WO2015030148A1 - Multi-tube separation membrane module - Google Patents

Multi-tube separation membrane module Download PDF

Info

Publication number
WO2015030148A1
WO2015030148A1 PCT/JP2014/072658 JP2014072658W WO2015030148A1 WO 2015030148 A1 WO2015030148 A1 WO 2015030148A1 JP 2014072658 W JP2014072658 W JP 2014072658W WO 2015030148 A1 WO2015030148 A1 WO 2015030148A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
tubular
tubular separation
membrane module
housing
Prior art date
Application number
PCT/JP2014/072658
Other languages
French (fr)
Japanese (ja)
Inventor
林 幹夫
恭 石羽
武脇 隆彦
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2015534313A priority Critical patent/JP6409776B2/en
Publication of WO2015030148A1 publication Critical patent/WO2015030148A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/069Tubular membrane modules comprising a bundle of tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus

Definitions

  • the present invention relates to a multi-tubular separation membrane module used for separating a part of components from a fluid such as a solution or a mixed gas.
  • a multitubular separation membrane module is known as a device for separating components in a solution or mixed gas.
  • the separation membrane element used in this multi-tubular separation membrane module is a tubular separation membrane made of zeolite or the like having fine pores about the size of the molecules to be separated.
  • the fluid of the solution is brought into contact with one (outer surface) of the separation membrane element, and the other (inner surface) is depressurized to thereby remove the specific component.
  • a method of vaporizing and separating a method of vaporizing a solution and bringing it into contact with a separation membrane in a gaseous state, and depressurizing a non-contact surface side to separate a specific component, and bringing a pressurized mixed gas into contact with the separation membrane
  • Methods for separating specific components are known.
  • Patent Documents 1 and 2 describe that a baffle is provided perpendicular to a tube (tubular separation membrane) in a multi-tubular separation membrane module in order to efficiently bring a fluid (liquid or gas) into contact with the membrane. Yes.
  • a tube is inserted into each of a plurality of holes provided in a baffle, and an inner peripheral surface of the hole is in contact with the tube. For this reason, the membrane surface of the tube is covered with the inner peripheral surface of the hole, and the tube is equal to (number of baffles) ⁇ (number of holes in each baffle) ⁇ (area of the inner peripheral surface of the holes). The membrane area of the membrane is reduced and the membrane separation efficiency is lowered.
  • the diameter of the baffle tube (tubular zeolite separation membrane) insertion hole is made larger than the tube outer diameter, and a gap is formed between the inner peripheral surface of the hole and the outer peripheral surface of the tube.
  • the part inserted into the hole of the tube is also made to contribute to membrane separation.
  • Patent Document 2 a part of the outer peripheral edge of the baffle is notched in the chord direction, and most of the fluid to be treated passes through the notched part. For this reason, in Patent Document 2, the difference in fluid pressure between one side (upstream side) and the other side (downstream side) of one baffle is small, and the tube insertion hole inner peripheral surface and the tube outer peripheral surface The fluid to be processed does not pass through the gap at a high flow rate.
  • Patent Document 3 describes a multi-tubular separation membrane module in which a tubular member surrounding each tubular separation membrane of a multi-tubular separation membrane module is provided with a slight gap so that liquid can pass through the gap at high speed. ing. According to Patent Document 3, such a structure promotes the turbulent flow of fluid in the vicinity of the tubular separation membrane and spreads the fluid throughout the separation membrane, thereby improving the processing capacity of the multitubular separation membrane module.
  • Patent Document 3 in order to increase the gas linear velocity on the high pressure side, the gas passage cross-sectional area on the high pressure side is reduced, and further, the flow passage is reduced stepwise to increase the stage cut.
  • the gas linear velocity of the high-pressure side gas is kept large, this gas linear velocity is a gas linear velocity calculated on average, and the difference in linear velocity at each part of the film is not taken into consideration. In particular, there is a risk that the transmission efficiency may partially decrease at a location where the gas flow direction changes.
  • the module housing is partitioned into two or more spaces by partition walls parallel to the tubular separation membrane, and there is a flow hole for allowing gas to move between the spaces partitioned by the partition walls.
  • Both the high-pressure side gas flow and the low-pressure permeate gas flow of the tubular separation membrane contained in each space are moved in series by a distance of more than twice the effective length of the tubular separation membrane into the tubular separation membrane.
  • Japanese Unexamined Patent Publication No. 8-131781 Japanese Unexamined Patent Publication No. 2013-39546 International Publication No. 2004/035182 Japanese Unexamined Patent Publication No. 2007-160238
  • the flow rate of the fluid to be treated along the tubular separation membrane in the multi-tubular separation membrane module is large, thereby improving the membrane separation efficiency, and avoiding an increase in the weight of the multi-tubular separation membrane module.
  • An object is to provide a multi-tubular separation membrane module.
  • the multi-tubular separation membrane module of the present invention includes a tubular housing, a plurality of tubular separation membranes disposed in the housing in the longitudinal direction of the housing, and fixed to the housing to support the tubular separation membrane.
  • a multi-tubular separation membrane module having a support plate and one or two or more baffles having an insertion hole through which the tubular separation membrane is inserted and disposed substantially parallel to the support plate in the housing,
  • a gap is provided between the inner peripheral surface of the insertion hole and the outer peripheral surface of the tubular separation membrane, and includes a hole length A of the insertion hole, an inner diameter B of the insertion hole of the baffle, and an outer diameter C of the tubular separation membrane.
  • the ratio A / (BC) to the difference is 0.67 to 50.
  • the plurality of tubular separation membranes are preferably arranged so that the shortest distance between the tubular separation membranes is 2 mm to 10 mm.
  • Baffles are respectively arranged at positions within 20 cm from both ends of the tubular separation membrane.
  • the support plates are preferably disposed on both ends of the housing.
  • the tubular separation membrane is inserted into the insertion hole of the baffle disposed in the housing, and the inner peripheral surface of the insertion hole and the outer peripheral surface of the gap separation membrane are There is a gap between them.
  • the fluid to be treated passes through the gap between the inner peripheral surface of the insertion hole of the baffle and the outer peripheral surface of the tubular separation membrane at a high flow rate, and the tubular separation membrane At a high flow velocity. For this reason, the turbulent flow of the fluid to be processed along the surface (outer peripheral surface) of the tubular separation membrane is promoted, and the membrane separation efficiency is improved.
  • FIG. 1 is a cross-sectional view of the multi-tubular separation membrane module according to the embodiment along the axial direction of the housing.
  • 2 is a cross-sectional view taken along line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a perspective schematic diagram for explaining the function and effect of the present invention.
  • FIG. 6 is a perspective schematic diagram for explaining the function and effect of the reference example.
  • FIG. 7 is a cross-sectional view of a through hole portion of a baffle showing another embodiment.
  • FIG. 8 is a cross-sectional view of the multi-tubular separation membrane module according to a different embodiment along the axial direction of the housing.
  • FIG. 9 is a graph showing the results of Examples and Comparative Examples.
  • FIG. 10 is a cross-sectional view of an insertion hole portion of a baffle showing another embodiment.
  • FIG. 11 is a cross-sectional view of an insertion hole portion of a baffle showing another embodiment.
  • FIG. 12 is a graph showing the results of Examples and Comparative Examples.
  • the multi-tubular separation membrane module 1 includes a cylindrical housing 2, a support plate 4 fixed to one end of the housing 2 to support the tubular separation membrane 3, and a support plate provided at the other end of the housing 2. 5, a plurality of tubular separation membranes 3 arranged in a direction parallel to the axis of the housing 2, an end cover 6 attached to one end of the housing 2 so as to cover the support plate 4, and the other end of the housing 2 It has a blind plate 7 attached to the side and a baffle 8 arranged in the housing 2 in parallel with the support plates 4, 5.
  • the fluid inlet 9 is provided on the outer peripheral surface on one end side of the housing 2, and the fluid outlet 10 is provided on the outer peripheral surface on the other end side.
  • the inflow port 9 is provided so as to face the chamber 11 between the support plate 4 and the baffle 8 closest to the support plate 4.
  • the outlet 10 is provided so as to face a chamber 15 between the support plate 5 and the baffle 8 closest to the support plate 5.
  • a plurality of (four in FIG. 1) baffles 8 are provided, and the chambers 12, 13, and 14 are sequentially partitioned from the chamber 11 to the chamber 15 between the baffles 8. Yes.
  • the number of baffles 8 is not limited to that shown in the figure.
  • Each baffle 8 is provided with a circular insertion hole (hereinafter also referred to as a hole) 8a through which the tubular separation membrane 3 is inserted, and the tubular separation membrane is inserted into each insertion hole 8a.
  • the diameter of the insertion hole 8 a is larger than the diameter (outer diameter) of the tubular separation membrane 3, and a gap S is provided over the entire circumference between the inner peripheral surface of the insertion hole 8 a and the outer peripheral surface of the tubular separation membrane 3.
  • the support plates 4 and 5 are provided with openings 4 a and 5 a for supporting the tubular separation membrane 3.
  • the tubular separation membrane 3 is inserted into the openings 4a and 5a, and the space between the outer peripheral surface of the tubular separation membrane 3 and the inner peripheral surface of the openings 4a and 5a is hermetically sealed.
  • each tubular separation membrane 3 is open toward the outflow chamber 16 between the end cover 6 and the support plate 4.
  • the end cover 6 is provided with a separated permeate outlet 6a.
  • the other end of the tubular separation membrane 3 supported by the support plate 5 may be open toward the chamber 17 between the support plate 5 and the blind plate 7 or may be sealed.
  • outward flanges 2a and 6b are provided on one end side of the housing 2 and the outer peripheral edge of the end cover 6, respectively, and the outer peripheral edge of the support plate 4 is a sealing material (not shown) on the flanges 2a and 6b. These are fixed by bolts (not shown).
  • the blind plate 7 is attached to a flange 2b provided on the other end side of the housing 2 by a bolt via a sealing material (not shown).
  • the diameter of each baffle 8 is substantially equal to the inner diameter of the housing 2, and the outer peripheral surface of the baffle 8 is in contact with the inner peripheral surface of the housing 2, or is opposed through a slight gap.
  • the hole length of the insertion hole 8a (the length in the axial direction of the hole 8a) is equal to the thickness of the baffle 8.
  • the thickness may not be uniform.
  • the hole length of the hole 8a (the thickness of the baffle 8 in this embodiment) is A
  • the diameter of the insertion hole 8a is B
  • the diameter (outer diameter) of the tubular separation membrane 3 is In the case of C
  • a / (BC) is 0.67 to 50, preferably 10 or less, particularly preferably 8 or less, more preferably 1 or more, and further preferably 2 or more.
  • the fluid to be treated is introduced into the chamber 11 of the housing 2 from the inlet 9, and the inner peripheral surface of the insertion hole 8 a of the baffle 8 and the outer periphery of the tubular separation membrane 3. It flows into the adjacent chamber 12 through the gap S between the surfaces, and then flows through the chambers 13, 14, and 15 sequentially through the gap S of each baffle, during which some components of the fluid to be treated are tubular. It passes through the separation membrane 3 and is taken out from the tubular separation membrane 3 through the outflow chamber 16 and the outlet 6a. The fluid that has not permeated flows out of the multi-tubular separation membrane module 1 from the outlet 10.
  • an end cover 6 is provided on one end side of the housing 2 and a blind plate 7 is provided on the other end side.
  • an end cover 6 ′ and a support plate 4 ′ may be provided also on the other end side, and an outflow chamber 16 ′ may be provided between the other end side end cover 6 ′ and the support plate 4 ′.
  • the other end side of the tubular separation membrane 3 is opened toward the outflow chamber 16 '.
  • the support plate 5 is omitted.
  • the structures of the end cover 6 ′ and the support plate 4 ′ are the same as the end cover 6 and the support plate 4.
  • the other configurations in FIG. 8 are the same as those in FIG. 1, and the same reference numerals denote the same parts.
  • a taper of about 70 ° may be provided to reduce the fluid passage pressure loss of the gap S.
  • the baffle 8 may be provided with an insertion tube portion 8f extending from the peripheral portion of the insertion hole 8a.
  • the insertion tube portion 8f is erected only on one plate surface of the baffle 8.
  • the insertion tube portion 8f is provided on both plate surfaces. 10 and 11, the hole length of the insertion hole 8a is the sum of the thickness of the baffle 8 and the length of the insertion tube portion 8f. 10 and 11, a tapered portion as shown in FIG. 7 may be provided on the inner peripheral edge of the end portion of the insertion tube portion 8 f.
  • the fluid to be treated is substantially separated from the chamber on one side (upstream side) of the baffle 8 to the chamber on the other side (downstream side). Since the fluid flows only through S, the fluid to be processed passes through the gap S at a high flow velocity and flows along the tubular separation membranes 3 at a high flow velocity. For this reason, the turbulent flow of the fluid to be processed along the surface (outer peripheral surface) of each tubular separation membrane 3 is promoted, and the membrane separation efficiency is improved.
  • the hole length A of the insertion hole 8a depends on the size of the module, but is preferably 0.8 mm or more, more preferably 1 mm or more, further preferably 3 mm or more, preferably 100 mm or less, more preferably 80 mm or less, even more preferably. Is 50 mm or less. If the value of the hole length A is too small, although it depends on the material of the baffle, flatness cannot be maintained, and if it is too large, the weight of the module may be excessively increased.
  • the size (diameter) of the disk-shaped baffle 8 preferably matches the inner diameter of the housing, but a gap may exist when it is difficult to match from the viewpoint of handling.
  • the gap is preferably as small as possible.
  • 50% or more, particularly 65% or more of the fluid to be processed flowing from the one side (upstream side) chamber of the baffle 8 to the other side (downstream side) chamber passes through the gap S of the insertion hole 8a. It is preferable to be configured. If this condition is satisfied, the baffle may be a part of which the outer peripheral edge is notched, or may be provided with holes other than the insertion hole 8a.
  • the inner diameter B of the insertion hole 8a depends on the outer diameter of the tubular separation membrane 3, but is preferably 3 mm or more, more preferably 6 mm or more, further preferably 10 mm or more, preferably 20 mm or less, more preferably 18 mm or less, and even more preferably 16 mm. It is as follows.
  • the insertion holes 8a are arranged with an interval of 2 mm or more between them.
  • the outer diameter C of the tubular separation membrane 3 is preferably 3 mm or more, more preferably 6 mm or more, further preferably 10 mm or more, preferably 20 mm or less, more preferably 18 mm or less, and further preferably 16 mm or less. If the outer diameter C is too small, the strength of the tubular separation membrane may be insufficient and may be easily broken, and if it is too large, the membrane area per module is reduced.
  • the total length of the tubular separation membrane 3 is preferably 20 cm or more, and preferably 150 cm or less. If the length is shorter than this, the ratio of the portion covered as the connection is increased, so that the ratio of the exposed portion that can be used for the separation of the membrane is decreased, and if it is longer than this, the handling may be difficult.
  • the plurality of baffles are preferably the same size and the same shape, but different sizes and shapes may be used.
  • the amount of fluid to be supplied decreases as it approaches the outlet and the linear velocity decreases, so it may be effective to reduce the diameter of the insertion hole 8a as it approaches the outlet.
  • one baffle has a plurality of insertion holes, it is sufficient that at least one insertion hole satisfies A / (BC), preferably 50 (number)% or more, more preferably 80 (number)%. More preferably, 90 (number)% or more satisfies this. In particular, it is preferable that all the insertion holes satisfy this range.
  • the plurality of insertion holes may have different values of A / (BC) within the range satisfying this, but they should be approximately the same value. Is preferred.
  • the almost same value means that A / (BC) is within a range of ⁇ 10%.
  • At least one insertion hole of at least one baffle of each baffle should satisfy the above A / (BC), but preferably all the baffles satisfy the above conditions. Is preferred.
  • it may be manufactured by setting different A / (BC) values between the baffles.
  • baffle insertion holes preferably 50 (number)% or more, more preferably 80 (number)% or more, and still more preferably 90 (number)% or more satisfies A / (BC). It is. In particular, it is preferable that all the insertion holes of all the baffles satisfy A / (BC).
  • the plurality of insertion holes of each baffle may have different values of A / (BC) within the range satisfying this, but are substantially the same value. It is preferable that The almost same value means that A / (BC) is within a range of ⁇ 10%.
