethyl maleate, and dibutyl maleate.
  • Examples of the vinyl halide include vinyl chloride and vinyl fluoride.
  • Examples of the vinylidene halide include vinylidene chloride and vinylidene fluoride.
  • nitrogen-containing vinyl monomer examples include (meth) acrylonitrile, N-phenylmaleimide, vinylpyridine, and the like.
  • crosslinkable monomer examples include mono- or polyethylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate, such as 1,3-propanediol di (meth) acrylate, 1, Alkanediol di (meth) acrylates such as 4-butanediol di (meth) acrylate and 1,5-pentanediol di (meth) acrylate, such as trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate ( (Meth) acrylate crosslinkable monomers such as alkane polyol poly (meth) acrylate such as PETA / PETM), for example, allyl (meth) methacrylate, triallyl (iso) cyanurate Le monomers, such as divinyl benzene, aromatic crosslinking monomers such as trivinyl
  • the polymerizable vinyl monomer can be used alone or in combination.
  • Preferred examples of the polymerizable vinyl monomer include a combination of a (meth) acrylic acid ester monomer and a crosslinkable monomer, and a combination of an aromatic vinyl monomer and a crosslinkable monomer.
  • the content of the (meth) acrylic acid ester monomer is crosslinkable with the (meth) acrylic acid ester monomer.
  • 10 parts by mass or more preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and, for example, 90 parts by mass or less, preferably 80 parts by mass with respect to 100 parts by mass of the total amount of monomers. It is 70 parts by mass or less, more preferably 70 parts by mass or less.
  • the blending ratio of the aromatic vinyl monomer is, for example, relative to 100 parts by mass of the total amount of the aromatic vinyl monomer and the crosslinkable monomer. 10 parts by mass or more, preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and for example, 90 parts by mass or less, preferably 80 parts by mass or less, more preferably 70 parts by mass or less. It is.
  • the glass transition temperature is, for example, 30 ° C. or higher, and preferably 50 ° C. or higher.
  • the polymerizable vinyl monomer is selected so as to have this glass transition temperature.
  • the polymerizable vinyl monomer is, for example, substantially hydrophobic, and specifically has, for example, extremely low solubility in water at room temperature. More specifically, the solubility at room temperature is, for example, 10 parts by mass / 100 parts by volume of water (100 g / L) or less, preferably 8 parts by weight / 100 parts by volume of water (80 g / L) or less.
  • the entire polymerizable vinyl monomer that is, a mixture of different types of polymerizable vinyl monomers
  • hydrophobic shell forming component and hydrophilic shell forming component are two different components that react with each other by polyaddition or polycondensation (condensation polymerization).
  • the hydrophobic shell-forming component is, for example, substantially hydrophobic and specifically has a very low solubility in water at room temperature. More specifically, for example, the solubility at room temperature is 1 part by weight / water. 100 parts by volume (10 g / L) or less, preferably 0.5 parts by weight / 100 parts by volume of water (5 g / L) or less, more preferably 0.1 parts by weight / 100 parts by volume of water (1 g / L) or less. It is.
  • the hydrophobic shell-forming component is an oil-soluble compound that forms a shell by polyaddition or polycondensation with a hydrophilic shell-forming component, and examples thereof include polyisocyanate, polycarboxylic acid chloride, and polysulfonic acid chloride.
  • polyisocyanate examples include aromatic polyisocyanates (aromatic diisocyanates) such as diphenylmethane diisocyanate and toluene diisocyanate, aliphatic polyisocyanates (aliphatic diisocyanates) such as hexamethylene diisocyanate, for example, isophorone diisocyanate (IPDI), hydrogen Aliphatic polyisocyanates (alicyclic diisocyanates) such as added xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate, for example, araliphatic polyisocyanates (araliphatic diisocyanate) such as xylylene diisocyanate and tetramethyl xylylene diisocyanate, etc. It is done.
  • aromatic polyisocyanates aromatic diisocyanates
  • aliphatic polyisocyanates such as hexamethylene diisocyanate
  • multimers of the above-described polyisocyanates are also exemplified, and specific examples include dimers, trimers (isocyanurate group-containing polyisocyanates, cyclic trimers), pentamers, and heptamers.
  • a trimer specifically, a trimer of IPDI is used.
  • modified polyisocyanate (excluding multimers) is also exemplified, for example, Polyol-modified polyisocyanates such as IPDI adducts of trimethylolpropane.
  • polycarboxylic acid chloride examples include sebacic acid dichloride, adipic acid dichloride, azelaic acid dichloride, terephthalic acid dichloride, and trimesic acid dichloride.
  • polysulfonic acid chloride examples include benzenesulfonyl dichloride.
  • Hydrophobic shell forming components can be used alone or in combination.
  • hydrophobic shell-forming component examples include polyisocyanate, more preferably, a cyclic trimer of diisocyanate and an adduct of trimethylolpropane.
  • the hydrophilic shell forming component is a water-soluble compound present in the aqueous phase before interfacial polymerization.
  • the hydrophilic shell-forming component is an active hydrogen group-containing compound, and such an active hydrogen group-containing compound is, for example, a compound having an active hydrogen group such as an amino group or a hydroxyl group. , Polyamine, polyol, water and the like.
  • polyamines examples include diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, diaminotoluene, phenylenediamine, and piperazine, for example, polyamines having a valence of 3 or more such as diethylenetriamine, triethylenetetramine, tetraethylene, and pentaminepentaethylenehexamine. Etc.
  • diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, diaminotoluene, phenylenediamine, and piperazine
  • polyamines having a valence of 3 or more such as diethylenetriamine, triethylenetetramine, tetraethylene, and pentaminepentaethylenehexamine.
  • Etc Preferably, trivalent or higher polyamine, more preferably diethylenetriamine is used.
  • polystyrene resin examples include ethylene glycol, propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, dipropylene glycol, cyclohexane dimethanol, polyethylene glycol, polypropylene glycol, etc.
  • Diols such as triols such as glycerin and trimethylolpropane, and tetraols such as pentaerythritol.
  • the hydrophilic shell forming component can be used alone or in combination.
  • hydrophilic shell forming component polyamines and polyols are preferable, and polyamines are more preferable.
  • Oil phase component preparation process In the oil phase component preparation step, an antibiotic compound that is hydrophobic and substantially insoluble in the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer in the absence of a solvent. Then, a hydrophobic slurry is prepared, and then the hydrophobic slurry and the hydrophobic shell forming component are blended to prepare an oil phase component including the hydrophobic slurry and the hydrophobic shell forming component.
  • the polymerizable vinyl monomer and the antibiotic compound are mixed, and the mixture is stirred without adding a solvent (a hydrophobic organic solvent such as hexane, toluene, ethyl acetate). Thereby, a hydrophobic slurry is prepared. The hydrophobic slurry is included in the oil phase component.
  • a solvent a hydrophobic organic solvent such as hexane, toluene, ethyl acetate
  • a disperser such as a paint shaker, a homodisper (high-speed disperser), a bead mill (including a batch type bead mill), a ball mill, or a rod mill is used.
  • Dispersers can be used alone or in combination.
  • a disperser a batch type bead mill is preferably used from the viewpoint that it can be used in a wide viscosity range and can be used for large-scale industrial production.
  • the antibiotic compound is wet-ground by the dispersion described above.
  • the blending ratio of the antibiotic compound to the polymerizable vinyl monomer is, for example, 1/99 or more, preferably 10/90, in mass ratio (that is, mass part of antibiotic compound / mass part of polymerizable vinyl monomer). Or more, more preferably 15/85 or more, and for example, 90/10 or less, preferably 75/25 or less, more preferably 70/30 or less, and further preferably 65/35 or less, particularly preferably. Is 60/40 or less.
  • the blending ratio of the antibiotic compound is, for example, 1 part by mass or more, preferably 10 parts by mass or more, more preferably 20 parts by mass or more, with respect to 100 parts by mass of the polymerizable vinyl monomer.
  • it is 900 parts by mass or less, preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 150 parts by mass or less.
  • a dispersant (first dispersant) can be blended if necessary.
  • the dispersant include an amphiphilic polymer type dispersant, a nonionic surfactant (first surfactant), and the like.
  • amphiphilic polymer dispersant examples include, for example, EFKA4008, EFKA4009 (urethane-based polymer dispersant manufactured by Ciba Specialty), DISPERBYK-2164, DISPERBYK-164 (above, functional group for pigment dispersion manufactured by Bic Chemie) Modified copolymer), NUOSPERSE 2008, NUOSPERSE FA-196, NUOSPERSE 657 (above made by Elementis), Floren D-90, Polyflow KL-100, Polyflow KL-700 (above made by Kyoeisha Chemical Co., Ltd.), Homogenol L-95 (Kao) Nonionic amphiphilic polymer type dispersants such as those manufactured by Komatsu Ltd.
  • amphiphilic polymer dispersant examples include, for example, Floren G-900 (carboxyl-modified polymer manufactured by Kyoeisha Chemical Co., Ltd.), Disparon DA-234, Disparon DA-325, Disparon DA-375, Disparon DA-550. And anionic amphiphilic polymer type dispersants such as Disparon AQ-330 (polyether phosphate ester salt manufactured by Enomoto Kasei Co., Ltd.). Furthermore, examples of the amphiphilic polymer type dispersant include cationic amphiphilic polymer type dispersants such as NOPCOSPERTH 092 (manufactured by San Nopco).
  • Nonionic surfactants include, for example, amogen CBH (alkylbetaine), amogen SH (alkylamidobetaine), Neugen 100E (polyoxyethylene oleyl ether), Neugen EA73 (polyoxyethylene dodecylphenyl ether), Neugen ES99 (mono) Polyethylene glycol oleate), Dianol CME (coconut oil fatty acid monoethanolamide), Dianol 300 (coconut oil fatty acid monoethanoldiamide), Sorgen 30 (Sorbitan sesquioleate), Sorgen 40 (Sorbitan monooleate), Sorgen 50 (Sorbitan monostearate), Epan 420 (Polyoxyethylene polyoxypropylene glycol), Epan 720 (Polyoxyethylene polyoxypropylene glycol) Le) (all manufactured by Kao Corporation), and the like.
  • amogen CBH alkylbetaine
  • amogen SH alkylamidobetaine
  • Neugen 100E polyoxyethylene oleyl ether
  • the dispersant is preferably an amphiphilic polymer dispersant, more preferably a nonionic amphiphilic polymer dispersant, an anionic amphiphilic polymer dispersant, and more preferably.
  • nonionic amphiphilic polymer type dispersants and particularly preferred are functional group-modified copolymer dispersants for pigment dispersion and urethane polymer dispersants.
  • the mixing ratio of the dispersant is, for example, 0.1% by mass or more, preferably 1% by mass or more, and for example, 40% by mass or less, preferably 20% by mass or less, with respect to the antibiotic compound. It is.
  • the hydrophobic slurry and the hydrophobic shell forming component are blended.
  • the hydrophobic shell forming component is blended in the hydrophobic slurry.
  • the hydrophobic shell forming component is blended with the polymerization initiator in the hydrophobic slurry.
  • polymerization initiator examples include radical polymerization initiators usually used in suspension polymerization, and specific examples include oil-soluble polymerization initiators.
  • oil-soluble polymerization initiator examples include dilauroyl peroxide (10 hour half-life temperature T 1/2 : 61.6 ° C.), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (10-hour half-temperature T 1/2 : 65.3 ° C.), t-hexylperoxy-2-ethylhexanoate (10-hour half-temperature T 1/2 : 69.9 ° C.), diisopropyl peroxydicarbonate ( 10 hours half-life temperature T 1/2: 40.5 °C), benzoyl peroxide (10 hours half-life temperature T 1/2: 73.6 °C) oil-soluble organic peroxides such as, for example, 2,2' Bisisobutyronitrile (10 hour half temperature T 1/2 : 60 ° C.), 2,2′-azobis (2,4-dimethylvaleronitrile) (10 hour half temperature T 1/2 : 51 ° C.), 2, 2'-azobis 2-methylbutyronit
  • 10-hour half-life temperature T1 / 2 of a polymerization initiator is 40 degreeC or more, for example, Preferably, it is 50 or more, for example, is 90 degrees C or less, Preferably, it is 80 degrees C or less.
  • the 10-hour half-life temperature T 1/2 of the polymerization initiator is the temperature of the 10-hour value in the graph obtained by plotting the concentration half-life at several arbitrary temperatures.
  • Polymerization initiators can be used alone or in combination of two or more.
  • the blending ratio of the polymerization initiator is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymerizable vinyl monomer. For example, 5 parts by mass or less, preferably 3 parts by mass or less, and more preferably 2.0 parts by mass or less.
  • the blending ratio of the polymerization initiator exceeds the above upper limit, the molecular weight of the polymer may be excessively decreased.
  • the blending ratio is less than the above lower limit, the conversion rate is not sufficiently improved, and unreacted polymerization is performed. In some cases, several% or more of the functional vinyl monomer remains.
  • the polymerizable vinyl monomer can be divided and blended. In that case, first, a part of the polymerizable vinyl monomer is blended with the antibiotic compound and dispersed to prepare a hydrophobic slurry. Thereafter, the polymerization initiator and the hydrophobic shell-forming component are dissolved in the remainder of the polymerizable vinyl monomer, and this is blended into the hydrophobic slurry.
  • an oil phase component containing a polymerization initiator, a hydrophobic shell forming component and a hydrophobic slurry is prepared.
  • the blending ratio of the hydrophobic shell-forming component is, for example, 2 parts by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 20 parts by mass with respect to 100 parts by mass of the polymerizable vinyl monomer.
  • it is 100 parts by mass or less, preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and further preferably 60 parts by mass or less.
  • the blending ratio of the hydrophobic shell-forming component is, for example, 1% by mass or more, preferably 2% by mass or more, and for example, 60% by mass or less, preferably 40% by mass with respect to the oil phase component. % Or less.
  • the content ratio of the antibiotic compound in the oil phase component is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 90% by mass or less, preferably 80% by mass or less. Preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less.
  • the content ratio of the polymerizable vinyl monomer in the oil phase component is, for example, 10% by mass or more, preferably 30% by mass or more, preferably 50% by mass or more, and for example, 90% by mass or less, preferably It is 80 mass% or less, More preferably, it is 70 mass% or less.
  • the average particle size of the antibiotic compound in the oil phase component is, for example, 5 ⁇ m or less, preferably 2.5 ⁇ m or less, and for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more.
  • the hydrophobic shell forming component and the polymerization initiator are blended with respect to the hydrophobic slurry.
  • the hydrophobic shell forming component and the polymerization initiator are prepared in the hydrophobic slurry. It can also be blended with antibiotic active compounds and polymerizable vinyl monomers.
  • the hydrophobic shell forming component is first blended with the antibiotic compound and the polymerizable vinyl monomer, and then they are dispersed to prepare a hydrophobic slurry. Thereby, an oil phase component containing an antibiotic compound, a polymerizable vinyl monomer, a hydrophobic shell forming component and a polymerization initiator is prepared at a time.
  • oil phase component and water are mixed and stirred uniformly to disperse (suspend) the oil phase component in water.
  • an aqueous dispersion (suspension) of the oil phase component is obtained.
  • the conditions for water dispersion are not particularly limited, and may be carried out, for example, at room temperature or by heating.
  • a dispersant (second dispersant) and a surfactant (second surfactant) are blended.
  • dispersant examples include polyvinyl alcohol (PVA), polyvinyl pyrrolidone, gelatin, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, cationized starch, polyacrylic acid and its sodium salt, Water-soluble polymers such as styrene maleic acid copolymer and sodium salt thereof, for example, inorganic dispersants such as tricalcium phosphate, colloidal silica, montmorillonite, magnesium carbonate, aluminum hydroxide, zinc white, and the like.
  • polyvinyl alcohol (PVA) and tricalcium phosphate are preferable. More preferably, polyvinyl alcohol (PVA) is mentioned.
  • the blending ratio of the dispersant is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the oil phase component. 10 parts by mass or less, preferably 5 parts by mass or less.
  • the surfactant (second surfactant) is preferably used in combination with the above-described dispersant (second dispersant) in order to effectively prevent aggregation of particles during radical polymerization.
  • Anionic surfactants such as sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium di-2-ethylhexyl sulfosuccinate, sodium dodecyl diphenyl ether disulfonate, sodium nonyl diphenyl ether sulfonate, and salts of condensation products of aromatic sulfonic acid and formaldehyde
  • Nonionic agents such as polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene monostearate, polyoxyethylene sorbitan monooleate, polyoxyethylene polyoxypropylene block copolymer System surfactant and the like.
  • Surfactants can be used alone or in combination.
  • a combination of a nonionic surfactant and an anionic surfactant is used, and more preferably a combination of a polyoxyethylene polyoxypropylene block copolymer and a salt of a condensate of aromatic sulfonic acid and formaldehyde Is mentioned.
  • aromatic sulfonic acid examples include benzene sulfonic acid, toluene sulfonic acid, cumene sulfonic acid, naphthalene sulfonic acid and the like.
  • naphthalenesulfonic acid such as ⁇ -naphthalenesulfonic acid and ⁇ -naphthalenesulfonic acid is used.
  • Examples of the cation for forming a salt include monovalent alkali metal cations such as sodium cation and potassium cation, for example, ammonium cation. Preferably, a monovalent alkali metal cation is used.
  • the salt of the condensate of aromatic sulfonic acid and formaldehyde include a salt of a condensate of naphthalene sulfonic acid and formaldehyde (naphthalene sulfonic acid formaldehyde condensate sodium salt).
  • naphthalene sulfonic acid formaldehyde condensate sodium salt Commercially available products can be used as the salt of the condensate of aromatic sulfonic acid and formaldehyde.
  • Demol NL ⁇ -naphthalenesulfonic acid formaldehyde condensate sodium salt, 41% aqueous solution, manufactured by Kao Corporation
  • the blending ratio of the surfactant is, for example, 0.0001 parts by mass or more, preferably 0.001 parts by mass or more, for example, 1.0 parts by mass or less, with respect to 100 parts by mass of the oil phase component. Preferably, it is 0.1 mass part or less.
  • the surfactant is a combination of a nonionic surfactant and an anionic surfactant
  • the blending ratio of each of the nonionic surfactant and the anionic surfactant is 100 parts by mass of the oil phase component.
  • it is 0.0001 mass part or more, for example, Preferably, it is 0.001 mass part or more, for example, is 1.0 mass part or less, Preferably, it is 0.1 mass part or less.
  • the dispersant or the dispersant and the surfactant can be blended, for example, either before or after blending the oil phase component and water, and preferably in the water before blending with the oil phase component. Blend.
  • an aqueous solution of the dispersant or an aqueous solution of the dispersant and the surfactant is prepared.
  • a disperser such as a homomixer, an ultrasonic homogenizer, a pressure homogenizer, a milder, or a porous membrane press-in disperser is used. Is used.
  • the rotation speed is set to, for example, 100 rpm or more, preferably 1000 rpm or more, and for example, set to 10,000 rpm or less, for example, 8000 rpm or less.
  • dispersant second dispersant
  • a dispersant and a surfactant are used in the aqueous dispersion.
  • the droplets of the oil phase component are more stabilized.
  • the blending ratio of water is, for example, 50 parts by mass or more, preferably 100 parts by mass or more, more preferably 150 parts by mass or more, with respect to 100 parts by mass of the oil phase component. It is adjusted to 1900 parts by mass or less, preferably 900 parts by mass or less, more preferably 400 parts by mass or less.
  • the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to form a shell that covers the suspension polymer. That is, the shell is formed so as to cover a polymer obtained by suspension polymerization, that is, a suspension polymer.
  • a polymerizable vinyl monomer is subjected to suspension polymerization to produce a polymer.
  • the aqueous dispersion is heated to a predetermined temperature.
  • the polymerizable vinyl monomer reacts (specifically, radical polymerization) while stirring the aqueous dispersion so that the aqueous dispersion state of the aqueous dispersion is maintained, and A polymer is produced.
  • Suspension polymerization is in-situ polymerization because all of the polymerizable vinyl monomer that becomes a polymer is only in water-dispersed particles (hydrophobic liquid phase).
  • the aqueous dispersion is heated while stirring, whereby the polymerizable vinyl monomer starts polymerization in the aqueous dispersion particles as it is, and a polymer is formed.
  • Stirring can be performed, for example, with a stirrer having stirring blades.
  • the peripheral speed of the stirring blade is, for example, 10 m / min or more, preferably 20 m / min or more, and 400 m / min or less, preferably 200 m / min or less.
  • the temperature of the aqueous dispersion is, for example, 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and for example, 100 ° C. or lower, preferably 90 ° C. or lower, more preferably 80 ° C. Heat to below °C.
  • suspension polymerization proceeds in a state where the antibiotic compound is incompatible with the polymer.
  • the heating time is, for example, 2 hours or more, preferably 3 hours or more, and for example, 12 hours or less, preferably 8 hours or less. Furthermore, after heating to a predetermined temperature, the temperature can be maintained for a predetermined time, and then heating and temperature maintenance can be repeated to heat in stages.
  • the antibiotic compound In suspension polymerization, the antibiotic compound is substantially insoluble with respect to the polymerizable vinyl monomer, and the antibiotic compound is incompatible with the polymerizable vinyl monomer and / or polymer from the start of polymerization to the end of polymerization. The incompatible state is maintained.
  • suspension polymerization a polymer prepared from a polymerizable vinyl monomer is produced as a suspension polymer.
  • the hydrophilic shell forming component is contained in the aqueous dispersion containing the hydrophobic shell forming component, and the temperature of the aqueous dispersion is raised.
  • the hydrophilic shell-forming component is blended with the aqueous dispersion containing the hydrophobic shell-forming component, and the aqueous dispersion is mixed with the temperature at which suspension polymerization starts (specifically, the polymerization initiator The temperature is raised to a temperature equal to or higher than the decomposition temperature.
  • the temperature at which the interfacial polymerization starts (starting temperature) T ip is not particularly limited, and is, for example, 0 ° C. or higher, preferably 10 ° C. or higher, and, for example, 100 ° C. or lower, preferably 80 ° C. or lower. .
  • the reaction is accelerated when the temperature is, for example, 25 ° C. or higher, preferably 40 ° C. or higher, and 100 ° C. or lower, preferably 80 ° C. or lower.
  • the temperature (starting temperature) T i at which suspension polymerization starts is, for example, in the relationship of the following formula (1) with the 10 hour half-life temperature T 1/2 of the polymerization initiator described above.
  • T 1/2 ⁇ 10 ⁇ T i ⁇ T 1/2 +10 (1)
  • T i represents the initiation temperature of suspension polymerization
  • T 1/2 represents the 10-hour half-life temperature of the polymerization initiator.
  • the temperature at which suspension polymerization starts is, for example, 55 ° C. or higher, preferably 60 ° C. or higher, and for example, 100 ° C. or lower, preferably 80 ° C. or lower.
  • the suspension polymerization start temperature T i is set higher than, for example, the interfacial polymerization start temperature T ip .
  • the suspension polymerization start temperature T i is set to, for example, 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 20 ° C. or higher, compared to the interfacial polymerization start temperature T ip.
  • the temperature is set higher by 100 ° C. or less.
  • Examples of the method for starting interfacial polymerization and suspension polymerization include (1) a method of starting interfacial polymerization simultaneously with the start of suspension polymerization, (2) a method of starting interfacial polymerization before the start of suspension polymerization, (3) The method of starting interfacial polymerization after the start of suspension polymerization is mentioned.
  • the temperature of an aqueous dispersion containing an oil phase component containing a hydrophobic shell-forming component is raised to a temperature higher than the temperature at which suspension polymerization starts.
  • the hydrophilic shell-forming component is added to the aqueous dispersion.
  • the hydrophilic shell-forming component is changed to the oil phase containing the hydrophobic shell-forming component. It mix
  • the aqueous dispersion is heated to below the temperature at which suspension polymerization starts, and then The aqueous dispersion can also be heated to a temperature at which suspension polymerization starts.
  • the aqueous dispersion is heated so that the temperature is, for example, less than 55 ° C., preferably less than 50 ° C. Thereby, the interfacial polymerization can be sufficiently promoted before the suspension polymerization is started.
  • the aqueous dispersion is heated to a temperature higher than the temperature at which suspension polymerization starts, and then the hydrophilic shell-forming component is converted into the aqueous dispersion.
  • the time from when the aqueous dispersion is heated to a temperature above the temperature at which suspension polymerization starts until the hydrophilic shell-forming component is blended with the aqueous dispersion is, for example, 0.5 hours or more, It is preferably 1 hour or longer, and for example, 8 hours or shorter, preferably 5 hours or shorter.
  • the method (1) or (2) can prevent the antibiotic compound from dropping from the matrix (described later), and thus the antibiotic can be formed while forming a shell.
  • the active compound can be kept dispersed in the matrix. That is, in the sustained release particles, the shell can surely encapsulate the antibiotic compound in the matrix. Therefore, the alkali resistance of the antibiotic compound in the sustained release particles can be improved.
  • the shell can be formed so as to cover the droplets of the oil phase component, and is thus included in the suspension polymerization. It is possible to control the movement of the antibiotic compound from the suspension polymer to the aqueous phase interface (ie, the interface between the suspension polymer and the water continuous phase).
  • the mixing ratio of the hydrophilic shell forming component is the active hydrogen group (hydrophilic shell forming component of the hydrophilic shell forming component) of the isocyanate group of the hydrophobic shell forming component.
  • the equivalent ratio (isocyanate group / amino group) to amino group) is, for example, 0.4 or more, preferably 0.6 or more, and for example, 1.2 or less. The ratio is preferably 1.0 or less.
  • the hydrophilic shell forming component is blended in the aqueous dispersion containing the hydrophobic shell forming component.
  • the hydrophilic shell forming component is water
  • the hydrophilic shell forming component is separately provided. It is also possible to use the water contained in the aqueous dispersion as a hydrophilic shell forming component without intermixing the forming component with the aqueous dispersion and to interfacially polymerize the hydrophilic shell forming component and the hydrophobic shell forming component. it can.
  • a polyaddition catalyst such as dibutyltin dilaurate can be used.
  • the hydrophobic shell-forming component in the oil phase component (oil phase) and the hydrophilic shell-forming component in the aqueous phase undergo interfacial polymerization on the surface of the water-dispersed particles.
  • the polymerization time for the interfacial polymerization depends on the temperature of the suspension polymerization, but can be confirmed by lowering the pH of the polymerization reaction solution (reaching the neutralization point).
  • the time for completing the interfacial polymerization is, for example, 2 to 4 hours.
  • a shell that covers the oil phase component droplets can be preferably formed before or simultaneously with the start of the suspension polymerization.
  • the antibiotic compound contained in the suspension polymerization moves from the suspension polymer to the aqueous phase interface (interface between the suspension polymer and the water continuous phase).
  • a shell made of a polymer of a hydrophobic shell-forming component and a hydrophilic shell-forming component is formed on the surface of the suspension polymer obtained by interfacial polymerization of the hydrophobic shell-forming component and the hydrophilic shell-forming component.
  • the aqueous dispersion after the reaction is cooled by, for example, cooling, and filtered through a 100 mesh (mesh) filter cloth to obtain an aqueous dispersion of sustained release particles ( Suspension).
  • the cooling temperature is, for example, room temperature (20 to 30 ° C., more specifically 25 ° C.).
  • the concentration of the antibiotic compound in the obtained sustained-release particles is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and for example, 50% by mass or less.
  • the amount is preferably 40% by mass or less, and more preferably 35% by mass or less.
  • the content ratio of the sustained release particles in the aqueous dispersion is determined by the blending amount of the oil phase component and the water (or aqueous solution) in which the oil phase component is dispersed. Specifically, for example, It is 10 mass% or more, Preferably, it is 20 mass% or more, for example, is 50 mass% or less, Preferably, it is 40 mass% or less.
  • the concentration of the shell in the sustained release particles is, for example, 1% by mass or more, preferably 2% by mass or more, and for example, 50% by mass or less, preferably 40% by mass or less.
  • the average particle diameter of the sustained release particles is, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more, and for example, 20 mm or less, preferably 10 mm or less.
  • the average particle diameter is calculated as the median diameter.
  • sustained-release particles of the second invention group are hydrophobic, and in the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to a hydrophobic polymerizable vinyl monomer.
  • the microcapsules obtained by the method described in Patent Document 1 are obtained only by interfacial polymerization, the dispersion medium (solvent) remains in the microcapsules, and therefore the surface hardness becomes insufficient. There is. As a result, when the microcapsule dispersion undergoes a process in which a high shearing force is applied or is stored for a long period of time, the microcapsules may aggregate to make redispersion difficult.
  • the microcapsules are likely to be blocked, and it may be difficult to take out the microcapsules as dry particles.
  • the sustained-release particles of the second invention group are hydrophobic, and in the absence of a solvent, the hydrophobic active vinyl compound that is substantially insoluble with respect to the hydrophobic polymerizable vinyl monomer, Hydrophobic slurry dispersed in a polymerizable vinyl monomer, an oil phase component preparation step for preparing an oil phase component containing a hydrophobic shell-forming component, and an aqueous dispersion for preparing an aqueous dispersion by dispersing the oil phase component in water Process and polymerization to form a polymer that becomes a core by interfacial polymerization of a hydrophobic shell-forming component and a hydrophilic shell-forming component to form a polymer that becomes a shell, and suspension polymerization of a polymerizable vinyl monomer Since it is obtained by a production method comprising a step, it is possible to obtain a robust sustained-release particle by preventing a decrease in surface hardness of the sustained-release particle due to the presence of the solvent in the above
  • a shell that coats the suspension-polymerized suspension polymer is formed, so that the inclusion rate of the antibiotic compound (of the antibiotic compound in the sustained-release particles) Concentration) can be increased, and the sustained release and alkali resistance of the antibiotic compound are excellent.
  • the sustained release property of the sustained release particles and the alkali resistance of the antibiotic compound in the sustained release particles are related to each other. Specifically, the alkali resistance of the antibiotic compound in the sustained release particles is When is improved, the sustained release property of the sustained release particles is improved.
  • the shell is made of polyurea, so that the sustained-release particles are excellent in melt miscibility with the thermoplastic urethane resin. It becomes.
  • sustained-release particles can be applied to various industrial products, for example, indoor and outdoor paints, rubber, fibers, resins (including plastics), adhesives, joint agents, sealing agents, building materials, caulking. It can be added to the agent, wood treatment agent, soil treatment agent, white water, pigment, printing plate treatment liquid, cooling water, ink, cutting oil, cosmetics, non-woven fabric, spinning oil, leather, etc. in the papermaking process.
  • the added amount of the antibiotic compound in the sustained release particles to these industrial products is, for example, 10 mg / kg to 100 g / kg (product mass).
  • thermoplastic resin a powder formulated from sustained-release particles is blended with a thermoplastic resin.
  • a suspension of sustained-release particles is dried and formulated into a powder.
  • the powder and the thermoplastic resin are melt-kneaded to prepare a kneaded product.
  • the kneaded material In order to prepare the kneaded material, specifically, for example, an extruder or a Banbury mixer is used.
  • the extruder for example, a twin screw extruder or a single screw extruder is used.
  • the kneaded material is a molding material for molding a molded product. Specifically, the kneaded material is once cooled and prepared as a pellet-shaped molding material (kneaded material pellet or master batch). On the other hand, the kneaded product is not taken out as a solid molding material, but can be continuously used as it is in a molten state (melt kneaded product) and subjected to molding described later.
  • the content of the antibiotic compound in the powder agent is, for example, 0.01% by mass or more, preferably 0.1% by mass or more, and, for example, 10% by mass or less, preferably, with respect to the thermoplastic resin.
  • a powder agent is mix
  • the content of the antibiotic compound is, for example, 1% by mass or more, preferably, with respect to the thermoplastic resin.
  • the powder is mixed with the thermoplastic resin so as to be 5% by mass or more, for example, 50% by mass or less, and preferably 30% by mass or less, to obtain a master batch.
  • the thermoplastic resin is not particularly limited.
  • polyolefin resin such as polyethylene and polypropylene, polystyrene, polymethyl methacrylate, acrylonitrile / styrene copolymer resin (AS resin), methyl methacrylate / styrene copolymer (MS resin), acrylonitrile / styrene / butadiene copolymer resin (ABS resin), styrene and / or acrylic resins, polyethylene terephthalate, polyester resins such as polylactic acid, polyamide resins such as 6-nylon, chloride Examples thereof include vinyl halide resins such as vinyl resin and vinylidene chloride resin, polycarbonate, polyphenylene ether, polyacetal, and thermoplastic polyurethane.
  • polyolefin resin, vinyl chloride resin, and thermoplastic polyurethane are used.
  • the mixture is molded into a molded product from the kneaded product pellets or melt-kneaded product.
  • the molding method for example, injection molding, extrusion molding, inflation molding, pultrusion molding, compression molding, or the like is employed.
  • the powder formulated from sustained-release particles is added to the thermoplastic resin.
  • the powder is not particularly limited as long as it is a resin, and may be added to, for example, a thermosetting resin.
  • a powder can be suitably mixed with a liquid resin such as an epoxy resin or a silicone resin.
  • Such molded articles are used in various applications, for example, building materials such as electric wire cable materials, and electric wire cable coating materials such as gas conduits, and conduit coating materials such as clothing. Used as textile products such as mosquito nets.
  • sustained-release particles obtained by the above-described method for producing sustained-release particles of the second invention group specifically include the following third and fourth embodiments of sustained-release particles. It is out.
  • the sustained release particles 1 are formed, for example, as spherical particles as shown in the cross-sectional view of FIG. B1.
  • the sustained release particles 1 include a matrix 2, a domain 3 dispersed in the matrix 2, and a shell 7 that covers the matrix 2.
  • the matrix 2 is made of a polymer prepared from the above-described polymerizable vinyl monomer. Domain 3 consists of the antibiotic compounds described above.
  • the shell 7 is made of a polymer prepared from the above-described hydrophobic shell-forming component and hydrophilic shell-forming component.
  • a matrix 2 forms a medium or a continuous phase, and a multi-domain structure or a sea-island structure (or a multinuclear structure) in which a plurality of domains 3 are dispersed in the matrix 2 is formed.
  • the matrix 2 and the domain 3 are incompatible with each other and form a phase separation structure or a two-phase structure that separate from each other.
  • the matrix 2 and the domain 3 form a core for the shell 7 described later.
  • the plurality of domains 3 form a dispersed phase in the matrix 2.
  • the shape of the domain 3 is not particularly limited, and is formed in an appropriate shape such as an indefinite shape, a spherical shape, a block shape, or a plate shape.
  • the average value of the maximum length of the domain 3 is, for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, and for example, 20 ⁇ m or less, preferably 10 ⁇ m or less.
  • the shell 7 is formed on the surface of the matrix 2 (polymer obtained by suspension polymerization of the polymerizable vinyl monomer described above). Specifically, the shell 7 covers, for example, at least a part of the surface of the matrix 2, preferably the entire surface of the matrix 2. That is, the shell 7 forms a core-shell structure together with the core composed of the matrix 2 and the domain 3.
  • the shell 7 is composed of a polymer prepared from a hydrophobic shell-forming component and a hydrophilic shell-forming component. Specifically, the outermost layer (outermost surface) is substantially The concentration of the polymer prepared from the hydrophobic shell-forming component and the hydrophilic shell-forming component with respect to the matrix 2 (polymer) in the direction from the outermost layer (outermost surface) to the inside. Is configured to be thin. Thereby, the shell 7 is located (unevenly distributed) on the surface layer of the matrix 2 so as to surround the domain 3.
  • grains is less than 30 mass%, for example An antibiotic compound is blended so that
  • the sustained-release particles 1 of the third embodiment include a matrix 2 made of a polymer of a polymerizable vinyl monomer and a domain 3 made of an antibiotic compound, and the domain 3 dispersed in the matrix 2, In addition to excellent sustained release properties of the antibiotic compound, it is excellent in fastness and excellent in kneading with a resin.
  • the domain 3 includes a protrusion 4 that protrudes outward from the inside of the matrix 2.
  • the protrusion 4 is exposed from the surface of the matrix 2.
  • both the matrix 2 and the domain 3 are exposed on the surface of the sustained release particles 1.
  • the protrusion 4 has an embedded portion 8 embedded in the surface layer portion of the matrix 2.
  • the sustained release particles 1 have a two-phase structure formed from a matrix 2 and a domain 3 and do not have a shell 7.
  • the sustained release particles 1 shown in FIG. B9 are produced by the production method described above except that the hydrophobic shell-forming component and the hydrophilic shell-forming component are not blended and interfacial polymerization is not performed.
  • the sustained-release particles 1 of the third embodiment shown in FIG. B1 are different from the sustained-release particles 1 of the reference form of FIG. B9 and have no protrusions 4 and the suspension polymer is covered with the shell 7. Therefore, it has excellent long-term sustained release.
  • the domain 3 (antibiotic active compound) of the sustained release particles 1 can be protected by the shell 7 as shown in FIG. B1. Therefore, the sustained release particles 1 of the third embodiment are superior to the sustained release particles 1 of the reference embodiment in the sustained release properties and alkali resistance of the antibiotic compound.
  • the deposit 5 made of an antibiotic compound is attached to the surface of the shell 7.
  • the shape of the deposit 5 is not particularly limited, and is formed in an appropriate shape such as an indefinite shape, a spherical shape, a block shape, or a plate shape.
  • the inner surface (contact surface that contacts the surface of the shell 7) of the deposit 5 forms a concave surface corresponding to the surface (spherical surface) of the shell 7, specifically, a curved surface that is recessed outward.
  • the deposit 5 is the same size as or smaller than the domain 3, and is, for example, 100% or less, preferably 50% or less with respect to the average value of the maximum length of the domain 3.
  • the average value of the maximum length of the deposit 5 is, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more. It is.
  • the coverage of the deposit 5 on the entire surface of the shell 7 is, for example, 10% or more, preferably 20% or more, and for example, 100% or less, preferably 90% or less.
  • the concentration of the antibiotic compound in the sustained release particles is, for example, more than 28% by mass, Preferably, the antibiotic compound is blended so as to be 30% by mass or more, more preferably 35% by mass.
  • the anti-blocking property can be further improved by the deposit 5.
  • the second invention group can include both the sustained release particles of the third embodiment and the sustained release particles of the fourth embodiment, and in that case, on a mass basis, Their blending ratio (sustained release particles of the third embodiment / sustained release particles of the fourth embodiment) is, for example, 1/99 or more, further 10/90 or more, and for example, 99 / 1 or less, and further 90/10 or less.
  • Example A corresponding to the first invention group, etc.
  • the numerical values of Preparation Example A and Example A shown below are the numerical values described in the above-mentioned “Mode for Carrying Out the Invention” column (that is, the upper limit). Value or lower limit value). Further, in Preparation Example A, Example A and Comparative Example A, units such as% mean mass% unless otherwise specified.
  • Clothianidin (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine, molecular weight 250, melting point 177 ° C., solubility in water: 0.33 g / L, manufactured by Sumitomo Chemical Co., Ltd.
  • Imidacloprid 1- (6-chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine, molecular weight 256, melting point 144 ° C., solubility in water: 0.48 g / L, manufactured by Maruzen EGDMA: ethylene glycol dimethacrylate Product name “Light Ester EG”, insoluble in water, Kyoeisha Chemical Co., Ltd.
  • i-BMA Isobutyl methacrylate, water solubility: 0.6 g / L, Nippon Shokubai Co., Ltd.
  • DVB-570 Product name, insoluble in water , Composition: Divinylbenzene (upper limit 60%), Ethylvinylbenzene (upper limit 40%), Nippon Steel & Sumikin Chemical Co., Ltd.
  • Styrene To water Solubility: 0.3 g / L, Wako Special Grade Reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • DISPERBYK-164 trade name, functional group-modified copolymer for pigment dispersion (tertiary amine-containing polyester-modified polyurethane polymer, molecular weight 10,000 to 50,000) Butyl acetate solution, solid concentration 60%, Big Chemie's Parroyl L: trade name, dilauroyl peroxide, NOF Corporation Perhexyl O: trade name, t-hexylperoxy-2-ethylhexanoate, NOF Pronon 208: trade name, polyoxyethylene polyoxypropylene block copolymer, NOF Corporation PVA-217: trade name “Kuraray Poval 217”, partially saponified polyvinyl alcohol, Kuraray Co., Ltd.
  • the average particle size of clothianidin in Slurry A was 1.38 ⁇ m as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  • Preparation Example A2 (Preparation of clothianidin slurry (slurry B)) DVB-570 7200g and DISPERBYK-164 804g are uniformly distributed in a batch type media disperser (batch type bead mill, trade name “AD mill (AD-5), zirconia bead diameter 1.5 mm”, manufactured by Asada Tekko Co., Ltd.) Then, 3996 g of clothianidin was added and wet-pulverized for 150 minutes to obtain a slurry containing 33.3% clothianidin (hydrophobic slurry, hereinafter referred to as “slurry B”).
  • slurry B hydrophobic slurry
  • the average particle diameter of clothianidin in the slurry B was 0.45 ⁇ m as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  • Preparation Examples A3 to A8 (Preparation of clothianidin slurry (slurries C to H)) A clothianidin slurry (hydrophobic slurry, hereinafter referred to as “slurries C to H”) was obtained in the same manner as in Preparation Example A1, except that the formulation was changed to the formulation shown in Table A1.
  • Preparation Example A9 (Preparation of imidacloprid slurry (slurry I)) An imidacloprid slurry (hydrophobic slurry, hereinafter referred to as “slurry I”) was obtained in the same manner as in Preparation Example A1, except that the formulation was changed to the formulation shown in Table A1.
  • Example A1 (Synthesis of clothianidin-containing sustained release particles: corresponding to the first embodiment)
  • slurry B prepared in Preparation Example A2
  • Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B.
  • an oil phase component containing Parroyl L and Slurry B was prepared.
  • the oil phase component was added to a 500 mL beaker (2).
  • K The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
  • suspension aqueous dispersion
  • aqueous dispersion is transferred to a 500 mL 4-neck Kolben equipped with a stirrer, reflux condenser, thermometer and nitrogen introduction tube, and heated with stirring in a nitrogen stream to effect suspension polymerization. Carried out.
  • Suspension polymerization was started at the time when the temperature reached 55 ° C., and then continuously carried out at 70 ⁇ 1 ° C. for 5 hours and at 80 ⁇ 1 ° C. for 2 hours.
  • suspension after the reaction was cooled to 30 ° C. or less to obtain a suspension (suspension) of sustained release particles containing clothianidin and having a median diameter of 28.2 ⁇ m.
  • the median diameter of the sustained release particles was measured with a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.). The measurement of the median diameter is the same for the following examples and comparative examples.
  • Example A2 Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment
  • 100 g of slurry B prepared in Preparation Example A2 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B.
  • an oil phase component containing Parroyl L and Slurry B was prepared.
  • the oil phase component was added to a 500 mL beaker (2).
  • K The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
  • suspension polymerization was carried out under the same conditions as in Example A1 to obtain a suspension (suspension) of sustained release particles containing clothianidin and having a median diameter of 24.5 ⁇ m.
  • Example A3 Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment
  • 100 g of slurry A prepared in Preparation Example A1 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry A.
  • an oil phase component containing Parroyl L and Slurry A was prepared.
  • the oil phase component was added to a 500 mL beaker (2). K.
  • the oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 3000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
  • suspension polymerization was carried out under the same conditions as in Example A1 to obtain a suspension (suspension) of sustained-release particles containing clothianidin and having a median diameter of 43.5 ⁇ m.
  • Example A4 (Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment) A 200 mL beaker (1) is charged with 50 g of slurry A prepared in Preparation Example A1, 25 g of i-BMA, 25 g of EGDMA, and 0.5 g of Parroyl L, and stirred at room temperature, whereby i-BMA, EGDMA and Parroyl L are mixed. Dissolved in slurry A. Thus, an oil phase component containing i-BMA, EGDMA, Parroyl L and slurry A was prepared.
  • the oil phase component was added to a 500 mL beaker (2). K.
  • the oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
  • suspension polymerization was carried out under the same conditions as in Example A1 to obtain a suspension (suspension) of sustained-release particles containing clothianidin and having a median diameter of 9.3 ⁇ m.
  • a suspension (suspension) of sustained-release particles containing clothianidin was obtained in the same manner as in Example A4, except that the formulation was changed according to the descriptions in Table A2 and Table A3.
  • the average particle diameters of the sustained release particles in the suspension are shown in Table A2 and Table A3.
  • Example A9 Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment
  • a 200 mL beaker (1) is charged with 50 g of slurry C prepared in Preparation Example A1, 25 g of styrene, 25 g of EGDMA, and 0.5 g of Parroyl L, and stirred at room temperature, whereby styrene, EDGMA and Parroyl L are added to Slurry C. Dissolved.
  • an oil phase component containing styrene, EDGMA, Parroyl L and slurry C was prepared.
  • the oil phase component was added to a 500 mL beaker (2). K.
  • the oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
  • suspension polymerization was carried out under the same conditions as in Example A1, and a suspension (suspension agent) of sustained-release particles containing clothianidin and having a median diameter of 14.5 ⁇ m was obtained.
  • Example A10 to Example A12, Example A14, Example A17, Example A18 Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment
  • a suspension (suspension) of sustained-release particles containing clothianidin was obtained in the same manner as in Example A9, except that the formulation was changed according to the description in Table A3.
  • Each average particle diameter of the sustained release particles in the suspension is shown in Table A3.
  • Example A19 (synthesis of imidacloprid-containing sustained release particles: corresponding to the second embodiment)
  • a suspension (suspension) of sustained-release particles containing imidacloprid was obtained in the same manner as in Example A4 except that the formulation was changed according to the description in Table A3.
  • the average particle size of the sustained release particles in the suspension is shown in Table A3.
  • “1” in the polymerization conditions column means that the temperature of the suspension in the polymerization process was adjusted to “70 ⁇ 1 ° C. for 5 hours, 80 ⁇ 1 ° C. for 2 hours”, “2” Means that the temperature of the suspension in the polymerization process was adjusted to “80 ⁇ 1 ° C. for 3 hours, 85 ⁇ 1 ° C. for 3 hours”.
  • “1” in the form column of the sustained release particles has the structure of the first embodiment shown in FIG. A1, and “2” has the structure of the second embodiment shown in FIG. A2. Show.
  • Example A20 Keratin and molding of powder of sustained release particles and thermoplastic resin
  • the suspension of sustained-release particles produced in Example A1 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain sustained-release particle powder (powder).
  • the obtained sustained-release particle powder (powder) and high-density polyethylene (HDPE) Hi-Zex 6300M were 0.25% clothianidin with respect to HDPE.
  • Example A21 (kneading and molding of the powder of Example A3 and polyethylene) A strip shape treatment was carried out in the same manner as in Example A20 except that the suspension of sustained release particles prepared in Example A3 was used instead of the suspension of sustained release particles prepared in Example A1. A molded product was obtained.
  • Example A22 Suspension of sustained release particles prepared in Example A1 (clothianidin concentration: 8.3% by mass) with respect to 100 parts by mass of Kagalite 2 (manufactured by Kagalite Kogyo Co., Ltd., fine particles of pumice, particle size of 425 to 1400 ⁇ m) 1 Then, 2 parts by mass were blended and then dried to obtain clothianidin granules. The clothianidin concentration in the granules was about 0.1% by mass.
  • Example A23 Instead of the sustained-release particle suspension prepared in Example A1, 1.2 parts by mass of the sustained-release particle suspension prepared in Example A3 (clothianidin concentration 8.3 mass%) was added. Were processed in the same manner as in Example A22 to obtain clothianidin granules. The clothianidin concentration in the granules was about 0.1% by mass.
  • Comparative Example A1 (kneading of clothianidin microcapsule suspension with polyethylene) Instead of the sustained-release particle powder (powder) prepared from Example A1, a sample obtained by drying and crushing a clothianidin microcapsule suspension “Xyramon MC” manufactured by Nihon Enviro Chemicals Co., Ltd. for 1 day at room temperature. In the same manner as in Example A6, the capsule was broken during melt-kneading, the solvent was atomized, and kneading could not be performed.
  • Example A1 to Example A4 Example A9 and Example A19 was dropped on a sample stage, and then water was distilled off. Thereafter, the obtained sustained-release particles were observed with an SEM using a scanning electron microscope Hitachi TM-3000 (manufactured by Hitachi High-Technologies Corporation). SEM images of the sustained release particles obtained in Examples A1 to A4, Example A9, and Example A19 are shown in FIGS. A4 to A9, respectively.
  • Example A20 and Example A21 were immersed in liquid nitrogen, and the fractured surface that was brittle fractured was observed with a scanning electron microscope Hitachi TM-3000 (manufactured by Hitachi High-Technologies Corporation) by SEM.
  • Cross-sectional SEM images of Example A20 and Example A21 are shown in FIGS. A10 and A11, respectively.
  • FIGS. A12 to A14 Image processing diagrams of the TEM photographs of Example A1 to Example A3 are shown in FIGS. A12 to A14, respectively.
  • the blank indicated by reference numeral 3 is a trace of clothianidin dissolved and dropped in the process of recovering the cut-out ultrathin section floating on water, and represents the shape of clothianidin domain. .
  • sustained-release particles produced in Examples A1 to A3 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain sustained-release particle powder (powder). These powders were diluted 1000 times with deionized water, of which 6.3 mL was weighed into a glass bottle, and 2 mL of saturated calcium hydroxide solution was added to prepare a test solution. This test solution was allowed to stand at a constant temperature of 40 ° C.
  • Example A4 The results are shown in Table A4.
  • the suspension containing the sustained-release particles of Examples A1 to A3 had a high clothianidin residual ratio of 91 to 93% on the first day after the start of the test. On the 7th day, all were 12 to 16%, which was lower than 1 day after the start of the test, but it was found that it was still at a practical level when the control was 7%.
  • the sustained release particles of Example A2 and Example A3 corresponding to the second embodiment are the sustained release of Example A1 corresponding to the first embodiment on both the first and seventh days after the start of the test. It can also be seen that the alkali resistance is superior compared to the particles.
  • Example A5 The results are shown in Table A5.
  • the granules of Example A22 and Example A23 containing the sustained release particles of Example A1 and Example A3 have a clothianidin residual ratio of 90-92 on the first day after the start of the test. 7% after the start of the test, all decreased to 11-15% compared to 1 day after the start of the test. However, considering that the control is 7%, it is still at a practical level. I understand.
  • the granule of Example A23 containing the sustained release particles of Example A3 corresponding to the second embodiment is an example corresponding to the first embodiment on both the 1st and 7th days after the start of the test.
  • the antibiotic resistance of the antibiotic compound is superior to the granules of Example A22 containing the sustained release particles of A1. 4). Mold prevention test of molded article Silica sand poured to have a moisture content of 8% (optimum moisture content of termite activity) was filled in a plastic container, and then the surface of the quartz sand was Example A20 and Example A21. A strip-shaped molded product was installed.
  • Example A20 and Example A21 a remarkable ant killing effect was recognized.
  • Example B corresponding to the second invention group, etc.
  • the numerical values of Preparation Example B, Example B and Reference Example B shown below are those described in the above-mentioned “Mode for Carrying Out the Invention” column. (That is, an upper limit value or a lower limit value) can be substituted. Further, in Preparation Example B, Example B, and Reference Example B, units such as% mean mass% unless otherwise specified.
  • Clothianidin (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine, molecular weight 250, melting point 177 ° C., solubility in water: 0.33 g / L, manufactured by Sumitomo Chemical Co., Ltd.
  • Imidacloprid 1- (6-chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine, molecular weight 256, melting point 144 ° C., solubility in water: 0.48 g / L, manufactured by Maruzen EGDMA: ethylene glycol dimethacrylate Product name “Light Ester EG”, insoluble in water, Kyoeisha Chemical Co., Ltd.
  • i-BMA Isobutyl methacrylate, water solubility: 0.6 g / L, Nippon Shokubai Co., Ltd.
  • DVB-570 Product name, insoluble in water , Composition: Divinylbenzene (upper limit 60%), Ethylvinylbenzene (upper limit 40%), Nippon Steel & Sumikin Chemical Co., Ltd.
  • Styrene To water Solubility: 0.3 g / L, Wako Special Grade Reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • DISPERBYK-164 trade name, functional group-modified copolymer for pigment dispersion (tertiary amine-containing polyester-modified polyurethane polymer, molecular weight 10,000 to 50,000) Butyl acetate solution, solid content concentration 60%, Big Chemie's Parroyl L: trade name, dilauroyl peroxide, 10 hour half-life T 1/2 : 61.6 ° C, NOF Pronon 208: trade name, poly Oxyethylene polyoxypropylene block copolymer, NOF Corporation PVA-217: Trade name “Kuraray Poval 217”, partially saponified polyvinyl alcohol, Kuraray Co., Ltd.
  • DEMAL NL trade name, ⁇ -naphthalenesulfonic acid formaldehyde condensate 41 sodium salt % Aqueous solution, Kao Corporation T-1890: Trade name “VESTANA” T 1890/100 ", cyclic trimer form of isophorone diisocyanate (IPDI), solubility in water: 0.02 g / L, manufactured by Evonik Industries, Inc.
  • DETA diethylenetriamine, Wako primary reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • the average particle size of clothianidin in Slurry A was 1.38 ⁇ m as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  • Preparation Example B2 (Preparation of clothianidin slurry (slurry B)) DVB-570 7200g and DISPERBYK-164 804g are uniformly distributed in a batch type media disperser (batch type bead mill, trade name “AD mill (AD-5), zirconia bead diameter 1.5 mm”, manufactured by Asada Tekko Co., Ltd.) Then, 3996 g of clothianidin was added and wet-pulverized for 150 minutes to obtain a slurry containing 33.3% clothianidin (hydrophobic slurry, hereinafter referred to as “slurry B”).
  • slurry B a slurry containing 33.3% clothianidin (hydrophobic slurry, hereinafter referred to as “slurry B”).
  • the average particle diameter of clothianidin in the slurry B was 0.45 ⁇ m as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  • Preparation Examples B3 to B8 (Preparation of clothianidin slurry (slurries C to H)) A clothianidin slurry (hydrophobic slurry, hereinafter referred to as “slurries C to H”) was obtained in the same manner as in Preparation Example B1, except that the formulation was changed to the formulation shown in Table B1.
  • Table B1 shows the average particle diameter of clothianidin in each of the slurries C to H.
  • Preparation Example B9 (Preparation of imidacloprid slurry (slurry I)) An imidacloprid slurry (hydrophobic slurry, hereinafter referred to as “slurry I”) was obtained in the same manner as in Preparation Example B1, except that the formulation was changed to the formulation described in Table B1.
  • Example B1 (Water dispersion process and polymerization process)
  • Example B2 (Synthesis of polyurea coating / clothianidin-containing sustained release particles: corresponding to the third embodiment)
  • a 200 mL beaker (1) 85 g of the slurry B prepared in Preparation Example B2 is charged with 15 g of T-1890 and 0.5 g of Parroyl L, and stirred at room temperature, whereby T-1890 and Parroyl L are added to the slurry B. Dissolved in.
  • an oil phase component containing T-1890, Parroyl L and Slurry B was prepared.
  • the oil phase component was added to a 500 mL beaker (2). K.
  • the oil phase component was dispersed by stirring with a homomixer MARK 2.5 type (manufactured by PRIMIX Co., Ltd.) at a rotation speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
  • the suspension (aqueous dispersion) was transferred to a 500 mL 4-neck Kolben equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, and stirred under a nitrogen stream.
  • Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the temperature increase of the suspension to 70 ° C.
  • clothianidin was dispersed in a matrix formed by suspension polymerization, and a suspension (suspension agent) of sustained-release particles in which the matrix was coated with polyurea was obtained.
  • the suspension after the reaction is cooled to 30 ° C. or lower, so that clothianidin is dispersed in the matrix, and the matrix is a suspension of sustained release particles (suspension) coated with polyurea formed by interfacial polymerization. A suspension was obtained.
  • the median diameter of the sustained release particles in the suspension was measured with a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.). The results are listed in Table B2. The measurement of the median diameter is the same for the following Examples, Reference Examples and Comparative Examples, and the results are shown in Tables B2 to B6.
  • Example B2 (Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment)
  • a 200 mL beaker (1) 50 g of slurry A prepared in Preparation Example B1 was charged with 17.5 g of i-BMA, 17.5 g of EGDMA, 15 g of T-1890, and 0.5 g of Parroyl L, and stirred at room temperature.
  • I-BMA, EGDMA, T-1890 and Parroyl L were dissolved in slurry A.
  • an oil phase component containing i-BMA, EGDMA, T-1890, Parroyl L and Slurry A was prepared.
  • the oil phase component was added to a 500 mL beaker (2). K.
  • the oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
  • the suspension (aqueous dispersion) was transferred to a 500 mL 4-neck Kolben equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, and stirred under a nitrogen stream.
  • Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the temperature increase of the suspension to 70 ° C.
  • clothianidin was dispersed in a matrix formed by suspension polymerization, and a suspension (suspension) of sustained-release particles in which the matrix was coated with polyurea formed by interfacial polymerization was obtained.
  • suspension after the reaction was cooled to 30 ° C. or less to obtain a suspension (suspension) of sustained release particles in which clothianidin was dispersed in the matrix and the matrix was coated with polyurea.
  • Example B3 Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment
  • the suspension was treated in the same manner as in Example B2 so that clothianidin was dispersed in the matrix and the matrix was coated with polyurea. A suspension was obtained.
  • the suspension is heated to 60 ° C. and maintained at the same temperature for 1 hour, and then the suspension is heated to 70 ° C. and maintained at the same temperature for 2 hours. The suspension was then heated to 80 ° C. and maintained at that temperature for 1 hour.
  • Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the heating of the suspension to 60 ° C.
  • Example B4 (Synthesis of polyurea coating / clothianidin-containing sustained release particles: corresponding to the third embodiment) Except having changed polymerization conditions as follows, it processed similarly to Example B2, and obtained the suspension (suspension agent) of the sustained release particle
  • the suspension was heated to 50 ° C. and maintained at the same temperature for 2 hours, and then the suspension was heated to 60 ° C. and maintained at the same temperature for 1 hour. Subsequently, the suspension was heated to 70 ° C. and maintained at the same temperature for 2 hours, and then the suspension was heated to 80 ° C. and maintained at the same temperature for 1 hour.
  • Interfacial polymerization starts when a 10% by mass aqueous solution of diethylenetriamine is added, and suspension polymerization reaches 55 ° C., which is the temperature after the start of interfacial polymerization and during the heating of the suspension to 60 ° C. Started at the time.
  • Example B5 (Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment) Except having changed polymerization conditions as follows, it processed similarly to Example B2, and obtained the suspension (suspension agent) of the sustained release particle
  • the suspension was heated to 60 ° C. and maintained at the same temperature for 1 hour. Thereafter, an aqueous solution of diethylenetriamine is added. Immediately after that, the suspension is heated to 70 ° C. and maintained at the same temperature for 2 hours, and then the suspension is heated to 80 ° C. and heated to 1 at the same temperature. Maintained for hours.
  • the suspension polymerization starts when reaching 55 ° C., which is the temperature during the temperature increase of the suspension to 60 ° C.
  • the interfacial polymerization is after the start of the suspension polymerization and is a 10% by mass aqueous solution of diethylenetriamine. It started when I put in.
  • Example B10 to Example B13, Example B19 to Example B23, Example B27, Example B28, Example B31, and Example B32 Polyurea coating / Synthesis of clothianidin-containing sustained release particles
  • Example B28: corresponding to the fourth embodiment A suspension (suspension) of sustained-release particles coated with polyurea and containing clothianidin was processed in the same manner as in Example B2, except that the formulation was changed as described in Tables B3 to B5. It was.
  • Example B6 Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment
  • a 200 mL beaker (1) 50 g of slurry C prepared in Preparation Example B3 was charged with 17.5 g of styrene, 17.5 g of EGDMA, 15 g of T-1890, and 0.5 g of Parroyl L, and stirred at room temperature.
  • Styrene, EGDMA, T-1890 and Parroyl L were dissolved in slurry C.
  • an oil phase component containing styrene, EGDMA, T-1890, Parroyl L and slurry C was prepared.
  • an oil phase component in which styrene, EGDMA, T-1890 and Parroyl L are dissolved is added to a 500 mL beaker (2).
  • the oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
  • the suspension (aqueous dispersion) was transferred to a 500 mL 4-neck Kolben equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, and stirred under a nitrogen stream.
  • Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the temperature increase of the suspension to 70 ° C.
  • clothianidin was dispersed in a matrix formed by suspension polymerization, and a suspension (suspension agent) of sustained-release particles in which the matrix was coated with polyurea formed by interfacial polymerization was obtained.
  • suspension after the reaction was cooled to 30 ° C. or less to obtain a suspension (suspension) of sustained release particles in which clothianidin was dispersed in the matrix and the matrix was coated with polyurea.
  • Example B7 to Example B9, Example B14 to Example B18, Example B24 to Example B26, Example B29, Example B30, Example B33, Example B34 (Polyurea coating / Synthesis of clothianidin-containing sustained release particles) (Example B7 to Example B9, Example B14 to Example B18, Example B24 to Example B26, Example B33, and Example B34: corresponding to the third embodiment)
  • Example B35 (synthesis of imidacloprid-containing sustained release particles: corresponding to the third embodiment) A suspension (suspension) of sustained-release particles containing imidacloprid was obtained in the same manner as in Example B2, except that the formulation was changed according to the description in Table B5.
  • Reference Example B1 Synthesis of clothianidin-containing sustained release particles: corresponding to reference form
  • 100 g of slurry B prepared in Preparation Example B2 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B.
  • an oil phase component containing Parroyl L and Slurry B was prepared.
  • an oil phase component containing Parroyl L was added to a 500 mL beaker (2).
  • K The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
  • suspension aqueous dispersion
  • aqueous dispersion is transferred to a 500 mL 4-neck Kolben equipped with a stirrer, reflux condenser, thermometer and nitrogen introduction tube, and heated with stirring in a nitrogen stream to effect suspension polymerization. Carried out.
  • Suspension polymerization was started at the time when the temperature reached 55 ° C., and then continuously carried out at 70 ⁇ 1 ° C. for 5 hours and at 80 ⁇ 1 ° C. for 2 hours.
  • suspension after the reaction was cooled to 30 ° C. or lower to obtain a suspension (suspension agent) of sustained-release particles containing clothianidin.
  • Reference Example B2 Synthesis of clothianidin-containing sustained release particles: corresponding to reference form
  • 100 g of slurry B prepared in Preparation Example B2 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B.
  • an oil phase component containing Parroyl L and Slurry B was prepared.
  • the oil phase component was added to a 500 mL beaker (2).
  • K The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
  • suspension polymerization was carried out under the same conditions as in Reference Example B1 to obtain a suspension (suspension) of sustained release particles containing clothianidin.
  • Reference Example B3 Synthesis of clothianidin-containing sustained release particles: corresponding to reference form
  • 100 g of the slurry A prepared in Preparation Example B1 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in the slurry A.
  • an oil phase component containing Parroyl L and Slurry A was prepared.
  • the oil phase component was added to a 500 mL beaker (2). K.
  • the oil phase component was dispersed by stirring with a homomixer MARK 2.5 type (manufactured by PRIMIX Co., Ltd.) at a rotation speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
  • suspension polymerization was carried out under the same conditions as in Reference Example B1 to obtain a suspension (suspension) of sustained release particles containing clothianidin.
  • “1” in the polymerization condition column indicates that immediately after the diethylenetriamine aqueous solution was added to the suspension, the suspension was heated to 70 ° C. and maintained at the same temperature for 5 hours. This shows that the suspension was heated to 80 ° C. and maintained at the same temperature for 2 hours.
  • Example B36 Keratin and molding of powder of sustained release particles and thermoplastic resin
  • the suspension of sustained-release particles prepared in Example B1 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain sustained-release particle powder (powder).
  • the obtained sustained-release particle powder (powder) and high-density polyethylene (HDPE) Hi-Zex 6300M were 0.25% clothianidin with respect to HDPE.
  • Example B37 (kneading and molding of the powder of Example B27 and polyethylene) A strip-shaped treatment was carried out in the same manner as in Example B36, except that the sustained-release particle suspension prepared in Example B27 was used instead of the sustained-release particle suspension prepared in Example B1. A molded product was obtained.
  • Reference Example B4 (kneading and molding of the powder of Reference Example B1 and polyethylene) A strip-shaped treatment was carried out in the same manner as in Example B36 except that the suspension of sustained release particles prepared in Reference Example B1 was used instead of the suspension of sustained release particles prepared in Example B1. A molded product was obtained.
  • Reference Example B5 (kneading and molding of the powder of Reference Example B3 and polyethylene) A strip type treatment was carried out in the same manner as in Example B36, except that the suspension of sustained release particles prepared in Example B3 was used instead of the suspension of sustained release particles prepared in Example B1. A molded product was obtained.
  • Example B38 Suspension of sustained release particles prepared in Example B1 (clothianidin concentration 7.0 mass%) 1 with respect to 100 parts by mass of Kagalite 2 (manufactured by Kagalite Kogyo Co., Ltd., fine particles of pumice, particle size 425 to 1400 ⁇ m) 1 .4 parts by mass were blended and then dried to obtain clothianidin granules.
  • the clothianidin concentration in the granules was about 0.1% by mass.
  • Example B39 In place of the suspension of sustained release particles prepared in Example B1, 1.4 part by mass of the suspension of sustained release particles prepared in Example B27 (clothianidin concentration 7.0 mass%) was used. Were treated in the same manner as in Example B38 to obtain clothianidin granules. The clothianidin concentration in the granules was about 0.1% by mass.
  • Example B7 Example B38 except that 1.2 parts by mass of the sustained-release particle suspension (clothianidin concentration: 8.3% by mass) prepared in Reference Example B3 was used instead of the suspension prepared in Example B1. In the same manner as above, clothianidin granules were obtained. The clothianidin concentration in the granules was about 0.1% by mass. 1. Observation of SEM (Scanning Electron Microscope) Example B1, Example B2, Example B6, Example B30 and Example B35 suspensions (suspension agents) were dropped onto the sample stage, and then After the water was distilled off, the obtained sustained-release particles were observed with a scanning electron microscope Hitachi TM-3000 (manufactured by Hitachi High-Technologies Corporation) by SEM.
  • SEM Scanning Electron Microscope
  • Example B1 Example B2, Example B6, Example B30, and Example B35 are shown in FIGS. B3 to B7, respectively.
  • TEM Transmission Electron Microscope, Transmission Electron Microscope
  • a cross section was obtained by cutting this with an ultramicrotome, stained with osmium tetroxide, and further stained with ruthenium tetroxide as necessary, and this was cut into ultrathin sections with an ultramicrotome to prepare a sample.
  • the prepared sample was observed with a transmission electron microscope (model number “H-7100”, manufactured by Hitachi, Ltd.) by TEM.
  • FIGS. B8 to B11 Image processing diagrams of TEM photographs of Example B2 and Reference Examples B1 to B3 are shown in FIGS. B8 to B11, respectively.
  • FIGS. B8 to B11 the blank indicated by reference numeral 3 is a trace of clothianidin being dissolved and dropped in the process of collecting and recovering the cut ultrathin section in water.
  • the shape of the domain formed from clothianidin is shown in FIG. Represents.
  • the shell 7 is made of polyurea, and specifically, the polyurea concentration with respect to the matrix 2 decreases as it goes inward from the outermost layer (outermost surface). . Further, the shell 7 is located (unevenly distributed) in the surface layer portion of the matrix 2 so as to surround the domain 3.
  • Test A The concentration of each of the suspensions of Examples B1 to B35 is 0.25% for the concentration of the antibiotic compound (for Examples B1 to B34, the concentration of clothianidin, and for Example B35, the concentration of imidacloprid). Diluted with deionized water. 1 mL of the diluted suspension was weighed into a glass bottle, and 4 mL of saturated calcium hydroxide solution was added to prepare a test solution. This test solution was allowed to stand at a constant temperature of 40 ° C.
  • Example B2 to Example B4 the interfacial polymerization is started before the start of the suspension polymerization, so that the phase separation between the clothianidin-containing matrix and the shell can proceed well.
  • Example B5 the interfacial polymerization is started after the start of the suspension polymerization, so that the phase separation between the matrix and the shell cannot proceed well, and Examples B2 to B4 are the same as Example B5. Compared to, it has excellent alkali resistance.
  • Example B6 to Example B8 the interfacial polymerization is started before the start of the suspension polymerization, so that the phase separation between the clothianidin-containing matrix and the shell can proceed well.
  • Example B9 the interfacial polymerization is started after the start of the suspension polymerization, so that the phase separation between the matrix and the shell cannot proceed well, and Examples B6 to B8 are the same as Example B9. Compared to, it has excellent alkali resistance.
  • Example B13 Example B12, Example B11, Example B2, and Example B10
  • the blending ratio of T-1890 to i-BMA and EGDMA increases in this order. Therefore, in Example B13, Example B12, Example B11, Example B2, and Example B10, the thickness of the shell (the concentration of the shell in the sustained-release particles) increases in this order. Therefore, in Example B13, Example B12, Example B11, Example B2, and Example B10, the alkali resistance is improved in this order.
  • Example B18 Example B17, Example B16, Example B15, Example B6, and Example B14
  • the blending ratio of T-1890 to styrene and EGDMA increases in this order. Therefore, in Example B18, Example B17, Example B16, Example B15, Example B6, and Example B14, the thickness of the shell (the concentration of the shell in the sustained-release particles) increases in this order. Therefore, Example B18, Example B17, Example B16, Example B15, Example B6, and Example B14 have improved alkali resistance in this order.
  • Example B28 In Example B28, Example B27, and Example B2, the blending ratio of clothianidin in the sustained release particles decreased in this order, and Example B28, Example B27, and Example B2 decreased in resistance in this order. Alkalinity is improved.
  • Example B30 Example B29 and Example B2
  • the blending ratio of clothianidin in the sustained release particles is reduced in this order, and the alkali resistance is improved.
  • Example B2 and Example B19 to Example B23 Example B2 and Example B19 to Example B21 in which the proportion of i-BMA is relatively high are examples in which the proportion of i-BMA is extremely low.
  • the phase separation between the shell and the matrix containing clothianidin proceeds better. Therefore, Example B2, Example B20, and Example B21 are excellent in alkali resistance compared to Example B22 and Example B23.
  • Example B6 and Example B23 to Example B26 Example B6, Example B24, and Example B25, in which the blending ratio of styrene is relatively high, are different from Examples B23 and B26 in which the blending ratio of styrene is extremely low.
  • Example B6, Example B24, and Example B25 are superior in alkali resistance compared to Example B23 and Example B26.
  • Example B6 contains styrene as the polymerizable vinyl monomer, Example B2 contains i-BMA as the polymerizable vinyl monomer, and the styrene of Example B6 is compared to i-BMA of Example B2. Since the hydrophobicity is high, the phase separation between the shell and the polymer proceeds well. Therefore, Example B6 is excellent in alkali resistance compared to Example B2.
  • Test B The suspension of sustained release particles produced in Example B1, Example B2 and Reference Examples B1 to B3 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain a sustained release particle powder ( Dust) was obtained. These powders were diluted 1000 times with deionized water, of which 6.3 mL was weighed into a glass bottle, and 2 mL of saturated calcium hydroxide solution was added to prepare a test solution. This test solution was allowed to stand at a constant temperature of 40 ° C.
  • the suspension containing the sustained release particles of Examples B1 and 2 having a shell has a clothianidin residual rate of 1 and 7 days after the start of the test. In any of the cases, it is found that the amount is higher than the suspension containing the sustained release particles of Reference Example B1 to Reference Example B3 having no shell. 3-2.
  • Granules of sustained release particles 1.0 g of the granules obtained in Example B38, Example B39, Reference Example B6, and Reference Example B7 are weighed, and 3.6 mL of deionized water and 2 mL of saturated aqueous calcium hydroxide solution are used. Test solutions were prepared by addition. This test solution was allowed to stand at a constant temperature of 40 ° C.
  • the granules of Example B38 and Example B39 containing the sustained release particles of Example B1 and Example B2 having a shell have clothianidin residual rate. 1 and 7 days after the start of the test, it is higher than the granules of Reference Example B6 and Reference Example B7 containing the sustained release particles of Reference Example B1 and Reference Example B3 which do not have a shell.
  • Mold prevention test of molded article Silica sand poured to have a moisture content of 8% (optimum moisture content for termite activity) was filled in a plastic container, and then the surface of the quartz sand was filled with Example B36 and Example B37. A strip-shaped molded product was installed.
  • Example B36 and Example B37 a remarkable ant killing effect was recognized.
  • the sustained-release particles obtained by the method for producing sustained-release particles are used in various applications, for example, building materials, for example, electric wire cable materials, and covering materials for the electric wire cables, for example, conduits such as gas, and It is used for the covering material of the conduit, for example, textile products such as clothes and mosquito nets.

