WO2015030137A1 - Resin composition for gasket, production method therefor, and gasket for secondary battery - Google Patents

Resin composition for gasket, production method therefor, and gasket for secondary battery Download PDF

Info

Publication number
WO2015030137A1
WO2015030137A1 PCT/JP2014/072635 JP2014072635W WO2015030137A1 WO 2015030137 A1 WO2015030137 A1 WO 2015030137A1 JP 2014072635 W JP2014072635 W JP 2014072635W WO 2015030137 A1 WO2015030137 A1 WO 2015030137A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
resin composition
group
polyarylene sulfide
resin
Prior art date
Application number
PCT/JP2014/072635
Other languages
French (fr)
Japanese (ja)
Inventor
芳野 泰之
渡辺 創
俊男 檜森
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015534308A priority Critical patent/JP6233415B2/en
Priority to CN201480048085.9A priority patent/CN105493310B/en
Priority to KR1020167007667A priority patent/KR20160049537A/en
Priority to KR1020217042596A priority patent/KR102595639B1/en
Publication of WO2015030137A1 publication Critical patent/WO2015030137A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gasket resin composition used for a secondary battery gasket, a method for producing the same, and a secondary battery gasket.
  • a sealed secondary battery generally includes a positive electrode plate, a negative electrode plate, an electrode plate group including a separator disposed between the positive electrode plate and the negative electrode plate, and a battery element including an electrolytic solution for immersing the electrode plate group. Is housed inside a partially opened battery case (exterior body), and is sealed by a sealing body for sealing the opening of the battery case. Further, in this sealed secondary battery, for example, a contact point between the positive electrode terminal electrically connected to the positive electrode plate and a contact point between the negative electrode terminal electrically connected to the negative electrode plate are between a pair of terminals. Gaskets are provided to prevent short circuits and electrolyte leakage. The gasket is required to have resistance to electrolyte and excellent airtightness against the electrolyte.
  • the conventional gasket material does not endure the pressure of the internal medium, and does not reach the level required for a sealed secondary battery (storage battery) such as a lithium ion secondary battery that has been demanded in recent years. Is insufficient. Therefore, the gasket material is required to improve the mechanical strength.
  • the molding material is also required to be able to be filled evenly and uniformly.
  • the main problem to be solved by the present invention is a gasket having excellent cavity balance and high mechanical strength as a gasket material used in a sealed secondary battery (storage battery) such as a lithium ion secondary battery. It is providing the resin composition for batteries, its manufacturing method, and the gasket for secondary batteries.
  • the present inventors use a resin composition containing a polyarylene sulfide resin obtained by melt polymerization of a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor, and a silicone compound.
  • a resin composition containing a polyarylene sulfide resin obtained by melt polymerization of a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor, and a silicone compound As a result, the inventors have found that the above problems can be solved, and have completed the present invention. The present invention has been completed.
  • the present invention is a resin composition for a gasket used for a secondary battery composed of a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte solution, comprising a polyarylene sulfide resin and a silicone compound
  • the arylene sulfide resin can be obtained by a method comprising reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, elemental sulfur and the polymerization inhibitor.
  • a resin composition for a gasket is provided.
  • the present invention also provides a secondary battery gasket comprising the above gasket resin composition.
  • the present invention further relates to a method for producing a resin composition for a gasket used in a secondary battery composed of a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte solution, wherein the polyarylene sulfide resin and the silicone compound are mixed.
  • a polyarylene sulfide resin comprising reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, elemental sulfur and the polymerization inhibitor.
  • a method for producing a resin composition for a gasket which can be obtained by the method.
  • a gasket material used in a sealed secondary battery (storage battery) such as a lithium ion secondary battery a resin composition for gasket having excellent cavity balance and high mechanical strength, and a method for producing the same And a gasket for a secondary battery.
  • the gasket for secondary batteries which suppressed the gas generation by a heating can be produced by using the said resin composition for gaskets.
  • the resin composition for a gasket according to the present embodiment contains a polyarylene sulfide resin and a silicone compound.
  • the polyarylene sulfide resin used in the present embodiment is obtained by reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, elemental sulfur and the polymerization inhibitor. It can be obtained by the method of including. According to such a method, a polyarylene sulfide resin can be obtained as a polymer having a relatively high molecular weight as compared with conventional methods such as the Philips method.
  • the diiodo aromatic compound has an aromatic ring and two iodine atoms directly bonded to the aromatic ring.
  • diiodo aromatic compounds include, but are not limited to, diiodobenzene, diiodotoluene, diiodoxylene, diiodonaphthalene, diiodobiphenyl, diiodobenzophenone, diiododiphenyl ether, and diiododiphenyl sulfone.
  • the substitution positions of the two iodine atoms are not particularly limited, but it is preferable that the two substitution positions are located as far as possible in the molecule. Preferred substitution positions are the para position and the 4,4'-position.
  • Aromatic rings of diiodo aromatic compounds include phenyl groups, halogen atoms other than iodine atoms, hydroxy groups, nitro groups, amino groups, alkoxy groups having 1 to 6 carbon atoms, carboxy groups, carboxylates, aryl sulfones and aryl ketones. It may be substituted with at least one substituent selected from However, from the viewpoint of crystallinity and heat resistance of the polyarylene sulfide resin, the ratio of the substituted diiodo aromatic compound to the unsubstituted diiodo aromatic compound is preferably in the range of 0.0001 to 5% by mass. More preferably, it is in the range of 0.001 to 1% by mass.
  • the elemental sulfur means a substance (S 8 , S 6 , S 4 , S 2, etc.) composed only of sulfur atoms, and its form is not limited. More specifically, the present invention may be used elemental sulfur which is commercially available as Tsuboneho medicament may be obtained generically, may be used a mixture containing S 8 and S 6 and the like.
  • the purity of elemental sulfur is not particularly limited.
  • the elemental sulfur may be in the form of particles or powder as long as it is solid at room temperature (23 ° C.).
  • the particle size of elemental sulfur is not particularly limited, but is preferably in the range of 0.001 to 10 mm, more preferably in the range of 0.01 to 5 mm, and still more preferably in the range of 0.01 to 3 mm.
  • the polymerization inhibitor can be used without particular limitation as long as it is a compound that inhibits or stops the polymerization reaction in the polymerization reaction of the polyarylene sulfide resin.
  • the polymerization inhibitor preferably contains a compound capable of introducing at least one group selected from the group consisting of a hydroxy group, an amino group, a carboxyl group and a salt of a carboxyl group at the end of the main chain of the polyarylene sulfide resin. That is, the polymerization inhibitor is preferably a compound having one or more groups selected from the group consisting of a hydroxy group, an amino group, a carboxyl group, and a carboxyl group salt.
  • the polymerization inhibitor may have the functional group, or the functional group may be generated by a polymerization termination reaction or the like.
  • polymerization inhibitor having a hydroxy group or an amino group for example, a compound represented by the following formula (1) or (2) can be used as the polymerization inhibitor.
  • a monovalent group represented by the following formula (1-1) is introduced as a terminal group of the main chain.
  • Y in the formula (1-1) is a hydroxy group, an amino group or the like derived from a polymerization inhibitor.
  • a monovalent group represented by the following formula (2-1) is introduced as a terminal group of the main chain.
  • a hydroxy group derived from the compound represented by the general formula (1) can be introduced into the polyarylene sulfide resin by, for example, bonding to a carbon atom of a carbonyl group in the formula (2) and a sulfur radical.
  • the disulfide bond that is derived from the raw material (single sulfur) in the main chain of the polyarylene sulfide resin is radically cleaved at the melting temperature.
  • the generated sulfur radical and the compound represented by the general formula (1) or the compound represented by the general formula (2) are considered to be introduced into the polyarylene sulfide resin.
  • the existence of these structural units having a specific structure is characteristic of the polyarylene sulfide resin obtained by melt polymerization using the compound represented by the general formula (1) or (2).
  • Examples of the compound represented by the general formula (1) include 2-iodophenol and 2-aminoaniline. Examples of the compound represented by the general formula (2) include 2-iodobenzophenone.
  • polymerization inhibitor having a carboxyl group for example, one or more compounds selected from the compounds represented by the following general formula (3), (4) or (5) may be used.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent group represented by the following general formula (a), (b) or (c), and R 1 or At least one of R 2 is a monovalent group represented by the general formula (a), (b) or (c).
  • Z represents an iodine atom or a mercapto group
  • R 3 represents a monovalent group represented by the following General Formula (a), (b), or (c).
  • R 4 is formula (a), represents a monovalent group represented by (b) or (c).
  • X in the general formulas (a) to (c) is a hydrogen atom or an alkali metal atom, and is preferably a hydrogen atom from the viewpoint of good reactivity.
  • the alkali metal atom include sodium, lithium, potassium, rubidium, and cesium, and sodium is preferable.
  • R 10 represents an alkyl group having 1 to 6 carbon atoms.
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 12 represents an alkyl group having 1 to 5 carbon atoms.
  • a monovalent group represented by the following formula (6) or (7) is introduced as a terminal group of the main chain.
  • the presence of the terminal structural unit of these specific structures is characteristic of the polyarylene sulfide resin obtained by melt polymerization using the compound represented by the general formula (3), (4) or (5).
  • R 5 represents a monovalent group represented by the general formula (a), (b) or (c)).
  • R 6 represents a monovalent group represented by the general formula (a), (b) or (c)).
  • a compound having no functional group such as a carboxyl group may be used.
  • examples of such compounds include diphenyl disulfide, monoiodobenzene, thiophenol, 2,2′-dibenzothiazolyl disulfide, 2-mercaptobenzothiazole, N-cyclohexyl-2-benzothiazolylsulfenamide, 2 At least one compound selected from-(morpholinothio) benzothiazole and N, N'-dicyclohexyl-1,3-benzothiazole-2-sulfenamide can be used.
  • the polyarylene sulfide resin according to this embodiment is obtained by performing melt polymerization in a melt mixture obtained by heating a mixture containing a diiodo aromatic compound, elemental sulfur, a polymerization inhibitor, and a catalyst as necessary. Generate.
  • the ratio of the diiodo aromatic compound in the molten mixture is preferably in the range of 0.5 to 2 moles, more preferably in the range of 0.8 to 1.2 moles per mole of elemental sulfur.
  • the ratio of the polymerization inhibitor in the mixture is preferably in the range of 0.0001 to 0.1 mol, more preferably in the range of 0.0005 to 0.05 mol, with respect to 1 mol of solid sulfur. .
  • the timing of adding the polymerization inhibitor is not particularly limited, but the temperature of the mixture is preferably 200 ° C. to 320 ° C. by heating the mixture containing the diiodo aromatic compound, elemental sulfur and the catalyst to be added as necessary.
  • the polymerization inhibitor can be added when the temperature is within the range, more preferably within the range of 250 to 320 ° C.
  • the polymerization rate can be adjusted by adding a nitro compound as a catalyst to the molten mixture.
  • a nitro compound as a catalyst
  • various nitrobenzene derivatives can be usually used.
  • the nitrobenzene derivative include 1,3-diiodo-4-nitrobenzene, 1-iodo-4-nitrobenzene, 2,6-diiodo-4-nitrophenol and 2,6-diiodo-4-nitroamine.
  • the amount of the catalyst is usually an amount added as a catalyst, and is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of elemental sulfur, for example.
  • the conditions for melt polymerization are appropriately adjusted so that the polymerization reaction proceeds appropriately.
  • the temperature of the melt polymerization is preferably 175 ° C. or higher, the melting point of the polyarylene sulfide resin to be formed + 100 ° C. or lower, more preferably 180 to 350 ° C.
