WO2021060557A1 - Separation membrane module and separation method - Google Patents

Separation membrane module and separation method Download PDF

Info

Publication number
WO2021060557A1
WO2021060557A1 PCT/JP2020/036610 JP2020036610W WO2021060557A1 WO 2021060557 A1 WO2021060557 A1 WO 2021060557A1 JP 2020036610 W JP2020036610 W JP 2020036610W WO 2021060557 A1 WO2021060557 A1 WO 2021060557A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
housing
membrane module
module according
tubular
Prior art date
Application number
PCT/JP2020/036610
Other languages
French (fr)
Japanese (ja)
Inventor
沙綾 中野
日高 秀人
和也 前川
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2021060557A1 publication Critical patent/WO2021060557A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/363Vapour permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide

Definitions

  • the present invention relates to a separation membrane module used for separating a part of components from a fluid such as a solution or a mixed gas, and a separation method using this separation membrane module.
  • a separation membrane module having a tubular separation membrane is known as a device for separating components in a solution or a mixed gas.
  • This tubular separation membrane has a tubular porous ceramic support and a porous separation membrane made of zeolite or the like provided on the outer peripheral surface of the support.
  • the fluid of the solution is brought into contact with one (outer surface) of the tubular separation membrane, and the other (inner surface) is depressurized to release the specific component.
  • a method of vaporizing and separating a method of vaporizing a solution and bringing it into contact with a separation membrane in a gaseous state, depressurizing the non-contact surface side to separate a specific component, or bringing a pressurized mixed gas into contact with the separation membrane.
  • a method of separating a specific component is known.
  • Patent Document 1 describes a module in which a separation membrane unit is inserted in the centripetal direction from the side surface of a cylindrical container.
  • the length of the separation membrane unit in the insertion direction is about the radius of the container or less (FIGS. 4, 5, and 7 of Patent Document 1).
  • Patent Document 1 in order to increase the packing density of the tubular separation membrane, it is necessary to install a large number of separation membrane units as shown in FIGS. 4 to 7 of Patent Document 1.
  • FIGS. 4 to 7 of Patent Document 1 cylindrical containers are arranged so that the direction of the container axis is vertical, and the separation membrane units are arranged in multiple upper and lower stages, and eight separation membranes in one stage. The unit is provided in the centripetal direction.
  • a large number of separation membrane units are installed in this way, it takes a lot of time and effort to assemble the separation membrane module.
  • the risk of the fluid to be separated leaking from the sealing portion between each separation membrane unit and the container also increases in proportion to the number of separation membrane units.
  • the present invention provides a separation membrane module capable of increasing the packing density of a tubular separation membrane and reducing the number of processing units as compared with Patent Document 1, and a separation method using the separation membrane module.
  • the purpose is to do.
  • the gist of the present invention is as follows.
  • a separation membrane module having a tubular housing and a processing unit inserted into the housing from an insertion port provided on a side peripheral surface of the housing, and the tip of the processing unit in the insertion direction.
  • a separation membrane module characterized in that the side reaches or near the peripheral surface on the housing side opposite to the insertion port.
  • a support hole is provided on the side peripheral surface of the housing on the side opposite to the insertion port, and the tip end side of the processing unit is inserted into the support hole and held.
  • At least a part of the processing unit is the separation membrane module of [4] or [5] having the heater.
  • the processing unit is any one of [1] to [9] having a support plate perpendicular to the insertion direction and a plurality of tubular separation membranes and / or heaters whose one end side is supported by the support plate. Separation membrane module.
  • At least a part of the processing unit has a tubular separation membrane, an end tube is connected to one end side of the tubular separation membrane, and the end tube is fixed to one surface side of the support plate.
  • An end cover is attached to the other surface side of the support plate, and an outflow chamber is formed between the support plate and the end cover, and the outflow chamber is formed through the support plate and the communication hole provided in the end pipe.
  • the first to nth (n is 4 or more) processing units are arranged at intervals from one end side to the other end side in the axial direction of the housing, and are 4N + 1th (n + 1) from the one end side.
  • N is an integer of 0 or 1 or more) and the 4 ⁇ N + 2nd processing units adjacent to it are approximately orthogonal to each other when projected onto a plane perpendicular to the axial direction of the housing, and the 4 ⁇ N + 3rd and it
  • the adjacent 4 ⁇ N + 4th processing units are substantially orthogonal to each other when projected onto a plane perpendicular to the axial direction of the housing, and the 4 ⁇ N + 1st and 4 ⁇ N + 2nd separation membrane units and 4
  • the N + 3rd and 4th / N + 4th processing units are any of [1] to [15] separation membrane modules that are oblique when projected onto a plane perpendicular to the axial direction of the housing.
  • the processing unit inserted into the housing has a length that crosses or is close to the diameter of the housing, and the number of processing units arranged is smaller than that of Patent Document 1. Is enough. Therefore, the separation membrane module can be easily manufactured, and the risk of fluid leakage from the connection portion between the processing unit and the insertion port is reduced.
  • the processing unit is provided with a heater, the fluid to be processed can be heated by the heater.
  • a separation membrane module structure is provided so that the fluid to be separated can contact the tubular separation membrane more uniformly.
  • the contact frequency between the membrane and the fluid can be improved, and the separation efficiency can be improved.
  • the fluid taken out from each processing unit can be efficiently guided to the collecting pipe, and the configuration of the separation membrane module can be simplified.
  • the above effect according to the present invention is particularly large when the separation membrane module is enlarged to a commercial scale.
  • the term "larger" as used herein means that the flow rate of the fluid to be treated is, for example, in the case of gas, the lower limit is 3 tons / hour, preferably 7 tons / hour, and the upper limit is 650 tons / hour, preferably 330 tons. / A scale that is like an hour. In the case of a liquid, the scale has a lower limit of 120 tons / hour, preferably 250 tons / hour, and an upper limit of 200,000 tons / hour, preferably 100,000 tons / hour.
  • FIG. 2a, 2b, 2c and 2d are cross-sectional views taken along line IIa-IIa, line IIb-IIb, line IIc-IIc and line IId-IId of FIG.
  • FIG. 4 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG. It is explanatory drawing of the plane view area of a processing unit. It is sectional drawing explaining the fixed structure of a tubular separation membrane.
  • the separation membrane module 1 of FIGS. 1 to 5 has a substantially cylindrical housing 2 whose vertical direction is the axis direction of the cylinder axis, and a separation membrane unit 10 as a plurality of processing units inserted into the housing 2.
  • the top and bottom surfaces of the housing 2 are end plate portions 2a and 2b, respectively.
  • a flat plate may be used instead of the end plate.
  • the bottom end plate portion 2b is provided with an inflow port 3 for the fluid to be processed, and the top end plate portion is provided with an outflow port 4 for a non-permeable fluid.
  • the module When the treatment method of the fluid to be treated is the vapor permeation method (VP) or gas separation, the module may be installed in any of a horizontal direction, a vertical direction, and an oblique direction in the axial direction of the housing 2. However, from the viewpoint of stability of module installation, it is preferable to install the module in the horizontal direction or the vertical direction.
  • VP vapor permeation method
  • gas separation the module may be installed in any of a horizontal direction, a vertical direction, and an oblique direction in the axial direction of the housing 2.
  • the fluid to be treated is a steam in which the fluid to be treated is sufficiently dispersed, and in the case of gas separation, the fluid to be treated is sufficiently dispersed. Therefore, the fluid to be processed may flow in parallel or perpendicular to the axial direction of the housing 2. Further, the inflow port 3 of the fluid to be processed may be installed in the direction perpendicular to the axial direction of the housing 2 or in the horizontal direction. It is preferable that the non-permeable fluid outlet 4 is installed on the side opposite to the fluid inlet 3 with the axis of the housing 2 interposed therebetween from the viewpoint of improving the processing efficiency. When the fluid to be processed flows in parallel to the axial direction of the housing 2, even if both the inflow port 3 of the fluid to be processed and the outflow port 4 of the impermeable fluid are installed on the axial center of the housing 2. Good.
  • the housing 2 When the treatment method of the fluid to be treated is the pervaporation method (PV), the housing 2 may be installed so that the axial direction is horizontal, vertical, or diagonal, but equipment is installed. From the viewpoint of stability, it is preferable to install so that the axial direction is the horizontal direction or the vertical direction.
  • PV pervaporation method
  • the inflow port 3 of the fluid to be processed may be installed on either the upper side or the lower side of the module with respect to the vertical direction. It is preferable to install the inflow port 3 under the module in order to prevent air bubbles from accumulating in the shell.
  • the inflow port 3 of the fluid to be processed may be installed in the horizontal direction with respect to the axial direction of the housing 2 or in the vertical direction.
  • the non-permeable fluid outlet 4 may be installed horizontally or vertically with respect to the axial direction of the housing 2, but is installed in the same direction as the fluid inlet 3 to be processed. It is preferable to do so. It is preferable that the non-permeable fluid outlet 4 is installed on the side opposite to the fluid inlet 3 with the axis of the housing 2 interposed therebetween from the viewpoint of improving the processing efficiency.
  • the inflow port 3 When installing the housing 2 in the horizontal direction, it is preferable to install the inflow port 3 on the lower side of the module with respect to the vertical direction in order to prevent air bubbles from accumulating in the shell.
  • the installation direction of the inflow port 3 of the fluid to be processed is perpendicular to the axial direction of the housing 2 in order to prevent air bubbles from accumulating in the shell. It is preferable to install it.
  • the non-permeable fluid outlet 4 is preferably installed in the same direction as the fluid inlet 3 to be treated. It is preferable that the non-permeable fluid outlet 4 is installed on the side opposite to the fluid inlet 3 with the axis of the housing 2 interposed therebetween from the viewpoint of improving the processing efficiency.
  • the inflow port 3 and the outflow port 4 are arranged so as to be the farthest positions from each other in the module.
  • the side peripheral surface of the housing 2 is provided with an insertion port 5 for the separation membrane unit 10 at intervals in the vertical direction.
  • a pedestal portion 6 for mounting the separation membrane unit 10 is provided on the outer peripheral edge portion of the insertion port 5.
  • the pedestal portion 6 goes around the insertion port 5.
  • the pedestal portion 6 is slightly raised in the radial direction from the outer peripheral surface of the housing 2.
  • the tip surface of the pedestal portion 6 in the radial direction is flat so that the outer peripheral edge portions of the support plate 11 described later can overlap.
  • the separation membrane unit 10 includes a support plate 11 on the base end side, a plurality of end tubes 12 standing up from one surface (inward surface) of the support plate 11, and a tubular separation membrane having one end side connected to the end tube 12. 13, an end plug 14 attached to the other end side of each tubular separation membrane 13 and sealing the other end side, an end plate 15 into which each end plug 14 is inserted and held, a support plate 11 and an end. It has a tie rod 16 that connects the plate 15 and an end cover 17 or the like that is covered on the other surface (outward surface) of the support plate 11.
  • the support plate 11 has a disk shape and has a plurality of permeation fluid passage holes 11a penetrating in the thickness direction.
  • the end pipe 12 is erected coaxially with the passage hole 11a.
  • a counterbore-shaped recess (reference numeral omitted) is provided in the passage hole 11a, the base end side of the end pipe 12 is inserted into the recess, and the end pipe 12 is fixed to the support plate 11 by welding.
  • the fixed structure of the end tube 12 is not limited to this.
  • a male screw may be provided on the base end side of the end pipe 12
  • a through hole having a female screw may be provided in the support plate 11
  • the end pipe 12 may be fixed by screwing each other.
  • a female screw may be provided on the end tube 12 side, and a male screw may be provided on the support plate 11.
  • the end tube 12 may be arranged on any side of the support plate 11, but since the end cover 17 can be opened to replace the film, the end tube 12 can be arranged from the space side surrounded by the support plate 11 and the end cover 17. It is preferable to have a structure in which the above is inserted. Further, the end tube 12 may or may not penetrate the support plate 11, but in order to effectively use the entire length of the membrane, the end tube 12 preferably penetrates the support plate 11. ..
  • through holes are provided in each of the support plate 11 of FIG. 9 and the holding plate 11f provided between the support plate 11 and the end cover 17 to form a tubular shape.
  • Examples thereof include a structure in which the separation membrane 13 is penetrated and the membrane is sealed with an O-ring 11 g.
  • the support plate and the holding plate are fixed by applying pressure by fixing means such as bolts.
  • fixing means such as bolts.
  • the end tube 12 is made of a tubular body having a tube hole (reference numeral omitted) penetrating in the direction of the tube axis core line.
  • the tip of the end tube 12 has a small diameter, and the proximal end side of the tubular separation membrane 13 is fitted externally.
  • the connection portion between the base end side of the tubular separation membrane 13 and the tip end side of the end tube 12 is sealed with an O-ring, a gasket, or the like.
  • Tubular separation from the end tube 12 by providing a heat-shrinkable tube that connects and covers from the base end side of the tubular separation membrane 13 to the tip end side of the end tube 12 instead of the O-ring or gasket, or together with the O-ring or gasket.
  • the connection portion with the film 13 may be sealed.
  • the end plug 14 is connected to the tip of the tubular separation membrane 13.
  • the end plug 14 has a columnar shape or a shape obtained by cutting a part of the columnar shape, and seals the tip of the tubular separation membrane 13.
  • a small diameter portion inserted into the tubular separation membrane 13 is provided at the base end of the end plug 14.
  • the end plug 14 and the tubular separation membrane 13 are sealed in the same manner as the connection portion between the end tube 12 and the tubular separation membrane 13.
  • a recess is provided from the tip surface of the end plug 14.
  • another pipe metal SUS connecting pipe
  • the base end side of the tie rod 16 is fixed to the support plate 11 by screwing or the like.
  • four tie rods 16 are arranged at equal intervals in the circumferential direction on the outer peripheral edge of the support plate 11, but the number of tie rods 16 is not limited to this.
  • the tip of each tie rod 16 is inserted into a rod insertion hole (reference numeral omitted) provided in the plate 15.
  • the plate 15 is fixedly supported by the tie rod 16 by the stopper 16a provided so as to sandwich the plate 15 and the nut 16b screwed to the tie rod 16.
  • the plate 15 has a disk shape slightly smaller in diameter than the insertion port 5, and has an opening 15a into which each end plug 14 is inserted.
  • the method of fixing the end plug 14 is not limited to fitting and insertion, and may be fixed to the plate 15 by any other method.
  • the end cover 17 has a substantially hemispherical shell shape in this embodiment, and its outer peripheral edge portion 17a is airtightly attached to the peripheral edge portion of the outward surface of the support plate 11 via a gasket, an O-ring, or the like. Between the end cover 17 and the support plate 11, there is a permeation fluid outflow chamber 18. The end cover 17 is provided with a permeation fluid outlet 17b.
  • the shape of the end cover 17 is not limited to the above.
  • the inside of the outflow chamber 18 communicates with each tubular separation membrane 13 via the passage hole 11a and the tube hole of the end pipe 12.
  • each separation membrane unit 10 is connected to the collecting pipe 22 via the connecting pipe 21.
  • the arrangement pitch in the axial direction (vertical vertical direction in this embodiment) of the housing 2 of the insertion port 5 provided on the side peripheral surface of the housing 2 is substantially the same.
  • each insertion port 5 and the separation membrane unit 10 inserted from each insertion port 5 are as follows. ..
  • the separation membrane unit 10 (10A) in the 4th N + 1th stage (N is an integer of 0 or 1 or more) from the top extends from the insertion port 5 on the 3 o'clock side toward 9 o'clock.
  • the 4 ⁇ N + 2nd stage separation membrane unit 10 (10B) extends from the insertion port 5 on the 12 o'clock side toward 6 o'clock.
  • the 4 ⁇ N + 3rd stage separation membrane unit 10 (10C) extends from the insertion port 5 on the 1:30 side toward 7:30.
  • the 4th N + 4th stage separation membrane unit 10 (10D) extends from the insertion port 5 on the 10:30 side toward 4:30.
  • the separation membrane unit 10 is inserted into each insertion port 5 in the radial direction of the housing 2, that is, in the direction of passing through the center of the housing 2 in the plan view of the housing 2.
  • the separation membrane unit 10 (10A) in the 4th N + 1st stage from the top extends in the 3 o'clock and 9 o'clock directions in a plan view
  • the separation membrane unit 10 (10B) immediately below the separation membrane unit 10 (10A) extends in the 3 o'clock and 9 o'clock directions.
  • the separation membrane unit 10 (10C) in the 4th N + 3rd stage from the top extends in the direction of 1:30 and 7:30, and the separation membrane unit 10 (10D) immediately below it extends at 10:30 and 4 It extends in the half-hour direction and is orthogonal in plan view.
  • the length L inside the housing (FIG. 8) is smaller than the inner diameter D of the housing 2 and is 1 of the inner diameter D. Greater than / 2 (ie, the radius of the housing 2).
  • the length L is preferably 50 to 97%, more preferably 55 to 93%, and even more preferably 65 to 85% of the inner diameter D.
  • the area of the cross-sectional area of the housing obtained by subtracting the cross-sectional area of the portion existing in the inner diameter D of the unit 10 from the area of the circle that can be calculated by the inner diameter D becomes the smallest, and the inside of the housing.
  • the porosity, which is the portion where the separation membrane does not exist, can be reduced.
  • the total length of the three (the length including the above-mentioned connecting pipe, if any) is preferably 50 to 150%, more preferably 60 to 120%, and 80 to 80% of the inner diameter D of the housing 2. 130% is more preferable, 90 to 125% is particularly preferable, and 105 to 110% is most preferable.
  • the total length of the tubular separation membrane 13 may extend within the tubular portion of the housing, or may extend to the pedestal portion 6. From the viewpoint of preventing the fluid to be treated from staying in the pedestal portion 6, the tubular separation membrane 13 preferably has the entire length extending in the tubular portion of the housing.
  • each separation membrane unit 10 has a long length substantially crossing the housing 2 in the radial direction.
  • the lower limit of the ratio of the diameter d of the support plate 11 to the inner diameter D of the housing 2 is preferably 10% or more, more preferably 30% or more, further preferably 40% or more, and particularly preferably 65% or more. , 80% or more is most preferable.