Abstract

This method for producing extended release particles (1) comprises: an oil phase component preparation step wherein an oil phase component containing a hydrophobic slurry is prepared by dispersing an antibiotically active compound, which is hydrophobic and substantially insoluble in a hydrophobic polymerizable vinyl monomer, in a hydrophobic polymerizable vinyl monomer in the absence of a solvent; a water dispersion step wherein a water dispersion liquid is prepared by dispersing the hydrophobic slurry in water; and a polymerization step wherein the polymerizable vinyl monomer is subjected to suspension polymerization, thereby producing a polymer.

Description

徐放性粒子、その製造方法、成形材料および成形品Sustained release particles, method for producing the same, molding material and molded article
 本発明は、徐放性粒子、その製造方法、成形材料および成形品、詳しくは、抗生物活性化合物を徐放する徐放性粒子、その製造方法、成形材料および成形品に関する。 The present invention relates to sustained release particles, a production method thereof, a molding material and a molded product, and more particularly, to sustained release particles capable of sustained release of an antibiotic compound, a production method thereof, a molding material and a molded product.
 殺虫剤、防虫剤、防蟻剤、殺菌剤、防腐剤、除草剤、防藻剤、忌避剤などの抗生物活性化合物をマイクロカプセル化することにより、抗生物活性化合物を徐放して、効力持続性を担保する粒子が知られている。 Antimicrobial active compounds such as insecticides, insecticides, antproofing agents, fungicides, preservatives, herbicides, algae control agents, repellents, etc. are microencapsulated to gradually release the antibiotics and maintain their efficacy Particles that guarantee sex are known.
 例えば、ネオニコチノイド系化合物、分散媒およびポリイソシアネート成分を含むスラリーを水分散させ、その後、ポリアミンを配合して界面重合することにより、ネオニコチノイド系化合物をマイクロカプセル化する方法が提案されている(例えば、下記特許文献1参照。)。 For example, a method of microencapsulating a neonicotinoid compound by dispersing a slurry containing a neonicotinoid compound, a dispersion medium and a polyisocyanate component in water and then interfacially polymerizing with a polyamine has been proposed. (For example, refer to Patent Document 1 below.)
特開2000-247821号公報JP 2000-247821 A
 しかるに、粒子には、用途および目的によって、徐放性が要求される場合がある。しかし、特許文献1に記載のような方法によって得られるマイクロカプセルは、上記した要求を十分に満足できないという不具合がある。 However, the particles may require sustained release depending on the purpose and purpose. However, the microcapsules obtained by the method described in Patent Document 1 have a problem that the above-described requirements cannot be sufficiently satisfied.
 また、特許文献1に記載のマイクロカプセルを樹脂やゴムに対して混練するときに、マイクロカプセルが混練時の剪断によって破壊されるという不具合がある。 Also, when the microcapsules described in Patent Document 1 are kneaded with resin or rubber, there is a problem that the microcapsules are broken by shear during kneading.
 本発明の目的は、徐放性に優れ、堅牢な徐放性粒子、その製造方法、この徐放性粒子を用いた成形材料および成形品を提供することにある。 An object of the present invention is to provide sustained release particles that are excellent in sustained release and robust, a production method thereof, a molding material and a molded product using the sustained release particles.
 本発明者らは、上記した目的の徐放性粒子、その製造方法、この徐放性粒子を用いた成形材料および成形品について鋭意検討したところ、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える製造方法により、徐放性に優れ、堅牢な徐放性粒子、これを用いた成形材料および成形品を得ることができるという知見を見出し、第1の発明群を完成するに至った。 The inventors of the present invention have made extensive studies on the above-mentioned sustained release particles, a production method thereof, a molding material and a molded product using the sustained release particles, and in the absence of a solvent, the hydrophobicity and Oil phase component for preparing an oil phase component containing a hydrophobic slurry by dispersing an antibiotic active compound substantially insoluble in the hydrophobic polymerizable vinyl monomer in the hydrophobic polymerizable vinyl monomer Sustained release by a production method comprising a preparation step, a water dispersion step of dispersing an oil phase component in water to prepare an aqueous dispersion, and a polymerization step of producing a polymer by suspension polymerization of a polymerizable vinyl monomer. The present inventors have found that it is possible to obtain an excellent and robust sustained-release particle, a molding material and a molded product using the same, and have completed the first invention group.
 すなわち、第1の発明群は、
(1)
 溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、前記油相成分を水分散して水分散液を調製する水分散工程、および、前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える製造方法により得られることを特徴とする、徐放性粒子、
(2)
 前記重合工程では、前記重合性ビニルモノマーを、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩の存在下で、懸濁重合し、および/または、前記重合性ビニルモノマーが、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを含有することを特徴とする、上記(1)に記載の徐放性粒子、
(3)
 前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、上記(1)または(2)に記載の徐放性粒子、
(4)
 前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、上記(3)に記載の徐放性粒子、
(5)
 重合体からなるマトリクスと、前記重合体を生成するためのモノマーに対して実質的に不溶性の抗生物活性化合物からなり、前記マトリクス中に分散するドメインとから形成される2相構造を有することを特徴とする、徐放性粒子、
(6)
 前記徐放性粒子の表面において、前記マトリクスおよび前記ドメインの両方が露出していることを特徴とする、上記(5)に記載の徐放性粒子、
(7)
 前記ドメインは、前記マトリクスによって被覆されていることを特徴とする、上記(5)に記載の徐放性粒子、
(8)
 さらに、前記マトリクスの表面に前記抗生物活性化合物が付着していることを特徴とする、上記(7)に記載の徐放性粒子、
(9)
 前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、上記(5)~(8)のいずれか一項に記載の徐放性粒子、
(10)
 前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、上記(9)に記載の徐放性粒子、
(11)
 粒剤として調製されていることを特徴とする、上記(1)~(10)のいずれか一項に記載の徐放性粒子、
(12)
 熱可塑性樹脂と、上記(1)~(11)のいずれか一項に記載の徐放性粒子とを含有することを特徴とする、成形材料、
(13)
 熱可塑性樹脂と、上記(1)~(11)のいずれか一項に記載の徐放性粒子とを含有することを特徴とする、成形品、
(14)
 溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、前記油相成分を水分散して水分散液を調製する水分散工程、および、前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備えることを特徴とする、徐放性粒子の製造方法、
(15)
 前記重合工程では、前記重合性ビニルモノマーを、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩の存在下で、懸濁重合し、および/または、前記重合性ビニルモノマーが、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを含有することを特徴とする、上記(14)に記載の徐放性粒子の製造方法、
(16)
 前記重合工程により得られた懸濁液と固体担体とを配合し、それらを乾燥させて、粒剤を調製する工程をさらに備えることを特徴とする、上記(14)または(15)に記載の徐放性粒子の製造方法、
(17)
 前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、上記(14)~(16)のいずれか一項に記載の徐放性粒子の製造方法、
(18)
 前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、上記(17)に記載の徐放性粒子の製造方法
である。
That is, the first invention group is
(1)
In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and suspension polymerization of the polymerizable vinyl monomer, Sustained release particles obtained by a production method comprising a polymerization step for forming a coalescence,
(2)
In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of aromatic sulfonic acid and formaldehyde, and / or the polymerizable vinyl monomer is (meth) acrylic acid. The sustained-release particles according to (1) above, comprising an ester monomer and a (meth) acrylate crosslinkable monomer,
(3)
The sustained release particles according to (1) or (2) above, wherein the antibiotic compound is a neonicotinoid insecticide,
(4)
The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained-release particles according to (3) above, which contain at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine,
(5)
It has a two-phase structure formed of a matrix made of a polymer and an antibiotic compound that is substantially insoluble in the monomer for forming the polymer and is dispersed in the matrix. Characterized by sustained release particles,
(6)
The sustained release particles according to (5) above, wherein both the matrix and the domain are exposed on the surface of the sustained release particles,
(7)
The sustained release particles according to (5) above, wherein the domain is covered with the matrix,
(8)
Furthermore, the sustained release particles according to (7) above, wherein the antibiotic compound is attached to the surface of the matrix,
(9)
The sustained release particles according to any one of (5) to (8) above, wherein the antibiotic compound is a neonicotinoid insecticide,
(10)
The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained release particles according to (9) above, comprising at least one selected from the group consisting of N-nitroimidazolidin-2-ylideneamine,
(11)
The sustained release particles according to any one of (1) to (10) above, wherein the sustained release particles are prepared as granules.
(12)
A molding material comprising a thermoplastic resin and the sustained-release particles according to any one of (1) to (11) above,
(13)
A molded product comprising a thermoplastic resin and the sustained release particles according to any one of (1) to (11) above,
(14)
In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and suspension polymerization of the polymerizable vinyl monomer, A method for producing sustained-release particles, comprising a polymerization step for forming a coalescence,
(15)
In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of aromatic sulfonic acid and formaldehyde, and / or the polymerizable vinyl monomer is (meth) acrylic acid. The method for producing sustained-release particles according to (14) above, comprising an ester monomer and a (meth) acrylate crosslinkable monomer,
(16)
The suspension according to (14) or (15) above, further comprising a step of blending the suspension obtained by the polymerization step and a solid carrier, drying them, and preparing granules. Production method of sustained release particles,
(17)
The method for producing sustained-release particles according to any one of (14) to (16) above, wherein the antibiotic compound is a neonicotinoid insecticide,
(18)
The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The method for producing sustained-release particles as described in (17) above, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
 また、本発明者らは、上記第1の発明群の徐放性粒子、その製造方法、この徐放性粒子を用いた成形材料および成形品について鋭意検討したところ、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備え、重合工程では、重合性ビニルモノマーを懸濁重合するとともに、疎水性シェル形成成分および親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成する製造方法により、徐放性および耐アルカリ性に優れ、堅牢な徐放性粒子、これを用いた成形材料および成形品を得ることができるという知見を見出し、第2の発明群を完成するに至った。 In addition, the present inventors diligently examined the sustained-release particles of the first invention group, the production method thereof, the molding material and the molded product using the sustained-release particles, and in the absence of a solvent, An oily phase component containing a hydrophobic slurry is dispersed by dispersing an hydrophobic active vinyl compound that is substantially insoluble in the hydrophobic polymerizable vinyl monomer in the hydrophobic polymerizable vinyl monomer. An oil phase component preparation step to prepare, an aqueous dispersion step to prepare an aqueous dispersion by dispersing the oil phase component in water, and a polymerization step to produce a polymer by suspension polymerization of a polymerizable vinyl monomer In the process, the release of the polymerizable vinyl monomer is controlled by a production method in which a suspension shell polymerization of the polymerizable vinyl monomer and a hydrophobic shell-forming component and a hydrophilic shell-forming component are interfacially polymerized to form a shell covering the suspension polymer. Yo Excellent in alkali resistance, robust controlled release particles, found finding that it is possible to obtain molding compositions and molded article using the same, and have completed the second invention group.
 すなわち、第2の発明群は、
(1)
 溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、前記油相成分を水分散して水分散液を調製する水分散工程、および、前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備え、前記油相成分調製工程、前記水分散工程および前記重合工程の少なくともいずれかの工程において、疎水性シェル形成成分および親水性シェル形成成分を含有させ、前記重合工程では、前記重合性ビニルモノマーを懸濁重合するとともに、前記疎水性シェル形成成分および前記親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成することを特徴とする、徐放性粒子、
(2)
 界面重合を、懸濁重合の開始と同時に開始し、または、懸濁重合の開始より前に開始することを特徴とする、上記(1)に記載の徐放性粒子、
(3)
 前記疎水性シェル形成成分が、ポリイソシアネートを含有し、前記親水性シェル形成成分が、ポリアミンを含有することを特徴とする、上記(1)または(2)に記載の徐放性粒子、
(4)
 前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、上記(1)~(3)のいずれか一項に記載の徐放性粒子、
(5)
 前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、上記(4)に記載の徐放性粒子、
(6)
 重合体からなるマトリクスと、重合体を生成するためのモノマーに対して実質的に不溶性の抗生物活性化合物からなり、前記マトリクス中に分散するドメインと、前記マトリクスを被覆するシェルとを含むことを特徴とする、徐放性粒子、
(7)
 前記シェルは、ポリウレアからなることを特徴とする、上記(6)に記載の徐放性粒子、
(8)
 前記シェルの表面に、抗生物活性化合物が付着していることを特徴とする、上記(6)または(7)に記載の徐放性粒子、
(9)
 前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、上記(6)~(8)のいずれか一項に記載の徐放性粒子、
(10)
 前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、上記(9)に記載の徐放性粒子、
(11)
 粒剤として調製されていることを特徴とする、上記(1)~(10)のいずれか一項に記載の徐放性粒子、
(12)
 熱可塑性樹脂と、上記(1)~(11)のいずれか一項に記載の徐放性粒子とを含有することを特徴とする、成形材料、
(13)
 熱可塑性樹脂と、上記(1)~(11)のいずれか一項に記載の徐放性粒子とを含有することを特徴とする、成形品、
(14)
 溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、前記油相成分を水分散して水分散液を調製する水分散工程、および、前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備え、前記油相成分調製工程、前記水分散工程および前記重合工程の少なくともいずれかの工程において、疎水性シェル形成成分および親水性シェル形成成分を含有させ、前記重合工程では、前記重合性ビニルモノマーを懸濁重合するとともに、前記疎水性シェル形成成分および前記親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成することを特徴とする、徐放性粒子の製造方法、
(15)
 重合工程では、界面重合を、懸濁重合の開始と同時に開始し、または、懸濁重合の開始より前に開始することを特徴とする、上記(14)に記載の徐放性粒子の製造方法、
(16)
 前記疎水性シェル形成成分が、ポリイソシアネートであり、前記親水性シェル形成成分が、ポリアミンであることを特徴とする、上記(14)または(15)に記載の徐放性粒子の製造方法、
(17)
 重合工程により得られた懸濁液と固体担体とを配合し、それらを乾燥させて、粒剤を調製する工程をさらに備えることを特徴とする、上記(14)~(16)のいずれか一項に記載の徐放性粒子の製造方法、
(18)
 前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、上記(14)~(17)のいずれか一項に記載の徐放性粒子の製造方法、
(19)
 前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、上記(18)に記載の徐放性粒子の製造方法
である。
That is, the second invention group is:
(1)
In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and suspension polymerization of the polymerizable vinyl monomer, A polymerization step for forming a coalescence, and at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell-forming component and a hydrophilic shell-forming component are contained, and the polymerization step Then, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to coat the suspension polymer. And forming a Le, controlled release particles,
(2)
The controlled release particles according to (1) above, characterized in that the interfacial polymerization is started simultaneously with the start of suspension polymerization or before the start of suspension polymerization,
(3)
The sustained-release particles according to (1) or (2) above, wherein the hydrophobic shell-forming component contains a polyisocyanate, and the hydrophilic shell-forming component contains a polyamine,
(4)
The sustained release particles according to any one of (1) to (3) above, wherein the antibiotic compound is a neonicotinoid insecticide,
(5)
The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained-release particles according to (4) above, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamines,
(6)
A matrix composed of a polymer, an antibiotic compound which is substantially insoluble in the monomer for forming the polymer, a domain dispersed in the matrix, and a shell covering the matrix. Characterized by sustained release particles,
(7)
The shell is made of polyurea, the sustained release particles according to (6) above,
(8)
The sustained release particles according to (6) or (7) above, wherein an antibiotic compound is attached to the surface of the shell,
(9)
The sustained-release particles according to any one of (6) to (8) above, wherein the antibiotic compound is a neonicotinoid insecticide,
(10)
The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained release particles according to (9) above, comprising at least one selected from the group consisting of N-nitroimidazolidin-2-ylideneamine,
(11)
The sustained release particles according to any one of (1) to (10) above, wherein the sustained release particles are prepared as granules.
(12)
A molding material comprising a thermoplastic resin and the sustained-release particles according to any one of (1) to (11) above,
(13)
A molded product comprising a thermoplastic resin and the sustained release particles according to any one of (1) to (11) above,
(14)
In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and suspension polymerization of the polymerizable vinyl monomer, A polymerization step for forming a coalescence, and at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell-forming component and a hydrophilic shell-forming component are contained, and the polymerization step Then, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to coat the suspension polymer. And forming a Le, a method of manufacturing a controlled release particles,
(15)
In the polymerization step, the interfacial polymerization is started simultaneously with the start of the suspension polymerization or started before the start of the suspension polymerization. The method for producing sustained-release particles according to the above (14), ,
(16)
The method for producing sustained-release particles according to (14) or (15) above, wherein the hydrophobic shell-forming component is a polyisocyanate, and the hydrophilic shell-forming component is a polyamine,
(17)
Any one of the above (14) to (16), further comprising a step of blending the suspension obtained by the polymerization step and the solid carrier, drying them, and preparing granules. The method for producing sustained-release particles according to Item,
(18)
The method for producing sustained-release particles according to any one of (14) to (17) above, wherein the antibiotic compound is a neonicotinoid insecticide,
(19)
The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The method for producing sustained-release particles according to (18) above, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
 第1の発明群の徐放性粒子は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える製造方法により得られるので、徐放性に優れ、堅牢な徐放性粒子を得ることができる。 The sustained-release particles of the first invention group are a hydrophobic polymer that is hydrophobic and substantially insoluble in a hydrophobic polymerizable vinyl monomer in the absence of a solvent. An oil phase component preparation step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and a polymerizable vinyl Since it is obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of a monomer, it is possible to obtain sustained release particles that are excellent in sustained release properties.
 第1の発明群の徐放性粒子の製造方法によれば、堅牢であるとともに、徐放性に優れる徐放性粒子を得ることができる。 According to the method for producing sustained-release particles of the first invention group, sustained-release particles that are robust and excellent in sustained-release properties can be obtained.
 第1の発明群の徐放性粒子は、重合体からなるマトリクスと、抗生物活性化合物からなるドメインであって、マトリクス中に分散するドメインとから形成される2相構造を有するので、抗生物活性化合物の徐放性に優れるとともに、堅牢性に優れるため、樹脂との混練性に優れる。 Since the sustained-release particles of the first invention group have a two-phase structure formed of a matrix made of a polymer and a domain made of an antibiotic compound and dispersed in the matrix, the antibiotic In addition to excellent sustained release of the active compound and excellent fastness, it is excellent in kneadability with the resin.
 第1の発明群の成形材料は、上記した徐放性粒子を含有するので、第1の発明群の成形品に、抗生物活性化合物の優れた徐放性を付与することができる。 Since the molding material of the first invention group contains the above-mentioned sustained release particles, the excellent controlled release property of the antibiotic compound can be imparted to the molded product of the first invention group.
 第2の発明群の徐放性粒子は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える製造方法により得られるので、徐放性および耐アルカリ性に優れ、堅牢な徐放性粒子を得ることができる。 The sustained-release particles of the second invention group are hydrophobic, and in the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to a hydrophobic polymerizable vinyl monomer. An oil phase component preparation step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and a polymerizable vinyl Since it is obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of a monomer, it is possible to obtain a sustained-release particle having excellent sustained-release properties and alkali resistance and robustness.
 第2の発明群の徐放性粒子の製造方法によれば、堅牢であるとともに、徐放性および耐アルカリ性に優れる徐放性粒子を得ることができる。 According to the method for producing sustained-release particles of the second invention group, it is possible to obtain sustained-release particles that are robust and excellent in sustained-release properties and alkali resistance.
 さらに、第2の発明群の徐放性粒子は、重合工程では、重合性ビニルモノマーを懸濁重合するとともに、疎水性シェル形成成分および親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成するので、抗生物活性化合物の内包率を高くすることができるとともに、抗生物活性化合物の耐アルカリ性に優れる。 Further, in the polymerization step, the sustained-release particles of the second invention group are obtained by suspension polymerizing the polymerizable vinyl monomer and interfacially polymerizing the hydrophobic shell-forming component and the hydrophilic shell-forming component. Is formed, the encapsulating rate of the antibiotic compound can be increased, and the alkali resistance of the antibiotic compound is excellent.
 第2の発明群の徐放性粒子は、重合体からなるマトリクスと、抗生物活性化合物からなるドメインであって、マトリクス中に分散するドメインとを含むので、抗生物活性化合物の徐放性に優れるとともに、堅牢性に優れるため、樹脂との混練性に優れる。 The sustained-release particles of the second invention group include a matrix made of a polymer and a domain made of an antibiotic compound and dispersed in the matrix. In addition to being excellent in fastness, it is excellent in kneadability with resin.
 さらに、第2の発明群に徐放性粒子は、マトリクスを被覆するシェルを含むので、抗生物活性化合物の徐放性および耐アルカリ性に優れる。 Furthermore, since the sustained release particles in the second invention group include a shell covering the matrix, the antibiotic active compound is excellent in sustained release and alkali resistance.
 第2の発明群の成形材料は、上記した徐放性粒子を含有するので、第2の発明群の成形品に、抗生物活性化合物の優れた徐放性および耐アルカリ性を付与することができる。 Since the molding material of the second invention group contains the above-mentioned sustained release particles, the excellent controlled release property and the alkali resistance of the antibiotic compound can be imparted to the molded product of the second invention group. .
図A1は、第1の発明群の徐放性粒子の第1実施形態の概略断面図を示す。FIG. A1 shows a schematic cross-sectional view of a first embodiment of sustained-release particles of the first invention group. 図A2は、第1の発明群の徐放性粒子の第2実施形態(ドメインがマトリクスによって被覆され、付着物がマトリクスの表面に付着する態様)の概略断面図を示す。FIG. A2 shows a schematic cross-sectional view of a second embodiment of the first-invented group sustained-release particles (embodiment in which the domains are covered with a matrix and the deposits adhere to the surface of the matrix). 図A3は、第2実施形態の変形例(マトリクスの全表面が露出する態様)の概略断面図を示す。FIG. A3 shows a schematic cross-sectional view of a modification of the second embodiment (a mode in which the entire surface of the matrix is exposed). 図A4は、実施例A1の徐放性粒子のSEM写真の画像処理図を示す。FIG. A4 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A1. 図A5は、実施例A2の徐放性粒子のSEM写真の画像処理図を示す。FIG. A5 shows an image processing diagram of an SEM photograph of sustained release particles of Example A2. 図A6は、実施例A3の徐放性粒子のSEM写真の画像処理図を示す。FIG. A6 shows an image processing diagram of the SEM photograph of the sustained release particles of Example A3. 図A7は、実施例A4の徐放性粒子のSEM写真の画像処理図を示す。FIG. A7 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A4. 図A8は、実施例A9の徐放性粒子のSEM写真の画像処理図を示す。FIG. A8 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A9. 図A9は、実施例A19の徐放性粒子のSEM写真の画像処理図を示す。FIG. A9 shows an image processing diagram of an SEM photograph of sustained-release particles of Example A19. 図A10は、実施例A20のストランドの破断面のSEM写真の画像処理図を示す。FIG. A10 shows the image processing drawing of the SEM photograph of the fracture surface of the strand of Example A20. 図A11は、実施例A21のストランドの破断面のSEM写真の画像処理図を示す。FIG. A11 shows an image processing diagram of the SEM photograph of the fracture surface of the strand of Example A21. 図A12は、実施例A1の徐放性粒子のTEM写真の画像処理図を示す。FIG. A12 shows an image processing diagram of a TEM photograph of sustained-release particles of Example A1. 図A13は、実施例A2の徐放性粒子のTEM写真の画像処理図を示す。FIG. A13 shows an image processing diagram of a TEM photograph of sustained release particles of Example A2. 図A14は、実施例A3の徐放性粒子のTEM写真の画像処理図を示す。FIG. A14 shows an image processing diagram of a TEM photograph of sustained release particles of Example A3. 図B1は、第2の発明群の徐放性粒子の第3実施形態の概略断面図を示す。FIG. B1 shows a schematic cross-sectional view of a third embodiment of the sustained-release particles of the second invention group. 図B2は、第2の発明群の徐放性粒子の第4実施形態の概略断面図を示す。FIG. B2 shows a schematic cross-sectional view of a fourth embodiment of sustained-release particles of the second invention group. 図B3は、実施例B1の徐放性粒子のSEM写真の画像処理図を示す。FIG. B3 shows an image processing diagram of an SEM photograph of the sustained release particles of Example B1. 図B4は、実施例B2の徐放性粒子のSEM写真の画像処理図を示す。FIG. B4 shows an image processing diagram of an SEM photograph of sustained release particles of Example B2. 図B5は、実施例B6の徐放性粒子のSEM写真の画像処理図を示す。FIG. B5 shows an image processing diagram of an SEM photograph of sustained release particles of Example B6. 図B6は、実施例B30の徐放性粒子のSEM写真の画像処理図を示す。FIG. B6 shows an image processing diagram of an SEM photograph of sustained-release particles of Example B30. 図B7は、実施例B35の徐放性粒子のSEM写真の画像処理図を示す。FIG. B7 shows an image processing diagram of an SEM photograph of sustained-release particles of Example B35. 図B8は、実施例B2の徐放性粒子のTEM写真の画像処理図を示す。FIG. B8 shows an image processing diagram of a TEM photograph of sustained release particles of Example B2. 図B9は、参考例B1の徐放性粒子のTEM写真の画像処理図を示す。FIG. B9 shows an image processing diagram of a TEM photograph of sustained release particles of Reference Example B1. 図B10は、参考例B2の徐放性粒子のTEM写真の画像処理図を示す。FIG. B10 shows an image processing diagram of a TEM photograph of sustained release particles of Reference Example B2. 図B11は、参考例B3の徐放性粒子のTEM写真の画像処理図を示す。FIG. B11 shows an image processing diagram of a TEM photograph of sustained release particles of Reference Example B3.
 以下、本発明に含まれ、互いに関連する第1の発明群および第2の発明群を順次説明する。 Hereinafter, the first invention group and the second invention group which are included in the present invention and related to each other will be sequentially described.
  [第1の発明群]
  <徐放性粒子の製造方法の説明>
 第1の発明群の徐放性粒子の製造方法は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含む油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える。
[First invention group]
<Description of production method of sustained release particles>
The method for producing sustained-release particles of the first invention group comprises a hydrophobic and substantially insoluble antibiotic active compound in a hydrophobic polymerizable vinyl monomer in the absence of a solvent. An oil phase component preparing step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a polymerizable vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and polymerization A polymerization step for producing a polymer by suspension polymerization of the functional vinyl monomer.
 以下、上記した各工程で用いられる原料について説明する。 Hereinafter, the raw materials used in each of the above steps will be described.
  (抗生物活性化合物)
 抗生物活性化合物としては、殺虫(殺蟻を含む)、防虫(防蟻を含む)、殺菌、抗菌、防腐、除草、防藻、防かびなどの抗生物活性を有する、殺虫剤(殺蟻剤を含む)、防虫剤(防蟻剤を含む)、殺菌剤、抗菌剤、防腐剤、除草剤、防藻剤、防かび剤、誘引剤、忌避剤および殺鼠剤などから選択される。
(Antibiotic active compound)
Antibacterial active compounds include insecticides (including ants), insecticides (including ants), sterilization, antibacterial, antiseptic, herbicidal, algae, fungicides and other insecticides (anticides) ), Insecticides (including ant-proofing agents), fungicides, antibacterial agents, antiseptics, herbicides, algae-proofing agents, fungicides, attractants, repellents and rodenticides.
 具体的には、抗生物活性化合物として、例えば、殺虫剤としては、クロチアニジン((E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン)、イミダクロプリド(1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミン)、チアクロプリド、チアメトキサム((EZ)-3-(2-クロロ-1,3-チアゾール-5-イルメチル)-5-メチル-1,3,5-オキサジアジナン-4-イリデン(ニトロ)アミン)、ジノテフランなどのネオニコチノイド系殺虫剤、フルベンジアミド、クロラントラニリプロールなどのジアミド系、ジフルベンズロン、テフルベンズロン、クロルフルアズロン、テブフェノジド、メトキシフェノジド、シロマジンなどの昆虫成長制御剤、クロフェンテジンなどの殺ダニ剤、ピメトロジン、オレイン酸ナトリウムなどのその他合成薬剤などが挙げられる。例えば、殺菌剤としては、塩基性塩化銅、塩基性硫酸銅、オキシン銅などの銅系殺菌剤、金属銀などの銀系殺菌剤、ポリカーバメートなどの有機硫黄系殺菌剤、フサライド、トリシクラゾールなどのメラニン生合成阻害剤、チオファネートメチル、カルベンダジン(MBC)、ジエトフェンカルブなどのベンゾイミダゾール系殺菌剤、イソチアニルなどの酸アミド系殺菌剤、トリホリンなどのステロール生合成阻害剤、1,2-ベンズイソチアゾリン-3-オンなどのイソチアゾロン系殺菌剤、ジクロミジン、フルオルイミド、キャプタン、クロロタロニル、キノチメオアート、オキソリニック酸、ベンチアバリカルブイソプロピル、ジアゾファミド、ジンクピリチオンなどのその他合成阻害剤などが挙げられる。例えば、除草・防藻剤としては、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU)、クミルロン、カルブチレートなどの尿素系薬剤、エトキシスルフロン、ハロスルフロンメチル、フラザスルフロン、ニコスルフロン、チフェンスルロンメチル、イマゾスルフロン、シクロスルファムロン、フルセトスルフロン、トリフロキシスルフロンナトリウム塩などのスルホニルウレア系薬剤、シマジン(CAT)、アトラジン、トリアジフラム、レナシル、シブルトリン、テルブトリンなどのトリアジン系薬剤、グリホサートなどのアミノ酸系、フルミオキサジンなどのフェニルフタルイミド系、メソトリオンなどのトリケトン系、キノクラミン、ピリフタリドなどのその他薬剤などが挙げられる。抗生物活性化合物として、好ましくは、種選択性、安全性の観点から、ネオニコチノイド系殺虫剤、および、汎用性、効力の観点からジンクピリチンが挙げられ、より好ましくは、難溶性の観点から、クロチアニジン、イミダクロプリド、ジンクピリチオンが挙げられ、さらに好ましくは、クロチアニジン、イミダクロプリドが挙げられる。とりわけ好ましくは、哺乳動物に対する安全性の観点から、クロチアニジンが挙げられる。 Specifically, antibiotic active compounds such as clothianidin ((E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine), imidacloprid (1 -(6-Chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine), thiacloprid, thiamethoxam ((EZ) -3- (2-chloro-1,3-thiazol-5-ylmethyl) -5-methyl -1,3,5-oxadiazinan-4-ylidene (nitro) amine), neonicotinoid insecticides such as dinotefuran, diamides such as fulbenzamide, chlorantraniliprole, diflubenzuron, teflubenzuron, chlorfluazuron, Insect growth such as tebufenozide, methoxyphenozide, cyromazine Please, acaricides such as clofentezine, pymetrozine, like other synthetic agents such as sodium oleate. Examples of fungicides include copper-based fungicides such as basic copper chloride, basic copper sulfate, and oxine copper, silver-based fungicides such as metallic silver, organic sulfur-based fungicides such as polycarbamate, fusalides, and tricyclazole. Melanin biosynthesis inhibitors, thiophanate methyl, carbendazine (MBC), benzimidazole fungicides such as dietofencarb, acid amide fungicides such as isothianyl, sterol biosynthesis inhibitors such as triphorine, 1,2-benzisothiazoline-3- And other synthetic inhibitors such as isothiazolone fungicides such as ON, dichromimidine, fluorimide, captan, chlorothalonil, quinotimeoate, oxolinic acid, benchavaricarb isopropyl, diazofamide, and zinc pyrithione. For example, as herbicides / algaeproofing agents, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), cumyluron, carbylate, and other urea chemicals, ethoxysulfuron, halosulfuronmethyl, flazasulfuron , Sulfonylureas such as nicosulfuron, thifensulfuron methyl, imazosulfuron, cyclosulfamuron, flucetosulfuron, trifloxysulfuron sodium salt, triazines such as simazine (CAT), atrazine, triadifram, lenacyl, sibulthrin, terbutrin Drugs, amino acids such as glyphosate, phenylphthalimides such as flumioxazin, triketones such as mesotrione, and other drugs such as quinoclamin and pyriphthalide. The antibiotic compound is preferably a neonicotinoid insecticide from the viewpoint of species selectivity and safety, and zinc pyritine from the viewpoint of versatility and efficacy, more preferably from the viewpoint of poor solubility, Clothianidin, imidacloprid, and zinc pyrithione are preferable, and clothianidin and imidacloprid are more preferable. Particularly preferred is clothianidin from the viewpoint of safety for mammals.
 抗生物活性化合物は、実質的に疎水性であって、具体的には、例えば、水に対する室温(20~30℃、より具体的には、25℃)における溶解度が極めて小さく、より具体的には、例えば、室温の溶解度が、1.5質量部/水100容量部(15g/L)以下、好ましくは、0.5容量部/水100質量部(5g/L)以下、さらに好ましくは、0.1質量部/水100容量部(1g/L)以下である。 Antibiotic active compounds are substantially hydrophobic and, for example, have very low solubility in water at room temperature (20-30 ° C., more specifically 25 ° C.), more specifically, For example, the solubility at room temperature is 1.5 parts by mass / 100 parts by volume of water (15 g / L) or less, preferably 0.5 parts by volume / 100 parts by mass of water (5 g / L) or less, more preferably 0.1 parts by mass / 100 parts by volume of water (1 g / L) or less.
 抗生物活性化合物は、重合性ビニルモノマーに対して実質的に不溶性であって、具体的には、例えば、重合性ビニルモノマーに対する室温(20~30℃、より具体的には、25℃)における溶解度が極めて小さく、具体的には、室温の溶解度が、例えば、0.1質量部/(使用する)重合性ビニルモノマー(混合物)100容量部(1g/L)以下、好ましくは、0.05質量部/(使用する)重合性ビニルモノマー(混合物)100容量部(0.5g/L)以下である。 The antibiotic compound is substantially insoluble in the polymerizable vinyl monomer, and specifically, for example, at room temperature (20 to 30 ° C., more specifically 25 ° C.) with respect to the polymerizable vinyl monomer. The solubility is extremely small. Specifically, the solubility at room temperature is, for example, 0.1 parts by mass / (use) polymerizable vinyl monomer (mixture) 100 parts by volume (1 g / L) or less, preferably 0.05. It is 100 parts by mass (0.5 g / L) or less by mass parts / (used) polymerizable vinyl monomer (mixture).
 また、抗生物活性化合物の融点は、例えば、80℃以上、好ましくは、100℃以上であり、また、抗生物活性化合物が金属原子を含まない化合物であれば、例えば、300℃以下である。 In addition, the melting point of the antibiotic compound is, for example, 80 ° C. or more, preferably 100 ° C. or more. If the antibiotic compound is a compound that does not contain a metal atom, it is, for example, 300 ° C. or less.
  (重合性ビニルモノマー)
 重合性ビニルモノマーとしては、例えば、(メタ)アクリル酸エステル系モノマー、芳香族ビニルモノマー、ビニルエステル系モノマー、マレイン酸エステル系モノマー、ハロゲン化ビニル、ハロゲン化ビニリデン、窒素含有ビニルモノマー、架橋性モノマーなどが挙げられる。
(Polymerizable vinyl monomer)
Examples of polymerizable vinyl monomers include (meth) acrylic acid ester monomers, aromatic vinyl monomers, vinyl ester monomers, maleic acid ester monomers, vinyl halides, vinylidene halides, nitrogen-containing vinyl monomers, and crosslinkable monomers. Etc.
 (メタ)アクリル酸エステル系モノマーとしては、例えば、メタクリル酸エステルおよび/またはアクリル酸エステルであって、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル(i-BMA/i-BA)、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシルなどのアルキル部分が直鎖状、分岐状または環状の炭素数1~6のアルキル部分を有する(メタ)アクリル酸アルキルエステルや、例えば、(メタ)アクリル酸2-メトキシエチルなどの(メタ)アクリル酸アルコキシアルキルエステル、例えば、(メタ)アクリル酸ヒドロキシエチルなどの(メタ)アクリル酸ヒドロキシアルキル、例えば、(メタ)アクリル酸グリシジルなどのエポキシ基含有(メタ)アクリル酸エステルなどが挙げられる。好ましくは、(メタ)アクリル酸アルキルエステルが挙げられる。 Examples of (meth) acrylic acid ester monomers include methacrylic acid esters and / or acrylic acid esters, specifically, (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid. n-propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate (i-BMA / i-BA), tert-butyl (meth) acrylate, (meth) acrylic acid (Meth) acrylic acid alkyl ester in which the alkyl moiety such as n-pentyl, n-hexyl (meth) acrylate and cyclohexyl (meth) acrylate has a linear, branched or cyclic alkyl moiety having 1 to 6 carbon atoms And, for example, alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth) acrylate Ester, e.g., (meth) acrylic acid hydroxyethyl (meth) acrylate hydroxyalkyl include, for example, (meth) epoxy group-containing (meth) acrylic acid esters such as glycidyl acrylate. Preferably, (meth) acrylic acid alkyl ester is mentioned.
 (メタ)アクリル酸アルキルエステルとして、より好ましくは、炭素数1~6のアルキル部分を有する(メタ)アクリル酸アルキルエステル、とりわけ好ましくは、メタクリル酸イソブチル(i-BMA)が挙げられる。 As the (meth) acrylic acid alkyl ester, more preferred is a (meth) acrylic acid alkyl ester having an alkyl moiety having 1 to 6 carbon atoms, and particularly preferred is isobutyl methacrylate (i-BMA).
 芳香族ビニルモノマーとしては、例えば、スチレン(ビニルベンゼン)、p-メチルスチレン、o-メチルスチレン、α-メチルスチレン、エチルビニルベンゼンなどのスチレン系モノマー(モノビニルベンゼン)などが挙げられる。好ましくは、スチレン、エチルビニルベンゼンが挙げられる。 Examples of the aromatic vinyl monomer include styrene monomers (monovinylbenzene) such as styrene (vinylbenzene), p-methylstyrene, o-methylstyrene, α-methylstyrene, and ethylvinylbenzene. Preferably, styrene and ethyl vinylbenzene are used.
 ビニルエステル系モノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニルなどが挙げられる。 Examples of vinyl ester monomers include vinyl acetate and vinyl propionate.
 マレイン酸エステル系モノマーとしては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。 Examples of maleate ester monomers include dimethyl maleate, diethyl maleate, and dibutyl maleate.
 ハロゲン化ビニルとしては、例えば、塩化ビニル、フッ化ビニルなどが挙げられる。 Examples of the vinyl halide include vinyl chloride and vinyl fluoride.
 ハロゲン化ビニリデンとしては、例えば、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。 Examples of the vinylidene halide include vinylidene chloride and vinylidene fluoride.
 窒素含有ビニルモノマーとしては、例えば、(メタ)アクリロニトリル、N-フェニルマレイミド、ビニルピリジンなどが挙げられる。 Examples of the nitrogen-containing vinyl monomer include (meth) acrylonitrile, N-phenylmaleimide, vinylpyridine, and the like.
 架橋性モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレートなどのモノまたはポリエチレングリコールジ(メタ)アクリレート、例えば、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート(PETA/PETM)などのアルカンポリオールポリ(メタ)アクリレートなどの(メタ)アクリレート系架橋性モノマー、例えば、アリル(メタ)メタクリレート、トリアリル(イソ)シアヌレートなどのアリル系モノマー、例えば、ジビニルベンゼン、トリビニルベンゼンなどの芳香族架橋性モノマーが挙げられる。好ましくは、モノまたはポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、より好ましくは、エチレングリコールジ(メタ)アクリレート、ジビニルベンゼンが挙げられる。 Examples of the crosslinkable monomer include mono- or polyethylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate, such as 1,3-propanediol di (meth) acrylate, 1, Alkanediol di (meth) acrylates such as 4-butanediol di (meth) acrylate and 1,5-pentanediol di (meth) acrylate, such as trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate ( (Meth) acrylate crosslinkable monomers such as alkane polyol poly (meth) acrylate such as PETA / PETM), for example, allyl (meth) methacrylate, triallyl (iso) cyanurate Le monomers, such as divinyl benzene, aromatic crosslinking monomers such as trivinylbenzene. Preferably, mono or polyethylene glycol di (meth) acrylate and divinylbenzene, and more preferably, ethylene glycol di (meth) acrylate and divinylbenzene are used.
 重合性ビニルモノマーは、単独使用または併用することができる。 The polymerizable vinyl monomer can be used alone or in combination.
 なお、重合性ビニルモノマーの重合により得られる重合体は、室温で堅牢な表面を有するために、ガラス転移温度が、例えば、30℃以上、好ましくは、50℃以上であり、このガラス転移温度となるように重合性ビニルモノマーが選ばれる。 In addition, since the polymer obtained by polymerization of the polymerizable vinyl monomer has a solid surface at room temperature, the glass transition temperature is, for example, 30 ° C. or higher, preferably 50 ° C. or higher. The polymerizable vinyl monomer is selected so that
 重合性ビニルモノマーは、例えば、実質的に疎水性であって、具体的には、例えば、水に対する室温における溶解度が極めて小さく、より具体的には、室温における溶解度が、例えば、10質量部/水100容量部(100g/L)以下、好ましくは、8質量部/水100容量部(80g/L)以下である。なお、重合性ビニルモノマーは、異なる種類が併用される場合には、重合性ビニルモノマー全体(つまり、異なる種類の重合性ビニルモノマーの混合物)として実質的に疎水性である。 The polymerizable vinyl monomer is, for example, substantially hydrophobic, and specifically has, for example, extremely low solubility in water at room temperature. More specifically, the solubility at room temperature is, for example, 10 parts by mass / 100 parts by volume of water (100 g / L) or less, preferably 8 parts by weight / 100 parts by volume of water (80 g / L) or less. When different types of polymerizable vinyl monomers are used in combination, the entire polymerizable vinyl monomer (that is, a mixture of different types of polymerizable vinyl monomers) is substantially hydrophobic.
 次に、徐放性粒子の製造方法における各工程について順次説明する。 Next, each step in the method for producing sustained release particles will be sequentially described.
  (油相成分調製工程)
 油相成分調製工程では、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含む油相成分を調製する。
(Oil phase component preparation process)
In the oil phase component preparation step, an antibiotic compound that is hydrophobic and substantially insoluble in the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer in the absence of a solvent. By doing this, an oil phase component containing a hydrophobic slurry is prepared.
 具体的には、上記した重合性ビニルモノマーおよび抗生物活性化合物を配合し、溶剤(ヘキサン、トルエン、酢酸エチルなどの疎水性の有機溶剤)を配合することなく、攪拌する。これにより、疎水性スラリーを調製する。疎水性スラリーは、油相成分に含まれる。 Specifically, the polymerizable vinyl monomer and the antibiotic compound described above are blended and stirred without blending a solvent (a hydrophobic organic solvent such as hexane, toluene, ethyl acetate). Thereby, a hydrophobic slurry is prepared. The hydrophobic slurry is included in the oil phase component.
 重合性ビニルモノマーの中に抗生物活性化合物を分散するには、例えば、ペイントシェーカー、ホモディスパー(高速分散機)、ビーズミル(バッチ式ビーズミルを含む)、ボールミル、ロッドミルなどの分散機が用いられる。分散機は、単独使用または併用することができる。分散機として、好ましくは、広い粘度領域で使用可能で、大規模工業生産にも使用できるという観点から、バッチ式ビーズミルが用いられる。 In order to disperse the antibiotic compound in the polymerizable vinyl monomer, for example, a disperser such as a paint shaker, a homodisper (high-speed disperser), a bead mill (including a batch type bead mill), a ball mill, or a rod mill is used. Dispersers can be used alone or in combination. As a disperser, a batch type bead mill is preferably used from the viewpoint that it can be used in a wide viscosity range and can be used for large-scale industrial production.
 上記した分散によって、抗生物活性化合物は、湿式粉砕される。 The antibiotic compound is wet-ground by the dispersion described above.
 なお、重合性ビニルモノマーの全部を抗生物活性化合物に配合することができ、あるいは、重合性ビニルモノマーを抗生物活性化合物に分割して配合することもできる。重合性ビニルモノマーを分割して配合する場合には、まず、重合性ビニルモノマーの一部を抗生物活性化合物と配合して、それらを分散して疎水性スラリーを調製し、その後、重合性ビニルモノマーの残部を疎水性スラリーに配合する。 It should be noted that all of the polymerizable vinyl monomer can be added to the antibiotic compound, or alternatively, the polymerizable vinyl monomer can be divided and added to the antibiotic compound. When the polymerizable vinyl monomer is blended separately, first, a part of the polymerizable vinyl monomer is blended with the antibiotic compound, and they are dispersed to prepare a hydrophobic slurry. The remainder of the monomer is blended into the hydrophobic slurry.
 これによって、疎水性スラリーを含む油相成分を調製する。 Thereby, an oil phase component containing a hydrophobic slurry is prepared.
 抗生物活性化合物の重合性ビニルモノマーに対する配合割合は、質量割合(つまり、抗生物活性化合物の質量部/重合性ビニルモノマーの質量部)で、例えば、1/99以上、好ましくは、10/90以上、より好ましくは、15/85以上であり、また、例えば、90/10以下、好ましくは、75/25以下、より好ましくは、70/30以下、さらに好ましくは、65/35以下、とりわけ好ましくは、60/40以下である。 The blending ratio of the antibiotic compound to the polymerizable vinyl monomer is, for example, 1/99 or more, preferably 10/90, in mass ratio (that is, mass part of antibiotic compound / mass part of polymerizable vinyl monomer). Or more, more preferably 15/85 or more, and for example, 90/10 or less, preferably 75/25 or less, more preferably 70/30 or less, and further preferably 65/35 or less, particularly preferably. Is 60/40 or less.
 また、抗生物活性化合物の配合割合は、重合性ビニルモノマー100質量部に対して、例えば、1質量部以上、好ましくは、10質量部以上、より好ましくは、20質量部以上であり、また、例えば、900質量部以下、好ましくは、300質量部以下、より好ましくは、200質量部以下、さらに好ましくは、150質量部以下である。 The blending ratio of the antibiotic compound is, for example, 1 part by mass or more, preferably 10 parts by mass or more, more preferably 20 parts by mass or more, with respect to 100 parts by mass of the polymerizable vinyl monomer. For example, it is 900 parts by mass or less, preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 150 parts by mass or less.
 抗生物活性化合物の油相成分における含有割合は、例えば、1質量%以上、好ましくは、10質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下、より好ましくは、70質量%以下、より好ましくは、60質量%以下である。 The content ratio of the antibiotic compound in the oil phase component is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 90% by mass or less, preferably 80% by mass or less, more preferably , 70% by mass or less, and more preferably 60% by mass or less.
 また、上記した分散において、必要により、分散剤(第1の分散剤)を配合することもできる。分散剤としては、両親媒性高分子型分散剤、ノニオン系界面活性剤(第1の界面活性剤)などが挙げられる。 In addition, in the above-described dispersion, a dispersant (first dispersant) can be blended if necessary. Examples of the dispersant include an amphiphilic polymer type dispersant, a nonionic surfactant (first surfactant), and the like.
 両親媒性高分子型分散剤としては、例えば、EFKA4008、EFKA4009(以上チバ・スペシャリティズ製ウレタン系高分子分散剤)、DISPERBYK-2164、DISPERBYK-164(以上ビック・ケミー社製顔料分散用官能基変性共重合体)、NUOSPERSE2008、NUOSPERSE FA-196、NUOSPERSE657(以上エレメンティス社製)、フローレンD-90、ポリフローKL-100、ポリフローKL-700(以上共栄社化学社製)、ホモゲノールL-95(花王社製)などのノニオン系両親媒性高分子型分散剤が挙げられる。また、両親媒性高分子型分散剤としては、例えば、フローレンG-900(共栄社化学社製カルボキシル基変性高分子)、ディスパロンDA-234、ディスパロンDA-325、ディスパロンDA-375、ディスパロンDA-550、ディスパロンAQ-330(以上楠本化成社製ポリエーテルリン酸エステル塩)などのアニオン系両親媒性高分子型分散剤が挙げられる。さらに、両親媒性高分子型分散剤としては、例えば、ノプコスパース092(サンノプコ社製)などのカチオン系両親媒性高分子型分散剤が挙げられる。 Examples of the amphiphilic polymer dispersant include, for example, EFKA4008, EFKA4009 (urethane-based polymer dispersant manufactured by Ciba Specialty), DISPERBYK-2164, DISPERBYK-164 (above, functional group for pigment dispersion manufactured by Bic Chemie) Modified copolymer), NUOSPERSE 2008, NUOSPERSE FA-196, NUOSPERSE 657 (above made by Elementis), Floren D-90, Polyflow KL-100, Polyflow KL-700 (above made by Kyoeisha Chemical Co., Ltd.), Homogenol L-95 (Kao) Nonionic amphiphilic polymer type dispersants such as those manufactured by Komatsu Ltd. Examples of the amphiphilic polymer dispersant include, for example, Floren G-900 (carboxyl-modified polymer manufactured by Kyoeisha Chemical Co., Ltd.), Disparon DA-234, Disparon DA-325, Disparon DA-375, Disparon DA-550. And anionic amphiphilic polymer type dispersants such as Disparon AQ-330 (polyether phosphate ester salt manufactured by Enomoto Kasei Co., Ltd.). Furthermore, examples of the amphiphilic polymer type dispersant include cationic amphiphilic polymer type dispersants such as NOPCOSPERTH 092 (manufactured by San Nopco).
 ノニオン系界面活性剤としては、例えば、アモーゲンCBH(アルキルベタイン)、アモーゲンSH(アルキルアミドベタイン)、ノイゲン100E(ポリオキシエチレンオレイルエーテル)、ノイゲンEA73(ポリオキシエチレンドデシルフェニルエーテル)、ノイゲンES99(モノオレイン酸ポリエチレングリコール)、ダイヤノールCME(ヤシ油脂肪酸モノエタノールアミド)、ダイヤノール300(ヤシ油脂肪酸モノエタノールジアミド)、ソルゲン30(セスキオレイン酸ソルビタン)、ソルゲン40(モノオレイン酸ソルビタン)、ソルゲン50(モノステアリン酸ソルビタン)、エパン420(ポリオキシエチレンポリオキシプロピレングリコール)、エパン720(ポリオキシエチレンポリオキシプロピレングリコール)(以上花王社製)などが挙げられる。 Nonionic surfactants include, for example, amogen CBH (alkylbetaine), amogen SH (alkylamidobetaine), Neugen 100E (polyoxyethylene oleyl ether), Neugen EA73 (polyoxyethylene dodecylphenyl ether), Neugen ES99 (mono) Polyethylene glycol oleate), Dianol CME (coconut oil fatty acid monoethanolamide), Dianol 300 (coconut oil fatty acid monoethanoldiamide), Sorgen 30 (Sorbitan sesquioleate), Sorgen 40 (Sorbitan monooleate), Sorgen 50 (Sorbitan monostearate), Epan 420 (Polyoxyethylene polyoxypropylene glycol), Epan 720 (Polyoxyethylene polyoxypropylene glycol) Le) (all manufactured by Kao Corporation), and the like.
 分散剤として、好ましくは、両親媒性高分子型分散剤が挙げられ、より好ましくは、ノニオン系両親媒性高分子型分散剤、アニオン系両親媒性高分子型分散剤が挙げられ、さらに好ましくは、ノニオン系両親媒性高分子型分散剤が挙げられ、とりわけ好ましくは、顔料分散用官能基変性共重合体分散剤、ウレタン系高分子分散剤が挙げられる。 The dispersant is preferably an amphiphilic polymer dispersant, more preferably a nonionic amphiphilic polymer dispersant, an anionic amphiphilic polymer dispersant, and more preferably. Includes nonionic amphiphilic polymer type dispersants, and particularly preferred are functional group-modified copolymer dispersants for pigment dispersion and urethane polymer dispersants.
 分散剤の配合割合は、抗生物活性化合物に対して、例えば、0.1質量%以上、好ましくは、1質量%以上であり、また、例えば、40質量%以下、好ましくは、20質量%以下である。 The mixing ratio of the dispersant is, for example, 0.1% by mass or more, preferably 1% by mass or more, and for example, 40% by mass or less, preferably 20% by mass or less, with respect to the antibiotic compound. It is.
 油相成分における抗生物活性化合物の平均粒子径は、例えば、5μm以下、好ましくは、2.5μm以下であり、また、例えば、0.05μm以上、好ましくは、0.1μm以上である。 The average particle size of the antibiotic compound in the oil phase component is, for example, 5 μm or less, preferably 2.5 μm or less, and for example, 0.05 μm or more, preferably 0.1 μm or more.
 この方法では、例えば、疎水性スラリーの調製とともに、あるいは、疎水性スラリーの調製後に、重合開始剤を配合する。好ましくは、疎水性スラリーの調製後に、重合開始剤を、調製した疎水性スラリーに配合する。その場合に、重合性ビニルモノマーを抗生物活性化合物に対して分割して配合することができ、具体的には、重合性ビニルモノマーの一部を抗生物活性化合物に配合して疎水性スラリーを調製し、次いで、重合性ビニルモノマーの残部に重合開始剤を溶解させ、これを、調製した疎水性スラリーに配合する。これによって、重合開始剤および疎水性スラリーを含有する油相成分を調製する。 In this method, for example, a polymerization initiator is blended together with the preparation of the hydrophobic slurry or after the preparation of the hydrophobic slurry. Preferably, after the preparation of the hydrophobic slurry, the polymerization initiator is blended into the prepared hydrophobic slurry. In that case, the polymerizable vinyl monomer can be divided and blended with the antibiotic compound. Specifically, a part of the polymerizable vinyl monomer is blended with the antibiotic compound to form a hydrophobic slurry. Then, the polymerization initiator is dissolved in the remainder of the polymerizable vinyl monomer, and this is blended into the prepared hydrophobic slurry. Thus, an oil phase component containing a polymerization initiator and a hydrophobic slurry is prepared.
 重合開始剤は、懸濁重合で通常用いられるラジカル重合開始剤が挙げられ、具体的には、油溶性重合開始剤などが挙げられる。 Examples of the polymerization initiator include radical polymerization initiators usually used in suspension polymerization, and specific examples include oil-soluble polymerization initiators.
 油溶性重合開始剤としては、例えば、ジラウロイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、ジイソプロピルパーオキシジカーボネート、ベンゾイルパーオキシドなどの油溶性有機過酸化物、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)などの油溶性アゾ化合物などが挙げられる。好ましくは、ジラウロイルパーオキシド、t-ヘキシルパーオキシ-2-エチルヘキサノエート、2,2’-アゾビスイソブチロニトリルが挙げられる。 Examples of the oil-soluble polymerization initiator include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, diisopropyl Oil-soluble organic peroxides such as peroxydicarbonate and benzoyl peroxide, such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2 And oil-soluble azo compounds such as' -azobis (2-methylbutyronitrile). Preferred are dilauroyl peroxide, t-hexylperoxy-2-ethylhexanoate, and 2,2'-azobisisobutyronitrile.
 重合開始剤は、単独使用または2種類以上併用することができる。 Polymerization initiators can be used alone or in combination of two or more.
 重合開始剤の配合割合は、重合性ビニルモノマー100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上、より好ましくは、0.5質量部以上であり、例えば、5質量部以下、好ましくは、3質量部以下、より好ましくは、1.0質量部以下である。重合開始剤の配合割合が上記上限を超える場合には、重合体の分子量が過度に低下する場合があり、上記下限に満たない場合には、転化率が十分に向上せず、未反応の重合性ビニルモノマーが数%以上残存する場合がある。 The blending ratio of the polymerization initiator is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymerizable vinyl monomer. For example, 5 parts by mass or less, preferably 3 parts by mass or less, more preferably 1.0 parts by mass or less. When the blending ratio of the polymerization initiator exceeds the above upper limit, the molecular weight of the polymer may be excessively decreased. When the blending ratio is less than the above lower limit, the conversion rate is not sufficiently improved, and unreacted polymerization is performed. In some cases, several% or more of the functional vinyl monomer remains.
  (水分散工程)   
 次いで、上記した油相成分を水分散(懸濁)させる。
(Water dispersion process)
Next, the above oil phase component is dispersed (suspended) in water.
 すなわち、油相成分および水を配合し、均一に攪拌することにより、油相成分を水分散(懸濁)させる。これにより、油相成分の水分散(懸濁)液を得る。 That is, the oil phase component and water are mixed and stirred uniformly to disperse (suspend) the oil phase component in water. As a result, an aqueous dispersion (suspension) of the oil phase component is obtained.
 水分散の条件は、特に制限されず、例えば、常温で実施してもよく、あるいは、加熱して実施することもできる。 The conditions for water dispersion are not particularly limited, and for example, it may be carried out at room temperature or by heating.
 油相成分の水分散では、好ましくは、分散剤(第2の分散剤)、界面活性剤(第2の界面活性剤)を配合する。 In the aqueous dispersion of the oil phase component, preferably, a dispersant (second dispersant) and a surfactant (second surfactant) are blended.
 分散剤(第2の分散剤)としては、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン、ゼラチン、アラビアゴム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カチオン化澱粉、ポリアクリル酸およびそのナトリウム塩、スチレンマレイン酸コポリマーおよびそのナトリウム塩などの水溶性ポリマー、例えば、第三燐酸カルシウム、コロイダルシリカ、モンモリナイト、炭酸マグネシウム、水酸化アルミニウム、亜鉛華などの無機系分散剤などが挙げられる。 Examples of the dispersant (second dispersant) include polyvinyl alcohol (PVA), polyvinyl pyrrolidone, gelatin, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, cationized starch, polyacrylic acid and its sodium salt, Water-soluble polymers such as styrene maleic acid copolymer and sodium salt thereof, for example, inorganic dispersants such as tricalcium phosphate, colloidal silica, montmorillonite, magnesium carbonate, aluminum hydroxide, zinc white, and the like.
 分散剤のうち、好ましくは、ポリビニールアルコール(PVA)、第三燐酸カルシウムが挙げられる。さらに好ましくは、ポリビニールアルコール(PVA)が挙げられる。 Among the dispersing agents, polyvinyl alcohol (PVA) and tricalcium phosphate are preferable. More preferably, polyvinyl alcohol (PVA) is mentioned.
 分散剤の配合割合は、油相成分100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上、より好ましくは、1質量部以上であり、また、例えば、10質量部以下、好ましくは、5質量部以下である。 The blending ratio of the dispersant is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the oil phase component. 10 parts by mass or less, preferably 5 parts by mass or less.