  • the melt polymerization is carried out with an absolute pressure of preferably 1 [cPa] to 100 [kPa], more preferably 13 [cPa] to 60 [kPa].
  • the conditions for melt polymerization need not be constant.
  • the temperature is preferably in the range of 175 to 270 ° C., more preferably in the range of 180 to 250 ° C., and the absolute pressure is in the range of 6.7 to 100 [kPa], and then continuously or Polymerization is carried out while raising and lowering the temperature stepwise, and in the latter stage of polymerization, the temperature is preferably 270 ° C. or higher, the melting point of the polyarylene sulfide resin to be produced + 100 ° C. or lower, more preferably 300 to 350 ° C.,
  • the polymerization can be carried out at an absolute pressure in the range of 1 [cPa] to 6 [kPa].
  • the melting point of the resin means a value measured in accordance with JIS K 7121 using a differential scanning calorimeter (Perkin Elmer DSC device Pyris Diamond).
  • the melt polymerization is preferably performed in a non-oxidizing atmosphere from the viewpoint of obtaining a high degree of polymerization while preventing oxidative crosslinking reaction.
  • the oxygen concentration in the gas phase is preferably in the range of less than 5% by volume, more preferably in the range of less than 2% by volume, and more preferably the gas phase is substantially free of oxygen.
  • the non-oxidizing atmosphere is preferably an inert gas atmosphere such as nitrogen, helium and argon.
  • the melt polymerization can be performed using, for example, a melt kneader equipped with a heating device, a decompression device, and a stirring device.
  • a melt kneader equipped with a heating device, a decompression device, and a stirring device.
  • the melt kneader include a Banbury mixer, a kneader, a continuous kneader, a single screw extruder, and a twin screw extruder.
  • the molten mixture for melt polymerization does not substantially contain a solvent. More specifically, the amount of the solvent contained in the molten mixture is preferably 10 masses with respect to a total of 100 mass parts of the diiodo aromatic compound, elemental sulfur, the polymerization inhibitor, and, if necessary, the catalyst. Part or less, more preferably 5 parts by weight or less, and even more preferably 1 part by weight or less.
  • the amount of the solvent may be 0 part by mass or more, 0.01 part by mass or more, or 0.1 part by mass or more.
  • the melt mixture (reaction product) after the melt polymerization is cooled to obtain a solid state mixture
  • the mixture is heated under reduced pressure or atmospheric pressure in a non-oxidizing atmosphere to further advance the polymerization reaction. Also good. As a result, not only can the molecular weight be increased, but also the generated iodine molecules are sublimated and removed, so the iodine atom concentration in the polyarylene sulfide resin can be kept low.
  • the solid state mixture can be obtained by cooling to a temperature of preferably 100 to 260 ° C, more preferably 130 to 250 ° C, and even more preferably 150 to 230 ° C. Heating after cooling to the solid state can be performed under the same temperature and pressure conditions as in melt polymerization.
  • the reaction product containing the polyarylene sulfide resin obtained by the melt polymerization step can be directly produced in a melt-kneader to produce a resin composition. It is preferable to prepare a dissolved product by adding a solvent in which the reaction product is dissolved, and to take out the reaction product from the reaction apparatus in the dissolved state because not only the productivity is improved but also the reactivity is improved.
  • the addition of the solvent in which the reaction product is dissolved is preferably performed after the melt polymerization, but it may be performed in the later stage of the reaction of the melt polymerization, or as described above, the molten mixture (reaction product) is cooled to form a solid state.
  • the polymerization reaction may be further advanced by heating the mixture under pressure, reduced pressure, or atmospheric pressure in a non-oxidizing atmosphere.
  • the step of preparing the lysate may be performed in a non-oxidizing atmosphere.
  • the temperature for dissolution by heating may be in the range of the melting point of the solvent in which the reaction product dissolves, preferably in the range of 200 to 350 ° C., more preferably in the range of 210 to 250 ° C. It is preferable to carry out with.
  • the mixing ratio of the solvent used for preparing the dissolved product in which the reaction product dissolves is preferably in the range of 90 to 1000 parts by mass with respect to 100 parts by mass of the reaction product containing polyarylene sulfide resin.
  • the range is preferably 200 to 400 parts by mass.
  • a solvent used as a polymerization reaction solvent in solution polymerization such as a Philips method
  • preferable solvents include N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), N-cyclohexyl-2-pyrrolidone, 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and ⁇ -caprolactam.
  • Aliphatic cyclic amide compounds such as N-methyl- ⁇ -caprolactam, amide compounds such as hexamethylphosphoric triamide (HMPA), tetramethylurea (TMU), dimethylformamide (DMF), and dimethylacetamide (DMA), polyethylene
  • amide compounds such as hexamethylphosphoric triamide (HMPA), tetramethylurea (TMU), dimethylformamide (DMF), and dimethylacetamide (DMA)
  • polyethylene examples include etherified polyethylene glycol compounds such as glycol dialkyl ether (having a degree of polymerization of 2000 or less and an alkyl group having 1 to 20 carbon atoms), and sulfoxide compounds such as tetramethylene sulfoxide and dimethyl sulfoxide (DMSO). It is done.
  • Examples of other usable solvents include benzophenone, diphenyl ether, diphenyl sulfide, 4,4′-dibromobiphenyl, 1-phenylnaphthalene, 2,5-diphenyl-1,3,4-oxadiazole, 2,5- Diphenyloxazole, triphenylmethanol, N, N-diphenylformamide, benzyl, anthracene, 4-benzoylbiphenyl, dibenzoylmethane, 2-biphenylcarboxylic acid, dibenzothiophene, pentachlorophenol, 1-benzyl-2-pyrrolidione, 9- Fluorenone, 2-benzoylnaphthalene, 1-bromonaphthalene, 1,3-diphenoxybenzene, fluorene, 1-phenyl-2-pyrrolidinone, 1-methoxynaphthalene, 1-ethoxynaphthalene, 1,3-diphenylacetate 1,4-d
  • the melted product taken out from the reaction apparatus is preferably post-treated and then melt-kneaded with the other components to prepare a resin composition because the reactivity becomes better.
  • the method for post-treatment of the lysate is not particularly limited, and examples thereof include the following methods. (1) The solvent is used as it is or after adding an acid or a base, and then the solvent is distilled off under reduced pressure or normal pressure. (Or an organic solvent having an equivalent solubility with respect to a low-molecular polymer), a method of washing once or twice or more with a solvent selected from acetone, methyl ethyl ketone and alcohols, and further neutralizing, washing with water, filtering and drying.
  • Solvents such as water, acetone, methyl ethyl ketone, alcohol, ether, halogenated hydrocarbon, aromatic hydrocarbon and aliphatic hydrocarbon (soluble in the solvent of the solution and at least polyarylene)
  • a solvent which is a poor solvent for sulfide resin) is added as a precipitating agent to precipitate a solid product containing polyarylene sulfide resin and inorganic salt, and the solid product is filtered, washed and dried.
  • the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be. It is also possible to oxidatively crosslink the polyarylene sulfide resin by performing heat treatment in an oxidizing atmosphere having an oxygen concentration in the range of 5 to 30% by volume or under reduced pressure conditions.
  • Reaction formulas (1) to (5) are, for example, polyphenylene when diphenyl disulfide having a substituent R containing a group represented by general formula (a), (b) or (c) is used as a polymerization inhibitor. It is an example of reaction which sulfide produces
  • Reaction formula (1) is a reaction in which the —SS— bond in the polymerization inhibitor undergoes radical cleavage at the melting temperature.
  • the sulfur radical generated in the reaction formula (1) attacks the adjacent carbon atom of the terminal iodine atom of the growing main chain, and the iodine atom is detached, so that the polymerization is stopped, In this reaction, a substituent R is introduced at the end of the main chain.
  • Reaction formula (3) is a reaction in which a disulfide bond existing in the main chain of the polyarylene sulfide resin derived from the raw material (single sulfur) is radically cleaved at the melting temperature.
  • the reaction formula (4) the polymerization is stopped by recombination of the sulfur radical generated in the reaction formula (3) and the sulfur radical generated in the reaction formula (1), and the substituent R is at the end of the main chain.
  • the detached iodine atom is in a free state (iodine radical), or iodine molecules are generated by recombination of iodine radicals as in reaction formula (5).
  • the reaction product containing polyarylene sulfide resin obtained by melt polymerization contains iodine atoms derived from the raw material. Therefore, the polyarylene sulfide resin is usually used for the preparation of a spinning resin composition in the form of a mixture containing iodine atoms.
  • the concentration of iodine atoms in the mixture is, for example, in the range of 0.01 to 10,000 ppm, preferably in the range of 10 to 5000 ppm with respect to the polyarylene sulfide resin. It is also possible to keep the iodine atom concentration low by utilizing the sublimability of iodine molecules.
  • the range it is possible to set the range to 900 ppm or less, preferably 100 ppm or less, and further 10 ppm or less. It is. Although it is possible to remove iodine atoms below the detection limit, it is not practical in view of productivity.
  • the detection limit is, for example, about 0.01 ppm.
  • the polyarylene sulfide resin of the present embodiment obtained by melt polymerization or the reaction product containing the same includes an iodine atom. It can be clearly distinguished from polyarylene sulfides obtained by legal methods.
  • the polyarylene sulfide resin obtained by melt polymerization is mainly composed of an arylene sulfide unit composed of an aromatic ring derived from a diiodo aromatic compound and a sulfur atom directly bonded thereto. It includes a main chain and a predetermined substituent R bonded to the end of the main chain.
  • the predetermined substituent R is bonded to the aromatic ring at the end of the main chain directly or via a partial structure derived from a polymerization inhibitor.
  • the polyphenylene sulfide resin as the polyarylene sulfide resin according to one embodiment is, for example, the following general formula (10):
  • the repeating unit represented by the formula (10) has the following formula (10a) bonded at the para position:
  • a repeating unit bonded at the para position represented by the formula (10a) is preferable in terms of heat resistance and crystallinity of the resin.
  • the polyphenylene sulfide resin according to one embodiment has the following general formula (11):
  • R 20 and R 21 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.
  • bonded with the aromatic ring represented by these may be included.
  • the polyphenylene sulfide resin does not substantially contain the repeating unit of the general formula (11) from the viewpoints of crystallinity and heat resistance. More specifically, the ratio of the repeating unit represented by formula (11) is preferably based on the total of the repeating unit represented by formula (10) and the repeating unit represented by formula (11). It is 2 mass% or less, More preferably, it is 0.2 mass% or less.
  • the polyarylene sulfide resin of the present embodiment is mainly composed of the above arylene sulfide units, but usually derived from the elemental sulfur of the raw material, the following formula (20):
  • a structural unit related to a disulfide bond represented by the formula is also included in the main chain.
  • the proportion of the structural unit represented by the formula (20) is preferably 2 with respect to the total of the arylene sulfide unit and the structural site represented by the formula (20).
  • the range is 9% by mass or less, and more preferably 1.2% by mass or less.
  • Mw / Mtop of the polyarylene sulfide resin according to the present embodiment is preferably in the range of 0.80 to 1.70, more preferably in the range of 0.90 to 1.30.
  • Mw represents the weight average molecular weight measured by gel permeation chromatography
  • Mtop represents the average molecular weight (peak molecular weight) at the point where the detection intensity of the chromatogram obtained by the measurement is maximized.
  • Mw / Mtop indicates the distribution of the molecular weight to be measured.