  • the upper limit of the ratio of the diameter d of the support plate 11 to the inner diameter D of the housing 2 is preferably 95% or less.
  • the housing cross-sectional area (planar viewing area) surrounded by the inner peripheral surface 2C of the housing 2 is calculated as ⁇ D 2/4.
  • the porosity inside the housing becomes sufficiently small, so that the fluid efficiently contacts the separation membrane unit 10 and the separation efficiency is improved.
  • the number of installation stages of the separation membrane unit 10 is 10, but the number of stages is not limited to this. Usually, it is about 2 to 28 steps, particularly preferably about 4 to 14 steps, but it is not limited to this.
  • three or more separation membrane units 10 may be arranged as a pair and two or more pairs of separation membrane units may be arranged as a set with the long axis of the separation membrane module of the present invention as the center of symmetry. At this time, it is preferable to arrange the separation membrane unit so as to have high symmetry from the viewpoint of contact efficiency. Further, the number of separation membrane units in each pair may be changed.
  • the separation membrane units When arranging these separation membrane units, the separation membrane units may be arranged in a spiral shape or may be arranged randomly. It is preferable to arrange the space in which the separation membrane unit does not exist so as not to communicate with each other as much as possible from the viewpoint of increasing the contact efficiency of the fluid to be treated and improving the separation efficiency.
  • Examples of the material of the end tube 12 and the end plug 14 include those that do not allow fluid to permeate, such as metal, ceramics, and resin, but are not limited thereto.
  • the material of the support plate 11 and the tie rod 14 is usually a metal material such as stainless steel, but is not particularly limited as long as it has heat resistance and supply under separation conditions and resistance to permeation components, and depending on the application, other materials such as a resin material may be used. The material can be changed.
  • the tubular separation membrane 13 may be formed only of the separation membrane, but preferably has a tubular porous support and a separation membrane formed on the outer peripheral surface of the porous support.
  • the shape of the separation membrane or the porous support-separation membrane composite having the porous support and the separation membrane is not particularly limited, but may be flat plate, tubular, cylindrical, columnar or prismatic. It may be a honeycomb shape or a monolith shape having a large number of holes extending in the longitudinal direction. In the case of a flat porous support-separation membrane composite, the separation membrane may be formed on either one side or both sides.
  • the separation membrane may be formed only on the outer surface or only the inner surface. It may be both an outer surface and an inner surface. It is preferable to form the separation membrane only on the outer surface from the viewpoint that it is easy to grasp the defect at the time of manufacturing and confirm the deterioration state after use.
  • the type of separation membrane is not particularly limited, but an inorganic separation membrane is preferable from the viewpoint of solvent resistance.
  • the organic separation membrane include polysulfone, polyimide, and polyamide.
  • the form of the organic separation membrane include a hollow fiber membrane and an organic membrane formed on a tubular ceramic porous support.
  • the inorganic separation membrane include a zeolite membrane, a silica membrane, a carbon membrane and the like, and among them, a zeolite membrane is preferably used.
  • silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, ittoria, silicon nitride, silicon carbide and the like can be used for both the inorganic separation membrane and the organic separation membrane.
  • examples thereof include ceramic sintered bodies and inorganic porous supports of metal sintered bodies.
  • an inorganic porous support containing at least one of alumina, silica and mullite is preferable.
  • the average pore diameter of the surface of the porous support is not particularly limited, but the pore diameter is preferably controlled, and is usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m. As described above, the range is usually 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • Zeolites are crystallized on the surface of the porous support to form a zeolite membrane.
  • the main zeolite constituting the zeolite membrane usually contains a zeolite having an oxygen 6-10 membered ring structure, and preferably contains a zeolite having an oxygen 6-8 membered ring structure, although it depends on the substance to be separated.
  • n of the zeolite having an oxygen n-membered ring indicates that the number of oxygen is the largest among the pores composed of oxygen and T element forming the zeolite skeleton. For example, when pores having a 12-membered oxygen ring and an 8-membered ring are present as in the MOR-type zeolite, it is regarded as a zeolite having a 12-membered oxygen ring.
  • a zeolite having an oxygen 6-10-membered ring structure AEI, AEL, AFG, ANA, BRE, CAS, CDO, CHA, DAC, DDR, DOH, EAB, EPI, ESV, EUO, FAR, FRA, FER, FAU, GIS, GIU, GOO, HEU, IMF, ITE, ITH, KFI, LEV, LIO, LOS, LTN, MAR, MEP, MER, MEL, MFI, MFS, MON, MSO, MTF, MTN, MTT, MWF, MWW, NAT, NES, NON, PAU, PHI, RHO, RRO, RTE, RTH, RUT, SGT, SOD, STF, STI, STT, TER, TOR, TON, TSC, TUN, UFI, VNI, VSV, There are WEI, YUG, etc.
  • the zeolite membrane may be a membrane made of zeolite alone or a membrane in which the zeolite powder is dispersed in a binder such as a polymer, or the zeolite is fixed in a film shape on various supports. It may be a zeolite membrane composite.
  • the zeolite membrane may contain a part of amorphous components and the like.
  • the thickness of the zeolite membrane is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.6 ⁇ m or more, and more preferably 1.0 ⁇ m or more. Further, it is usually 100 ⁇ m or less, preferably 60 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the present invention may use a tubular separation membrane having a separation membrane other than the zeolite membrane.
  • the outer diameter of the tubular separation membrane 13 is preferably 3 mm or more, more preferably 6 mm or more, further preferably 10 mm or more, preferably 20 mm or less, more preferably 18 mm or less, still more preferably 16 mm or less. If the outer diameter is too small, the strength of the tubular separation membrane may be insufficient and it may be easily broken, and if it is too large, the membrane area per module decreases.
  • the length of the portion of the tubular separation membrane 13 covered with the zeolite membrane is preferably 20 cm or more, preferably 200 cm or less.
  • a plurality of tubular separation membranes 13 may be arranged in the longitudinal direction to increase the total length. In that case, it is preferable to use a plurality of tubular separation membranes 13 connected to each other by a joint tube.
  • the joint tube may have, for example, a small-diameter portion inserted into the tubular separation membrane 13 on both end sides and a large-diameter portion at the center.
  • the length of the small diameter portion of the joint pipe is set to the end.
  • the length in the tubular separation membrane 13 of the tube 12 or the end plug 14 is preferably 2 to 3 times, more preferably 2 to 2.5 times, and further 2 to 2.25 times. preferable.
  • the outer diameter of the small diameter portion of the joint pipe is preferably substantially equal to the inner diameter of the tubular separation membrane 13 from the viewpoint of fitting with the tubular separation membrane 13 with the smallest possible gap.
  • the outer diameter of the large diameter portion of the joint pipe is preferably substantially equal to the outer diameter of the tubular separation membrane 13 from the viewpoint of avoiding concentration of load and from the viewpoint of covering with a heat-shrinkable tube described later with the gap as small as possible. ..
  • the tubular separation membrane and the joint tube may be sealed by using a heat-shrinkable tube, and a circumferential groove is formed in the outer peripheral portion of the small diameter portion of the joint tube. May be provided and an O-ring may be attached to seal between the tubular separation membrane 13 and the joint tube.
  • a heat-shrinkable tube is used, the large diameter portion of the joint tube is preferably about 3 to 5 cm in order to secure an area in contact with the heat-shrinkable tube.
  • the tubular separation membranes are usually arranged in an amount of 5 to 3000, particularly 50 to 2000, and the shortest distance between the tubular separation membranes is preferably 2 mm to 10 mm.
  • the size of the housing and the number of tubular separation membranes are appropriately changed depending on the amount of fluid to be treated.
  • the fluid to be treated is introduced into the housing 2 from the inflow port 3, and a part of the components of the fluid to be treated permeate through the tubular separation membrane 13 while flowing through the housing 2. It is taken out from the tubular separation membrane 13 to the collecting pipe 22 via the outflow chamber 18, the outlet 17b, and the connecting pipe 21. The fluid that has not permeated flows out of the separation membrane module 1 from the outlet 4.
  • the separation membrane unit 10 extends long in the diameter direction of the housing 2 from each insertion port 5, and is near the inner peripheral surface of the housing 2 on the opposite side of each insertion port 5. Has reached. Therefore, the number of insertion ports 5 provided in the housing 2 is smaller than that in Patent Document 1, and the separation membrane module 1 can be easily manufactured. Further, the risk of fluid leakage from the attachment portion of the separation membrane unit 10 to the insertion port 5 is also reduced.
  • the 4 ⁇ N + 1st stage and the 4 ⁇ N + 2nd stage separation membrane units 10A and 10B immediately below the 4 ⁇ N + 1st stage are orthogonal to each other in a plan view
  • the 4 ⁇ N + 3rd stage and the 4 ⁇ N + 4 immediately below the separation membrane unit 10A and 10B are orthogonal to each other.
  • the separation membrane units 10C and 10D of the stage are orthogonal to each other in a plan view.
  • the separation membrane units 10A and 10B of the 4 ⁇ N + 1st stage and the 4 ⁇ N + 2nd stage, the separation membrane units 10C and 10D of the 4 ⁇ N + 3rd stage and the 4 ⁇ N + 4th stage are approximately 45 ° in plan view.
  • the fluid to be treated is dispersed by the separation membrane units 10A to 10D, becomes in a turbulent state, and comes into contact with the tubular separation membrane 13 of each separation membrane unit, so that the membrane separation treatment is efficiently performed.
  • each separation membrane unit 10 joins the collecting pipe 22 and is taken out.
  • the permeated fluid outlet 17a of each separation membrane unit 10 is located only in a range of half a circumference or less (a range of a central angle of 135 ° in FIG. 3) in the plan view of the housing 2. Therefore, the length of the connecting pipe 21 connecting each outlet 17a and the collecting pipe 22 can be shortened, and the pipe layout is simplified.
  • two or more collecting pipes 22 are provided and the connecting pipes 21 to be collected are collected in the longitudinal direction of the housing (FIG. 1).
  • the range of one connecting pipe gathered in one collective pipe 22 is within the above-mentioned "half circumference or less", but it does not have to be within half a circumference as a whole.
  • each separation membrane unit 10 is shorter than the inner diameter of the housing 2, and each separation membrane unit 10 is supported by the housing 2 in a cantilever structure.
  • the cantilever structure in this way eliminates the need for a holding structure on the free end side of the separation membrane unit 10, so that the number of parts can be reduced and the cost can be reduced.
  • the separation membrane unit may be supported by the housing 2 in a double-sided structure. That is, a support hole is provided in the housing so as to face each insertion port 5 in the diameter direction of the housing 2, the separation membrane unit is inserted into the housing from the insertion port, and the tip end side of the separation membrane unit is passed through the support hole. In this way, the tip end side of the separation membrane unit may be fixed to form a double-sided structure.
  • the double-sided structure it is possible to reduce the load due to the weight of the tubular separation membrane 13 and the load due to the fluid to be treated.
  • the length of the tubular separation membrane 13 can be increased, the porosity per cross-sectional area of the housing 2 can be reduced, and the separation efficiency of the fluid to be treated can be improved. If a fixing structure for fixing the tubular separation membrane 13 to the support plate 11 by the above-mentioned O-ring is applied to the double-sided structure, the membrane can be replaced from either one end or the other end of the membrane for maintenance. Improves sex.
  • the separation membrane units 10A and 10B and the separation membrane units 10C and 10D are orthogonal to each other in the plan view of the housing 2, but the angles are not only orthogonal to each other but also close to a right angle (for example, 90). It may intersect at ° ⁇ 10 °, especially 90 ° ⁇ 5 °). Further, the intersecting angle between the separation membrane units 10A and 10B and the separation membrane units 10C and 10D is not limited to 45 °, and even if they intersect at 45 ° ⁇ 10 °, particularly 45 ° ⁇ 5 °. Good.
  • the directivity direction of the separation membrane unit may be other than shown.
  • the directivity direction of the separation membrane unit may gradually change in the clockwise direction or the counterclockwise direction toward the lower stage side.
  • the directivity directions of all the separation membrane units may be the same.
  • the separation membrane unit 10 (10D) from the 4th N + 1st stage (10A) from the top to the 4th N + 4th stage from the top may be arranged in a spiral shape.
  • the separation membrane unit 10 efficiently contacts the fluid to be treated, and the separation efficiency can be improved, which is preferable.
  • a baffle may be provided in which the plate surface is in the direction intersecting with the longitudinal direction of the tubular separation membrane 13 (for example, in the orthogonal direction).
  • An example thereof is shown in FIGS. 6 and 7.
  • the baffle 19 has a shape in which a part of a circle is cut out in the chord direction, and has an opening 19a through which the tubular separation membrane 13 is inserted.
  • FIGS. 6 and 7 show four baffles. 6 and 7, but are not limited thereto.
  • Other configurations of FIGS. 6 and 7 are the same as those of FIGS. 4 and 5, and the same reference numerals indicate the same parts.
  • the separation membrane unit 10 having only the tubular separation membrane is used as the treatment unit, but a plurality of tubular separation membranes (or tubular separation membrane 13, end) are used as some or all of the treatment units.
  • a rod-shaped connecting body composed of the tube 12 and the end plug 14) may be replaced with a heat exchanger or a heater.
  • the temperature of the fluid to be treated drops due to osmotic vaporization by pervaporation.
  • the permeation efficiency can be increased.
  • a heat treatment unit dedicated to heat treatment having only a heater may be installed as a part of the processing unit.
  • the treatment unit other than the heat treatment unit dedicated to heat treatment may have only a tubular separation membrane, or may have both a tubular separation membrane and a heater.
  • the heater may be an electric heater, a tube heater to which a hot medium such as steam or hot water is supplied, or the like.
  • the shape of the tube and heater of the heat exchanger is preferably U-shaped.
  • any combination of structures described in TEMA standard 8th Edition SECTION 1 FIGURE N-1.2 may be used, or a spiral shape may be used. ..
  • the shape of the tube and heater of the heat exchanger is U from the viewpoint of coexisting the tubular separation membrane 13 and the heater. It is preferably a mold. It is preferable to divide the surface of the processing unit that supports the tubular separation membrane 13 and the heater into two equal parts, install the tubular separation membrane 13 on one side, and install the heater on the other side. Further, from the viewpoint of improving the heating efficiency of the fluid to be treated, it is preferable to install the heat exchanger or the heater so that the area in contact with the fluid to be treated of the module is the largest.
  • any combination of the structures described in TEMA standard 8th Edition SECTION 1 FIGURE N-1.2 is used. You may.
  • the inlet and outlet of the fluid in the heat exchanger may be provided at one end in the axial direction of the processing unit, and the inlet and outlet may be provided at one end and the other end, respectively. In the latter case, when the processing unit is projected on a plane parallel to the axial direction, it is preferable to design the inlet and the outlet to exist in opposite directions with the axial center of the processing unit in between, from the viewpoint of heating efficiency. ..
  • a heat treatment unit dedicated to heat treatment and a separation treatment unit dedicated to separation treatment provided with only a tubular separation membrane may be installed.
  • the heat treatment unit in the membrane separation unit closest to the Nth membrane separation unit, it is preferable to arrange the heat treatment unit so that the temperature difference ⁇ t on the downstream side of the flowing fluid becomes small.
  • ⁇ t is preferably 1 to 60 ° C., more preferably 1 to 30 ° C., and even more preferably 2 to 20 ° C.
  • the heat treatment unit and the separation treatment unit may be alternately arranged in the axial direction of the housing, and one heat treatment unit may be arranged for each of the plurality of separation treatment units.
  • the heat treatment unit and the separation treatment unit can be easily maintained and can be manufactured at a lower cost than the treatment unit provided with both the heater and the tubular separation membrane.
  • the fluid to be treated to be separated or concentrated is not particularly limited as long as it is a mixture of a gas or a liquid composed of a plurality of components that can be separated or concentrated by the separation membrane, and any mixture. However, it is preferably used for a mixture of gases.
  • a separation or concentration method called a pervaporation method (osmotic vaporization method) or a vapor permeation method (steam permeation method) can be used. Since the pervaporation method is a separation or concentration method in which a mixture of liquids is directly introduced into a separation membrane, a process including separation or concentration can be simplified.
  • the separation membrane module of the present invention has a small decrease in separation efficiency due to drift flow, and since the fluid to be treated is in uniform contact with the separation membrane 13, vapor is used from the viewpoint of regardless of the installation direction or the direction of the fluid of the module of the present invention. It is more preferable to use it in the permeation method.
  • the mixture to be separated or concentrated is a mixture of gas or liquid composed of a plurality of components
  • the mixture may be, for example, carbon dioxide, oxygen, nitrogen, hydrogen, methane, ethane, ethylene, propane. , Propylene, normal butane, isobutane, 1-butene, 2-butene, isobutene, sulfur hexafluoride, helium, carbon monoxide, nitrogen monoxide, etc.
  • aromatic compounds such as toluene, lower alcohols such as methanol, ethanol, isopropyl alcohol, butanol, C5 or lower ketones such as acetone, isobutyl ketone and methyl isobutyl ketone, lower glycols such as dimethyl glycol, N
  • aromatic compounds such as toluene
  • lower alcohols such as methanol, ethanol, isopropyl alcohol
  • butanol C5 or lower ketones
  • acetone isobutyl ketone and methyl isobutyl ketone
  • lower glycols such as dimethyl glycol
  • N examples include a mixture of liquids in a standard state containing at least one component selected from -methylpyrrolidone, formic acid, acetic acid, butyric acid, propionic acid, sulfuric acid, 3-methyl-1-butanol, DMSO, DMS, water and the like. ..
  • the gas component or liquid component having a high permeence is separated by passing through the separation membrane, and the gas component or the liquid component having a low permeence is concentrated on the supply gas side.
  • SATP SATP
  • the present invention may have aspects other than the above.
  • it is possible to control the flow of fluid by installing a baffle plate or a dispersion plate in the housing 2.
  • a baffle plate facing the inflow port 3 or the outflow port 4 may be installed.
  • the flow velocity of the fluid to be treated is 0.1 or more and 3.0 m / s or less in the case of the gas phase including the vapor phase, particularly preferably 0.3 or more and 1.5 m / s or less in the case of the liquid phase. It is 005 m / s or more and 1.0 m / s or less, particularly preferably 0.01 or more and 0.5 m / s or less, but is not limited thereto.
  • the flow velocity can be calculated by calculating the cross-sectional area from the inner diameter of the housing 2 and dividing the flow rate of the processing fluid by the value of this cross-sectional area.