 界面活性剤(第2の界面活性剤)は、ラジカル重合中の粒子の凝集を有効に防止するために、好ましくは、上記した分散剤(第2の分散剤)と併用され、例えば、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ジ-2-エチルヘキシルスルホコハク酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、ノニルジフェニルエーテルスルホン酸ナトリウム、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩などのアニオン系界面活性剤、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンポリオキシプロピレンブロックコポリマーなどのノニオン系界面活性剤などが挙げられる。好ましくは、ノニオン系界面活性剤、アニオン系界面活性剤、より好ましくは、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩が挙げられる。 The surfactant (second surfactant) is preferably used in combination with the above-described dispersant (second dispersant) in order to effectively prevent aggregation of particles during radical polymerization. For example, dodecylbenzene Anionic surfactants such as sodium sulfonate, sodium lauryl sulfate, sodium di-2-ethylhexyl sulfosuccinate, sodium dodecyl diphenyl ether disulfonate, sodium nonyl diphenyl ether sulfonate, a salt of a condensate of aromatic sulfonic acid and formaldehyde, such as Nonionic series such as polyoxyethylene lauryl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene monostearate, polyoxyethylene sorbitan monooleate, polyoxyethylene polyoxypropylene block copolymer Surface active agents, and the like. Preferably, nonionic surfactants, anionic surfactants, more preferably, polyoxyethylene polyoxypropylene block copolymers, and salts of aromatic sulfonic acid and formaldehyde condensates are exemplified.
 界面活性剤の配合割合は、油相成分100質量部に対して、例えば、0.0001質量部以上、好ましくは、0.001質量部以上であり、また、例えば、1.0質量部以下、好ましくは、0.1質量部以下である。 The blending ratio of the surfactant is, for example, 0.0001 parts by mass or more, preferably 0.001 parts by mass or more, for example, 1.0 parts by mass or less, with respect to 100 parts by mass of the oil phase component. Preferably, it is 0.1 mass part or less.
 これら分散剤、または、分散剤および界面活性剤は、例えば、油相成分を水に配合前または配合後のいずれにおいても、配合することができ、好ましくは、油相成分を配合する前の水に配合する。これにより、分散剤の水溶液、または、分散剤および界面活性剤の水溶液を調製する。 These dispersants, or the dispersant and the surfactant can be blended, for example, either before or after blending the oil phase component with water, preferably water before blending the oil phase component. Blend in. Thus, an aqueous solution of the dispersant or an aqueous solution of the dispersant and the surfactant is prepared.
 上記した油相成分の水分散(懸濁)では、例えば、ホモミキサー(ホモミクサー)、超音波ホモジナイザー、加圧式ホモジナイザー、マイルダー、多孔膜圧入分散機などの分散機が用いられ、好ましくは、ホモミキサーが用いられる。 In the above-described aqueous dispersion (suspension) of the oil phase component, for example, a disperser such as a homomixer, an ultrasonic homogenizer, a pressure homogenizer, a milder, or a porous membrane press-in disperser is used. Is used.
 水分散の条件は、適宜設定され、ホモミクサーを用いる場合には、その回転数を、例えば、100rpm以上、好ましくは、1000rpm以上であり、また、例えば、10000rpm以下、例えば、8000rpm以下に設定する。 The conditions for water dispersion are appropriately set. When a homomixer is used, the rotation speed is set to, for example, 100 rpm or more, preferably 1000 rpm or more, and for example, set to 10,000 rpm or less, for example, 8000 rpm or less.
 これによって、油相成分が水相に分散された水分散液を調製する。 This prepares an aqueous dispersion in which the oil phase component is dispersed in the aqueous phase.
 また、水分散液に分散剤(第2の分散剤)、または、分散剤および界面活性剤が配合されている場合には、分散剤、または、分散剤および界面活性剤によって、水分散液中の油相成分の液滴がより安定化される。 Further, in the case where a dispersant (second dispersant), or a dispersant and a surfactant is blended in the aqueous dispersion, the dispersant or the dispersant and the surfactant are used in the aqueous dispersion. The droplets of the oil phase component are more stabilized.
 水(または水溶液)の配合割合は、油相成分100質量部に対して、例えば、50質量部以上、好ましくは、100質量部以上、より好ましくは、150質量部以上であり、また、例えば、1900質量部以下、好ましくは、900質量部以下、より好ましくは、400質量部以下となるように、調整される。 The blending ratio of water (or aqueous solution) is, for example, 50 parts by mass or more, preferably 100 parts by mass or more, more preferably 150 parts by mass or more, with respect to 100 parts by mass of the oil phase component. It is adjusted to 1900 parts by mass or less, preferably 900 parts by mass or less, more preferably 400 parts by mass or less.
  (重合工程)
 重合工程では、重合性ビニルモノマーを懸濁重合して、重合体を生成する。重合性ビニルモノマーを懸濁重合するには、水分散液を所定温度に昇温する。懸濁重合では、水分散液の水分散状態が維持されるように、水分散液を攪拌しながら、重合性ビニルモノマーが反応(具体的には、ラジカル重合)して、重合性ビニルモノマーの重合体が生成される。懸濁重合は、重合体となる重合性ビニルモノマーがすべて水分散粒子(疎水性液相)のみにあることから、インサイチュ(in-situ)重合である。
(Polymerization process)
In the polymerization step, a polymerizable vinyl monomer is subjected to suspension polymerization to produce a polymer. For suspension polymerization of the polymerizable vinyl monomer, the aqueous dispersion is heated to a predetermined temperature. In suspension polymerization, the polymerizable vinyl monomer reacts (specifically, radical polymerization) while stirring the aqueous dispersion so that the aqueous dispersion state of the aqueous dispersion is maintained, and A polymer is produced. Suspension polymerization is in-situ polymerization because all of the polymerizable vinyl monomer that becomes a polymer is only in water-dispersed particles (hydrophobic liquid phase).
 具体的には、懸濁重合は、水分散液を攪拌しながら加熱することにより、重合性ビニルモノマーがそのまま、水分散粒子中で重合を開始し、重合体を生成する。 Specifically, in suspension polymerization, the aqueous dispersion is heated while stirring, whereby the polymerizable vinyl monomer starts polymerization in the aqueous dispersion particles as it is, and a polymer is formed.
 攪拌は、例えば、攪拌羽根を有する攪拌器によって実施できる。攪拌速度は、攪拌羽根の周速が、例えば、10m/分以上、好ましくは、20m/分以上であり、また、400m/分以下、好ましくは200m/分以下である。 Stirring can be performed, for example, with a stirrer having stirring blades. As for the stirring speed, the peripheral speed of the stirring blade is, for example, 10 m / min or more, preferably 20 m / min or more, and 400 m / min or less, preferably 200 m / min or less.
 水分散液を、その温度が、例えば、40℃以上、好ましくは、50℃以上、より好ましくは、60℃以上、また、例えば、100℃以下、好ましくは、90℃以下、より好ましくは、80℃以下となるように、加熱する。 The temperature of the aqueous dispersion is, for example, 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and for example, 100 ° C. or lower, preferably 90 ° C. or lower, more preferably 80 ° C. Heat to below ℃.
 そして、抗生物活性化合物が重合体と非相溶である状態で懸濁重合が進行する。 Then, suspension polymerization proceeds in a state where the antibiotic compound is incompatible with the polymer.
 加熱時間は、例えば、2時間以上、好ましくは、3時間以上であり、また、例えば、12時間以下、好ましくは、8時間以下である。さらに、所定温度に加熱後、その温度を所定時間維持し、その後、加熱および温度維持を繰り返すことにより、段階的に加熱することもできる。 The heating time is, for example, 2 hours or more, preferably 3 hours or more, and for example, 12 hours or less, preferably 8 hours or less. Furthermore, after heating to a predetermined temperature, the temperature can be maintained for a predetermined time, and then heating and temperature maintenance can be repeated to heat in stages.
 懸濁重合において、抗生物活性化合物は、重合性ビニルモノマーに対して実質的に不溶性であり、抗生物活性化合物は、重合開始から重合終了後まで、重合性ビニルモノマーおよび/または重合体に対して、非相溶状態を維持している。 In suspension polymerization, the antibiotic compound is substantially insoluble with respect to the polymerizable vinyl monomer, and the antibiotic compound is incompatible with the polymerizable vinyl monomer and / or polymer from the start of polymerization to the end of polymerization. The incompatible state is maintained.
 その後、重合後の水分散液を、例えば、放冷などによって冷却し、100目(メッシュ)の濾布などで濾過することにより、徐放性粒子の水分散液(懸濁液)を得る。 Thereafter, the aqueous dispersion after polymerization is cooled, for example, by cooling, and filtered through a 100 mesh filter cloth to obtain an aqueous dispersion (suspension) of sustained release particles.
 冷却温度は、例えば、室温(20~30℃、より具体的には、25℃)である。 The cooling temperature is, for example, room temperature (20 to 30 ° C., more specifically 25 ° C.).
 得られた徐放性粒子における抗生物活性化合物の濃度は、例えば、1質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上であり、また、例えば、50質量%以下、好ましくは、40質量%以下、より好ましくは、35質量%以下である。 The concentration of the antibiotic compound in the obtained sustained-release particles is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and for example, 50% by mass or less. The amount is preferably 40% by mass or less, and more preferably 35% by mass or less.
 また、懸濁液における徐放性粒子の含有割合は、油相成分およびそれが分散される水(または水溶液)の配合量によって決定されており、具体的には、例えば、10質量%以上、好ましくは、20質量%以上であり、また、例えば、50質量%以下、好ましくは、40質量%以下である。 Further, the content ratio of the sustained release particles in the suspension is determined by the blending amount of the oil phase component and water (or an aqueous solution) in which the oil phase component is dispersed, and specifically, for example, 10% by mass or more, Preferably, it is 20 mass% or more, for example, 50 mass% or less, preferably 40 mass% or less.
 徐放性粒子の平均粒子径は、例えば、1μm以上、好ましくは、2μm以上であり、また、例えば、20mm以下、好ましくは、10mm以下である。なお、平均粒子径は、メジアン径として算出される。 The average particle diameter of the sustained release particles is, for example, 1 μm or more, preferably 2 μm or more, and for example, 20 mm or less, preferably 10 mm or less. The average particle diameter is calculated as the median diameter.
 上記の徐放性粒子の製造方法により製造される徐放性粒子は、後述するマトリクスと、マトリクス中に分散する後述するドメインとから形成される2相構造を有する。 The sustained-release particles produced by the above-described method for producing sustained-release particles have a two-phase structure formed from a matrix described later and domains described later dispersed in the matrix.
 なお、上記の製造方法によって得られた徐放性粒子を含む水分散液(懸濁液)に、必要により、その他の分散剤、増粘剤、凍結防止剤、防腐剤、微生物増殖抑制剤、比重調節剤などの公知の添加剤を適宜配合することもできる。 In addition, in the aqueous dispersion (suspension) containing the sustained release particles obtained by the above production method, if necessary, other dispersants, thickeners, antifreezing agents, preservatives, microbial growth inhibitors, Known additives such as a specific gravity adjusting agent can be appropriately blended.
 このようにして得られた徐放性粒子は、そのままの状態(懸濁液)、つまり、懸濁剤として用いてもよく、また、スプレードライで直接、粉剤として用いてもよい。あるいは、遠心分離、フルタープレスなどで固液分離し、必要に応じ、洗浄後、例えば、流動乾燥、棚乾燥などにより、乾燥し、必要に応じ、アトマイザー、フェザーミルなどで解砕、振動篩などで分級して、粉剤または粒剤などの公知の剤型に製剤化して用いることもできる。 The sustained-release particles thus obtained may be used as they are (suspension), that is, as a suspension, or directly as a powder by spray drying. Alternatively, solid-liquid separation is performed by centrifugation, fuller press, etc., and after washing, if necessary, dried by fluid drying, shelf drying, etc., and if necessary, crushed with an atomizer, feather mill, etc., vibrating sieve, etc. And can be formulated into a known dosage form such as powder or granule.
 また、徐放性粒子を粒剤に製剤化するには、例えば、固体担体に徐放性粒子の懸濁液を配合して混合し、その後、それらを乾燥させる(粒剤化工程)。つまり、徐放性粒子の製造方法は、油相成分調製工程、水分散工程および重合工程に加え、粒剤化工程をさらに備えることができる。 Further, in order to formulate sustained release particles into granules, for example, a suspension of sustained release particles is mixed and mixed in a solid carrier, and then dried (granulation step). That is, the method for producing sustained-release particles can further include a granulation step in addition to the oil phase component preparation step, the water dispersion step and the polymerization step.
 固体担体としては、例えば、軽石、ベントナイト、クレー、カオリン、タルク、酸性白土、ゼオライト、バーミキュライト、パーライト、炭酸カルシウム、珪砂などが挙げられる。固体担体として、好ましくは、軽石が挙げられる。固体担体は、市販品を用いることができ、具体的には、カガライトシリーズ(天然軽石の細粒、カガライト工業社製)などが用いられる。固体担体の平均粒子径は、例えば、100μm以上、好ましくは、300μm以上であり、また、例えば、5.00mm以下、好ましくは、2.00mm以下である。 Examples of the solid carrier include pumice, bentonite, clay, kaolin, talc, acid clay, zeolite, vermiculite, perlite, calcium carbonate, silica sand and the like. The solid carrier is preferably pumice. As the solid carrier, a commercially available product can be used, and specifically, a kagarite series (natural pumice fine granules, manufactured by Kagarite Kogyo Co., Ltd.) is used. The average particle size of the solid carrier is, for example, 100 μm or more, preferably 300 μm or more, and for example, 5.00 mm or less, preferably 2.00 mm or less.
 粒剤化工程において、徐放性粒子の懸濁液の配合割合は、得られる粒剤(固体担体および徐放性粒子)における抗生物活性化合物の濃度が、例えば、0.01質量%以上、好ましくは、0.05質量%以上、例えば、2質量%以下、好ましくは、1質量%以下となるように、調整される。具体的には、徐放性粒子の懸濁液(水を含む)の配合割合は、固体担体100質量部に対して、例えば、0.01質量部以上、好ましくは、0.05質量部以上、より好ましくは、0.1質量部以上、さらに好ましくは、0.2質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 In the granulation step, the ratio of the suspension of sustained release particles is such that the concentration of the antibiotic compound in the resulting granules (solid carrier and sustained release particles) is, for example, 0.01% by mass or more, Preferably, it is adjusted to be 0.05% by mass or more, for example, 2% by mass or less, preferably 1% by mass or less. Specifically, the blending ratio of the suspension of sustained release particles (including water) is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the solid carrier. More preferably, it is 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, for example, 10 parts by mass or less, preferably 5 parts by mass or less.
  <第1の発明群の徐放性粒子の効果>
 第1の発明群の徐放性粒子は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える製造方法により得られるので、徐放性に優れ、堅牢な徐放性粒子を得ることができる。
<Effect of sustained release particles of the first invention group>
The sustained-release particles of the first invention group are a hydrophobic polymer that is hydrophobic and substantially insoluble in a hydrophobic polymerizable vinyl monomer in the absence of a solvent. An oil phase component preparation step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and a polymerizable vinyl Since it is obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of a monomer, it is possible to obtain sustained release particles that are excellent in sustained release properties.
 しかるに、特許文献1に記載のような方法によって得られるマイクロカプセルは、界面重合のみによって得られるので、マイクロカプセル中に分散媒(溶媒)が残存し、そのため、その表面硬度が不十分になる場合がある。その結果、マイクロカプセルの分散液が、高い剪断力がかかる工程を経る場合や長期にわたって保存される場合には、マイクロカプセルが凝集して、再分散が困難となる場合がある。 However, since the microcapsules obtained by the method described in Patent Document 1 are obtained only by interfacial polymerization, the dispersion medium (solvent) remains in the microcapsules, and therefore the surface hardness becomes insufficient. There is. As a result, when the microcapsule dispersion undergoes a process in which a high shearing force is applied or is stored for a long period of time, the microcapsules may aggregate to make redispersion difficult.
 さらに、マイクロカプセルの表面硬度が不十分であることから、マイクロカプセルがブロッキングし易く、マイクロカプセルを乾燥粒子として取り出すことが困難となる場合がある。 Furthermore, since the surface hardness of the microcapsules is insufficient, the microcapsules are likely to be blocked, and it may be difficult to take out the microcapsules as dry particles.
 一方、第1の発明群の徐放性粒子は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える製造方法により得られるので、上記した界面重合における溶剤の存在に起因する、徐放性粒子の表面硬度の低下を防止して、堅牢な徐放性粒子を得ることができ、ひいては、得られる徐放性粒子の再分散性および耐ブロッキング性に優れる。 On the other hand, the sustained-release particles of the first invention group have hydrophobic active compounds that are hydrophobic and substantially insoluble in hydrophobic polymerizable vinyl monomers in the absence of a solvent. An oil phase component preparation step for preparing an oil phase component containing a hydrophobic slurry by dispersing in a polymerizable vinyl monomer, an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water, and polymerization Since it is obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of a functional vinyl monomer, it prevents the surface hardness of the sustained-release particles from being lowered due to the presence of the solvent in the above-mentioned interfacial polymerization. Thus, robust sustained-release particles can be obtained, and as a result, the obtained sustained-release particles are excellent in redispersibility and blocking resistance.
 この徐放性粒子の製造方法によれば、堅牢であるとともに、再分散性および耐ブロッキング性に優れる徐放性粒子を得ることができる。 According to this method for producing sustained-release particles, it is possible to obtain sustained-release particles that are robust and excellent in redispersibility and blocking resistance.
 このような徐放性粒子は、各種の工業製品に適用することができ、例えば、屋内外の塗料、ゴム、繊維、樹脂(プラスチックを含む)、接着剤、目地剤、シーリング剤、建材、コーキング剤、木材処理剤、土壌処理剤、製紙工程における白水、顔料、印刷版用処理液、冷却用水、インキ、切削油、化粧用品、不織布、紡糸油、皮革などに、添加することができる。なお、これらの工業製品に対する徐放性粒子中の抗生物活性化合物の添加量は、例えば、10mg/kg~100g/kg(製品質量)である。 Such sustained-release particles can be applied to various industrial products, for example, indoor and outdoor paints, rubber, fibers, resins (including plastics), adhesives, joint agents, sealing agents, building materials, caulking. It can be added to the agent, wood treatment agent, soil treatment agent, white water, pigment, printing plate treatment liquid, cooling water, ink, cutting oil, cosmetics, non-woven fabric, spinning oil, leather, etc. in the papermaking process. The added amount of the antibiotic compound in the sustained release particles to these industrial products is, for example, 10 mg / kg to 100 g / kg (product mass).
 次に、徐放性粒子から製剤化された粉剤を熱可塑性樹脂と配合する態様について説明する。 Next, an aspect in which a powder formulated from sustained-release particles is blended with a thermoplastic resin will be described.
 この方法では、まず、徐放性粒子の懸濁液を乾燥させて、粉剤に製剤化する。 In this method, first, a suspension of sustained-release particles is dried and formulated into a powder.
 次いで、粉剤および熱可塑性樹脂を溶融混練して、混練物を調製する。 Next, the powder and the thermoplastic resin are melt-kneaded to prepare a kneaded product.
 混練物を調製するには、例えば、具体的には、押出機、バンバリーミキサーが用いられる。押出機としては、例えば、二軸押出機、単軸押出機が用いられる。混練物は、成形品を成形するための成形材料であって、具体的には、一旦、冷却してペレット状成形材料(混練物ペレット、あるいは、マスターバッチ)として調製する。一方、混練物を、固体の成形材料として取り出さず、そのまま連続して溶融状態のまま(溶融混練物)後述の成形に供することも可能である。 In order to prepare the kneaded material, specifically, for example, an extruder or a Banbury mixer is used. As the extruder, for example, a twin screw extruder or a single screw extruder is used. The kneaded material is a molding material for molding a molded product. Specifically, the kneaded material is once cooled and prepared as a pellet-shaped molding material (kneaded material pellet or master batch). On the other hand, the kneaded product is not taken out as a solid molding material, but can be continuously used as it is in a molten state (melt kneaded product) and subjected to molding described later.
 粉剤の抗生物活性化合物の含有割合が、熱可塑性樹脂に対して、例えば、0.01質量%以上、好ましくは、0.1質量%以上となり、また、例えば、10質量%以下、好ましくは、3質量%以下となるように、粉剤を熱可塑性樹脂に配合する。ただし、マスターバッチとして、混練物を調製する場合は、この限りではなく、具体的には、抗生物活性化合物の含有割合が、熱可塑性樹脂に対して、例えば、1質量%以上、好ましくは、5質量%以上となり、また、例えば、50質量%以下、好ましくは、30質量%以下となるように、粉剤を熱可塑性樹脂に配合してマスタ-バッチとする。 The content of the antibiotic compound in the powder agent is, for example, 0.01% by mass or more, preferably 0.1% by mass or more, and, for example, 10% by mass or less, preferably, with respect to the thermoplastic resin. A powder agent is mix | blended with a thermoplastic resin so that it may become 3 mass% or less. However, when preparing a kneaded material as a master batch, this is not the case. Specifically, the content of the antibiotic compound is, for example, 1% by mass or more, preferably, with respect to the thermoplastic resin. The powder is mixed with the thermoplastic resin so as to be 5% by mass or more, for example, 50% by mass or less, and preferably 30% by mass or less, to obtain a master batch.
 熱可塑性樹脂は、特に限定されず、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリスチレン、あるいは、ポリメタクリル酸メチル、アクリロニトリル・スチレン共重合樹脂(AS樹脂)、メタクリル酸メチル・スチレン共重合体(MS樹脂)、アクリロニトリル・スチレン・ブタジエン共重合樹脂(ABS樹脂)などの、スチレン系、および/またはアクリル系樹脂、ポリエチレンテレフタレート、ポリ乳酸などのポリエステル系樹脂、6-ナイロンなどのポリアミド系樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂などのハロゲン化ビニル系樹脂、ポリカーボネート、ポリフェニレンエーテル、ポリアセタール、熱可塑性ポリウレタンなどが挙げられる。熱可塑性樹脂は、単独使用または併用することができる。好ましくは、ポリオレフィン系樹脂、塩化ビニル樹脂、熱可塑性ポリウレタン、より好ましくは、ポリオレフィン系樹脂、塩化ビニル樹脂、さらに好ましくは、ポリエチレン、ポリプロピレンが挙げられる。 The thermoplastic resin is not particularly limited. For example, polyolefin resin such as polyethylene and polypropylene, polystyrene, polymethyl methacrylate, acrylonitrile / styrene copolymer resin (AS resin), methyl methacrylate / styrene copolymer ( MS resin), acrylonitrile / styrene / butadiene copolymer resin (ABS resin), styrene and / or acrylic resins, polyethylene terephthalate, polyester resins such as polylactic acid, polyamide resins such as 6-nylon, chloride Examples thereof include vinyl halide resins such as vinyl resin and vinylidene chloride resin, polycarbonate, polyphenylene ether, polyacetal, and thermoplastic polyurethane. The thermoplastic resins can be used alone or in combination. Preferably, polyolefin resin, vinyl chloride resin, thermoplastic polyurethane, more preferably polyolefin resin, vinyl chloride resin, and still more preferably polyethylene, polypropylene.
 続いて、混練物ペレット、あるいは、溶融混練物から成形品に成形する。 Subsequently, the mixture is molded into a molded product from the kneaded product pellets or melt-kneaded product.
 成形方法としては、例えば、射出成形、押出成形、インフレーション成形、引抜成形、圧縮成形などが採用される。 As the molding method, for example, injection molding, extrusion molding, inflation molding, pultrusion molding, compression molding, or the like is employed.
 これによって、所定形状に成形された、粉剤(徐放性粒子)が添加された成形品が得られる。 Thereby, a molded product formed into a predetermined shape and added with powder (sustained release particles) is obtained.
 上記説明では、徐放性粒子から製剤化された粉剤を、熱可塑性樹脂に添加しているが、樹脂であれば特に限定されず、例えば、熱硬化性樹脂に添加することもできる。 In the above description, the powder formulated from sustained-release particles is added to the thermoplastic resin. However, the powder is not particularly limited as long as it is a resin, and may be added to, for example, a thermosetting resin.
 特に、エポキシ樹脂、シリコーン樹脂などの液状樹脂に粉剤を好適に混合することができる。 In particular, a powder can be suitably mixed with a liquid resin such as an epoxy resin or a silicone resin.
 このような成形品は、各種用途に用いられ、例えば、建材、例えば、電線ケーブル材、および、その電線ケーブルの被覆材、例えば、ガスなどの導管、および、その導管の被覆材、例えば、衣類、蚊帳などの繊維製品として使用される。 Such molded articles are used in various applications, for example, building materials such as electric wire cable materials, and electric wire cable coating materials such as gas conduits, and conduit coating materials such as clothing. Used as textile products such as mosquito nets.
  <第1の発明群の成形品の効果>
 このような成形品では、粉剤の徐放性粒子が、マトリクスおよびドメインから形成される堅牢な2相構造を有するので、粉剤が混練・成形時に破壊されず、成形品に分散あるいは表面に局在化して、上記した粉剤が添加された成形品は、抗生物活性化合物の徐放性に優れる。換言すれば、上記した成形材料は、上記した徐放性粒子を含有するので、上記した成形品に、分散、あるいは表面に局在化して、成形品に抗生物活性化合物の優れた徐放性を付与することができる。
<Effect of the molded product of the first invention group>
In such a molded product, since the sustained-release particles of the powder have a robust two-phase structure formed from a matrix and domains, the powder is not destroyed during kneading and molding, and is dispersed in the molded product or localized on the surface. The molded product to which the above powder is added is excellent in sustained release properties of the antibiotic compound. In other words, since the above-mentioned molding material contains the above-mentioned sustained-release particles, it is dispersed in the above-mentioned molded product, or localized on the surface, so that the molded product has excellent sustained-release properties of the antibiotic compound. Can be granted.
 また、徐放性粒子を1mm~20mmの径のビーズ状とし、流体(気体、液体)の流通経路に敷設・常備・固定することで通過流体に殺菌などの抗生物活性効果を定常的に付与することができる。 In addition, sustained release particles are made into beads with a diameter of 1 mm to 20 mm, and are steadily imparted with antibiotic activity effects such as sterilization to the passing fluid by laying, standing, and fixing in the flow path of fluid (gas, liquid). can do.
 そして、上記した徐放性粒子の製造方法により得られる徐放性粒子は、具体的には、次に述べる徐放性粒子の第1実施形態および第2実施形態を含んでいる。 The sustained-release particles obtained by the above-described method for producing sustained-release particles specifically include the first and second embodiments of the sustained-release particles described below.
  [第1実施形態]
 徐放性粒子の第1実施形態について図A1を参照して説明する。
[First Embodiment]
A first embodiment of sustained release particles will be described with reference to FIG.
 図A1の断面図に示すように、徐放性粒子1は、例えば、球状粒子として形成されている。徐放性粒子1は、マトリクス2と、マトリクス2中に分散するドメイン3とから形成される2相構造を有する。マトリクス2は、上記した重合性ビニルモノマーから得られる重合体からなる。ドメイン3は、上記した抗生物活性化合物からなる。 As shown in the sectional view of FIG. A1, the sustained-release particles 1 are formed, for example, as spherical particles. The sustained release particles 1 have a two-phase structure formed from a matrix 2 and domains 3 dispersed in the matrix 2. The matrix 2 is made of a polymer obtained from the above-described polymerizable vinyl monomer. Domain 3 consists of the antibiotic compounds described above.
 具体的には、徐放性粒子1では、マトリクス2が媒体あるいは連続相を形成しており、複数のドメイン3が孤立状に分散するマルチドメイン構造あるいは海島構造(または多核構造)が形成されている。また、この徐放性粒子1では、マトリクス2およびドメイン3は、互いに非相溶であって、互いに分離する相分離構造を形成する。 Specifically, in the sustained release particles 1, the matrix 2 forms a medium or a continuous phase, and a multi-domain structure or a sea-island structure (or a multinuclear structure) in which a plurality of domains 3 are dispersed in an isolated manner is formed. Yes. Further, in the sustained release particles 1, the matrix 2 and the domain 3 are incompatible with each other and form a phase separation structure that separates from each other.
 マトリクス2は、徐放性粒子1において、ドメイン3以外の領域にあり、ドメイン3を取り除いた形状に形成されている。 The matrix 2 is in a region other than the domain 3 in the sustained release particles 1 and is formed in a shape with the domain 3 removed.
 複数のドメイン3は、マトリクス2中において、分散相を形成する。ドメイン3の形状は、特に限定されず、例えば、不定形状、球状、塊状、板状など、適宜の形状に形成されている。ドメイン3の最大長さの平均値は、例えば、0.05μm以上、好ましくは、0.1μm以上であり、また、例えば、20μm以下、好ましくは、10μm以下である。 The plurality of domains 3 form a dispersed phase in the matrix 2. The shape of the domain 3 is not particularly limited, and is formed in an appropriate shape such as an indefinite shape, a spherical shape, a block shape, or a plate shape. The average value of the maximum length of the domain 3 is, for example, 0.05 μm or more, preferably 0.1 μm or more, and for example, 20 μm or less, preferably 10 μm or less.
 また、ドメイン3は、マトリクス2の内部から外方に突出する突出物4を含む。突出物4は、マトリクス2の表面から露出している。これによって、徐放性粒子1の表面では、マトリクス2およびドメイン3の両方が露出している。突出物4は、マトリクス2の表層部に埋設される埋設部8を有している。突出物4は、徐放性粒子1における抗生物活性化合物の初期徐放速度を速くする働き、および、徐放性粒子1の耐ブロッキング性を著しく高める働きをする。突出物4の、マトリクス2の全表面に対する露出率(つまり、ドメイン3の露出率)は、徐放性粒子1の全表面に対して、例えば、0.1%以上、好ましくは、1%以上であり、また、例えば、50%以下、好ましくは、30%以下である。マトリクス2の露出率は、徐放性粒子1の全表面から突出物4の露出率を差し引いた割合である。 The domain 3 includes a protrusion 4 that protrudes outward from the inside of the matrix 2. The protrusion 4 is exposed from the surface of the matrix 2. Thereby, both the matrix 2 and the domain 3 are exposed on the surface of the sustained release particles 1. The protrusion 4 has an embedded portion 8 embedded in the surface layer portion of the matrix 2. The protrusions 4 serve to increase the initial sustained release rate of the antibiotic compound in the sustained release particles 1 and remarkably increase the blocking resistance of the sustained release particles 1. The exposure rate of the protrusion 4 with respect to the entire surface of the matrix 2 (that is, the exposure rate of the domain 3) is, for example, 0.1% or more, preferably 1% or more, with respect to the entire surface of the sustained release particles 1. For example, it is 50% or less, preferably 30% or less. The exposure rate of the matrix 2 is a ratio obtained by subtracting the exposure rate of the protrusions 4 from the entire surface of the sustained release particles 1.
 なお、この徐放性粒子1の表面には、ドメイン3の一部がマトリクス2から脱離(脱落)することにより、穴6が形成されている。穴6は、ドメイン3を構成する抗生物活性化合物の形状に対応するように、形成されている。 Note that a hole 6 is formed on the surface of the sustained-release particle 1 by part of the domain 3 being detached (dropped off) from the matrix 2. The hole 6 is formed so as to correspond to the shape of the antibiotic compound constituting the domain 3.
 この徐放性粒子1を得るには、上記した徐放性粒子1の製造方法において、とりわけ、油相成分調製工程において、重合性ビニルモノマーとして、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを用いず、かつ、水分散工程では、好ましくは、界面活性剤(第2の界面活性剤)として、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩を配合しない。 In order to obtain the sustained-release particles 1, in the above-described production method of the sustained-release particles 1, particularly in the oil phase component preparation step, as the polymerizable vinyl monomer, a (meth) acrylate monomer and (meth) In the water dispersion step, an acrylate-based crosslinkable monomer is not used, and preferably, a salt of a condensate of aromatic sulfonic acid and formaldehyde is not blended as a surfactant (second surfactant).
 油相成分調製工程において、重合性ビニルモノマーとして、好ましくは、芳香族ビニルモノマーと芳香族架橋性モノマーの組合せが用いられる。 In the oil phase component preparation step, a combination of an aromatic vinyl monomer and an aromatic crosslinkable monomer is preferably used as the polymerizable vinyl monomer.
 重合性ビニルモノマーが芳香族ビニルモノマーと芳香族架橋性モノマーとの組合せである場合には、芳香族ビニルモノマーの含有割合は、芳香族ビニルモノマーと芳香族架橋性モノマーとの総量100質量部に対して、例えば、10質量部以上、好ましくは、20質量部以上、より好ましくは、30質量部以上であり、また、例えば、90質量部以下、好ましくは、80質量部以下、より好ましくは、70質量部以下である。 When the polymerizable vinyl monomer is a combination of an aromatic vinyl monomer and an aromatic crosslinkable monomer, the content of the aromatic vinyl monomer is 100 parts by mass in total of the aromatic vinyl monomer and the aromatic crosslinkable monomer. On the other hand, for example, 10 parts by mass or more, preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and for example, 90 parts by mass or less, preferably 80 parts by mass or less, more preferably, 70 parts by mass or less.
 水分散工程において、界面活性剤(第2の界面活性剤)として、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩を配合しない一方、好ましくは、分散剤(第2の分散剤)を配合する。 In the water dispersion step, as a surfactant (second surfactant), a salt of a condensate of aromatic sulfonic acid and formaldehyde is not blended, but preferably a dispersant (second dispersant) is blended. .
  <第1実施形態の効果>
 徐放性粒子の第1実施形態を製造するための、徐放性粒子の製造方法では、油相成分調製工程において、重合性ビニルモノマーとして、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを用いず、かつ、水分散工程において、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩を配合せずに、次いで、重合工程において、上記した重合性ビニルモノマーを懸濁重合するので、突出物4を確実に形成することができる。
<Effects of First Embodiment>
In the method for producing sustained release particles for producing the first embodiment of the sustained release particles, in the oil phase component preparation step, as the polymerizable vinyl monomer, a (meth) acrylate monomer and (meth) acrylate are used. Without using a cross-linkable monomer and without adding a salt of a condensate of aromatic sulfonic acid and formaldehyde in the water dispersion step, then in the polymerization step, the above polymerizable vinyl monomer is subjected to suspension polymerization. Therefore, the protrusion 4 can be formed reliably.
 徐放性粒子1の表面には、マトリクス2およびドメイン3の両方が露出している。とりわけ、この徐放性粒子1の表面には、抗生物活性化合物が外方に突出するように露出しており、突出物4を構成している。また、徐放性粒子1は、マトリクス2およびドメイン3から形成される2相構造を有しており、シェルを有していない。 Both the matrix 2 and the domain 3 are exposed on the surface of the sustained release particles 1. In particular, the surface of the sustained-release particles 1 is exposed so that the antibiotic compound protrudes outward, and constitutes a protrusion 4. Further, the sustained release particles 1 have a two-phase structure formed from a matrix 2 and a domain 3 and do not have a shell.
 また、徐放性粒子1では、突出物4がマトリクス2から露出しているため、突出物4によって、耐ブロッキング性をより一層向上させることができる。 Moreover, in the sustained release particles 1, since the protrusions 4 are exposed from the matrix 2, the blocking resistance can be further improved by the protrusions 4.
 また、徐放性粒子1では、露出した突出物4を形成する抗生物活性化合物が初期から徐放を開始することができ、また、突出物4が脱落すると、さらに抗生物活性化合物の初期徐放速度が加速されるので、抗生物活性化合物の初期徐放速度を速めて、抗生物活性化合物の徐放速度を調節することができる。 Further, in the sustained release particles 1, the antibiotic active compound that forms the exposed protrusions 4 can start the sustained release from the initial stage, and when the protrusions 4 drop off, the antibiotic active compound further releases the initial slow release. Since the release rate is accelerated, the initial sustained release rate of the antibiotic compound can be increased to adjust the sustained release rate of the antibiotic compound.
 図A1に示すように、この徐放性粒子1は、重合体からなるマトリクス2と、抗生物活性化合物からなるドメイン3であって、マトリクス2中に分散するドメイン3とから形成される2相構造を有するので、抗生物活性化合物の徐放性に優れるとともに、堅牢性に優れる。そのため、徐放性粒子は、上記した樹脂との混練性に優れる。 As shown in FIG. A1, this sustained-release particle 1 is a two-phase formed of a matrix 2 made of a polymer and a domain 3 made of an antibiotic compound and dispersed in the matrix 2. Since it has a structure, it is excellent in sustained release property of the antibiotic compound and excellent in fastness. Therefore, the sustained release particles are excellent in kneadability with the above-described resin.
  [第2実施形態]
 徐放性粒子の第2実施形態について、図A2を参照して説明する。
[Second Embodiment]
A second embodiment of sustained release particles will be described with reference to FIG.
 図A2の断面図に示すように、徐放性粒子1における表面には、ドメイン3が露出されず、すべてのドメイン3がマトリクス2中に内包されている。つまり、徐放性粒子1において、ドメイン3をなす抗生物活性化合物が、マトリクス2によって、被覆されて保護される。 As shown in the cross-sectional view of FIG. A2, the domain 3 is not exposed on the surface of the sustained release particles 1, and all the domains 3 are included in the matrix 2. That is, in the sustained release particles 1, the antibiotic compound forming domain 3 is covered and protected by the matrix 2.
 徐放性粒子1におけるマトリクス2の表面には、例えば、抗生物活性化合物が付着している。具体的には、抗生物活性化合物からなる付着物5が、マトリクス2の全表面の全部または一部を被覆するように、付着している。付着物5は、第1実施形態の徐放性粒子1(図A1参照)の突出物4とは異なり、埋設部8を有さず、マトリクス2の表面に接触している。付着物5の形状は、特に限定されず、例えば、不定形状、球状、塊状、板状など、適宜の形状に形成されている。とりわけ、付着物5の内面(マトリクス2の表面に接触する接触面)は、マトリクス2の表面(球面)に対応する凹面、具体的には、外方に凹む湾曲面を形成している。付着物5は、ドメイン3と同じ大きさあるいはそれにより小さく、ドメイン3の最大長さの平均値に対して、例えば、100%以下、好ましくは、50%以下であり、また、例えば、0.01%以上であり、具体的には、付着物5の最大長さの平均値は、例えば、10μm以下、好ましくは、5μm以下であり、例えば、0.05μm以上、好ましくは、0.1μm以上である。付着物5の、マトリクス2の全表面に対する被覆率は、例えば、10%以上、好ましくは、20%以上であり、また、例えば、100%以下、好ましくは、90%以下である。 For example, an antibiotic compound is attached to the surface of the matrix 2 in the sustained release particles 1. Specifically, the deposit 5 made of an antibiotic compound is adhered so as to cover all or part of the entire surface of the matrix 2. Unlike the protrusion 4 of the sustained release particles 1 (see FIG. A1) of the first embodiment, the deposit 5 does not have the embedded portion 8 and is in contact with the surface of the matrix 2. The shape of the deposit | attachment 5 is not specifically limited, For example, it is formed in appropriate shapes, such as an indefinite shape, spherical shape, lump shape, and plate shape. In particular, the inner surface (contact surface that contacts the surface of the matrix 2) of the deposit 5 forms a concave surface corresponding to the surface (spherical surface) of the matrix 2, specifically, a curved surface that is recessed outward. The deposit 5 is the same size as or smaller than the domain 3, and is, for example, 100% or less, preferably 50% or less with respect to the average value of the maximum length of the domain 3. Specifically, the average value of the maximum length of the deposit 5 is, for example, 10 μm or less, preferably 5 μm or less, for example, 0.05 μm or more, preferably 0.1 μm or more. It is. The coverage of the deposit 5 on the entire surface of the matrix 2 is, for example, 10% or more, preferably 20% or more, and for example, 100% or less, preferably 90% or less.
 そして、この徐放性粒子1を得るには、上記した徐放性粒子1の製造方法の水分散工程において、界面活性剤(第2の界面活性剤)として、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩を配合し、および/または、油相成分調製工程において、重合性ビニルモノマーとして、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを配合する。 And in order to obtain this sustained release particle 1, in the water dispersion process of the manufacturing method of the above-mentioned sustained release particle 1, as surfactant (2nd surfactant), aromatic sulfonic acid and formaldehyde are used. A salt of the condensate is blended and / or, in the oil phase component preparation step, a (meth) acrylic acid ester monomer and a (meth) acrylate crosslinking monomer are blended as the polymerizable vinyl monomer.
 第2の界面活性剤は、好ましくは、上記した第2の分散剤と併用される。 The second surfactant is preferably used in combination with the second dispersant described above.
 芳香族スルホン酸としては、例えば、ベンゼンスルホン酸、トルエンスルホン酸、クメンスルホン酸、ナフタレンスルホン酸などが挙げられる。好ましくは、α-ナフタレンスルホン酸、β-ナフタレンスルホン酸などのナフタレンスルホン酸が挙げられる。 Examples of the aromatic sulfonic acid include benzene sulfonic acid, toluene sulfonic acid, cumene sulfonic acid, naphthalene sulfonic acid and the like. Preferably, naphthalenesulfonic acid such as α-naphthalenesulfonic acid and β-naphthalenesulfonic acid is used.
 塩を形成するためのカチオンとしては、例えば、1価のカチオンが挙げられる。1価のカチオンとしては、ナトリウムカチオン、カリウムカチオンなどのアルカリ金属カチオン、例えば、アンモニウムカチオンなどが挙げられる。好ましくは、アルカリ金属カチオンが挙げられる。 Examples of the cation for forming the salt include a monovalent cation. Examples of the monovalent cation include alkali metal cations such as sodium cation and potassium cation, for example, ammonium cation. Preferably, an alkali metal cation is used.
 芳香族スルホン酸とホルムアルデヒドとの縮合物の塩としては、具体的には、ナフタレンスルホン酸とホルムアルデヒドとの縮合物の塩(ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩)が挙げられる。芳香族スルホン酸とホルムアルデヒドとの縮合物の塩として、市販品を用いることができ、具体的には、デモールNL(β-ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩、41%水溶液、花王社製)などが挙げられる。 Specific examples of the salt of the condensate of aromatic sulfonic acid and formaldehyde include a salt of a condensate of naphthalene sulfonic acid and formaldehyde (naphthalene sulfonic acid formaldehyde condensate sodium salt). Commercially available products can be used as the salt of the condensate of aromatic sulfonic acid and formaldehyde. Specifically, Demol NL (β-naphthalenesulfonic acid formaldehyde condensate sodium salt, 41% aqueous solution, manufactured by Kao Corporation), etc. Is mentioned.
 芳香族スルホン酸とホルムアルデヒドとの縮合物の塩の配合割合は、疎水性スラリー100質量部に対して、例えば、0.0001質量部以上、好ましくは、0.001質量部以上であり、また、例えば、1.0質量部以下、好ましくは、0.2質量部以下、より好ましくは、0.1質量部以下である。 The blending ratio of the salt of the condensate of aromatic sulfonic acid and formaldehyde is, for example, 0.0001 parts by mass or more, preferably 0.001 parts by mass or more, with respect to 100 parts by mass of the hydrophobic slurry. For example, it is 1.0 part by mass or less, preferably 0.2 part by mass or less, and more preferably 0.1 part by mass or less.
 重合性ビニルモノマーにおける(メタ)アクリレート系架橋性モノマーの含有割合は、例えば、10質量%以上、好ましくは、30質量%以上であり、また、例えば、100質量%以下である。 The content ratio of the (meth) acrylate-based crosslinkable monomer in the polymerizable vinyl monomer is, for example, 10% by mass or more, preferably 30% by mass or more, and, for example, 100% by mass or less.
 重合体は、重合性ビニルモノマーが(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを含有するので、(メタ)アクリル酸エステル系モノマーの重合体が(メタ)アクリレート系架橋性モノマーまたはその重合体によって架橋される架橋構造を有する。 In the polymer, since the polymerizable vinyl monomer contains a (meth) acrylate monomer and a (meth) acrylate crosslinkable monomer, the polymer of the (meth) acrylate monomer is a (meth) acrylate crosslinkable. It has a crosslinked structure that is crosslinked by a monomer or a polymer thereof.
  <第2実施形態の効果>
 徐放性粒子の第2実施形態を製造するための、徐放性粒子の製造方法では、水分散工程において、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩を配合し、および/または、油相成分調製工程において、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを重合性ビニルモノマーとして使用し、重合工程において、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを懸濁重合する。そのため、抗生物活性化合物からなるドメイン3が徐放性粒子1の表面に露出すること(図A1参照)を抑制することができる。つまり、図A2に示すように、ドメイン3を、マトリクス2によって被覆して保護することができる。
<Effects of Second Embodiment>
In the method for producing sustained-release particles for producing the second embodiment of the sustained-release particles, a salt of a condensate of aromatic sulfonic acid and formaldehyde is blended and / or oil in the water dispersion step. (Meth) acrylate monomer and (meth) acrylate crosslinkable monomer are used as polymerizable vinyl monomers in the phase component preparation step, and (meth) acrylate monomer and (meth) acrylate monomer are used in the polymerization step. A crosslinkable monomer is subjected to suspension polymerization. Therefore, it can suppress that the domain 3 which consists of an antibiotic compound is exposed to the surface of the sustained release particle | grains 1 (refer FIG. A1). That is, the domain 3 can be covered and protected by the matrix 2 as shown in FIG.
 また、重合工程において、重合性ビニルモノマーを、ナフタレンスルホン酸とホルムアルデヒドとの縮合物の塩(好ましくは、ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩)の存在下で、懸濁重合する場合には、重合工程における懸濁重合体と水連続相との界面がより安定化されるので、抗生物活性化合物が徐放性粒子の外に漏出することを抑制することができる。その結果、ナフタレンスルホン酸とホルムアルデヒドとの縮合物の塩の配合割合によって、徐放性粒子における抗生物活性化合物の徐放性を調節することができる。 In the polymerization step, when the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of naphthalenesulfonic acid and formaldehyde (preferably sodium salt of formaldehyde condensate of naphthalenesulfonic acid), polymerization is performed. Since the interface between the suspension polymer and the water continuous phase in the process is further stabilized, it is possible to prevent the antibiotic compound from leaking out of the sustained release particles. As a result, the sustained release of the antibiotic compound in the sustained release particles can be adjusted by the blending ratio of the salt of the condensate of naphthalene sulfonic acid and formaldehyde.
 また、重合工程において、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを懸濁重合させる場合には、抗生物活性化合物粒子が油相中で分散安定化されるので、抗生物活性化合物が徐放性粒子の外に漏出することを抑制することができる。その結果、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを重合性ビニルモノマーとして使用することによって、徐放性粒子における抗生物活性化合物の徐放性を調節することができる。 Further, in the polymerization step, when (meth) acrylic acid ester monomer and (meth) acrylate crosslinkable monomer are subjected to suspension polymerization, the antibiotic compound particles are dispersed and stabilized in the oil phase. Leakage of the bioactive compound out of the sustained release particles can be suppressed. As a result, by using (meth) acrylic acid ester monomers and (meth) acrylate crosslinkable monomers as polymerizable vinyl monomers, the sustained release properties of the antibiotic compound in the sustained release particles can be adjusted. .
 具体的には、上記した水分散工程を含む徐放性粒子の製造方法により得られる徐放性粒子では、図A2に示すように、マトリクス2によってドメイン3を被覆することができ、付着物5をマトリクス2の表面に付着させておくことができる。そのため、第2実施形態の徐放性粒子1は、付着物5によって、耐ブロッキング性に優れている。また、付着物5によって、抗生物活性化合物の初期徐放速度を速めて、抗生物活性化合物の徐放速度を調節することができる。 Specifically, in the sustained release particles obtained by the method for producing sustained release particles including the water dispersion step described above, the domain 3 can be covered with the matrix 2 as shown in FIG. Can be attached to the surface of the matrix 2. Therefore, the sustained release particles 1 of the second embodiment are excellent in blocking resistance due to the deposits 5. In addition, the attached substance 5 can increase the initial sustained release rate of the antibiotic compound and adjust the sustained release rate of the antibiotic compound.
 そして、図A2に示すように、第2実施形態では、付着物5がマトリクス2の表面に付着しているものの、マトリクス2によってドメイン3が被覆されているため、突出物4を備える第1実施形態の徐放性粒子1(図A1参照)に比べて、耐アルカリ性に優れる。つまり、第2実施形態の徐放性粒子1は、第1実施形態の徐放性粒子1に比べて、アルカリ水溶液中に保存されても、徐放性粒子における突出物4に由来する抗生物活性化合物の濃度の低減を抑制することができる。 As shown in FIG. A2, in the second embodiment, the deposit 5 is attached to the surface of the matrix 2, but the domain 3 is covered with the matrix 2, so the first embodiment including the protrusion 4 is provided. Compared with the sustained release particles 1 (see FIG. A1), the alkali resistance is excellent. That is, the sustained-release particles 1 of the second embodiment are antibiotics derived from the protrusions 4 in the sustained-release particles even when stored in an alkaline aqueous solution, compared to the sustained-release particles 1 of the first embodiment. Reduction of the concentration of the active compound can be suppressed.
  <第2実施形態の変形例>
 図A3に示すように、付着物5をマトリクス2の表面に付着させることなく、マトリクス2の表面の全部を露出させることもできる。
<Modification of Second Embodiment>
As shown in FIG. A3, the entire surface of the matrix 2 can be exposed without attaching the deposit 5 to the surface of the matrix 2.
  [第2の発明群]
  <徐放性粒子の製造方法の説明>
 第2の発明群の徐放性粒子の製造方法について説明する。
[Second invention group]
<Description of production method of sustained release particles>
The method for producing sustained-release particles of the second invention group will be described.
 徐放性粒子の製造方法は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程を備える。また、徐放性粒子の製造方法では、油相成分調製工程、水分散工程および重合工程の少なくともいずれかの工程において、疎水性シェル形成成分および親水性シェル形成成分を含有させる。 In the method for producing sustained-release particles, in the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is contained in the hydrophobic polymerizable vinyl monomer. The oil phase component preparation step for preparing the oil phase component containing the hydrophobic slurry, the water dispersion step for preparing the aqueous dispersion by dispersing the oil phase component in water, and the polymerizable vinyl monomer are suspended. It has a polymerization step for producing a polymer by suspension polymerization. In the method for producing sustained-release particles, a hydrophobic shell-forming component and a hydrophilic shell-forming component are contained in at least one of the oil phase component preparation step, the water dispersion step, and the polymerization step.
 この徐放性粒子の製造方法では、好ましくは、油相成分調製工程において、抗生物活性化合物を重合性ビニルモノマー中に分散して疎水性スラリーを調製し、次いで、疎水性スラリーと疎水性シェル形成成分とを配合して、疎水性スラリーおよび疎水性シェル形成成分を含む油相成分を調製する。また、徐放性粒子の製造方法では、好ましくは、水分散工程および重合工程の少なくともいずれかの工程において、親水性シェル形成成分を含有させ、より好ましくは、重合工程において、親水性シェル形成成分を配合する。 In this method for producing sustained-release particles, preferably, in the oil phase component preparation step, an antibiotic compound is dispersed in the polymerizable vinyl monomer to prepare a hydrophobic slurry, and then the hydrophobic slurry and the hydrophobic shell are prepared. An oil phase component including a hydrophobic slurry and a hydrophobic shell forming component is prepared by blending with the forming component. In the method for producing sustained-release particles, preferably, at least one of the water dispersion step and the polymerization step contains a hydrophilic shell-forming component, and more preferably, the hydrophilic shell-forming component in the polymerization step. Is blended.
 以下、上記した抗生物活性化合物、重合性ビニルモノマー、疎水性シェル形成成分および親水性シェル形成成分について順次説明する。 Hereinafter, the antibiotic compound, the polymerizable vinyl monomer, the hydrophobic shell-forming component, and the hydrophilic shell-forming component will be sequentially described.
  (抗生物活性化合物)
 抗生物活性化合物としては、殺虫(殺蟻を含む)、防虫(防蟻を含む)、殺菌、抗菌、防腐、除草、防藻、防かびなどの抗生物活性を有する、殺虫剤(殺蟻剤を含む)、防虫剤(防蟻剤を含む)、殺菌剤、抗菌剤、防腐剤、除草剤、防藻剤、防かび剤、誘引剤、忌避剤および殺鼠剤などから選択される。
(Antibiotic active compound)
Antibacterial active compounds include insecticides (including ants), insecticides (including ants), sterilization, antibacterial, antiseptic, herbicidal, algae, fungicides and other insecticides (anticides) ), Insecticides (including ant-proofing agents), fungicides, antibacterial agents, antiseptics, herbicides, algae-proofing agents, fungicides, attractants, repellents and rodenticides.
 具体的には、抗生物活性化合物として、例えば、殺虫剤としては、クロチアニジン((E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン)、イミダクロプリド(1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミン)、チアクロプリド、チアメトキサム((EZ)-3-(2-クロロ-1,3-チアゾール-5-イルメチル)-5-メチル-1,3,5-オキサジアジナン-4-イリデン(ニトロ)アミン)、ジノテフランなどのネオニコチノイド系殺虫剤、フルベンジアミド、クロラントラニリプロールなどのジアミド系、ジフルベンズロン、テフルベンズロン、クロルフルアズロン、テブフェノジド、メトキシフェノジド、シロマジンなどの昆虫成長制御剤、クロフェンテジンなどの殺ダニ剤、ピメトロジン、オレイン酸ナトリウムなどのその他合成薬剤などが挙げられる。例えば、殺菌剤としては、塩基性塩化銅、塩基性硫酸銅、オキシン銅などの銅系殺菌剤、金属銀などの銀系殺菌剤、ポリカーバメートなどの有機硫黄系殺菌剤、フサライド、トリシクラゾールなどのメラニン生合成阻害剤、チオファネートメチル、カルベンダジン(MBC)、ジエトフェンカルブなどのベンゾイミダゾール系殺菌剤、イソチアニルなどの酸アミド系殺菌剤、トリホリンなどのステロール生合成阻害剤、1,2-ベンズイソチアゾリン-3-オンなどのイソチアゾロン系殺菌剤、ジクロミジン、フルオルイミド、キャプタン、クロロタロニル、キノチメオアート、オキソリニック酸、ベンチアバリカルブイソプロピル、ジアゾファミド、ジンクピリチオンなどのその他合成阻害剤などが挙げられる。例えば、除草・防藻剤としては、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU)、クミルロン、カルブチレートなどの尿素系薬剤、エトキシスルフロン、ハロスルフロンメチル、フラザスルフロン、ニコスルフロン、チフェンスルロンメチル、イマゾスルフロン、シクロスルファムロン、フルセトスルフロン、トリフロキシスルフロンナトリウム塩などのスルホニルウレア系薬剤、シマジン(CAT)、アトラジン、トリアジフラム、レナシル、シブルトリン、テルブトリンなどのトリアジン系薬剤、グリホサートなどのアミノ酸系、フルミオキサジンなどのフェニルフタルイミド系、メソトリオンなどのトリケトン系、キノクラミン、ピリフタリドなどのその他薬剤などが挙げられる。抗生物活性化合物として、好ましくは、種選択性、安全性の観点から、ネオニコチノイド系殺虫剤、および、汎用性、効力の観点からジンクピリチンが挙げられ、より好ましくは、難溶性の観点から、クロチアニジン、イミダクロプリド、ジンクピリチオンが挙げられ、さらに好ましくは、クロチアニジン、イミダクロプリドが挙げられる。とりわけ好ましくは、哺乳動物に対する安全性の観点から、クロチアニジンが挙げられる。 Specifically, antibiotic active compounds such as clothianidin ((E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine), imidacloprid (1 -(6-Chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine), thiacloprid, thiamethoxam ((EZ) -3- (2-chloro-1,3-thiazol-5-ylmethyl) -5-methyl -1,3,5-oxadiazinan-4-ylidene (nitro) amine), neonicotinoid insecticides such as dinotefuran, diamides such as fulbenzamide, chlorantraniliprole, diflubenzuron, teflubenzuron, chlorfluazuron, Insect growth such as tebufenozide, methoxyphenozide, cyromazine Please, acaricides such as clofentezine, pymetrozine, like other synthetic agents such as sodium oleate. Examples of fungicides include copper-based fungicides such as basic copper chloride, basic copper sulfate, and oxine copper, silver-based fungicides such as metallic silver, organic sulfur-based fungicides such as polycarbamate, fusalides, and tricyclazole. Melanin biosynthesis inhibitors, thiophanate methyl, carbendazine (MBC), benzimidazole fungicides such as dietofencarb, acid amide fungicides such as isothianyl, sterol biosynthesis inhibitors such as triphorine, 1,2-benzisothiazoline-3- And other synthetic inhibitors such as isothiazolone fungicides such as ON, dichromimidine, fluorimide, captan, chlorothalonil, quinotimeoate, oxolinic acid, benchavaricarb isopropyl, diazofamide, and zinc pyrithione. For example, as herbicides / algaeproofing agents, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), cumyluron, carbylate, and other urea chemicals, ethoxysulfuron, halosulfuronmethyl, flazasulfuron , Sulfonylureas such as nicosulfuron, thifensulfuron methyl, imazosulfuron, cyclosulfamuron, flucetosulfuron, trifloxysulfuron sodium salt, triazines such as simazine (CAT), atrazine, triadifram, lenacyl, sibulthrin, terbutrin Drugs, amino acids such as glyphosate, phenylphthalimides such as flumioxazin, triketones such as mesotrione, and other drugs such as quinoclamin and pyriphthalide. The antibiotic compound is preferably a neonicotinoid insecticide from the viewpoint of species selectivity and safety, and zinc pyritine from the viewpoint of versatility and efficacy, more preferably from the viewpoint of poor solubility, Clothianidin, imidacloprid, and zinc pyrithione are preferable, and clothianidin and imidacloprid are more preferable. Particularly preferred is clothianidin from the viewpoint of safety for mammals.
 抗生物活性化合物は、実質的に疎水性であって、具体的には、例えば、水に対する室温(20~30℃、より具体的には、25℃)における溶解度が極めて小さく、より具体的には、例えば、室温の溶解度が、1.5質量部/水100容量部(15g/L)以下、好ましくは、0.5容量部/水100質量部(5g/L)以下、さらに好ましくは、0.1質量部/水100容量部(1g/L)以下である。 Antibiotic active compounds are substantially hydrophobic and, for example, have very low solubility in water at room temperature (20-30 ° C., more specifically 25 ° C.), more specifically, For example, the solubility at room temperature is 1.5 parts by mass / 100 parts by volume of water (15 g / L) or less, preferably 0.5 parts by volume / 100 parts by mass of water (5 g / L) or less, more preferably 0.1 parts by mass / 100 parts by volume of water (1 g / L) or less.
 抗生物活性化合物は、重合性ビニルモノマーに対して実質的に不溶性であって、具体的には、例えば、重合性ビニルモノマーに対する室温(20~30℃、より具体的には、25℃)における溶解度が極めて小さく、具体的には、室温の溶解度が、例えば、0.1質量部/(使用する)重合性ビニルモノマー(混合物)100容量部(1g/L)以下、好ましくは、0.05質量部/(使用する)重合性ビニルモノマー(混合物)100容量部(0.5g/L)以下である。 The antibiotic compound is substantially insoluble in the polymerizable vinyl monomer, and specifically, for example, at room temperature (20 to 30 ° C., more specifically 25 ° C.) with respect to the polymerizable vinyl monomer. The solubility is extremely small. Specifically, the solubility at room temperature is, for example, 0.1 parts by mass / (use) polymerizable vinyl monomer (mixture) 100 parts by volume (1 g / L) or less, preferably 0.05. It is 100 parts by mass (0.5 g / L) or less by mass parts / (used) polymerizable vinyl monomer (mixture).
 また、抗生物活性化合物の融点は、例えば、80℃以上、好ましくは、100℃以上であり、また、抗生物活性化合物が金属原子を含まない化合物であれば、例えば、300℃以下である。 In addition, the melting point of the antibiotic compound is, for example, 80 ° C. or more, preferably 100 ° C. or more. If the antibiotic compound is a compound that does not contain a metal atom, it is, for example, 300 ° C. or less.
  (重合性ビニルモノマー)
 重合性ビニルモノマーとしては、例えば、(メタ)アクリル酸エステル系モノマー、芳香族ビニルモノマー、ビニルエステル系モノマー、マレイン酸エステル系モノマー、ハロゲン化ビニル、ハロゲン化ビニリデン、窒素含有ビニルモノマー、架橋性モノマーなどが挙げられる。
(Polymerizable vinyl monomer)
Examples of polymerizable vinyl monomers include (meth) acrylic acid ester monomers, aromatic vinyl monomers, vinyl ester monomers, maleic acid ester monomers, vinyl halides, vinylidene halides, nitrogen-containing vinyl monomers, and crosslinkable monomers. Etc.