  • the weight average molecular weight of the polyarylene sulfide resin according to this embodiment is not particularly limited as long as the effects of the present invention are not impaired, but the lower limit thereof is 28,000 or more from the viewpoint of excellent mechanical strength. Is more preferable, and the range of 30,000 or more is more preferable.
  • the upper limit is preferably in the range of 100,000 or less, more preferably in the range of 60,000 or less, and further in the range of 55,000 or less from the viewpoint that a better cavity balance can be imparted. Most preferably, it is in the range.
  • a polyarylene sulfide resin in the range of 28,000 to 60,000, more preferably in the range of 30,000 to 55,000.
  • a polyarylene sulfide resin having a weight average molecular weight in the range of more than 60,000 and 100,000 or less may be used together with the polyarylene sulfide resin.
  • the non-Newtonian index of the polyarylene sulfide resin is preferably in the range of 0.95 to 1.75, more preferably in the range of 1.00 to 1.70.
  • the non-Newtonian index means an index satisfying the following relational expression between the shear rate and the shear stress under the condition of a temperature of 300 ° C.
  • the non-Newtonian index can be an index relating to a molecular weight to be measured or a molecular structure such as linear, branched, or crosslinked.
  • the polyarylene sulfide resin having the above-mentioned specific ranges of Mw / Mtop and non-Newtonian index includes, for example, a diiodo aromatic compound, elemental sulfur, a polymerization inhibitor, a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor.
  • a method of reacting (solution polymerization) in a molten mixture containing a polyarylene sulfide resin it can be obtained by increasing the molecular weight of the polyarylene sulfide resin to some extent.
  • the melting point of the polyarylene sulfide resin is preferably in the range of 250 to 300 ° C, more preferably in the range of 265 to 300 ° C.
  • the melt viscosity (V6) at 300 ° C. of the polyarylene sulfide resin is preferably in the range of 1 to 2000 [Pa ⁇ s], more preferably in the range of 5 to 1700 [Pa ⁇ s].
  • V6 using a flow tester, an orifice having a temperature of 300 ° C., a load of 1.96 MPa, and a ratio of the orifice length to the orifice diameter (orifice length / orifice diameter) is 10/1. The melt viscosity after holding for 6 minutes.
  • the silicone compound used in the present embodiment is preferably a polyorganosiloxane represented by the following general formula (I) having a siloxane bond in the main chain.
  • R 30 - [Si (R 31) 2 -O] n 1 -R 32 (I) (In the formula, R 30 , R 31 and R 32 each independently represent a hydrogen atom or an organic group, and n 1 is an integer of 2 or more.)
  • polydimethylsiloxane in which R 30 , R 31 and R 32 in the general formula (1) are all methyl groups is preferable, and a part of the methyl groups of the polydimethylsiloxane may be a hydrogen atom or other Those substituted with the above substituents are also preferred.
  • substituents include alkyl groups having 2 or more carbon atoms, aryl groups, halogenated alkyl groups, silylalkyl groups, polyoxyalkylene groups, and reactive functional groups. When a plurality of methyl groups are substituted, From these, the same or different ones can be selected.
  • alkyl group having 2 or more carbon atoms examples include an ethyl group, a propyl group, a butyl group, an octyl group, and a dodecyl group.
  • aryl group examples include a phenyl group, a tolyl group, and a naphthyl group.
  • halogenated alkyl group examples include a fluoropropyl group and a chloropropyl group.
  • silylalkyl group is represented by the following general formula (II). — (CH 2 ) n 2 —Si (OCH 3 ) 3 (II) (In the formula, n 2 is an integer of 1 or more.)
  • polyoxyalkylene group examples include those represented by the following general formula (III).
  • the silicone compound preferably has a reactive functional group.
  • the reactive functional group include an epoxy group, amino group, mercapto group, vinyl group, carboxyl group, hydroxyl group, isocyanate group, amide group, acyl group, nitrile group, and acid anhydride group.
  • These reactive functional groups may be directly bonded to the main chain, or may be bonded to the terminal of an organic group such as an alkylene group or a polyoxyalkylene group bonded to the main chain.
  • a carboxyl group, a hydroxyl group, an epoxy group, and an amino group are particularly preferable, and an epoxy group and an amino group are more preferable.
  • the silicone compound is effective in improving the durability against the electrolytic solution by being uniformly dispersed in the resin composition.
  • the viscosity (25 ° C.) of the silicone compound is 10 to 100,000 mPa.
  • ⁇ S is preferable, and an oily material in the range of 10 to 80,000 mPa ⁇ s is particularly preferable.
  • the silicone compound When the reactive functional group is contained in the silicone compound, the silicone compound is favorably dispersed in the resin composition, so that the impact resistance can be improved. Furthermore, it is preferable also from the point which has the effect which suppresses what is called a bleed out that a silicone compound oozes out on the molded article surface.
  • the content of the reactive functional group in the silicone compound is preferably 400 g / equivalent (hereinafter abbreviated as “g / eq”) or more because it gives a favorable effect by imparting impact resistance and toughness. In terms of ease, 50,000 g / eq or less is preferable.
  • the compounding amount of the silicone compound is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin and the silicone compound. More preferably, it is 0.5 to 3 parts by mass.
  • a silane compound may be blended in the gasket resin composition of the present embodiment.
  • the silane compound include aminoalkoxysilane, epoxyalkoxysilane, and vinylalkoxysilane. These silane compounds can be used alone or in combination of two or more.
  • any silane compound having one or more amino groups in one molecule and two or more alkoxy groups can be used.
  • any silane compound having one or more epoxy groups and two or more alkoxy groups in one molecule can be used.
  • any silane compound having one or more vinyl groups and two or more alkoxy groups in one molecule can be used.
  • vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane and the like can be used.
  • a fibrous reinforcing material or an inorganic filler may be added within a range that does not impair the effects of the present invention.
  • fibrous reinforcing material examples include glass fiber, PAN-based or pitch-based carbon fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, aluminum borate fiber, titanic acid.
  • examples thereof include inorganic fibrous materials such as potassium fibers, stainless steel, aluminum, titanium, copper, brass, and other metallic fibrous materials, and organic fibrous materials such as aramid fibers.
  • inorganic fillers examples include silicates such as mica, talc, wollastonite, sericite, kaolin, clay, bentonite, asbestos, alumina silicate, zeolite, pyrophyllite, and carbonates such as calcium carbonate, magnesium carbonate, and dolomite, Examples thereof include sulfates such as calcium sulfate and barium sulfate, metal oxides such as alumina, magnesium oxide, silica, zirconia, titania and iron oxide, glass beads, ceramic beads, boron nitride, silicon carbide, and calcium phosphate. These fibrous reinforcing materials and inorganic fillers can be used alone or in combination of two or more.
  • the resin composition for a gasket of the present embodiment includes an antioxidant, a stabilizer, a processing heat stabilizer, a plasticizer, a release agent, a colorant, a lubricant, and a weather resistance as long as the effects of the present invention are not impaired.
  • An appropriate amount of a stabilizer, a foaming agent, a rust inhibitor, and a wax may be blended.
  • the resin composition for gaskets of the present embodiment may be appropriately mixed with other resin components in accordance with required characteristics.
  • the resin component that can be used here include ethylene, butylene, pentene, butadiene, isoprene, chloroprene, styrene, ⁇ -methylstyrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, (meth) acrylonitrile, and the like.
  • polyesters such as polyurethane, polybutylene terephthalate, polyethylene terephthalate, polyacetal, polycarbonate, polysulfone, polyallylsulfone, polyethersulfone, polyphenylene ether, polyetherketone, poly Homopolymers such as ether ether ketone, polyimide, polyamideimide, polyetherimide, silicone resin, epoxy resin, phenoxy resin, liquid crystal polymer, polyaryl ether, Dam or block copolymer, and graft copolymer and the like.
  • a silicone compound, a polyarylene sulfide resin, and other blending components blended as necessary are uniformly mixed with a tumbler, a Henschel mixer, or the like. Then, the mixture is put into a twin screw extruder, and the ratio (discharge amount / screw rotation number) between the resin component discharge amount (kg / hr) and the screw rotation speed (rpm) is 0.02 to 0.2. Examples of the method include melt kneading under a condition of (kg / hr ⁇ rpm).
  • the above production method will be described in more detail.
  • a method in which the above-described components are put into a twin-screw extruder and melt-kneaded under temperature conditions of a preset temperature of 330 ° C. and a resin temperature of about 350 ° C. can be mentioned.
  • the discharge amount of the resin component is in the range of 5 to 50 kg / hr at a rotational speed of 250 rpm. In particular, it is preferably 20 to 35 kg / hr from the viewpoint of dispersibility. Therefore, the ratio (discharge amount / screw rotation number) between the resin component discharge amount (kg / hr) and the screw rotation speed (rpm) is particularly 0.08 to 0.14 (kg / hr ⁇ rpm). Is preferred.
  • the resin composition for a gasket thus melt-kneaded is usually cut into a pellet form. Further, the obtained pellet is supplied to a molding machine and melt-molded to finally obtain a molded product having a desired shape.
  • melt molding method examples include injection molding, extrusion molding, and compression molding.
  • injection molding is particularly preferable as a method of molding the secondary battery gasket.
  • the resin composition for gaskets of the present embodiment is a secondary battery used for electric devices such as notebook computers, mobile phones and video cameras, or in-vehicle applications such as hybrid vehicles (HV) and electric vehicles (EV).
  • HV hybrid vehicles
  • EV electric vehicles
  • it is particularly useful for gaskets for high capacity lithium ion secondary batteries.
  • Polyphenylene sulfide resin (PPS resin) 1-1 Synthesis of PPS-1 to 5 (Synthesis Example 1) 30-0.0 g of p-diiodobenzene (Tokyo Kasei Co., Ltd., p-diiodobenzene purity of 98.0% or more), solid sulfur (sulfur (powder) manufactured by Kanto Chemical Co., Inc.) 27.00 g, 4,4′- Dithiobisbenzoic acid (4,4′-dithiobisbenzoic acid, Technical Grade, manufactured by Wako Pure Chemical Industries, Ltd.) (2.0 g) was heated to 180 ° C. in a nitrogen atmosphere, and these were dissolved and mixed.
  • PPS resin Polyphenylene sulfide resin
  • the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. 1 L of ion-exchanged water was added to the obtained water-containing cake and stirred for 10 minutes. Next, the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. After repeating this operation once more, the cake was dried at 120 ° C. for 4 hours to obtain 91 g of PPS resin.
  • the temperature is raised to 220 ° C., the pressure is reduced to 46.7 kPa, and the temperature and pressure are changed stepwise so that the system has an absolute pressure of 320 Pa at 320 ° C., and the resulting molten mixture is heated. Then, melt polymerization was performed for 8 hours.
  • 200 g of NMP was added, and the mixture was heated and stirred at 220 ° C., and the resulting dissolved product was filtered.
  • 320 g of NMP was added to the lysate after filtration, and cake washing filtration was performed. 1 L of ion-exchanged water was added to the obtained cake containing NMP, and the mixture was stirred in an autoclave at 200 ° C. for 10 minutes.
  • the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. 1 L of ion-exchanged water was added to the obtained water-containing cake and stirred for 10 minutes. Next, the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. After repeating this operation once more, the cake was dried at 120 ° C. for 4 hours to obtain 91 g of PPS resin.
  • Non-Newtonian index PPS resin was measured with a capillary rheometer at a temperature of 300 ° C. using a die having a diameter of 1 mm and a length of 40 mm for a shear rate of 100 to 1000 (sec ⁇ 1 ). Is a value calculated from the slope of the logarithm plot.