Abstract

Provided are a separation membrane module with which it is possible to increase the packing density of tubular separation membranes and to reduce the number of separation membrane units compared to conventional products, and a separation method using this separation membrane module. Separation membrane units 10 are provided in multiple stages in a cylindrical housing 2. In a plan view of the housing 2, separation membrane units 10A in first, fifth, and ninth stages are inserted from a 3 o'clock side, separation membrane units 10B in second, sixth, and tenth stages are inserted from a 12 o'clock side, separation membrane units 10C in third and seventh stages are inserted from a half past 1 o'clock side, and separation membrane units 10D in fourth and eighth stages are inserted from a half past 10 o'clock side.

Description

分離膜モジュール及び分離方法Separation membrane module and separation method
 本発明は溶液や混合気体等の流体から一部の成分を分離するために用いられる分離膜モジュールと、この分離膜モジュールを用いた分離方法に関する。 The present invention relates to a separation membrane module used for separating a part of components from a fluid such as a solution or a mixed gas, and a separation method using this separation membrane module.
 溶液又は混合気体中の成分を分離するための機器として管状分離膜を有する分離膜モジュールが知られている。この管状分離膜は、管状の多孔質セラミック支持体と、該支持体の外周面に設けられたゼオライト等からなる多孔質の分離膜とを有する。溶液や混合気体等の流体から特定の成分を分離するためには、溶液の流体を管状分離膜の一方(外面)に接触させて、もう一方(内面)を減圧することにより、特定の成分を気化させ分離する方法や、溶液を気化させて気体状態で分離膜に接触させて、非接触面側を減圧して特定成分を分離する方法、加圧状態の混合気体を分離膜に接触させて特定の成分を分離する方法などが知られている。 A separation membrane module having a tubular separation membrane is known as a device for separating components in a solution or a mixed gas. This tubular separation membrane has a tubular porous ceramic support and a porous separation membrane made of zeolite or the like provided on the outer peripheral surface of the support. In order to separate a specific component from a fluid such as a solution or a mixed gas, the fluid of the solution is brought into contact with one (outer surface) of the tubular separation membrane, and the other (inner surface) is depressurized to release the specific component. A method of vaporizing and separating, a method of vaporizing a solution and bringing it into contact with a separation membrane in a gaseous state, depressurizing the non-contact surface side to separate a specific component, or bringing a pressurized mixed gas into contact with the separation membrane. A method of separating a specific component is known.
 複数の管状分離膜がハウジング内に設置された多管式分離膜モジュールとして、特許文献1には、円筒状の容器側面から分離膜ユニットを求心方向に差し込んだものが記載されている。 As a multi-tube separation membrane module in which a plurality of tubular separation membranes are installed in a housing, Patent Document 1 describes a module in which a separation membrane unit is inserted in the centripetal direction from the side surface of a cylindrical container.
 特許文献1では、分離膜ユニットの差し込み方向(容器求心方向)の長さは、容器の半径程度又はそれ以下である(特許文献1の図4、5、7)。 In Patent Document 1, the length of the separation membrane unit in the insertion direction (container centripetal direction) is about the radius of the container or less (FIGS. 4, 5, and 7 of Patent Document 1).
特開2017-56369号公報Japanese Unexamined Patent Publication No. 2017-56369
 特許文献1では、管状分離膜の充填密度を高くするには、特許文献1の図4~7のように多数の分離膜ユニットを設置する必要がある。例えば、特許文献1の図4~7では、円筒状容器を、容器軸心線方向が鉛直方向となるように配置し、分離膜ユニットを上下多段に、且つ1つの段では8個の分離膜ユニットを求心方向に設けるようにしている。このように多数の分離膜ユニットを設置すると、分離膜モジュールの組み立てに著しく手間がかかる。また、各分離膜ユニットと容器とのシール部分から被分離流体がリークするリスクも、分離膜ユニットの数に比例して大きくなる。 In Patent Document 1, in order to increase the packing density of the tubular separation membrane, it is necessary to install a large number of separation membrane units as shown in FIGS. 4 to 7 of Patent Document 1. For example, in FIGS. 4 to 7 of Patent Document 1, cylindrical containers are arranged so that the direction of the container axis is vertical, and the separation membrane units are arranged in multiple upper and lower stages, and eight separation membranes in one stage. The unit is provided in the centripetal direction. When a large number of separation membrane units are installed in this way, it takes a lot of time and effort to assemble the separation membrane module. In addition, the risk of the fluid to be separated leaking from the sealing portion between each separation membrane unit and the container also increases in proportion to the number of separation membrane units.
 本発明は、管状分離膜の充填密度を高くすることができ、しかも処理ユニットの数を上記特許文献1よりも少なくすることができる分離膜モジュールと、この分離膜モジュールを用いた分離方法を提供することを目的とする。 The present invention provides a separation membrane module capable of increasing the packing density of a tubular separation membrane and reducing the number of processing units as compared with Patent Document 1, and a separation method using the separation membrane module. The purpose is to do.
 本発明の要旨は次の通りである。 The gist of the present invention is as follows.
[1] 筒状のハウジングと、該ハウジングの側周面に設けられた差込口から該ハウジング内に差し込まれた処理ユニットとを有する分離膜モジュールであって、該処理ユニットの差し込み方向の先端側は、該差込口と反対側のハウジング側周面又はその近傍に達していることを特徴とする分離膜モジュール。 [1] A separation membrane module having a tubular housing and a processing unit inserted into the housing from an insertion port provided on a side peripheral surface of the housing, and the tip of the processing unit in the insertion direction. A separation membrane module characterized in that the side reaches or near the peripheral surface on the housing side opposite to the insertion port.
[2] 処理ユニットの差し込み方向の先端側は、該差込口と反対側のハウジング内周面近傍に位置していることを特徴とする[1]の分離膜モジュール。 [2] The separation membrane module according to [1], wherein the tip side of the processing unit in the insertion direction is located near the inner peripheral surface of the housing on the opposite side of the insertion port.
[3] 前記ハウジングの側周面には、前記差込口と反対側に支持穴が設けられており、前記処理ユニットの先端側が該支持穴に差し込まれて保持されていることを特徴とする[1]の分離膜モジュール。 [3] A support hole is provided on the side peripheral surface of the housing on the side opposite to the insertion port, and the tip end side of the processing unit is inserted into the support hole and held. The separation membrane module of [1].
[4] 前記差込口が、該軸心方向に間隔をおいて複数個設けられており、前記処理ユニットは、管状分離膜及びヒータの少なくとも一方を有する[1]~[3]のいずれかの分離膜モジュール。 [4] Any one of [1] to [3], wherein a plurality of the insertion ports are provided at intervals in the axial direction, and the processing unit has at least one of a tubular separation membrane and a heater. Separation membrane module.
[5] 前記差込口が、該軸心方向に間隔をおいて複数個設けられており、前記処理ユニットの少なくとも一部は、前記管状分離膜を有する[4]の分離膜モジュール。 [5] The separation membrane module of [4], wherein a plurality of the insertion ports are provided at intervals in the axial direction, and at least a part of the processing unit has the tubular separation membrane.
[6] 前記処理ユニットの少なくとも一部は、前記ヒータを有する[4]又は[5]の分離膜モジュール。 [6] At least a part of the processing unit is the separation membrane module of [4] or [5] having the heater.
[7] 前記処理ユニットの少なくとも一部は、管状分離膜及びヒータを有する[4]~[6]のいずれかの分離膜モジュール。 [7] The separation membrane module according to any one of [4] to [6], wherein at least a part of the processing unit has a tubular separation membrane and a heater.
[8] 前記処理ユニットの一部は、管状分離膜のみを有する[4]~[6]のいずれかの分離膜モジュール。 [8] The separation membrane module according to any one of [4] to [6], wherein a part of the processing unit has only a tubular separation membrane.
[9] 前記処理ユニットの一部は、ヒータのみ有する[4]~[6]のいずれかの分離膜モジュール。 [9] The separation membrane module according to any one of [4] to [6], wherein a part of the processing unit has only a heater.
[10] 前記処理ユニットは、前記差し込み方向と垂直な支持板と、一端側が該支持板に支持された複数本の管状分離膜及び/またはヒータとを有する[1]~[9]のいずれかの分離膜モジュール。 [10] The processing unit is any one of [1] to [9] having a support plate perpendicular to the insertion direction and a plurality of tubular separation membranes and / or heaters whose one end side is supported by the support plate. Separation membrane module.
[11] 前記処理ユニットの少なくとも一部は管状分離膜を有しており、該管状分離膜の一端側にエンド管が接続されており、該エンド管が前記支持板の一面側に固定されており、該支持板の他面側にエンドカバーが装着され、該支持板と該エンドカバーとの間に流出室が形成されており、該支持板及び該エンド管に設けられた連通孔を介して前記管状分離膜内と該流出室内とが連通している[10]の分離膜モジュール。 [11] At least a part of the processing unit has a tubular separation membrane, an end tube is connected to one end side of the tubular separation membrane, and the end tube is fixed to one surface side of the support plate. An end cover is attached to the other surface side of the support plate, and an outflow chamber is formed between the support plate and the end cover, and the outflow chamber is formed through the support plate and the communication hole provided in the end pipe. [10] The separation membrane module in which the inside of the tubular separation membrane and the outflow chamber communicate with each other.
[12] 前記ハウジングの外周面には、前記差込口を取り巻く台座部が設けられており、前記支持板の外周縁部が該台座部に固定されている[11]の分離膜モジュール。 [12] The separation membrane module of [11], wherein a pedestal portion surrounding the insertion port is provided on the outer peripheral surface of the housing, and the outer peripheral edge portion of the support plate is fixed to the pedestal portion.
[13] 各処理ユニットの前記流出室は、それぞれ連絡配管を介して集合配管に連通している[11]又は[12]の分離膜モジュール。 [13] The separation membrane module of [11] or [12] in which the outflow chamber of each processing unit communicates with the collecting pipe via a connecting pipe.
[14] 前記ハウジングの軸心線方向と垂直な面に投影したときに、すべての処理ユニットの前記エンドカバーが該ハウジングの外周面の一半側に位置する[11]ないし[13]のいずれかの分離膜モジュール。 [14] Any of [11] to [13], in which the end covers of all the processing units are located on one half side of the outer peripheral surface of the housing when projected onto a surface perpendicular to the axial direction of the housing. Separation membrane module.
[15] 前記管状分離膜はゼオライト膜を有する[4]~[14]のいずれかの分離膜モジュール。 [15] The separation membrane module according to any one of [4] to [14], wherein the tubular separation membrane has a zeolite membrane.
[16] 前記ハウジングの軸心方向の一端側から他端側にかけて第1ないし第n(nは4以上)の処理ユニットが間隔をおいて配列されており、該一端側から4・N+1番目(Nは0又は1以上の整数)とそれに隣接する4・N+2番目の処理ユニット同士は、該ハウジングの軸心方向と垂直な面に投影したときに略直交しており、4・N+3番目とそれに隣接する4・N+4番目の処理ユニット同士は、該ハウジングの軸心線方向と垂直な面に投影したときに略直交しており、4・N+1番目及び4・N+2番目の分離膜ユニットと、4・N+3番目及び4・N+4番目の処理ユニットとは、該ハウジングの軸心方向と垂直な面に投影したときに斜交している[1]ないし[15]のいずれかの分離膜モジュール。 [16] The first to nth (n is 4 or more) processing units are arranged at intervals from one end side to the other end side in the axial direction of the housing, and are 4N + 1th (n + 1) from the one end side. N is an integer of 0 or 1 or more) and the 4 ・ N + 2nd processing units adjacent to it are approximately orthogonal to each other when projected onto a plane perpendicular to the axial direction of the housing, and the 4 ・ N + 3rd and it The adjacent 4 ・ N + 4th processing units are substantially orthogonal to each other when projected onto a plane perpendicular to the axial direction of the housing, and the 4 ・ N + 1st and 4 ・ N + 2nd separation membrane units and 4 The N + 3rd and 4th / N + 4th processing units are any of [1] to [15] separation membrane modules that are oblique when projected onto a plane perpendicular to the axial direction of the housing.
[17] 前記斜交角度が45゜±10゜である[16]の分離膜モジュール。 [17] The separation membrane module of [16] having the oblique angle of 45 ° ± 10 °.
[18] 1個の処理ユニットをハウジングの軸心と垂直な面に投影したときのハウジング内周における前記処理ユニットの面積は、ハウジングの断面積の10~95%である[1]~[17]のいずれかの分離膜モジュール。 [18] The area of the processing unit on the inner circumference of the housing when one processing unit is projected onto a plane perpendicular to the axis of the housing is 10 to 95% of the cross-sectional area of the housing [1] to [17]. ] Any separation membrane module.
[19] [1]~[18]のいずれかに記載の分離膜モジュールを用いて、パーベーパレーション法またはベーパーパーミエーション法により、混合流体から物質の分離を行う分離方法。 [19] A separation method for separating a substance from a mixed fluid by a pervaporation method or a vapor permeation method using the separation membrane module according to any one of [1] to [18].
 本発明の分離膜モジュールでは、ハウジングに差し込まれた処理ユニットが、ハウジングを直径方向に横断するか、又はそれに近い長さを有しており、処理ユニットの配置本数が上記特許文献1よりも少数で足りる。そのため、分離膜モジュールの製作が容易であり、また処理ユニットと差込口との接続部からの流体のリークのおそれも軽減される。 In the separation membrane module of the present invention, the processing unit inserted into the housing has a length that crosses or is close to the diameter of the housing, and the number of processing units arranged is smaller than that of Patent Document 1. Is enough. Therefore, the separation membrane module can be easily manufactured, and the risk of fluid leakage from the connection portion between the processing unit and the insertion port is reduced.
 本発明の一態様によると、処理ユニットがヒータを備えているので、被処理流体をヒータで加熱することができる。 According to one aspect of the present invention, since the processing unit is provided with a heater, the fluid to be processed can be heated by the heater.
 本発明の一態様によると、被分離流体がより均一に管状分離膜に接触できるような分離膜モジュール構造が提供される。 According to one aspect of the present invention, a separation membrane module structure is provided so that the fluid to be separated can contact the tubular separation membrane more uniformly.
 本発明の一態様によると、隣接する処理ユニットを交差方向に配設することにより、膜と流体の接触頻度を向上させ、分離効率を向上させることができる。 According to one aspect of the present invention, by arranging adjacent processing units in the intersecting direction, the contact frequency between the membrane and the fluid can be improved, and the separation efficiency can be improved.
 本発明の一態様によると、各処理ユニットから取り出された流体を効率よく集合配管に導くことができ、また分離膜モジュールの構成の単純化を図ることができる。 According to one aspect of the present invention, the fluid taken out from each processing unit can be efficiently guided to the collecting pipe, and the configuration of the separation membrane module can be simplified.
 本発明による上記効果は、分離膜モジュールが商業的なスケールに大型化された場合に特に大きい。ここでいう「大型化」とは被処理流体の流量が、例えば気体の場合は下限値が3トン/時、好ましくは7トン/時であり、上限値が650トン/時、好ましくは330トン/時であるようなスケールをいう。また、液体の場合は下限値が120トン/時、好ましくは250トン/時、上限値が20万トン/時、好ましくは10万トン/時であるようなスケールをいう。 The above effect according to the present invention is particularly large when the separation membrane module is enlarged to a commercial scale. The term "larger" as used herein means that the flow rate of the fluid to be treated is, for example, in the case of gas, the lower limit is 3 tons / hour, preferably 7 tons / hour, and the upper limit is 650 tons / hour, preferably 330 tons. / A scale that is like an hour. In the case of a liquid, the scale has a lower limit of 120 tons / hour, preferably 250 tons / hour, and an upper limit of 200,000 tons / hour, preferably 100,000 tons / hour.
実施の形態に係る分離膜モジュールの透視側面図である。It is a perspective side view of the separation membrane module which concerns on embodiment. 図2a,2b,2c及び2dは図1のIIa-IIa線、IIb-IIb線、IIc-IIc線及びIId-IId線断面図である。2a, 2b, 2c and 2d are cross-sectional views taken along line IIa-IIa, line IIb-IIb, line IIc-IIc and line IId-IId of FIG. 実施の形態に係る分離膜モジュールの平面図である。It is a top view of the separation membrane module which concerns on embodiment. 分離膜ユニットの長手方向の断面図である。It is sectional drawing in the longitudinal direction of a separation membrane unit. 図4のV-V線断面図である。FIG. 4 is a sectional view taken along line VV of FIG. 分離膜ユニットの別例を示す断面図である。It is sectional drawing which shows another example of the separation membrane unit. 図6のVII-VII線断面図である。FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG. 処理ユニットの平面視面積の説明図である。It is explanatory drawing of the plane view area of a processing unit. 管状分離膜の固定構造を説明する断面図である。It is sectional drawing explaining the fixed structure of a tubular separation membrane.
 図1~5を参照して、本発明の実施の形態に係る分離膜モジュールの一例について説明する。 An example of the separation membrane module according to the embodiment of the present invention will be described with reference to FIGS. 1 to 5.
 図1~5の分離膜モジュール1は、筒軸心線方向を鉛直方向とした略円筒形状のハウジング2と、該ハウジング2に差し込まれた複数の処理ユニットとしての分離膜ユニット10とを有する。 The separation membrane module 1 of FIGS. 1 to 5 has a substantially cylindrical housing 2 whose vertical direction is the axis direction of the cylinder axis, and a separation membrane unit 10 as a plurality of processing units inserted into the housing 2.
 ハウジング2の天面及び底面はそれぞれ鏡板部2a,2bとなっている。鏡板の代わりに平板を用いても良い。平板の場合、板厚が厚くなるとコストが高くなるため、鏡板を用いることが好ましい。 The top and bottom surfaces of the housing 2 are end plate portions 2a and 2b, respectively. A flat plate may be used instead of the end plate. In the case of a flat plate, it is preferable to use a mirror plate because the cost increases as the plate thickness increases.
 底部の鏡板部2bには被処理流体の流入口3が設けられ、天面の鏡板部には非透過流体の流出口4が設けられている。 The bottom end plate portion 2b is provided with an inflow port 3 for the fluid to be processed, and the top end plate portion is provided with an outflow port 4 for a non-permeable fluid.
 被処理流体の処理方法がベーパーパーミエーション法(VP)またはガス分離の場合、モジュールを設置方向は、ハウジング2の軸心方向が水平方向、鉛直方向、斜め方向のいずれとなるようにしてもよいが、モジュールの設置の安定性から、水平方向または鉛直方向に設置することが好ましい。 When the treatment method of the fluid to be treated is the vapor permeation method (VP) or gas separation, the module may be installed in any of a horizontal direction, a vertical direction, and an oblique direction in the axial direction of the housing 2. However, from the viewpoint of stability of module installation, it is preferable to install the module in the horizontal direction or the vertical direction.
 VPの場合は、被処理流体が十分に分散された蒸気となっており、ガス分離の場合は、被処理流体が十分に分散している。そのため、ハウジング2の軸心方向に対して、被処理流体を平行に流入させてもよく、垂直に流入させてもよい。また、被処理流体の流入口3は、ハウジング2の軸心方向に対して、垂直方向に設置しても、水平方向に設置してもよい。非透過流体の流出口4は、ハウジング2の軸心を挟んで被処理流体の流入口3と反対側に設置することが、処理効率を向上させる観点で好ましい。被処理流体をハウジング2の軸心方向に対して、平行に流入させる場合、被処理流体の流入口3と非透過流体の流出口4の両者を、ハウジング2の軸心上に設置してもよい。 In the case of VP, the fluid to be treated is a steam in which the fluid to be treated is sufficiently dispersed, and in the case of gas separation, the fluid to be treated is sufficiently dispersed. Therefore, the fluid to be processed may flow in parallel or perpendicular to the axial direction of the housing 2. Further, the inflow port 3 of the fluid to be processed may be installed in the direction perpendicular to the axial direction of the housing 2 or in the horizontal direction. It is preferable that the non-permeable fluid outlet 4 is installed on the side opposite to the fluid inlet 3 with the axis of the housing 2 interposed therebetween from the viewpoint of improving the processing efficiency. When the fluid to be processed flows in parallel to the axial direction of the housing 2, even if both the inflow port 3 of the fluid to be processed and the outflow port 4 of the impermeable fluid are installed on the axial center of the housing 2. Good.