  • the material of the baffle is usually stainless steel, but is not particularly limited as long as it has heat resistance and supply under separation conditions and resistance to permeation components, and can be changed to other materials depending on the application.
  • the plurality of baffles be installed at equal intervals in the housing.
  • the gap between the baffles is usually 10 cm or more, preferably 20 cm or more, usually 120 cm or less, preferably about 100 cm or less, although it depends on the length of the multi-tubular separation membrane module in the longitudinal direction.
  • baffles are respectively disposed at locations within 20 cm, particularly within 18 cm, particularly within 15 cm from both ends of the tubular separation membrane. This value differs depending on the position of the fluid inlet or outlet pipe and the pipe diameter, and should be placed closer to the module center than the part closest to the module center at the connection between the pipe and the housing body. Is preferred.
  • a metal member that is coaxially connected to the lower and upper ends of the tubular separation membrane.
  • the length of the cylindrical housing in the axial direction is usually about 40 cm to 2 m. Further, it is preferable that 19 to 550 tubular separation membranes are usually arranged, and the shortest distance between the tubular separation membranes is 2 mm to 10 mm. The size of the housing and the number of tubular separation membranes are appropriately changed depending on the amount of fluid to be processed.
  • At least one of the support plates that support the tubular separation membrane is fixed to the housing and disposed at one end of the housing.
  • the other is preferably a multi-tubular separation membrane module that is disposed at the other end of the housing facing the support plate and has a support plate that supports the tubular separation membrane.
  • An insertion hole having the same circular center as the insertion hole of the baffle within 10 cm from the end opposite to the end supported by the support plate of the tubular separation membrane, and for supporting the membrane supporting the tubular membrane element in the insertion part It is preferable to have another support plate.
  • the shortest distance between the wall of the insertion hole and the membrane surface of the tubular separation membrane is kept constant at all points in the insertion hole of the baffle. Without such a support plate, the shortest distance between the wall of the insertion hole and the membrane surface of the tubular separation membrane is not kept constant, one side is wide, the opposite surface is narrow, and the wide open part is not There is a possibility that fluid may pass selectively.
  • the distance from the end opposite to the end supported by the support plate of the tubular separation membrane of the support plate is usually 10 cm or less, preferably 8 cm or less, more preferably 5 cm or less, particularly preferably 3 cm or less, usually 1 mm or more, preferably 3 mm or more.
  • the support plate is provided with a through hole, and a tubular separation membrane is inserted into the through hole and supported.
  • the shape of the through hole is not particularly limited, and there are a structure in which the entire inner peripheral surface of the through hole is supported as a circle, a structure in which a protrusion is provided in a circle, and a tubular separation membrane is supported by the protrusion.
  • a structure such as a mesh having holes through which fluid can pass may be used.
  • the area and shape of the mesh holes are not particularly limited as long as the strength as a support can be maintained.
  • the covering material include tapes such as fluororesin tapes and glass tapes, parafilms, films such as fluororesin films, silicone heat shrinkable tubes, fluororesin heat shrinkable tubes, and polyolefin heat shrinkable tubes.
  • a heat shrinkable tube is preferable in terms of handling, and among them, a silicone heat shrinkable tube and a fluororesin heat shrinkable tube are preferable.
  • the portion of the tubular separation membrane that comes into contact with the support plate may be a membrane material, but when using, for example, a pin for sealing the end of the membrane, it is brought into contact with the support plate at the location of the sealing material. It is preferable. By contacting with the sealing material, the film itself is not touched, so that the possibility that the surface of the film is scraped or damaged is reduced.
  • the material of the sealing material is not particularly limited, and examples thereof include SUS, aluminum, and fluororesin, and are appropriately selected according to the strength of the film itself, the fluid component, and the like.
  • the tubular separation membrane may be any tubular one having a separation membrane, but it is preferable that a zeolite membrane is formed on the surface of the tubular porous support.
  • Examples of the material of the tubular porous support include an inorganic porous support of a ceramic sintered body containing silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide and the like. It is done. Among these, an inorganic porous support containing at least one of alumina, silica, and mullite is preferable.
  • the average pore diameter of the surface of the porous support is not particularly limited, but those having a controlled pore diameter are preferred, usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m. The above is usually in the range of 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • Zeolite is crystallized on the surface of the porous support to form a zeolite membrane.
  • the main zeolite constituting the zeolite membrane usually contains a zeolite having an oxygen 6-10 membered ring structure, and preferably contains a zeolite having an oxygen 6-8 membered ring structure.
  • n of the zeolite having an oxygen n-membered ring indicates the one having the largest number of oxygen among pores composed of oxygen and T element forming the zeolite skeleton.
  • n-membered ring zeolite.
  • a zeolite having an oxygen 6-10 membered ring structure is AEI, AEL, AFG, ANA, BRE, CAS, CDO, CHA, DAC, DDR, DOH, EAB, EPI, ESV, EUO, FAR, FRA, FER, GIS, GIU, GOO, HEU, IMF, ITE, ITH, KFI, LEV, LIO, LOS, LTN, MAR, MEP, MER, MEL, MFI, MFS, MON, MSO, MTF, MTN, MTT, MWW, NAT, NES, NON, PAU, PHI, RHO, RRO, RTE, RTH, RUT, SGT, SOD, STF, STI, STT, TER, TOL, TON, TSC, TUN, UFI, VNI, VSV, WEI, YUG, etc.
  • the zeolite membrane may be a single membrane of the zeolite, or the zeolite powder is dispersed in a binder such as a polymer to form a membrane, and the zeolite is fixed in a film form on various supports.
  • a zeolite membrane composite may be used.
  • the zeolite membrane may partially contain an amorphous component or the like.
  • the thickness of the zeolite membrane is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.6 ⁇ m or more, and more preferably 1.0 ⁇ m or more. Moreover, it is 100 micrometers or less normally, Preferably it is 60 micrometers or less, More preferably, it is the range of 20 micrometers or less.
  • the fluid to be separated or concentrated may be a gas or liquid mixture composed of a plurality of components that can be separated or concentrated by the separation membrane element of the present invention.
  • any mixture may be used, but it is preferably used for a gas mixture.
  • the mixture to be separated or concentrated is, for example, a mixture of an organic compound and water (hereinafter, this may be abbreviated as “hydrous organic compound”)
  • a zeolite membrane when using a zeolite membrane, the water is zeolite. Due to the high permeability to the membrane, water is separated from the mixture and the organic compound is concentrated in the original mixture.
  • a separation or concentration method called a pervaporation method (permeation vaporization method) or a vapor permeation method (vapor permeation method) can be used.
  • the pervaporation method is a separation or concentration method in which a liquid mixture is directly introduced into a separation membrane, so that a process including separation or concentration can be simplified.
  • the mixture to be separated or concentrated is a gas mixture composed of a plurality of components
  • examples of the gas mixture include carbon dioxide, oxygen, nitrogen, methane, ethane, ethylene, propane, and propylene. And those containing at least one component selected from normal butane, isobutane, 1-butene, 2-butene, isobutene, sulfur hexafluoride, helium, carbon monoxide, nitrogen monoxide, water and the like.
  • the gas component having a high permeance passes through the separation membrane and is separated, and the gas component having a low permeance is concentrated on the supply gas side.
  • the multi-tubular separation membrane module of the present invention can be used in a separation apparatus by being connected depending on the amount of fluid or the desired degree of separation and concentration. If the amount of fluid is large or the target separation / concentration is high and processing cannot be performed sufficiently with one module, connect the piping so that the fluid from the outlet enters the inlet of another module. It is preferable. Moreover, it can be further linked according to the degree of separation and the degree of concentration to obtain the desired degree of separation and concentration.
  • a separation device in which the multi-tubular separation membrane module of the present invention is installed in parallel may be used to supply gas by branching the fluid. At this time, it is also possible to install modules in series with the modules in parallel. When the parallel modules are connected in series, the amount of gas to be supplied decreases in the serial direction and the linear velocity decreases. Therefore, it is preferable to reduce the number of parallel installations so as to keep the linear velocity appropriately.
  • Permeated components when modules are arranged in series may be discharged for each module, or may be discharged by connecting the modules together.
  • Example 1 A gas separation simulation was performed on the separation module of the present invention.
  • the multi-tubular separation membrane module used in the simulation is the one in which the number of baffles 8 is two in FIGS.
  • the multi-tubular separation membrane module 1 was installed so that the axial center line direction of the housing 2 was up and down so that the outlet 6a was at the top.
  • the housing inner diameter is 49.5 mm, and the total length is 240 mm.
  • the exposed length of the film is 188 mm, and 19 films have an area of 0.067 m 2 .
  • the housing is provided with an inlet 9 for supplying gas and an outlet 10 for discharging gas that has not permeated through the membrane at a position 93 mm from the center of the housing, and an inflow pipe and an outflow pipe with an inner diameter of 5 mm are connected to each other. Yes. Further, an outlet 6a through which the gas that has passed through the membrane gathers and passes is arranged, and an outlet pipe having an inner diameter of 6 mm is connected. The gas is supplied so that the gas flow outside the membrane and the gas flow that has passed through the membrane are in an alternating current.
  • baffles 8 are installed in the module, one at a position of 75 mm from the center.
  • Each baffle is provided with 19 insertion holes 8a having centers that coincide with the centers of the separation membranes.
  • the supply gas is a gas in which two kinds of components having different permeability are mixed, the permeance of the gas having high permeability is 4.0 ⁇ 10 ⁇ 7 mol / m 2 spa, and the permeance of the gas having low permeability is 3.5 ⁇ . 10 ⁇ 9 mol / m 2 spa.
  • the supply rate was 400 NL / min, and the gas composition was 40% for components with high permeability and 60% for gases with low permeability.
  • the gas pressure was set to 3.5 Mpa.
  • the simulation uses general-purpose fluid analysis software ANSYS Fluent (R14) from ANSYS, and the membrane separation phenomenon cannot be evaluated with standard functions. Therefore, a subroutine that calculates the permeation amount from the partial pressure and permeability of each gas component is incorporated. Went. By performing permeation calculation using physical quantities at each position on the film, changes in local concentration due to the baffle effect can be evaluated. By determining the ratio of the amount of gas supplied to the gas component having high permeability and the amount of gas transmitted, the gas permeability with high permeability was obtained. The permeability of the highly permeable gas obtained by the simulation was 34.2%.
  • Example 2 Example except that the thickness of the baffle was 6 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane was 4.0 The same simulation as in Example 1 was performed with the same module as in Example 1. The permeability of the highly permeable gas obtained by the simulation was 34.2%.
  • Example 3 Example except that the thickness of the baffle is 10 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 6.7
  • the same simulation as in Example 1 was performed with the same module as in Example 1.
  • the permeability of the highly permeable gas obtained by the simulation was 34.6%.
  • Example 1 Except that the thickness of the baffle is 0.75 mm and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 0.5.
  • the same simulation as in Example 1 was performed using the same module as in Example 1.
  • the permeability of the highly permeable gas obtained by the simulation was 32.4%. Compared with Examples 1 to 3, the gas permeability was low.
  • FIG. 9 shows the relationship between A / (BC) of Examples 1 to 3 and Comparative Example 1 and the permeability of highly permeable gas. It can be seen that there is a large difference in gas permeability between Comparative Example 1 and Examples 1 to 3.
  • Comparative Example 1 in which the ratio of the hole length, the difference between the inner diameter of the baffle insertion hole and the outer diameter of the tubular separation membrane is 0.5, the hole length, the inner diameter of the baffle insertion hole, and the outer diameter of the tubular separation membrane It can be seen that there is a large difference in gas permeability between Example 1 with a difference ratio of 2, Example 2 with the same numerical value of 4, and Example 3 with the same numerical value of 6.7.
  • Example 4 Next, a gas flow simulation was performed on a module having a structure different from that of the above-described examples and comparative examples.
  • the multi-tubular separation membrane module used in the simulation is the one in which the number of baffles 8 is two in FIGS.
  • the multi-tubular separation membrane module 1 was installed so that the axial center line direction of the housing 2 was up and down so that the outlet 6a was at the top.
  • the inner diameter of the housing is 83.1 mm and the total length is 412 mm.
  • the tubular separation membrane has a diameter of 12 mm, 19 are arranged so that the pitch is 16 mm, one at the center and six at the apex of a regular hexagon around the center, and six at the periphery. Six pieces are arranged at equidistant positions from each vertex on a square vertex and a straight line connecting the vertexes.
  • the exposed length of the film is 200 mm, and 19 films have an area of 0.143 m 2 .
  • the housing is provided with an inlet 9 for supplying gas and an outlet 10 for discharging the gas that has not permeated through the membrane at a position 143 mm from the center of the housing. Has been. Further, an outlet 6a through which the gas that has permeated the membrane gathers and passes is arranged, and an outlet pipe having an inner diameter of 15.8 mm is connected. Gas is supplied so that the flow of gas outside the membrane and the flow of gas that has passed through the membrane are alternating.
  • Two baffles 8 are installed in the module, one on each metal member portion that is coaxially connected to the lower and upper ends of the tubular separation membrane at a position 75 mm from the center.
  • Nineteen insertion holes 8a having a center coinciding with the center of the film are provided.
  • the diameter of the insertion hole is 12.2 mm, and a gap of 1.0 mm exists between the outer peripheral surface of the tubular separation membrane and the inner peripheral surface of the insertion hole, and gas passes through this gap.
  • the thickness of the baffle is 2 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 10.
  • the supply amount was 3200 NL / min, and the gas pressure was set to 5.0 MPa.
  • the simulation used general fluid analysis software ANSYS Fluent (R14) manufactured by ANSYS.
  • the gas flow velocity vector is defined as a flow component parallel to the membrane and a flow perpendicular to the membrane on a plane perpendicular to the membrane 20 mm from the upstream baffle to the downstream side of the gas. It decomposed
  • the angle average value of the gas was obtained from the velocity ratio between the flow parallel to the film and the flow perpendicular to the film. A smaller value means a flow parallel to the membrane.
  • the angle average value of the obtained gas was 5.9 °.
  • Example 5 The outer diameter C of the tubular separation membrane was 12.5 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane was 4. Except for this, the same modules as in Example 4 were used, and the same simulation as in Example 4 was performed. The angle average value of the obtained gas was 6.7 °.
  • FIG. 12 shows the relationship between A / (BC) and the angle average value in Examples 4 and 5 and Comparative Example 2.
  • the present invention it is possible to provide a multitubular separation membrane module in which the flow rate of the fluid to be treated is large, the membrane separation efficiency is excellent, and an increase in weight is avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a multi-tube separation membrane module with which a fluid to be treated has a high flow speed along tubular separation membranes within the multi-tube separation membrane module, thereby achieving superior membrane separation efficiency, and yet avoiding an increase in weight of the multi-tube separation membrane module. The multi-tube separation membrane module having a cylindrical housing (2), a plurality of tubular separation membranes (3) arranged in a longitudinal direction of the housing (2), support plates (4, 5) that are fixed to the housing (2) and support the tubular separation membranes (3), and one or more baffles (8) that are arranged in parallel with the support plates (4, 5) and have insertion holes (8a) into which the tubular separation membranes are inserted, wherein the multi-tube separation membrane module is characterized in that a gap (S) is opened between an inner peripheral surface of the insertion holes (8a) and an outer peripheral surface of the tubular separation membranes (3), and a ratio A/(B-C) between a hole length (A) of the insertion holes and the difference between an inner diameter B of the insertion holes (8a) and an outer diameter C of the tubular separation membranes (3) is 0.67 to 50.