 (メタ)アクリル酸エステル系モノマーとしては、例えば、メタクリル酸エステルおよび/またはアクリル酸エステルであって、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル(i-BMA/i-BA)、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシルなどのアルキル部分が直鎖状、分岐状または環状の炭素数1~6のアルキル部分を有する(メタ)アクリル酸アルキルエステルや、例えば、(メタ)アクリル酸2-メトキシエチルなどの(メタ)アクリル酸アルコキシアルキルエステル、例えば、(メタ)アクリル酸ヒドロキシエチルなどの(メタ)アクリル酸ヒドロキシアルキル、例えば、(メタ)アクリル酸グリシジルなどのエポキシ基含有(メタ)アクリル酸エステルなどが挙げられる。好ましくは、(メタ)アクリル酸アルキルエステルが挙げられる。 Examples of (meth) acrylic acid ester monomers include methacrylic acid esters and / or acrylic acid esters, specifically, (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid. n-propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate (i-BMA / i-BA), tert-butyl (meth) acrylate, (meth) acrylic acid (Meth) acrylic acid alkyl ester in which the alkyl moiety such as n-pentyl, n-hexyl (meth) acrylate and cyclohexyl (meth) acrylate has a linear, branched or cyclic alkyl moiety having 1 to 6 carbon atoms And, for example, alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth) acrylate Ester, e.g., (meth) acrylic acid hydroxyethyl (meth) acrylate hydroxyalkyl include, for example, (meth) epoxy group-containing (meth) acrylic acid esters such as glycidyl acrylate. Preferably, (meth) acrylic acid alkyl ester is mentioned.
 (メタ)アクリル酸アルキルエステルとして、より好ましくは、炭素数1~6のアルキル部分を有する(メタ)アクリル酸アルキルエステル、とりわけ好ましくは、メタクリル酸イソブチル(i-BMA)が挙げられる。 As the (meth) acrylic acid alkyl ester, more preferred is a (meth) acrylic acid alkyl ester having an alkyl moiety having 1 to 6 carbon atoms, and particularly preferred is isobutyl methacrylate (i-BMA).
 芳香族ビニルモノマーとしては、例えば、スチレン(ビニルベンゼン)、p-メチルスチレン、o-メチルスチレン、α-メチルスチレン、エチルビニルベンゼンなどのスチレン系モノマー(モノビニルベンゼン)などが挙げられる。 Examples of the aromatic vinyl monomer include styrene monomers (monovinylbenzene) such as styrene (vinylbenzene), p-methylstyrene, o-methylstyrene, α-methylstyrene, and ethylvinylbenzene.
 ビニルエステル系モノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニルなどが挙げられる。 Examples of vinyl ester monomers include vinyl acetate and vinyl propionate.
 マレイン酸エステル系モノマーとしては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。 Examples of maleate ester monomers include dimethyl maleate, diethyl maleate, and dibutyl maleate.
 ハロゲン化ビニルとしては、例えば、塩化ビニル、フッ化ビニルなどが挙げられる。 Examples of the vinyl halide include vinyl chloride and vinyl fluoride.
 ハロゲン化ビニリデンとしては、例えば、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。 Examples of the vinylidene halide include vinylidene chloride and vinylidene fluoride.
 窒素含有ビニルモノマーとしては、例えば、(メタ)アクリロニトリル、N-フェニルマレイミド、ビニルピリジンなどが挙げられる。 Examples of the nitrogen-containing vinyl monomer include (meth) acrylonitrile, N-phenylmaleimide, vinylpyridine, and the like.
 架橋性モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレートなどのモノまたはポリエチレングリコールジ(メタ)アクリレート、例えば、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート(PETA/PETM)などのアルカンポリオールポリ(メタ)アクリレートなどの(メタ)アクリレート系架橋性モノマー、例えば、アリル(メタ)メタクリレート、トリアリル(イソ)シアヌレートなどのアリル系モノマー、例えば、ジビニルベンゼン、トリビニルベンゼンなどの芳香族架橋性モノマーが挙げられる。好ましくは、モノまたはポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、より好ましくは、エチレングリコールジ(メタ)アクリレート、ジビニルベンゼンが挙げられる。 Examples of the crosslinkable monomer include mono- or polyethylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate, such as 1,3-propanediol di (meth) acrylate, 1, Alkanediol di (meth) acrylates such as 4-butanediol di (meth) acrylate and 1,5-pentanediol di (meth) acrylate, such as trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate ( (Meth) acrylate crosslinkable monomers such as alkane polyol poly (meth) acrylate such as PETA / PETM), for example, allyl (meth) methacrylate, triallyl (iso) cyanurate Le monomers, such as divinyl benzene, aromatic crosslinking monomers such as trivinylbenzene. Preferably, mono or polyethylene glycol di (meth) acrylate and divinylbenzene, and more preferably, ethylene glycol di (meth) acrylate and divinylbenzene are used.
 重合性ビニルモノマーは、単独使用または併用することができる。 The polymerizable vinyl monomer can be used alone or in combination.
 重合性ビニルモノマーとして、好ましくは、(メタ)アクリル酸エステル系モノマーと架橋性モノマーとの組合せ、芳香族ビニルモノマーと架橋性モノマーとの組合せが挙げられる。 Preferred examples of the polymerizable vinyl monomer include a combination of a (meth) acrylic acid ester monomer and a crosslinkable monomer, and a combination of an aromatic vinyl monomer and a crosslinkable monomer.
 重合性ビニルモノマーが(メタ)アクリル酸エステル系モノマーと架橋性モノマーとの組合せである場合には、(メタ)アクリル酸エステル系モノマーの含有割合は、(メタ)アクリル酸エステル系モノマーと架橋性モノマーとの総量100質量部に対して、例えば、10質量部以上、好ましくは、20質量部以上、より好ましくは、30質量部以上であり、また、例えば、90質量部以下、好ましくは、80質量部以下、より好ましくは、70質量部以下である。重合性ビニルモノマーが芳香族ビニルモノマーと架橋性モノマーとの組合せである場合には、芳香族ビニルモノマーの配合割合が、芳香族ビニルモノマーと架橋性モノマーとの総量100質量部に対して、例えば、10質量部以上、好ましくは、20質量部以上、より好ましくは、30質量部以上であり、また、例えば、90質量部以下、好ましくは、80質量部以下、より好ましくは、70質量部以下である。 When the polymerizable vinyl monomer is a combination of a (meth) acrylic acid ester monomer and a crosslinkable monomer, the content of the (meth) acrylic acid ester monomer is crosslinkable with the (meth) acrylic acid ester monomer. For example, 10 parts by mass or more, preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and, for example, 90 parts by mass or less, preferably 80 parts by mass with respect to 100 parts by mass of the total amount of monomers. It is 70 parts by mass or less, more preferably 70 parts by mass or less. When the polymerizable vinyl monomer is a combination of an aromatic vinyl monomer and a crosslinkable monomer, the blending ratio of the aromatic vinyl monomer is, for example, relative to 100 parts by mass of the total amount of the aromatic vinyl monomer and the crosslinkable monomer. 10 parts by mass or more, preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and for example, 90 parts by mass or less, preferably 80 parts by mass or less, more preferably 70 parts by mass or less. It is.
 重合体は、室温で堅牢な表面を有するために、ガラス転移温度が、例えば、30℃以上、好ましくは、50℃以上であり、このガラス転移温度となるように重合性ビニルモノマーが選ばれる。 Since the polymer has a solid surface at room temperature, the glass transition temperature is, for example, 30 ° C. or higher, and preferably 50 ° C. or higher. The polymerizable vinyl monomer is selected so as to have this glass transition temperature.
 重合性ビニルモノマーは、例えば、実質的に疎水性であって、具体的には、例えば、水に対する室温における溶解度が極めて小さく、より具体的には、室温における溶解度が、例えば、10質量部/水100容量部(100g/L)以下、好ましくは、8質量部/水100容量部(80g/L)以下である。なお、重合性ビニルモノマーは、異なる種類が併用される場合には、重合性ビニルモノマー全体(つまり、異なる種類の重合性ビニルモノマーの混合物)として実質的に疎水性である。 The polymerizable vinyl monomer is, for example, substantially hydrophobic, and specifically has, for example, extremely low solubility in water at room temperature. More specifically, the solubility at room temperature is, for example, 10 parts by mass / 100 parts by volume of water (100 g / L) or less, preferably 8 parts by weight / 100 parts by volume of water (80 g / L) or less. When different types of polymerizable vinyl monomers are used in combination, the entire polymerizable vinyl monomer (that is, a mixture of different types of polymerizable vinyl monomers) is substantially hydrophobic.
  (疎水性シェル形成成分および親水性シェル形成成分)
 疎水性シェル形成成分および親水性シェル形成成分は、重付加または重縮合(縮合重合)などにより反応する、互いに異なる2つの成分である。
(Hydrophobic shell forming component and hydrophilic shell forming component)
The hydrophobic shell-forming component and the hydrophilic shell-forming component are two different components that react with each other by polyaddition or polycondensation (condensation polymerization).
 疎水性シェル形成成分は、例えば、実質的に疎水性であって、具体的には、水に対する室温における溶解度が極めて小さく、より具体的には、例えば、室温の溶解度が、1質量部/水100容量部(10g/L)以下、好ましくは、0.5質量部/水100容量部(5g/L)以下、より好ましくは、0.1質量部/水100容量部(1g/L)以下である。 The hydrophobic shell-forming component is, for example, substantially hydrophobic and specifically has a very low solubility in water at room temperature. More specifically, for example, the solubility at room temperature is 1 part by weight / water. 100 parts by volume (10 g / L) or less, preferably 0.5 parts by weight / 100 parts by volume of water (5 g / L) or less, more preferably 0.1 parts by weight / 100 parts by volume of water (1 g / L) or less. It is.
 疎水性シェル形成成分は、親水性シェル形成成分と重付加または重縮合することによりシェルを形成する油溶性化合物であって、例えば、ポリイソシアネート、ポリカルボン酸クロライド、ポリスルホン酸クロライドなどが挙げられる。 The hydrophobic shell-forming component is an oil-soluble compound that forms a shell by polyaddition or polycondensation with a hydrophilic shell-forming component, and examples thereof include polyisocyanate, polycarboxylic acid chloride, and polysulfonic acid chloride.
 ポリイソシアネートとしては、例えば、ジフェニルメタンジイソシアネート、トルエンジイソシアネートなどの芳香族ポリイソシアネート(芳香族ジイソシアネート)、例えば、ヘキサメチレンジイソシアネートなどの脂肪族ポリイソシアネート(脂肪族ジイソシアネート)、例えば、イソホロンジイソシアネート(IPDI)、水素添加キシリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネートなどの脂環族ポリイソシアネート(脂環族ジイソシアネート)、例えば、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネートなどの芳香脂肪族ポリイソシアネート(芳香脂肪族ジイソシアネート)などが挙げられる。 Examples of the polyisocyanate include aromatic polyisocyanates (aromatic diisocyanates) such as diphenylmethane diisocyanate and toluene diisocyanate, aliphatic polyisocyanates (aliphatic diisocyanates) such as hexamethylene diisocyanate, for example, isophorone diisocyanate (IPDI), hydrogen Aliphatic polyisocyanates (alicyclic diisocyanates) such as added xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate, for example, araliphatic polyisocyanates (araliphatic diisocyanate) such as xylylene diisocyanate and tetramethyl xylylene diisocyanate, etc. It is done.
 また、上記したポリイソシアネートの多量体も挙げられ、具体的には、二量体、三量体(イソシアヌレート基含有ポリイソシアネート、環状トリマー)、五量体、七量体などが挙げられる。好ましくは、三量体、具体的には、IPDIの三量体が挙げられる。 Further, multimers of the above-described polyisocyanates are also exemplified, and specific examples include dimers, trimers (isocyanurate group-containing polyisocyanates, cyclic trimers), pentamers, and heptamers. Preferably, a trimer, specifically, a trimer of IPDI is used.
 さらに、上記したポリイソシアネートの変性体(多量体を除く)も挙げられ、例えば、
トリメチロールプロパンのIPDIアダクトなどのポリオール変性ポリイソシアネートなどが挙げられる。
Furthermore, the above-mentioned modified polyisocyanate (excluding multimers) is also exemplified, for example,
Polyol-modified polyisocyanates such as IPDI adducts of trimethylolpropane.
 ポリカルボン酸クロライドとしては、例えば、セバシン酸ジクロライド、アジピン酸ジクロライド、アゼライン酸ジクロライド、テレフタル酸ジクロライド、トリメシン酸ジクロライドなどが挙げられる。 Examples of the polycarboxylic acid chloride include sebacic acid dichloride, adipic acid dichloride, azelaic acid dichloride, terephthalic acid dichloride, and trimesic acid dichloride.
 ポリスルホン酸クロライドとしては、例えば、ベンゼンスルホニルジクロライドなどが挙げられる。 Examples of the polysulfonic acid chloride include benzenesulfonyl dichloride.
 疎水性シェル形成成分は、単独使用または併用することができる。 Hydrophobic shell forming components can be used alone or in combination.
 疎水性シェル形成成分として、好ましくは、ポリイソシアネート、より好ましくは、ジイソシアネートの環状トリマー、トリメチロールプロパンのアダクトが挙げられる。 Preferred examples of the hydrophobic shell-forming component include polyisocyanate, more preferably, a cyclic trimer of diisocyanate and an adduct of trimethylolpropane.
 親水性シェル形成成分は、界面重合の前には、水相に存在する水溶性化合物である。親水性シェル形成成分は、活性水素基含有化合物であって、そのような活性水素基含有化合物は、例えば、アミノ基、ヒドロキシル基などの活性水素基を有する化合物であり、具体的には、例えば、ポリアミン、ポリオール、水などが挙げられる。 The hydrophilic shell forming component is a water-soluble compound present in the aqueous phase before interfacial polymerization. The hydrophilic shell-forming component is an active hydrogen group-containing compound, and such an active hydrogen group-containing compound is, for example, a compound having an active hydrogen group such as an amino group or a hydroxyl group. , Polyamine, polyol, water and the like.
 ポリアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジアミノトルエン、フェニレンジアミン、ピペラジンなどのジアミン、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレン、ペンタミンペンタエチレンヘキサミンなどの、3価以上のポリアミンなどが挙げられる。好ましくは、3価以上のポリアミン、より好ましくは、ジエチレントリアミンが挙げられる。 Examples of the polyamine include diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, diaminotoluene, phenylenediamine, and piperazine, for example, polyamines having a valence of 3 or more such as diethylenetriamine, triethylenetetramine, tetraethylene, and pentaminepentaethylenehexamine. Etc. Preferably, trivalent or higher polyamine, more preferably diethylenetriamine is used.
 ポリオールとしては、例えば、エチレングリコール、プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどのジオール、例えば、グリセリン、トリメチロールプロパンなどのトリオール、例えば、ペンタエリスリトールなどのテトラオールなどが挙げられる。 Examples of the polyol include ethylene glycol, propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, dipropylene glycol, cyclohexane dimethanol, polyethylene glycol, polypropylene glycol, etc. Diols such as triols such as glycerin and trimethylolpropane, and tetraols such as pentaerythritol.
 親水性シェル形成成分は、単独使用または併用することができる。 The hydrophilic shell forming component can be used alone or in combination.
 親水性シェル形成成分として、好ましくは、ポリアミン、ポリオール、より好ましくはポリアミンが挙げられる。 As the hydrophilic shell forming component, polyamines and polyols are preferable, and polyamines are more preferable.
 次に、油相成分調製工程、水分散工程および重合工程について順次説明する。 Next, the oil phase component preparation step, the water dispersion step and the polymerization step will be described in order.
  (油相成分調製工程)
 油相成分調製工程では、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散して疎水性スラリーを調製し、次いで、疎水性スラリーと疎水性シェル形成成分とを配合して、疎水性スラリーおよび疎水性シェル形成成分を含む油相成分を調製する。
(Oil phase component preparation process)
In the oil phase component preparation step, an antibiotic compound that is hydrophobic and substantially insoluble in the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer in the absence of a solvent. Then, a hydrophobic slurry is prepared, and then the hydrophobic slurry and the hydrophobic shell forming component are blended to prepare an oil phase component including the hydrophobic slurry and the hydrophobic shell forming component.
 具体的には、まず、上記した重合性ビニルモノマーおよび抗生物活性化合物を配合し、溶剤(ヘキサン、トルエン、酢酸エチルなどの疎水性の有機溶剤)を配合することなく、攪拌する。これにより、疎水性スラリーを調製する。疎水性スラリーは、油相成分に含まれる。 Specifically, first, the polymerizable vinyl monomer and the antibiotic compound are mixed, and the mixture is stirred without adding a solvent (a hydrophobic organic solvent such as hexane, toluene, ethyl acetate). Thereby, a hydrophobic slurry is prepared. The hydrophobic slurry is included in the oil phase component.
 重合性ビニルモノマーの中に抗生物活性化合物を分散するには、例えば、ペイントシェーカー、ホモディスパー(高速分散機)、ビーズミル(バッチ式ビーズミルを含む)、ボールミル、ロッドミルなどの分散機が用いられる。分散機は、単独使用または併用することができる。分散機として、好ましくは、広い粘度領域で使用可能で、大規模工業生産にも使用できるという観点から、バッチ式ビーズミルが用いられる。 In order to disperse the antibiotic compound in the polymerizable vinyl monomer, for example, a disperser such as a paint shaker, a homodisper (high-speed disperser), a bead mill (including a batch type bead mill), a ball mill, or a rod mill is used. Dispersers can be used alone or in combination. As a disperser, a batch type bead mill is preferably used from the viewpoint that it can be used in a wide viscosity range and can be used for large-scale industrial production.
 上記した分散によって、抗生物活性化合物は、湿式粉砕される。 The antibiotic compound is wet-ground by the dispersion described above.
 抗生物活性化合物の重合性ビニルモノマーに対する配合割合は、質量割合(つまり、抗生物活性化合物の質量部/重合性ビニルモノマーの質量部)で、例えば、1/99以上、好ましくは、10/90以上、より好ましくは、15/85以上であり、また、例えば、90/10以下、好ましくは、75/25以下、より好ましくは、70/30以下、さらに好ましくは、65/35以下、とりわけ好ましくは、60/40以下である。 The blending ratio of the antibiotic compound to the polymerizable vinyl monomer is, for example, 1/99 or more, preferably 10/90, in mass ratio (that is, mass part of antibiotic compound / mass part of polymerizable vinyl monomer). Or more, more preferably 15/85 or more, and for example, 90/10 or less, preferably 75/25 or less, more preferably 70/30 or less, and further preferably 65/35 or less, particularly preferably. Is 60/40 or less.
 また、抗生物活性化合物の配合割合は、重合性ビニルモノマー100質量部に対して、例えば、1質量部以上、好ましくは、10質量部以上、より好ましくは、20質量部以上であり、また、例えば、900質量部以下、好ましくは、300質量部以下、より好ましくは、200質量部以下、さらに好ましくは、150質量部以下である。 The blending ratio of the antibiotic compound is, for example, 1 part by mass or more, preferably 10 parts by mass or more, more preferably 20 parts by mass or more, with respect to 100 parts by mass of the polymerizable vinyl monomer. For example, it is 900 parts by mass or less, preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 150 parts by mass or less.
 上記した分散において、必要により、分散剤(第1の分散剤)を配合することができる。分散剤としては、両親媒性高分子型分散剤、ノニオン系界面活性剤(第1の界面活性剤)などが挙げられる。 In the dispersion described above, a dispersant (first dispersant) can be blended if necessary. Examples of the dispersant include an amphiphilic polymer type dispersant, a nonionic surfactant (first surfactant), and the like.
 両親媒性高分子型分散剤としては、例えば、EFKA4008、EFKA4009(以上チバ・スペシャリティズ製ウレタン系高分子分散剤)、DISPERBYK-2164、DISPERBYK-164(以上ビック・ケミー社製顔料分散用官能基変性共重合体)、NUOSPERSE2008、NUOSPERSE FA-196、NUOSPERSE657(以上エレメンティス社製)、フローレンD-90、ポリフローKL-100、ポリフローKL-700(以上共栄社化学社製)、ホモゲノールL-95(花王社製)などのノニオン系両親媒性高分子型分散剤が挙げられる。また、両親媒性高分子型分散剤としては、例えば、フローレンG-900(共栄社化学社製カルボキシル基変性高分子)、ディスパロンDA-234、ディスパロンDA-325、ディスパロンDA-375、ディスパロンDA-550、ディスパロンAQ-330(以上楠本化成社製ポリエーテルリン酸エステル塩)などのアニオン系両親媒性高分子型分散剤が挙げられる。さらに、両親媒性高分子型分散剤としては、例えば、ノプコスパース092(サンノプコ社製)などのカチオン系両親媒性高分子型分散剤が挙げられる。 Examples of the amphiphilic polymer dispersant include, for example, EFKA4008, EFKA4009 (urethane-based polymer dispersant manufactured by Ciba Specialty), DISPERBYK-2164, DISPERBYK-164 (above, functional group for pigment dispersion manufactured by Bic Chemie) Modified copolymer), NUOSPERSE 2008, NUOSPERSE FA-196, NUOSPERSE 657 (above made by Elementis), Floren D-90, Polyflow KL-100, Polyflow KL-700 (above made by Kyoeisha Chemical Co., Ltd.), Homogenol L-95 (Kao) Nonionic amphiphilic polymer type dispersants such as those manufactured by Komatsu Ltd. Examples of the amphiphilic polymer dispersant include, for example, Floren G-900 (carboxyl-modified polymer manufactured by Kyoeisha Chemical Co., Ltd.), Disparon DA-234, Disparon DA-325, Disparon DA-375, Disparon DA-550. And anionic amphiphilic polymer type dispersants such as Disparon AQ-330 (polyether phosphate ester salt manufactured by Enomoto Kasei Co., Ltd.). Furthermore, examples of the amphiphilic polymer type dispersant include cationic amphiphilic polymer type dispersants such as NOPCOSPERTH 092 (manufactured by San Nopco).
 ノニオン系界面活性剤としては、例えば、アモーゲンCBH(アルキルベタイン)、アモーゲンSH(アルキルアミドベタイン)、ノイゲン100E(ポリオキシエチレンオレイルエーテル)、ノイゲンEA73(ポリオキシエチレンドデシルフェニルエーテル)、ノイゲンES99(モノオレイン酸ポリエチレングリコール)、ダイヤノールCME(ヤシ油脂肪酸モノエタノールアミド)、ダイヤノール300(ヤシ油脂肪酸モノエタノールジアミド)、ソルゲン30(セスキオレイン酸ソルビタン)、ソルゲン40(モノオレイン酸ソルビタン)、ソルゲン50(モノステアリン酸ソルビタン)、エパン420(ポリオキシエチレンポリオキシプロピレングリコール)、エパン720(ポリオキシエチレンポリオキシプロピレングリコール)(以上花王社製)などが挙げられる。 Nonionic surfactants include, for example, amogen CBH (alkylbetaine), amogen SH (alkylamidobetaine), Neugen 100E (polyoxyethylene oleyl ether), Neugen EA73 (polyoxyethylene dodecylphenyl ether), Neugen ES99 (mono) Polyethylene glycol oleate), Dianol CME (coconut oil fatty acid monoethanolamide), Dianol 300 (coconut oil fatty acid monoethanoldiamide), Sorgen 30 (Sorbitan sesquioleate), Sorgen 40 (Sorbitan monooleate), Sorgen 50 (Sorbitan monostearate), Epan 420 (Polyoxyethylene polyoxypropylene glycol), Epan 720 (Polyoxyethylene polyoxypropylene glycol) Le) (all manufactured by Kao Corporation), and the like.
 分散剤として、好ましくは、両親媒性高分子型分散剤が挙げられ、より好ましくは、ノニオン系両親媒性高分子型分散剤、アニオン系両親媒性高分子型分散剤が挙げられ、さらに好ましくは、ノニオン系両親媒性高分子型分散剤が挙げられ、とりわけ好ましくは、顔料分散用官能基変性共重合体分散剤、ウレタン系高分子分散剤が挙げられる。 The dispersant is preferably an amphiphilic polymer dispersant, more preferably a nonionic amphiphilic polymer dispersant, an anionic amphiphilic polymer dispersant, and more preferably. Includes nonionic amphiphilic polymer type dispersants, and particularly preferred are functional group-modified copolymer dispersants for pigment dispersion and urethane polymer dispersants.
 分散剤の配合割合は、抗生物活性化合物に対して、例えば、0.1質量%以上、好ましくは、1質量%以上であり、また、例えば、40質量%以下、好ましくは、20質量%以下である。 The mixing ratio of the dispersant is, for example, 0.1% by mass or more, preferably 1% by mass or more, and for example, 40% by mass or less, preferably 20% by mass or less, with respect to the antibiotic compound. It is.
 疎水性スラリーの調製後、疎水性スラリーと疎水性シェル形成成分とを配合する。 After the preparation of the hydrophobic slurry, the hydrophobic slurry and the hydrophobic shell forming component are blended.
 具体的には、疎水性シェル形成成分を、疎水性スラリーに配合する。 Specifically, the hydrophobic shell forming component is blended in the hydrophobic slurry.
 好ましくは、疎水性シェル形成成分を、重合開始剤とともに、疎水性スラリーに配合する。 Preferably, the hydrophobic shell forming component is blended with the polymerization initiator in the hydrophobic slurry.
 重合開始剤は、懸濁重合で通常用いられるラジカル重合開始剤が挙げられ、具体的には、油溶性重合開始剤などが挙げられる。 Examples of the polymerization initiator include radical polymerization initiators usually used in suspension polymerization, and specific examples include oil-soluble polymerization initiators.
 油溶性重合開始剤としては、例えば、ジラウロイルパーオキシド(10時間半減温度T1/2:61.6℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(10時間半減温度T1/2:65.3℃)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(10時間半減温度T1/2:69.9℃)、ジイソプロピルパーオキシジカーボネート(10時間半減温度T1/2:40.5℃)、ベンゾイルパーオキシド(10時間半減温度T1/2:73.6℃)などの油溶性有機過酸化物、例えば、2,2’-アゾビスイソブチロニトリル(10時間半減温度T1/2:60℃)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(10時間半減温度T1/2:51℃)、2,2’-アゾビス(2-メチルブチロニトリル)(10時間半減温度T1/2:67℃)などの油溶性アゾ化合物などが挙げられる。好ましくは、ジラウロイルパーオキシド、t-ヘキシルパーオキシ-2-エチルヘキサノエート、2,2’-アゾビスイソブチロニトリルが挙げられる。 Examples of the oil-soluble polymerization initiator include dilauroyl peroxide (10 hour half-life temperature T 1/2 : 61.6 ° C.), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (10-hour half-temperature T 1/2 : 65.3 ° C.), t-hexylperoxy-2-ethylhexanoate (10-hour half-temperature T 1/2 : 69.9 ° C.), diisopropyl peroxydicarbonate ( 10 hours half-life temperature T 1/2: 40.5 ℃), benzoyl peroxide (10 hours half-life temperature T 1/2: 73.6 ℃) oil-soluble organic peroxides such as, for example, 2,2' Bisisobutyronitrile (10 hour half temperature T 1/2 : 60 ° C.), 2,2′-azobis (2,4-dimethylvaleronitrile) (10 hour half temperature T 1/2 : 51 ° C.), 2, 2'-azobis 2-methylbutyronitrile) (10 hours half-life temperature T 1/2: 67 ° C.), and the like oil-soluble azo compounds such as. Preferred examples include dilauroyl peroxide, t-hexylperoxy-2-ethylhexanoate, and 2,2′-azobisisobutyronitrile.
 また、重合開始剤の10時間半減期温度T1/2は、例えば、40℃以上、好ましくは、50以上であり、また、例えば、90℃以下、好ましくは、80℃以下である。重合開始剤の10時間半減期温度T1/2は、任意の温度数点における濃度半減時間をプロットして得られたグラフの10時間値の温度とされる。 Moreover, 10-hour half-life temperature T1 / 2 of a polymerization initiator is 40 degreeC or more, for example, Preferably, it is 50 or more, for example, is 90 degrees C or less, Preferably, it is 80 degrees C or less. The 10-hour half-life temperature T 1/2 of the polymerization initiator is the temperature of the 10-hour value in the graph obtained by plotting the concentration half-life at several arbitrary temperatures.
 重合開始剤は、単独使用または2種類以上併用することができる。 Polymerization initiators can be used alone or in combination of two or more.
 重合開始剤の配合割合は、重合性ビニルモノマー100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上、より好ましくは、0.5質量部以上であり、例えば、5質量部以下、好ましくは、3質量部以下、より好ましくは、2.0質量部以下である。重合開始剤の配合割合が上記上限を超える場合には、重合体の分子量が過度に低下する場合があり、上記下限に満たない場合には、転化率が十分に向上せず、未反応の重合性ビニルモノマーが数%以上残存する場合がある。 The blending ratio of the polymerization initiator is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymerizable vinyl monomer. For example, 5 parts by mass or less, preferably 3 parts by mass or less, and more preferably 2.0 parts by mass or less. When the blending ratio of the polymerization initiator exceeds the above upper limit, the molecular weight of the polymer may be excessively decreased. When the blending ratio is less than the above lower limit, the conversion rate is not sufficiently improved, and unreacted polymerization is performed. In some cases, several% or more of the functional vinyl monomer remains.
 なお、重合性ビニルモノマーを分割して配合することができ、その場合には、まず、重合性ビニルモノマーの一部を抗生物活性化合物と配合して、それらを分散して疎水性スラリーを調製し、その後、重合性ビニルモノマーの残部に重合開始剤および疎水性シェル形成成分を溶解させ、これを疎水性スラリーに配合する。 In addition, the polymerizable vinyl monomer can be divided and blended. In that case, first, a part of the polymerizable vinyl monomer is blended with the antibiotic compound and dispersed to prepare a hydrophobic slurry. Thereafter, the polymerization initiator and the hydrophobic shell-forming component are dissolved in the remainder of the polymerizable vinyl monomer, and this is blended into the hydrophobic slurry.
 これによって、重合開始剤、疎水性シェル形成成分および疎水性スラリーを含有する油相成分を調製する。 Thereby, an oil phase component containing a polymerization initiator, a hydrophobic shell forming component and a hydrophobic slurry is prepared.
 疎水性シェル形成成分の配合割合は、重合性ビニルモノマー100質量部に対して、例えば、2質量部以上、好ましくは、5質量部以上、より好ましくは、10質量部以上、さらに好ましくは、20質量部以上であり、また、例えば、、100質量部以下、好ましくは、80質量部以下、より好ましくは、70質量部以下、さらに好ましくは、60質量部以下である。 The blending ratio of the hydrophobic shell-forming component is, for example, 2 parts by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 20 parts by mass with respect to 100 parts by mass of the polymerizable vinyl monomer. For example, it is 100 parts by mass or less, preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and further preferably 60 parts by mass or less.
 また、疎水性シェル形成成分の配合割合は、油相成分に対して、例えば、1質量%以上、好ましくは、2質量%以上であり、また、例えば、60質量%以下、好ましくは、40質量%以下である。 The blending ratio of the hydrophobic shell-forming component is, for example, 1% by mass or more, preferably 2% by mass or more, and for example, 60% by mass or less, preferably 40% by mass with respect to the oil phase component. % Or less.
 一方、抗生物活性化合物の油相成分における含有割合は、例えば、1質量%以上、好ましくは、10質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下、より好ましくは、70質量%以下、より好ましくは、60質量%以下である。 On the other hand, the content ratio of the antibiotic compound in the oil phase component is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 90% by mass or less, preferably 80% by mass or less. Preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less.
 重合性ビニルモノマーの油相成分における含有割合は、例えば、10質量%以上、好ましくは、30質量%以上、好ましくは、50質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下、より好ましくは、70質量%以下である。 The content ratio of the polymerizable vinyl monomer in the oil phase component is, for example, 10% by mass or more, preferably 30% by mass or more, preferably 50% by mass or more, and for example, 90% by mass or less, preferably It is 80 mass% or less, More preferably, it is 70 mass% or less.
 油相成分における抗生物活性化合物の平均粒子径は、例えば、5μm以下、好ましくは、2.5μm以下であり、また、例えば、0.05μm以上、好ましくは、0.1μm以上である。 The average particle size of the antibiotic compound in the oil phase component is, for example, 5 μm or less, preferably 2.5 μm or less, and for example, 0.05 μm or more, preferably 0.1 μm or more.
 なお、上記では、疎水性シェル形成成分および重合開始剤を、疎水性スラリーに対して配合しているが、例えば、疎水性シェル形成成分および重合開始剤を、疎水性スラリーに調製される前の抗生物活性化合物および重合性ビニルモノマーに配合することもできる。具体的には、まず、疎水性シェル形成成分を、抗生物活性化合物および重合性ビニルモノマーに配合し、次いで、それらを分散して疎水性スラリーを調製する。これによって、抗生物活性化合物、重合性ビニルモノマー、疎水性シェル形成成分および重合開始剤を含有する油相成分を、一度に、調製する。 In the above, the hydrophobic shell forming component and the polymerization initiator are blended with respect to the hydrophobic slurry. For example, before the hydrophobic shell forming component and the polymerization initiator are prepared in the hydrophobic slurry, It can also be blended with antibiotic active compounds and polymerizable vinyl monomers. Specifically, the hydrophobic shell forming component is first blended with the antibiotic compound and the polymerizable vinyl monomer, and then they are dispersed to prepare a hydrophobic slurry. Thereby, an oil phase component containing an antibiotic compound, a polymerizable vinyl monomer, a hydrophobic shell forming component and a polymerization initiator is prepared at a time.
  (水分散工程)
 次いで、上記した油相成分を水分散(懸濁)させる。
(Water dispersion process)
Next, the above oil phase component is dispersed (suspended) in water.
 すなわち、油相成分および水を配合し、均一に攪拌することにより、油相成分を水分散(懸濁)させる。これにより、油相成分の水分散(懸濁)液を得る。 That is, the oil phase component and water are mixed and stirred uniformly to disperse (suspend) the oil phase component in water. As a result, an aqueous dispersion (suspension) of the oil phase component is obtained.
 水分散の条件は、特に制限されず、例えば、室温で実施してもよく、あるいは、加熱して実施することもできる。 The conditions for water dispersion are not particularly limited, and may be carried out, for example, at room temperature or by heating.
 油相成分の水分散では、好ましくは、分散剤(第2の分散剤)、界面活性剤(第2の界面活性剤)を配合する。 In the aqueous dispersion of the oil phase component, preferably, a dispersant (second dispersant) and a surfactant (second surfactant) are blended.
 分散剤(第2の分散剤)としては、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン、ゼラチン、アラビアゴム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カチオン化澱粉、ポリアクリル酸およびそのナトリウム塩、スチレンマレイン酸コポリマーおよびそのナトリウム塩などの水溶性ポリマー、例えば、第三燐酸カルシウム、コロイダルシリカ、モンモリナイト、炭酸マグネシウム、水酸化アルミニウム、亜鉛華などの無機系分散剤などが挙げられる。 Examples of the dispersant (second dispersant) include polyvinyl alcohol (PVA), polyvinyl pyrrolidone, gelatin, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, cationized starch, polyacrylic acid and its sodium salt, Water-soluble polymers such as styrene maleic acid copolymer and sodium salt thereof, for example, inorganic dispersants such as tricalcium phosphate, colloidal silica, montmorillonite, magnesium carbonate, aluminum hydroxide, zinc white, and the like.
 分散剤のうち、好ましくは、ポリビニールアルコール(PVA)、第三燐酸カルシウムが挙げられる。さらに好ましくは、ポリビニールアルコール(PVA)が挙げられる。 Among the dispersing agents, polyvinyl alcohol (PVA) and tricalcium phosphate are preferable. More preferably, polyvinyl alcohol (PVA) is mentioned.
 分散剤の配合割合は、油相成分100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上、より好ましくは、1質量部以上であり、また、例えば、10質量部以下、好ましくは、5質量部以下である。 The blending ratio of the dispersant is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the oil phase component. 10 parts by mass or less, preferably 5 parts by mass or less.
 界面活性剤(第2の界面活性剤)は、ラジカル重合中の粒子の凝集を有効に防止するために、好ましくは、上記した分散剤(第2の分散剤)と併用され、具体的には、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ジ-2-エチルヘキシルスルホコハク酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、ノニルジフェニルエーテルスルホン酸ナトリウム、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩などのアニオン系界面活性剤、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンポリオキシプロピレンブロックコポリマーなどのノニオン系界面活性剤などが挙げられる。好ましくは、ノニオン系界面活性剤、アニオン系界面活性剤、より好ましくは、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩が挙げられる。 The surfactant (second surfactant) is preferably used in combination with the above-described dispersant (second dispersant) in order to effectively prevent aggregation of particles during radical polymerization. Specifically, Anionic surfactants such as sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium di-2-ethylhexyl sulfosuccinate, sodium dodecyl diphenyl ether disulfonate, sodium nonyl diphenyl ether sulfonate, and salts of condensation products of aromatic sulfonic acid and formaldehyde Nonionic agents such as polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene monostearate, polyoxyethylene sorbitan monooleate, polyoxyethylene polyoxypropylene block copolymer System surfactant and the like. Preferably, nonionic surfactants, anionic surfactants, more preferably, polyoxyethylene polyoxypropylene block copolymers, and salts of aromatic sulfonic acid and formaldehyde condensates are exemplified.
 界面活性剤は、単独使用または併用することができる。好ましくは、ノニオン系界面活性剤とアニオン系界面活性剤との組合せが挙げられ、より好ましくは、ポリオキシエチレンポリオキシプロピレンブロックコポリマーと、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩との組合せが挙げられる。 Surfactants can be used alone or in combination. Preferably, a combination of a nonionic surfactant and an anionic surfactant is used, and more preferably a combination of a polyoxyethylene polyoxypropylene block copolymer and a salt of a condensate of aromatic sulfonic acid and formaldehyde Is mentioned.
 芳香族スルホン酸としては、例えば、ベンゼンスルホン酸、トルエンスルホン酸、クメンスルホン酸、ナフタレンスルホン酸などが挙げられる。好ましくは、α-ナフタレンスルホン酸、β-ナフタレンスルホン酸などのナフタレンスルホン酸が挙げられる。 Examples of the aromatic sulfonic acid include benzene sulfonic acid, toluene sulfonic acid, cumene sulfonic acid, naphthalene sulfonic acid and the like. Preferably, naphthalenesulfonic acid such as α-naphthalenesulfonic acid and β-naphthalenesulfonic acid is used.
 塩を形成するためのカチオンとしては、例えば、ナトリウムカチオン、カリウムカチオンなどの1価のアルカリ金属カチオン、例えば、アンモニウムカチオンなどが挙げられる。好ましくは、1価のアルカリ金属カチオンが挙げられる。 Examples of the cation for forming a salt include monovalent alkali metal cations such as sodium cation and potassium cation, for example, ammonium cation. Preferably, a monovalent alkali metal cation is used.
 芳香族スルホン酸とホルムアルデヒドとの縮合物の塩としては、具体的には、ナフタレンスルホン酸とホルムアルデヒドとの縮合物の塩(ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩)が挙げられる。芳香族スルホン酸とホルムアルデヒドとの縮合物の塩として、市販品を用いることができ、具体的には、デモールNL(β-ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩、41%水溶液、花王社製)などが挙げられる。 Specific examples of the salt of the condensate of aromatic sulfonic acid and formaldehyde include a salt of a condensate of naphthalene sulfonic acid and formaldehyde (naphthalene sulfonic acid formaldehyde condensate sodium salt). Commercially available products can be used as the salt of the condensate of aromatic sulfonic acid and formaldehyde. Specifically, Demol NL (β-naphthalenesulfonic acid formaldehyde condensate sodium salt, 41% aqueous solution, manufactured by Kao Corporation), etc. Is mentioned.
 界面活性剤の配合割合は、油相成分100質量部に対して、例えば、0.0001質量部以上、好ましくは、0.001質量部以上であり、また、例えば、1.0質量部以下、好ましくは、0.1質量部以下である。界面活性剤がノニオン系界面活性剤とアニオン系界面活性剤との組合せである場合には、ノニオン系界面活性剤とアニオン系界面活性剤とのそれぞれの配合割合が、油相成分100質量部に対して、例えば、0.0001質量部以上、好ましくは、0.001質量部以上であり、また、例えば、1.0質量部以下、好ましくは、0.1質量部以下である。 The blending ratio of the surfactant is, for example, 0.0001 parts by mass or more, preferably 0.001 parts by mass or more, for example, 1.0 parts by mass or less, with respect to 100 parts by mass of the oil phase component. Preferably, it is 0.1 mass part or less. When the surfactant is a combination of a nonionic surfactant and an anionic surfactant, the blending ratio of each of the nonionic surfactant and the anionic surfactant is 100 parts by mass of the oil phase component. On the other hand, it is 0.0001 mass part or more, for example, Preferably, it is 0.001 mass part or more, for example, is 1.0 mass part or less, Preferably, it is 0.1 mass part or less.
 分散剤、または、分散剤および界面活性剤は、例えば、油相成分および水の配合前または配合後のいずれにおいても、配合することができ、好ましくは、油相成分と配合する前の水に配合する。これにより、分散剤の水溶液、または、分散剤および界面活性剤の水溶液を調製する。 The dispersant or the dispersant and the surfactant can be blended, for example, either before or after blending the oil phase component and water, and preferably in the water before blending with the oil phase component. Blend. Thus, an aqueous solution of the dispersant or an aqueous solution of the dispersant and the surfactant is prepared.
 上記した油相成分の水分散(懸濁)では、例えば、ホモミキサー(ホモミクサー)、超音波ホモジナイザー、加圧式ホモジナイザー、マイルダー、多孔膜圧入分散機などの分散機が用いられ、好ましくは、ホモミキサーが用いられる。 In the above-described aqueous dispersion (suspension) of the oil phase component, for example, a disperser such as a homomixer, an ultrasonic homogenizer, a pressure homogenizer, a milder, or a porous membrane press-in disperser is used. Is used.
 水分散の条件は、適宜設定され、ホモミクサーを用いる場合には、その回転数を、例えば、100rpm以上、好ましくは、1000rpm以上であり、また、例えば、10000rpm以下、例えば、8000rpm以下に設定する。 The conditions for water dispersion are appropriately set. When a homomixer is used, the rotation speed is set to, for example, 100 rpm or more, preferably 1000 rpm or more, and for example, set to 10,000 rpm or less, for example, 8000 rpm or less.
 これによって、油相成分が水相に分散された水分散液を調製する。 This prepares an aqueous dispersion in which the oil phase component is dispersed in the aqueous phase.
 また、水分散液に分散剤(第2の分散剤)、または、分散剤および界面活性剤が配合されている場合には、分散剤、または、分散剤および界面活性剤によって、水分散液中の油相成分の液滴がより安定化される。 Further, in the case where a dispersant (second dispersant), or a dispersant and a surfactant is blended in the aqueous dispersion, the dispersant or the dispersant and the surfactant are used in the aqueous dispersion. The droplets of the oil phase component are more stabilized.
 水(または水溶液)の配合割合は、油相成分100質量部に対して、例えば、50質量部以上、好ましくは、100質量部以上、より好ましくは、150質量部以上であり、また、例えば、1900質量部以下、好ましくは、900質量部以下、より好ましくは、400質量部以下となるように、調整される。 The blending ratio of water (or aqueous solution) is, for example, 50 parts by mass or more, preferably 100 parts by mass or more, more preferably 150 parts by mass or more, with respect to 100 parts by mass of the oil phase component. It is adjusted to 1900 parts by mass or less, preferably 900 parts by mass or less, more preferably 400 parts by mass or less.
  (重合工程)
 重合工程では、重合性ビニルモノマーを懸濁重合するとともに、疎水性シェル形成成分および親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成する。つまり、シェルを、懸濁重合により得られる重合体、つまり、懸濁重合体を被覆するように、形成する。
(Polymerization process)
In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to form a shell that covers the suspension polymer. That is, the shell is formed so as to cover a polymer obtained by suspension polymerization, that is, a suspension polymer.
  <懸濁重合>
 重合工程では、重合性ビニルモノマーを懸濁重合して、重合体を生成する。重合性ビニルモノマーを懸濁重合するには、水分散液を所定温度に昇温する。懸濁重合では、水分散液の水分散状態が維持されるように、水分散液を攪拌しながら、重合性ビニルモノマーが反応(具体的には、ラジカル重合)して、重合性ビニルモノマーの重合体が生成される。懸濁重合は、重合体となる重合性ビニルモノマーがすべて水分散粒子(疎水性液相)のみにあることから、インサイチュ(in-situ)重合である。
<Suspension polymerization>
In the polymerization step, a polymerizable vinyl monomer is subjected to suspension polymerization to produce a polymer. For suspension polymerization of the polymerizable vinyl monomer, the aqueous dispersion is heated to a predetermined temperature. In suspension polymerization, the polymerizable vinyl monomer reacts (specifically, radical polymerization) while stirring the aqueous dispersion so that the aqueous dispersion state of the aqueous dispersion is maintained, and A polymer is produced. Suspension polymerization is in-situ polymerization because all of the polymerizable vinyl monomer that becomes a polymer is only in water-dispersed particles (hydrophobic liquid phase).
 具体的には、懸濁重合は、水分散液を攪拌しながら加熱することにより、重合性ビニルモノマーがそのまま、水分散粒子中で重合を開始し、重合体を生成する。 Specifically, in suspension polymerization, the aqueous dispersion is heated while stirring, whereby the polymerizable vinyl monomer starts polymerization in the aqueous dispersion particles as it is, and a polymer is formed.
 攪拌は、例えば、攪拌羽根を有する攪拌器によって実施できる。攪拌速度は、攪拌羽根の周速が、例えば、10m/分以上、好ましくは、20m/分以上であり、また、400m/分以下、好ましくは200m/分以下である。 Stirring can be performed, for example, with a stirrer having stirring blades. As for the stirring speed, the peripheral speed of the stirring blade is, for example, 10 m / min or more, preferably 20 m / min or more, and 400 m / min or less, preferably 200 m / min or less.
 水分散液を、その温度が、例えば、40℃以上、好ましくは、50℃以上、より好ましくは、60℃以上、また、例えば、100℃以下、好ましくは、90℃以下、より好ましくは、80℃以下となるように、加熱する。 The temperature of the aqueous dispersion is, for example, 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and for example, 100 ° C. or lower, preferably 90 ° C. or lower, more preferably 80 ° C. Heat to below ℃.
 そして、抗生物活性化合物が重合体と非相溶である状態で懸濁重合が進行する。 Then, suspension polymerization proceeds in a state where the antibiotic compound is incompatible with the polymer.
 加熱時間は、例えば、2時間以上、好ましくは、3時間以上であり、また、例えば、12時間以下、好ましくは、8時間以下である。さらに、所定温度に加熱後、その温度を所定時間維持し、その後、加熱および温度維持を繰り返すことにより、段階的に加熱することもできる。 The heating time is, for example, 2 hours or more, preferably 3 hours or more, and for example, 12 hours or less, preferably 8 hours or less. Furthermore, after heating to a predetermined temperature, the temperature can be maintained for a predetermined time, and then heating and temperature maintenance can be repeated to heat in stages.
 懸濁重合において、抗生物活性化合物は、重合性ビニルモノマーに対して実質的に不溶性であり、抗生物活性化合物は、重合開始から重合終了後まで、重合性ビニルモノマーおよび/または重合体に対して、非相溶状態を維持している。 In suspension polymerization, the antibiotic compound is substantially insoluble with respect to the polymerizable vinyl monomer, and the antibiotic compound is incompatible with the polymerizable vinyl monomer and / or polymer from the start of polymerization to the end of polymerization. The incompatible state is maintained.
 懸濁重合によって、重合性ビニルモノマーから調製される重合体が、懸濁重合体として生成される。 By suspension polymerization, a polymer prepared from a polymerizable vinyl monomer is produced as a suspension polymer.
  <界面重合>
 界面重合を上記した懸濁重合とともに実施するには、例えば、親水性シェル形成成分を、疎水性シェル形成成分を含有する水分散液に含有させるとともに、水分散液を昇温させる。具体的には、親水性シェル形成成分を、疎水性シェル形成成分を含有する水分散液に配合するとともに、水分散液を、懸濁重合が開始する温度(具体的には、重合開始剤の分解温度以上の温度)に昇温させる。
<Interfacial polymerization>
In order to perform the interfacial polymerization together with the suspension polymerization described above, for example, the hydrophilic shell forming component is contained in the aqueous dispersion containing the hydrophobic shell forming component, and the temperature of the aqueous dispersion is raised. Specifically, the hydrophilic shell-forming component is blended with the aqueous dispersion containing the hydrophobic shell-forming component, and the aqueous dispersion is mixed with the temperature at which suspension polymerization starts (specifically, the polymerization initiator The temperature is raised to a temperature equal to or higher than the decomposition temperature.
 界面重合が開始する温度(開始温度)Tipは、特に限定されず、例えば、0℃以上、好ましくは、10℃以上であり、また、例えば、100℃以下、好ましくは、80℃以下である。なお、界面重合は、温度が、例えば、25℃以上、好ましくは、40℃以上、また、例えば、100℃以下、好ましくは、80℃以下に加熱されたときに、反応が促進する。 The temperature at which the interfacial polymerization starts (starting temperature) T ip is not particularly limited, and is, for example, 0 ° C. or higher, preferably 10 ° C. or higher, and, for example, 100 ° C. or lower, preferably 80 ° C. or lower. . In the interfacial polymerization, the reaction is accelerated when the temperature is, for example, 25 ° C. or higher, preferably 40 ° C. or higher, and 100 ° C. or lower, preferably 80 ° C. or lower.
 また、懸濁重合が開始する温度(開始温度)Tは、例えば、上記した重合開始剤の10時間半減温度T1/2と下記式(1)の関係にある。 The temperature (starting temperature) T i at which suspension polymerization starts is, for example, in the relationship of the following formula (1) with the 10 hour half-life temperature T 1/2 of the polymerization initiator described above.
  T1/2-10≦T≦T1/2+10      (1)
(式中、Tは、懸濁重合の開始温度、T1/2は、重合開始剤の10時間半減温度を示す。)
 具体的には、懸濁重合が開始する温度は、例えば、55℃以上、好ましくは、60℃以上であり、また、例えば、100℃以下、好ましくは、80℃以下である。
T 1/2 −10 ≦ T i ≦ T 1/2 +10 (1)
(In the formula, T i represents the initiation temperature of suspension polymerization, and T 1/2 represents the 10-hour half-life temperature of the polymerization initiator.)
Specifically, the temperature at which suspension polymerization starts is, for example, 55 ° C. or higher, preferably 60 ° C. or higher, and for example, 100 ° C. or lower, preferably 80 ° C. or lower.
 そのため、懸濁重合の開始温度Tは、例えば、界面重合の開始温度Tipに比べて、高く設定されている。具体的には、懸濁重合の開始温度Tは、界面重合の開始温度Tipに比べて、例えば、5℃以上高く、好ましくは、10℃以上高く、より好ましくは、20℃以上高く設定されており、また、例えば、100℃以下高く設定されている。 Therefore, the suspension polymerization start temperature T i is set higher than, for example, the interfacial polymerization start temperature T ip . Specifically, the suspension polymerization start temperature T i is set to, for example, 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 20 ° C. or higher, compared to the interfacial polymerization start temperature T ip. In addition, for example, the temperature is set higher by 100 ° C. or less.
  <界面重合のタイミング>
 界面重合および懸濁重合を開始する方法としては、例えば、(1)界面重合を懸濁重合の開始と同時に開始する方法、(2)界面重合を懸濁重合の開始より前に開始する方法、(3)界面重合を懸濁重合の開始より後に開始する方法が挙げられる。
<Interfacial polymerization timing>
Examples of the method for starting interfacial polymerization and suspension polymerization include (1) a method of starting interfacial polymerization simultaneously with the start of suspension polymerization, (2) a method of starting interfacial polymerization before the start of suspension polymerization, (3) The method of starting interfacial polymerization after the start of suspension polymerization is mentioned.
 (1)界面重合を懸濁重合の開始と同時に開始する方法では、例えば、疎水性シェル形成成分を含有する油相成分を含む水分散液を、懸濁重合が開始する温度以上に昇温し、この際、水分散液の温度が懸濁重合が開始する温度に達した時点で、親水性シェル形成成分を、水分散液に配合する。 (1) In the method of starting interfacial polymerization simultaneously with the start of suspension polymerization, for example, the temperature of an aqueous dispersion containing an oil phase component containing a hydrophobic shell-forming component is raised to a temperature higher than the temperature at which suspension polymerization starts. At this time, when the temperature of the aqueous dispersion reaches the temperature at which suspension polymerization starts, the hydrophilic shell-forming component is added to the aqueous dispersion.
 (2)界面重合を懸濁重合の開始より前に開始する方法では、懸濁重合が開始する温度に昇温する前に、親水性シェル形成成分を、疎水性シェル形成成分を含有する油相成分を含む水分散液に配合する。つまり、まず、親水性シェル形成成分を、例えば、室温(20~30℃)の水分散液に配合し、その後、常温の水分散液を、懸濁重合が開始する温度に昇温する。 (2) In the method of starting interfacial polymerization before the start of suspension polymerization, before raising the temperature to the temperature at which suspension polymerization starts, the hydrophilic shell-forming component is changed to the oil phase containing the hydrophobic shell-forming component. It mix | blends with the aqueous dispersion containing a component. That is, first, the hydrophilic shell-forming component is added to, for example, a room temperature (20 to 30 ° C.) aqueous dispersion, and then the room temperature aqueous dispersion is heated to a temperature at which suspension polymerization starts.
 なお、親水性シェル形成成分を、疎水性シェル形成成分を含有する油相成分を含む水分散液に配合した直後に、水分散液を、懸濁重合が開始する温度未満に昇温し、その後、水分散液を、懸濁重合が開始する温度に昇温することもできる。水分散液を、懸濁重合が開始する温度未満に昇温する場合には、水分散液を、その温度が、例えば、55℃未満、好ましくは、50℃未満となるように、加熱する。これによって、懸濁重合を開始する前に、界面重合を十分に促進させることができる。 Immediately after blending the hydrophilic shell forming component with the aqueous dispersion containing the oil phase component containing the hydrophobic shell forming component, the aqueous dispersion is heated to below the temperature at which suspension polymerization starts, and then The aqueous dispersion can also be heated to a temperature at which suspension polymerization starts. When the temperature of the aqueous dispersion is raised below the temperature at which suspension polymerization starts, the aqueous dispersion is heated so that the temperature is, for example, less than 55 ° C., preferably less than 50 ° C. Thereby, the interfacial polymerization can be sufficiently promoted before the suspension polymerization is started.
 (3)界面重合を懸濁重合の開始より後に開始する方法では、まず、水分散液を、懸濁重合が開始する温度以上に昇温し、その後、親水性シェル形成成分を水分散液に配合する。具体的には、水分散液を、懸濁重合が開始する温度以上に昇温してから、親水性シェル形成成分を水分散液に配合するまでの時間は、例えば、0.5時間以上、好ましくは、1時間以上であり、また、例えば、8時間以下、好ましくは、5時間以下である。 (3) In the method of starting interfacial polymerization after the start of suspension polymerization, first, the aqueous dispersion is heated to a temperature higher than the temperature at which suspension polymerization starts, and then the hydrophilic shell-forming component is converted into the aqueous dispersion. Blend. Specifically, the time from when the aqueous dispersion is heated to a temperature above the temperature at which suspension polymerization starts until the hydrophilic shell-forming component is blended with the aqueous dispersion is, for example, 0.5 hours or more, It is preferably 1 hour or longer, and for example, 8 hours or shorter, preferably 5 hours or shorter.
 (1)または(2)の方法は、(3)の方法に比べて、抗生物活性化合物がマトリクス(後述)から脱落することを抑制することができ、そのため、シェルを形成しながら、抗生物活性化合物がマトリクス中に分散した状態に維持することができる。つまり、徐放性粒子において、シェルが、抗生物活性化合物をマトリクス内に確実に内包することができる。そのため、徐放性粒子における抗生物活性化合物の耐アルカリ性を向上させることができる。 Compared with the method (3), the method (1) or (2) can prevent the antibiotic compound from dropping from the matrix (described later), and thus the antibiotic can be formed while forming a shell. The active compound can be kept dispersed in the matrix. That is, in the sustained release particles, the shell can surely encapsulate the antibiotic compound in the matrix. Therefore, the alkali resistance of the antibiotic compound in the sustained release particles can be improved.
 (2)界面重合を懸濁重合の開始より前に開始する方法では、シェルを、油相成分の液滴を被覆するように、形成することができるので、懸濁重合中に内包されている抗生物活性化合物が、懸濁重合体から水相界面(すなわち、懸濁重合体と水連続相との界面)に移動することを制御することができる。 (2) In the method in which interfacial polymerization is started before the start of suspension polymerization, the shell can be formed so as to cover the droplets of the oil phase component, and is thus included in the suspension polymerization. It is possible to control the movement of the antibiotic compound from the suspension polymer to the aqueous phase interface (ie, the interface between the suspension polymer and the water continuous phase).
 親水性シェル形成成分の配合割合は、疎水性シェル形成成分がポリイソシアネートである場合には、疎水性シェル形成成分のイソシアネート基の、親水性シェル形成成分の活性水素基(親水性シェル形成成分がポリアミンである場合には、アミノ基)に対する、当量比(イソシアネート基/アミノ基)が、例えば、0.4以上、好ましくは、0.6以上なる割合であり、また、例えば、1.2以下、好ましくは、1.0以下となる割合である。 When the hydrophobic shell forming component is a polyisocyanate, the mixing ratio of the hydrophilic shell forming component is the active hydrogen group (hydrophilic shell forming component of the hydrophilic shell forming component) of the isocyanate group of the hydrophobic shell forming component. In the case of polyamine, the equivalent ratio (isocyanate group / amino group) to amino group) is, for example, 0.4 or more, preferably 0.6 or more, and for example, 1.2 or less. The ratio is preferably 1.0 or less.
 なお、上記では、親水性シェル形成成分を、疎水性シェル形成成分を含有する水分散液に配合しているが、例えば、親水性シェル形成成分が水である場合には、別途、親水性シェル形成成分を水分散液に配合せず、水分散液に含有されている水を、親水性シェル形成成分として利用し、この親水性シェル形成成分と疎水性シェル形成成分とを界面重合させることもできる。親水性シェル形成成分が水である場合には、ジブチルチンジラウレートなどの重付加触媒を用いることができる。 In the above, the hydrophilic shell forming component is blended in the aqueous dispersion containing the hydrophobic shell forming component. For example, when the hydrophilic shell forming component is water, the hydrophilic shell forming component is separately provided. It is also possible to use the water contained in the aqueous dispersion as a hydrophilic shell forming component without intermixing the forming component with the aqueous dispersion and to interfacially polymerize the hydrophilic shell forming component and the hydrophobic shell forming component. it can. When the hydrophilic shell forming component is water, a polyaddition catalyst such as dibutyltin dilaurate can be used.
 界面重合では、油相成分(油相)中の疎水性シェル形成成分と、水相中の親水性シェル形成成分とが、水分散粒子の表面で界面重合する。 In the interfacial polymerization, the hydrophobic shell-forming component in the oil phase component (oil phase) and the hydrophilic shell-forming component in the aqueous phase undergo interfacial polymerization on the surface of the water-dispersed particles.
 界面重合の重合時間は、懸濁重合の温度に依存するが、重合反応液のpHの低下(中和点到達)により、確認できる。界面重合が終了する時間は、重合温度が60~70℃であれば、例えば、2時間~4時間である。 The polymerization time for the interfacial polymerization depends on the temperature of the suspension polymerization, but can be confirmed by lowering the pH of the polymerization reaction solution (reaching the neutralization point). When the polymerization temperature is 60 to 70 ° C., the time for completing the interfacial polymerization is, for example, 2 to 4 hours.
 界面重合を開始することにより、好ましくは、懸濁重合が開始する前または同時に、油相成分液滴を被覆するシェルを形成することができる。その結果、懸濁重合中に内包されている抗生物活性化合物が、懸濁重合体から水相界面(懸濁重合体と水連続相との界面)に移動することを制御することができる。 By starting the interfacial polymerization, a shell that covers the oil phase component droplets can be preferably formed before or simultaneously with the start of the suspension polymerization. As a result, it is possible to control that the antibiotic compound contained in the suspension polymerization moves from the suspension polymer to the aqueous phase interface (interface between the suspension polymer and the water continuous phase).
 さらには、疎水性シェル形成成分および親水性シェル形成成分の界面重合によって得られる懸濁重合体の表面には、疎水性シェル形成成分および親水性シェル形成成分の重合体からなるシェルが形成されている。そのため、徐放性粒子中の抗生物活性化合物の徐放速度が遅くなり、長期にわたり徐放性を継続することができる。 Furthermore, a shell made of a polymer of a hydrophobic shell-forming component and a hydrophilic shell-forming component is formed on the surface of the suspension polymer obtained by interfacial polymerization of the hydrophobic shell-forming component and the hydrophilic shell-forming component. Yes. Therefore, the sustained release rate of the antibiotic compound in the sustained release particles becomes slow, and the sustained release can be continued for a long time.
 界面重合および懸濁重合の後、反応後の水分散液を、例えば、放冷などによって冷却し、100目(メッシュ)の濾布などで濾過することにより、徐放性粒子の水分散液(懸濁液)を得る。 After the interfacial polymerization and suspension polymerization, the aqueous dispersion after the reaction is cooled by, for example, cooling, and filtered through a 100 mesh (mesh) filter cloth to obtain an aqueous dispersion of sustained release particles ( Suspension).
 冷却温度は、例えば、室温(20~30℃、より具体的には、25℃)である。 The cooling temperature is, for example, room temperature (20 to 30 ° C., more specifically 25 ° C.).
 得られた徐放性粒子における抗生物活性化合物の濃度は、例えば、1質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上であり、また、例えば、50質量%以下、好ましくは、40質量%以下、より好ましくは、35質量%以下である。 The concentration of the antibiotic compound in the obtained sustained-release particles is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and for example, 50% by mass or less. The amount is preferably 40% by mass or less, and more preferably 35% by mass or less.
 また、水分散液(懸濁液)における徐放性粒子の含有割合は、油相成分およびそれが分散される水(または水溶液)の配合量によって決定されており、具体的には、例えば、10質量%以上、好ましくは、20質量%以上であり、また、例えば、50質量%以下、好ましくは、40質量%以下である。 Further, the content ratio of the sustained release particles in the aqueous dispersion (suspension) is determined by the blending amount of the oil phase component and the water (or aqueous solution) in which the oil phase component is dispersed. Specifically, for example, It is 10 mass% or more, Preferably, it is 20 mass% or more, for example, is 50 mass% or less, Preferably, it is 40 mass% or less.