 被処理流体の処理方法がパーベーパレーション法(PV)の場合は、ハウジング2を、軸心方向が水平方向、鉛直方向、斜め方向のいずれとなるように設置してもよいが、設備の設置の安定性から、軸心方向が水平方向または鉛直方向になるよう設置することが好ましい。 When the treatment method of the fluid to be treated is the pervaporation method (PV), the housing 2 may be installed so that the axial direction is horizontal, vertical, or diagonal, but equipment is installed. From the viewpoint of stability, it is preferable to install so that the axial direction is the horizontal direction or the vertical direction.
 ハウジング2を鉛直方向に設置する場合、被処理流体の流入口3は、鉛直方向に対してモジュールの上側または下側のいずれに設置しても良い。シェル内に気泡だまりができないようにするため、流入口3をモジュールの下側に設置することが好ましい。 When the housing 2 is installed in the vertical direction, the inflow port 3 of the fluid to be processed may be installed on either the upper side or the lower side of the module with respect to the vertical direction. It is preferable to install the inflow port 3 under the module in order to prevent air bubbles from accumulating in the shell.
 被処理流体の流入口3の設置方向は、ハウジング2の軸心方向に対して水平方向に設置しても、垂直方向に対して設置してもよい。非透過流体の流出口4も、ハウジング2の軸心方向に対して水平方向に設置しても、垂直方向に対して設置してもよいが、被処理流体の流入口3と同方向に設置することが好ましい。非透過流体の流出口4は、ハウジング2の軸心を挟んで被処理流体の流入口3と反対側に設置することが、処理効率を向上させる観点で好ましい。被処理流体をハウジング2の軸心方向に対して、平行に流入させる場合、被処理流体の流入口3と非透過流体の流出口4の両者を、ハウジング2の軸心上に設置してもよい。 The inflow port 3 of the fluid to be processed may be installed in the horizontal direction with respect to the axial direction of the housing 2 or in the vertical direction. The non-permeable fluid outlet 4 may be installed horizontally or vertically with respect to the axial direction of the housing 2, but is installed in the same direction as the fluid inlet 3 to be processed. It is preferable to do so. It is preferable that the non-permeable fluid outlet 4 is installed on the side opposite to the fluid inlet 3 with the axis of the housing 2 interposed therebetween from the viewpoint of improving the processing efficiency. When the fluid to be processed flows in parallel to the axial direction of the housing 2, even if both the inflow port 3 of the fluid to be processed and the outflow port 4 of the impermeable fluid are installed on the axial center of the housing 2. Good.
 ハウジング2の軸心方向を水平方向に設置する場合、シェル内に気泡だまりができないようにするため、鉛直方向に対し、流入口3をモジュールの下側に設置することが好ましい。 When installing the housing 2 in the horizontal direction, it is preferable to install the inflow port 3 on the lower side of the module with respect to the vertical direction in order to prevent air bubbles from accumulating in the shell.
 ハウジング2の軸心方向を水平方向に設置する場合、被処理流体の流入口3の設置方向は、シェル内に気泡だまりができないようにするため、ハウジング2の軸心方向に対して垂直方向に対して設置することが好ましい。非透過流体の流出口4は、被処理流体の流入口3と同方向に設置することが好ましい。非透過流体の流出口4は、ハウジング2の軸心を挟んで被処理流体の流入口3と反対側に設置することが、処理効率を向上させる観点で好ましい。 When the axial direction of the housing 2 is installed in the horizontal direction, the installation direction of the inflow port 3 of the fluid to be processed is perpendicular to the axial direction of the housing 2 in order to prevent air bubbles from accumulating in the shell. It is preferable to install it. The non-permeable fluid outlet 4 is preferably installed in the same direction as the fluid inlet 3 to be treated. It is preferable that the non-permeable fluid outlet 4 is installed on the side opposite to the fluid inlet 3 with the axis of the housing 2 interposed therebetween from the viewpoint of improving the processing efficiency.
 また、上記のいずれの場合であっても、流入口3と流出口4が、モジュール中で互いに最も遠い位置になるよう配置することが好ましい。 Further, in any of the above cases, it is preferable that the inflow port 3 and the outflow port 4 are arranged so as to be the farthest positions from each other in the module.
 ハウジング2の側周面には、上下方向に間隔をおいて、分離膜ユニット10の差込口5が設けられている。差込口5の外周縁部には、分離膜ユニット10の取付用の台座部6が設けられている。台座部6を設けることで、支持板11と差込口5をボルトとナットなどの単純な構造で簡単に接続することができ、ユニット形状を単純化することができる。
台座部6は、差込口5を周回している。台座部6はハウジング2の外周面から放射方向に若干盛り上っている。台座部6の該放射方向の先端面は平面となっており、後述の支持板11の外周縁部が重なり得るようになっている。
The side peripheral surface of the housing 2 is provided with an insertion port 5 for the separation membrane unit 10 at intervals in the vertical direction. A pedestal portion 6 for mounting the separation membrane unit 10 is provided on the outer peripheral edge portion of the insertion port 5. By providing the pedestal portion 6, the support plate 11 and the insertion port 5 can be easily connected with a simple structure such as a bolt and a nut, and the unit shape can be simplified.
The pedestal portion 6 goes around the insertion port 5. The pedestal portion 6 is slightly raised in the radial direction from the outer peripheral surface of the housing 2. The tip surface of the pedestal portion 6 in the radial direction is flat so that the outer peripheral edge portions of the support plate 11 described later can overlap.
 分離膜ユニット10の構成について、図4,5を参照して説明する。 The configuration of the separation membrane unit 10 will be described with reference to FIGS. 4 and 5.
 分離膜ユニット10は、基端側の支持板11と、支持板11の一方の面(内向面)から起立する複数本のエンド管12と、一端側が該エンド管12に連結された管状分離膜13と、各管状分離膜13の他端側に取り付けられ、該他端側を封じているエンドプラグ14と、各エンドプラグ14が差し込まれて保持されたエンドプレート15と、支持板11とエンドプレート15とを連結するタイロッド16と、支持板11の他方の面(外向面)に被装されたエンドカバー17等を有する。 The separation membrane unit 10 includes a support plate 11 on the base end side, a plurality of end tubes 12 standing up from one surface (inward surface) of the support plate 11, and a tubular separation membrane having one end side connected to the end tube 12. 13, an end plug 14 attached to the other end side of each tubular separation membrane 13 and sealing the other end side, an end plate 15 into which each end plug 14 is inserted and held, a support plate 11 and an end. It has a tie rod 16 that connects the plate 15 and an end cover 17 or the like that is covered on the other surface (outward surface) of the support plate 11.
 支持板11は、円板状であり、厚み方向に貫通する複数の透過流体の通過孔11aを有する。 The support plate 11 has a disk shape and has a plurality of permeation fluid passage holes 11a penetrating in the thickness direction.
 支持板11の内向き面にあっては、該通過孔11aと同軸状にエンド管12が立設されている。この実施の形態では、通過孔11aに座ぐり状の凹所(符号略)が設けられ、該凹所にエンド管12の基端側が差し込まれ、溶接によりエンド管12が支持板11に固着されているが、エンド管12の固定構造はこれに限定されない。例えば、エンド管12の基端側に雄ネジを設け、支持板11に雌ネジを有する貫通孔を設け、互いに螺合することで固定しても良い。エンド管12側に雌ネジを設け、支持板11に雄ネジを設けてもよい。エンド管12は、支持板11のいずれの側に配置しても良いが、エンドカバー17を開放して膜を交換できるため、支持板11とエンドカバー17に囲まれた空間側からエンド管12を差し込む構造とすることが好ましい。また、エンド管12は、支持板11を貫通していても貫通していなくてもよいが、膜の全長を有効に使用するため、エンド管12は支持板11を貫通していることが好ましい。 On the inward facing surface of the support plate 11, the end pipe 12 is erected coaxially with the passage hole 11a. In this embodiment, a counterbore-shaped recess (reference numeral omitted) is provided in the passage hole 11a, the base end side of the end pipe 12 is inserted into the recess, and the end pipe 12 is fixed to the support plate 11 by welding. However, the fixed structure of the end tube 12 is not limited to this. For example, a male screw may be provided on the base end side of the end pipe 12, a through hole having a female screw may be provided in the support plate 11, and the end pipe 12 may be fixed by screwing each other. A female screw may be provided on the end tube 12 side, and a male screw may be provided on the support plate 11. The end tube 12 may be arranged on any side of the support plate 11, but since the end cover 17 can be opened to replace the film, the end tube 12 can be arranged from the space side surrounded by the support plate 11 and the end cover 17. It is preferable to have a structure in which the above is inserted. Further, the end tube 12 may or may not penetrate the support plate 11, but in order to effectively use the entire length of the membrane, the end tube 12 preferably penetrates the support plate 11. ..
 管状分離膜13の分離膜ユニットへの固定構造としては、図9の支持板11と、支持板11とエンドカバー17の間に設けた押さえ板11fのぞれぞれに貫通孔を設けて管状分離膜13を貫通させ、膜をOリング11gでシールする構造が挙げられる。支持板と押さえ板は、ボルトなどの固定手段により圧力をかけて固定する。Oリングを用いる場合は、支持板11に設けた貫通孔の周辺部を突出させ、突出部にOリングが嵌合するようにする。このような固定構造とすることで、ネジ山・ネジ穴を加工する必要がなく、低コスト化可能である。 As a structure for fixing the tubular separation membrane 13 to the separation membrane unit, through holes are provided in each of the support plate 11 of FIG. 9 and the holding plate 11f provided between the support plate 11 and the end cover 17 to form a tubular shape. Examples thereof include a structure in which the separation membrane 13 is penetrated and the membrane is sealed with an O-ring 11 g. The support plate and the holding plate are fixed by applying pressure by fixing means such as bolts. When an O-ring is used, the peripheral portion of the through hole provided in the support plate 11 is projected so that the O-ring fits in the protruding portion. With such a fixed structure, it is not necessary to machine threads and screw holes, and the cost can be reduced.
 エンド管12は、図示の通り、管軸心線方向に貫通する管孔(符号略)を有した管状体よりなる。エンド管12の先端は小径となっており、管状分離膜13の基端側が外嵌されている。管状分離膜13の基端側とエンド管12の先端側との接続部はOリング、ガスケット等によってシールされている。Oリングやガスケット等の代わりに、又はOリングやガスケット等と共に、管状分離膜13の基端側からエンド管12の先端側にかけて連結して覆う熱収縮チューブを設けることによりエンド管12と管状分離膜13との接続部をシールしてもよい。 As shown in the figure, the end tube 12 is made of a tubular body having a tube hole (reference numeral omitted) penetrating in the direction of the tube axis core line. The tip of the end tube 12 has a small diameter, and the proximal end side of the tubular separation membrane 13 is fitted externally. The connection portion between the base end side of the tubular separation membrane 13 and the tip end side of the end tube 12 is sealed with an O-ring, a gasket, or the like. Tubular separation from the end tube 12 by providing a heat-shrinkable tube that connects and covers from the base end side of the tubular separation membrane 13 to the tip end side of the end tube 12 instead of the O-ring or gasket, or together with the O-ring or gasket. The connection portion with the film 13 may be sealed.
 管状分離膜13の先端にエンドプラグ14が連結されている。エンドプラグ14は円柱状またはこれの一部を削った形状であり、管状分離膜13の先端を封止している。エンドプラグ14の基端には、管状分離膜13内に差し込まれた小径部が設けられている。エンドプラグ14と管状分離膜13との間はエンド管12と管状分離膜13との接続部と同様にしてシールされている。 The end plug 14 is connected to the tip of the tubular separation membrane 13. The end plug 14 has a columnar shape or a shape obtained by cutting a part of the columnar shape, and seals the tip of the tubular separation membrane 13. A small diameter portion inserted into the tubular separation membrane 13 is provided at the base end of the end plug 14. The end plug 14 and the tubular separation membrane 13 are sealed in the same manner as the connection portion between the end tube 12 and the tubular separation membrane 13.
 なお、エンドプラグ14の重量軽減を図るために、エンドプラグ14の先端面から凹所が設けられている。また図4において、管状分離膜13に接続されているエンド管12の管状分離膜13側の一部に別の配管(金属SUSのつなぎ配管)が接続された構造となっていてもよい。 In order to reduce the weight of the end plug 14, a recess is provided from the tip surface of the end plug 14. Further, in FIG. 4, another pipe (metal SUS connecting pipe) may be connected to a part of the end pipe 12 connected to the tubular separation membrane 13 on the tubular separation membrane 13 side.
 タイロッド16は、基端側が支持板11に螺合等により固定されている。タイロッド16は、この実施の形態では支持板11の外周縁部に周方向に等間隔に4本配置されているが、タイロッド16の本数はこれに限定されない。各タイロッド16の先端は、プレート15に設けられたロッド挿通孔(符号略)に挿通されている。プレート15を挟むように設けられたストッパ16aとタイロッド16に螺着されたナット16bにより、プレート15がタイロッド16に固定支持される。 The base end side of the tie rod 16 is fixed to the support plate 11 by screwing or the like. In this embodiment, four tie rods 16 are arranged at equal intervals in the circumferential direction on the outer peripheral edge of the support plate 11, but the number of tie rods 16 is not limited to this. The tip of each tie rod 16 is inserted into a rod insertion hole (reference numeral omitted) provided in the plate 15. The plate 15 is fixedly supported by the tie rod 16 by the stopper 16a provided so as to sandwich the plate 15 and the nut 16b screwed to the tie rod 16.
 プレート15は、差込口5よりも若干小径の円板状であり、各エンドプラグ14が嵌挿された開口15aを備えている。エンドプラグ14の固定方法は、嵌挿に限らず、その他の方法でプレート15に固定してもよい。 The plate 15 has a disk shape slightly smaller in diameter than the insertion port 5, and has an opening 15a into which each end plug 14 is inserted. The method of fixing the end plug 14 is not limited to fitting and insertion, and may be fixed to the plate 15 by any other method.
 エンドカバー17は、この実施の形態では略半球殻形状であり、その外周縁部17aが支持板11の外向面の周縁部にガスケット、Oリング等を介して気密に取り付けられている。エンドカバー17と支持板11との間が透過流体の流出室18となっている。エンドカバー17には、透過流体の取出口17bが設けられている。なお、エンドカバー17の形状は上記のものに限定されるものではない。 The end cover 17 has a substantially hemispherical shell shape in this embodiment, and its outer peripheral edge portion 17a is airtightly attached to the peripheral edge portion of the outward surface of the support plate 11 via a gasket, an O-ring, or the like. Between the end cover 17 and the support plate 11, there is a permeation fluid outflow chamber 18. The end cover 17 is provided with a permeation fluid outlet 17b. The shape of the end cover 17 is not limited to the above.
 流出室18内は、通過孔11aとエンド管12の管孔とを介して各管状分離膜13内に連通している。 The inside of the outflow chamber 18 communicates with each tubular separation membrane 13 via the passage hole 11a and the tube hole of the end pipe 12.
 この実施の形態では、図3の通り、各分離膜ユニット10の取出口17bは、連絡配管21を介して集合配管22に接続されている。 In this embodiment, as shown in FIG. 3, the outlet 17b of each separation membrane unit 10 is connected to the collecting pipe 22 via the connecting pipe 21.
 この実施の形態では、ハウジング2の側周面に設けられた差込口5のハウジング2の軸心方向(この実施の形態では鉛直上下方向)の配列ピッチは略同一である。 In this embodiment, the arrangement pitch in the axial direction (vertical vertical direction in this embodiment) of the housing 2 of the insertion port 5 provided on the side peripheral surface of the housing 2 is substantially the same.
 図2a~2dの通り、この実施の形態では、ハウジング2の平面視において、各差込口5及び各差込口5から差し込まれた分離膜ユニット10の配置規則は次の通りとなっている。 As shown in FIGS. 2a to 2d, in this embodiment, in the plan view of the housing 2, the arrangement rules of each insertion port 5 and the separation membrane unit 10 inserted from each insertion port 5 are as follows. ..
 即ち、上から4・N+1段目(Nは0又は1以上の整数)の分離膜ユニット10(10A)は、3時側の差込口5から9時方向に向って延在している。 That is, the separation membrane unit 10 (10A) in the 4th N + 1th stage (N is an integer of 0 or 1 or more) from the top extends from the insertion port 5 on the 3 o'clock side toward 9 o'clock.
 4・N+2段目の分離膜ユニット10(10B)は、12時側の差込口5から6時方向に向って延在している。4・N+3段目の分離膜ユニット10(10C)は、1時半側の差込口5から7時半方向に向って延在している。4・N+4段目の分離膜ユニット10(10D)は、10時半側の差込口5から4時半方向に向って延在している。 The 4 ・ N + 2nd stage separation membrane unit 10 (10B) extends from the insertion port 5 on the 12 o'clock side toward 6 o'clock. The 4 ・ N + 3rd stage separation membrane unit 10 (10C) extends from the insertion port 5 on the 1:30 side toward 7:30. The 4th N + 4th stage separation membrane unit 10 (10D) extends from the insertion port 5 on the 10:30 side toward 4:30.
 各差込口5に対し、ハウジング2の直径方向にすなわち、ハウジング2の平面視においてハウジング2の中心を通過する方向に、分離膜ユニット10が差し込まれている。 The separation membrane unit 10 is inserted into each insertion port 5 in the radial direction of the housing 2, that is, in the direction of passing through the center of the housing 2 in the plan view of the housing 2.
 このように、この実施の形態では、上から4・N+1段目の分離膜ユニット10(10A)は、平面視において3時・9時方向に延在し、その直下の分離膜ユニット10(10B)は、12時・6時方向に延在しており、平面視において直交している。 As described above, in this embodiment, the separation membrane unit 10 (10A) in the 4th N + 1st stage from the top extends in the 3 o'clock and 9 o'clock directions in a plan view, and the separation membrane unit 10 (10B) immediately below the separation membrane unit 10 (10A) extends in the 3 o'clock and 9 o'clock directions. ) Extend in the 12 o'clock and 6 o'clock directions, and are orthogonal to each other in a plan view.
 また、上から4・N+3段目の分離膜ユニット10(10C)は、1時半側・7時半方向に延在し、その直下の分離膜ユニット10(10D)は、10時半・4時半方向に延在しており、平面視において直交している。 Further, the separation membrane unit 10 (10C) in the 4th N + 3rd stage from the top extends in the direction of 1:30 and 7:30, and the separation membrane unit 10 (10D) immediately below it extends at 10:30 and 4 It extends in the half-hour direction and is orthogonal in plan view.
 従って、上から4・N+1段目及び4・N+2段目の分離膜ユニット10(10A,10B)と、上から4・N+3段目及び4・N+4段目の分離膜ユニット10(10C,10D)とは、平面視において45゜の角度で交差している。 Therefore, the separation membrane unit 10 (10A, 10B) of the 4 ・ N + 1st stage and the 4 ・ N + 2nd stage from the top, and the separation membrane unit 10 (10C, 10D) of the 4 ・ N + 3rd stage and the 4 ・ N + 4th stage from the top. Intersect at an angle of 45 ° in plan view.
 分離膜ユニット10の先端が差込口5と反対側のハウジング2の内周面近傍に位置する場合において、分離膜ユニット10のエンド管12、管状分離膜13及びエンドプラグ14の3者の合計の長さ(前述のつなぎ配管が存在する場合はこれも含めた長さ)のうち、ハウジング内の長さL(図8)は、ハウジング2の内径Dよりも小さく、かつ該内径Dの1/2(すなわちハウジング2の半径)よりも大きい。長さLは内径Dの50~97%が好ましく、55~93%がより好ましく、65~85%であることが更に好ましい。前記範囲内であることで、ハウジングの断面積のうち、内径Dで計算できる円の面積からユニット10の内径Dの中に存在する部分の断面積を差し引いた面積が最も小さくなり、ハウジングの内部の分離膜が存在しない部分である空隙率を小さくすることができる。該3者の合計の長さ(前述のつなぎ配管が存在する場合はこれも含めた長さ)は、ハウジング2の内径Dの50~150%が好ましく、60~120%がより好ましく、80~130%が更に好ましく、90~125%が特に好ましく、105~110%が最も好ましい。前記範囲内であることで、必要最小限の分離膜13の長さを製造するだけでよく、かつ被処理流体が分離膜13に接触する長さの割合が最大になるため好ましい。 When the tip of the separation membrane unit 10 is located near the inner peripheral surface of the housing 2 on the opposite side of the insertion port 5, the total of the end tube 12, the tubular separation membrane 13, and the end plug 14 of the separation membrane unit 10. Of the lengths (including the above-mentioned connecting pipes if any), the length L inside the housing (FIG. 8) is smaller than the inner diameter D of the housing 2 and is 1 of the inner diameter D. Greater than / 2 (ie, the radius of the housing 2). The length L is preferably 50 to 97%, more preferably 55 to 93%, and even more preferably 65 to 85% of the inner diameter D. Within the above range, the area of the cross-sectional area of the housing obtained by subtracting the cross-sectional area of the portion existing in the inner diameter D of the unit 10 from the area of the circle that can be calculated by the inner diameter D becomes the smallest, and the inside of the housing. The porosity, which is the portion where the separation membrane does not exist, can be reduced. The total length of the three (the length including the above-mentioned connecting pipe, if any) is preferably 50 to 150%, more preferably 60 to 120%, and 80 to 80% of the inner diameter D of the housing 2. 130% is more preferable, 90 to 125% is particularly preferable, and 105 to 110% is most preferable. Within the above range, it is sufficient to manufacture the minimum necessary length of the separation membrane 13, and the ratio of the length of the fluid to be treated in contact with the separation membrane 13 is maximized, which is preferable.
 なお、管状分離膜13は、ハウジングの筒状部内に全長が延在していても良く、台座部6まで延在していてもよい。台座部6に被処理流体が滞留することを防ぐ観点から、管状分離膜13は、ハウジングの筒状部内に全長が延在することが好ましい。 The total length of the tubular separation membrane 13 may extend within the tubular portion of the housing, or may extend to the pedestal portion 6. From the viewpoint of preventing the fluid to be treated from staying in the pedestal portion 6, the tubular separation membrane 13 preferably has the entire length extending in the tubular portion of the housing.