  • Mw and Mw / Mtop (molecular weight distribution) The weight average molecular weight and peak molecular weight of the PPS resin were measured under the following measurement conditions using gel permeation chromatography. Mw / Mtop was calculated from the obtained Mw and Mtop.
  • Six types of monodisperse polystyrene were used for calibration. Apparatus: Ultra-high temperature polymer molecular weight distribution analyzer ("SSC-7000" manufactured by Senshu Kagaku Co., Ltd.) Column: UT-805L (made by Showa Denko KK) Column temperature: 210 ° C Solvent: 1-chloronaphthalene Measurement method: UV detector (360 nm)
  • Polyphenylene sulfide resin composition (PPS compound) 2-1.
  • Raw materials In order to prepare the PPS resin composition, the following silicone compounds were prepared.
  • Evaluation 3-1 Tensile Strength and Tensile Elongation Evaluation moldings obtained by injection molding into the ASTM No. 4 dumbbell shape from the obtained compound were subjected to tensile elongation at break using “Autograph AG-5000C” manufactured by Shimadzu Corporation according to ASTM D638. It was measured.
  • Compressive stress relaxation test Resin composition pellets are molded using an injection molding machine, and a flat plate of 8 mm length ⁇ 8 mm width ⁇ 3 mm thickness is molded by an injection molding machine, and a test piece for compressive stress relaxation as shown in FIG. Produced. Using this test piece, the compression stress relaxation was measured under 10% strain (temperature conditions: 23 ° C. and 60 ° C.) by “Autograph AG-50KNX” manufactured by Shimadzu Corporation equipped with a thermostatic bath. The compressive stress was determined.
  • the resin compositions prepared in the examples have excellent cavity balance, high mechanical strength, and can form molded products with excellent airtightness. When used, the airtightness required for the secondary battery can be maintained.

Abstract

Provided are: a resin composition for a gasket, said resin composition being used as a material for a gasket used in a sealed secondary battery (storage battery) such as a lithium ion secondary battery, and exhibiting excellent cavity balance and a high mechanical strength; a production method for said resin composition; and a gasket for a secondary battery. More specifically, the present invention relates to: a resin composition for a gasket used in a secondary battery configured from a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte, said resin composition including a polyarylene sulfide resin and a silicone compound, and being capable of being obtained using a method including a step in which the polyarylene sulfide resin is subjected to a reaction in a molten mixture including a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor; a production method for said resin composition; and a gasket for a secondary battery.

Description

ガスケット用樹脂組成物、その製造方法及び二次電池用ガスケットResin composition for gasket, method for producing the same, and gasket for secondary battery
 本発明は、二次電池のガスケットに用いられるガスケット用樹脂組成物、その製造方法及び二次電池用ガスケットに関する。 The present invention relates to a gasket resin composition used for a secondary battery gasket, a method for producing the same, and a secondary battery gasket.
 密閉型二次電池は、一般に正極板、負極板及び正極板と負極板との間に配置されたセパレータを含む極板群と、この極板群を浸漬するための電解液とを含む電池素子が一部開口されている電池ケース(外装体)の内部に収容され、電池ケースの開口を封口するための封口体により密閉されている。また、この密閉型二次電池において、例えば正極板と電気的に接続されている正極端子との接点や、負極板と電気的に接続されている負極端子との接点には一対の端子間での短絡防止や電解液の漏出防止のためにガスケットが設けられている。このガスケットには電解液に対する耐電解液性や優れた気密性が要求されている。 A sealed secondary battery generally includes a positive electrode plate, a negative electrode plate, an electrode plate group including a separator disposed between the positive electrode plate and the negative electrode plate, and a battery element including an electrolytic solution for immersing the electrode plate group. Is housed inside a partially opened battery case (exterior body), and is sealed by a sealing body for sealing the opening of the battery case. Further, in this sealed secondary battery, for example, a contact point between the positive electrode terminal electrically connected to the positive electrode plate and a contact point between the negative electrode terminal electrically connected to the negative electrode plate are between a pair of terminals. Gaskets are provided to prevent short circuits and electrolyte leakage. The gasket is required to have resistance to electrolyte and excellent airtightness against the electrolyte.
 これらの要求を満たすために、例えば、ガスケット材料として耐湿熱性を向上させたポリアミド樹脂を使用する技術が報告されている(例えば、特許文献1参照。)。しかしながら、耐湿熱性を向上させたポリアミド樹脂の使用により耐湿熱性をわずかに改善することはできるものの、耐電解液性及び気密性の程度はまだ不十分なものである。 In order to satisfy these requirements, for example, a technique using a polyamide resin having improved heat and humidity resistance as a gasket material has been reported (for example, see Patent Document 1). However, although the heat and moisture resistance can be slightly improved by using a polyamide resin having improved moisture and heat resistance, the degree of resistance to electrolyte and airtightness is still insufficient.
 一方、ガスケット材料として、ポリアリーレンスルフィド樹脂又はテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体樹脂を用いたガスケットが優れた気密性や耐電解液性を有することが報告されている(例えば、特許文献2参照。)。 On the other hand, it has been reported that a gasket using a polyarylene sulfide resin or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin as a gasket material has excellent airtightness and electrolyte resistance (for example, Patent Documents). 2).
特開2005-78890号公報JP 2005-78890 A 特開平8-321287号公報JP-A-8-32287
 近年、高い理論容量の活物質を電極物質として用いることによってリチウムイオン電池の高容量化が進んだ反面、充放電時に3~4倍といった大きな体積変化を示すようになり、内部媒体の圧力が格段に高くなっている。また、ハイブリッド自動車(HV)や電気自動車(EV)といった車載用途の比重が高くなった結果、より高い安全性が要求され、高温・高湿の過酷な条件下でのガスケットの気密性に対する信頼性が極めて高いレベルで必要となってきている。 In recent years, the use of an active material with a high theoretical capacity as an electrode material has led to an increase in the capacity of lithium ion batteries, but on the other hand, the volume of the internal medium has increased significantly by 3 to 4 times during charging and discharging, and the pressure of the internal medium has been dramatically increased. It is getting higher. In addition, as a result of the increased specific gravity of in-vehicle applications such as hybrid vehicles (HV) and electric vehicles (EV), higher safety is required, and the reliability of the gasket's airtightness under severe conditions of high temperature and high humidity. Is becoming necessary at an extremely high level.
 しかしながら、従来のガスケット材料は、内部媒体の圧力に耐えらず、近年求められているリチウムイオン二次電池等の密閉型二次電池(蓄電池)に対して要求されるレベルに至らず、材料としては不十分である。そのため、ガスケット材料には、機械的強度を向上することが求められている。 However, the conventional gasket material does not endure the pressure of the internal medium, and does not reach the level required for a sealed secondary battery (storage battery) such as a lithium ion secondary battery that has been demanded in recent years. Is insufficient. Therefore, the gasket material is required to improve the mechanical strength.
 一方、複数のキャビティーを有する金型を用いた射出成形により、同時に複数のガスケットを成形したときに、一部のキャビティーに成形用材料が十分に充填されないといった成形不良が発生することがある。そのため、成形用材料には、均一にムラなく充填できることも求められている。 On the other hand, when a plurality of gaskets are molded at the same time by injection molding using a mold having a plurality of cavities, a molding defect such that a part of the cavities is not sufficiently filled with molding material may occur. . Therefore, the molding material is also required to be able to be filled evenly and uniformly.
 そこで、本発明が解決しようとする主な課題は、リチウムイオン二次電池等の密閉型二次電池(蓄電池)に用いられるガスケット用材料として、キャビティーバランスに優れ、高い機械的強度を有するガスケット用樹脂組成物、その製造方法及び二次電池用ガスケットを提供することにある。 Accordingly, the main problem to be solved by the present invention is a gasket having excellent cavity balance and high mechanical strength as a gasket material used in a sealed secondary battery (storage battery) such as a lithium ion secondary battery. It is providing the resin composition for batteries, its manufacturing method, and the gasket for secondary batteries.
 本発明者らは種々の検討を行った結果、ジヨード芳香族化合物と単体硫黄と重合禁止剤とを溶融重合させることで得られるポリアリーレンスルフィド樹脂と、シリコーン化合物とを含有する樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。本発明を完成するに至った。 As a result of various studies, the present inventors use a resin composition containing a polyarylene sulfide resin obtained by melt polymerization of a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor, and a silicone compound. As a result, the inventors have found that the above problems can be solved, and have completed the present invention. The present invention has been completed.
 すなわち、本発明は、正極、負極、封口体、ガスケット、セパレータ及び電解液から構成される二次電池に用いられるガスケット用樹脂組成物であって、ポリアリーレンスルフィド樹脂及びシリコーン化合物を含有し、ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、ガスケット用樹脂組成物を提供する。本発明はまた、上記ガスケット用樹脂組成物からなる二次電池用ガスケットを提供する。 That is, the present invention is a resin composition for a gasket used for a secondary battery composed of a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte solution, comprising a polyarylene sulfide resin and a silicone compound, The arylene sulfide resin can be obtained by a method comprising reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, elemental sulfur and the polymerization inhibitor. There is provided a resin composition for a gasket. The present invention also provides a secondary battery gasket comprising the above gasket resin composition.
 本発明は更に、正極、負極、封口体、ガスケット、セパレータ及び電解液から構成される二次電池に用いられるガスケット用樹脂組成物の製造方法であって、ポリアリーレンスルフィド樹脂及びシリコーン化合物を混合する工程を有し、ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、ガスケット用樹脂組成物の製造方法を提供する。 The present invention further relates to a method for producing a resin composition for a gasket used in a secondary battery composed of a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte solution, wherein the polyarylene sulfide resin and the silicone compound are mixed. A polyarylene sulfide resin comprising reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, elemental sulfur and the polymerization inhibitor. A method for producing a resin composition for a gasket, which can be obtained by the method.
 本発明によれば、リチウムイオン二次電池等の密閉型二次電池(蓄電池)に用いられるガスケット用材料として、キャビティーバランスに優れ、高い機械的強度を有するガスケット用樹脂組成物、その製造方法及び二次電池用ガスケットを提供することができる。また、上記ガスケット用樹脂組成物を用いることで、加熱によるガス発生を抑制した二次電池用ガスケットを作製することができる。 According to the present invention, as a gasket material used in a sealed secondary battery (storage battery) such as a lithium ion secondary battery, a resin composition for gasket having excellent cavity balance and high mechanical strength, and a method for producing the same And a gasket for a secondary battery. Moreover, the gasket for secondary batteries which suppressed the gas generation by a heating can be produced by using the said resin composition for gaskets.
圧縮応力緩和試験に用いた試験片を示す模式図である。It is a schematic diagram which shows the test piece used for the compression stress relaxation test.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本実施形態に係るガスケット用樹脂組成物は、ポリアリーレンスルフィド樹脂及びシリコーン化合物を含有する。 The resin composition for a gasket according to the present embodiment contains a polyarylene sulfide resin and a silicone compound.
 本実施形態に用いられるポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることができる。このような方法によれば、フィリップス法をはじめとする従来法に比べ、比較的高分子量の重合体としてポリアリーレンスルフィド樹脂を得ることができる。 The polyarylene sulfide resin used in the present embodiment is obtained by reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, elemental sulfur and the polymerization inhibitor. It can be obtained by the method of including. According to such a method, a polyarylene sulfide resin can be obtained as a polymer having a relatively high molecular weight as compared with conventional methods such as the Philips method.