 徐放性粒子におけるシェルの濃度は、例えば、1質量%以上、好ましくは、2質量%以上であり、また、例えば、50質量%以下、好ましくは、40質量%以下である。 The concentration of the shell in the sustained release particles is, for example, 1% by mass or more, preferably 2% by mass or more, and for example, 50% by mass or less, preferably 40% by mass or less.
 徐放性粒子の平均粒子径は、例えば、1μm以上、好ましくは、2μm以上であり、また、例えば、20mm以下、好ましくは、10mm以下である。なお、平均粒子径は、メジアン径として算出される。 The average particle diameter of the sustained release particles is, for example, 1 μm or more, preferably 2 μm or more, and for example, 20 mm or less, preferably 10 mm or less. The average particle diameter is calculated as the median diameter.
  <第2の発明群の徐放性粒子の効果>
 第2の発明群の徐放性粒子は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散した疎水性スラリー、および、疎水性シェル形成成分を含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、疎水性シェル形成成分と親水性シェル形成成分とを界面重合してシェルとなる重合体を形成し、重合性ビニルモノマーを懸濁重合して、コアとなる重合体を生成する重合工程を備える製造方法により得られるので、徐放性および耐アルカリ性に優れ、堅牢な徐放性粒子を得ることができる。
<Effects of sustained-release particles of the second invention group>
The sustained-release particles of the second invention group are hydrophobic, and in the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to a hydrophobic polymerizable vinyl monomer. A hydrophobic slurry dispersed in a vinyl monomer, and an oil phase component preparation step for preparing an oil phase component containing a hydrophobic shell-forming component; an aqueous dispersion step for preparing an aqueous dispersion by dispersing the oil phase component in water; And a polymerization step in which a hydrophobic shell-forming component and a hydrophilic shell-forming component are interfacially polymerized to form a shell polymer, and a polymerizable vinyl monomer is suspension-polymerized to form a core polymer. Since it is obtained by the manufacturing method provided, it is possible to obtain sustained release particles that are excellent in sustained release properties and alkali resistance and are robust.
 しかるに、特許文献1に記載のような方法によって得られるマイクロカプセルは、界面重合のみによって得られるので、マイクロカプセル中に分散媒(溶媒)が残存し、そのため、その表面硬度が不十分になる場合がある。その結果、マイクロカプセルの分散液が、高い剪断力がかかる工程を経る場合や長期にわたって保存される場合には、マイクロカプセルが凝集して、再分散が困難となる場合がある。 However, since the microcapsules obtained by the method described in Patent Document 1 are obtained only by interfacial polymerization, the dispersion medium (solvent) remains in the microcapsules, and therefore the surface hardness becomes insufficient. There is. As a result, when the microcapsule dispersion undergoes a process in which a high shearing force is applied or is stored for a long period of time, the microcapsules may aggregate to make redispersion difficult.
 さらに、マイクロカプセルの表面硬度が不十分であることから、マイクロカプセルがブロッキングし易く、マイクロカプセルを乾燥粒子として取り出すことが困難となる場合がある。 Furthermore, since the surface hardness of the microcapsules is insufficient, the microcapsules are likely to be blocked, and it may be difficult to take out the microcapsules as dry particles.
 一方、第2の発明群の徐放性粒子は、溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、疎水性の重合性ビニルモノマー中に分散した疎水性スラリー、および、疎水性シェル形成成分を含有する油相成分を調製する油相成分調製工程、油相成分を水分散して水分散液を調製する水分散工程、および、疎水性シェル形成成分と親水性シェル形成成分とを界面重合してシェルとなる重合体を形成し、重合性ビニルモノマーを懸濁重合して、コアとなる重合体を生成する重合工程を備える製造方法により得られるので、上記した界面重合における溶剤の存在に起因する、徐放性粒子の表面硬度の低下を防止して、堅牢な徐放性粒子を得ることができ、ひいては、得られる徐放性粒子の再分散性および耐ブロッキング性に優れる。 On the other hand, the sustained-release particles of the second invention group are hydrophobic, and in the absence of a solvent, the hydrophobic active vinyl compound that is substantially insoluble with respect to the hydrophobic polymerizable vinyl monomer, Hydrophobic slurry dispersed in a polymerizable vinyl monomer, an oil phase component preparation step for preparing an oil phase component containing a hydrophobic shell-forming component, and an aqueous dispersion for preparing an aqueous dispersion by dispersing the oil phase component in water Process and polymerization to form a polymer that becomes a core by interfacial polymerization of a hydrophobic shell-forming component and a hydrophilic shell-forming component to form a polymer that becomes a shell, and suspension polymerization of a polymerizable vinyl monomer Since it is obtained by a production method comprising a step, it is possible to obtain a robust sustained-release particle by preventing a decrease in surface hardness of the sustained-release particle due to the presence of the solvent in the above-described interfacial polymerization, and thus Obtained sustained release Redispersibility of particles and excellent in blocking resistance.
 この徐放性粒子の製造方法によれば、堅牢であるとともに、再分散性および耐ブロッキング性に優れる徐放性粒子を得ることができる。 According to this method for producing sustained-release particles, it is possible to obtain sustained-release particles that are robust and excellent in redispersibility and blocking resistance.
 そして、この徐放性粒子の製造方法によれば、懸濁重合された懸濁重合体を被覆するシェルを形成するので、抗生物活性化合物の内包率(徐放性粒子における抗生物活性化合物の濃度)を高くすることができるとともに、抗生物活性化合物の徐放性および耐アルカリ性に優れる。なお、徐放性粒子の徐放性と、徐放性粒子における抗生物活性化合物の耐アルカリ性とは、互いに関連しており、具体的には、徐放性粒子における抗生物活性化合物の耐アルカリ性が向上すると、徐放性粒子の徐放性が向上する。 According to this method for producing sustained-release particles, a shell that coats the suspension-polymerized suspension polymer is formed, so that the inclusion rate of the antibiotic compound (of the antibiotic compound in the sustained-release particles) Concentration) can be increased, and the sustained release and alkali resistance of the antibiotic compound are excellent. Note that the sustained release property of the sustained release particles and the alkali resistance of the antibiotic compound in the sustained release particles are related to each other. Specifically, the alkali resistance of the antibiotic compound in the sustained release particles is When is improved, the sustained release property of the sustained release particles is improved.
 とりわけ、疎水性シェル形成成分がポリイソシアネートを含有し、親水性シェル形成成分がポリアミンを含有する場合には、シェルがポリウレアからなるので、熱可塑性ウレタン樹脂との溶融混和性に優れる徐放性粒子となる。 In particular, when the hydrophobic shell-forming component contains polyisocyanate and the hydrophilic shell-forming component contains polyamine, the shell is made of polyurea, so that the sustained-release particles are excellent in melt miscibility with the thermoplastic urethane resin. It becomes.
 このような徐放性粒子は、各種の工業製品に適用することができ、例えば、屋内外の塗料、ゴム、繊維、樹脂(プラスチックを含む)、接着剤、目地剤、シーリング剤、建材、コーキング剤、木材処理剤、土壌処理剤、製紙工程における白水、顔料、印刷版用処理液、冷却用水、インキ、切削油、化粧用品、不織布、紡糸油、皮革などに、添加することができる。なお、これらの工業製品に対する徐放性粒子中の抗生物活性化合物の添加量は、例えば、10mg/kg~100g/kg(製品質量)である。 Such sustained-release particles can be applied to various industrial products, for example, indoor and outdoor paints, rubber, fibers, resins (including plastics), adhesives, joint agents, sealing agents, building materials, caulking. It can be added to the agent, wood treatment agent, soil treatment agent, white water, pigment, printing plate treatment liquid, cooling water, ink, cutting oil, cosmetics, non-woven fabric, spinning oil, leather, etc. in the papermaking process. The added amount of the antibiotic compound in the sustained release particles to these industrial products is, for example, 10 mg / kg to 100 g / kg (product mass).
 次に、徐放性粒子から製剤化された粉剤を熱可塑性樹脂と配合する態様について説明する。 Next, an aspect in which a powder formulated from sustained-release particles is blended with a thermoplastic resin will be described.
 この方法では、まず、徐放性粒子の懸濁液を乾燥させて、粉剤に製剤化する。 In this method, first, a suspension of sustained-release particles is dried and formulated into a powder.
 次いで、粉剤および熱可塑性樹脂を溶融混練して、混練物を調製する。 Next, the powder and the thermoplastic resin are melt-kneaded to prepare a kneaded product.
 混練物を調製するには、例えば、具体的には、押出機、バンバリーミキサーが用いられる。押出機としては、例えば、二軸押出機、単軸押出機が用いられる。混練物は、成形品を成形するための成形材料であって、具体的には、一旦、冷却してペレット状成形材料(混練物ペレット、あるいは、マスターバッチ)として調製する。一方、混練物を、固体の成形材料として取り出さず、そのまま連続して溶融状態のまま(溶融混練物)後述の成形に供することも可能である。 In order to prepare the kneaded material, specifically, for example, an extruder or a Banbury mixer is used. As the extruder, for example, a twin screw extruder or a single screw extruder is used. The kneaded material is a molding material for molding a molded product. Specifically, the kneaded material is once cooled and prepared as a pellet-shaped molding material (kneaded material pellet or master batch). On the other hand, the kneaded product is not taken out as a solid molding material, but can be continuously used as it is in a molten state (melt kneaded product) and subjected to molding described later.
 粉剤の抗生物活性化合物の含有割合が、熱可塑性樹脂に対して、例えば、0.01質量%以上、好ましくは、0.1質量%以上となり、また、例えば、10質量%以下、好ましくは、3質量%以下となるように、粉剤を熱可塑性樹脂に配合する。ただし、マスターバッチとして、混練物を調製する場合は、この限りではなく、具体的には、抗生物活性化合物の含有割合が、熱可塑性樹脂に対して、例えば、1質量%以上、好ましくは、5質量%以上となり、また、例えば、50質量%以下、好ましくは、30質量%以下となるように、粉剤を熱可塑性樹脂に配合してマスタ-バッチとする。 The content of the antibiotic compound in the powder agent is, for example, 0.01% by mass or more, preferably 0.1% by mass or more, and, for example, 10% by mass or less, preferably, with respect to the thermoplastic resin. A powder agent is mix | blended with a thermoplastic resin so that it may become 3 mass% or less. However, when preparing a kneaded material as a master batch, this is not the case. Specifically, the content of the antibiotic compound is, for example, 1% by mass or more, preferably, with respect to the thermoplastic resin. The powder is mixed with the thermoplastic resin so as to be 5% by mass or more, for example, 50% by mass or less, and preferably 30% by mass or less, to obtain a master batch.
 熱可塑性樹脂は、特に限定されず、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリスチレン、あるいは、ポリメタクリル酸メチル、アクリロニトリル・スチレン共重合樹脂(AS樹脂)、メタクリル酸メチル・スチレン共重合体(MS樹脂)、アクリロニトリル・スチレン・ブタジエン共重合樹脂(ABS樹脂)などの、スチレン系、および/またはアクリル系樹脂、ポリエチレンテレフタレート、ポリ乳酸などのポリエステル系樹脂、6-ナイロンなどのポリアミド系樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂などのハロゲン化ビニル系樹脂、ポリカーボネート、ポリフェニレンエーテル、ポリアセタール、熱可塑性ポリウレタンなどが挙げられる。好ましくは、ポリオレフィン系樹脂、塩化ビニル樹脂、熱可塑性ポリウレタンが挙げられる。 The thermoplastic resin is not particularly limited. For example, polyolefin resin such as polyethylene and polypropylene, polystyrene, polymethyl methacrylate, acrylonitrile / styrene copolymer resin (AS resin), methyl methacrylate / styrene copolymer ( MS resin), acrylonitrile / styrene / butadiene copolymer resin (ABS resin), styrene and / or acrylic resins, polyethylene terephthalate, polyester resins such as polylactic acid, polyamide resins such as 6-nylon, chloride Examples thereof include vinyl halide resins such as vinyl resin and vinylidene chloride resin, polycarbonate, polyphenylene ether, polyacetal, and thermoplastic polyurethane. Preferably, polyolefin resin, vinyl chloride resin, and thermoplastic polyurethane are used.
 続いて、混練物ペレット、あるいは、溶融混練物から成形品に成形する。 Subsequently, the mixture is molded into a molded product from the kneaded product pellets or melt-kneaded product.
 成形方法としては、例えば、射出成形、押出成形、インフレーション成形、引抜成形、圧縮成形などが採用される。 As the molding method, for example, injection molding, extrusion molding, inflation molding, pultrusion molding, compression molding, or the like is employed.
 これによって、所定形状に成形された、粉剤(徐放性粒子)が添加された成形品が得られる。 Thereby, a molded product formed into a predetermined shape and added with powder (sustained release particles) is obtained.
 上記説明では、徐放性粒子から製剤化された粉剤を、熱可塑性樹脂に添加しているが、樹脂であれば特に限定されず、例えば、熱硬化性樹脂に添加することもできる。 In the above description, the powder formulated from sustained-release particles is added to the thermoplastic resin. However, the powder is not particularly limited as long as it is a resin, and may be added to, for example, a thermosetting resin.
 特に、エポキシ樹脂、シリコーン樹脂などの液状樹脂に粉剤を好適に混合することができる。 In particular, a powder can be suitably mixed with a liquid resin such as an epoxy resin or a silicone resin.
 このような成形品は、各種用途に用いられ、例えば、建材、例えば、電線ケーブル材、および、その電線ケーブルの被覆材、例えば、ガスなどの導管、および、その導管の被覆材、例えば、衣類、蚊帳などの繊維製品として使用される。 Such molded articles are used in various applications, for example, building materials such as electric wire cable materials, and electric wire cable coating materials such as gas conduits, and conduit coating materials such as clothing. Used as textile products such as mosquito nets.
  <第2の発明群の成形品の効果>
 そして、このような成形品は、上記した徐放性粒子を含有する成形材料から成形されているので、抗生物活性化合物の優れた徐放性および耐アルカリ性を有する。
<Effect of the molded product of the second invention group>
And since such a molded article is shape | molded from the molding material containing the above-mentioned sustained release particle | grains, it has the outstanding sustained release property and alkali resistance of an antibiotic compound.
 そして、上記した第2の発明群の徐放性粒子の製造方法により得られる徐放性粒子は、具体的には、次に述べる徐放性粒子の第3実施形態および第4実施形態を含んでいる。 The sustained-release particles obtained by the above-described method for producing sustained-release particles of the second invention group specifically include the following third and fourth embodiments of sustained-release particles. It is out.
  [第3実施形態]
 徐放性粒子の第3実施形態について図B1を参照して説明する。
[Third Embodiment]
A third embodiment of sustained release particles will be described with reference to FIG. B1.
 この徐放性粒子1は、図B1の断面図に示すように、例えば、球状粒子として形成されている。徐放性粒子1は、マトリクス2と、マトリクス2中に分散するドメイン3と、マトリクス2を被覆するシェル7とを含む。 The sustained release particles 1 are formed, for example, as spherical particles as shown in the cross-sectional view of FIG. B1. The sustained release particles 1 include a matrix 2, a domain 3 dispersed in the matrix 2, and a shell 7 that covers the matrix 2.
 マトリクス2は、上記した重合性ビニルモノマーから調製される重合体からなる。ドメイン3は、上記した抗生物活性化合物からなる。シェル7は、上記した疎水性シェル形成成分および親水性シェル形成成分から調製される重合体からなる。 The matrix 2 is made of a polymer prepared from the above-described polymerizable vinyl monomer. Domain 3 consists of the antibiotic compounds described above. The shell 7 is made of a polymer prepared from the above-described hydrophobic shell-forming component and hydrophilic shell-forming component.
 具体的には、徐放性粒子1では、マトリクス2が媒体あるいは連続相を形成し、複数のドメイン3がマトリクス2中に孤立状に分散するマルチドメイン構造あるいは海島構造(または多核構造)が形成されている。また、この徐放性粒子1では、マトリクス2およびドメイン3は、互いに非相溶であって、互いに分離する相分離構造あるいは2相構造を形成する。また、マトリクス2およびドメイン3は、後述するシェル7に対するコアを形成する。 Specifically, in the sustained-release particles 1, a matrix 2 forms a medium or a continuous phase, and a multi-domain structure or a sea-island structure (or a multinuclear structure) in which a plurality of domains 3 are dispersed in the matrix 2 is formed. Has been. In the sustained release particles 1, the matrix 2 and the domain 3 are incompatible with each other and form a phase separation structure or a two-phase structure that separate from each other. The matrix 2 and the domain 3 form a core for the shell 7 described later.
 具体的には、複数のドメイン3は、マトリクス2中において、分散相を形成する。ドメイン3の形状は、特に限定されず、例えば、不定形状、球状、塊状、板状など、適宜の形状に形成されている。ドメイン3の最大長さの平均値は、例えば、0.05μm以上、好ましくは、0.1μm以上であり、また、例えば、20μm以下、好ましくは、10μm以下である。 Specifically, the plurality of domains 3 form a dispersed phase in the matrix 2. The shape of the domain 3 is not particularly limited, and is formed in an appropriate shape such as an indefinite shape, a spherical shape, a block shape, or a plate shape. The average value of the maximum length of the domain 3 is, for example, 0.05 μm or more, preferably 0.1 μm or more, and for example, 20 μm or less, preferably 10 μm or less.
 シェル7は、マトリクス2(上記した重合性ビニルモノマーを懸濁重合することにより得られる重合体)の表面に形成されている。具体的には、シェル7は、例えば、マトリクス2の表面の少なくとも一部、好ましくは、マトリクス2の表面の全部を被覆している。すなわち、シェル7は、マトリクス2およびドメイン3からなるコアとともに、コアシェル構造を形成している。 The shell 7 is formed on the surface of the matrix 2 (polymer obtained by suspension polymerization of the polymerizable vinyl monomer described above). Specifically, the shell 7 covers, for example, at least a part of the surface of the matrix 2, preferably the entire surface of the matrix 2. That is, the shell 7 forms a core-shell structure together with the core composed of the matrix 2 and the domain 3.
 なお、図B1では、マトリクス2およびシェル7との間に、断面円形状の界面が明確に形成されているが、図B8のTEM写真が参照されるように、マトリクス2およびシェル7の界面が明確に形成されていなくてもよい。図B8のTEM写真に示すように、シェル7は、疎水性シェル形成成分および親水性シェル形成成分から調製される重合体から構成されており、詳しくは、最外層(最表面)は、実質的に界面重合の重合体のみからなり、そして、最外層(最表面)から内側に向かうに従って、マトリクス2(重合体)に対する疎水性シェル形成成分および親水性シェル形成成分から調製される重合体の濃度が薄くなるように、構成されている。これにより、シェル7は、ドメイン3を取り囲むように、マトリクス2の表層に位置(偏在)している。 In FIG. B1, an interface having a circular cross section is clearly formed between the matrix 2 and the shell 7, but as shown in the TEM photograph of FIG. B8, the interface between the matrix 2 and the shell 7 is It does not have to be clearly formed. As shown in the TEM photograph of FIG. B8, the shell 7 is composed of a polymer prepared from a hydrophobic shell-forming component and a hydrophilic shell-forming component. Specifically, the outermost layer (outermost surface) is substantially The concentration of the polymer prepared from the hydrophobic shell-forming component and the hydrophilic shell-forming component with respect to the matrix 2 (polymer) in the direction from the outermost layer (outermost surface) to the inside. Is configured to be thin. Thereby, the shell 7 is located (unevenly distributed) on the surface layer of the matrix 2 so as to surround the domain 3.
 そして、この徐放性粒子1を得るには、上記した徐放性粒子1の製造方法の油相成分調製工程において、徐放性粒子における抗生物活性化合物の濃度が、例えば、30質量%未満となるように、抗生物活性化合物を配合する。 And in order to obtain this sustained release particle 1, in the oil-phase component preparation process of the manufacturing method of above-mentioned sustained release particle 1, the concentration of the antibiotic compound in sustained release particle | grains is less than 30 mass%, for example An antibiotic compound is blended so that
  <第3実施形態の効果>
 第3実施形態の徐放性粒子1は、重合性ビニルモノマーの重合体からなるマトリクス2と、抗生物活性化合物からなるドメイン3であって、マトリクス2中に分散するドメイン3とを含むので、抗生物活性化合物の徐放性に優れるとともに、堅牢性に優れるため、樹脂との混練性に優れる。
<Effect of the third embodiment>
Since the sustained-release particles 1 of the third embodiment include a matrix 2 made of a polymer of a polymerizable vinyl monomer and a domain 3 made of an antibiotic compound, and the domain 3 dispersed in the matrix 2, In addition to excellent sustained release properties of the antibiotic compound, it is excellent in fastness and excellent in kneading with a resin.
 第2の発明群の参考となる参考形態を挙げて、第3実施形態の効果をさらに詳しく説明する。 The effects of the third embodiment will be described in more detail by giving reference forms that serve as references for the second invention group.
 参考形態では、図B9に示すように、ドメイン3は、マトリクス2の内部から外方に突出する突出物4を含む。突出物4は、マトリクス2の表面から露出している。これによって、徐放性粒子1の表面では、マトリクス2およびドメイン3の両方が露出している。突出物4は、マトリクス2の表層部に埋設される埋設部8を有している。また、徐放性粒子1は、マトリクス2およびドメイン3から形成される2相構造を有しており、シェル7を有していない。 In the reference embodiment, as shown in FIG. B9, the domain 3 includes a protrusion 4 that protrudes outward from the inside of the matrix 2. The protrusion 4 is exposed from the surface of the matrix 2. Thereby, both the matrix 2 and the domain 3 are exposed on the surface of the sustained release particles 1. The protrusion 4 has an embedded portion 8 embedded in the surface layer portion of the matrix 2. Further, the sustained release particles 1 have a two-phase structure formed from a matrix 2 and a domain 3 and do not have a shell 7.
 図B9に示す徐放性粒子1は、疎水性シェル形成成分および親水性シェル形成成分を配合せず、かつ、界面重合を実施しない以外は、上記した製造方法によって、製造される。 The sustained release particles 1 shown in FIG. B9 are produced by the production method described above except that the hydrophobic shell-forming component and the hydrophilic shell-forming component are not blended and interfacial polymerization is not performed.
 上記した図B1で示される第3実施形態の徐放性粒子1は、図B9の参考形態の徐放性粒子1と異なり、突出物4がなく、懸濁重合体がシェル7によって被覆されているので、長期徐放継続性に優れる。具体的には、第3実施形態によれば、図B1に示すように、徐放性粒子1のドメイン3(抗生物活性化合物)をシェル7によって保護することができる。そのため、第3実施形態の徐放性粒子1は、参考形態の徐放性粒子1に比べて、抗生物活性化合物の徐放性および耐アルカリ性に優れる。 The sustained-release particles 1 of the third embodiment shown in FIG. B1 are different from the sustained-release particles 1 of the reference form of FIG. B9 and have no protrusions 4 and the suspension polymer is covered with the shell 7. Therefore, it has excellent long-term sustained release. Specifically, according to the third embodiment, the domain 3 (antibiotic active compound) of the sustained release particles 1 can be protected by the shell 7 as shown in FIG. B1. Therefore, the sustained release particles 1 of the third embodiment are superior to the sustained release particles 1 of the reference embodiment in the sustained release properties and alkali resistance of the antibiotic compound.
  <第4実施形態>
 徐放性粒子の第4実施形態について、図B2を参照して説明する。
<Fourth embodiment>
A fourth embodiment of sustained release particles will be described with reference to FIG. B2.
 図B2の断面図に示すように、第4実施形態では、抗生物活性化合物からなる付着物5が、シェル7の表面に付着している。 As shown in the cross-sectional view of FIG. B2, in the fourth embodiment, the deposit 5 made of an antibiotic compound is attached to the surface of the shell 7.
 付着物5の形状は、特に限定されず、例えば、不定形状、球状、塊状、板状など、適宜の形状に形成されている。とりわけ、付着物5の内面(シェル7の表面に接触する接触面)は、シェル7の表面(球面)に対応する凹面、具体的には、外方に凹む湾曲面を形成している。付着物5は、ドメイン3と同じ大きさあるいはそれにより小さく、ドメイン3の最大長さの平均値に対して、例えば、100%以下、好ましくは、50%以下であり、また、例えば、0.01%以上であり、具体的には、付着物5の最大長さの平均値は、例えば、10μm以下、好ましくは、5μm以下であり、例えば、0.05μm以上、好ましくは、0.1μm以上である。付着物5の、シェル7の全表面に対する被覆率は、例えば、10%以上、好ましくは、20%以上であり、また、例えば、100%以下、好ましくは、90%以下である。 The shape of the deposit 5 is not particularly limited, and is formed in an appropriate shape such as an indefinite shape, a spherical shape, a block shape, or a plate shape. In particular, the inner surface (contact surface that contacts the surface of the shell 7) of the deposit 5 forms a concave surface corresponding to the surface (spherical surface) of the shell 7, specifically, a curved surface that is recessed outward. The deposit 5 is the same size as or smaller than the domain 3, and is, for example, 100% or less, preferably 50% or less with respect to the average value of the maximum length of the domain 3. Specifically, the average value of the maximum length of the deposit 5 is, for example, 10 μm or less, preferably 5 μm or less, for example, 0.05 μm or more, preferably 0.1 μm or more. It is. The coverage of the deposit 5 on the entire surface of the shell 7 is, for example, 10% or more, preferably 20% or more, and for example, 100% or less, preferably 90% or less.
 上記した徐放性粒子1を得るには、上記した徐放性粒子1の製造方法の油相成分調製工程において、徐放性粒子における抗生物活性化合物の濃度が、例えば、28質量%超過、好ましくは、30質量%以上、より好ましくは、35質量%となるように、抗生物活性化合物を配合する。 In order to obtain the sustained release particles 1 described above, in the oil phase component preparation step of the method for producing the sustained release particles 1, the concentration of the antibiotic compound in the sustained release particles is, for example, more than 28% by mass, Preferably, the antibiotic compound is blended so as to be 30% by mass or more, more preferably 35% by mass.
  <第4実施形態の効果>
 第4実施形態の徐放性粒子によれば、付着物5によって、耐ブロッキング性をより一層向上させることができる。
<Effects of Fourth Embodiment>
According to the sustained-release particles of the fourth embodiment, the anti-blocking property can be further improved by the deposit 5.
 なお、第2の発明群は、第3実施形態の徐放性粒子と、第4実施形態の徐放性粒子との両方を混在して含むことができ、その場合には、質量基準で、それらの配合割合(第3実施形態の徐放性粒子/第4実施形態の徐放性粒子)が、例えば、1/99以上、さらには、10/90以上であり、また、例えば、99/1以下、さらには、90/10以下である。 The second invention group can include both the sustained release particles of the third embodiment and the sustained release particles of the fourth embodiment, and in that case, on a mass basis, Their blending ratio (sustained release particles of the third embodiment / sustained release particles of the fourth embodiment) is, for example, 1/99 or more, further 10/90 or more, and for example, 99 / 1 or less, and further 90/10 or less.
 [1]第1の発明群に対応する実施例A等
 以下に示す調製例Aおよび実施例Aの数値は、上記の「発明を実施するための形態」欄に記載される数値(すなわち、上限値または下限値)に代替することができる。また、調製例A、実施例Aおよび比較例A中、%などの単位については、特段の記載がない限り、質量%を意味する。
[1] Example A corresponding to the first invention group, etc. The numerical values of Preparation Example A and Example A shown below are the numerical values described in the above-mentioned “Mode for Carrying Out the Invention” column (that is, the upper limit). Value or lower limit value). Further, in Preparation Example A, Example A and Comparative Example A, units such as% mean mass% unless otherwise specified.
 まず、各調製例A、各実施例Aおよび各比較例Aで用いる略号の詳細を次に記載する。 First, the details of the abbreviations used in each Preparation Example A, each Example A and each Comparative Example A are described below.
 クロチアニジン:(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、分子量250、融点177℃、水への溶解度:0.33g/L、住友化学社製
 イミダクロプリド:1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミン、分子量256、融点144℃、水への溶解度:0.48g/L、丸善社製
 EGDMA:エチレングリコールジメタクリレート、商品名「ライトエステルEG」、水に不溶、共栄社化学社製
 i-BMA:メタクリル酸イソブチル、水への溶解度:0.6g/L、日本触媒社製
 DVB-570:商品名、水に不溶、組成:ジビニルベンゼン(上限60%)、エチルビニルベンゼン(上限40%)、新日鐵住金化学社製
 スチレン:水への溶解度:0.3g/L、和光特級試薬、和光純薬社製
 DISPERBYK-164:商品名、顔料分散用官能基変性共重合体(3級アミン含有ポリエステル変性ポリウレタン系重合体、分子量10000~50000)の酢酸ブチル溶液、固形分濃度60%、ビッグケミー社製
 パーロイルL:商品名、ジラウロイルパーオキシド、日油社製
 パーヘキシルO:商品名、t-ヘキシルパーオキシ-2-エチルヘキサノエート、日油社製
 プロノン208:商品名、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、日油社製
 PVA-217:商品名「クラレポバール217」、部分鹸化ポリビニルアルコール、クラレ社製
 デモールNL:商品名、β-ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩の41%水溶液、花王社製
  (疎水性スラリーの調製)
  調製例A1(クロチアニジンスラリー(スラリーA)の調製)
 EGDMA90gと、i-BMA90gと、DISPERBYK-164 20gと、クロチアニジン100gとを、ガラス瓶中に投入し、さらにジルコニアビーズ径1.0mmをガラス瓶の1/3容量投入し、ペイントコンディショナー(ペイントシェーカー、商品名「THECLASSIC型式1400」、RedDevil社製)で2時間湿式粉砕して、クロチアニジン33.3%含有スラリー(疎水性スラリー、以下、「スラリーA」という。)を得た。
Clothianidin: (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine, molecular weight 250, melting point 177 ° C., solubility in water: 0.33 g / L, manufactured by Sumitomo Chemical Co., Ltd. Imidacloprid: 1- (6-chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine, molecular weight 256, melting point 144 ° C., solubility in water: 0.48 g / L, manufactured by Maruzen EGDMA: ethylene glycol dimethacrylate Product name “Light Ester EG”, insoluble in water, Kyoeisha Chemical Co., Ltd. i-BMA: Isobutyl methacrylate, water solubility: 0.6 g / L, Nippon Shokubai Co., Ltd. DVB-570: Product name, insoluble in water , Composition: Divinylbenzene (upper limit 60%), Ethylvinylbenzene (upper limit 40%), Nippon Steel & Sumikin Chemical Co., Ltd. Styrene: To water Solubility: 0.3 g / L, Wako Special Grade Reagent, manufactured by Wako Pure Chemical Industries, Ltd. DISPERBYK-164: trade name, functional group-modified copolymer for pigment dispersion (tertiary amine-containing polyester-modified polyurethane polymer, molecular weight 10,000 to 50,000) Butyl acetate solution, solid concentration 60%, Big Chemie's Parroyl L: trade name, dilauroyl peroxide, NOF Corporation Perhexyl O: trade name, t-hexylperoxy-2-ethylhexanoate, NOF Pronon 208: trade name, polyoxyethylene polyoxypropylene block copolymer, NOF Corporation PVA-217: trade name “Kuraray Poval 217”, partially saponified polyvinyl alcohol, Kuraray Co., Ltd. demole NL: trade name, β-naphthalene 41% aqueous solution of sodium sulfonate formaldehyde condensate, flower Company-made (Preparation of hydrophobic slurry)
Preparation Example A1 (Preparation of clothianidin slurry (slurry A))
EGDMA 90g, i-BMA 90g, DISPERBYK-164 20g and clothianidin 100g were put into a glass bottle, and a zirconia bead diameter of 1.0mm was put into 1/3 capacity of the glass bottle, and a paint conditioner (paint shaker, trade name) Wet pulverization with “THECLASSIC Model 1400” (Red Devil) for 2 hours to obtain 33.3% clothianidin-containing slurry (hydrophobic slurry, hereinafter referred to as “slurry A”).
 スラリーAにおけるクロチアニジンの平均粒子径は、濃厚系粒径アナライザーFPAR-1000(大塚電子社製)で測定した結果、1.38μmであった。 The average particle size of clothianidin in Slurry A was 1.38 μm as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  調製例A2(クロチアニジンスラリー(スラリーB)の調製)
 DVB-570 7200gと、DISPERBYK-164 804gとを、バッチ式メディア型分散機(バッチ式ビーズミル、商品名「ADミル(AD-5)、ジルコニアビーズ径1.5mm」、浅田鉄工社製)で均一になるまで撹拌分散した後、さらに、クロチアニジン3996gを投入して、150分間で湿式粉砕し、クロチアニジン33.3%含有スラリー(疎水性スラリー、以下、「スラリーB」という。)を得た。
Preparation Example A2 (Preparation of clothianidin slurry (slurry B))
DVB-570 7200g and DISPERBYK-164 804g are uniformly distributed in a batch type media disperser (batch type bead mill, trade name “AD mill (AD-5), zirconia bead diameter 1.5 mm”, manufactured by Asada Tekko Co., Ltd.) Then, 3996 g of clothianidin was added and wet-pulverized for 150 minutes to obtain a slurry containing 33.3% clothianidin (hydrophobic slurry, hereinafter referred to as “slurry B”).
 スラリーBにおけるクロチアニジンの平均粒子径は、濃厚系粒径アナライザーFPAR-1000(大塚電子社製)で測定した結果、0.45μmであった。 The average particle diameter of clothianidin in the slurry B was 0.45 μm as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  調製例A3~調製例A8
 (クロチアニジンスラリー(スラリーC~H)の調製)
 配合処方を表A1に記載の処方に変更した以外は、調製例A1と同様に処理して、クロチアニジンスラリー(疎水性スラリー、以下、「スラリーC~H」という。)を得た。
Preparation Examples A3 to A8
(Preparation of clothianidin slurry (slurries C to H))
A clothianidin slurry (hydrophobic slurry, hereinafter referred to as “slurries C to H”) was obtained in the same manner as in Preparation Example A1, except that the formulation was changed to the formulation shown in Table A1.
 スラリーC~Hのそれぞれにおけるクロチアニジンの平均粒子径を、表A1に記載する。 The average particle diameter of clothianidin in each of the slurries C to H is shown in Table A1.
  調製例A9
 (イミダクロプリドスラリー(スラリーI)の調製)
 配合処方を表A1に記載の処方に変更した以外は、調製例A1と同様に処理して、イミダクロプリドスラリー(疎水性スラリー、以下、「スラリーI」という。)を得た。
Preparation Example A9
(Preparation of imidacloprid slurry (slurry I))
An imidacloprid slurry (hydrophobic slurry, hereinafter referred to as “slurry I”) was obtained in the same manner as in Preparation Example A1, except that the formulation was changed to the formulation shown in Table A1.
 スラリーIにおけるイミダクロプリドの平均粒子径を、表A1に記載する。
Figure JPOXMLDOC01-appb-T000001
  (水分散工程および重合工程)
  実施例A1(クロチアニジン含有徐放性粒子の合成:第1実施形態に対応)
 200mLのビーカー(1)に、調製例A2で調製したスラリーB 100g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、パーロイルLをスラリーBに溶解させた。これによって、パーロイルLおよびスラリーBを含む油相成分を調製した。
The average particle size of imidacloprid in slurry I is listed in Table A1.
Figure JPOXMLDOC01-appb-T000001
(Water dispersion process and polymerization process)
Example A1 (Synthesis of clothianidin-containing sustained release particles: corresponding to the first embodiment)
In a 200 mL beaker (1), 100 g of slurry B prepared in Preparation Example A2 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B. Thus, an oil phase component containing Parroyl L and Slurry B was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.50g、PVA-217の10%水溶液40gおよびプロノン208の1%水溶液1gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), 258.50 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217 and 1 g of 1% aqueous solution of Pronon 208 were stirred and stirred at room temperature to obtain a uniform aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数6000rpmで5分間攪拌することにより、油相成分を水分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
 その後、懸濁液(水分散液)を、攪拌器、還流冷却器、温度計および窒素導入管を装備した500mL4頚コルベンに移し、窒素気流下、攪拌しながら昇温して、懸濁重合を実施した。 Thereafter, the suspension (aqueous dispersion) is transferred to a 500 mL 4-neck Kolben equipped with a stirrer, reflux condenser, thermometer and nitrogen introduction tube, and heated with stirring in a nitrogen stream to effect suspension polymerization. Carried out.
 懸濁重合は、55℃到達時点を重合開始とし、その後、70±1℃で5時間、80±1℃で2時間、連続して実施した。 Suspension polymerization was started at the time when the temperature reached 55 ° C., and then continuously carried out at 70 ± 1 ° C. for 5 hours and at 80 ± 1 ° C. for 2 hours.
 その後、反応後の懸濁液を30℃以下に冷却することにより、クロチアニジンを含有するメジアン径28.2μmの徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, the suspension after the reaction was cooled to 30 ° C. or less to obtain a suspension (suspension) of sustained release particles containing clothianidin and having a median diameter of 28.2 μm.
 なお、徐放性粒子のメジアン径は、レーザー回析散乱式粒子径分布測定装置LA-920(堀場製作所社製)により測定した。メジアン径の測定は、以下の実施例および比較例についても同様である。 The median diameter of the sustained release particles was measured with a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.). The measurement of the median diameter is the same for the following examples and comparative examples.
  実施例A2(クロチアニジン含有徐放性粒子の合成:第2実施形態に対応)
 200mLのビーカー(1)に、調製例A2で調製したスラリーB 100g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、パーロイルLをスラリーBに溶解させた。これによって、パーロイルLおよびスラリーBを含む油相成分を調製した。
Example A2 (Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment)
In a 200 mL beaker (1), 100 g of slurry B prepared in Preparation Example A2 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B. Thus, an oil phase component containing Parroyl L and Slurry B was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.26g、PVA-217の10%水溶液40g、プロノン208の1%水溶液1gおよびデモールNL 0.24gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), charged with 258.26 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217, 1 g of 1% aqueous solution of Pronon 208 and 0.24 g of demole NL, and stirred uniformly at room temperature Obtained an aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数6000rpmで5分間攪拌することにより、油相成分を水分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
 その後、実施例A1と同様の条件で懸濁重合を実施し、クロチアニジンを含有するメジアン径24.5μmの徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, suspension polymerization was carried out under the same conditions as in Example A1 to obtain a suspension (suspension) of sustained release particles containing clothianidin and having a median diameter of 24.5 μm.
  実施例A3(クロチアニジン含有徐放性粒子の合成:第2実施形態に対応)
 200mLのビーカー(1)に、調製例A1で調製したスラリーA 100g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、パーロイルLをスラリーAに溶解させた。これによって、パーロイルLおよびスラリーAを含む油相成分を調製した。
Example A3 (Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment)
In a 200 mL beaker (1), 100 g of slurry A prepared in Preparation Example A1 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry A. Thus, an oil phase component containing Parroyl L and Slurry A was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.50g、PVA-217の10%水溶液40gおよびプロノン208の1%水溶液1gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), 258.50 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217 and 1 g of 1% aqueous solution of Pronon 208 were stirred and stirred at room temperature to obtain a uniform aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数3000rpmで5分間攪拌することにより、油相成分を分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 3000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
 その後、実施例A1と同様の条件で懸濁重合を実施し、クロチアニジンを含有するメジアン径43.5μmの徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, suspension polymerization was carried out under the same conditions as in Example A1 to obtain a suspension (suspension) of sustained-release particles containing clothianidin and having a median diameter of 43.5 μm.
  実施例A4(クロチアニジン含有徐放性粒子の合成:第2実施形態に対応)
 200mLのビーカー(1)に、調製例A1で調製したスラリーA 50g、i-BMA25g、EGDMA25g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、i-BMA、EGDMAおよびパーロイルLをスラリーAに溶解させた。これによって、i-BMA、EGDMA、パーロイルLおよびスラリーAを含む油相成分を調製した。
Example A4 (Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment)
A 200 mL beaker (1) is charged with 50 g of slurry A prepared in Preparation Example A1, 25 g of i-BMA, 25 g of EGDMA, and 0.5 g of Parroyl L, and stirred at room temperature, whereby i-BMA, EGDMA and Parroyl L are mixed. Dissolved in slurry A. Thus, an oil phase component containing i-BMA, EGDMA, Parroyl L and slurry A was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.26g、PVA-217の10%水溶液40g、プロノン208の1%水溶液1gおよびデモールNL 0.24gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), charged with 258.26 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217, 1 g of 1% aqueous solution of Pronon 208 and 0.24 g of demole NL, and stirred uniformly at room temperature Obtained an aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数5000rpmで5分間攪拌することにより、油相成分を分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
 その後、実施例A1と同様の条件で懸濁重合を実施し、クロチアニジンを含有するメジアン径9.3μmの徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, suspension polymerization was carried out under the same conditions as in Example A1 to obtain a suspension (suspension) of sustained-release particles containing clothianidin and having a median diameter of 9.3 μm.
  実施例A5~実施例A8、実施例A13、実施例A15、実施例A16(クロチアニジン含有徐放性粒子の合成:第2実施形態に対応)
 配合処方を表A2および表A3の記載に従って変更した以外は、実施例A4と同様に処理して、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。懸濁液における徐放性粒子のそれぞれの平均粒子径を表A2および表A3に示す。
Example A5 to Example A8, Example A13, Example A15, Example A16 (Synthesis of clothianidin-containing sustained-release particles: corresponding to the second embodiment)
A suspension (suspension) of sustained-release particles containing clothianidin was obtained in the same manner as in Example A4, except that the formulation was changed according to the descriptions in Table A2 and Table A3. The average particle diameters of the sustained release particles in the suspension are shown in Table A2 and Table A3.
  実施例A9(クロチアニジン含有徐放性粒子の合成:第2実施形態に対応)
 200mLのビーカー(1)に、調製例A1で調製したスラリーC 50g、スチレン25g、EGDMA25g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、スチレン、EDGMAおよびパーロイルLをスラリーCに溶解させた。これによって、スチレン、EDGMA、パーロイルLおよびスラリーCを含む油相成分を調製した。
Example A9 (Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment)
A 200 mL beaker (1) is charged with 50 g of slurry C prepared in Preparation Example A1, 25 g of styrene, 25 g of EGDMA, and 0.5 g of Parroyl L, and stirred at room temperature, whereby styrene, EDGMA and Parroyl L are added to Slurry C. Dissolved. Thus, an oil phase component containing styrene, EDGMA, Parroyl L and slurry C was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.26g、PVA-217の10%水溶液40g、プロノン208の1%水溶液1gおよびデモールNL 0.24gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), charged with 258.26 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217, 1 g of 1% aqueous solution of Pronon 208 and 0.24 g of demole NL, and stirred uniformly at room temperature Obtained an aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数5000rpmで5分間攪拌することにより、油相成分を分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
 その後、実施例A1と同様の条件で懸濁重合を実施し、クロチアニジンを含有するメジアン径14.5μmの徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, suspension polymerization was carried out under the same conditions as in Example A1, and a suspension (suspension agent) of sustained-release particles containing clothianidin and having a median diameter of 14.5 μm was obtained.
  実施例A10~実施例A12、実施例A14、実施例A17、実施例A18(クロチアニジン含有徐放性粒子の合成:第2実施形態に対応)
 配合処方を表A3の記載に従って変更した以外は、実施例A9と同様に処理して、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。懸濁液における徐放性粒子のそれぞれの平均粒子径を表A3に示す。
Example A10 to Example A12, Example A14, Example A17, Example A18 (Synthesis of clothianidin-containing sustained release particles: corresponding to the second embodiment)
A suspension (suspension) of sustained-release particles containing clothianidin was obtained in the same manner as in Example A9, except that the formulation was changed according to the description in Table A3. Each average particle diameter of the sustained release particles in the suspension is shown in Table A3.
  実施例A19(イミダクロプリド含有徐放性粒子の合成:第2実施形態に対応)
 配合処方を表A3の記載に従って変更した以外は、実施例A4と同様に処理して、イミダクロプリドを含有する徐放性粒子の懸濁液(懸濁剤)を得た。懸濁液における徐放性粒子の平均粒子径を表A3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表A2および表A3中、重合条件欄における「1」は、重合工程における懸濁液の温度を「70±1℃で5時間、80±1℃で2時間」に調整したこと、「2」は、重合工程における懸濁液の温度を「80±1℃で3時間、85±1℃で3時間」に調整したことを意味する。
Example A19 (synthesis of imidacloprid-containing sustained release particles: corresponding to the second embodiment)
A suspension (suspension) of sustained-release particles containing imidacloprid was obtained in the same manner as in Example A4 except that the formulation was changed according to the description in Table A3. The average particle size of the sustained release particles in the suspension is shown in Table A3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
In Table A2 and Table A3, “1” in the polymerization conditions column means that the temperature of the suspension in the polymerization process was adjusted to “70 ± 1 ° C. for 5 hours, 80 ± 1 ° C. for 2 hours”, “2” Means that the temperature of the suspension in the polymerization process was adjusted to “80 ± 1 ° C. for 3 hours, 85 ± 1 ° C. for 3 hours”.
 また、徐放性粒子の形態欄における「1」は、図A1で示される第1実施形態の構造を有すること、「2」は、図A2で示される第2実施形態の構造を有することを示す。 Further, “1” in the form column of the sustained release particles has the structure of the first embodiment shown in FIG. A1, and “2” has the structure of the second embodiment shown in FIG. A2. Show.
  (徐放性粒子の粉剤と熱可塑性樹脂との混練および成形)
  実施例A20(実施例A1の粉剤とポリエチレンとの混練および成形)
 実施例A1で作製した徐放性粒子の懸濁液を100目濾布で濾過後、室温で1日乾燥して、徐放性粒子の粉末(粉剤)を得た。得られた徐放性粒子の粉末(粉剤)と、高密度ポリエチレン(HDPE)ハイゼックス6300M(プライムポリマー社製、メルトフローレート0.11g/10分)とをクロチアニジンがHDPEに対して0.25%となるようにドライブレンドし、二軸押出・射出成形併設機DSMXploreMC15M(DSM社製)に投入して、220℃×5分溶融混練してストランドを得、続いて、溶融状態のままで射出成形により短冊型成形品(10mm×76mm×4mm)を得た。
(Kneading and molding of powder of sustained release particles and thermoplastic resin)
Example A20 (kneading and molding of the powder of Example A1 and polyethylene)
The suspension of sustained-release particles produced in Example A1 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain sustained-release particle powder (powder). The obtained sustained-release particle powder (powder) and high-density polyethylene (HDPE) Hi-Zex 6300M (manufactured by Prime Polymer Co., Ltd., melt flow rate 0.11 g / 10 min) were 0.25% clothianidin with respect to HDPE. Dry blended so that it becomes, and put into the twin screw extrusion / injection molding machine DSMXploreMC15M (manufactured by DSM), melt kneaded at 220 ° C for 5 minutes to obtain a strand, then injection molded in the molten state A strip-shaped molded product (10 mm × 76 mm × 4 mm) was obtained.
  実施例A21(実施例A3の粉剤とポリエチレンとの混練および成形)
 実施例A1で作製した徐放性粒子の懸濁液に代えて、実施例A3で作製した徐放性粒子の懸濁液を用いた以外は、実施例A20と同様に処理して、短冊型成形品を得た。
Example A21 (kneading and molding of the powder of Example A3 and polyethylene)
A strip shape treatment was carried out in the same manner as in Example A20 except that the suspension of sustained release particles prepared in Example A3 was used instead of the suspension of sustained release particles prepared in Example A1. A molded product was obtained.
  (徐放性粒子の粒剤の製剤化)
  実施例A22
 カガライト2号(カガライト工業社製、軽石の細粒、粒子径425~1400μm)100質量部に対し、実施例A1で作製した徐放性粒子の懸濁液(クロチアニジン濃度8.3質量%)1.2質量部を配合し、次いで、これらを乾燥して、クロチアニジンの粒剤を得た。粒剤におけるクロチアニジン濃度は、約0.1質量%であった。
(Formulation of sustained release particles)
Example A22
Suspension of sustained release particles prepared in Example A1 (clothianidin concentration: 8.3% by mass) with respect to 100 parts by mass of Kagalite 2 (manufactured by Kagalite Kogyo Co., Ltd., fine particles of pumice, particle size of 425 to 1400 μm) 1 Then, 2 parts by mass were blended and then dried to obtain clothianidin granules. The clothianidin concentration in the granules was about 0.1% by mass.
  実施例A23
 実施例A1で作製した徐放性粒子の懸濁液に代えて、実施例A3で作製した徐放性粒子の懸濁液(クロチアニジン濃度8.3質量%)1.2質量部を配合した以外は、実施例A22と同様に処理して、クロチアニジンの粒剤を得た。粒剤におけるクロチアニジン濃度は、約0.1質量%であった。
Example A23
Instead of the sustained-release particle suspension prepared in Example A1, 1.2 parts by mass of the sustained-release particle suspension prepared in Example A3 (clothianidin concentration 8.3 mass%) was added. Were processed in the same manner as in Example A22 to obtain clothianidin granules. The clothianidin concentration in the granules was about 0.1% by mass.
  比較例A1(クロチアニジンマイクロカプセル懸濁液の乾燥品とポリエチレンとの混練)
 実施例A1から調製した徐放性粒子の粉末(粉剤)に代えて、界面重合により製造した日本エンバイロケミカルズ社製クロチアニジンマイクロカプセル懸濁液「キシラモンMC」を室温で1日乾燥、解砕したサンプルを用いた以外は、実施例A6と同様に処理しようと試みたが、溶融混練中にカプセルが破壊されて溶媒が霧化し、混練することができなかった。
Comparative Example A1 (kneading of clothianidin microcapsule suspension with polyethylene)
Instead of the sustained-release particle powder (powder) prepared from Example A1, a sample obtained by drying and crushing a clothianidin microcapsule suspension “Xyramon MC” manufactured by Nihon Enviro Chemicals Co., Ltd. for 1 day at room temperature. In the same manner as in Example A6, the capsule was broken during melt-kneading, the solvent was atomized, and kneading could not be performed.
  (評価)
  1.SEM(走査型電子顕微鏡、ScanningElectronMicroscope)観察
 実施例A1~実施例A4、実施例A9および実施例A19のそれぞれの懸濁液(懸濁剤)を、試料台に滴下し、その後、水を留去した後、得られた徐放性粒子を、走査型電子顕微鏡日立TM-3000(日立ハイテクノロジーズ社製)で、SEM観察した。実施例A1~実施例A4、実施例A9および実施例A19のそれぞれで得られた徐放性粒子のSEM画像を、図A4~図A9のそれぞれに示す。
(Evaluation)
1. Observation with SEM (Scanning Electron Microscope) Each suspension (suspension) of Example A1 to Example A4, Example A9 and Example A19 was dropped on a sample stage, and then water was distilled off. Thereafter, the obtained sustained-release particles were observed with an SEM using a scanning electron microscope Hitachi TM-3000 (manufactured by Hitachi High-Technologies Corporation). SEM images of the sustained release particles obtained in Examples A1 to A4, Example A9, and Example A19 are shown in FIGS. A4 to A9, respectively.
 また、実施例A20および実施例A21のストランドを、液体窒素に浸漬し、脆性破断した破断面を走査型電子顕微鏡日立TM-3000(日立ハイテクノロジーズ社製)で、SEM観察した。実施例A20および実施例A21の断面SEM画像を図A10および図A11にそれぞれ示す。 Further, the strands of Example A20 and Example A21 were immersed in liquid nitrogen, and the fractured surface that was brittle fractured was observed with a scanning electron microscope Hitachi TM-3000 (manufactured by Hitachi High-Technologies Corporation) by SEM. Cross-sectional SEM images of Example A20 and Example A21 are shown in FIGS. A10 and A11, respectively.
  2.TEM(透過型電子顕微鏡、TransmissionElectronMicroscope)観察
 実施例A1~実施例A3の懸濁液(懸濁剤)を、凍結乾燥し、ビスフェノール型液状エポキシ樹脂に分散して、アミンで硬化させる。これをウルトラミクロトームで切断することにより断面を出し、四酸化オスミウムによって染色、必要に応じてさらに四酸化ルテニウムで染色し、これをウルトラミクロトームで超薄切片に切り出しサンプルを調製した。調製したサンプルを、透過型電子顕微鏡(型番「H-7100」、日立製作所社製)で、TEM観察した。
2. Observation by TEM (Transmission Electron Microscope, Transmission Electron Microscope) The suspensions (suspension agents) of Examples A1 to A3 are freeze-dried, dispersed in a bisphenol-type liquid epoxy resin, and cured with an amine. A cross section was obtained by cutting this with an ultramicrotome, stained with osmium tetroxide, and further stained with ruthenium tetroxide as necessary, and this was cut into ultrathin sections with an ultramicrotome to prepare a sample. The prepared sample was observed with a transmission electron microscope (model number “H-7100”, manufactured by Hitachi, Ltd.) by TEM.
 実施例A1~実施例A3のTEM写真の画像処理図を、図A12~図A14にそれぞれ示す。 Image processing diagrams of the TEM photographs of Example A1 to Example A3 are shown in FIGS. A12 to A14, respectively.
 なお、図A12~図A14中、符号3で示される空白は、切り出した超薄切片を水に浮かべて回収する過程において、クロチアニジンが溶解脱落した跡であり、クロチアニジンのドメインの形を表している。 In FIGS. A12 to A14, the blank indicated by reference numeral 3 is a trace of clothianidin dissolved and dropped in the process of recovering the cut-out ultrathin section floating on water, and represents the shape of clothianidin domain. .
  3.耐アルカリ性試験
  3-1.徐放性粒子の懸濁剤
 次の手順で徐放性粒子の懸濁剤の耐アルカリ性試験を実施した。
3. 3. Alkali resistance test 3-1. Sustained release particle suspension The alkali resistance test of the sustained release particle suspension was carried out by the following procedure.
 実施例A1~実施例A3で作製した徐放性粒子の懸濁液を100目濾布で濾過後、室温で1日乾燥して、徐放性粒子の粉末(粉剤)を得た。これら粉末を脱イオン水で1000倍に希釈し、そのうち6.3mLをガラス瓶に測りとり、飽和水酸化カルシウム溶液2mLを添加し試験溶液とした。この試験溶液を40℃の恒温下で静置した。 The suspension of sustained-release particles produced in Examples A1 to A3 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain sustained-release particle powder (powder). These powders were diluted 1000 times with deionized water, of which 6.3 mL was weighed into a glass bottle, and 2 mL of saturated calcium hydroxide solution was added to prepare a test solution. This test solution was allowed to stand at a constant temperature of 40 ° C.
 試験開始から1日後および7日後に試験溶液にアセトニトリル10mLを添加しクロチアニジンを抽出し、HPLCでクロチアニジン量を定量し、残存率を算出した。 1 day and 7 days after the start of the test, 10 mL of acetonitrile was added to the test solution to extract clothianidin, the amount of clothianidin was quantified by HPLC, and the residual ratio was calculated.
 コントロールとして、クロチアニジン原体の水溶液を用いて同様に試験を実施した。 As a control, the same test was conducted using an aqueous solution of clothianidin raw material.
 結果を表A4に示す。
Figure JPOXMLDOC01-appb-T000004
 表A4から分かるように、実施例A1~実施例A3の徐放性粒子を含有する懸濁剤は、クロチアニジンの残存率が、試験開始後1日では、91~93%と高く、試験開始後7日では、いずれも、12~16%と、試験開始後1日後に比べて低下したものの、コントロールが7%であることを考慮すると、依然として、実用レベルにあることが分かる。さらに、第2実施形態に相当する実施例A2および実施例A3の徐放性粒子は、試験開始後1日および7日のいずれにおいても、第1実施形態に相当する実施例A1の徐放性粒子に比べて、耐アルカリ性に優れることも分かる。
The results are shown in Table A4.
Figure JPOXMLDOC01-appb-T000004
As can be seen from Table A4, the suspension containing the sustained-release particles of Examples A1 to A3 had a high clothianidin residual ratio of 91 to 93% on the first day after the start of the test. On the 7th day, all were 12 to 16%, which was lower than 1 day after the start of the test, but it was found that it was still at a practical level when the control was 7%. Furthermore, the sustained release particles of Example A2 and Example A3 corresponding to the second embodiment are the sustained release of Example A1 corresponding to the first embodiment on both the first and seventh days after the start of the test. It can also be seen that the alkali resistance is superior compared to the particles.
  3-2.徐放性粒子の粒剤
 実施例A22および実施例A23で得られた粒剤を1.0g測り取り、脱イオン水3.6mLと飽和水酸化カルシウム水溶液2mLとを添加して試験溶液を調製した。この試験溶液を40℃恒温下で静置した。
3-2. Granules of sustained release particles 1.0 g of the granules obtained in Example A22 and Example A23 were weighed, and 3.6 mL of deionized water and 2 mL of saturated calcium hydroxide aqueous solution were added to prepare a test solution. . This test solution was allowed to stand at a constant temperature of 40 ° C.
 試験開始から1日後および7日後に試験溶液にアセトニトリル10mLを添加しクロチアニジンを抽出し、HPLCでクロチアニジン量を定量し、残存率を算出した。 1 day and 7 days after the start of the test, 10 mL of acetonitrile was added to the test solution to extract clothianidin, the amount of clothianidin was quantified by HPLC, and the residual ratio was calculated.
 コントロールとして、クロチアニジン原体の水溶液を用いて同様に試験を実施した。 As a control, the same test was conducted using an aqueous solution of clothianidin raw material.
 結果を表A5に示す。
Figure JPOXMLDOC01-appb-T000005
 表A5から分かるように、実施例A1および実施例A3の徐放性粒子を含有する実施例A22および実施例A23の粒剤は、クロチアニジンの残存率が、試験開始後1日では、90~92%と高く、試験開始後7日では、いずれも、11~15%と、試験開始後1日後に比べて低下したものの、コントロールが7%であることを考慮すると、依然として、実用レベルにあることが分かる。さらに、第2実施形態に相当する実施例A3の徐放性粒子を含有する実施例A23の粒剤は、試験開始後1日および7日のいずれにおいても、第1実施形態に相当する実施例A1の徐放性粒子を含有する実施例A22の粒剤に比べて、抗生物活性化合物の耐アルカリ性に優れることも分かる。
4.成形品の防蟻試験
 含水率が8%(シロアリ活動の至適含水率)となるように注水したケイ砂を、プラスチック容器に充填し、次いで、ケイ砂の表面に実施例A20および実施例A21の短冊型成形品を設置した。
The results are shown in Table A5.
Figure JPOXMLDOC01-appb-T000005
As can be seen from Table A5, the granules of Example A22 and Example A23 containing the sustained release particles of Example A1 and Example A3 have a clothianidin residual ratio of 90-92 on the first day after the start of the test. 7% after the start of the test, all decreased to 11-15% compared to 1 day after the start of the test. However, considering that the control is 7%, it is still at a practical level. I understand. Furthermore, the granule of Example A23 containing the sustained release particles of Example A3 corresponding to the second embodiment is an example corresponding to the first embodiment on both the 1st and 7th days after the start of the test. It can also be seen that the antibiotic resistance of the antibiotic compound is superior to the granules of Example A22 containing the sustained release particles of A1.
4). Mold prevention test of molded article Silica sand poured to have a moisture content of 8% (optimum moisture content of termite activity) was filled in a plastic container, and then the surface of the quartz sand was Example A20 and Example A21. A strip-shaped molded product was installed.
 比較対照として、徐放性粒子を混練していないHDPEのみからなる短冊型成形品を設置した試験を実施した。 As a comparative control, a test was conducted in which a strip-shaped molded article made only of HDPE not kneaded with sustained release particles was installed.
 上記プラスチック容器内にイエシロアリ職蟻50頭を投入し、シロアリの死亡頭数(=死中率)および行動を7日間にわたり観察した(n=2で試験を実施)。実施例A20および実施例A21の短冊型成形品については、試験開始2および3日目にシロアリは全頭死亡した。 In the above plastic container, 50 termite ants were placed, and the number of dead termites (= dead rate) and behavior were observed over 7 days (test was conducted at n = 2). For the strip-shaped molded products of Example A20 and Example A21, all termites died on the 2nd and 3rd days from the start of the test.
 一方、比較対照であるHDPEのみの短冊型成形品では、7日後もシロアリは死亡に至らず、また、シロアリの行動に変化は認められなかった。 On the other hand, in the case of a strip-shaped molded article made of only HDPE as a comparative control, termites did not die even after 7 days, and no change was observed in termite behavior.
 すなわち、実施例A20および実施例A21については、顕著な殺蟻効果が認められた。 That is, for Example A20 and Example A21, a remarkable ant killing effect was recognized.
 [2]第2の発明群に対応する実施例B等