 このように、この実施の形態では、各分離膜ユニット10は、ハウジング2を直径方向にほぼ横断する長い長さを有している。 As described above, in this embodiment, each separation membrane unit 10 has a long length substantially crossing the housing 2 in the radial direction.
 この実施の形態では、支持板11の直径dのハウジング2の内径Dに対する割合の下限は、10%以上が好ましく、30%以上がより好ましく、40%以上が更に好ましく、65%以上が特に好ましく、80%以上が最も好ましい。支持板11の直径dのハウジング2の内径Dに対する割合の上限は、95%以下が好ましい。この範囲を採用することにより、図8に示すように、ハウジング断面積πD/4に対する管状分離膜の断面積Sが占める割合が大きくなり、被処理流体のショートパスを低減できる。 In this embodiment, the lower limit of the ratio of the diameter d of the support plate 11 to the inner diameter D of the housing 2 is preferably 10% or more, more preferably 30% or more, further preferably 40% or more, and particularly preferably 65% or more. , 80% or more is most preferable. The upper limit of the ratio of the diameter d of the support plate 11 to the inner diameter D of the housing 2 is preferably 95% or less. By adopting this range, as shown in FIG. 8, the proportion of the cross-sectional area S of the tubular separation membrane relative to the housing cross-sectional area [pi] D 2/4 is increased, thereby reducing the short path of the fluid to be treated.
 図8のように、ハウジング2の内周面2Cで囲まれるハウジング断面積(平面視面積)はπD/4として算出される。1個の分離膜ユニット10の内周面2C内の領域における平面視面積S(図8で2点鎖線のハッチを付した部分の面積)とハウジング2の平面視面積との百分比[S/(πD/4)]・100%は、10~95%、より30~95%程度が好ましく、更に50~95%程度が好ましく、特に70~95%程度が好ましく、85~95%が最も好ましい。前記範囲内であることで、ハウジングの内部の空隙率が十分に小さくなるため、流体が効率よく分離膜ユニット10に接触し、分離効率が向上する。 As shown in FIG. 8, the housing cross-sectional area (planar viewing area) surrounded by the inner peripheral surface 2C of the housing 2 is calculated as πD 2/4. Percentage ratio [S / ( πD 2/4)] · 100 % 10 to 95%, more preferably about 30 to 95%, even 50 to preferably about 95%, preferably in particular about 70 to 95%, and most preferably 85 to 95% .. Within the above range, the porosity inside the housing becomes sufficiently small, so that the fluid efficiently contacts the separation membrane unit 10 and the separation efficiency is improved.
 なお、分離膜ユニット10のエンド管12、管状分離膜13及びエンドプラグ14の3者の合計の長さ及び、そのハウジング内の長さLと、[S/(πD/4)]・100%と、の好ましい条件を同時に満たす必要はなく、いずれか一方が満たされていればよい。 Note that the total length of the three parties of the separation membrane end tube 12 of the unit 10, the tubular separation membrane 13 and end plug 14 and the length L within the housing, [S / (πD 2/ 4)] · 100 It is not necessary to satisfy the preferred conditions of% and% at the same time, and only one of them may be satisfied.
 図1では、分離膜ユニット10の設置段数は10段であるが、これに限定されるものではない。通常は2~28段、特に好ましくは4~14段程度とされるが、これに限定されない。 In FIG. 1, the number of installation stages of the separation membrane unit 10 is 10, but the number of stages is not limited to this. Usually, it is about 2 to 28 steps, particularly preferably about 4 to 14 steps, but it is not limited to this.
 上から4・N+1段目及び4・N+2段目の分離膜ユニット10(10A,10B)の2個を1対とし、上から4・N+3段目及び4・N+4段目の分離膜ユニット10(10C,10D)の2個を別の1対として、両者を合わせて1組として用いる場合、本発明の分離膜モジュールの長軸を対称中心とした場合の対称性が高い中で、1組中の分離膜ユニット10の数を最も少なくすることができるため好ましい。 Two of the separation membrane units 10 (10A, 10B) of the 4 ・ N + 1st stage and the 4 ・ N + 2nd stage from the top are paired, and the separation membrane unit 10 of the 4 ・ N + 3rd stage and the 4 ・ N + 4th stage from the top ( When two of 10C and 10D) are used as another pair and both are used as a set, the symmetry is high when the major axis of the separation membrane module of the present invention is the center of symmetry. It is preferable because the number of separation membrane units 10 can be minimized.
 これに代えて、本発明の分離膜モジュールの長軸を対称中心として、3個以上の分離膜ユニット10を1対として、2対以上の分離膜ユニットを1組として配置しても良い。このとき、対称性が高くなるよう分離膜ユニットを配置することが、接触効率の観点で好ましい。また、各対中の分離膜ユニットの数を変えて配置してもよい。 Instead of this, three or more separation membrane units 10 may be arranged as a pair and two or more pairs of separation membrane units may be arranged as a set with the long axis of the separation membrane module of the present invention as the center of symmetry. At this time, it is preferable to arrange the separation membrane unit so as to have high symmetry from the viewpoint of contact efficiency. Further, the number of separation membrane units in each pair may be changed.
 これらの分離膜ユニットを配置する際は、らせん状に分離膜ユニットを配置しても良く、ランダムに配置しても良い。分離膜ユニットが存在しない空間が極力連通しないよう配置することが、被処理流体の接触効率を上げて分離効率を向上させる点で好ましい。 When arranging these separation membrane units, the separation membrane units may be arranged in a spiral shape or may be arranged randomly. It is preferable to arrange the space in which the separation membrane unit does not exist so as not to communicate with each other as much as possible from the viewpoint of increasing the contact efficiency of the fluid to be treated and improving the separation efficiency.
 以下、本発明の分離膜モジュールを構成する各部材の好適な材料等について説明する。 Hereinafter, suitable materials and the like of each member constituting the separation membrane module of the present invention will be described.
 エンド管12及びエンドプラグ14の材料としては金属、セラミックス、樹脂など、流体を透過させないものが例示されるが、これに限定されない。支持板11及びタイロッド14の材質は、通常、ステンレスなどの金属材料であるが、分離条件における耐熱性と供給、透過成分に対する耐性があれば特に限定されず、用途によっては、樹脂材料など他の材質に変更可能である。 Examples of the material of the end tube 12 and the end plug 14 include those that do not allow fluid to permeate, such as metal, ceramics, and resin, but are not limited thereto. The material of the support plate 11 and the tie rod 14 is usually a metal material such as stainless steel, but is not particularly limited as long as it has heat resistance and supply under separation conditions and resistance to permeation components, and depending on the application, other materials such as a resin material may be used. The material can be changed.
 管状分離膜13は、分離膜のみで形成されていてもよいが、好ましくは、管状の多孔質支持体と、該多孔質支持体の外周面に形成された分離膜とを有する。分離膜、または多孔質支持体と分離膜を有する多孔質支持体-分離膜複合体の形状は、特に限定されないが、平板状、管状、円筒状、円柱状や角柱状であってもよく、長手方向に延在する孔が多数存在するハニカム形状やモノリス形状のものであってよい。平板状の多孔質支持体-分離膜複合体の場合、分離膜を形成させるのは、一方の面または両面のいずれでも良い。管状、円筒状、(円柱状や角柱状、)ハニカム形状またはモノリス形状の多孔質支持体-分離膜複合体場合、分離膜を形成させるのは、外側の面のみでも内側の面のみでもよく、外側の面と内側の面の両方であってもよい。製造時の不良を把握したり、使用後の劣化状況を確認したりすることが容易である観点で、外側の面のみに分離膜を形成させることが好ましい。 The tubular separation membrane 13 may be formed only of the separation membrane, but preferably has a tubular porous support and a separation membrane formed on the outer peripheral surface of the porous support. The shape of the separation membrane or the porous support-separation membrane composite having the porous support and the separation membrane is not particularly limited, but may be flat plate, tubular, cylindrical, columnar or prismatic. It may be a honeycomb shape or a monolith shape having a large number of holes extending in the longitudinal direction. In the case of a flat porous support-separation membrane composite, the separation membrane may be formed on either one side or both sides. In the case of a tubular, cylindrical, honeycomb-shaped or monolith-shaped porous support-separation membrane composite, the separation membrane may be formed only on the outer surface or only the inner surface. It may be both an outer surface and an inner surface. It is preferable to form the separation membrane only on the outer surface from the viewpoint that it is easy to grasp the defect at the time of manufacturing and confirm the deterioration state after use.
 分離膜の種類は特に限定されないが、耐溶剤性の観点で、無機分離膜が好ましい。有機分離膜としては、ポリスルホン、ポリイミド、ポリアミドなどが挙げられる。有機分離膜の形態としては、中空糸膜、管状セラミック多孔質支持体上に形成された有機膜が挙げられる。無機分離膜としては、ゼオライト膜、シリカ膜、炭素膜などが挙げられ、中でもゼオライト膜を用いることが好ましい。この管状の多孔質支持体の材質としては、無機分離膜、有機分離膜のいずれの場合も、シリカ、α-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などを含むセラミックス焼結体や金属焼結体の無機多孔質支持体が挙げられる。その中でも、アルミナ、シリカ、ムライトのうち少なくとも1種を含む無機多孔質支持体が好ましい。多孔質支持体表面が有する平均細孔径は特に制限されるものではないが、細孔径が制御されているものが好ましく、通常0.02μm以上、好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、通常20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下の範囲が好ましい。 The type of separation membrane is not particularly limited, but an inorganic separation membrane is preferable from the viewpoint of solvent resistance. Examples of the organic separation membrane include polysulfone, polyimide, and polyamide. Examples of the form of the organic separation membrane include a hollow fiber membrane and an organic membrane formed on a tubular ceramic porous support. Examples of the inorganic separation membrane include a zeolite membrane, a silica membrane, a carbon membrane and the like, and among them, a zeolite membrane is preferably used. As the material of this tubular porous support, silica, α-alumina, γ-alumina, mullite, zirconia, titania, ittoria, silicon nitride, silicon carbide and the like can be used for both the inorganic separation membrane and the organic separation membrane. Examples thereof include ceramic sintered bodies and inorganic porous supports of metal sintered bodies. Among them, an inorganic porous support containing at least one of alumina, silica and mullite is preferable. The average pore diameter of the surface of the porous support is not particularly limited, but the pore diameter is preferably controlled, and is usually 0.02 μm or more, preferably 0.05 μm or more, and more preferably 0.1 μm. As described above, the range is usually 20 μm or less, preferably 10 μm or less, and more preferably 5 μm or less.
 多孔質支持体の表面においてゼオライトを結晶化させゼオライト膜を形成させる。
ゼオライト膜を構成する主たるゼオライトは、分離対象物質にもよるが、通常、酸素6-10員環構造を有するゼオライトを含み、好ましくは酸素6-8員環構造を有するゼオライトを含む。
Zeolites are crystallized on the surface of the porous support to form a zeolite membrane.
The main zeolite constituting the zeolite membrane usually contains a zeolite having an oxygen 6-10 membered ring structure, and preferably contains a zeolite having an oxygen 6-8 membered ring structure, although it depends on the substance to be separated.
 ここでいう酸素n員環を有するゼオライトのnの値は、ゼオライト骨格を形成する酸素とT元素で構成される細孔の中で最も酸素の数が大きいものを示す。例えば、MOR型ゼオライトのように酸素12員環と8員環の細孔が存在する場合は、酸素12員環のゼオライトとみなす。 The value of n of the zeolite having an oxygen n-membered ring here indicates that the number of oxygen is the largest among the pores composed of oxygen and T element forming the zeolite skeleton. For example, when pores having a 12-membered oxygen ring and an 8-membered ring are present as in the MOR-type zeolite, it is regarded as a zeolite having a 12-membered oxygen ring.
 酸素6-10員環構造を有するゼオライトの一例を挙げれば、AEI、AEL、AFG、ANA、BRE、CAS、CDO、CHA、DAC、DDR、DOH、EAB、EPI、ESV、EUO、FAR、FRA、FER、FAU、GIS、GIU、GOO、HEU、IMF、ITE、ITH、KFI、LEV、LIO、LOS、LTN、MAR、MEP、MER、MEL、MFI、MFS、MON、MSO、MTF、MTN、MTT、MWF、MWW、NAT、NES、NON、PAU、PHI、RHO、RRO、RTE、RTH、RUT、SGT、SOD、STF、STI、STT、TER、TOL、TON、TSC、TUN、UFI、VNI、VSV、WEI、YUG等がある。 To give an example of a zeolite having an oxygen 6-10-membered ring structure, AEI, AEL, AFG, ANA, BRE, CAS, CDO, CHA, DAC, DDR, DOH, EAB, EPI, ESV, EUO, FAR, FRA, FER, FAU, GIS, GIU, GOO, HEU, IMF, ITE, ITH, KFI, LEV, LIO, LOS, LTN, MAR, MEP, MER, MEL, MFI, MFS, MON, MSO, MTF, MTN, MTT, MWF, MWW, NAT, NES, NON, PAU, PHI, RHO, RRO, RTE, RTH, RUT, SGT, SOD, STF, STI, STT, TER, TOR, TON, TSC, TUN, UFI, VNI, VSV, There are WEI, YUG, etc.
 ゼオライト膜は、ゼオライトが単独で膜となったものでも、前記ゼオライトの粉末をポリマーなどのバインダー中に分散させて膜の形状にしたものでも、各種支持体上にゼオライトを膜状に固着させたゼオライト膜複合体でもよい。ゼオライト膜は、一部アモルファス成分などが含有されていてもよい。 The zeolite membrane may be a membrane made of zeolite alone or a membrane in which the zeolite powder is dispersed in a binder such as a polymer, or the zeolite is fixed in a film shape on various supports. It may be a zeolite membrane composite. The zeolite membrane may contain a part of amorphous components and the like.
 ゼオライト膜の厚さとしては、特に制限されるものではないが、通常、0.1μm以上であり、好ましくは0.6μm以上、さらに好ましくは1.0μm以上である。また通常100μm以下であり、好ましくは60μm以下、さらに好ましくは20μm以下、特に好ましくは10μm以下の範囲である。 The thickness of the zeolite membrane is not particularly limited, but is usually 0.1 μm or more, preferably 0.6 μm or more, and more preferably 1.0 μm or more. Further, it is usually 100 μm or less, preferably 60 μm or less, more preferably 20 μm or less, and particularly preferably 10 μm or less.
 ただし、本発明はゼオライト膜以外の分離膜を有した管状分離膜を用いてもよい。 However, the present invention may use a tubular separation membrane having a separation membrane other than the zeolite membrane.
 管状分離膜13の外径は、好ましくは3mm以上、より好ましくは6mm以上、さらに好ましくは10mm以上、好ましくは20mm以下、より好ましくは18mm以下、さらに好ましくは16mm以下である。外径が小さすぎると管状分離膜の強度が十分でなく壊れやすくなることがあり、大きすぎるとモジュール当りの膜面積が低下する。 The outer diameter of the tubular separation membrane 13 is preferably 3 mm or more, more preferably 6 mm or more, further preferably 10 mm or more, preferably 20 mm or less, more preferably 18 mm or less, still more preferably 16 mm or less. If the outer diameter is too small, the strength of the tubular separation membrane may be insufficient and it may be easily broken, and if it is too large, the membrane area per module decreases.
 管状分離膜13のうちゼオライト膜で覆われた部分の長さは好ましくは20cm以上、好ましくは200cm以下である。管状分離膜13は、長手方向に複数配置して、全長を長くして用いてもよい。その場合は、複数の管状分離膜13同士を、ジョイント管で繋いで用いることが好ましい。ジョイント管は、たとえば、両端側を管状分離膜13内に差し込まれる小径部とし、中央部を大径部としてもよい。複数の管状分離膜13をジョイント管で接続する場合、接続部に荷重が集中して折損する可能性があるため、接続部の強度を高める観点から、ジョイント管の小径部の長さは、エンド管12またはエンドプラグ14の管状分離膜13中の長さの2~3倍とすることが好ましく、2~2.5倍とすることがより好ましく、2~2.25倍とすることが更に好ましい。ジョイント管の小径部の外径は、管状分離膜13と極力隙間を小さくして嵌合させる観点から、管状分離膜13の内径と概略等しくすることが好ましい。ジョイント管の大径部の外径は、荷重の集中を避ける観点と、後述する熱収縮チューブで隙間を極力小さくして被覆する観点から、管状分離膜13の外径と概略等しくすることが好ましい。 The length of the portion of the tubular separation membrane 13 covered with the zeolite membrane is preferably 20 cm or more, preferably 200 cm or less. A plurality of tubular separation membranes 13 may be arranged in the longitudinal direction to increase the total length. In that case, it is preferable to use a plurality of tubular separation membranes 13 connected to each other by a joint tube. The joint tube may have, for example, a small-diameter portion inserted into the tubular separation membrane 13 on both end sides and a large-diameter portion at the center. When a plurality of tubular separation membranes 13 are connected by a joint pipe, the load may be concentrated on the connecting portion and the membrane may be broken. Therefore, from the viewpoint of increasing the strength of the connecting portion, the length of the small diameter portion of the joint pipe is set to the end. The length in the tubular separation membrane 13 of the tube 12 or the end plug 14 is preferably 2 to 3 times, more preferably 2 to 2.5 times, and further 2 to 2.25 times. preferable. The outer diameter of the small diameter portion of the joint pipe is preferably substantially equal to the inner diameter of the tubular separation membrane 13 from the viewpoint of fitting with the tubular separation membrane 13 with the smallest possible gap. The outer diameter of the large diameter portion of the joint pipe is preferably substantially equal to the outer diameter of the tubular separation membrane 13 from the viewpoint of avoiding concentration of load and from the viewpoint of covering with a heat-shrinkable tube described later with the gap as small as possible. ..
 管状分離膜13の内部の空間の密閉性を保つためには、管状分離膜とジョイント管は、熱収縮チューブを用いてシールしてもよく、ジョイント管の小径部の外周部に、周回した溝を設けてOリングを装着し、管状分離膜13とジョイント管の間をシールしてもよい。熱収縮チューブを用いる場合、ジョイント管の大径部は、熱収縮チューブが接する面積を確保するため、3~5cm程度とすることが好ましい。 In order to maintain the airtightness of the space inside the tubular separation membrane 13, the tubular separation membrane and the joint tube may be sealed by using a heat-shrinkable tube, and a circumferential groove is formed in the outer peripheral portion of the small diameter portion of the joint tube. May be provided and an O-ring may be attached to seal between the tubular separation membrane 13 and the joint tube. When a heat-shrinkable tube is used, the large diameter portion of the joint tube is preferably about 3 to 5 cm in order to secure an area in contact with the heat-shrinkable tube.
 管状分離膜は、通常5~3000本、特に50~2000本配置され、管状分離膜同士の最短距離は、2mm~10mmとなるように配置されることが好ましい。ハウジングの大きさ、管状分離膜の本数は処理する流体量によって適宜変更されるものである。 The tubular separation membranes are usually arranged in an amount of 5 to 3000, particularly 50 to 2000, and the shortest distance between the tubular separation membranes is preferably 2 mm to 10 mm. The size of the housing and the number of tubular separation membranes are appropriately changed depending on the amount of fluid to be treated.
 このように構成された分離膜モジュール1において、被処理流体は流入口3からハウジング2内に導入され、ハウジング2内を流れる間に被処理流体の一部の成分が管状分離膜13を透過して管状分離膜13内から流出室18、取出口17b及び連絡配管21を介して集合配管22に取り出される。透過しなかった流体は、流出口4から分離膜モジュール1外に流出する。 In the separation membrane module 1 configured in this way, the fluid to be treated is introduced into the housing 2 from the inflow port 3, and a part of the components of the fluid to be treated permeate through the tubular separation membrane 13 while flowing through the housing 2. It is taken out from the tubular separation membrane 13 to the collecting pipe 22 via the outflow chamber 18, the outlet 17b, and the connecting pipe 21. The fluid that has not permeated flows out of the separation membrane module 1 from the outlet 4.
 この分離膜モジュール1にあっては、分離膜ユニット10は各差込口5からハウジング2の直径方向に長く延在しており、各差込口5の反対側のハウジング2内周面近くにまで達している。そのため、ハウジング2に設ける差込口5の数が前記特許文献1に比べて少なく、分離膜モジュール1の製作が容易である。また、差込口5への分離膜ユニット10の取付部分からの流体リークのおそれも軽減される。 In the separation membrane module 1, the separation membrane unit 10 extends long in the diameter direction of the housing 2 from each insertion port 5, and is near the inner peripheral surface of the housing 2 on the opposite side of each insertion port 5. Has reached. Therefore, the number of insertion ports 5 provided in the housing 2 is smaller than that in Patent Document 1, and the separation membrane module 1 can be easily manufactured. Further, the risk of fluid leakage from the attachment portion of the separation membrane unit 10 to the insertion port 5 is also reduced.