 ジヨード芳香族化合物は、芳香族環と、芳香族環に直接結合した2個のヨウ素原子とを有する。ジヨード芳香族化合物としては、ジヨードベンゼン、ジヨードトルエン、ジヨードキシレン、ジヨードナフタレン、ジヨードビフェニル、ジヨードベンゾフェノン、ジヨードジフェニルエーテル及びジヨードジフェニルスルフォン等が挙げられるが、これらに限定されない。2つのヨウ素原子の置換位置は特に限定されないが、好ましくは2つの置換位置が分子内で出来る限り遠い位置にあることが望ましい。好ましい置換位置は、パラ位、及び4,4’-位である。 The diiodo aromatic compound has an aromatic ring and two iodine atoms directly bonded to the aromatic ring. Examples of diiodo aromatic compounds include, but are not limited to, diiodobenzene, diiodotoluene, diiodoxylene, diiodonaphthalene, diiodobiphenyl, diiodobenzophenone, diiododiphenyl ether, and diiododiphenyl sulfone. The substitution positions of the two iodine atoms are not particularly limited, but it is preferable that the two substitution positions are located as far as possible in the molecule. Preferred substitution positions are the para position and the 4,4'-position.
 ジヨード芳香族化合物の芳香族環は、フェニル基、ヨウ素原子以外のハロゲン原子、ヒドロキシ基、ニトロ基、アミノ基、炭素原子数1~6のアルコキシ基、カルボキシ基、カルボキシレート、アリールスルホンおよびアリールケトンから選ばれる少なくとも1種の置換基によって置換されていてもよい。ただし、ポリアリーレンスルフィド樹脂の結晶化度及び耐熱性等の観点から、未置換のジヨード芳香族化合物に対する置換されたジヨード芳香族化合物の割合は、好ましくは0.0001~5質量%の範囲であり、より好ましくは0.001~1質量%の範囲である。 Aromatic rings of diiodo aromatic compounds include phenyl groups, halogen atoms other than iodine atoms, hydroxy groups, nitro groups, amino groups, alkoxy groups having 1 to 6 carbon atoms, carboxy groups, carboxylates, aryl sulfones and aryl ketones. It may be substituted with at least one substituent selected from However, from the viewpoint of crystallinity and heat resistance of the polyarylene sulfide resin, the ratio of the substituted diiodo aromatic compound to the unsubstituted diiodo aromatic compound is preferably in the range of 0.0001 to 5% by mass. More preferably, it is in the range of 0.001 to 1% by mass.
 単体硫黄は、硫黄原子のみによって構成される物質(S、S、S、S等)を意味し、その形態は限定されない。具体的には、局法医薬品として市販されている単体硫黄を用いてもよいし、汎用的に入手することができる、S及びS等を含む混合物を用いてもよい。単体硫黄の純度も特に限定されない。単体硫黄は、室温(23℃)で固体であれば、粒形状又は粉末状であってもよい。単体硫黄の粒径は、特に限定されないが、好ましくは0.001~10mmの範囲であり、より好ましくは0.01~5mmの範囲であり、更に好ましくは0.01~3mmの範囲である。 The elemental sulfur means a substance (S 8 , S 6 , S 4 , S 2, etc.) composed only of sulfur atoms, and its form is not limited. More specifically, the present invention may be used elemental sulfur which is commercially available as Tsuboneho medicament may be obtained generically, may be used a mixture containing S 8 and S 6 and the like. The purity of elemental sulfur is not particularly limited. The elemental sulfur may be in the form of particles or powder as long as it is solid at room temperature (23 ° C.). The particle size of elemental sulfur is not particularly limited, but is preferably in the range of 0.001 to 10 mm, more preferably in the range of 0.01 to 5 mm, and still more preferably in the range of 0.01 to 3 mm.
 重合禁止剤は、ポリアリーレンスルフィド樹脂の重合反応において当該重合反応を禁止又は停止する化合物であれば、特に制限なく用いることができる。重合禁止剤は、ポリアリーレンスルフィド樹脂の主鎖の末端にヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を導入し得る化合物を含むことが好ましい。すなわち、重合禁止剤としては、ヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を1又は2以上有す化合物が好ましい。また、重合禁止剤が上記官能基を有していてもよいし、重合の停止反応等によって、上記官能基を生成してもよい。 The polymerization inhibitor can be used without particular limitation as long as it is a compound that inhibits or stops the polymerization reaction in the polymerization reaction of the polyarylene sulfide resin. The polymerization inhibitor preferably contains a compound capable of introducing at least one group selected from the group consisting of a hydroxy group, an amino group, a carboxyl group and a salt of a carboxyl group at the end of the main chain of the polyarylene sulfide resin. That is, the polymerization inhibitor is preferably a compound having one or more groups selected from the group consisting of a hydroxy group, an amino group, a carboxyl group, and a carboxyl group salt. Moreover, the polymerization inhibitor may have the functional group, or the functional group may be generated by a polymerization termination reaction or the like.
 ヒドロキシ基又はアミノ基を有する重合禁止剤としては、例えば、下記式(1)又は(2)で表される化合物が重合禁止剤として用いられ得る。 As the polymerization inhibitor having a hydroxy group or an amino group, for example, a compound represented by the following formula (1) or (2) can be used as the polymerization inhibitor.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)で表される化合物によれば、下記式(1-1)で表される一価の基が主鎖の末端基として導入される。式(1-1)中のYは、重合禁止剤に由来するヒドロキシ基、アミノ基等である。 According to the compound represented by the general formula (1), a monovalent group represented by the following formula (1-1) is introduced as a terminal group of the main chain. Y in the formula (1-1) is a hydroxy group, an amino group or the like derived from a polymerization inhibitor.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(2)で表される化合物によれば、下記式(2-1)で表される一価の基が主鎖の末端基として導入される。一般式(1)で表される化合物に由来するヒドロキシ基が、例えば、式(2)中のカルボニル基の炭素原子と硫黄ラジカルと結合することによりポリアリーレンスルフィド樹脂中に導入され得る。 According to the compound represented by the general formula (2), a monovalent group represented by the following formula (2-1) is introduced as a terminal group of the main chain. A hydroxy group derived from the compound represented by the general formula (1) can be introduced into the polyarylene sulfide resin by, for example, bonding to a carbon atom of a carbonyl group in the formula (2) and a sulfur radical.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1-1)又は(2-1)で表される基は、ポリアリーレンスルフィド樹脂の主鎖中に原料(単体硫黄)に由来して存在するジスルフィド結合が溶融温度下でラジカル開裂して発生した硫黄ラジカルと、一般式(1)で表される化合物又は一般式(2)で表される化合物とが結合することによって、ポリアリーレンスルフィド樹脂中に導入されると考えられる。これら特定構造の構成単位の存在は、一般式(1)又は(2)で表される化合物を用いた溶融重合により得られたポリアリーレンスルフィド樹脂に特徴的である。 In the group represented by the formula (1-1) or (2-1), the disulfide bond that is derived from the raw material (single sulfur) in the main chain of the polyarylene sulfide resin is radically cleaved at the melting temperature. The generated sulfur radical and the compound represented by the general formula (1) or the compound represented by the general formula (2) are considered to be introduced into the polyarylene sulfide resin. The existence of these structural units having a specific structure is characteristic of the polyarylene sulfide resin obtained by melt polymerization using the compound represented by the general formula (1) or (2).
 一般式(1)で表される化合物としては、例えば、2-ヨードフェノール、2-アミノアニリンなどが挙げられる。一般式(2)で表される化合物としては、2-ヨードベンゾフェノンが挙げられる。 Examples of the compound represented by the general formula (1) include 2-iodophenol and 2-aminoaniline. Examples of the compound represented by the general formula (2) include 2-iodobenzophenone.
 カルボキシル基を有する重合禁止剤としては、例えば、下記一般式(3)、(4)又は(5)で表される化合物から選ばれる1種以上の化合物が用いられ得る。 As the polymerization inhibitor having a carboxyl group, for example, one or more compounds selected from the compounds represented by the following general formula (3), (4) or (5) may be used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(3)中、R及びRはそれぞれ独立に、水素原子、又は、下記一般式(a)、(b)若しくは(c)で表される一価の基を表し、R又はRの少なくともいずれか一方は一般式(a)、(b)又は(c)で表される一価の基である。一般式(4)中、Zは、ヨウ素原子又はメルカプト基を表し、Rは、下記一般式(a)、(b)又は(c)で表される一価を表す。一般式(5)中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。 In the general formula (3), R 1 and R 2 each independently represent a hydrogen atom or a monovalent group represented by the following general formula (a), (b) or (c), and R 1 or At least one of R 2 is a monovalent group represented by the general formula (a), (b) or (c). In General Formula (4), Z represents an iodine atom or a mercapto group, and R 3 represents a monovalent group represented by the following General Formula (a), (b), or (c). In the general formula (5), R 4 is formula (a), represents a monovalent group represented by (b) or (c).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(a)~(c)中のXは、水素原子又はアルカリ金属原子であるが、反応性が良好となる点から水素原子が好ましい。アルカリ金属原子としては、ナトリウム、リチウム、カリウム、ルビジウム、及びセシウムなどが挙げられるが、ナトリウムが好ましい。一般式(b)中、R10は炭素原子数1~6のアルキル基を表す。一般式(c)中、R11は水素原子又は炭素原子数1~3のアルキル基を表し、R12は炭素原子数1~5のアルキル基を表す。 X in the general formulas (a) to (c) is a hydrogen atom or an alkali metal atom, and is preferably a hydrogen atom from the viewpoint of good reactivity. Examples of the alkali metal atom include sodium, lithium, potassium, rubidium, and cesium, and sodium is preferable. In the general formula (b), R 10 represents an alkyl group having 1 to 6 carbon atoms. In the general formula (c), R 11 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 12 represents an alkyl group having 1 to 5 carbon atoms.
 一般式(3)、(4)又は(5)で表される化合物によれば、下記式(6)又は(7)で表される一価の基が主鎖の末端基として導入される。これら特定構造の末端の構成単位の存在は、一般式(3)、(4)又は(5)で表される化合物を用いた溶融重合により得られたポリアリーレンスルフィド樹脂に特徴的である。 According to the compound represented by the general formula (3), (4) or (5), a monovalent group represented by the following formula (6) or (7) is introduced as a terminal group of the main chain. The presence of the terminal structural unit of these specific structures is characteristic of the polyarylene sulfide resin obtained by melt polymerization using the compound represented by the general formula (3), (4) or (5).
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 5 represents a monovalent group represented by the general formula (a), (b) or (c)).
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 6 represents a monovalent group represented by the general formula (a), (b) or (c)).
 重合禁止剤として、カルボキシル基等の官能基を有していない化合物等を使用してもよい。このような化合物としては、例えば、ジフェニルジスルフィド、モノヨードベンゼン、チオフェノール、2,2’-ジベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、2-(モルホリノチオ)ベンゾチアゾール及びN,N’-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミドから選ばれる少なくとも1種の化合物を用いることができる。 As the polymerization inhibitor, a compound having no functional group such as a carboxyl group may be used. Examples of such compounds include diphenyl disulfide, monoiodobenzene, thiophenol, 2,2′-dibenzothiazolyl disulfide, 2-mercaptobenzothiazole, N-cyclohexyl-2-benzothiazolylsulfenamide, 2 At least one compound selected from-(morpholinothio) benzothiazole and N, N'-dicyclohexyl-1,3-benzothiazole-2-sulfenamide can be used.