Description

多管式分離膜モジュールMulti-tube separation membrane module
 本発明は溶液や混合気体等の流体から一部の成分を分離するために用いられる多管式分離膜モジュールに関する。 The present invention relates to a multi-tubular separation membrane module used for separating a part of components from a fluid such as a solution or a mixed gas.
 溶液又は混合気体中の成分を分離するための機器として多管式分離膜モジュールが知られている。この多管式分離膜モジュールに用いる分離膜エレメントは、分離すべき物質の分子程度の大きさの微細孔を有するゼオライト等からなる多孔質の分離膜を管状に形成したものである。溶液や混合気体等の流体から特定の成分を分離するためには、溶液の流体を分離膜エレメントの一方(外面)に接触させて、もう一方(内面)を減圧することにより、特定の成分を気化させ分離する方法や、溶液を気化させて気体状態で分離膜に接触させて、非接触面側を減圧して特定成分を分離する方法、加圧状態の混合気体を分離膜に接触させて特定の成分を分離する方法などが知られている。 A multitubular separation membrane module is known as a device for separating components in a solution or mixed gas. The separation membrane element used in this multi-tubular separation membrane module is a tubular separation membrane made of zeolite or the like having fine pores about the size of the molecules to be separated. In order to separate a specific component from a fluid such as a solution or a mixed gas, the fluid of the solution is brought into contact with one (outer surface) of the separation membrane element, and the other (inner surface) is depressurized to thereby remove the specific component. A method of vaporizing and separating, a method of vaporizing a solution and bringing it into contact with a separation membrane in a gaseous state, and depressurizing a non-contact surface side to separate a specific component, and bringing a pressurized mixed gas into contact with the separation membrane Methods for separating specific components are known.
 このような、多管式分離膜モジュールにおいて、分離効率を高めるためには、分離対象となる溶液や混合気体等の流体を分離膜エレメントの全長にわたって効率よく接触させることが必要とされる。 In such a multi-tubular separation membrane module, in order to increase the separation efficiency, it is necessary to efficiently bring a fluid such as a solution or a mixed gas to be separated into contact with the entire length of the separation membrane element.
 特許文献1,2には、流体(液体または気体)を膜に効率よく接触させるために、多管式分離膜モジュール内にチューブ(管状分離膜)と直交状にバッフルを設けることが記載されている。 Patent Documents 1 and 2 describe that a baffle is provided perpendicular to a tube (tubular separation membrane) in a multi-tubular separation membrane module in order to efficiently bring a fluid (liquid or gas) into contact with the membrane. Yes.
 特許文献1の多管式分離膜モジュールにおいては、バッフルに設けた複数の孔にそれぞれチューブを挿通しており、該孔の内周面がチューブに接している。このため、該孔の内周面によってチューブの膜表面が覆われた構造となり、(バッフルの数)×(各バッフルの孔の数)×(該孔の内周面の面積)分だけ、チューブ膜の膜面積が減少し、膜分離効率が低下する。 In the multi-tubular separation membrane module of Patent Document 1, a tube is inserted into each of a plurality of holes provided in a baffle, and an inner peripheral surface of the hole is in contact with the tube. For this reason, the membrane surface of the tube is covered with the inner peripheral surface of the hole, and the tube is equal to (number of baffles) × (number of holes in each baffle) × (area of the inner peripheral surface of the holes). The membrane area of the membrane is reduced and the membrane separation efficiency is lowered.
 特許文献2の多管式分離膜モジュールにおいては、バッフルのチューブ(管状ゼオライト分離膜)挿通孔の口径をチューブ外径よりも大きくし、孔の内周面とチューブ外周面との間に間隙を形成し、チューブの孔への挿通部分も膜分離に寄与させるようにしている。 In the multi-tube separation membrane module of Patent Document 2, the diameter of the baffle tube (tubular zeolite separation membrane) insertion hole is made larger than the tube outer diameter, and a gap is formed between the inner peripheral surface of the hole and the outer peripheral surface of the tube. The part inserted into the hole of the tube is also made to contribute to membrane separation.
 しかしながら、特許文献2にあっては、バッフルの外周縁の一部を弦方向に切り欠き、被処理流体の大部分はこの切り欠き部分を通るようにしている。このため、特許文献2にあっては、1つのバッフルの一方の側(上流側)と他方の側(下流側)との流体圧の差が小さく、チューブ挿通孔内周面とチューブ外周面との間隙を被処理流体が高流速で通過することはない。 However, in Patent Document 2, a part of the outer peripheral edge of the baffle is notched in the chord direction, and most of the fluid to be treated passes through the notched part. For this reason, in Patent Document 2, the difference in fluid pressure between one side (upstream side) and the other side (downstream side) of one baffle is small, and the tube insertion hole inner peripheral surface and the tube outer peripheral surface The fluid to be processed does not pass through the gap at a high flow rate.
 特許文献3には、多管式分離膜モジュールの各管状分離膜を僅かな間隙で包囲する管状部材を設け、この間隙に液体を高速で通過させるようにした多管式分離膜モジュールが記載されている。特許文献3によると、かかる構造としたことにより、管状分離膜近傍における流体の乱流が促進されると共に分離膜全体に流体が行き渡り、多管式分離膜モジュールの処理能力が向上する。 Patent Document 3 describes a multi-tubular separation membrane module in which a tubular member surrounding each tubular separation membrane of a multi-tubular separation membrane module is provided with a slight gap so that liquid can pass through the gap at high speed. ing. According to Patent Document 3, such a structure promotes the turbulent flow of fluid in the vicinity of the tubular separation membrane and spreads the fluid throughout the separation membrane, thereby improving the processing capacity of the multitubular separation membrane module.
 しかしながら、かかる特許文献3の多管式分離膜モジュールでは、管状分離膜の各々を包囲する管状部材を設けるため、モジュール重量が増加し、またコストも増大する。さらに、管状部材が占める部分には膜を設置できなくなるため、モジュール当りの管状分離膜の本数が少なくなり、膜面積が小さくなる。 However, in the multi-tubular separation membrane module of Patent Document 3, since a tubular member surrounding each tubular separation membrane is provided, the module weight increases and the cost also increases. Furthermore, since it becomes impossible to install a membrane in the portion occupied by the tubular member, the number of tubular separation membranes per module is reduced, and the membrane area is reduced.
 また、特許文献3では、高圧側のガス線速を大きくするために高圧側のガス流路断面積を小さくし、さらに流路を段階的に小さくすることでステージカットが大きい場合にモジュール内の高圧側のガスのガス線速を大きく保つ構造となっているが、このガス線速は平均で計算されるガス線速であり、膜の各部分における線速の差異は考慮されていない。特にガスの流れの方向の変わる箇所では部分的に透過効率が低下する恐れがあった。 Further, in Patent Document 3, in order to increase the gas linear velocity on the high pressure side, the gas passage cross-sectional area on the high pressure side is reduced, and further, the flow passage is reduced stepwise to increase the stage cut. Although the gas linear velocity of the high-pressure side gas is kept large, this gas linear velocity is a gas linear velocity calculated on average, and the difference in linear velocity at each part of the film is not taken into consideration. In particular, there is a risk that the transmission efficiency may partially decrease at a location where the gas flow direction changes.
 特許文献4には、モジュールのハウジング内を管状分離膜と平行な隔壁によって2個以上の空間に仕切り、その隔壁に仕切られた空間の間をガスが移動できるための流通孔を存在させることにより、各空間に納められた管状分離膜の高圧側ガス流れと、低圧側の透過ガス流れの両方共に、管状分離膜の有効長の2倍以上の距離を直列的に移動して管状分離膜に接触できる構造とした多管式分離膜モジュールが記載されている。 In Patent Document 4, the module housing is partitioned into two or more spaces by partition walls parallel to the tubular separation membrane, and there is a flow hole for allowing gas to move between the spaces partitioned by the partition walls. Both the high-pressure side gas flow and the low-pressure permeate gas flow of the tubular separation membrane contained in each space are moved in series by a distance of more than twice the effective length of the tubular separation membrane into the tubular separation membrane. A multi-tubular separation membrane module having a structure capable of contacting is described.
 しかしながら、かかる特許文献4の多管式分離膜モジュールでは管状ガス分離膜に沿うガス流速は従来と同様である。 However, in the multitubular separation membrane module of Patent Document 4, the gas flow rate along the tubular gas separation membrane is the same as that of the conventional one.
日本国特開平8-131781号公報Japanese Unexamined Patent Publication No. 8-131781 日本国特開2013-39546号公報Japanese Unexamined Patent Publication No. 2013-39546 国際公開第2004/035182号International Publication No. 2004/035182 日本国特開2007-160238号公報Japanese Unexamined Patent Publication No. 2007-160238
 本発明は、多管式分離膜モジュール内の管状分離膜に沿う被処理流体の流速が大きく、これにより膜分離効率に優れたものとなり、しかも多管式分離膜モジュールの重量増加が回避される多管式分離膜モジュールを提供することを目的とする。 In the present invention, the flow rate of the fluid to be treated along the tubular separation membrane in the multi-tubular separation membrane module is large, thereby improving the membrane separation efficiency, and avoiding an increase in the weight of the multi-tubular separation membrane module. An object is to provide a multi-tubular separation membrane module.
 本発明の多管式分離膜モジュールは、筒状のハウジングと、該ハウジング内に該ハウジングの長手方向に配置された複数の管状分離膜と、該ハウジングに固定され、該管状分離膜を支持する支持板と、該管状分離膜が挿通された挿通孔を有し、該ハウジング内におい該支持板と略平行に配置された1または2以上のバッフルとを有する多管式分離膜モジュールにおいて、該挿通孔の内周面と管状分離膜の外周面との間に間隙が設けられており、前記挿通孔の孔長Aと、該バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)が0.67~50であることを特徴とする。 The multi-tubular separation membrane module of the present invention includes a tubular housing, a plurality of tubular separation membranes disposed in the housing in the longitudinal direction of the housing, and fixed to the housing to support the tubular separation membrane. In a multi-tubular separation membrane module having a support plate and one or two or more baffles having an insertion hole through which the tubular separation membrane is inserted and disposed substantially parallel to the support plate in the housing, A gap is provided between the inner peripheral surface of the insertion hole and the outer peripheral surface of the tubular separation membrane, and includes a hole length A of the insertion hole, an inner diameter B of the insertion hole of the baffle, and an outer diameter C of the tubular separation membrane. The ratio A / (BC) to the difference is 0.67 to 50.
 該バッフルの上流側の被処理流体の半分以上は、該間隙を通過して下流側に流入するよう構成されていることが好ましい。 It is preferable that more than half of the fluid to be processed on the upstream side of the baffle flows through the gap and flows downstream.
 前記複数の管状分離膜は、管状分離膜同士の最短距離が2mm~10mmとなるように配置されていることが好ましい。 The plurality of tubular separation membranes are preferably arranged so that the shortest distance between the tubular separation membranes is 2 mm to 10 mm.
 前記管状分離膜の両末端から20cm以内の箇所にそれぞれバッフルが配置されていることを特徴とする。前記支持板は、ハウジングの両端側にそれぞれ配置されていることが好ましい。 Baffles are respectively arranged at positions within 20 cm from both ends of the tubular separation membrane. The support plates are preferably disposed on both ends of the housing.
 本発明の多管式分離膜モジュールにあっては、ハウジング内に配置されたバッフルの挿通孔に管状分離膜が挿通されており、該挿通孔の内周面と間隙分離膜の外周面との間に間隙があいている。好ましくは、該バッフルの上流側の被処理流体の半分以上は、該バッフルの下流側へ該間隙を介して流れる。かかる本発明の多管式分離膜モジュールにあっては、被処理流体はバッフルの挿通孔の内周面と管状分離膜の外周面との間の間隙を高流速にて通過し、管状分離膜に沿って高流速にて流れる。このため、管状分離膜の表面(外周面)に沿う被処理流体の流れの乱流化が促進され、膜分離効率が向上する。 In the multi-tubular separation membrane module of the present invention, the tubular separation membrane is inserted into the insertion hole of the baffle disposed in the housing, and the inner peripheral surface of the insertion hole and the outer peripheral surface of the gap separation membrane are There is a gap between them. Preferably, more than half of the fluid to be processed upstream of the baffle flows through the gap to the downstream side of the baffle. In such a multi-tubular separation membrane module of the present invention, the fluid to be treated passes through the gap between the inner peripheral surface of the insertion hole of the baffle and the outer peripheral surface of the tubular separation membrane at a high flow rate, and the tubular separation membrane At a high flow velocity. For this reason, the turbulent flow of the fluid to be processed along the surface (outer peripheral surface) of the tubular separation membrane is promoted, and the membrane separation efficiency is improved.
 本発明では、特許文献3のように多数の管状部材を設けないので、重量増加及びコスト増加が回避される。 In the present invention, since a large number of tubular members are not provided as in Patent Document 3, an increase in weight and an increase in cost are avoided.
図1は、実施の形態に係る多管式分離膜モジュールのハウジング軸心線方向に沿う断面図である。FIG. 1 is a cross-sectional view of the multi-tubular separation membrane module according to the embodiment along the axial direction of the housing. 図2は、図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3は、図1のIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、図3のIV-IV線断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 図5は、本発明の作用効果を説明する透視模式図である。FIG. 5 is a perspective schematic diagram for explaining the function and effect of the present invention. 図6は、参考例の作用効果を説明する透視模式図である。FIG. 6 is a perspective schematic diagram for explaining the function and effect of the reference example. 図7は、別の実施の形態を示すバッフルの挿通孔部分の断面図である。FIG. 7 is a cross-sectional view of a through hole portion of a baffle showing another embodiment. 図8は、異なる実施の形態に係る多管式分離膜モジュールのハウジング軸心線方向に沿う断面図である。FIG. 8 is a cross-sectional view of the multi-tubular separation membrane module according to a different embodiment along the axial direction of the housing. 図9は、実施例および比較例の結果を示すグラフである。FIG. 9 is a graph showing the results of Examples and Comparative Examples. 図10は、別の実施の形態を示すバッフルの挿通孔部分の断面図である。FIG. 10 is a cross-sectional view of an insertion hole portion of a baffle showing another embodiment. 図11は、別の実施の形態を示すバッフルの挿通孔部分の断面図である。FIG. 11 is a cross-sectional view of an insertion hole portion of a baffle showing another embodiment. 図12は、実施例および比較例の結果を示すグラフである。FIG. 12 is a graph showing the results of Examples and Comparative Examples.
 図1~4を参照して、本発明の一実施の形態に係る多管式分離膜モジュール1について説明する。 1 to 4, a multi-tubular separation membrane module 1 according to an embodiment of the present invention will be described.
 この多管式分離膜モジュール1は、円筒状のハウジング2と、管状分離膜3を支持するためにハウジング2の一端に固定された支持板4と、ハウジング2の他端に設けられた支持板5と、ハウジング2の軸心線と平行方向に配置された複数の管状分離膜3と、支持板4を覆うようにハウジング2の一端側に取り付けられたエンドカバー6と、ハウジング2の他端側に取り付けられたブラインドプレート7と、支持板4,5と平行にハウジング2内に配置されたバッフル8とを有する。 The multi-tubular separation membrane module 1 includes a cylindrical housing 2, a support plate 4 fixed to one end of the housing 2 to support the tubular separation membrane 3, and a support plate provided at the other end of the housing 2. 5, a plurality of tubular separation membranes 3 arranged in a direction parallel to the axis of the housing 2, an end cover 6 attached to one end of the housing 2 so as to cover the support plate 4, and the other end of the housing 2 It has a blind plate 7 attached to the side and a baffle 8 arranged in the housing 2 in parallel with the support plates 4, 5.
 ハウジング2の一端側の外周面に被処理流体の流入口9が設けられ、他端側の外周面に被処理流体の流出口10が設けられている。流入口9は、支持板4と、該支持板4に直近のバッフル8との間の室11に臨むように設けられている。流出口10は、支持板5と、該支持板5に直近のバッフル8との間の室15に臨むように設けられている。この実施の形態では、複数枚(図1では4枚)のバッフル8が設けられ、バッフル8同士の間に、室11から室15に向って順次に室12,13,14が区画形成されている。なお、バッフル8の枚数は図示のものに限定されない。 The fluid inlet 9 is provided on the outer peripheral surface on one end side of the housing 2, and the fluid outlet 10 is provided on the outer peripheral surface on the other end side. The inflow port 9 is provided so as to face the chamber 11 between the support plate 4 and the baffle 8 closest to the support plate 4. The outlet 10 is provided so as to face a chamber 15 between the support plate 5 and the baffle 8 closest to the support plate 5. In this embodiment, a plurality of (four in FIG. 1) baffles 8 are provided, and the chambers 12, 13, and 14 are sequentially partitioned from the chamber 11 to the chamber 15 between the baffles 8. Yes. The number of baffles 8 is not limited to that shown in the figure.