 この実施の形態では、4・N+1段目とその直下の4・N+2段目の分離膜ユニット10A,10B同士が平面視において直交しており、また4・N+3段目とその直下の4・N+4段目の分離膜ユニット10C,10D同士が平面視において直交している。さらに、4・N+1段目及び4・N+2段目の分離膜ユニット10A,10Bと、4・N+3段目及び4・N+4段目の分離膜ユニット10Cと,10Dとが平面視において略45゜の角度で斜交している。従って、流入口3から流出口4に向って流れる被処理流体のショートパスを抑制することが可能となり、ハウジング2内の任意の水平断面における被処理流体の流れが略々均一なものとなる。また、被処理流体は、各分離膜ユニット10A~10Dによって分散され、乱流状態となって各分離膜ユニットの管状分離膜13と接触するようになり、効率よく膜分離処理が行われる。 In this embodiment, the 4 ・ N + 1st stage and the 4 ・ N + 2nd stage separation membrane units 10A and 10B immediately below the 4 ・ N + 1st stage are orthogonal to each other in a plan view, and the 4 ・ N + 3rd stage and the 4 ・ N + 4 immediately below the separation membrane unit 10A and 10B are orthogonal to each other. The separation membrane units 10C and 10D of the stage are orthogonal to each other in a plan view. Further, the separation membrane units 10A and 10B of the 4 ・ N + 1st stage and the 4 ・ N + 2nd stage, the separation membrane units 10C and 10D of the 4 ・ N + 3rd stage and the 4 ・ N + 4th stage are approximately 45 ° in plan view. It is diagonally crossed at an angle. Therefore, it is possible to suppress a short path of the fluid to be treated flowing from the inflow port 3 to the outflow port 4, and the flow of the fluid to be treated in an arbitrary horizontal cross section in the housing 2 becomes substantially uniform. Further, the fluid to be treated is dispersed by the separation membrane units 10A to 10D, becomes in a turbulent state, and comes into contact with the tubular separation membrane 13 of each separation membrane unit, so that the membrane separation treatment is efficiently performed.
 各分離膜ユニット10から取り出された透過流体が集合配管22に合流して取り出される。この実施の形態では、各分離膜ユニット10の透過流体取出口17aが、図3の通り、ハウジング2の平面視において半周以下の範囲(図3では中心角135°の範囲)にのみ位置しており、各取出口17aと集合配管22とを連絡する連絡配管21の長さが短くて済み、配管レイアウトが単純化される。なお、分離膜ユニット10の設置段数が多い場合、連絡配管21を一つの集合配管22に集めるのではなく、2つ以上の集合配管22を設け、集める連絡配管21をハウジングの長手方向(図1では上下方向)の任意の段で分けることができる。例えば8段の場合1~4段目と5~8段目に分ける。このような構造をとる場合は、一つの集合配管22に集まる一の連絡配管の範囲においては前述の「半周以下」に収まるが、全体としては半周以下に収まらなくてもよい。 The permeated fluid taken out from each separation membrane unit 10 joins the collecting pipe 22 and is taken out. In this embodiment, as shown in FIG. 3, the permeated fluid outlet 17a of each separation membrane unit 10 is located only in a range of half a circumference or less (a range of a central angle of 135 ° in FIG. 3) in the plan view of the housing 2. Therefore, the length of the connecting pipe 21 connecting each outlet 17a and the collecting pipe 22 can be shortened, and the pipe layout is simplified. When the number of installation stages of the separation membrane unit 10 is large, instead of collecting the connecting pipes 21 in one collecting pipe 22, two or more collecting pipes 22 are provided and the connecting pipes 21 to be collected are collected in the longitudinal direction of the housing (FIG. 1). Then, it can be divided in any stage (up and down direction). For example, in the case of 8 steps, it is divided into 1st to 4th steps and 5th to 8th steps. When such a structure is adopted, the range of one connecting pipe gathered in one collective pipe 22 is within the above-mentioned "half circumference or less", but it does not have to be within half a circumference as a whole.
 上記図1~5、及び8の実施の形態では、各分離膜ユニット10はハウジング2の内径よりも長さが短く、各分離膜ユニット10はハウジング2に対し片持ち構造にて支持されているが、このように片持ち構造にすると、分離膜ユニット10の自由端側の保持構造が不要となるため、部品数を減らしてコストを低減させられる。 In the embodiments of FIGS. 1 to 5 and 8, each separation membrane unit 10 is shorter than the inner diameter of the housing 2, and each separation membrane unit 10 is supported by the housing 2 in a cantilever structure. However, the cantilever structure in this way eliminates the need for a holding structure on the free end side of the separation membrane unit 10, so that the number of parts can be reduced and the cost can be reduced.
 ただし、本発明では、分離膜ユニットを両持ち構造にてハウジング2に支持させてもよい。即ち、各差込口5とハウジング2の直径方向に対峙して、ハウジングに支持穴を設け、分離膜ユニットを差込口からハウジング内に差し込み、該分離膜ユニットの先端側を支持穴に通すようにして、分離膜ユニットの先端側を固定して両持ち構造としてもよい。両持ち構造とすることで、管状分離膜13の自重や被処理流体による荷重による負荷を軽減することができる。また、管状分離膜13の長さを長くすることができるため、ハウジング2の断面積あたりの空隙率を低減し、被処理流体の分離効率を向上させられる。両持ち構造に、前述のOリングによって管状分離膜13を支持板11に固定する固定構造を適用すると、膜の一方の端からでも、他方の端からでも膜を交換することが可能となり、メンテナンス性が向上する。 However, in the present invention, the separation membrane unit may be supported by the housing 2 in a double-sided structure. That is, a support hole is provided in the housing so as to face each insertion port 5 in the diameter direction of the housing 2, the separation membrane unit is inserted into the housing from the insertion port, and the tip end side of the separation membrane unit is passed through the support hole. In this way, the tip end side of the separation membrane unit may be fixed to form a double-sided structure. By adopting the double-sided structure, it is possible to reduce the load due to the weight of the tubular separation membrane 13 and the load due to the fluid to be treated. Further, since the length of the tubular separation membrane 13 can be increased, the porosity per cross-sectional area of the housing 2 can be reduced, and the separation efficiency of the fluid to be treated can be improved. If a fixing structure for fixing the tubular separation membrane 13 to the support plate 11 by the above-mentioned O-ring is applied to the double-sided structure, the membrane can be replaced from either one end or the other end of the membrane for maintenance. Improves sex.
 図1~5の実施の形態では、ハウジング2の平面視において分離膜ユニット10A,10B、分離膜ユニット10C,10Dがそれぞれ直交するものとしているが、直交だけでなく、直角に近い角度(例えば90゜±10゜、特に90゜±5゜)で交差するものであってもよい。また、分離膜ユニット10A,10Bと分離膜ユニット10C,10Dとの交差角度は45゜に限定されるものではなく、45゜±10゜、特に45゜±5゜で交差するものであってもよい。 In the embodiments of FIGS. 1 to 5, the separation membrane units 10A and 10B and the separation membrane units 10C and 10D are orthogonal to each other in the plan view of the housing 2, but the angles are not only orthogonal to each other but also close to a right angle (for example, 90). It may intersect at ° ± 10 °, especially 90 ° ± 5 °). Further, the intersecting angle between the separation membrane units 10A and 10B and the separation membrane units 10C and 10D is not limited to 45 °, and even if they intersect at 45 ° ± 10 °, particularly 45 ° ± 5 °. Good.
 本発明では、分離膜ユニットの指向方向は図示以外とされてもよい。例えば分離膜ユニットの指向方向が下段側に向って少しずつ時計回り方向又は反時計回り方向に変わるものであってもよい。また、すべての分離膜ユニットの指向方向を同一としてもよい。例えば、上から4・N+1段目(10A)から上から4・N+4段目の分離膜ユニット10(10D)をらせん状になるよう配置してもよい。一方、前述したようならせん状でない配置にすると、分離膜ユニット10が、効率的に被処理流体に接触するため、分離効率を向上させられるため好ましい。 In the present invention, the directivity direction of the separation membrane unit may be other than shown. For example, the directivity direction of the separation membrane unit may gradually change in the clockwise direction or the counterclockwise direction toward the lower stage side. Further, the directivity directions of all the separation membrane units may be the same. For example, the separation membrane unit 10 (10D) from the 4th N + 1st stage (10A) from the top to the 4th N + 4th stage from the top may be arranged in a spiral shape. On the other hand, if the arrangement is not spiral as described above, the separation membrane unit 10 efficiently contacts the fluid to be treated, and the separation efficiency can be improved, which is preferable.
 本発明では、板面を管状分離膜13の長手方向と交差方向(例えば直交方向)としたバッフルを設けてもよい。その一例を図6,7に示す。図6,7では、バッフル19は円の一部を弦方向に切り欠いた形状のものであり、管状分離膜13が挿通された開口19aを有する。図6,7では4枚のバッフルが図示されているが、これに限定されない。図6,7のその他の構成は図4,5と同一であり、同一符号は同一部分を示している。 In the present invention, a baffle may be provided in which the plate surface is in the direction intersecting with the longitudinal direction of the tubular separation membrane 13 (for example, in the orthogonal direction). An example thereof is shown in FIGS. 6 and 7. In FIGS. 6 and 7, the baffle 19 has a shape in which a part of a circle is cut out in the chord direction, and has an opening 19a through which the tubular separation membrane 13 is inserted. Four baffles are shown in FIGS. 6 and 7, but are not limited thereto. Other configurations of FIGS. 6 and 7 are the same as those of FIGS. 4 and 5, and the same reference numerals indicate the same parts.
 上記実施の形態では、処理ユニットとして管状分離膜のみを備えた分離膜ユニット10が用いられているが、一部又はすべての処理ユニットとして、複数本の管状分離膜(又は管状分離膜13、エンド管12及びエンドプラグ14よりなるロッド状連結体)のうちの一部のものを熱交換器やヒータに置換したものを用いてもよい。 In the above embodiment, the separation membrane unit 10 having only the tubular separation membrane is used as the treatment unit, but a plurality of tubular separation membranes (or tubular separation membrane 13, end) are used as some or all of the treatment units. A rod-shaped connecting body composed of the tube 12 and the end plug 14) may be replaced with a heat exchanger or a heater.
 一般に、パーベーパレーションによる浸透気化により被処理流体の温度が低下する。ヒータにより流体を加熱することにより、透過効率を高めることができる。 Generally, the temperature of the fluid to be treated drops due to osmotic vaporization by pervaporation. By heating the fluid with a heater, the permeation efficiency can be increased.
 本発明では、一部の処理ユニットとして、ヒータのみを有する加熱処理専用の加熱処理ユニットを設置してもよい。この場合、加熱処理専用の加熱処理ユニット以外の処理ユニットは、管状分離膜のみを有するものであってもよく、管状分離膜とヒータとの双方を有するものであってもよい。 In the present invention, as a part of the processing unit, a heat treatment unit dedicated to heat treatment having only a heater may be installed. In this case, the treatment unit other than the heat treatment unit dedicated to heat treatment may have only a tubular separation membrane, or may have both a tubular separation membrane and a heater.
 熱交換器としては、シェル&チューブ型で、TEMA規格のSECTION1、FIGUREN-1.2に記載のものの組み合わせが好ましい。
 ヒータとしては、電気ヒータ、蒸気又は温水などの温媒体が供給されるチューブ式ヒータなどの何れでもよい。
As the heat exchanger, a combination of shell and tube type heat exchangers described in TEMA standard SECTION1 and FIGUREN-1.2 is preferable.
The heater may be an electric heater, a tube heater to which a hot medium such as steam or hot water is supplied, or the like.
 加熱処理ユニットを片持ち構造でモジュールに固定する場合、熱交換機のチューブやヒータの形状は、U型であることが好ましい。 When the heat treatment unit is fixed to the module with a cantilever structure, the shape of the tube and heater of the heat exchanger is preferably U-shaped.
 加熱処理ユニットを両持ち構造でモジュールに固定する場合、TEMA規格の8th EditionのSECTION 1 FIGURE N-1.2記載の構造の組み合わせのいずれを用いてもよく、スパイラル形状のものを用いてもよい。 When the heat treatment unit is fixed to the module with a double-sided structure, any combination of structures described in TEMA standard 8th Edition SECTION 1 FIGURE N-1.2 may be used, or a spiral shape may be used. ..
 処理ユニットとして、管状分離膜13とヒータとの双方を有するものを片持ち構造でモジュールに固定する場合、管状分離膜13とヒータを併存させる観点から、熱交換機のチューブやヒータの形状は、U型であることが好ましい。処理ユニットの、管状分離膜13及びヒータを支持する面を等分に2分割し、一方に管状分離膜13を設置し、他方にヒータを設置するようにするのが好ましい。また、被処理流体の加熱効率を向上させる観点から、熱交換器またはヒータは、モジュールの被処理流体に接する面積が最も大きくなるよう設置することが好ましい。 When a processing unit having both a tubular separation membrane 13 and a heater is fixed to the module in a cantilever structure, the shape of the tube and heater of the heat exchanger is U from the viewpoint of coexisting the tubular separation membrane 13 and the heater. It is preferably a mold. It is preferable to divide the surface of the processing unit that supports the tubular separation membrane 13 and the heater into two equal parts, install the tubular separation membrane 13 on one side, and install the heater on the other side. Further, from the viewpoint of improving the heating efficiency of the fluid to be treated, it is preferable to install the heat exchanger or the heater so that the area in contact with the fluid to be treated of the module is the largest.
 処理ユニットとして、管状分離膜13とヒータとの双方を有するものを両持ち構造でモジュールに固定する場合、TEMA規格の8th EdtionのSECTION 1 FIGURE N-1.2記載の構造のいずれの組み合わせを用いてもよい。熱交換器中の流体の入口、出口は、処理ユニットの軸心方向の一方の端に設けても良く、入口と出口を、それぞれ一方の端と他方の端に設けてもよい。後者の場合、処理ユニットを軸心方向に平行な平面に投影した場合、処理ユニットの軸心を挟んで入口と出口が互いに逆の方向に存在するよう設計することが、加熱効率の観点から好ましい。 When fixing a processing unit having both a tubular separation membrane 13 and a heater to the module with a double-sided structure, any combination of the structures described in TEMA standard 8th Edition SECTION 1 FIGURE N-1.2 is used. You may. The inlet and outlet of the fluid in the heat exchanger may be provided at one end in the axial direction of the processing unit, and the inlet and outlet may be provided at one end and the other end, respectively. In the latter case, when the processing unit is projected on a plane parallel to the axial direction, it is preferable to design the inlet and the outlet to exist in opposite directions with the axial center of the processing unit in between, from the viewpoint of heating efficiency. ..
 本発明の一態様では、加熱処理専用の加熱処理ユニットと、管状分離膜のみを備えた分離処理専用の分離処理ユニットとを設置してもよい。この場合、N番目の膜分離ユニットに最も近接する膜分離ユニットにおいて、それぞれに流れる流体の下流側の温度の差Δtが小さくなるよう加熱処理ユニットを配置することが好ましい。Δtは1~60℃が好ましく、1~30℃がより好ましく、2~20℃が更に好ましい。配置例としては、加熱処理ユニットと分離処理ユニットとをハウジング軸心方向に交互に配置してもよく、複数の分離処理ユニット毎に1個の加熱処理ユニットを配置が挙げられる。なお、加熱処理ユニット及び分離処理ユニットは、ヒータと管状分離膜との双方を備えた処理ユニットよりもメンテナンスを容易に行うことができ、製作コストを低くすることができる。 In one aspect of the present invention, a heat treatment unit dedicated to heat treatment and a separation treatment unit dedicated to separation treatment provided with only a tubular separation membrane may be installed. In this case, in the membrane separation unit closest to the Nth membrane separation unit, it is preferable to arrange the heat treatment unit so that the temperature difference Δt on the downstream side of the flowing fluid becomes small. Δt is preferably 1 to 60 ° C., more preferably 1 to 30 ° C., and even more preferably 2 to 20 ° C. As an example of arrangement, the heat treatment unit and the separation treatment unit may be alternately arranged in the axial direction of the housing, and one heat treatment unit may be arranged for each of the plurality of separation treatment units. The heat treatment unit and the separation treatment unit can be easily maintained and can be manufactured at a lower cost than the treatment unit provided with both the heater and the tubular separation membrane.
 本発明の分離膜モジュールにおいて、分離または濃縮の対象となる被処理流体としては、分離膜によって分離または濃縮が可能な複数の成分からなる気体または液体の混合物であれば特に制限はなく、如何なる混合物であってもよいが、気体の混合物に使用することが好ましい。 In the separation membrane module of the present invention, the fluid to be treated to be separated or concentrated is not particularly limited as long as it is a mixture of a gas or a liquid composed of a plurality of components that can be separated or concentrated by the separation membrane, and any mixture. However, it is preferably used for a mixture of gases.
 分離または濃縮にはパーベーパレーション法(浸透気化法)、ベーパーパーミエーション法(蒸気透過法)と呼ばれる分離または濃縮方法を用いることができる。パーベーパレーション法は、液体の混合物をそのまま分離膜に導入する分離または濃縮方法であるため、分離または濃縮を含むプロセスを簡便なものにすることができる。本発明の分離膜モジュールは、偏流による分離効率の低下が少ない観点や、被処理流体が均一に分離膜13に接するため、本発明のモジュールの設置方向や流体の向きを問わない観点から、ベーパーパーミエーション法に用いることがより好ましい。 For separation or concentration, a separation or concentration method called a pervaporation method (osmotic vaporization method) or a vapor permeation method (steam permeation method) can be used. Since the pervaporation method is a separation or concentration method in which a mixture of liquids is directly introduced into a separation membrane, a process including separation or concentration can be simplified. The separation membrane module of the present invention has a small decrease in separation efficiency due to drift flow, and since the fluid to be treated is in uniform contact with the separation membrane 13, vapor is used from the viewpoint of regardless of the installation direction or the direction of the fluid of the module of the present invention. It is more preferable to use it in the permeation method.
 本発明において、分離または濃縮の対象となる混合物が、複数の成分からなる気体もしくは液体の混合物である場合、混合物としては、例えば、二酸化炭素、酸素、窒素、水素、メタン、エタン、エチレン、プロパン、プロピレン、ノルマルブタン、イソブタン、1-ブテン、2-ブテン、イソブテン、六フッ化硫黄、ヘリウム、一酸化炭素、一酸化窒素などから選ばれる少なくとも1種の成分を含む標準状態で気体となるものの混合物、トルエンなどの芳香族系化合物、メタノール、エタノール、イソプロピルアルコール、ブタノール、等の低級アルコール系、アセトン、イソブチルケトン、メチルイソブチルケトン等のC5以下のケトン系、ジメチルグリコール等の低級グリコール系、N-メチルピロリドン、ギ酸、酢酸、酪酸、プロピオン酸、硫酸、3-メチル-1-ブタノール、DMSO、DMS、水などから選ばれる少なくとも1種の成分を含む標準状態で液体となるものの混合物が挙げられる。これらの気体成分あるいは液体成分からなる混合物のうち、パーミエンスの高い気体成分あるいは液体成分は、分離膜を透過し分離され、パーミエンスの低い気体成分または液体成分は供給ガス側に濃縮される。なお、前記の標準状態としては、SATPを示すものとする。 In the present invention, when the mixture to be separated or concentrated is a mixture of gas or liquid composed of a plurality of components, the mixture may be, for example, carbon dioxide, oxygen, nitrogen, hydrogen, methane, ethane, ethylene, propane. , Propylene, normal butane, isobutane, 1-butene, 2-butene, isobutene, sulfur hexafluoride, helium, carbon monoxide, nitrogen monoxide, etc. Mixtures, aromatic compounds such as toluene, lower alcohols such as methanol, ethanol, isopropyl alcohol, butanol, C5 or lower ketones such as acetone, isobutyl ketone and methyl isobutyl ketone, lower glycols such as dimethyl glycol, N Examples include a mixture of liquids in a standard state containing at least one component selected from -methylpyrrolidone, formic acid, acetic acid, butyric acid, propionic acid, sulfuric acid, 3-methyl-1-butanol, DMSO, DMS, water and the like. .. Of the mixture consisting of these gas components or liquid components, the gas component or liquid component having a high permeence is separated by passing through the separation membrane, and the gas component or the liquid component having a low permeence is concentrated on the supply gas side. In addition, as the above-mentioned standard state, it is assumed that SATP is shown.
 上記説明は本発明の一例であり、本発明は上記以外の態様とされてもよい。例えば、ハウジング2内にバッフル板や分散板を設置することにより、流体の流れを制御することが可能である。あるいは、流入口3や流出口4に対峙するバッフル板を設置してもよい。 The above description is an example of the present invention, and the present invention may have aspects other than the above. For example, it is possible to control the flow of fluid by installing a baffle plate or a dispersion plate in the housing 2. Alternatively, a baffle plate facing the inflow port 3 or the outflow port 4 may be installed.
 被処理流体の流速は、蒸気相を含む気相の場合、0.1以上3.0m/s以下、特に好ましくは0.3以上1.5m/s以下であり、液相の場合は0.005m/s以上1.0m/s以下、特に好ましくは0.01以上0.5m/s以下であるが、これらに限定されるものではない。なお前記流速は、ハウジング2の内径からその断面積を算出し、処理流体の流量をこの断面積の値で除することによって算出できる。 The flow velocity of the fluid to be treated is 0.1 or more and 3.0 m / s or less in the case of the gas phase including the vapor phase, particularly preferably 0.3 or more and 1.5 m / s or less in the case of the liquid phase. It is 005 m / s or more and 1.0 m / s or less, particularly preferably 0.01 or more and 0.5 m / s or less, but is not limited thereto. The flow velocity can be calculated by calculating the cross-sectional area from the inner diameter of the housing 2 and dividing the flow rate of the processing fluid by the value of this cross-sectional area.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年9月27日付で出願された日本特許出願2019-177339に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application 2019-177339, filed on September 27, 2019, which is incorporated by reference in its entirety.
 1 分離膜モジュール
 2 ハウジング
 5 差込口
 6 台座部
 10 分離膜ユニット
 11 支持板
 12 エンド管
 13 管状分離膜
 14 エンドプラグ
 15 エンドプレート
 16 タイロッド
 22 集合配管
1 Separation membrane module 2 Housing 5 Outlet 6 Pedestal part 10 Separation membrane unit 11 Support plate 12 End pipe 13 Tubular separation membrane 14 End plug 15 End plate 16 Tie rod 22 Collective piping