 本実施形態に係るポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤と、必要に応じて触媒と含む混合物を加熱して得られる溶融混合物中で溶融重合を行うことによって生成する。溶融混合物中のジヨード芳香族化合物の割合は、単体硫黄1モルに対して、好ましくは0.5~2モルの範囲であり、より好ましくは0.8~1.2モルの範囲である。また、混合物中の重合禁止剤の割合は、固体硫黄1モルに対して、好ましくは0.0001~0.1モルの範囲であり、より好ましくは0.0005~0.05モルの範囲である。 The polyarylene sulfide resin according to this embodiment is obtained by performing melt polymerization in a melt mixture obtained by heating a mixture containing a diiodo aromatic compound, elemental sulfur, a polymerization inhibitor, and a catalyst as necessary. Generate. The ratio of the diiodo aromatic compound in the molten mixture is preferably in the range of 0.5 to 2 moles, more preferably in the range of 0.8 to 1.2 moles per mole of elemental sulfur. The ratio of the polymerization inhibitor in the mixture is preferably in the range of 0.0001 to 0.1 mol, more preferably in the range of 0.0005 to 0.05 mol, with respect to 1 mol of solid sulfur. .
 重合禁止剤を添加する時期は、特に制限されないが、ジヨード芳香族化合物、単体硫黄及び必要に応じて添加される触媒を含む混合物を加熱して、混合物の温度が好ましくは200℃~320℃の範囲、より好ましくは250~320℃の範囲となった時点で重合禁止剤を添加することができる。 The timing of adding the polymerization inhibitor is not particularly limited, but the temperature of the mixture is preferably 200 ° C. to 320 ° C. by heating the mixture containing the diiodo aromatic compound, elemental sulfur and the catalyst to be added as necessary. The polymerization inhibitor can be added when the temperature is within the range, more preferably within the range of 250 to 320 ° C.
 溶融混合物にニトロ化合物を触媒として添加して、重合速度を調節することができる。このニトロ化合物としては、通常、各種ニトロベンゼン誘導体を用いることができる。ニトロベンゼン誘導体としては、例えば1,3-ジヨード-4-ニトロベンゼン、1-ヨード-4-ニトロベンゼン、2,6-ジヨード-4-ニトロフェノール及び2,6-ジヨード-4-ニトロアミンが挙げられる。触媒の量は、通常、触媒として添加される量であればよく、例えば単体硫黄100質量部に対して0.01~20質量部の範囲であることが好ましい。 The polymerization rate can be adjusted by adding a nitro compound as a catalyst to the molten mixture. As this nitro compound, various nitrobenzene derivatives can be usually used. Examples of the nitrobenzene derivative include 1,3-diiodo-4-nitrobenzene, 1-iodo-4-nitrobenzene, 2,6-diiodo-4-nitrophenol and 2,6-diiodo-4-nitroamine. The amount of the catalyst is usually an amount added as a catalyst, and is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of elemental sulfur, for example.
 溶融重合の条件は、重合反応が適切に進行するように、適宜調整される。溶融重合の温度は、好ましくは、175℃以上、生成するポリアリーレンスルフィド樹脂の融点+100℃以下の範囲、より好ましくは180~350℃の範囲である。溶融重合は、絶対圧が好ましくは1[cPa]~100[kPa]の範囲、より好ましくは13[cPa]~60[kPa]の範囲で行われる。溶融重合の条件は、一定である必要は無い。例えば、重合初期は温度を好ましくは175~270℃の範囲、より好ましくは180~250℃の範囲とし、かつ、絶対圧を6.7~100[kPa]の範囲とし、その後、連続的に又は階段状に昇温及び減圧させながら重合を行い、重合後期は、温度を好ましくは270℃以上、生成するポリアリーレンスルフィド樹脂の融点+100℃以下の範囲、より好ましくは300~350℃の範囲とし、かつ、絶対圧を1[cPa]~6[kPa]の範囲として重合を行うことができる。本明細書において、樹脂の融点は、示差走査熱量計(パーキンエルマー製DSC装置 Pyris Diamond)を用いてJIS K 7121に準拠して測定される値を意味する。 The conditions for melt polymerization are appropriately adjusted so that the polymerization reaction proceeds appropriately. The temperature of the melt polymerization is preferably 175 ° C. or higher, the melting point of the polyarylene sulfide resin to be formed + 100 ° C. or lower, more preferably 180 to 350 ° C. The melt polymerization is carried out with an absolute pressure of preferably 1 [cPa] to 100 [kPa], more preferably 13 [cPa] to 60 [kPa]. The conditions for melt polymerization need not be constant. For example, at the initial stage of polymerization, the temperature is preferably in the range of 175 to 270 ° C., more preferably in the range of 180 to 250 ° C., and the absolute pressure is in the range of 6.7 to 100 [kPa], and then continuously or Polymerization is carried out while raising and lowering the temperature stepwise, and in the latter stage of polymerization, the temperature is preferably 270 ° C. or higher, the melting point of the polyarylene sulfide resin to be produced + 100 ° C. or lower, more preferably 300 to 350 ° C., In addition, the polymerization can be carried out at an absolute pressure in the range of 1 [cPa] to 6 [kPa]. In the present specification, the melting point of the resin means a value measured in accordance with JIS K 7121 using a differential scanning calorimeter (Perkin Elmer DSC device Pyris Diamond).
 溶融重合は、酸化架橋反応を防ぎつつ、高い重合度を得る観点から、好ましくは、非酸化性雰囲気下で行う。非酸化性雰囲気において、気相の酸素濃度は好ましくは5体積%未満の範囲、より好ましくは2体積%未満の範囲であり、更に好ましくは気相が酸素を実質的に含有しない。非酸化性雰囲気は、好ましくは、窒素、ヘリウム及びアルゴン等の不活性ガス雰囲気である。 The melt polymerization is preferably performed in a non-oxidizing atmosphere from the viewpoint of obtaining a high degree of polymerization while preventing oxidative crosslinking reaction. In the non-oxidizing atmosphere, the oxygen concentration in the gas phase is preferably in the range of less than 5% by volume, more preferably in the range of less than 2% by volume, and more preferably the gas phase is substantially free of oxygen. The non-oxidizing atmosphere is preferably an inert gas atmosphere such as nitrogen, helium and argon.
 溶融重合は、例えば、加熱装置、減圧装置及び撹拌装置を備える溶融混練機を用いて行うことができる。溶融混錬機としては、例えば、バンバリーミキサー、ニーダー、連続混練機、単軸押出機及び二軸押出機が挙げられる。 The melt polymerization can be performed using, for example, a melt kneader equipped with a heating device, a decompression device, and a stirring device. Examples of the melt kneader include a Banbury mixer, a kneader, a continuous kneader, a single screw extruder, and a twin screw extruder.
 溶融重合のための溶融混合物は、溶媒を実質的に含有しないことが好ましい。より具体的には、溶融混合物に含まれる溶媒の量が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤と、必要に応じて触媒との合計100質量部に対して、好ましくは10質量部以下の範囲、より好ましくは5質量部以下の範囲、さらに好ましくは1質量部以下の範囲である。溶媒の量は、0質量部以上、0.01質量部以上の範囲、又は0.1質量部以上の範囲であってもよい。 It is preferable that the molten mixture for melt polymerization does not substantially contain a solvent. More specifically, the amount of the solvent contained in the molten mixture is preferably 10 masses with respect to a total of 100 mass parts of the diiodo aromatic compound, elemental sulfur, the polymerization inhibitor, and, if necessary, the catalyst. Part or less, more preferably 5 parts by weight or less, and even more preferably 1 part by weight or less. The amount of the solvent may be 0 part by mass or more, 0.01 part by mass or more, or 0.1 part by mass or more.
 溶融重合後の溶融混合物(反応生成物)を冷却して固体状態の混合物を得た後、減圧下、又は非酸化性雰囲気の大気圧下で、混合物を加熱して重合反応を更に進行させてもよい。これによりさらに分子量を増大させることができるだけでなく、生成したヨウ素分子が昇華されて除去されるため、ポリアリーレンスルフィド樹脂中のヨウ素原子濃度を低く抑えることができる。好ましくは100~260℃の範囲、より好ましくは130~250℃の範囲、更に好ましくは150~230℃の範囲の温度まで冷却することで、固体状態の混合物を得ることができる。固体状態への冷却後の加熱は、溶融重合と同様の温度及び圧力条件下で行うことができる。 After the melt mixture (reaction product) after the melt polymerization is cooled to obtain a solid state mixture, the mixture is heated under reduced pressure or atmospheric pressure in a non-oxidizing atmosphere to further advance the polymerization reaction. Also good. As a result, not only can the molecular weight be increased, but also the generated iodine molecules are sublimated and removed, so the iodine atom concentration in the polyarylene sulfide resin can be kept low. The solid state mixture can be obtained by cooling to a temperature of preferably 100 to 260 ° C, more preferably 130 to 250 ° C, and even more preferably 150 to 230 ° C. Heating after cooling to the solid state can be performed under the same temperature and pressure conditions as in melt polymerization.
 溶融重合工程により得られたポリアリーレンスルフィド樹脂を含む反応生成物は、そのまま直接、溶融混練機に投入する等の方法により樹脂組成物を製造するためのこともできるが、当該反応生成物に当該反応生成物が溶解する溶媒を加えて溶解物を調製し、当該溶解物の状態で反応装置から反応生成物を取り出すことが、生産性に優れるだけでなくさらに反応性も良好となるため好ましい。当該反応生成物が溶解する溶媒の添加は、溶融重合後に行うことが好ましいが、溶融重合の反応後期に行ってもよく、また、上記のとおり溶融混合物(反応生成物)を冷却して固体状態の混合物を得た後、加圧下、減圧下、又は非酸化性雰囲気の大気圧下で、混合物を加熱して重合反応を更に進行させた後であってもよい。当該溶解物を調製する工程は、非酸化性雰囲気下で行ってもよい。また、加熱溶解の温度としては、前記反応生成物が溶解する溶媒の融点以上の範囲であればよく、好ましくは200~350℃の範囲、より好ましくは210~250℃の範囲であり、加圧下で行うことが好ましい。 The reaction product containing the polyarylene sulfide resin obtained by the melt polymerization step can be directly produced in a melt-kneader to produce a resin composition. It is preferable to prepare a dissolved product by adding a solvent in which the reaction product is dissolved, and to take out the reaction product from the reaction apparatus in the dissolved state because not only the productivity is improved but also the reactivity is improved. The addition of the solvent in which the reaction product is dissolved is preferably performed after the melt polymerization, but it may be performed in the later stage of the reaction of the melt polymerization, or as described above, the molten mixture (reaction product) is cooled to form a solid state. After obtaining the mixture, the polymerization reaction may be further advanced by heating the mixture under pressure, reduced pressure, or atmospheric pressure in a non-oxidizing atmosphere. The step of preparing the lysate may be performed in a non-oxidizing atmosphere. The temperature for dissolution by heating may be in the range of the melting point of the solvent in which the reaction product dissolves, preferably in the range of 200 to 350 ° C., more preferably in the range of 210 to 250 ° C. It is preferable to carry out with.
 前記溶解物を調製するために用いる、前記反応生成物が溶解する溶媒の配合割合は、ポリアリーレンスルフィド樹脂を含む反応生成物100質量部に対して、好ましくは90~1000質量部の範囲、より好ましくは200~400質量部の範囲である。 The mixing ratio of the solvent used for preparing the dissolved product in which the reaction product dissolves is preferably in the range of 90 to 1000 parts by mass with respect to 100 parts by mass of the reaction product containing polyarylene sulfide resin. The range is preferably 200 to 400 parts by mass.