 以下に示す調製例B、実施例Bおよび参考例Bの数値は、上記の「発明を実施するための形態」欄に記載される数値(すなわち、上限値または下限値)に代替することができる。また、調製例B、実施例Bおよび参考例B中、%などの単位については、特段の記載がない限り、質量%を意味する。
[2] Example B corresponding to the second invention group, etc. The numerical values of Preparation Example B, Example B and Reference Example B shown below are those described in the above-mentioned “Mode for Carrying Out the Invention” column. (That is, an upper limit value or a lower limit value) can be substituted. Further, in Preparation Example B, Example B, and Reference Example B, units such as% mean mass% unless otherwise specified.
 まず、各調製例B、各実施例B、各参考例Bおよび各比較例Bで用いる略号の詳細を次に記載する。 First, the details of the abbreviations used in each Preparation Example B, each Example B, each Reference Example B, and each Comparative Example B are described below.
 クロチアニジン:(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、分子量250、融点177℃、水への溶解度:0.33g/L、住友化学社製
 イミダクロプリド:1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミン、分子量256、融点144℃、水への溶解度:0.48g/L、丸善社製
 EGDMA:エチレングリコールジメタクリレート、商品名「ライトエステルEG」、水に不溶、共栄社化学社製
 i-BMA:メタクリル酸イソブチル、水への溶解度:0.6g/L、日本触媒社製
 DVB-570:商品名、水に不溶、組成:ジビニルベンゼン(上限60%)、エチルビニルベンゼン(上限40%)、新日鐵住金化学社製
 スチレン:水への溶解度:0.3g/L、和光特級試薬、和光純薬社製
 DISPERBYK-164:商品名、顔料分散用官能基変性共重合体(3級アミン含有ポリエステル変性ポリウレタン系重合体、分子量10000~50000)の酢酸ブチル溶液、固形分濃度60%、ビッグケミー社製
 パーロイルL:商品名、ジラウロイルパーオキシド、10時間半減温度T1/2:61.6℃、日油社製
 プロノン208:商品名、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、日油社製
 PVA-217:商品名「クラレポバール217」、部分鹸化ポリビニルアルコール、クラレ社製
 デモールNL:商品名、β-ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩の41%水溶液、花王社製
 T-1890:商品名「VESTANAT T 1890/100」、イソホロンジイソシアネート(IPDI)の環状トリマー体、水への溶解度:0.02g/L、エボニック・インダストリーズ社製
 DETA:ジエチレントリアミン、和光一級試薬、和光純薬工業社製
  (疎水性スラリーの調製)
  調製例B1(クロチアニジンスラリー(スラリーA)の調製)
 EGDMA90gと、i-BMA90gと、DISPERBYK-164 20gと、クロチアニジン100gとを、ガラス瓶中に投入し、さらにジルコニアビーズ径1.0mmをガラス瓶の1/3容量投入し、ペイントコンディショナー(ペイントシェーカー、商品名「THECLASSIC型式1400」、RedDevil社製)で2時間湿式粉砕して、クロチアニジン33.3%含有スラリー(疎水性スラリー、以下、「スラリーA」という。)を得た。
Clothianidin: (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine, molecular weight 250, melting point 177 ° C., solubility in water: 0.33 g / L, manufactured by Sumitomo Chemical Co., Ltd. Imidacloprid: 1- (6-chloro-3-pyridylmethyl) -N-nitroimidazolidin-2-ylideneamine, molecular weight 256, melting point 144 ° C., solubility in water: 0.48 g / L, manufactured by Maruzen EGDMA: ethylene glycol dimethacrylate Product name “Light Ester EG”, insoluble in water, Kyoeisha Chemical Co., Ltd. i-BMA: Isobutyl methacrylate, water solubility: 0.6 g / L, Nippon Shokubai Co., Ltd. DVB-570: Product name, insoluble in water , Composition: Divinylbenzene (upper limit 60%), Ethylvinylbenzene (upper limit 40%), Nippon Steel & Sumikin Chemical Co., Ltd. Styrene: To water Solubility: 0.3 g / L, Wako Special Grade Reagent, manufactured by Wako Pure Chemical Industries, Ltd. DISPERBYK-164: trade name, functional group-modified copolymer for pigment dispersion (tertiary amine-containing polyester-modified polyurethane polymer, molecular weight 10,000 to 50,000) Butyl acetate solution, solid content concentration 60%, Big Chemie's Parroyl L: trade name, dilauroyl peroxide, 10 hour half-life T 1/2 : 61.6 ° C, NOF Pronon 208: trade name, poly Oxyethylene polyoxypropylene block copolymer, NOF Corporation PVA-217: Trade name “Kuraray Poval 217”, partially saponified polyvinyl alcohol, Kuraray Co., Ltd. DEMAL NL: trade name, β-naphthalenesulfonic acid formaldehyde condensate 41 sodium salt % Aqueous solution, Kao Corporation T-1890: Trade name “VESTANA” T 1890/100 ", cyclic trimer form of isophorone diisocyanate (IPDI), solubility in water: 0.02 g / L, manufactured by Evonik Industries, Inc. DETA: diethylenetriamine, Wako primary reagent, manufactured by Wako Pure Chemical Industries, Ltd. (hydrophobic slurry Preparation)
Preparation Example B1 (Preparation of clothianidin slurry (slurry A))
EGDMA 90g, i-BMA 90g, DISPERBYK-164 20g and clothianidin 100g were put into a glass bottle, and a zirconia bead diameter of 1.0mm was put into 1/3 capacity of the glass bottle, and a paint conditioner (paint shaker, trade name) Wet pulverization with “THECLASSIC Model 1400” (Red Devil) for 2 hours to obtain 33.3% clothianidin-containing slurry (hydrophobic slurry, hereinafter referred to as “slurry A”).
 スラリーAにおけるクロチアニジンの平均粒子径は、濃厚系粒径アナライザーFPAR-1000(大塚電子社製)で測定した結果、1.38μmであった。 The average particle size of clothianidin in Slurry A was 1.38 μm as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  調製例B2(クロチアニジンスラリー(スラリーB)の調製)
 DVB-570 7200gと、DISPERBYK-164 804gとを、バッチ式メディア型分散機(バッチ式ビーズミル、商品名「ADミル(AD-5)、ジルコニアビーズ径1.5mm」、浅田鉄工社製)で均一になるまで撹拌分散した後、さらに、クロチアニジン3996gを投入して、150分間で湿式粉砕し、クロチアニジン33.3%含有スラリー(疎水性スラリー、以下、「スラリーB」という。)を得た。
Preparation Example B2 (Preparation of clothianidin slurry (slurry B))
DVB-570 7200g and DISPERBYK-164 804g are uniformly distributed in a batch type media disperser (batch type bead mill, trade name “AD mill (AD-5), zirconia bead diameter 1.5 mm”, manufactured by Asada Tekko Co., Ltd.) Then, 3996 g of clothianidin was added and wet-pulverized for 150 minutes to obtain a slurry containing 33.3% clothianidin (hydrophobic slurry, hereinafter referred to as “slurry B”).
 スラリーBにおけるクロチアニジンの平均粒子径は、濃厚系粒径アナライザーFPAR-1000(大塚電子社製)で測定した結果、0.45μmであった。 The average particle diameter of clothianidin in the slurry B was 0.45 μm as a result of measurement with a concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  調製例B3~調製例B8
 (クロチアニジンスラリー(スラリーC~H)の調製)
 配合処方を表B1に記載の処方に変更した以外は、調製例B1と同様に処理して、クロチアニジンスラリー(疎水性スラリー、以下、「スラリーC~H」という。)を得た。
Preparation Examples B3 to B8
(Preparation of clothianidin slurry (slurries C to H))
A clothianidin slurry (hydrophobic slurry, hereinafter referred to as “slurries C to H”) was obtained in the same manner as in Preparation Example B1, except that the formulation was changed to the formulation shown in Table B1.
 スラリーC~Hのそれぞれにおけるクロチアニジンの平均粒子径を、表B1に記載する。 Table B1 shows the average particle diameter of clothianidin in each of the slurries C to H.
  調製例B9
 (イミダクロプリドスラリー(スラリーI)の調製)
 配合処方を表B1に記載の処方に変更した以外は、調製例B1と同様に処理して、イミダクロプリドスラリー(疎水性スラリー、以下、「スラリーI」という。)を得た。
Preparation Example B9
(Preparation of imidacloprid slurry (slurry I))
An imidacloprid slurry (hydrophobic slurry, hereinafter referred to as “slurry I”) was obtained in the same manner as in Preparation Example B1, except that the formulation was changed to the formulation described in Table B1.
 スラリーIにおけるイミダクロプリドの平均粒子径を、表B1に記載する。
Figure JPOXMLDOC01-appb-T000006
  (水分散工程および重合工程)
  実施例B1(ポリウレア被覆/クロチアニジン含有徐放性粒子の合成:第3実施形態に対応)
 200mLのビーカー(1)に、調製例B2で調製したスラリーB 85gに、T-1890 15g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、T-1890およびパーロイルLをスラリーBに溶解させた。これによって、T-1890、パーロイルLおよびスラリーBを含む油相成分を調製した。
The average particle size of imidacloprid in slurry I is listed in Table B1.
Figure JPOXMLDOC01-appb-T000006
(Water dispersion process and polymerization process)
Example B1 (Synthesis of polyurea coating / clothianidin-containing sustained release particles: corresponding to the third embodiment)
In a 200 mL beaker (1), 85 g of the slurry B prepared in Preparation Example B2 is charged with 15 g of T-1890 and 0.5 g of Parroyl L, and stirred at room temperature, whereby T-1890 and Parroyl L are added to the slurry B. Dissolved in. Thus, an oil phase component containing T-1890, Parroyl L and Slurry B was prepared.
 別途、500mLのビーカー(2)に、イオン交換水240.26g、PVA-217の10%水溶液40g、プロノン208の1%水溶液1gおよびデモールNL 0.24gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), 240.26 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217, 1 g of 1% aqueous solution of Pronon 208 and 0.24 g of demole NL were added and stirred uniformly at room temperature. Obtained an aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数6000rpmで5分間攪拌することにより、油相成分を分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed by stirring with a homomixer MARK 2.5 type (manufactured by PRIMIX Co., Ltd.) at a rotation speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
 その後、懸濁液(水分散液)を、攪拌器、還流冷却器、温度計および窒素導入管を装備した500mL4頚コルベンに移し、窒素気流下、攪拌した。 Thereafter, the suspension (aqueous dispersion) was transferred to a 500 mL 4-neck Kolben equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, and stirred under a nitrogen stream.
 次いで、懸濁液にジエチレントリアミンの10質量%水溶液18gを添加して、界面重合を開始させ、その後、懸濁液を昇温して、懸濁重合を開始させた。 Next, 18 g of a 10% by mass aqueous solution of diethylenetriamine was added to the suspension to initiate interfacial polymerization, and then the suspension was heated to initiate suspension polymerization.
 具体的には、まず、室温の懸濁液に、ジエチレントリアミンの10質量%水溶液18gを懸濁液に添加し、その直後に、懸濁液の温度を70℃に昇温して、同温度で5時間維持した。その後、懸濁液を80℃に昇温し、同温度で2時間維持した。 Specifically, first, 18 g of a 10% by mass aqueous solution of diethylenetriamine is added to the suspension at room temperature, and immediately after that, the temperature of the suspension is increased to 70 ° C. Maintained for 5 hours. Thereafter, the suspension was heated to 80 ° C. and maintained at the same temperature for 2 hours.
 界面重合は、ジエチレントリアミンの10質量%水溶液を投入した時点で開始し、懸濁重合は、懸濁液を70℃に昇温する途中の温度である55℃到達時点で開始した。 Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the temperature increase of the suspension to 70 ° C.
 これにより、クロチアニジンが、懸濁重合で形成されたマトリクス中に分散され、マトリクスがポリウレアに被覆される徐放性粒子の懸濁液(懸濁剤)を得た。 Thereby, clothianidin was dispersed in a matrix formed by suspension polymerization, and a suspension (suspension agent) of sustained-release particles in which the matrix was coated with polyurea was obtained.
 その後、反応後の懸濁液を30℃以下に冷却することにより、クロチアニジンがマトリクス中に分散され、マトリクスが、界面重合で形成されたポリウレアに被覆される徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, the suspension after the reaction is cooled to 30 ° C. or lower, so that clothianidin is dispersed in the matrix, and the matrix is a suspension of sustained release particles (suspension) coated with polyurea formed by interfacial polymerization. A suspension was obtained.
 懸濁液における徐放性粒子のメジアン径を、レーザー回析散乱式粒子径分布測定装置LA-920(堀場製作所社製)により測定した。その結果を表B2に記載する。なお、メジアン径の測定は、以下の実施例、参考例および比較例についても同様であり、それらの結果を表B2~表B6に記載する。 The median diameter of the sustained release particles in the suspension was measured with a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.). The results are listed in Table B2. The measurement of the median diameter is the same for the following Examples, Reference Examples and Comparative Examples, and the results are shown in Tables B2 to B6.
  実施例B2(ポリウレア被覆/クロチアニジン含有徐放性粒子の合成:第3実施形態に対応)
 200mLのビーカー(1)に、調製例B1で調製したスラリーA 50gに、i-BMA17.5g、EGDMA17.5g、T-1890 15g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、i-BMA、EGDMA、T-1890およびパーロイルLをスラリーAに溶解させた。これによって、i-BMA、EGDMA、T-1890、パーロイルLおよびスラリーAを含有する油相成分を調製した。
Example B2 (Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment)
In a 200 mL beaker (1), 50 g of slurry A prepared in Preparation Example B1 was charged with 17.5 g of i-BMA, 17.5 g of EGDMA, 15 g of T-1890, and 0.5 g of Parroyl L, and stirred at room temperature. , I-BMA, EGDMA, T-1890 and Parroyl L were dissolved in slurry A. Thus, an oil phase component containing i-BMA, EGDMA, T-1890, Parroyl L and Slurry A was prepared.
 別途、500mLのビーカー(2)に、イオン交換水240.26g、PVA-217の10%水溶液40g、プロノン208の1%水溶液1gおよびデモールNL 0.24gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), 240.26 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217, 1 g of 1% aqueous solution of Pronon 208 and 0.24 g of demole NL were added and stirred uniformly at room temperature. Obtained an aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数5000rpmで5分間攪拌することにより、油相成分を分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
 その後、懸濁液(水分散液)を、攪拌器、還流冷却器、温度計および窒素導入管を装備した500mL4頚コルベンに移し、窒素気流下、攪拌した。 Thereafter, the suspension (aqueous dispersion) was transferred to a 500 mL 4-neck Kolben equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, and stirred under a nitrogen stream.
 次いで、懸濁液にジエチレントリアミンの10質量%水溶液18gを添加して、界面重合を開始させ、その後、懸濁液を昇温して、懸濁重合を開始させた。 Next, 18 g of a 10% by mass aqueous solution of diethylenetriamine was added to the suspension to initiate interfacial polymerization, and then the suspension was heated to initiate suspension polymerization.
 具体的には、まず、室温の懸濁液に、ジエチレントリアミンの10質量%水溶液18gを懸濁液に添加し、その直後に、懸濁液の温度を70℃に昇温して、同温度で5時間維持した。その後、懸濁液を80℃に昇温し、同温度で2時間維持した。 Specifically, first, 18 g of a 10% by mass aqueous solution of diethylenetriamine is added to the suspension at room temperature, and immediately after that, the temperature of the suspension is increased to 70 ° C. Maintained for 5 hours. Thereafter, the suspension was heated to 80 ° C. and maintained at the same temperature for 2 hours.
 界面重合は、ジエチレントリアミンの10質量%水溶液を投入した時点で開始し、懸濁重合は、懸濁液を70℃に昇温する途中の温度である55℃到達時点で開始した。 Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the temperature increase of the suspension to 70 ° C.
 これにより、クロチアニジンが、懸濁重合で形成されたマトリクス中に分散され、マトリクスが、界面重合で形成されたポリウレアに被覆される徐放性粒子の懸濁液(懸濁剤)を得た。 As a result, clothianidin was dispersed in a matrix formed by suspension polymerization, and a suspension (suspension) of sustained-release particles in which the matrix was coated with polyurea formed by interfacial polymerization was obtained.
 その後、反応後の懸濁液を30℃以下に冷却することにより、クロチアニジンがマトリクス中に分散され、マトリクスがポリウレアに被覆される徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, the suspension after the reaction was cooled to 30 ° C. or less to obtain a suspension (suspension) of sustained release particles in which clothianidin was dispersed in the matrix and the matrix was coated with polyurea.
  実施例B3(ポリウレア被覆/クロチアニジン含有徐放性粒子の合成:第3実施形態に対応)
 重合条件を、下記のように、変更した以外は、実施例B2と同様に処理することにより、クロチアニジンがマトリクス中に分散され、マトリクスがポリウレアに被覆される徐放性粒子の懸濁液(懸濁剤)を得た。
Example B3 (Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment)
Except that the polymerization conditions were changed as described below, the suspension was treated in the same manner as in Example B2 so that clothianidin was dispersed in the matrix and the matrix was coated with polyurea. A suspension was obtained.
 すなわち、ジエチレントリアミンの水溶液を添加した直後に、懸濁液を60℃に昇温して、同温度で1時間維持し、次いで、懸濁液を70℃に昇温して、同温度で2時間維持し、その後、懸濁液を80℃に昇温し、同温度で1時間維持した。 That is, immediately after adding the aqueous solution of diethylenetriamine, the suspension is heated to 60 ° C. and maintained at the same temperature for 1 hour, and then the suspension is heated to 70 ° C. and maintained at the same temperature for 2 hours. The suspension was then heated to 80 ° C. and maintained at that temperature for 1 hour.
 界面重合は、ジエチレントリアミンの10質量%水溶液を投入した時点で開始し、懸濁重合は、懸濁液を60℃に昇温する途中の温度である55℃到達時点で開始した。 Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the heating of the suspension to 60 ° C.
  実施例B4(ポリウレア被覆/クロチアニジン含有徐放性粒子の合成:第3実施形態に対応)
 重合条件を、下記のように、変更した以外は、実施例B2と同様に処理して、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
Example B4 (Synthesis of polyurea coating / clothianidin-containing sustained release particles: corresponding to the third embodiment)
Except having changed polymerization conditions as follows, it processed similarly to Example B2, and obtained the suspension (suspension agent) of the sustained release particle | grains containing clothianidin.
 すなわち、ジエチレントリアミンの水溶液を添加した後に、懸濁液を50℃に昇温して、同温度で2時間維持し、次いで、懸濁液を60℃に昇温して、同温度で1時間維持し、続いて、懸濁液を70℃に昇温して、同温度で2時間維持し、その後、懸濁液を80℃に昇温し、同温度で1時間維持した。 That is, after adding an aqueous solution of diethylenetriamine, the suspension was heated to 50 ° C. and maintained at the same temperature for 2 hours, and then the suspension was heated to 60 ° C. and maintained at the same temperature for 1 hour. Subsequently, the suspension was heated to 70 ° C. and maintained at the same temperature for 2 hours, and then the suspension was heated to 80 ° C. and maintained at the same temperature for 1 hour.
 界面重合は、ジエチレントリアミンの10質量%水溶液を投入した時点で開始し、懸濁重合は、界面重合の開始後であって、懸濁液を60℃に昇温する途中の温度である55℃到達時点で開始した。 Interfacial polymerization starts when a 10% by mass aqueous solution of diethylenetriamine is added, and suspension polymerization reaches 55 ° C., which is the temperature after the start of interfacial polymerization and during the heating of the suspension to 60 ° C. Started at the time.
  実施例B5(ポリウレア被覆/クロチアニジン含有徐放性粒子の合成:第3実施形態に対応)
 重合条件を、下記のように、変更した以外は、実施例B2と同様に処理して、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
Example B5 (Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment)
Except having changed polymerization conditions as follows, it processed similarly to Example B2, and obtained the suspension (suspension agent) of the sustained release particle | grains containing clothianidin.
 すなわち、まず、懸濁液を60℃に昇温して、同温度で1時間維持した。その後、ジエチレントリアミンの水溶液を添加し、その直後に、懸濁液を70℃に昇温して、同温度で2時間維持し、その後、懸濁液を80℃に昇温し、同温度で1時間維持した。 That is, first, the suspension was heated to 60 ° C. and maintained at the same temperature for 1 hour. Thereafter, an aqueous solution of diethylenetriamine is added. Immediately after that, the suspension is heated to 70 ° C. and maintained at the same temperature for 2 hours, and then the suspension is heated to 80 ° C. and heated to 1 at the same temperature. Maintained for hours.
 つまり、懸濁重合は、懸濁液を60℃に昇温する途中の温度である55℃到達時点で開始し、界面重合は、懸濁重合の開始後であって、ジエチレントリアミンの10質量%水溶液を投入した時点で開始した。 That is, the suspension polymerization starts when reaching 55 ° C., which is the temperature during the temperature increase of the suspension to 60 ° C., and the interfacial polymerization is after the start of the suspension polymerization and is a 10% by mass aqueous solution of diethylenetriamine. It started when I put in.
  実施例B10~実施例B13、実施例B19~実施例B23、実施例B27、実施例B28、実施例B31および実施例B32
  (ポリウレア被覆/クロチアニジン含有徐放性粒子の合成)
  (実施例B10~実施例B13、実施例B19~実施例B23、実施例B27、実施例B31および実施例B32:第3実施形態に対応)
  (実施例B28:第4実施形態に対応)
 配合処方を表B3~表B5の記載に従って変更した以外は、実施例B2と同様に処理して、ポリウレアに被覆され、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
Example B10 to Example B13, Example B19 to Example B23, Example B27, Example B28, Example B31, and Example B32
(Polyurea coating / Synthesis of clothianidin-containing sustained release particles)
(Example B10 to Example B13, Example B19 to Example B23, Example B27, Example B31 and Example B32: corresponding to the third embodiment)
(Example B28: corresponding to the fourth embodiment)
A suspension (suspension) of sustained-release particles coated with polyurea and containing clothianidin was processed in the same manner as in Example B2, except that the formulation was changed as described in Tables B3 to B5. It was.
  実施例B6(ポリウレア被覆/クロチアニジン含有徐放性粒子の合成:第3実施形態に対応)
 200mLのビーカー(1)に、調製例B3で調製したスラリーC 50gに、スチレン17.5g、EGDMA17.5g、T-1890 15g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、スチレン、EGDMA、T-1890およびパーロイルLをスラリーCに溶解させた。これにより、スチレン、EGDMA、T-1890、パーロイルLおよびスラリーCを含有する油相成分を調製した。
Example B6 (Synthesis of polyurea-coated / clothianidin-containing sustained release particles: corresponding to the third embodiment)
In a 200 mL beaker (1), 50 g of slurry C prepared in Preparation Example B3 was charged with 17.5 g of styrene, 17.5 g of EGDMA, 15 g of T-1890, and 0.5 g of Parroyl L, and stirred at room temperature. Styrene, EGDMA, T-1890 and Parroyl L were dissolved in slurry C. Thus, an oil phase component containing styrene, EGDMA, T-1890, Parroyl L and slurry C was prepared.
 別途、500mLのビーカー(2)に、イオン交換水240.26g、PVA-217の10%水溶液40g、プロノン208の1%水溶液1gおよびデモールNL 0.24gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), 240.26 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217, 1 g of 1% aqueous solution of Pronon 208 and 0.24 g of demole NL were added and stirred uniformly at room temperature. Obtained an aqueous solution.
 次いで、500mLのビーカー(2)に、スチレン、EGDMA、T-1890およびパーロイルLを溶解した油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数5000rpmで5分間攪拌することにより、油相成分を分散させて、懸濁液(水分散液)を調製した。 Next, an oil phase component in which styrene, EGDMA, T-1890 and Parroyl L are dissolved is added to a 500 mL beaker (2). K. The oil phase component was dispersed by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 type (manufactured by Primix) to prepare a suspension (aqueous dispersion).
 その後、懸濁液(水分散液)を、攪拌器、還流冷却器、温度計および窒素導入管を装備した500mL4頚コルベンに移し、窒素気流下、攪拌した。 Thereafter, the suspension (aqueous dispersion) was transferred to a 500 mL 4-neck Kolben equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, and stirred under a nitrogen stream.
 次いで、懸濁液にジエチレントリアミンの10質量%水溶液18gを添加して、界面重合を開始させ、その後、懸濁液を昇温して、懸濁重合を開始させた。 Next, 18 g of a 10% by mass aqueous solution of diethylenetriamine was added to the suspension to initiate interfacial polymerization, and then the suspension was heated to initiate suspension polymerization.
 具体的には、まず、室温の懸濁液に、ジエチレントリアミンの10質量%水溶液18gを懸濁液に添加し、その直後に、懸濁液の温度を70℃に昇温して、同温度で5時間維持した。その後、懸濁液を80℃に昇温し、同温度で2時間維持した。 Specifically, first, 18 g of a 10% by mass aqueous solution of diethylenetriamine is added to the suspension at room temperature, and immediately after that, the temperature of the suspension is increased to 70 ° C. Maintained for 5 hours. Thereafter, the suspension was heated to 80 ° C. and maintained at the same temperature for 2 hours.
 界面重合は、ジエチレントリアミンの10質量%水溶液を投入した時点で開始し、懸濁重合は、懸濁液を70℃に昇温する途中の温度である55℃到達時点で開始した。 Interfacial polymerization was started when a 10% by mass aqueous solution of diethylenetriamine was added, and suspension polymerization was started when 55 ° C. was reached, which is the temperature during the temperature increase of the suspension to 70 ° C.
 これにより、クロチアニジンが、懸濁重合により形成されたマトリクス中に分散され、マトリクスが、界面重合により形成されたポリウレアに被覆される徐放性粒子の懸濁液(懸濁剤)を得た。 Thereby, clothianidin was dispersed in a matrix formed by suspension polymerization, and a suspension (suspension agent) of sustained-release particles in which the matrix was coated with polyurea formed by interfacial polymerization was obtained.
 その後、反応後の懸濁液を30℃以下に冷却することにより、クロチアニジンがマトリクス中に分散され、マトリクスがポリウレアに被覆される徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, the suspension after the reaction was cooled to 30 ° C. or less to obtain a suspension (suspension) of sustained release particles in which clothianidin was dispersed in the matrix and the matrix was coated with polyurea.
  実施例B7~実施例B9、実施例B14~実施例B18、実施例B24~実施例B26、実施例B29、実施例B30、実施例B33、実施例B34
  (ポリウレア被覆/クロチアニジン含有徐放性粒子の合成)
  (実施例B7~実施例B9、実施例B14~実施例B18、実施例B24~実施例B26、実施例B33および実施例B34:第3実施形態に対応)
  (実施例B29および実施例B30:第4実施形態に対応)
 配合処方および重合条件を表B2~表B5の記載に従って変更した以外は、実施例B6と同様に処理して、ポリウレアに被覆され、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
Example B7 to Example B9, Example B14 to Example B18, Example B24 to Example B26, Example B29, Example B30, Example B33, Example B34
(Polyurea coating / Synthesis of clothianidin-containing sustained release particles)
(Example B7 to Example B9, Example B14 to Example B18, Example B24 to Example B26, Example B33, and Example B34: corresponding to the third embodiment)
(Example B29 and Example B30: corresponding to the fourth embodiment)
Suspension of sustained-release particles (suspension agent) coated with polyurea and containing clothianidin, treated in the same manner as in Example B6, except that the formulation and polymerization conditions were changed as described in Tables B2 to B5. )
  実施例B35(イミダクロプリド含有徐放性粒子の合成:第3実施形態に対応)
 配合処方を表B5の記載に従って変更した以外は、実施例B2と同様に処理して、イミダクロプリドを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
Example B35 (synthesis of imidacloprid-containing sustained release particles: corresponding to the third embodiment)
A suspension (suspension) of sustained-release particles containing imidacloprid was obtained in the same manner as in Example B2, except that the formulation was changed according to the description in Table B5.
  参考例B1(クロチアニジン含有徐放性粒子の合成:参考形態に対応)
 200mLのビーカー(1)に、調製例B2で調製したスラリーB 100g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、パーロイルLをスラリーBに溶解させた。これにより、パーロイルLおよびスラリーBを含有する油相成分を調製した。
Reference Example B1 (Synthesis of clothianidin-containing sustained release particles: corresponding to reference form)
In a 200 mL beaker (1), 100 g of slurry B prepared in Preparation Example B2 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B. Thus, an oil phase component containing Parroyl L and Slurry B was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.50g、PVA-217の10%水溶液40gおよびプロノン208の1%水溶液1gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), 258.50 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217 and 1 g of 1% aqueous solution of Pronon 208 were stirred and stirred at room temperature to obtain a uniform aqueous solution.
 次いで、500mLのビーカー(2)に、パーロイルLを配合した油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数6000rpmで5分間攪拌することにより、油相成分を水分散させて、懸濁液(水分散液)を調製した。 Next, an oil phase component containing Parroyl L was added to a 500 mL beaker (2). K. The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
 その後、懸濁液(水分散液)を、攪拌器、還流冷却器、温度計および窒素導入管を装備した500mL4頚コルベンに移し、窒素気流下、攪拌しながら昇温して、懸濁重合を実施した。 Thereafter, the suspension (aqueous dispersion) is transferred to a 500 mL 4-neck Kolben equipped with a stirrer, reflux condenser, thermometer and nitrogen introduction tube, and heated with stirring in a nitrogen stream to effect suspension polymerization. Carried out.
 懸濁重合は、55℃到達時点を重合開始とし、その後、70±1℃で5時間、80±1℃で2時間、連続して実施した。 Suspension polymerization was started at the time when the temperature reached 55 ° C., and then continuously carried out at 70 ± 1 ° C. for 5 hours and at 80 ± 1 ° C. for 2 hours.
 その後、反応後の懸濁液を30℃以下に冷却することにより、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, the suspension after the reaction was cooled to 30 ° C. or lower to obtain a suspension (suspension agent) of sustained-release particles containing clothianidin.
  参考例B2(クロチアニジン含有徐放性粒子の合成:参考形態に対応)
 200mLのビーカー(1)に、調製例B2で調製したスラリーB 100g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、パーロイルLをスラリーBに溶解させた。これによって、パーロイルLおよびスラリーBを含有する油相成分を調製した。
Reference Example B2 (Synthesis of clothianidin-containing sustained release particles: corresponding to reference form)
In a 200 mL beaker (1), 100 g of slurry B prepared in Preparation Example B2 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in Slurry B. Thus, an oil phase component containing Parroyl L and Slurry B was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.26g、PVA-217の10%水溶液40g、プロノン208の1%水溶液1gおよびデモールNL 0.24gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), charged with 258.26 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217, 1 g of 1% aqueous solution of Pronon 208 and 0.24 g of demole NL, and stirred uniformly at room temperature Obtained an aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数6000rpmで5分間攪拌することにより、油相成分を水分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed in water by stirring with a homomixer MARK 2.5 type (manufactured by Primix) at a rotational speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
 その後、参考例B1と同様の条件で懸濁重合を実施し、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。 Thereafter, suspension polymerization was carried out under the same conditions as in Reference Example B1 to obtain a suspension (suspension) of sustained release particles containing clothianidin.
  参考例B3(クロチアニジン含有徐放性粒子の合成:参考形態に対応)
 200mLのビーカー(1)に、調製例B1で調製したスラリーA 100g、および、パーロイルL 0.5gを仕込み、室温で攪拌することにより、パーロイルLをスラリーAに溶解させた。これによって、パーロイルLおよびスラリーAを含有する油相成分を調製した。
Reference Example B3 (Synthesis of clothianidin-containing sustained release particles: corresponding to reference form)
In a 200 mL beaker (1), 100 g of the slurry A prepared in Preparation Example B1 and 0.5 g of Parroyl L were charged and stirred at room temperature to dissolve Parroyl L in the slurry A. Thus, an oil phase component containing Parroyl L and Slurry A was prepared.
 別途、500mLのビーカー(2)に、イオン交換水258.50g、PVA-217の10%水溶液40gおよびプロノン208の1%水溶液1gを仕込み、室温で攪拌することにより、均一な水溶液を得た。 Separately, in a 500 mL beaker (2), 258.50 g of ion-exchanged water, 40 g of 10% aqueous solution of PVA-217 and 1 g of 1% aqueous solution of Pronon 208 were stirred and stirred at room temperature to obtain a uniform aqueous solution.
 次いで、500mLのビーカー(2)に、油相成分を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数6000rpmで5分間攪拌することにより、油相成分を分散させて、懸濁液(水分散液)を調製した。 Next, the oil phase component was added to a 500 mL beaker (2). K. The oil phase component was dispersed by stirring with a homomixer MARK 2.5 type (manufactured by PRIMIX Co., Ltd.) at a rotation speed of 6000 rpm for 5 minutes to prepare a suspension (aqueous dispersion).
 その後、参考例B1と同様の条件で懸濁重合を実施し、クロチアニジンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表B2~表B5中、重合条件欄における「1」は、懸濁液に、ジエチレントリアミン水溶液を添加した直後に、懸濁液を70℃に昇温して、同温度で5時間維持し、その後、懸濁液を80℃に昇温し、同温度で2時間維持したことを示す。
Thereafter, suspension polymerization was carried out under the same conditions as in Reference Example B1 to obtain a suspension (suspension) of sustained release particles containing clothianidin.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
In Tables B2 to B5, “1” in the polymerization condition column indicates that immediately after the diethylenetriamine aqueous solution was added to the suspension, the suspension was heated to 70 ° C. and maintained at the same temperature for 5 hours. This shows that the suspension was heated to 80 ° C. and maintained at the same temperature for 2 hours.
 表B2~表B6中、重合条件欄における「2」は、懸濁液に、ジエチレントリアミンの水溶液を添加した直後に、懸濁液を60℃に昇温して、同温度で1時間維持し、次いで、懸濁液を70℃に昇温して、同温度で2時間維持し、その後、懸濁液を80℃に昇温し、同温度で1時間維持したことを示す。 In Tables B2 to B6, “2” in the polymerization conditions column indicates that immediately after the aqueous solution of diethylenetriamine was added to the suspension, the suspension was heated to 60 ° C. and maintained at the same temperature for 1 hour. Then, the suspension was heated to 70 ° C. and maintained at the same temperature for 2 hours, and then the suspension was heated to 80 ° C. and maintained at the same temperature for 1 hour.
 表B2~表B5中、重合条件欄における「3」は、懸濁液に、ジエチレントリアミン水溶液を添加した直後に、懸濁液を50℃に昇温して、同温度で2時間維持し、次いで、懸濁液を60℃に昇温して、同温度で1時間維持し、続いて、懸濁液を70℃に昇温して、同温度で2時間維持し、その後、懸濁液を80℃に昇温し、同温度で1時間維持したことを示す。 In Tables B2 to B5, “3” in the polymerization conditions column indicates that immediately after the diethylenetriamine aqueous solution was added to the suspension, the suspension was heated to 50 ° C. and maintained at the same temperature for 2 hours, The suspension is heated to 60 ° C. and maintained at the same temperature for 1 hour, and then the suspension is heated to 70 ° C. and maintained at the same temperature for 2 hours. It shows that the temperature was raised to 80 ° C. and maintained at the same temperature for 1 hour.
 表B2~表B5中、重合条件欄における「4」は、懸濁液を60℃に昇温して、同温度で1時間維持した後、ジエチレントリアミンの水溶液を添加し、その直後に、懸濁液を70℃に昇温して、同温度で2時間維持し、その後、懸濁液を80℃に昇温し、同温度で1時間維持したことを示す。 In Table B2 to Table B5, “4” in the polymerization conditions column indicates that the suspension was heated to 60 ° C. and maintained at the same temperature for 1 hour, and then an aqueous solution of diethylenetriamine was added, followed immediately by suspension. The liquid was heated to 70 ° C. and maintained at the same temperature for 2 hours, and then the suspension was heated to 80 ° C. and maintained at the same temperature for 1 hour.
 また、表B2~表B5中、徐放性粒子の形態欄における「1」は、図B1で示される第3実施形態の構造を有すること、「2」は、図B2で示される第4実施形態の構造を有することを示す。 In Tables B2 to B5, “1” in the column of sustained release particles has the structure of the third embodiment shown in FIG. B1, and “2” shows the fourth embodiment shown in FIG. B2. It shows having a structure of form.
  (徐放性粒子の粉剤と熱可塑性樹脂との混練および成形)
  実施例B36(実施例B1の粉剤とポリエチレンとの混練および成形)
 実施例B1で作製した徐放性粒子の懸濁液を100目濾布で濾過後、室温で1日乾燥して、徐放性粒子の粉末(粉剤)を得た。得られた徐放性粒子の粉末(粉剤)と、高密度ポリエチレン(HDPE)ハイゼックス6300M(プライムポリマー社製、メルトフローレート0.11g/10分)とをクロチアニジンがHDPEに対して0.25%となるようにドライブレンドし、二軸押出・射出成形併設機DSMXploreMC15M(DSM社製)に投入して、220℃×5分溶融混練してストランドを得、続いて、溶融状態のままで射出成形により短冊型成形品(10mm×76mm×4mm)を得た。
(Kneading and molding of powder of sustained release particles and thermoplastic resin)
Example B36 (kneading and molding of the powder of Example B1 and polyethylene)
The suspension of sustained-release particles prepared in Example B1 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain sustained-release particle powder (powder). The obtained sustained-release particle powder (powder) and high-density polyethylene (HDPE) Hi-Zex 6300M (manufactured by Prime Polymer Co., Ltd., melt flow rate 0.11 g / 10 min) were 0.25% clothianidin with respect to HDPE. Dry blended so that it becomes, and put into a twin screw extrusion / injection molding machine DSMXploreMC15M (manufactured by DSM), melt kneaded at 220 ° C. for 5 minutes to obtain a strand, then injection molded in the molten state A strip-shaped molded product (10 mm × 76 mm × 4 mm) was obtained.
  実施例B37(実施例B27の粉剤とポリエチレンとの混練および成形)
 実施例B1で作製した徐放性粒子の懸濁液に代えて、実施例B27で作製した徐放性粒子の懸濁液を用いた以外は、実施例B36と同様に処理して、短冊型成形品を得た。
Example B37 (kneading and molding of the powder of Example B27 and polyethylene)
A strip-shaped treatment was carried out in the same manner as in Example B36, except that the sustained-release particle suspension prepared in Example B27 was used instead of the sustained-release particle suspension prepared in Example B1. A molded product was obtained.
  参考例B4(参考例B1の粉剤とポリエチレンとの混練および成形)
 実施例B1で作製した徐放性粒子の懸濁液に代えて、参考例B1で作製した徐放性粒子の懸濁液を用いた以外は、実施例B36と同様に処理して、短冊型成形品を得た。
Reference Example B4 (kneading and molding of the powder of Reference Example B1 and polyethylene)
A strip-shaped treatment was carried out in the same manner as in Example B36 except that the suspension of sustained release particles prepared in Reference Example B1 was used instead of the suspension of sustained release particles prepared in Example B1. A molded product was obtained.
  参考例B5(参考例B3の粉剤とポリエチレンとの混練および成形)
 実施例B1で作製した徐放性粒子の懸濁液に代えて、実施例B3で作製した徐放性粒子の懸濁液を用いた以外は、実施例B36と同様に処理して、短冊型成形品を得た。
Reference Example B5 (kneading and molding of the powder of Reference Example B3 and polyethylene)
A strip type treatment was carried out in the same manner as in Example B36, except that the suspension of sustained release particles prepared in Example B3 was used instead of the suspension of sustained release particles prepared in Example B1. A molded product was obtained.
  (徐放性粒子の粒剤の製剤化)
  実施例B38
 カガライト2号(カガライト工業社製、軽石の細粒、粒子径425~1400μm)100質量部に対し、実施例B1で作製した徐放性粒子の懸濁液(クロチアニジン濃度7.0質量%)1.4質量部を配合し、次いで、これらを乾燥して、クロチアニジンの粒剤を得た。粒剤におけるクロチアニジン濃度は、約0.1質量%であった。
(Formulation of sustained release particles)
Example B38
Suspension of sustained release particles prepared in Example B1 (clothianidin concentration 7.0 mass%) 1 with respect to 100 parts by mass of Kagalite 2 (manufactured by Kagalite Kogyo Co., Ltd., fine particles of pumice, particle size 425 to 1400 μm) 1 .4 parts by mass were blended and then dried to obtain clothianidin granules. The clothianidin concentration in the granules was about 0.1% by mass.
  実施例B39
 実施例B1で作製した徐放性粒子の懸濁液に代えて、実施例B27で作製した徐放性粒子の懸濁液(クロチアニジン濃度7.0質量%)1.4質量部を配合した以外は、実施例B38と同様に処理して、クロチアニジンの粒剤を得た。粒剤におけるクロチアニジン濃度は、約0.1質量%であった。
Example B39
In place of the suspension of sustained release particles prepared in Example B1, 1.4 part by mass of the suspension of sustained release particles prepared in Example B27 (clothianidin concentration 7.0 mass%) was used. Were treated in the same manner as in Example B38 to obtain clothianidin granules. The clothianidin concentration in the granules was about 0.1% by mass.
  参考例B6
 実施例B1で作製した懸濁液に代えて、参考例B1で作製した徐放性粒子の懸濁液(クロチアニジン濃度8.3質量%)1.2質量部を配合した以外は、実施例B38と同様に処理して、クロチアニジンの粒剤を得た。粒剤におけるクロチアニジン濃度は、約0.1質量%であった。
Reference Example B6
Example B38 except that 1.2 parts by mass of the sustained-release particle suspension (clothianidin concentration 8.3% by mass) prepared in Reference Example B1 was blended in place of the suspension prepared in Example B1. In the same manner as above, clothianidin granules were obtained. The clothianidin concentration in the granules was about 0.1% by mass.
  参考例B7
 実施例B1で作製した懸濁液に代えて、参考例B3で作製した徐放性粒子の懸濁液(クロチアニジン濃度8.3質量%)1.2質量部を配合した以外は、実施例B38と同様に処理して、クロチアニジンの粒剤を得た。粒剤におけるクロチアニジン濃度は、約0.1質量%であった。
1.SEM(走査型電子顕微鏡、ScanningElectronMicroscope)観察
 実施例B1、実施例B2、実施例B6、実施例B30および実施例B35のそれぞれの懸濁液(懸濁剤)を、試料台に滴下し、その後、水を留去した後、得られた徐放性粒子を、走査型電子顕微鏡日立TM-3000(日立ハイテクノロジーズ社製)で、SEM観察した。実施例B1、実施例B2、実施例B6、実施例B30および実施例B35で得られた徐放性粒子のSEM画像を、図B3~図B7にそれぞれ示す。
2.TEM(透過型電子顕微鏡、TransmissionElectronMicroscope)観察
 実施例B2および参考例B1~参考例B3のそれぞれの懸濁液(懸濁剤)を、凍結乾燥し、ビスフェノール型液状エポキシ樹脂に分散して、アミンで硬化させる。これをウルトラミクロトームで切断することにより断面を出し、四酸化オスミウムによって染色、必要に応じてさらに四酸化ルテニウムで染色し、これをウルトラミクロトームで超薄切片に切り出しサンプルを調製した。調製したサンプルを、透過型電子顕微鏡(型番「H-7100」、日立製作所社製)で、TEM観察した。
Reference Example B7
Example B38 except that 1.2 parts by mass of the sustained-release particle suspension (clothianidin concentration: 8.3% by mass) prepared in Reference Example B3 was used instead of the suspension prepared in Example B1. In the same manner as above, clothianidin granules were obtained. The clothianidin concentration in the granules was about 0.1% by mass.
1. Observation of SEM (Scanning Electron Microscope) Example B1, Example B2, Example B6, Example B30 and Example B35 suspensions (suspension agents) were dropped onto the sample stage, and then After the water was distilled off, the obtained sustained-release particles were observed with a scanning electron microscope Hitachi TM-3000 (manufactured by Hitachi High-Technologies Corporation) by SEM. SEM images of the sustained release particles obtained in Example B1, Example B2, Example B6, Example B30, and Example B35 are shown in FIGS. B3 to B7, respectively.
2. Observation of TEM (Transmission Electron Microscope, Transmission Electron Microscope) Each suspension (suspension) of Example B2 and Reference Examples B1 to B3 was freeze-dried, dispersed in a bisphenol-type liquid epoxy resin, and added with an amine. Harden. A cross section was obtained by cutting this with an ultramicrotome, stained with osmium tetroxide, and further stained with ruthenium tetroxide as necessary, and this was cut into ultrathin sections with an ultramicrotome to prepare a sample. The prepared sample was observed with a transmission electron microscope (model number “H-7100”, manufactured by Hitachi, Ltd.) by TEM.
 実施例B2および参考例B1~参考例B3のTEM写真の画像処理図を、図B8~図B11にそれぞれ示す。 Image processing diagrams of TEM photographs of Example B2 and Reference Examples B1 to B3 are shown in FIGS. B8 to B11, respectively.
 なお、図B8~図B11中、符号3で示される空白は、切り出した超薄切片を水に浮かべて回収する過程において、クロチアニジンが溶解脱落した跡であり、クロチアニジンから形成されるドメインの形を表している。 In FIGS. B8 to B11, the blank indicated by reference numeral 3 is a trace of clothianidin being dissolved and dropped in the process of collecting and recovering the cut ultrathin section in water. The shape of the domain formed from clothianidin is shown in FIG. Represents.
 また、図B8において、シェル7は、ポリウレアから構成されており、具体的には、最外層(最表面)から内側に向かうに従って、マトリクス2に対するポリウレアの濃度が薄くなるように、構成されている。また、シェル7は、ドメイン3を囲むように、マトリクス2の表層部に位置(偏在)している。 Further, in FIG. B8, the shell 7 is made of polyurea, and specifically, the polyurea concentration with respect to the matrix 2 decreases as it goes inward from the outermost layer (outermost surface). . Further, the shell 7 is located (unevenly distributed) in the surface layer portion of the matrix 2 so as to surround the domain 3.
 一方、図B9~図B11から分かるように、参考例B1~参考例B3の徐放性粒子1では、シェル7(図B8参照)が形成されていない。
3.耐アルカリ性試験
3-1.徐放性粒子の懸濁剤
 次の手順で徐放性粒子の懸濁剤の耐アルカリ性試験(試験AおよびB)を実施した。
On the other hand, as can be seen from FIGS. B9 to B11, in the sustained release particles 1 of Reference Examples B1 to B3, the shell 7 (see FIG. B8) is not formed.
3. 3. Alkali resistance test 3-1. Sustained-release particle suspension The alkali resistance test (Tests A and B) of the sustained-release particle suspension was performed according to the following procedure.
  (試験A)
 実施例B1~実施例B35のそれぞれの懸濁剤を抗生物活性化合物の濃度(実施例B1~実施例B34については、クロチアニジンの濃度、実施例B35については、イミダクロプリドの濃度)が0.25%となるように、脱イオン水で稀釈した。希釈した懸濁剤1mLをガラス瓶に秤り取り、飽和水酸化カルシウム溶液4mLを添加して、試験溶液を調製した。この試験溶液を40℃の恒温下で静置した。
(Test A)
The concentration of each of the suspensions of Examples B1 to B35 is 0.25% for the concentration of the antibiotic compound (for Examples B1 to B34, the concentration of clothianidin, and for Example B35, the concentration of imidacloprid). Diluted with deionized water. 1 mL of the diluted suspension was weighed into a glass bottle, and 4 mL of saturated calcium hydroxide solution was added to prepare a test solution. This test solution was allowed to stand at a constant temperature of 40 ° C.
 静置を開始してから7日後、試験溶液にアセトニトリルを5mLを添加して、抗生物活性化合物を抽出し、HPLCで抗生物活性化合物を定量し、抗生物活性化合物の残存率を算出した。 Seven days after the start of standing, 5 mL of acetonitrile was added to the test solution, the antibiotic compound was extracted, the antibiotic compound was quantified by HPLC, and the residual ratio of the antibiotic compound was calculated.
 それらの結果を、表B2~表B6に示す。 The results are shown in Tables B2 to B6.
 別途、コントロールとして、クロチアニジンの0.25%水溶液、および、イミダクロプリドの0.25%水溶液を用いて同様に試験を実施した。その結果、クロチアニジンの0.25%水溶液の試験Aの残存率は、2.5%であり、イミダクロプリドの0.25%水溶液の試験Aの残存率は、0%であった。 Separately, as a control, a test was similarly conducted using a 0.25% aqueous solution of clothianidin and a 0.25% aqueous solution of imidacloprid. As a result, the residual rate of Test A in a 0.25% aqueous solution of clothianidin was 2.5%, and the residual rate in Test A of a 0.25% aqueous solution of imidacloprid was 0%.
 表B2~表B6から少なくとも以下の点が分かる。 From Table B2 to Table B6, you can see at least the following points.
 実施例B2~実施例B4は、界面重合を懸濁重合の開始の前に開始するので、クロチアニジンを含有するマトリクスとシェルとの相分離を良好に進行させることができる。一方、実施例B5は、界面重合を懸濁重合の開始の後に開始するので、マトリクスとシェルとの相分離を良好に進行させることができず、実施例B2~実施例B4は、実施例B5に比べて、耐アルカリ性に優れる。 In Example B2 to Example B4, the interfacial polymerization is started before the start of the suspension polymerization, so that the phase separation between the clothianidin-containing matrix and the shell can proceed well. On the other hand, in Example B5, the interfacial polymerization is started after the start of the suspension polymerization, so that the phase separation between the matrix and the shell cannot proceed well, and Examples B2 to B4 are the same as Example B5. Compared to, it has excellent alkali resistance.
 実施例B6~実施例B8は、界面重合を懸濁重合の開始の前に開始するので、クロチアニジンを含有するマトリクスとシェルとの相分離を良好に進行させることができる。一方、実施例B9は、界面重合を懸濁重合の開始の後に開始するので、マトリクスとシェルとの相分離を良好に進行させることができず、実施例B6~実施例B8は、実施例B9に比べて、耐アルカリ性に優れる。 In Example B6 to Example B8, the interfacial polymerization is started before the start of the suspension polymerization, so that the phase separation between the clothianidin-containing matrix and the shell can proceed well. On the other hand, in Example B9, the interfacial polymerization is started after the start of the suspension polymerization, so that the phase separation between the matrix and the shell cannot proceed well, and Examples B6 to B8 are the same as Example B9. Compared to, it has excellent alkali resistance.
 実施例B13、実施例B12、実施例B11、実施例B2および実施例B10は、この順で、i-BMAおよびEGDMAに対するT-1890の配合割合が増大している。そのため、実施例B13、実施例B12、実施例B11、実施例B2および実施例B10は、この順で、シェルの厚み(徐放性粒子におけるシェルの濃度)が大きくなる。従って、実施例B13、実施例B12、実施例B11、実施例B2および実施例B10は、この順で、耐アルカリ性が向上する。 In Example B13, Example B12, Example B11, Example B2, and Example B10, the blending ratio of T-1890 to i-BMA and EGDMA increases in this order. Therefore, in Example B13, Example B12, Example B11, Example B2, and Example B10, the thickness of the shell (the concentration of the shell in the sustained-release particles) increases in this order. Therefore, in Example B13, Example B12, Example B11, Example B2, and Example B10, the alkali resistance is improved in this order.
 実施例B18、実施例B17、実施例B16、実施例B15、実施例B6および実施例B14は、この順で、スチレンおよびEGDMAに対するT-1890の配合割合が増大している。そのため、実施例B18、実施例B17、実施例B16、実施例B15、実施例B6および実施例B14は、この順で、シェルの厚み(徐放性粒子におけるシェルの濃度)が大きくなる。従って、実施例B18、実施例B17、実施例B16、実施例B15、実施例B6および実施例B14は、この順で耐アルカリ性が向上する。 In Example B18, Example B17, Example B16, Example B15, Example B6, and Example B14, the blending ratio of T-1890 to styrene and EGDMA increases in this order. Therefore, in Example B18, Example B17, Example B16, Example B15, Example B6, and Example B14, the thickness of the shell (the concentration of the shell in the sustained-release particles) increases in this order. Therefore, Example B18, Example B17, Example B16, Example B15, Example B6, and Example B14 have improved alkali resistance in this order.
 実施例B28、実施例B27および実施例B2は、この順で、徐放性粒子におけるクロチアニジンの配合割合が低下しており、実施例B28、実施例B27および実施例B2は、この順で、耐アルカリ性が向上する。 In Example B28, Example B27, and Example B2, the blending ratio of clothianidin in the sustained release particles decreased in this order, and Example B28, Example B27, and Example B2 decreased in resistance in this order. Alkalinity is improved.
 実施例B30、実施例B29および実施例B2は、この順で、徐放性粒子におけるクロチアニジンの配合割合が低下しており、耐アルカリ性が向上する。 In Example B30, Example B29 and Example B2, the blending ratio of clothianidin in the sustained release particles is reduced in this order, and the alkali resistance is improved.
 より疎水性の高い懸濁重合体の方が、ポリウレアとの相分離が良好に進行する。従って、実施例B2および実施例B19~実施例B23において、i-BMAの配合割合が比較的高い実施例B2および実施例B19~実施例B21は、i-BMAの配合割合が極端に低い実施例B22および実施例B23に比べて、シェルとクロチアニジンを含むマトリクスとの相分離が良好に進行する。そのため、実施例B2、実施例B20および実施例B21は、実施例B22および実施例B23に比べて、耐アルカリ性に優れている。 The suspension polymer with higher hydrophobicity proceeds better in phase separation with polyurea. Therefore, in Example B2 and Example B19 to Example B23, Example B2 and Example B19 to Example B21 in which the proportion of i-BMA is relatively high are examples in which the proportion of i-BMA is extremely low. Compared to B22 and Example B23, the phase separation between the shell and the matrix containing clothianidin proceeds better. Therefore, Example B2, Example B20, and Example B21 are excellent in alkali resistance compared to Example B22 and Example B23.
 実施例B6および実施例B23~実施例B26において、スチレンの配合割合が比較的高い実施例B6、実施例B24および実施例B25は、スチレンの配合割合が極端に低い実施例B23および実施例B26に比べて、シェルとクロチアニジンを含むマトリクスとの相分離が良好に進行する。そのため、実施例B6、実施例B24および実施例B25は、実施例B23および実施例B26に比べて、耐アルカリ性に優れている。 In Example B6 and Example B23 to Example B26, Example B6, Example B24, and Example B25, in which the blending ratio of styrene is relatively high, are different from Examples B23 and B26 in which the blending ratio of styrene is extremely low. In comparison, the phase separation between the shell and the matrix containing clothianidin proceeds well. Therefore, Example B6, Example B24, and Example B25 are superior in alkali resistance compared to Example B23 and Example B26.
 実施例B6は、重合性ビニルモノマーとしてスチレンを含有し、実施例B2は、重合性ビニルモノマーとしてi-BMAを含有しており、実施例B6のスチレンは、実施例B2のi-BMAと比較して、疎水性が高いため、シェルと重合体との相分離が良好に進行する。そのため、実施例B6は、実施例B2に比べて、耐アルカリ性に優れる。 Example B6 contains styrene as the polymerizable vinyl monomer, Example B2 contains i-BMA as the polymerizable vinyl monomer, and the styrene of Example B6 is compared to i-BMA of Example B2. Since the hydrophobicity is high, the phase separation between the shell and the polymer proceeds well. Therefore, Example B6 is excellent in alkali resistance compared to Example B2.
 (試験B)
 実施例B1、実施例B2および参考例B1~実施例B3で作製した徐放性粒子の懸濁液を100目濾布で濾過後、室温で1日乾燥して、徐放性粒子の粉末(粉剤)を得た。これら粉末を脱イオン水で1000倍に希釈し、そのうち6.3mLをガラス瓶に測りとり、飽和水酸化カルシウム溶液2mLを添加し試験溶液とした。この試験溶液を40℃の恒温下で静置した。
(Test B)
The suspension of sustained release particles produced in Example B1, Example B2 and Reference Examples B1 to B3 was filtered through a 100-mesh filter cloth and dried at room temperature for 1 day to obtain a sustained release particle powder ( Dust) was obtained. These powders were diluted 1000 times with deionized water, of which 6.3 mL was weighed into a glass bottle, and 2 mL of saturated calcium hydroxide solution was added to prepare a test solution. This test solution was allowed to stand at a constant temperature of 40 ° C.
 試験開始から1日後および7日後に試験溶液にアセトニトリル10mLを添加しクロチアニジンを抽出し、HPLCでクロチアニジン量を定量し、残存率を算出した。 1 day and 7 days after the start of the test, 10 mL of acetonitrile was added to the test solution to extract clothianidin, the amount of clothianidin was quantified by HPLC, and the residual ratio was calculated.
 コントロールとして、クロチアニジン原体の水溶液を用いて同様に試験を実施した。 As a control, the same test was conducted using an aqueous solution of clothianidin raw material.
 結果を表B7に示す。
Figure JPOXMLDOC01-appb-T000012
 表B7から分かるように、シェル(図B1における符号7参照)を有する実施例B1および2の徐放性粒子を含有する懸濁剤は、クロチアニジンの残存率が、試験開始後1日および7日のいずれにおいても、シェルを有しない参考例B1~参考例B3の徐放性粒子を含有する懸濁剤に比べて、高いことが分かる。
3-2.徐放性粒子の粒剤
  実施例B38、実施例B39および参考例B6、参考例B7で得られた粒剤を1.0g測り取り、脱イオン水3.6mLと飽和水酸化カルシウム水溶液2mLとを添加して試験溶液を調製した。この試験溶液を40℃恒温下で静置した。
The results are shown in Table B7.
Figure JPOXMLDOC01-appb-T000012
As can be seen from Table B7, the suspension containing the sustained release particles of Examples B1 and 2 having a shell (see reference numeral 7 in FIG. B1) has a clothianidin residual rate of 1 and 7 days after the start of the test. In any of the cases, it is found that the amount is higher than the suspension containing the sustained release particles of Reference Example B1 to Reference Example B3 having no shell.
3-2. Granules of sustained release particles 1.0 g of the granules obtained in Example B38, Example B39, Reference Example B6, and Reference Example B7 are weighed, and 3.6 mL of deionized water and 2 mL of saturated aqueous calcium hydroxide solution are used. Test solutions were prepared by addition. This test solution was allowed to stand at a constant temperature of 40 ° C.
 試験開始から1日後および7日後に試験溶液にアセトニトリル10mLを添加しクロチアニジンを抽出し、HPLCでクロチアニジン量を定量し、残存率を算出した。 1 day and 7 days after the start of the test, 10 mL of acetonitrile was added to the test solution to extract clothianidin, the amount of clothianidin was quantified by HPLC, and the residual ratio was calculated.
 コントロールとして、クロチアニジン原体の水溶液を用いて同様に試験を実施した。 As a control, the same test was conducted using an aqueous solution of clothianidin raw material.
 結果を表8に示す。 The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000013
 表8から分かるように、シェル(図B1における符号7参照)を有する実施例B1および実施例B2の徐放性粒子を含有する実施例B38および実施例B39の粒剤は、クロチアニジンの残存率が、試験開始後1日および7日のいずれにおいても、シェルを有しない参考例B1および参考例B3の徐放性粒子を含有する参考例B6および参考例B7の粒剤に比べて、高いことが分かる。
4.成形品の防蟻試験
 含水率が8%(シロアリ活動の至適含水率)となるように注水したケイ砂を、プラスチック容器に充填し、次いで、ケイ砂の表面に実施例B36および実施例B37の短冊型成形品を設置した。
Figure JPOXMLDOC01-appb-T000013
As can be seen from Table 8, the granules of Example B38 and Example B39 containing the sustained release particles of Example B1 and Example B2 having a shell (see reference numeral 7 in FIG. B1) have clothianidin residual rate. 1 and 7 days after the start of the test, it is higher than the granules of Reference Example B6 and Reference Example B7 containing the sustained release particles of Reference Example B1 and Reference Example B3 which do not have a shell. I understand.
4). Mold prevention test of molded article Silica sand poured to have a moisture content of 8% (optimum moisture content for termite activity) was filled in a plastic container, and then the surface of the quartz sand was filled with Example B36 and Example B37. A strip-shaped molded product was installed.
 比較対照として、徐放性粒子を混練していないHDPEのみからなる短冊型成形品を設置した試験を実施した。 As a comparative control, a test was conducted in which a strip-shaped molded article made only of HDPE not kneaded with sustained release particles was installed.
 上記プラスチック容器内にイエシロアリ職蟻50頭を投入し、シロアリの死亡頭数(=死中率)および行動を7日間にわたり観察した(n=2で試験を実施)。実施例B36および実施例B37の短冊型成形品については、試験開始2および3日目にシロアリは全頭死亡した。 In the above plastic container, 50 termite ants were placed, and the number of dead termites (= dead rate) and behavior were observed over 7 days (test was conducted at n = 2). Regarding the strip-shaped molded products of Example B36 and Example B37, all termites died on the second and third days from the start of the test.
 一方、比較対照であるHDPEのみの短冊型成形品では、7日後もシロアリは死亡に至らず、また、シロアリの行動に変化は認められなかった。 On the other hand, in the case of a strip-shaped molded article made of only HDPE as a comparative control, termites did not die even after 7 days, and no change was observed in termite behavior.
 すなわち、実施例B36および実施例B37については、顕著な殺蟻効果が認められた。 That is, for Example B36 and Example B37, a remarkable ant killing effect was recognized.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Modifications of the present invention apparent to those skilled in the art are intended to be included within the scope of the following claims.
1     徐放性粒子
2     マトリクス
3     ドメイン
5     付着物
7     シェル
1 Sustained release particles 2 Matrix 3 Domain 5 Deposit 7 Shell
 徐放性粒子の製造方法により得られる徐放性粒子は、各種用途に用いられ、例えば、建材、例えば、電線ケーブル材、および、その電線ケーブルの被覆材、例えば、ガスなどの導管、および、その導管の被覆材、例えば、衣類、蚊帳などの繊維製品に使用される。 The sustained-release particles obtained by the method for producing sustained-release particles are used in various applications, for example, building materials, for example, electric wire cable materials, and covering materials for the electric wire cables, for example, conduits such as gas, and It is used for the covering material of the conduit, for example, textile products such as clothes and mosquito nets.