Claims (19)

  1.  筒状のハウジングと、該ハウジングの側周面に設けられた差込口から該ハウジング内に差し込まれた処理ユニットとを有する分離膜モジュールであって、
     該ハウジングは、軸心方向の一端側に被処理流体の流入部が設けられ、他端側に透過しなかった流体の流出部が設けられており、
     前記差込口は、該軸心方向に間隔をおいて複数個設けられている分離膜モジュールにおいて、
     該処理ユニットの差し込み方向の先端側は、該差込口と反対側のハウジング側周面又はその近傍に達していることを特徴とする分離膜モジュール。
    A separation membrane module having a tubular housing and a processing unit inserted into the housing from an insertion port provided on a side peripheral surface of the housing.
    The housing is provided with an inflow portion for the fluid to be processed on one end side in the axial direction, and an outflow portion for the fluid that has not penetrated on the other end side.
    In the separation membrane module provided with a plurality of outlets at intervals in the axial direction, the insertion port is provided.
    A separation membrane module characterized in that the tip end side of the processing unit in the insertion direction reaches the peripheral surface on the housing side opposite to the insertion port or its vicinity.
  2.  処理ユニットの差し込み方向の先端側は、該差込口と反対側のハウジング内周面近傍に位置していることを特徴とする請求項1の分離膜モジュール。 The separation membrane module according to claim 1, wherein the tip side of the processing unit in the insertion direction is located near the inner peripheral surface of the housing on the side opposite to the insertion port.
  3.  前記ハウジングの側周面には、前記差込口と反対側に支持穴が設けられており、
     前記処理ユニットの先端側が該支持穴に差し込まれて保持されていることを特徴とする請求項1の分離膜モジュール。
    A support hole is provided on the side peripheral surface of the housing on the side opposite to the insertion port.
    The separation membrane module according to claim 1, wherein the tip end side of the processing unit is inserted into and held in the support hole.
  4.  前記処理ユニットは、管状分離膜及びヒータの少なくとも一方よりなるロッドを有する請求項1~3のいずれかの分離膜モジュール。 The separation membrane module according to any one of claims 1 to 3, wherein the processing unit has a rod including at least one of a tubular separation membrane and a heater.
  5.  前記処理ユニットの少なくとも一部は、前記管状分離膜を有する請求項4の分離膜モジュール。 The separation membrane module according to claim 4, wherein at least a part of the processing unit has the tubular separation membrane.
  6.  前記処理ユニットの少なくとも一部は、前記ヒータを有する請求項4又は5の分離膜モジュール。 At least a part of the processing unit is the separation membrane module according to claim 4 or 5, which has the heater.
  7.  前記処理ユニットの少なくとも一部は、前記ロッドとして管状分離膜及びヒータを有する請求項4~6のいずれかの分離膜モジュール。 The separation membrane module according to any one of claims 4 to 6, wherein at least a part of the processing unit has a tubular separation membrane and a heater as the rod.
  8.  前記処理ユニットの一部は、前記ロッドとして管状分離膜のみを有する請求項4~6のいずれかの分離膜モジュール。 The separation membrane module according to any one of claims 4 to 6, wherein a part of the processing unit has only a tubular separation membrane as the rod.
  9.  前記処理ユニットの一部は、前記ロッドとしてヒータのみ有する請求項4~6のいずれかの分離膜モジュール。 A part of the processing unit is a separation membrane module according to any one of claims 4 to 6, which has only a heater as the rod.
  10.  前記処理ユニットは、前記差し込み方向と垂直な支持板と、一端側が該支持板に支持された複数本の前記ロッドとを有する請求項1~9のいずれかの分離膜モジュール。 The separation membrane module according to any one of claims 1 to 9, wherein the processing unit has a support plate perpendicular to the insertion direction and a plurality of the rods whose one end side is supported by the support plate.
  11.  前記処理ユニットの少なくとも一部は管状分離膜を有しており、
     該管状分離膜の一端側にエンド管が接続されており、該エンド管が前記支持板の一面側に固定されており、
     該支持板の他面側にエンドカバーが装着され、該支持板と該エンドカバーとの間に流出室が形成されており、
     該支持板及び該エンド管に設けられた連通孔を介して前記管状分離膜内と該流出室内とが連通している請求項10の分離膜モジュール。
    At least a part of the processing unit has a tubular separation membrane and
    An end tube is connected to one end side of the tubular separation membrane, and the end tube is fixed to one side of the support plate.
    An end cover is attached to the other surface side of the support plate, and an outflow chamber is formed between the support plate and the end cover.
    The separation membrane module according to claim 10, wherein the inside of the tubular separation membrane and the outflow chamber communicate with each other through a communication hole provided in the support plate and the end pipe.
  12.  前記ハウジングの外周面には、前記差込口を取り巻く台座部が設けられており、
     前記支持板の外周縁部が該台座部に固定されている請求項11の分離膜モジュール。
    A pedestal portion surrounding the insertion port is provided on the outer peripheral surface of the housing.
    The separation membrane module according to claim 11, wherein the outer peripheral edge portion of the support plate is fixed to the pedestal portion.
  13.  各処理ユニットの前記流出室は、それぞれ連絡配管を介して集合配管に連通している請求項11又は12の分離膜モジュール。 The separation membrane module according to claim 11 or 12, wherein the outflow chamber of each processing unit communicates with the collective pipe via a connecting pipe.
  14.  前記ハウジングの軸心線方向と垂直な面に投影したときに、すべての処理ユニットの前記エンドカバーが該ハウジングの外周面の一半側に位置する請求項11ないし13のいずれかの分離膜モジュール。 The separation membrane module according to any one of claims 11 to 13, wherein the end covers of all the processing units are located on a half side of the outer peripheral surface of the housing when projected onto a plane perpendicular to the axial direction of the housing.
  15.  前記管状分離膜はゼオライト膜を有する請求項4~14のいずれかの分離膜モジュール。 The separation membrane module according to any one of claims 4 to 14, wherein the tubular separation membrane has a zeolite membrane.
  16.  前記ハウジングの軸心方向の一端側から他端側にかけて第1ないし第n(nは4以上)の処理ユニットが間隔をおいて配列されており、
     該一端側から4・N+1番目(Nは0又は1以上の整数)とそれに隣接する4・N+2番目の処理ユニット同士は、該ハウジングの軸心方向と垂直な面に投影したときに略直交しており、
     4・N+3番目とそれに隣接する4・N+4番目の処理ユニット同士は、該ハウジングの軸心線方向と垂直な面に投影したときに略直交しており、
     4・N+1番目及び4・N+2番目の分離膜ユニットと、4・N+3番目及び4・N+4番目の処理ユニットとは、該ハウジングの軸心方向と垂直な面に投影したときに斜交している請求項1ないし15のいずれかの分離膜モジュール。
    The first to nth (n is 4 or more) processing units are arranged at intervals from one end side to the other end side in the axial direction of the housing.
    The 4th N + 1st (N is an integer of 0 or 1 or more) from one end side and the 4th N + 2nd processing units adjacent to it are substantially orthogonal to each other when projected onto a plane perpendicular to the axial direction of the housing. And
    The 4th N + 3rd and the 4th N + 4th processing units adjacent to each other are substantially orthogonal to each other when projected onto a plane perpendicular to the axial direction of the housing.
    The 4 ・ N + 1st and 4 ・ N + 2nd separation membrane units and the 4 ・ N + 3rd and 4 ・ N + 4th processing units are oblique when projected onto a plane perpendicular to the axial direction of the housing. The separation membrane module according to any one of claims 1 to 15.
  17.  前記斜交角度が45゜±10゜である請求項16の分離膜モジュール。 The separation membrane module according to claim 16, wherein the oblique angle is 45 ° ± 10 °.
  18.  1個の処理ユニットをハウジングの軸心と垂直な面に投影したときのハウジング内周における面積は、ハウジングの断面積の10~95%である請求項1~17のいずれかの分離膜モジュール。 The separation membrane module according to any one of claims 1 to 17, wherein the area in the inner circumference of the housing when one processing unit is projected onto a plane perpendicular to the axis of the housing is 10 to 95% of the cross-sectional area of the housing.
  19.  請求項1~18のいずれかに記載の分離膜モジュールを用いて、パーベーパレーション法またはベーパーパーミエーション法により、混合流体から物質の分離を行う分離方法。 A separation method for separating a substance from a mixed fluid by a pervaporation method or a vapor permeation method using the separation membrane module according to any one of claims 1 to 18.
PCT/JP2020/036610 2019-09-27 2020-09-28 Separation membrane module and separation method WO2021060557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019177339A JP2021053552A (en) 2019-09-27 2019-09-27 Separation membrane module and separation method
JP2019-177339 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060557A1 true WO2021060557A1 (en) 2021-04-01