 反応生成物が溶解する溶媒としては、例えば、フィリップス法等の溶液重合において重合反応溶媒として用いられる溶媒を用いることができる。好ましい溶媒の例としては、N-メチル-2-ピロリドン(以下、NMPと略記)、N-シクロヘキシル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン酸、ε-カプロラクタム、N-メチル-ε-カプロラクタム等の脂肪族環状アミド化合物、ヘキサメチルリン酸トリアミド(HMPA)、テトラメチル尿素(TMU)、ジメチルホルムアミド(DMF)、及びジメチルアセトアミド(DMA)等のアミド化合物、ポリエチレングリコールジアルキルエーテル(重合度は2000以下で、炭素原子数1~20のアルキル基を有するもの)等のエーテル化ポリエチレングリコール化合物、並びに、テトラメチレンスルホキシド、及びジメチルスルホキシド(DMSO)等のスルホキシド化合物が挙げられる。その他の使用可能な溶媒の例として、ベンゾフェノン、ジフェニルエーテル、ジフェニルスルフィド、4,4’-ジブロモビフェニル、1-フェニルナフタレン、2,5-ジフェニル-1,3,4-オキサジアゾール、2,5-ジフェニルオキサゾール、トリフェニルメタノール、N,N-ジフェニルホルムアミド、ベンジル、アントラセン、4-ベンゾイルビフェニル、ジベンゾイルメタン、2-ビフェニルカルボン酸、ジベンゾチオフェン、ペンタクロロフエノール、1-ベンジル-2-ピロリジオン、9-フルオレノン、2-ベンゾイルナフタレン、1-ブロモナフタレン、1,3-ジフェノキシベンゼン、フルオレン、1-フェニル-2-ピロリジノン、1-メトキシナフタレン、1-エトキシナフタレン、1,3-ジフェニルアセトン、1,4-ジベンゾイルプタン、フェナントレン、4-ベンゾイルビフェニル、1,1-ジフェニルアセトン、o,o’-ビフェノール、2,6-ジフェニルフェノール、トリフェニレン、2-フェニルフェノール、チアントレン、3-フェノキシベンジルアルコール、4-フェニルフェノール、9,10-ジクロロアントラセン、トリフェニルメタン、4,4’-ジメトキシベンゾフェノン、9,10-ジフェニルアントラセン、フルオランテン、ジフェニルフタレート、ジフェニルカルボネート、2,6-ジメトキシナフタレン、2,7-ジメトキシナフタレン、4-ブロモジフェニルエーテル、ピレン、9,9’-ビ-フルオレン、4,4’-イソプロピルリデン-ジフェノール、イプシロン-カプロラクタム、N-シクロヘキシル-2-ピロリドン、ジフェニルイソフタレート、ジフェニルーターフタレート及び1-クロロナフタレンからなる群から選ばれる1種以上の溶媒が挙げられる。 As the solvent in which the reaction product is dissolved, for example, a solvent used as a polymerization reaction solvent in solution polymerization such as a Philips method can be used. Examples of preferable solvents include N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), N-cyclohexyl-2-pyrrolidone, 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and ε-caprolactam. Aliphatic cyclic amide compounds such as N-methyl-ε-caprolactam, amide compounds such as hexamethylphosphoric triamide (HMPA), tetramethylurea (TMU), dimethylformamide (DMF), and dimethylacetamide (DMA), polyethylene Examples include etherified polyethylene glycol compounds such as glycol dialkyl ether (having a degree of polymerization of 2000 or less and an alkyl group having 1 to 20 carbon atoms), and sulfoxide compounds such as tetramethylene sulfoxide and dimethyl sulfoxide (DMSO). It is done. Examples of other usable solvents include benzophenone, diphenyl ether, diphenyl sulfide, 4,4′-dibromobiphenyl, 1-phenylnaphthalene, 2,5-diphenyl-1,3,4-oxadiazole, 2,5- Diphenyloxazole, triphenylmethanol, N, N-diphenylformamide, benzyl, anthracene, 4-benzoylbiphenyl, dibenzoylmethane, 2-biphenylcarboxylic acid, dibenzothiophene, pentachlorophenol, 1-benzyl-2-pyrrolidione, 9- Fluorenone, 2-benzoylnaphthalene, 1-bromonaphthalene, 1,3-diphenoxybenzene, fluorene, 1-phenyl-2-pyrrolidinone, 1-methoxynaphthalene, 1-ethoxynaphthalene, 1,3-diphenylacetate 1,4-dibenzoylbutane, phenanthrene, 4-benzoylbiphenyl, 1,1-diphenylacetone, o, o'-biphenol, 2,6-diphenylphenol, triphenylene, 2-phenylphenol, thianthrene, 3-phenoxy Benzyl alcohol, 4-phenylphenol, 9,10-dichloroanthracene, triphenylmethane, 4,4'-dimethoxybenzophenone, 9,10-diphenylanthracene, fluoranthene, diphenylphthalate, diphenyl carbonate, 2,6-dimethoxynaphthalene, 2,7-dimethoxynaphthalene, 4-bromodiphenyl ether, pyrene, 9,9'-bifluorene, 4,4'-isopropylidene-diphenol, epsilon-caprolactam, N-cyclohexyl 2-pyrrolidone, diphenyl isophthalate, one or more solvents thereof selected from diphenyl chromatography terpolymers phthalate and the group consisting of 1-chloronaphthalene.
 反応装置から取り出された当該溶解物は、後処理を行った後、前記他の成分と溶融混練して樹脂組成物を調製することが、反応性がより良好となるため好ましい。溶解物の後処理の方法としては、特に制限されるものではないが、例えば、以下の方法が挙げられる。
(1)当該溶解物を、そのまま、又は酸若しくは塩基を加えた後、減圧下又は常圧化で溶媒を留去し、次いで溶媒留去後の固形物を水、当該溶解物に用いた溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン及びアルコール類などから選ばれる溶媒で1回又は2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法。
(2)当該溶解物に水、アセトン、メチルエチルケトン、アルコール、エーテル、ハロゲン化炭化水素、芳香族炭化水素及び脂肪族炭化水素などの溶媒(当該溶解物の溶媒に可溶であり、且つ少なくともポリアリーレンスルフィド樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィド樹脂及び無機塩等を含む固体状生成物を沈降させ、固体状生成物を濾別、洗浄及び乾燥する方法。
(3)当該溶解物に、当該溶解物に用いた溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン及びアルコールなどから選ばれる溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法。
The melted product taken out from the reaction apparatus is preferably post-treated and then melt-kneaded with the other components to prepare a resin composition because the reactivity becomes better. The method for post-treatment of the lysate is not particularly limited, and examples thereof include the following methods.
(1) The solvent is used as it is or after adding an acid or a base, and then the solvent is distilled off under reduced pressure or normal pressure. (Or an organic solvent having an equivalent solubility with respect to a low-molecular polymer), a method of washing once or twice or more with a solvent selected from acetone, methyl ethyl ketone and alcohols, and further neutralizing, washing with water, filtering and drying.
(2) Solvents such as water, acetone, methyl ethyl ketone, alcohol, ether, halogenated hydrocarbon, aromatic hydrocarbon and aliphatic hydrocarbon (soluble in the solvent of the solution and at least polyarylene) A solvent which is a poor solvent for sulfide resin) is added as a precipitating agent to precipitate a solid product containing polyarylene sulfide resin and inorganic salt, and the solid product is filtered, washed and dried. Method.
(3) After adding the solvent used for the dissolved material (or an organic solvent having an equivalent solubility with respect to the low molecular weight polymer) to the dissolved material, stirring, and filtering to remove the low molecular weight polymer, A method of washing once or twice or more with a solvent selected from water, acetone, methyl ethyl ketone and alcohol, and then neutralizing, washing with water, filtering and drying.
 なお、上記(1)~(3)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中又は窒素のような不活性ガス雰囲気中で行なってもよい。酸素濃度が5~30体積%の範囲の酸化性雰囲気中又は減圧条件下で熱処理を行い、ポリアリーレンスルフィド樹脂を酸化架橋させることもできる。 In the post-treatment methods exemplified in the above (1) to (3), the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be. It is also possible to oxidatively crosslink the polyarylene sulfide resin by performing heat treatment in an oxidizing atmosphere having an oxygen concentration in the range of 5 to 30% by volume or under reduced pressure conditions.
 ポリアリーレンスルフィド樹脂が溶融重合により生成する反応を、以下に例示する。 The reaction in which polyarylene sulfide resin is produced by melt polymerization is exemplified below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 反応式(1)~(5)は、例えば一般式(a)、(b)又は(c)で表される基を含む置換基Rを有するジフェニルジスルフィドを重合禁止剤として用いた場合の、ポリフェニレンスルフィドが生成する反応の例である。反応式(1)は、重合禁止剤中の-S-S-結合が、溶融温度下でラジカル開裂する反応である。反応式(2)は、反応式(1)で発生した硫黄ラジカルが成長中の主鎖の末端ヨウ素原子の隣接炭素原子を攻撃し、ヨウ素原子が脱離することで、重合が停止するとともに、主鎖の末端に置換基Rが導入される反応である。反応式(3)は、ポリアリーレンスルフィド樹脂の主鎖中に原料(単体硫黄)に由来して存在するジスルフィド結合が溶融温度下でラジカル開裂する反応である。反応式(4)は、反応式(3)で発生した硫黄ラジカルと、反応式(1)で発生した硫黄ラジカルとの再結合によって、重合が停止するとともに、置換基Rが主鎖の末端に導入される反応である。脱離したヨウ素原子は遊離状態(ヨウ素ラジカル)にあるか、又は、反応式(5)のようにヨウ素ラジカル同士が再結合することで、ヨウ素分子が生成する。 Reaction formulas (1) to (5) are, for example, polyphenylene when diphenyl disulfide having a substituent R containing a group represented by general formula (a), (b) or (c) is used as a polymerization inhibitor. It is an example of reaction which sulfide produces | generates. Reaction formula (1) is a reaction in which the —SS— bond in the polymerization inhibitor undergoes radical cleavage at the melting temperature. In the reaction formula (2), the sulfur radical generated in the reaction formula (1) attacks the adjacent carbon atom of the terminal iodine atom of the growing main chain, and the iodine atom is detached, so that the polymerization is stopped, In this reaction, a substituent R is introduced at the end of the main chain. Reaction formula (3) is a reaction in which a disulfide bond existing in the main chain of the polyarylene sulfide resin derived from the raw material (single sulfur) is radically cleaved at the melting temperature. In the reaction formula (4), the polymerization is stopped by recombination of the sulfur radical generated in the reaction formula (3) and the sulfur radical generated in the reaction formula (1), and the substituent R is at the end of the main chain. The reaction to be introduced. The detached iodine atom is in a free state (iodine radical), or iodine molecules are generated by recombination of iodine radicals as in reaction formula (5).