 各バッフル8には、管状分離膜3を挿通させるための円形の挿通孔(以下、孔ということがある。)8aが設けられており、管状分離膜が各挿通孔8aに挿通されている。挿通孔8aの口径は、管状分離膜3の直径(外径)よりも大きく、挿通孔8aの内周面と管状分離膜3の外周面との間に全周にわたって間隙Sがあいている。 Each baffle 8 is provided with a circular insertion hole (hereinafter also referred to as a hole) 8a through which the tubular separation membrane 3 is inserted, and the tubular separation membrane is inserted into each insertion hole 8a. The diameter of the insertion hole 8 a is larger than the diameter (outer diameter) of the tubular separation membrane 3, and a gap S is provided over the entire circumference between the inner peripheral surface of the insertion hole 8 a and the outer peripheral surface of the tubular separation membrane 3.
 支持板4,5には、管状分離膜3を支持するための開口4a,5aが設けられている。管状分離膜3は、各開口4a,5aに差し込まれており、管状分離膜3の外周面と各開口4a,5aの内周面との間は気密にシールされている。 The support plates 4 and 5 are provided with openings 4 a and 5 a for supporting the tubular separation membrane 3. The tubular separation membrane 3 is inserted into the openings 4a and 5a, and the space between the outer peripheral surface of the tubular separation membrane 3 and the inner peripheral surface of the openings 4a and 5a is hermetically sealed.
 各管状分離膜3の一端側は、エンドカバー6と支持板4との間の流出室16に向って開放している。エンドカバー6には、分離された透過流体の取出口6aが設けられている。支持板5に支持された管状分離膜3の他端側は、支持板5とブラインドプレート7との間の室17に向って開放していてもよく、封じられていてもよい。 One end side of each tubular separation membrane 3 is open toward the outflow chamber 16 between the end cover 6 and the support plate 4. The end cover 6 is provided with a separated permeate outlet 6a. The other end of the tubular separation membrane 3 supported by the support plate 5 may be open toward the chamber 17 between the support plate 5 and the blind plate 7 or may be sealed.
 この実施の形態では、ハウジング2の一端側とエンドカバー6の外周縁にそれぞれ外向きのフランジ2a,6bが設けられ、支持板4の外周縁が該フランジ2a,6bにシール材(図示略)を介して挟持され、ボルト(図示略)によってこれらが固定されている。ブラインドプレート7は、ハウジング2の他端側に設けられたフランジ2bに対しシール材(図示略)を介してボルトによって取り付けられている。各バッフル8の直径はハウジング2の内径とほぼ等しく、バッフル8の外周面はハウジング2の内周面に当接しているか、又は若干の間隙を介して対峙している。 In this embodiment, outward flanges 2a and 6b are provided on one end side of the housing 2 and the outer peripheral edge of the end cover 6, respectively, and the outer peripheral edge of the support plate 4 is a sealing material (not shown) on the flanges 2a and 6b. These are fixed by bolts (not shown). The blind plate 7 is attached to a flange 2b provided on the other end side of the housing 2 by a bolt via a sealing material (not shown). The diameter of each baffle 8 is substantially equal to the inner diameter of the housing 2, and the outer peripheral surface of the baffle 8 is in contact with the inner peripheral surface of the housing 2, or is opposed through a slight gap.
 上記実施の形態では、バッフル8の厚さが一様であるため、挿通孔8aの孔長(孔8aの軸心線方向長さ)はバッフル8の厚さと等しくなっているが、バッフル8の厚さは一様でなくてもよい。 In the above embodiment, since the thickness of the baffle 8 is uniform, the hole length of the insertion hole 8a (the length in the axial direction of the hole 8a) is equal to the thickness of the baffle 8. The thickness may not be uniform.
 本発明では、図4の通り、孔8aの孔長(この実施の形態ではバッフル8の厚さ)をAとし、挿通孔8aの口径をBとし、管状分離膜3の直径(外径)をCとした場合、A/(B-C)が0.67~50、中でも10以下が好ましく、特に8以下が好ましく、1以上がより好ましく、2以上がさらに好ましい。 In the present invention, as shown in FIG. 4, the hole length of the hole 8a (the thickness of the baffle 8 in this embodiment) is A, the diameter of the insertion hole 8a is B, and the diameter (outer diameter) of the tubular separation membrane 3 is In the case of C, A / (BC) is 0.67 to 50, preferably 10 or less, particularly preferably 8 or less, more preferably 1 or more, and further preferably 2 or more.
 このように構成された多管式分離膜モジュール1において、被処理流体は流入口9からハウジング2の室11内に導入され、バッフル8の挿通孔8aの内周面と管状分離膜3の外周面との間の間隙Sを通って隣室12に流入し、以下同様に各バッフルの間隙Sを通って順次に室13,14,15を流れ、この間に被処理流体の一部の成分が管状分離膜3を透過して管状分離膜3から流出室16及び取出口6aを介して取り出される。透過しなかった流体は、流出口10から多管式分離膜モジュール1外に流出する。 In the multi-tube separation membrane module 1 configured as described above, the fluid to be treated is introduced into the chamber 11 of the housing 2 from the inlet 9, and the inner peripheral surface of the insertion hole 8 a of the baffle 8 and the outer periphery of the tubular separation membrane 3. It flows into the adjacent chamber 12 through the gap S between the surfaces, and then flows through the chambers 13, 14, and 15 sequentially through the gap S of each baffle, during which some components of the fluid to be treated are tubular. It passes through the separation membrane 3 and is taken out from the tubular separation membrane 3 through the outflow chamber 16 and the outlet 6a. The fluid that has not permeated flows out of the multi-tubular separation membrane module 1 from the outlet 10.
 図1~3の実施の形態ではハウジング2の一端側にエンドカバー6が設けられ、他端側にはブラインドプレート7が設けられているが、図8の多管式分離膜モジュール1’のように、他端側にもエンドカバー6’及び支持板4’を設け、この他端側エンドカバー6’と支持板4’との間に流出室16’を設けてもよい。この場合、管状分離膜3の他端側は流出室16’内に向って開放したものとされる。図8では支持板5は省略されている。エンドカバー6’及び支持板4’の構造はエンドカバー6及び支持板4と同一である。図8のその他の構成は図1と同一であり、同一符号は同一部分を示している。 In the embodiment shown in FIGS. 1 to 3, an end cover 6 is provided on one end side of the housing 2 and a blind plate 7 is provided on the other end side. However, like the multi-tube separation membrane module 1 ′ shown in FIG. In addition, an end cover 6 ′ and a support plate 4 ′ may be provided also on the other end side, and an outflow chamber 16 ′ may be provided between the other end side end cover 6 ′ and the support plate 4 ′. In this case, the other end side of the tubular separation membrane 3 is opened toward the outflow chamber 16 '. In FIG. 8, the support plate 5 is omitted. The structures of the end cover 6 ′ and the support plate 4 ′ are the same as the end cover 6 and the support plate 4. The other configurations in FIG. 8 are the same as those in FIG. 1, and the same reference numerals denote the same parts.
 上記実施の形態では、挿通孔8aはバッフル8の一方の面から他方の面にかけて等径であるが、図7のバッフル8’のように挿通孔8aの入口側及び出口側に角度θ=10~70°程度のテーパを設け、間隙Sの流体通過圧損を小さくしてもよい。 In the above embodiment, the insertion hole 8a has the same diameter from one surface of the baffle 8 to the other surface, but the angle θ = 10 on the inlet side and the outlet side of the insertion hole 8a as in the baffle 8 ′ of FIG. A taper of about 70 ° may be provided to reduce the fluid passage pressure loss of the gap S.
 本発明では、図10,11のように、挿通孔8aの周縁部から延出する挿通筒部8fをバッフル8に設けてもよい。図10では挿通筒部8fはバッフル8の一方の板面にのみ立設され、図11では双方の板面にそれぞれ挿通筒部8fが設けられている。図10,11の場合、挿通孔8aの孔長は、バッフル8の厚みと挿通筒部8fの長さとの和となる。図10,11においても、挿通筒部8fの端部内周縁に図7のようなテーパ部を設けてもよい。 In the present invention, as shown in FIGS. 10 and 11, the baffle 8 may be provided with an insertion tube portion 8f extending from the peripheral portion of the insertion hole 8a. In FIG. 10, the insertion tube portion 8f is erected only on one plate surface of the baffle 8. In FIG. 11, the insertion tube portion 8f is provided on both plate surfaces. 10 and 11, the hole length of the insertion hole 8a is the sum of the thickness of the baffle 8 and the length of the insertion tube portion 8f. 10 and 11, a tapered portion as shown in FIG. 7 may be provided on the inner peripheral edge of the end portion of the insertion tube portion 8 f.
 この多管式分離膜モジュール1,1’にあっては、被処理流体は、バッフル8の一方の側(上流側)の室から他方の側(下流側)の室へ、実質的に該間隙Sのみを介して流れるので、被処理流体は間隙Sを高流速にて通過し、各管状分離膜3に沿って高流速にて流れる。このため、各管状分離膜3の表面(外周面)に沿う被処理流体の流れの乱流化が促進され、膜分離効率が向上する。 In this multi-tubular separation membrane module 1, 1 ′, the fluid to be treated is substantially separated from the chamber on one side (upstream side) of the baffle 8 to the chamber on the other side (downstream side). Since the fluid flows only through S, the fluid to be processed passes through the gap S at a high flow velocity and flows along the tubular separation membranes 3 at a high flow velocity. For this reason, the turbulent flow of the fluid to be processed along the surface (outer peripheral surface) of each tubular separation membrane 3 is promoted, and the membrane separation efficiency is improved.
 この効果は、前記A/(B-C)を0.67~50とすることにより顕著となる。即ち、Aが過大であったり、(B-C)が過小であったりすることによりA/(B-C)が50より大きいと、間隙Sを通過する際の圧損が大きくなり、間隙Sからの被処理流体の流量が少なくなる。また、Aが過小であったり、(B-C)が過大であったりすることによりA/(B-C)が0.67より小さいと、被処理流体は間隙Sを通過した後に管状分離膜3から離れて流れ易くなる。図5,6はこの作用効果を説明するものである。図5のようにA/(B-C)が0.67~50の範囲であると、挿通孔8aを通過した被処理流体は管状分離膜3に沿って高流速にて流れる。A/(B-C)が0.67よりも小さい場合には、挿通孔8aを通過した被処理流体が管状分離膜3から離れて流れ易くなる。 This effect becomes remarkable by setting the A / (BC) to 0.67-50. That is, if A / (BC) is larger than 50 because A is excessively large or (BC) is excessively small, the pressure loss when passing through the gap S becomes large. The flow rate of the fluid to be processed is reduced. If A / (BC) is smaller than 0.67 due to A being too small or (BC) being too large, the fluid to be treated passes through the gap S and then the tubular separation membrane. It becomes easy to flow away from 3. 5 and 6 explain this effect. As shown in FIG. 5, when A / (BC) is in the range of 0.67 to 50, the fluid to be processed that has passed through the insertion hole 8a flows along the tubular separation membrane 3 at a high flow rate. When A / (BC) is smaller than 0.67, the fluid to be processed that has passed through the insertion hole 8a can easily flow away from the tubular separation membrane 3.
 挿通孔8aの孔長Aは、モジュールの大きさにもよるが、好ましくは0.8mm以上、より好ましくは1mm以上、さらに好ましくは3mm以上、好ましくは100mm以下、より好ましくは80mm以下、さらに好ましくは50mm以下である。孔長Aの値が小さすぎるとバッフルの材質にもよるが、平面性が保てなくなり、大きすぎるとモジュールの重量が多くなりすぎることがある。 The hole length A of the insertion hole 8a depends on the size of the module, but is preferably 0.8 mm or more, more preferably 1 mm or more, further preferably 3 mm or more, preferably 100 mm or less, more preferably 80 mm or less, even more preferably. Is 50 mm or less. If the value of the hole length A is too small, although it depends on the material of the baffle, flatness cannot be maintained, and if it is too large, the weight of the module may be excessively increased.
 また、円板状のバッフル8の大きさ(直径)は、ハウジングの内径と一致していることが好ましいが、取り扱いの観点から一致させることが難しい場合には隙間が存在してもよい。この隙間はできるだけ小さい方が好ましい。本発明では、バッフル8の一方の側(上流側)の室から他方の側(下流側)の室へ流れる被処理流体の50%以上特に65%以上が挿通孔8aの間隙Sを通過するよう構成されていることが好ましい。この条件が満たされるならば、バッフルは外周縁の一部が切り欠かれたものであってもよく、挿通孔8a以外の孔が設けられたものであってもよい。 Further, the size (diameter) of the disk-shaped baffle 8 preferably matches the inner diameter of the housing, but a gap may exist when it is difficult to match from the viewpoint of handling. The gap is preferably as small as possible. In the present invention, 50% or more, particularly 65% or more of the fluid to be processed flowing from the one side (upstream side) chamber of the baffle 8 to the other side (downstream side) chamber passes through the gap S of the insertion hole 8a. It is preferable to be configured. If this condition is satisfied, the baffle may be a part of which the outer peripheral edge is notched, or may be provided with holes other than the insertion hole 8a.
 挿通孔8aの内径Bは、管状分離膜3の外径によるが、好ましくは3mm以上、より好ましくは6mm以上、さらに好ましくは10mm以上、好ましくは20mm以下、より好ましくは18mm以下、さらに好ましくは16mm以下である。 The inner diameter B of the insertion hole 8a depends on the outer diameter of the tubular separation membrane 3, but is preferably 3 mm or more, more preferably 6 mm or more, further preferably 10 mm or more, preferably 20 mm or less, more preferably 18 mm or less, and even more preferably 16 mm. It is as follows.
 1つのバッフル8において、挿通孔8aは、相互間に2mm以上の間隔を有して配置されていることが好ましい。 In one baffle 8, it is preferable that the insertion holes 8a are arranged with an interval of 2 mm or more between them.
 管状分離膜3の外径Cは、好ましくは3mm以上、より好ましくは6mm以上、さらに好ましくは10mm以上、好ましくは20mm以下、より好ましくは18mm以下、さらに好ましくは16mm以下である。外径Cが小さすぎると管状分離膜の強度が十分でなく壊れやすくなることがあり、大きすぎるとモジュール当りの膜面積が低下する。 The outer diameter C of the tubular separation membrane 3 is preferably 3 mm or more, more preferably 6 mm or more, further preferably 10 mm or more, preferably 20 mm or less, more preferably 18 mm or less, and further preferably 16 mm or less. If the outer diameter C is too small, the strength of the tubular separation membrane may be insufficient and may be easily broken, and if it is too large, the membrane area per module is reduced.
 管状分離膜3の全長は好ましくは20cm以上、好ましくは150cm以下である。これよりも短い場合には接続として被覆される箇所の割合が高くなるため、膜の分離に使用できる露出部の割合が低下し、これ以上長い場合には取扱いが難しくなることがある。 The total length of the tubular separation membrane 3 is preferably 20 cm or more, and preferably 150 cm or less. If the length is shorter than this, the ratio of the portion covered as the connection is increased, so that the ratio of the exposed portion that can be used for the separation of the membrane is decreased, and if it is longer than this, the handling may be difficult.
 複数のバッフルはそれぞれ同じ大きさ、同じ形であることが好ましいが、異なる大きさ、異なる形のものを使用してもよい。特に透過量/供給量が多い場合には、供給流体量が出口に近づくにつれて減少し線速が低下するため、出口に近づくにつれて挿通孔8aの直径を小さくすることが有効な場合がある。 The plurality of baffles are preferably the same size and the same shape, but different sizes and shapes may be used. In particular, when the permeation amount / supply amount is large, the amount of fluid to be supplied decreases as it approaches the outlet and the linear velocity decreases, so it may be effective to reduce the diameter of the insertion hole 8a as it approaches the outlet.
 尚、1つのバッフルは複数の挿通孔を有するが、少なくとも1つの挿通孔が前記A/(B-C)を満たせばよく、好ましくは50(個数)%以上、より好ましくは80(個数)%以上、さらに好ましくは90(個数)%以上がこれを満たすことが好適である。特に、全ての挿通孔がこの範囲を満たすことが好ましい。 Although one baffle has a plurality of insertion holes, it is sufficient that at least one insertion hole satisfies A / (BC), preferably 50 (number)% or more, more preferably 80 (number)%. More preferably, 90 (number)% or more satisfies this. In particular, it is preferable that all the insertion holes satisfy this range.
 複数の挿通孔がA/(B-C)を満たす場合、これを満たす範囲で、複数の挿通孔は異なるA/(B-C)の値であってもよいが、ほぼ同じ値であることが好ましい。ほぼ同じ値とは、A/(B-C)が±10%の範囲内であることをいう。 When a plurality of insertion holes satisfy A / (BC), the plurality of insertion holes may have different values of A / (BC) within the range satisfying this, but they should be approximately the same value. Is preferred. The almost same value means that A / (BC) is within a range of ± 10%.
 さらに、バッフルが複数ある場合、各バッフルのうち少なくとも1つのバッフルの、少なくとも1つの挿通孔が前記A/(B-C)を満たせばよいが、好ましくは、全てのバッフルが上記条件を満たすことが好ましい。 Further, when there are a plurality of baffles, at least one insertion hole of at least one baffle of each baffle should satisfy the above A / (BC), but preferably all the baffles satisfy the above conditions. Is preferred.
 また、各バッフル間で、異なるA/(B-C)の値を設定して製造されてもよい。 Further, it may be manufactured by setting different A / (BC) values between the baffles.
 全てのバッフルの挿通孔のうち、好ましくは50(個数)%以上、より好ましくは80(個数)%以上、さらに好ましくは90(個数)%以上がA/(B-C)を満たすことが好適である。特に、全てのバッフルの全ての挿通孔がA/(B-C)を満たすことが好ましい。 Of all the baffle insertion holes, preferably 50 (number)% or more, more preferably 80 (number)% or more, and still more preferably 90 (number)% or more satisfies A / (BC). It is. In particular, it is preferable that all the insertion holes of all the baffles satisfy A / (BC).