Family

ID=75165278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036610 WO2021060557A1 (en) 2019-09-27 2020-09-28 Separation membrane module and separation method

Country Status (2)

Country Link
JP (1) JP2021053552A (en)
WO (1) WO2021060557A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093844A (en) * 2001-09-27 2003-04-02 Mitsui Eng & Shipbuild Co Ltd Substance separating membrane module and substance separator
WO2009118934A1 (en) * 2008-03-25 2009-10-01 日立造船株式会社 Separation membrane module
WO2016136846A1 (en) * 2015-02-25 2016-09-01 三菱化学株式会社 Separation membrane module and repair method for same
JP2017056369A (en) * 2015-09-14 2017-03-23 東レ株式会社 Separation membrane module
JP2017131882A (en) * 2016-01-22 2017-08-03 東レ株式会社 Fluid separation carbon membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093844A (en) * 2001-09-27 2003-04-02 Mitsui Eng & Shipbuild Co Ltd Substance separating membrane module and substance separator
WO2009118934A1 (en) * 2008-03-25 2009-10-01 日立造船株式会社 Separation membrane module
WO2016136846A1 (en) * 2015-02-25 2016-09-01 三菱化学株式会社 Separation membrane module and repair method for same
JP2017056369A (en) * 2015-09-14 2017-03-23 東レ株式会社 Separation membrane module
JP2017131882A (en) * 2016-01-22 2017-08-03 東レ株式会社 Fluid separation carbon membrane module

Also Published As

Publication number Publication date
JP2021053552A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7201043B2 (en) Separation membrane module
JP6221889B2 (en) Multi-tube separation membrane module
US11291955B2 (en) Separation membrane module
JP6515581B2 (en) Separation membrane module
JP6500499B2 (en) Separation membrane module and method of operating the same
JP2016155098A (en) Separation membrane module
JP6467982B2 (en) Separation membrane module
JP2022093693A (en) Separation membrane module
WO2021060557A1 (en) Separation membrane module and separation method
JP6409776B2 (en) Multi-tube separation membrane module
JP6221970B2 (en) Multi-tube separation membrane module
JP2023063385A (en) Separation membrane module
JP6682905B2 (en) Separation membrane module
JP6252377B2 (en) Multi-tube separation membrane module
JP6464810B2 (en) Separation membrane module
JP7375309B2 (en) Separation membrane module
JP7107136B2 (en) Separation membrane module
JP7210897B2 (en) Multitubular separation membrane module
JP2018161613A (en) Multitubular separation membrane module
JP6907612B2 (en) Separation Membrane Module and Membrane Separation System
JP6252376B2 (en) Assembly method for multi-tube separation membrane module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869577

Country of ref document: EP

Kind code of ref document: A1