Claims (37)

  1.  溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備える製造方法により得られることを特徴とする、徐放性粒子。
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    Sustained-release particles obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer.
  2.  前記重合工程では、前記重合性ビニルモノマーを、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩の存在下で、懸濁重合し、および/または、
     前記重合性ビニルモノマーが、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを含有する
    ことを特徴とする、請求項1に記載の徐放性粒子。
    In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of aromatic sulfonic acid and formaldehyde, and / or
    The sustained-release particles according to claim 1, wherein the polymerizable vinyl monomer contains a (meth) acrylic acid ester monomer and a (meth) acrylate crosslinking monomer.
  3.  前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、請求項1に記載の徐放性粒子。 The sustained-release particles according to claim 1, wherein the antibiotic compound is a neonicotinoid insecticide.
  4.  前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、請求項3に記載の徐放性粒子。 The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained-release particle according to claim 3, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
  5.  重合体からなるマトリクスと、
     前記重合体を生成するためのモノマーに対して実質的に不溶性の抗生物活性化合物からなり、前記マトリクス中に分散するドメインと
    から形成される2相構造を有することを特徴とする、徐放性粒子。
    A matrix of polymer;
    Sustained release, characterized in that it comprises a two-phase structure formed of an antibiotic compound that is substantially insoluble in the monomer for forming the polymer and is dispersed in the matrix. particle.
  6.  前記徐放性粒子の表面において、前記マトリクスおよび前記ドメインの両方が露出していることを特徴とする、請求項5に記載の徐放性粒子。 6. The sustained release particles according to claim 5, wherein both the matrix and the domain are exposed on the surface of the sustained release particles.
  7.  前記ドメインは、前記マトリクスによって被覆されていることを特徴とする、請求項5に記載の徐放性粒子。 The sustained release particles according to claim 5, wherein the domain is covered with the matrix.
  8.  さらに、前記マトリクスの表面に前記抗生物活性化合物が付着していることを特徴とする、請求項7に記載の徐放性粒子。 Furthermore, the sustained release particles according to claim 7, wherein the antibiotic compound is attached to the surface of the matrix.
  9.  前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、請求項5に記載の徐放性粒子。 The sustained-release particles according to claim 5, wherein the antibiotic compound is a neonicotinoid insecticide.
  10.  前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、請求項9に記載の徐放性粒子。 The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- 10. The sustained release particles according to claim 9, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
  11.  粒剤として調製されていることを特徴とする、請求項1に記載の徐放性粒子。 The sustained-release particles according to claim 1, wherein the sustained-release particles are prepared as granules.
  12.  熱可塑性樹脂と、
     徐放性粒子と
    を含有し、
     前記徐放性粒子は、
     溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備える製造方法により得られることを特徴とする、成形材料。
    A thermoplastic resin;
    Containing sustained release particles,
    The sustained release particles are:
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    A molding material obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer.
  13.  熱可塑性樹脂と、
     徐放性粒子と
    を含有し、
     前記徐放性粒子は、
     溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備える製造方法により得られることを特徴とする、成形品。
    A thermoplastic resin;
    Containing sustained release particles,
    The sustained release particles are:
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    A molded article obtained by a production method comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer.
  14.  溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備えることを特徴とする、徐放性粒子の製造方法。
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    A method for producing sustained-release particles, comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer.
  15.  前記重合工程では、前記重合性ビニルモノマーを、芳香族スルホン酸とホルムアルデヒドとの縮合物の塩の存在下で、懸濁重合し、および/または、
     前記重合性ビニルモノマーが、(メタ)アクリル酸エステル系モノマーおよび(メタ)アクリレート系架橋性モノマーを含有する
    ことを特徴とする、請求項14に記載の徐放性粒子の製造方法。
    In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization in the presence of a salt of a condensate of aromatic sulfonic acid and formaldehyde, and / or
    The method for producing sustained-release particles according to claim 14, wherein the polymerizable vinyl monomer contains a (meth) acrylic acid ester monomer and a (meth) acrylate crosslinking monomer.
  16.  前記重合工程により得られた懸濁液と固体担体とを配合し、それらを乾燥させて、粒剤を調製する工程をさらに備えることを特徴とする、請求項14に記載の徐放性粒子の製造方法。 The sustained-release particles according to claim 14, further comprising a step of blending the suspension obtained by the polymerization step and a solid carrier, drying them, and preparing granules. Production method.
  17.  前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、請求項14に記載の徐放性粒子の製造方法。 The method for producing sustained-release particles according to claim 14, wherein the antibiotic compound is a neonicotinoid insecticide.
  18.  前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、請求項17に記載の徐放性粒子の製造方法。 The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The method for producing sustained-release particles according to claim 17, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
  19.  溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備え、
     前記油相成分調製工程、前記水分散工程および前記重合工程の少なくともいずれかの工程において、疎水性シェル形成成分および親水性シェル形成成分を含有させ、
     前記重合工程では、前記重合性ビニルモノマーを懸濁重合するとともに、前記疎水性シェル形成成分および前記親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成することを特徴とする、徐放性粒子。
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    Comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer;
    In at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell forming component and a hydrophilic shell forming component are included,
    In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to form a shell that covers the suspension polymer. And sustained release particles.
  20.  界面重合を、懸濁重合の開始と同時に開始し、または、懸濁重合の開始より前に開始することを特徴とする、請求項19に記載の徐放性粒子。 The controlled release particles according to claim 19, wherein the interfacial polymerization is started simultaneously with the start of suspension polymerization or before the start of suspension polymerization.
  21.  前記疎水性シェル形成成分が、ポリイソシアネートを含有し、
     前記親水性シェル形成成分が、ポリアミンを含有することを特徴とする、請求項19に記載の徐放性粒子。
    The hydrophobic shell-forming component contains a polyisocyanate;
    20. The sustained-release particle according to claim 19, wherein the hydrophilic shell forming component contains a polyamine.
  22.  前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、請求項19に記載の徐放性粒子。 20. The sustained-release particles according to claim 19, wherein the antibiotic compound is a neonicotinoid insecticide.
  23.  前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、請求項22に記載の徐放性粒子。 The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained release particles according to claim 22, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
  24.  重合体からなるマトリクスと、
     前記重合体を生成するためのモノマーに対して実質的に不溶性の抗生物活性化合物からなり、前記マトリクス中に分散するドメインと、
     前記マトリクスを被覆するシェルと
    を含むことを特徴とする、徐放性粒子。
    A matrix of polymer;
    A domain consisting of an antibiotic compound that is substantially insoluble in the monomers to form the polymer and dispersed in the matrix;
    A sustained-release particle comprising a shell covering the matrix.
  25.  前記シェルは、ポリウレアからなることを特徴とする、請求項24に記載の徐放性粒子。 The sustained release particles according to claim 24, wherein the shell is made of polyurea.
  26.  前記シェルの表面に、抗生物活性化合物が付着していることを特徴とする、請求項24に記載の徐放性粒子。 25. The sustained-release particles according to claim 24, wherein an antibiotic compound is attached to the surface of the shell.
  27.  前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、請求項24に記載の徐放性粒子。 The sustained-release particles according to claim 24, wherein the antibiotic compound is a neonicotinoid insecticide.
  28.  前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、請求項27に記載の徐放性粒子。 The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The sustained-release particle according to claim 27, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
  29.  粒剤として調製されていることを特徴とする、請求項19に記載の徐放性粒子。 The sustained-release particles according to claim 19, wherein the sustained-release particles are prepared as granules.
  30.  熱可塑性樹脂と、
     徐放性粒子と
    を含有し、
     前記徐放性粒子は、
     溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備え、
     前記油相成分調製工程、前記水分散工程および前記重合工程の少なくともいずれかの工程において、疎水性シェル形成成分および親水性シェル形成成分を含有させ、
     前記重合工程では、前記重合性ビニルモノマーを懸濁重合するとともに、前記疎水性シェル形成成分および前記親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成することを特徴とする、成形材料。
    A thermoplastic resin;
    Containing sustained release particles,
    The sustained release particles are:
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    Comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer;
    In at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell forming component and a hydrophilic shell forming component are included,
    In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to form a shell that covers the suspension polymer. And molding material.
  31.  熱可塑性樹脂と、
     徐放性粒子と
    を含有し、
     前記徐放性粒子は、
     溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備え、
     前記油相成分調製工程、前記水分散工程および前記重合工程の少なくともいずれかの工程において、疎水性シェル形成成分および親水性シェル形成成分を含有させ、
     前記重合工程では、前記重合性ビニルモノマーを懸濁重合するとともに、前記疎水性シェル形成成分および前記親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成することを特徴とする、成形品。
    A thermoplastic resin;
    Containing sustained release particles,
    The sustained release particles are:
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    Comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer;
    In at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell forming component and a hydrophilic shell forming component are included,
    In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to form a shell that covers the suspension polymer. And a molded product.
  32.  溶剤の不存在下において、疎水性、かつ、疎水性の重合性ビニルモノマーに対して実質的に不溶性の抗生物活性化合物を、前記疎水性の重合性ビニルモノマー中に分散することにより、疎水性スラリーを含有する油相成分を調製する油相成分調製工程、
     前記油相成分を水分散して水分散液を調製する水分散工程、および、
     前記重合性ビニルモノマーを懸濁重合して、重合体を生成する重合工程
    を備え、
     前記油相成分調製工程、前記水分散工程および前記重合工程の少なくともいずれかの工程において、疎水性シェル形成成分および親水性シェル形成成分を含有させ、
     前記重合工程では、前記重合性ビニルモノマーを懸濁重合するとともに、前記疎水性シェル形成成分および前記親水性シェル形成成分を界面重合して、懸濁重合体を被覆するシェルを形成する
    ことを特徴とする、徐放性粒子の製造方法。
    In the absence of a solvent, a hydrophobic and substantially insoluble antibiotic active compound with respect to the hydrophobic polymerizable vinyl monomer is dispersed in the hydrophobic polymerizable vinyl monomer, thereby making the hydrophobic An oil phase component preparation step for preparing an oil phase component containing a slurry;
    An aqueous dispersion step of preparing an aqueous dispersion by dispersing the oil phase component in water; and
    Comprising a polymerization step of producing a polymer by suspension polymerization of the polymerizable vinyl monomer;
    In at least one of the oil phase component preparation step, the water dispersion step and the polymerization step, a hydrophobic shell forming component and a hydrophilic shell forming component are included,
    In the polymerization step, the polymerizable vinyl monomer is subjected to suspension polymerization, and the hydrophobic shell-forming component and the hydrophilic shell-forming component are interfacially polymerized to form a shell that covers the suspension polymer. A method for producing sustained-release particles.
  33.  重合工程では、界面重合を、懸濁重合の開始と同時に開始し、または、懸濁重合の開始より前に開始することを特徴とする、請求項32に記載の徐放性粒子の製造方法。 The method for producing sustained-release particles according to claim 32, wherein in the polymerization step, the interfacial polymerization is started simultaneously with the start of suspension polymerization or before the start of suspension polymerization.
  34.  前記疎水性シェル形成成分が、ポリイソシアネートであり、
     前記親水性シェル形成成分が、ポリアミンであることを特徴とする、請求項32に記載の徐放性粒子の製造方法。
    The hydrophobic shell-forming component is a polyisocyanate;
    The method for producing sustained-release particles according to claim 32, wherein the hydrophilic shell-forming component is a polyamine.
  35.  重合工程により得られた懸濁液と固体担体とを配合し、それらを乾燥させて、粒剤を調製する工程をさらに備えることを特徴とする、請求項32に記載の徐放性粒子の製造方法。 The production of sustained-release particles according to claim 32, further comprising a step of blending the suspension obtained by the polymerization step and a solid carrier, drying them, and preparing granules. Method.
  36.  前記抗生物活性化合物が、ネオニコチノイド系殺虫剤であることを特徴とする、請求項32に記載の徐放性粒子の製造方法。 The method for producing sustained-release particles according to claim 32, wherein the antibiotic compound is a neonicotinoid insecticide.
  37.  前記ネオニコチノイド系殺虫剤が、(E)-1-(2-クロロチアゾール-5-イルメチル)-3-メチル-2-ニトログアニジン、および、1-(6-クロロ-3-ピリジルメチル)-N-ニトロイミダゾリジン-2-イリデンアミンからなる群から選択される少なくとも1つを含有することを特徴とする、請求項36に記載の徐放性粒子の製造方法。 The neonicotinoid insecticide includes (E) -1- (2-chlorothiazol-5-ylmethyl) -3-methyl-2-nitroguanidine and 1- (6-chloro-3-pyridylmethyl)- The method for producing sustained-release particles according to claim 36, comprising at least one selected from the group consisting of N-nitroimidazolidine-2-ylideneamine.
PCT/JP2014/072837 2013-08-30 2014-08-29 Extended release particles, method for producing same, molding material and molded article WO2015030213A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480047961.6A CN105764338B (en) 2013-08-30 2014-08-29 Slow release particle, its manufacture method, moulding material and products formed
AU2014312780A AU2014312780A1 (en) 2013-08-30 2014-08-29 Extended release particles, method for producing same, molding material and molded article
US14/914,949 US20160235068A1 (en) 2013-08-30 2014-08-29 Controlled release particles, production method thereof, molding material, and molded article
AU2018203982A AU2018203982A1 (en) 2013-08-30 2018-06-05 Extended release particles, method for producing same, molding material and molded article