 各バッフルの複数の挿通孔がA/(B-C)を満たす場合、これを満たす範囲で、複数の挿通孔は異なるA/(B-C)の値であってもよいが、ほぼ同じ値であることが好ましい。ほぼ同じ値とは、A/(B-C)が±10%の範囲内であることをいう。 When a plurality of insertion holes of each baffle satisfy A / (BC), the plurality of insertion holes may have different values of A / (BC) within the range satisfying this, but are substantially the same value. It is preferable that The almost same value means that A / (BC) is within a range of ± 10%.
 バッフルの材質は、通常、ステンレスであるが、分離条件における耐熱性と供給、透過成分に対する耐性があれば特に限定されず、用途によっては他の材質に変更可能である。 The material of the baffle is usually stainless steel, but is not particularly limited as long as it has heat resistance and supply under separation conditions and resistance to permeation components, and can be changed to other materials depending on the application.
 複数のバッフルは、ハウジング内において等間隔に設置されることが好ましい。バッフル相互間の間隙は、多管式分離膜モジュールの長手方向の長さにもよるが、通常は10cm以上、好ましくは20cm以上、通常120cm以下、100cm以下程度が好ましい。 It is preferable that the plurality of baffles be installed at equal intervals in the housing. The gap between the baffles is usually 10 cm or more, preferably 20 cm or more, usually 120 cm or less, preferably about 100 cm or less, although it depends on the length of the multi-tubular separation membrane module in the longitudinal direction.
 本発明においては、管状分離膜の両末端から20cm以内特に18cm以内とりわけ15cm以内の箇所にそれぞれバッフルが配置されることが好ましい。この値は流体の入口または出口の配管の位置、配管径によって適した値が異なり、配管とハウジング本体との接続部のモジュール中心に最も近い部分よりも、モジュール中心に近い方に配置されることが好ましい。 In the present invention, it is preferable that baffles are respectively disposed at locations within 20 cm, particularly within 18 cm, particularly within 15 cm from both ends of the tubular separation membrane. This value differs depending on the position of the fluid inlet or outlet pipe and the pipe diameter, and should be placed closer to the module center than the part closest to the module center at the connection between the pipe and the housing body. Is preferred.
 また、管状分離膜の下端及び上端に同軸状に連設される金属部材を有する場合がある。バッフルは、この金属部材の位置に配置されることによって、以下詳述するゼオライト膜に接して傷つけることを防止することもできる。 Also, there may be a metal member that is coaxially connected to the lower and upper ends of the tubular separation membrane. By arranging the baffle at the position of the metal member, it is possible to prevent the baffle from being damaged in contact with the zeolite membrane described in detail below.
 本発明の多管式分離膜モジュールにおいて、筒状のハウジングの軸心方向の長さは通常40cm~2m程度である。また、管状分離膜は通常19~550本配置され、管状分離膜同士の最短距離は、2mm~10mmとなるように配置されることが好ましい。ハウジングの大きさ、管状分離膜の本数は処理する流体量によって適宜変更されるものである。 In the multitubular separation membrane module of the present invention, the length of the cylindrical housing in the axial direction is usually about 40 cm to 2 m. Further, it is preferable that 19 to 550 tubular separation membranes are usually arranged, and the shortest distance between the tubular separation membranes is 2 mm to 10 mm. The size of the housing and the number of tubular separation membranes are appropriately changed depending on the amount of fluid to be processed.
 管状分離膜を支持する支持板の少なくとも一方は、ハウジングに固定され、ハウジングの一端に配置される。他方は、前記支持板に対向するハウジングの他端に配置され、管状分離膜を支持する支持板を有する多管式分離膜モジュールであることが好ましい。 At least one of the support plates that support the tubular separation membrane is fixed to the housing and disposed at one end of the housing. The other is preferably a multi-tubular separation membrane module that is disposed at the other end of the housing facing the support plate and has a support plate that supports the tubular separation membrane.
 管状分離膜の支持板に支持された末端の反対側末端から10cm以内にバッフルの挿通孔と同じ円中心をもつ挿通孔を有し、挿通部において管状膜エレメントを支持する膜を支持するためのもう一つの支持板を有することが好ましい。このような支持板を設置することで、バッフルの挿通孔において、挿通孔の壁と管状分離膜の膜表面の最短距離が全ての点で一定と保たれる。このような支持板が無い場合には、挿通孔の壁と管状分離膜の膜表面の最短距離が一定に保たれず、片面は広く、反対に位置する面は狭くなり、広く開いた部分を選択的に流体が通過する可能性がある。 An insertion hole having the same circular center as the insertion hole of the baffle within 10 cm from the end opposite to the end supported by the support plate of the tubular separation membrane, and for supporting the membrane supporting the tubular membrane element in the insertion part It is preferable to have another support plate. By installing such a support plate, the shortest distance between the wall of the insertion hole and the membrane surface of the tubular separation membrane is kept constant at all points in the insertion hole of the baffle. Without such a support plate, the shortest distance between the wall of the insertion hole and the membrane surface of the tubular separation membrane is not kept constant, one side is wide, the opposite surface is narrow, and the wide open part is not There is a possibility that fluid may pass selectively.
 支持板の管状分離膜の支持板に支持された末端の反対側末端から距離は通常10cm以下、好ましくは8cm以下、より好ましくは5cm以下、特に好ましくは3cm以下であり、通常1mm以上、好ましくは3mm以上である。 The distance from the end opposite to the end supported by the support plate of the tubular separation membrane of the support plate is usually 10 cm or less, preferably 8 cm or less, more preferably 5 cm or less, particularly preferably 3 cm or less, usually 1 mm or more, preferably 3 mm or more.
 支持板には貫通孔を設け、この貫通孔に管状分離膜を挿通させて支持する。貫通孔の形状は特に限定されず、円形として貫通孔の内周面全体で支持する構造、円形に突起を設け、突起で管状分離膜を支持する構造などがある。また貫通孔以外にも流体が通過できるような孔を有した、例えばメッシュのような構造でもよい。メッシュの孔の面積、形状は支持体としての強度を保てるものであれば特に限定されない。 The support plate is provided with a through hole, and a tubular separation membrane is inserted into the through hole and supported. The shape of the through hole is not particularly limited, and there are a structure in which the entire inner peripheral surface of the through hole is supported as a circle, a structure in which a protrusion is provided in a circle, and a tubular separation membrane is supported by the protrusion. In addition to the through hole, a structure such as a mesh having holes through which fluid can pass may be used. The area and shape of the mesh holes are not particularly limited as long as the strength as a support can be maintained.
 管状分離膜の支持板と接触する箇所には、表面に被覆を行うことが好ましい。被覆材としては、フッ素樹脂テープ、ガラステープなどのテープ、パラフィルム、フッ素樹脂フィルムなどのフィルム、シリコーン熱収縮チューブ、フッ素樹脂熱収縮チューブ、ポリオレフィン熱収縮チューブなどが挙げられる。その中でも取扱いの面で熱収縮チューブが好ましく、その中でもシリコーン熱収縮チューブ、フッ素樹脂熱収縮チューブが好ましい。 It is preferable to coat the surface of the tubular separation membrane where it comes into contact with the support plate. Examples of the covering material include tapes such as fluororesin tapes and glass tapes, parafilms, films such as fluororesin films, silicone heat shrinkable tubes, fluororesin heat shrinkable tubes, and polyolefin heat shrinkable tubes. Among them, a heat shrinkable tube is preferable in terms of handling, and among them, a silicone heat shrinkable tube and a fluororesin heat shrinkable tube are preferable.
 管状分離膜の支持板と接触する箇所は膜材料であってもよいが、膜の末端を封止するための例えばピンなどを使用する場合には、封止材の箇所で支持板と接触させることが好ましい。封止材と接触させることで、膜自体が触れることがないため、膜の表面が削れることや破損する可能性が小さくなる。封止材の材質は特に限定されず、SUS、アルミニウム、フッ素樹脂などが挙げられ、膜自体の強度、流体の成分などに応じて適宜選択する。 The portion of the tubular separation membrane that comes into contact with the support plate may be a membrane material, but when using, for example, a pin for sealing the end of the membrane, it is brought into contact with the support plate at the location of the sealing material. It is preferable. By contacting with the sealing material, the film itself is not touched, so that the possibility that the surface of the film is scraped or damaged is reduced. The material of the sealing material is not particularly limited, and examples thereof include SUS, aluminum, and fluororesin, and are appropriately selected according to the strength of the film itself, the fluid component, and the like.
 管状分離膜は、分離膜を有する管状のものであればよいが、管状の多孔質支持体の表面にゼオライト膜を形成させたものであることが好ましい。 The tubular separation membrane may be any tubular one having a separation membrane, but it is preferable that a zeolite membrane is formed on the surface of the tubular porous support.
 上記管状の多孔質支持体の材質としては、シリカ、α-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などを含むセラミックス焼結体の無機多孔質支持体が挙げられる。その中でもアルミナ、シリカ、ムライトのうち少なくとも1種を含む無機多孔質支持体が好ましい。多孔質支持体表面が有する平均細孔径は特に制限されるものではないが、細孔径が制御されているものが好ましく、通常0.02μm以上、好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、通常20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下の範囲が好ましい。 Examples of the material of the tubular porous support include an inorganic porous support of a ceramic sintered body containing silica, α-alumina, γ-alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide and the like. It is done. Among these, an inorganic porous support containing at least one of alumina, silica, and mullite is preferable. The average pore diameter of the surface of the porous support is not particularly limited, but those having a controlled pore diameter are preferred, usually 0.02 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm. The above is usually in the range of 20 μm or less, preferably 10 μm or less, more preferably 5 μm or less.
 多孔質支持体の表面においてゼオライトを結晶化させゼオライト膜を形成させる。ゼオライト膜を構成する主たるゼオライトは、通常、酸素6-10員環構造を有するゼオライトを含み、好ましくは酸素6-8員環構造を有するゼオライトを含む。 Zeolite is crystallized on the surface of the porous support to form a zeolite membrane. The main zeolite constituting the zeolite membrane usually contains a zeolite having an oxygen 6-10 membered ring structure, and preferably contains a zeolite having an oxygen 6-8 membered ring structure.
 ここでいう酸素n員環を有するゼオライトのnの値は、ゼオライト骨格を形成する酸素とT元素で構成される細孔の中で最も酸素の数が大きいものを示す。例えば、MOR型ゼオライトのように酸素12員環と8員環の細孔が存在する場合は、酸素12員環のゼオライトとみなす。 Here, the value of n of the zeolite having an oxygen n-membered ring indicates the one having the largest number of oxygen among pores composed of oxygen and T element forming the zeolite skeleton. For example, when there are 12-membered and 8-membered pores of oxygen, such as MOR type zeolite, it is regarded as a 12-membered ring zeolite.
 酸素6-10員環構造を有するゼオライトの一例を挙げれば、AEI、AEL、AFG、ANA、BRE、CAS、CDO、CHA、DAC、DDR、DOH、EAB、EPI、ESV、EUO、FAR、FRA、FER、GIS、GIU、GOO、HEU、IMF、ITE、ITH、KFI、LEV、LIO、LOS、LTN、MAR、MEP、MER、MEL、MFI、MFS、MON、MSO、MTF、MTN、MTT、MWW、NAT、NES、NON、PAU、PHI、RHO、RRO、RTE、RTH、RUT、SGT、SOD、STF、STI、STT、TER、TOL、TON、TSC、TUN、UFI、VNI、VSV、WEI、YUG等がある。 An example of a zeolite having an oxygen 6-10 membered ring structure is AEI, AEL, AFG, ANA, BRE, CAS, CDO, CHA, DAC, DDR, DOH, EAB, EPI, ESV, EUO, FAR, FRA, FER, GIS, GIU, GOO, HEU, IMF, ITE, ITH, KFI, LEV, LIO, LOS, LTN, MAR, MEP, MER, MEL, MFI, MFS, MON, MSO, MTF, MTN, MTT, MWW, NAT, NES, NON, PAU, PHI, RHO, RRO, RTE, RTH, RUT, SGT, SOD, STF, STI, STT, TER, TOL, TON, TSC, TUN, UFI, VNI, VSV, WEI, YUG, etc. There is.
 ゼオライト膜は、ゼオライトが単独で膜となったものでも、前記ゼオライトの粉末をポリマーなどのバインダー中に分散させて膜の形状にしたものでも、各種支持体上にゼオライトを膜状に固着させたゼオライト膜複合体でもよい。ゼオライト膜は、一部アモルファス成分などが含有されていてもよい。 The zeolite membrane may be a single membrane of the zeolite, or the zeolite powder is dispersed in a binder such as a polymer to form a membrane, and the zeolite is fixed in a film form on various supports. A zeolite membrane composite may be used. The zeolite membrane may partially contain an amorphous component or the like.
 ゼオライト膜の厚さとしては、特に制限されるものではないが、通常、0.1μm以上であり、好ましくは0.6μm以上、さらに好ましくは1.0μm以上である。また通常100μm以下であり、好ましくは60μm以下、さらに好ましくは20μm以下の範囲である。 The thickness of the zeolite membrane is not particularly limited, but is usually 0.1 μm or more, preferably 0.6 μm or more, and more preferably 1.0 μm or more. Moreover, it is 100 micrometers or less normally, Preferably it is 60 micrometers or less, More preferably, it is the range of 20 micrometers or less.
 本発明の多管式分離膜モジュールにおいて、分離または濃縮の対象となる被処理流体としては、本発明における分離膜エレメントによって、分離または濃縮が可能な複数の成分からなる気体または液体の混合物であれば特に制限はなく、如何なる混合物であってもよいが、気体の混合物に使用することが好ましい。 In the multi-tubular separation membrane module of the present invention, the fluid to be separated or concentrated may be a gas or liquid mixture composed of a plurality of components that can be separated or concentrated by the separation membrane element of the present invention. There is no particular limitation, and any mixture may be used, but it is preferably used for a gas mixture.
 分離または濃縮の対象となる混合物が、例えば、有機化合物と水との混合物(以下これを、「含水有機化合物」と略称することがある。)の場合、ゼオライト膜を使用する場合、水がゼオライト膜に対する透過性が高いので、混合物から水が分離され、有機化合物は元の混合物中で濃縮される。パーベーパレーション法(浸透気化法)、ベーパーパーミエーション法(蒸気透過法)と呼ばれる分離または濃縮方法を用いることができる。パーベーパレーション法は、液体の混合物をそのまま分離膜に導入する分離または濃縮方法であるため、分離または濃縮を含むプロセスを簡便なものにすることができる。 In the case where the mixture to be separated or concentrated is, for example, a mixture of an organic compound and water (hereinafter, this may be abbreviated as “hydrous organic compound”), when using a zeolite membrane, the water is zeolite. Due to the high permeability to the membrane, water is separated from the mixture and the organic compound is concentrated in the original mixture. A separation or concentration method called a pervaporation method (permeation vaporization method) or a vapor permeation method (vapor permeation method) can be used. The pervaporation method is a separation or concentration method in which a liquid mixture is directly introduced into a separation membrane, so that a process including separation or concentration can be simplified.
 本発明において、分離または濃縮の対象となる混合物が、複数の成分からなる気体の混合物である場合、気体の混合物としては、例えば、二酸化炭素、酸素、窒素、メタン、エタン、エチレン、プロパン、プロピレン、ノルマルブタン、イソブタン、1-ブテン、2-ブテン、イソブテン、六フッ化硫黄、ヘリウム、一酸化炭素、一酸化窒素、水などから選ばれる少なくとも1種の成分を含むものが挙げられる。これらの気体成分からなる混合物のうち、パーミエンスの高い気体成分は、分離膜を透過し分離され、パーミエンスの低い気体成分は供給ガス側に濃縮される。 In the present invention, when the mixture to be separated or concentrated is a gas mixture composed of a plurality of components, examples of the gas mixture include carbon dioxide, oxygen, nitrogen, methane, ethane, ethylene, propane, and propylene. And those containing at least one component selected from normal butane, isobutane, 1-butene, 2-butene, isobutene, sulfur hexafluoride, helium, carbon monoxide, nitrogen monoxide, water and the like. Among the mixture of these gas components, the gas component having a high permeance passes through the separation membrane and is separated, and the gas component having a low permeance is concentrated on the supply gas side.
 本発明の多管式分離膜モジュールは、流体量、あるいは目的の分離度、濃縮度によって連結するなどして分離装置に使用することができる。流体量が多い場合または目的の分離度・濃縮度が高く1つのモジュールでは処理が十分できない場合には出口から出た流体をさらにもう一つのモジュールの入口に入るように配管を接続して使用することが好ましい。また分離度、濃縮度に応じてさらに連結して目的の分離度・濃縮度とすることができる。 The multi-tubular separation membrane module of the present invention can be used in a separation apparatus by being connected depending on the amount of fluid or the desired degree of separation and concentration. If the amount of fluid is large or the target separation / concentration is high and processing cannot be performed sufficiently with one module, connect the piping so that the fluid from the outlet enters the inlet of another module. It is preferable. Moreover, it can be further linked according to the degree of separation and the degree of concentration to obtain the desired degree of separation and concentration.