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-180254 2013-08-30
JP2013180254 2013-08-30
JP2014-111278 2014-05-29
JP2014111278 2014-05-29
JP2014174056A JP6355486B2 (en) 2013-08-30 2014-08-28 Sustained release particles, method for producing the same, molding material and molded article
JP2014-174056 2014-08-28
JP2014174055A JP6355485B2 (en) 2013-08-30 2014-08-28 Sustained release particles, method for producing the same, molding material and molded article
JP2014-174055 2014-08-28

Publications (1)

Publication Number Publication Date
WO2015030213A1 true WO2015030213A1 (en) 2015-03-05

Family

ID=52586759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072837 WO2015030213A1 (en) 2013-08-30 2014-08-29 Extended release particles, method for producing same, molding material and molded article

Country Status (1)

Country Link
WO (1) WO2015030213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131199A (en) * 2015-08-28 2015-12-09 吴奇 Preparation and preparing method and application thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145265A (en) * 1983-02-04 1984-08-20 Sumitomo Naugatuck Co Ltd Adhesive composition
JPS61236702A (en) * 1985-04-10 1986-10-22 Nippon Paint Co Ltd Fine resin particle having resistance to harmful organism
JPH06166733A (en) * 1992-11-30 1994-06-14 Unitika Ltd Production of modified phenolic resin microsphere
JPH06172684A (en) * 1992-12-08 1994-06-21 Tokyo Keikaku:Kk Anti-microbial crosslinked particle-containing coating compound
JPH09136808A (en) * 1995-11-14 1997-05-27 Nippon Shokubai Co Ltd Antimicrobial resin
WO2001041927A1 (en) * 1999-12-10 2001-06-14 Microban Products Company Antimicrobial synthetic ion exchange resins
JP2002503679A (en) * 1998-02-20 2002-02-05 バイエル・アクチエンゲゼルシヤフト Pearl polymer formulation
JP2002513039A (en) * 1998-05-01 2002-05-08 スリーエム イノベイティブ プロパティズ カンパニー Antimicrobial agent delivery system
JP2002513038A (en) * 1998-05-01 2002-05-08 ミネソタ マイニング アンド マニュファクチャリング カンパニー Microspheres as delivery vehicles for bioactive agents useful in agricultural applications
JP2004331625A (en) * 2003-05-12 2004-11-25 Nof Corp Water dispersion type pheromone sustained release preparation and method for producing the same
JP2011079816A (en) * 2009-09-11 2011-04-21 Japan Enviro Chemicals Ltd Sustained-release particle and method for producing the same
WO2012124598A1 (en) * 2011-03-11 2012-09-20 日本エンバイロケミカルズ株式会社 Controlled-release particles
WO2012124599A1 (en) * 2011-03-11 2012-09-20 日本エンバイロケミカルズ株式会社 Controlled-release particles and production method therefor
WO2014010435A1 (en) * 2012-07-13 2014-01-16 日本エンバイロケミカルズ株式会社 Anti-bioactive particles and method for manufacturing same
JP2014019655A (en) * 2012-07-13 2014-02-03 Japan Enviro Chemicals Ltd Anti-biotic active particle and method of producing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145265A (en) * 1983-02-04 1984-08-20 Sumitomo Naugatuck Co Ltd Adhesive composition
JPS61236702A (en) * 1985-04-10 1986-10-22 Nippon Paint Co Ltd Fine resin particle having resistance to harmful organism
JPH06166733A (en) * 1992-11-30 1994-06-14 Unitika Ltd Production of modified phenolic resin microsphere
JPH06172684A (en) * 1992-12-08 1994-06-21 Tokyo Keikaku:Kk Anti-microbial crosslinked particle-containing coating compound
JPH09136808A (en) * 1995-11-14 1997-05-27 Nippon Shokubai Co Ltd Antimicrobial resin
JP2002503679A (en) * 1998-02-20 2002-02-05 バイエル・アクチエンゲゼルシヤフト Pearl polymer formulation
JP2002513039A (en) * 1998-05-01 2002-05-08 スリーエム イノベイティブ プロパティズ カンパニー Antimicrobial agent delivery system
JP2002513038A (en) * 1998-05-01 2002-05-08 ミネソタ マイニング アンド マニュファクチャリング カンパニー Microspheres as delivery vehicles for bioactive agents useful in agricultural applications
WO2001041927A1 (en) * 1999-12-10 2001-06-14 Microban Products Company Antimicrobial synthetic ion exchange resins
JP2004331625A (en) * 2003-05-12 2004-11-25 Nof Corp Water dispersion type pheromone sustained release preparation and method for producing the same
JP2011079816A (en) * 2009-09-11 2011-04-21 Japan Enviro Chemicals Ltd Sustained-release particle and method for producing the same
WO2012124598A1 (en) * 2011-03-11 2012-09-20 日本エンバイロケミカルズ株式会社 Controlled-release particles
WO2012124599A1 (en) * 2011-03-11 2012-09-20 日本エンバイロケミカルズ株式会社 Controlled-release particles and production method therefor
WO2014010435A1 (en) * 2012-07-13 2014-01-16 日本エンバイロケミカルズ株式会社 Anti-bioactive particles and method for manufacturing same
JP2014019655A (en) * 2012-07-13 2014-02-03 Japan Enviro Chemicals Ltd Anti-biotic active particle and method of producing the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A.ARUN ET AL.: "In vitro drug release studies of 2-hydroxyethyl acrylate or 2-hydroxypropyl methacrylate-4-{(1E,4E)-5-[4-(acryloyloxy) phenyl]-3-oxopenta-1,4-dienyl)phenyl acrylate copolymer beads", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS, vol. 73 B, no. 2, 2005, pages 291 - 300 *
E.JABBARI ET AL.: "Morphology of and release behavior from porous polyurethane microspheres", BIOMATERIALS, vol. 21, no. 20, 2000, pages 2073 - 2079 *
M.A.M.OLIVEIRA ET AL.: "In-Situ Incorporation of Amoxicillin in PVA/PVAc-co-PMMA Particles during Suspension Polymerizations", MACROMOLECULAR SYMPOSIA, vol. 299, no. 300, 2011, pages 34 - 40 *
M.YOSHIDA ET AL.: "Preparation of microspheres for slow release drug by radiation-induced suspension polymerization and their properties", YAKUZAIGAKU, vol. 42, no. 3, 1982, pages 137 - 145 *
P.SPEISER ET AL.: "Pearl polymerizates, a new perorally administered form and the effect of pharmaceuticals on them", PRAEPARATIVE PHARMAZIE, vol. 6, no. 9-10, 1970, pages 149 - 154 *
S.M.ICONOMOPOULOU ET AL.: "Incorporation of low molecular weight biocides into polystyrene- divinyl benzene beads with controlled release characteristics", JOURNAL OF CONTROLLED RELEASE, vol. 102, no. 1, 2005, pages 223 - 233 *
S.P.VYAS ET AL.: "Formulation of sustained release nitrofurantoin by interfacial copolymerization method", INDIAN DRUGS, vol. 18, no. 1, 1980, pages 8 - 10 *
TAKAYUKI TAKEI ET AL.: "Preparation of Polymeric Microspheres for Controlled Release of Acetamiprid", KAGAKU KOGAKU RONBUNSHU, vol. 39, no. 3, 20 July 2013 (2013-07-20), pages 219 - 223 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131199A (en) * 2015-08-28 2015-12-09 吴奇 Preparation and preparing method and application thereof
CN105131199B (en) * 2015-08-28 2018-01-23 吴奇 A kind of preparation and preparation method and application

Similar Documents

Publication Publication Date Title
JP5763570B2 (en) Sustained release particles and method for producing the same
JP6083936B2 (en) Method for producing sustained release particles
JP5547589B2 (en) Sustained release particles and method for producing the same
US20060251688A1 (en) Polyurethane microcapsules containing biocide and process for the preparation thereof
AU2018203982A1 (en) Extended release particles, method for producing same, molding material and molded article
AU2010337229A1 (en) Sustained-release silica microcapsules
EP1765071A2 (en) A safe delivery system for agriculturally active materials
US20150141549A1 (en) Antibiotic particles and production method thereof
TW201713408A (en) Function exhibiting particle and method for producing the same
JP5873790B2 (en) Sustained release particles and method for producing the same
JP2009073820A (en) Granular agrichemical composition
JP6646950B2 (en) Wood preservatives and wood protective coatings
WO2015030213A1 (en) Extended release particles, method for producing same, molding material and molded article
JP2007063181A (en) Aqueous suspension composition
JP6051343B2 (en) Particle and production method thereof
JP5045046B2 (en) Coated powdery pesticide
JP3451735B2 (en) Microencapsulated pesticide composition
CN105764338B (en) Slow release particle, its manufacture method, moulding material and products formed
JP6705700B2 (en) Polyolefin resin composition, method for producing the same, and method for producing a molded article
JP2008100984A (en) Powdery composition containing coated agrochemical
JP5186744B2 (en) Powdered composition containing coated pesticide
KR0149699B1 (en) Dispersion of slow-releasing emulsion polymer and method for preparing thereof
JP5145677B2 (en) Powdered composition containing coated pesticide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014312780

Country of ref document: AU

Date of ref document: 20140829

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14839875

Country of ref document: EP

Kind code of ref document: A1