 本発明の多管式分離膜モジュールを並列に設置した分離装置とし、流体を分岐してガスを供給してもよい。この時さらに並列したそれぞれのモジュールに直列でモジュールを設置することもできる。並列としたモジュールを直列とする場合、供給ガス量が直列方向に低下し線速が低下するので、適宜線速を保つように並列の設置数を減少させることが好ましい。 A separation device in which the multi-tubular separation membrane module of the present invention is installed in parallel may be used to supply gas by branching the fluid. At this time, it is also possible to install modules in series with the modules in parallel. When the parallel modules are connected in series, the amount of gas to be supplied decreases in the serial direction and the linear velocity decreases. Therefore, it is preferable to reduce the number of parallel installations so as to keep the linear velocity appropriately.
 モジュールを直列に配置する場合の透過した成分はモジュール毎に排出しても良いし、モジュール間を連結して集合して排出しても良い。モジュール間を連結させる場合には下流側のモジュールの透過成分を上流側のモジュールの透過成分に流す方が好ましい。このような流れを作ることによって供給ガスと透過ガスは交流接触となり性能が優れた分離・濃縮ができる。 ∙ Permeated components when modules are arranged in series may be discharged for each module, or may be discharged by connecting the modules together. When connecting the modules, it is preferable to flow the transmission component of the downstream module to the transmission component of the upstream module. By making such a flow, the supply gas and the permeate gas are in AC contact and can be separated and concentrated with excellent performance.
(実施例)
 本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
(Example)
Examples The present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.
[実施例1]
 本発明の分離モジュールについてガス分離シミュレーションを行った。
[Example 1]
A gas separation simulation was performed on the separation module of the present invention.
 シミュレーションに用いた多管式分離膜モジュールは、図1~4においてバッフル8の枚数を2枚としたものである。取出口6aが頂部となるようにハウジング2の軸心線方向を上下方向となるように多管式分離膜モジュール1を設置した。 The multi-tubular separation membrane module used in the simulation is the one in which the number of baffles 8 is two in FIGS. The multi-tubular separation membrane module 1 was installed so that the axial center line direction of the housing 2 was up and down so that the outlet 6a was at the top.
 ハウジング内径は49.5mmであり、全長は240mmである。管状分離膜は直径(=管状分離膜の外径C)が6mmであり、ピッチが9mmとなるように19本が配置され、中心に1本とその周囲に正6角形の頂点に位置する箇所に6本とさらにその周囲に正6角形の頂点とその頂点同士を結んだ直線上に各頂点から等距離の位置に6本が配置されている。膜の露出長さは188mmであり、19本の膜では面積が0.067mとなる。 The housing inner diameter is 49.5 mm, and the total length is 240 mm. The tubular separation membrane has a diameter (= outer diameter C of the tubular separation membrane) of 6 mm, 19 are arranged so that the pitch is 9 mm, and one is located at the center and the apex of a regular hexagon around it In addition, six are arranged at equidistant positions from the vertices on a straight line connecting the vertices of the regular hexagon and the vertices. The exposed length of the film is 188 mm, and 19 films have an area of 0.067 m 2 .
 ハウジングにはガスを供給する流入口9と膜を透過しなかったガスが流出する流出口10とがハウジングの中心から93mmの位置に設置され、それぞれ内径5mmの流入管、流出管が接続されている。さらに膜を透過したガスが集合し通過する取出口6aが配置され、内径6mmの取出配管が接続されている。膜の外側のガスの流れと膜を透過したガスの流れは交流となるようにガスを供給する。 The housing is provided with an inlet 9 for supplying gas and an outlet 10 for discharging gas that has not permeated through the membrane at a position 93 mm from the center of the housing, and an inflow pipe and an outflow pipe with an inner diameter of 5 mm are connected to each other. Yes. Further, an outlet 6a through which the gas that has passed through the membrane gathers and passes is arranged, and an outlet pipe having an inner diameter of 6 mm is connected. The gas is supplied so that the gas flow outside the membrane and the gas flow that has passed through the membrane are in an alternating current.
 モジュールには中心から75mmの位置に1枚ずつ、計2枚のバッフル8が設置されており、各バッフルには各分離膜の中心と一致する中心をもつ19個の挿通孔8aを設けてある。挿通孔の直径(=挿通孔の内径B)は7.5mmであり管状分離膜の外周面と挿通孔の内周面との間には0.75mmの間隙が存在し、この間隙をガスが通過する。バッフルの厚み(=孔長A)は3mmであり、孔長Aと、バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)は2.0である。 Two baffles 8 are installed in the module, one at a position of 75 mm from the center. Each baffle is provided with 19 insertion holes 8a having centers that coincide with the centers of the separation membranes. . The diameter of the insertion hole (= inner diameter B of the insertion hole) is 7.5 mm, and there is a gap of 0.75 mm between the outer peripheral surface of the tubular separation membrane and the inner peripheral surface of the insertion hole. pass. The thickness of the baffle (= hole length A) is 3 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 2.0. It is.
 供給ガスは2種類の透過性が異なる成分を混合したガスとし、透過性の高いガスのパーミエンスを4.0×10-7mol/msPa、透過性の低いガスのパーミエンスを3.5×10-9mol/msPaとした。供給量は400NL/minとし、ガス組成は透過性が高い成分が40%、透過性が低いガスが60%とした。ガスの圧力は3.5Mpaに設定した。 The supply gas is a gas in which two kinds of components having different permeability are mixed, the permeance of the gas having high permeability is 4.0 × 10 −7 mol / m 2 spa, and the permeance of the gas having low permeability is 3.5 ×. 10 −9 mol / m 2 spa. The supply rate was 400 NL / min, and the gas composition was 40% for components with high permeability and 60% for gases with low permeability. The gas pressure was set to 3.5 Mpa.
 シミュレーションはANSYS社の汎用流体解析ソフトウェアANSYS Fluent(R14)を使用し、膜分離現象については標準機能では評価できないため、各ガス成分の分圧と透過率から透過量を計算するサブルーチンを組み込んで計算を行った。膜上の各位置での物理量を用いて透過計算を行うことでバッフル効果による局所濃度の変化を評価することができる。透過性の高いガス成分について供給したガス量と透過したガス量の比率を求めることで、透過性の高いガスの透過率を得た。シミュレーションで得られた透過性の高いガスの透過率は34.2%であった。 The simulation uses general-purpose fluid analysis software ANSYS Fluent (R14) from ANSYS, and the membrane separation phenomenon cannot be evaluated with standard functions. Therefore, a subroutine that calculates the permeation amount from the partial pressure and permeability of each gas component is incorporated. Went. By performing permeation calculation using physical quantities at each position on the film, changes in local concentration due to the baffle effect can be evaluated. By determining the ratio of the amount of gas supplied to the gas component having high permeability and the amount of gas transmitted, the gas permeability with high permeability was obtained. The permeability of the highly permeable gas obtained by the simulation was 34.2%.
[実施例2]
 バッフルの厚みを6mmとし、孔長Aと、バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)を4.0としたこと以外は実施例1と同様のモジュールで、実施例1と同様のシミュレーションを実施した。シミュレーションで得られた透過性の高いガスの透過率は34.2%であった。
[Example 2]
Example except that the thickness of the baffle was 6 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane was 4.0 The same simulation as in Example 1 was performed with the same module as in Example 1. The permeability of the highly permeable gas obtained by the simulation was 34.2%.
[実施例3]
 バッフルの厚みを10mmとし、孔長Aと、バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)を6.7としたこと以外は実施例1と同様のモジュールで、実施例1と同様のシミュレーションを実施した。シミュレーションで得られた透過性の高いガスの透過率は34.6%であった。
[Example 3]
Example except that the thickness of the baffle is 10 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 6.7 The same simulation as in Example 1 was performed with the same module as in Example 1. The permeability of the highly permeable gas obtained by the simulation was 34.6%.
[比較例1]
 バッフルの厚みを0.75mmとし、孔長Aと、バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)を0.5としたこと以外は実施例1と同様のモジュールで、実施例1と同様のシミュレーションを実施した。シミュレーションで得られた透過性の高いガスの透過率は32.4%であった。実施例1~3と比較して低いガス透過率となった。
[Comparative Example 1]
Except that the thickness of the baffle is 0.75 mm and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 0.5. The same simulation as in Example 1 was performed using the same module as in Example 1. The permeability of the highly permeable gas obtained by the simulation was 32.4%. Compared with Examples 1 to 3, the gas permeability was low.
 実施例1~3と比較例1のA/(B-C)と透過性の高いガスの透過率の関係を図9に示す。比較例1と実施例1~3の間で透過しやすいガスの透過率の差が大きいことがわかる。 FIG. 9 shows the relationship between A / (BC) of Examples 1 to 3 and Comparative Example 1 and the permeability of highly permeable gas. It can be seen that there is a large difference in gas permeability between Comparative Example 1 and Examples 1 to 3.
 孔長と、バッフルの挿通孔の内径と管状分離膜の外径の差との比が0.5の比較例1と、孔長と、バッフルの挿通孔の内径と管状分離膜の外径の差との比が2の実施例1、同数値が4の実施例2、同数値が6.7の実施例3で透過しやすいガスの透過率の差が大きいことがわかる。 Comparative Example 1 in which the ratio of the hole length, the difference between the inner diameter of the baffle insertion hole and the outer diameter of the tubular separation membrane is 0.5, the hole length, the inner diameter of the baffle insertion hole, and the outer diameter of the tubular separation membrane It can be seen that there is a large difference in gas permeability between Example 1 with a difference ratio of 2, Example 2 with the same numerical value of 4, and Example 3 with the same numerical value of 6.7.
[実施例4]
 次に、上述の実施例、比較例とは異なる構造のモジュールに対してガス流れシミュレーションを行った。
[Example 4]
Next, a gas flow simulation was performed on a module having a structure different from that of the above-described examples and comparative examples.
 シミュレーションに用いた多管式分離膜モジュールは、図1~4においてバッフル8の枚数を2枚としたものである。取出口6aが頂部となるようにハウジング2の軸心線方向を上下方向となるように多管式分離膜モジュール1を設置した。 The multi-tubular separation membrane module used in the simulation is the one in which the number of baffles 8 is two in FIGS. The multi-tubular separation membrane module 1 was installed so that the axial center line direction of the housing 2 was up and down so that the outlet 6a was at the top.
 ハウジング内径は83.1mmであり、全長は412mmである。管状分離膜は直径が12mmであり、ピッチが16mmとなるように19本が配置され、中心に1本とその周囲に正6角形の頂点に位置する箇所に6本とさらにその周囲に正6角形の頂点とその頂点同士を結んだ直線上に各頂点から等距離の位置に6本が配置されている。膜の露出長さは200mmであり、19本の膜では面積が0.143mとなる。 The inner diameter of the housing is 83.1 mm and the total length is 412 mm. The tubular separation membrane has a diameter of 12 mm, 19 are arranged so that the pitch is 16 mm, one at the center and six at the apex of a regular hexagon around the center, and six at the periphery. Six pieces are arranged at equidistant positions from each vertex on a square vertex and a straight line connecting the vertexes. The exposed length of the film is 200 mm, and 19 films have an area of 0.143 m 2 .
 ハウジングにはガスを供給する流入口9と膜を透過しなかったガスが流出する流出口10とがハウジングの中心から143mmの位置に設置され、それぞれ内径15.8mmの流入管、流出管が接続されている。さらに膜を透過したガスが集合し通過する取出口6aが配置され、内径15.8mmの取出配管が接続されている。膜の外側のガスの流れと膜を透過したガスの流れは交流となるようにガスを供給する。 The housing is provided with an inlet 9 for supplying gas and an outlet 10 for discharging the gas that has not permeated through the membrane at a position 143 mm from the center of the housing. Has been. Further, an outlet 6a through which the gas that has permeated the membrane gathers and passes is arranged, and an outlet pipe having an inner diameter of 15.8 mm is connected. Gas is supplied so that the flow of gas outside the membrane and the flow of gas that has passed through the membrane are alternating.
 モジュールには中心から75mmの位置に管状分離膜の下端及び上端に同軸上にそれぞれ連結される金属部材部分に1枚ずつ、計2枚のバッフル8が設置されており、各バッフルには各分離膜の中心と一致する中心をもつ19個の挿通孔8aを設けてある。挿通孔の直径は12.2mmであり管状分離膜の外周面と挿通孔の内周面との間には1.0mmの間隙が存在し、この間隙をガスが通過する。バッフルの厚みは2mmであり、孔長Aと、バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)は10である。 Two baffles 8 are installed in the module, one on each metal member portion that is coaxially connected to the lower and upper ends of the tubular separation membrane at a position 75 mm from the center. Nineteen insertion holes 8a having a center coinciding with the center of the film are provided. The diameter of the insertion hole is 12.2 mm, and a gap of 1.0 mm exists between the outer peripheral surface of the tubular separation membrane and the inner peripheral surface of the insertion hole, and gas passes through this gap. The thickness of the baffle is 2 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 10.
 供給量は3200NL/minとし、ガスの圧力は5.0Mpaに設定した。 The supply amount was 3200 NL / min, and the gas pressure was set to 5.0 MPa.
 シミュレーションはANSYS社の汎用流体解析ソフトウェアANSYS Fluent(R14)を使用した。バッフル通過後のガスの流れを確認するため、上流部のバッフルからガスの下流側に20mmの位置の膜に垂直な面で、ガスの流速ベクトルを膜に平行な流れ成分と膜に垂直な流れ成分に分解し、それぞれ平均値を算出した。さらに膜に平行な流れと垂直な流れの速度比からガスの角度平均値を求めた。この値が小さい方が膜に平行な流れであることを意味する。得られたガスの角度平均値は5.9°であった。 The simulation used general fluid analysis software ANSYS Fluent (R14) manufactured by ANSYS. In order to confirm the flow of the gas after passing through the baffle, the gas flow velocity vector is defined as a flow component parallel to the membrane and a flow perpendicular to the membrane on a plane perpendicular to the membrane 20 mm from the upstream baffle to the downstream side of the gas. It decomposed | disassembled into the component and each calculated the average value. Furthermore, the angle average value of the gas was obtained from the velocity ratio between the flow parallel to the film and the flow perpendicular to the film. A smaller value means a flow parallel to the membrane. The angle average value of the obtained gas was 5.9 °.
[実施例5]
 管状分離膜の外径Cを12.5mmとし、孔長Aと、バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)を4としたこと以外は実施例4と同様のモジュールで、実施例4と同様のシミュレーションを実施した。得られたガスの角度平均値は6.7°であった。
[Example 5]
The outer diameter C of the tubular separation membrane was 12.5 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane was 4. Except for this, the same modules as in Example 4 were used, and the same simulation as in Example 4 was performed. The angle average value of the obtained gas was 6.7 °.
[比較例2]
 管状分離膜の外径Cを15.5mmとし、孔長Aと、バッフルの挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)を0.57としたこと以外は実施例4と同様のモジュールで、実施例4と同様のシミュレーションを実施した。得られたガスの角度平均値は16.9°であった。
[Comparative Example 2]
The outer diameter C of the tubular separation membrane is 15.5 mm, and the ratio A / (BC) between the hole length A and the difference between the inner diameter B of the baffle insertion hole and the outer diameter C of the tubular separation membrane is 0.57. Except that, the same simulation as in Example 4 was performed with the same module as in Example 4. The angle average value of the obtained gas was 16.9 °.
 実施例4,5と比較例2のA/(B-C)と角度平均値の関係を図12に示す。 FIG. 12 shows the relationship between A / (BC) and the angle average value in Examples 4 and 5 and Comparative Example 2.
 実施例4、5では膜に対する角度が小さく膜に沿ってほぼ平行の流れが得られている。これに対して比較例2では角度が大きく、膜に対して斜めの流れとなっていることがわかる。 In Examples 4 and 5, the angle with respect to the membrane is small, and a substantially parallel flow is obtained along the membrane. On the other hand, in Comparative Example 2, it can be seen that the angle is large and the flow is oblique to the film.
 本出願は、2013年8月30日出願の日本特許出願、特願2013-179869に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2013-179869 filed on Aug. 30, 2013, the contents of which are incorporated herein by reference.
 本発明によれば、被処理流体の流速が大きく、膜分離効率に優れるとともに、重量増加が回避される多管式分離膜モジュールを提供することが可能となる。 According to the present invention, it is possible to provide a multitubular separation membrane module in which the flow rate of the fluid to be treated is large, the membrane separation efficiency is excellent, and an increase in weight is avoided.
 1,1’ 多管式分離膜モジュール
 2 ハウジング
 3 管状分離膜
 4,5 支持板
 6,6’ エンドプレート
 6a 取出口
 7 ブラインドプレート
 8 バッフル
 8a 挿通孔
 9 流入口
 10 流出口
 11~15 室
 16,16’ 流出室
DESCRIPTION OF SYMBOLS 1,1 'Multitubular separation membrane module 2 Housing 3 Tubular separation membrane 4,5 Support plate 6,6' End plate 6a Outlet 7 Blind plate 8 Baffle 8a Insertion hole 9 Inlet 10 Outlet 11-15 Chamber 16, 16 'Outflow chamber

Claims (7)

  1.  筒状のハウジングと、
     該ハウジング内に該ハウジングの長手方向に配置された複数の管状分離膜と、
     該ハウジングに固定され、該管状分離膜を支持する支持板と、
     該管状分離膜が挿通された挿通孔を有し、該ハウジング内において該支持板と略平行に配置された1または2以上のバッフルと
    を有する多管式分離膜モジュールにおいて、
     該挿通孔の内周面と管状分離膜の外周面との間に間隙が設けられており、
     前記挿通孔の孔長Aと、該挿通孔の内径Bと管状分離膜の外径Cの差との比A/(B-C)が0.67~50であることを特徴とする多管式分離膜モジュール。
    A tubular housing;
    A plurality of tubular separation membranes disposed in the housing in the longitudinal direction of the housing;
    A support plate fixed to the housing and supporting the tubular separation membrane;
    In a multi-tubular separation membrane module having an insertion hole through which the tubular separation membrane is inserted and having one or more baffles disposed substantially parallel to the support plate in the housing,
    A gap is provided between the inner peripheral surface of the insertion hole and the outer peripheral surface of the tubular separation membrane,
    A ratio of A / (BC) between the hole length A of the insertion hole and the difference between the inner diameter B of the insertion hole and the outer diameter C of the tubular separation membrane is 0.67-50. Type separation membrane module.
  2.  該バッフルの上流側の被処理流体の半分以上は、該間隙を通過して下流側に流入するよう構成されていることを特徴とする請求項1に記載の多管式分離膜モジュール。 The multi-tubular separation membrane module according to claim 1, wherein more than half of the fluid to be processed on the upstream side of the baffle flows through the gap and flows downstream.
  3.  前記複数の管状分離膜は、管状分離膜同士の最短距離が2mm~10mmとなるように配置されていることを特徴とする請求項1又は2に記載の多管式分離膜モジュール。 The multi-tubular separation membrane module according to claim 1 or 2, wherein the plurality of tubular separation membranes are arranged so that the shortest distance between the tubular separation membranes is 2 mm to 10 mm.
  4.  前記管状分離膜の両末端から20cm以内の箇所にそれぞれ該バッフルが配置されていることを特徴とする請求項1ないし3のいずれか1項に記載の多管式分離膜モジュール。 The multi-tubular separation membrane module according to any one of claims 1 to 3, wherein the baffles are respectively arranged at positions within 20 cm from both ends of the tubular separation membrane.
  5.  前記支持板が前記ハウジングの両端側にそれぞれ配置されていることを特徴とする請求項1ないし4のいずれか1項に記載の多管式分離膜モジュール。 The multi-pipe separation membrane module according to any one of claims 1 to 4, wherein the support plates are respectively disposed on both end sides of the housing.
  6.  前記管状分離膜がゼオライト分離膜である、請求項1ないし5のいずれか1項に記載の多管式分離膜モジュール。 The multitubular separation membrane module according to any one of claims 1 to 5, wherein the tubular separation membrane is a zeolite separation membrane.
  7.  請求項1ないし6のいずれか1項に記載の多管式分離膜モジュールを備える、分離装置。
     
    A separation apparatus comprising the multitubular separation membrane module according to any one of claims 1 to 6.
PCT/JP2014/072658 2013-08-30 2014-08-28 Multi-tube separation membrane module WO2015030148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534313A JP6409776B2 (en) 2013-08-30 2014-08-28 Multi-tube separation membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179869 2013-08-30
JP2013179869 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030148A1 true WO2015030148A1 (en) 2015-03-05

Family

ID=52586696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072658 WO2015030148A1 (en) 2013-08-30 2014-08-28 Multi-tube separation membrane module

Country Status (2)

Country Link
JP (1) JP6409776B2 (en)
WO (1) WO2015030148A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182070A (en) * 2014-03-26 2015-10-22 三菱化学株式会社 Multitubular separation membrane module
WO2017086264A1 (en) * 2015-11-18 2017-05-26 三菱重工環境・化学エンジニアリング株式会社 Membrane module, method for producing membrane module, and water treatment system
JP2019042636A (en) * 2017-08-30 2019-03-22 旭化成株式会社 Gas separation membrane module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122083A (en) * 2002-10-07 2004-04-22 Bio Nanotec Research Institute Inc Multi-tubular separation-membrane module
JP2010247107A (en) * 2009-04-17 2010-11-04 Meidensha Corp Separating membrane module
JP2013039546A (en) * 2011-08-19 2013-02-28 Hitachi Zosen Corp Separation membrane module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122083A (en) * 2002-10-07 2004-04-22 Bio Nanotec Research Institute Inc Multi-tubular separation-membrane module
JP2010247107A (en) * 2009-04-17 2010-11-04 Meidensha Corp Separating membrane module
JP2013039546A (en) * 2011-08-19 2013-02-28 Hitachi Zosen Corp Separation membrane module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUKO TAKADA ET AL.: "Takanshiki Bunri Maku Module Nai no Ryudo Simulation", ABSTRACTS OF AUTUMN MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 37, 5 September 2005 (2005-09-05), JAPAN, pages L323 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182070A (en) * 2014-03-26 2015-10-22 三菱化学株式会社 Multitubular separation membrane module
WO2017086264A1 (en) * 2015-11-18 2017-05-26 三菱重工環境・化学エンジニアリング株式会社 Membrane module, method for producing membrane module, and water treatment system
JP2017094230A (en) * 2015-11-18 2017-06-01 三菱重工環境・化学エンジニアリング株式会社 Membrane module, production method of membrane module and water treatment system
KR20180067617A (en) * 2015-11-18 2018-06-20 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Membrane module, method of manufacturing membrane module, and water treatment system
CN108348863A (en) * 2015-11-18 2018-07-31 三菱重工环境·化学工程株式会社 The manufacturing method and water treatment system of membrane module, membrane module
KR102010202B1 (en) 2015-11-18 2019-08-12 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Membrane Modules, Methods of Making Membrane Modules, and Water Treatment Systems
CN108348863B (en) * 2015-11-18 2022-06-10 三菱重工环境·化学工程株式会社 Membrane module, method for producing membrane module, and water treatment system
JP2019042636A (en) * 2017-08-30 2019-03-22 旭化成株式会社 Gas separation membrane module

Also Published As

Publication number Publication date
JP6409776B2 (en) 2018-10-24
JPWO2015030148A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6221889B2 (en) Multi-tube separation membrane module
JP7201043B2 (en) Separation membrane module
JP6409776B2 (en) Multi-tube separation membrane module
JP6467983B2 (en) Separation membrane module and repair method thereof
JP6592914B2 (en) Separation membrane module
JP6515581B2 (en) Separation membrane module
US20210170339A1 (en) Separation membrane module
JP6500499B2 (en) Separation membrane module and method of operating the same
JP6467982B2 (en) Separation membrane module
JP6221970B2 (en) Multi-tube separation membrane module
JP2022093693A (en) Separation membrane module
US20130043178A1 (en) Device for filtering and separating flowing media
JP2023063385A (en) Separation membrane module
JP6252377B2 (en) Multi-tube separation membrane module
JP6682905B2 (en) Separation membrane module
JP2016155097A (en) Separation membrane module and membrane separation system
JP6464810B2 (en) Separation membrane module
WO2021060557A1 (en) Separation membrane module and separation method
JP7210897B2 (en) Multitubular separation membrane module
JP7107136B2 (en) Separation membrane module
JP7375309B2 (en) Separation membrane module
JP2018161613A (en) Multitubular separation membrane module
JP6252376B2 (en) Assembly method for multi-tube separation membrane module
JP2016153115A (en) Separation membrane module and tubular separation membrane connection structure
JP6907612B2 (en) Separation Membrane Module and Membrane Separation System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840818

Country of ref document: EP

Kind code of ref document: A1