 溶融重合により得られるポリアリーレンスルフィド樹脂を含む反応生成物は、原料に由来するヨウ素原子を含有する。そのため、ポリアリーレンスルフィド樹脂は、通常、ヨウ素原子を含む混合物の状態で、紡糸用樹脂組成物の調製などのために用いられる。該混合物におけるヨウ素原子の濃度は、例えば、ポリアリーレンスルフィド樹脂に対して0.01~10000ppmの範囲であり、好ましくは10~5000ppmの範囲である。ヨウ素分子の昇華性を利用して、ヨウ素原子濃度を低く抑えることも可能であり、その場合には、900ppm以下の範囲、好ましくは100ppm以下の範囲、さらには10ppm以下の範囲とすることも可能である。さらにヨウ素原子を検出限界以下に除去することも可能ではあるものの、生産性を考えると実用的ではない。検出限界は、例えば0.01ppm程度である。溶融重合により得られる本実施形態のポリアリーレンスルフィド樹脂又はこれを含む反応生成物は、ヨウ素原子を含んでいる点で、例えば、フィリップス法等のジクロロ芳香族化合物の有機極性溶媒中での溶液重合法により得られたポリアリーレンスルフィドと明確に区別され得る。 The reaction product containing polyarylene sulfide resin obtained by melt polymerization contains iodine atoms derived from the raw material. Therefore, the polyarylene sulfide resin is usually used for the preparation of a spinning resin composition in the form of a mixture containing iodine atoms. The concentration of iodine atoms in the mixture is, for example, in the range of 0.01 to 10,000 ppm, preferably in the range of 10 to 5000 ppm with respect to the polyarylene sulfide resin. It is also possible to keep the iodine atom concentration low by utilizing the sublimability of iodine molecules. In that case, it is possible to set the range to 900 ppm or less, preferably 100 ppm or less, and further 10 ppm or less. It is. Although it is possible to remove iodine atoms below the detection limit, it is not practical in view of productivity. The detection limit is, for example, about 0.01 ppm. The polyarylene sulfide resin of the present embodiment obtained by melt polymerization or the reaction product containing the same includes an iodine atom. It can be clearly distinguished from polyarylene sulfides obtained by legal methods.
 上記反応式からも理解されるように、溶融重合により得られるポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物に由来する芳香族環及びこれに直接結合した硫黄原子からなるアリーレンスルフィド単位から主として構成される主鎖と、該主鎖の末端に結合した所定の置換基Rとを含む。所定の置換基Rは、主鎖の末端の芳香族環に、直接、又は重合禁止剤に由来する部分構造を介して結合している。 As can be understood from the above reaction formula, the polyarylene sulfide resin obtained by melt polymerization is mainly composed of an arylene sulfide unit composed of an aromatic ring derived from a diiodo aromatic compound and a sulfur atom directly bonded thereto. It includes a main chain and a predetermined substituent R bonded to the end of the main chain. The predetermined substituent R is bonded to the aromatic ring at the end of the main chain directly or via a partial structure derived from a polymerization inhibitor.
 一実施形態に係るポリアリーレンスルフィド樹脂としてのポリフェニレンスルフィド樹脂は、例えば、下記一般式(10): The polyphenylene sulfide resin as the polyarylene sulfide resin according to one embodiment is, for example, the following general formula (10):
Figure JPOXMLDOC01-appb-C000013
で表される繰り返し単位(アリーレンスルフィド単位)を含む主鎖を有する。式(10)で表される繰り返し単位は、パラ位で結合する下記式(10a):
Figure JPOXMLDOC01-appb-C000013
It has a main chain containing a repeating unit (arylene sulfide unit) represented by: The repeating unit represented by the formula (10) has the following formula (10a) bonded at the para position:
Figure JPOXMLDOC01-appb-C000014
で表される繰り返し単位、及び、メタ位で結合する下記式(10b):
Figure JPOXMLDOC01-appb-C000014
And the following unit (10b) bonded at the meta position:
Figure JPOXMLDOC01-appb-C000015
で表される繰り返し単位であることがより好ましい。これらの中でも、式(10a)で表されるパラ位で結合した繰り返し単位が、樹脂の耐熱性及び結晶性の面で好ましい。
Figure JPOXMLDOC01-appb-C000015
It is more preferable that it is the repeating unit represented by these. Among these, a repeating unit bonded at the para position represented by the formula (10a) is preferable in terms of heat resistance and crystallinity of the resin.
 一実施形態に係るポリフェニレンスルフィド樹脂は、下記一般式(11): The polyphenylene sulfide resin according to one embodiment has the following general formula (11):
Figure JPOXMLDOC01-appb-C000016
(式中、R20及びR21は、それぞれ独立に水素原子、炭素原子数1~4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、又はエトキシ基を表す。)
で表される、芳香族環に結合した側鎖としての置換基を有する繰り返し単位を含み得る。ただし、結晶化度及び耐熱性の低下の観点から、ポリフェニレンスルフィド樹脂は、一般式(11)の繰り返し単位を実質的に含まないことが好ましい。より具体的には、式(11)で表される繰り返し単位の割合は、式(10)で表される繰り返し単位と式(11)で表される繰り返し単位との合計に対して、好ましくは2質量%以下、より好ましくは0.2質量%以下である。
Figure JPOXMLDOC01-appb-C000016
(Wherein R 20 and R 21 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.)
The repeating unit which has a substituent as a side chain couple | bonded with the aromatic ring represented by these may be included. However, it is preferable that the polyphenylene sulfide resin does not substantially contain the repeating unit of the general formula (11) from the viewpoints of crystallinity and heat resistance. More specifically, the ratio of the repeating unit represented by formula (11) is preferably based on the total of the repeating unit represented by formula (10) and the repeating unit represented by formula (11). It is 2 mass% or less, More preferably, it is 0.2 mass% or less.
 本実施形態のポリアリーレンスルフィド樹脂は、上記アリーレンスルフィド単位から主として構成されるが、通常、原料の単体硫黄に由来する、下記式(20): The polyarylene sulfide resin of the present embodiment is mainly composed of the above arylene sulfide units, but usually derived from the elemental sulfur of the raw material, the following formula (20):
Figure JPOXMLDOC01-appb-C000017
で表されるジスルフィド結合に係る構成単位も主鎖中に含む。耐熱性、機械的強度の点から、式(20)で表される構成単位の割合は、アリーレンスルフィド単位と、式(20)で表される構成部位との合計に対して、好ましくは2.9質量%以下の範囲、より好ましくは1.2質量%以下の範囲である。
Figure JPOXMLDOC01-appb-C000017
A structural unit related to a disulfide bond represented by the formula is also included in the main chain. From the viewpoint of heat resistance and mechanical strength, the proportion of the structural unit represented by the formula (20) is preferably 2 with respect to the total of the arylene sulfide unit and the structural site represented by the formula (20). The range is 9% by mass or less, and more preferably 1.2% by mass or less.
 本実施形態に係るポリアリーレンスルフィド樹脂のMw/Mtopは、好ましくは0.80~1.70の範囲であり、より好ましくは0.90~1.30の範囲である。Mw/Mtopをこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、良好なキャビティーバランスを付与することができる。本明細書において、Mwはゲル浸透クロマトグラフィーにより測定される重量平均分子量のことを示し、Mtopは同測定により得られるクロマトグラムの検出強度が最大となる点の平均分子量(ピーク分子量)を示す。Mw/Mtopは、測定対象の分子量の分布を示し、通常、この値が1に近いと分子量の分布が狭いことを示し、この値が大きくなるにつれて、分子量の分布が広いことを示す。なお、ゲル浸透クロマトグラフィーの測定条件は、本明細書の実施例と同一の測定条件とする。ただし、Mw、Mw/Mtopの値に実質的な影響を及ぼさない範囲で、測定条件を変更することは可能である。 Mw / Mtop of the polyarylene sulfide resin according to the present embodiment is preferably in the range of 0.80 to 1.70, more preferably in the range of 0.90 to 1.30. By setting Mw / Mtop in such a range, the processability of the polyarylene sulfide resin can be improved and a good cavity balance can be imparted. In this specification, Mw represents the weight average molecular weight measured by gel permeation chromatography, and Mtop represents the average molecular weight (peak molecular weight) at the point where the detection intensity of the chromatogram obtained by the measurement is maximized. Mw / Mtop indicates the distribution of the molecular weight to be measured. Normally, when this value is close to 1, it indicates that the molecular weight distribution is narrow, and as this value increases, the molecular weight distribution is broad. The measurement conditions for gel permeation chromatography are the same as those in the examples of the present specification. However, it is possible to change the measurement conditions within a range that does not substantially affect the values of Mw and Mw / Mtop.
 本実施形態に係るポリアリーレンスルフィド樹脂の重量平均分子量は、本発明の効果を損なわなければ特に限定されるものではないが、その下限は、機械的強度に優れる点から28,000以上であることが好ましく、さらに30,000以上の範囲であることがより好ましい。一方、上限は、より良好なキャビティーバランスを付与することができる点から100,000以下の範囲であることが好ましく、さらに60,000以下の範囲であることがより好ましく、さらに55,000以下の範囲であることが最も好ましい。さらに、機械的強度に優れつつ、かつ、良好なキャビティーバランスを付与できる観点から、28,000~60,000の範囲のポリアリーレンスルフィド樹脂、より好ましくは30,000~55,000の範囲のポリアリーレンスルフィド樹脂と共に、重量平均分子量が60,000超100,000以下の範囲にあるポリアリーレンスルフィド樹脂を使用してもよい。 The weight average molecular weight of the polyarylene sulfide resin according to this embodiment is not particularly limited as long as the effects of the present invention are not impaired, but the lower limit thereof is 28,000 or more from the viewpoint of excellent mechanical strength. Is more preferable, and the range of 30,000 or more is more preferable. On the other hand, the upper limit is preferably in the range of 100,000 or less, more preferably in the range of 60,000 or less, and further in the range of 55,000 or less from the viewpoint that a better cavity balance can be imparted. Most preferably, it is in the range. Furthermore, from the viewpoint of providing excellent cavity balance while being excellent in mechanical strength, a polyarylene sulfide resin in the range of 28,000 to 60,000, more preferably in the range of 30,000 to 55,000. A polyarylene sulfide resin having a weight average molecular weight in the range of more than 60,000 and 100,000 or less may be used together with the polyarylene sulfide resin.
 ポリアリーレンスルフィド樹脂の非ニュートニアン指数は、好ましくは0.95~1.75の範囲であり、より好ましくは1.00~1.70の範囲である。非ニュートニアン指数をこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、良好なキャビティーバランスを付与することができる。本明細書において、非ニュートニアン指数は温度300℃の条件下におけるせん断速度とせん断応力との下記関係式を満たす指数をいう。非ニュートニアン指数は、測定対象の分子量、又は直鎖、分岐、架橋といった分子構造に関する指標となり得る。通常、この値が1に近いと樹脂の分子構造が直鎖状であることを示し、この値が大きくなるにつれて、分岐や架橋構造が多く含まれることを示す。
  D=α×S 
(上記式中、Dはせん断速度を表し、Sはせん断応力を表し、αは定数を表し、nは非ニュートニアン指数を表す。)
The non-Newtonian index of the polyarylene sulfide resin is preferably in the range of 0.95 to 1.75, more preferably in the range of 1.00 to 1.70. By setting the non-Newtonian index in such a range, the processability of the polyarylene sulfide resin can be improved and a good cavity balance can be imparted. In the present specification, the non-Newtonian index means an index satisfying the following relational expression between the shear rate and the shear stress under the condition of a temperature of 300 ° C. The non-Newtonian index can be an index relating to a molecular weight to be measured or a molecular structure such as linear, branched, or crosslinked. Usually, when this value is close to 1, it indicates that the molecular structure of the resin is linear, and as this value increases, more branches and cross-linked structures are included.
D = α × S n
(In the above formula, D represents shear rate, S represents shear stress, α represents a constant, and n represents a non-Newtonian index.)
 上述の特定範囲のMw/Mtop及び非ニュートニアン指数を有するポリアリーレンスルフィド樹脂は、例えば、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応(溶液重合)させる方法において、かかるポリアリーレンスルフィド樹脂をある程度高分子量化させることにより得ることが可能である。 The polyarylene sulfide resin having the above-mentioned specific ranges of Mw / Mtop and non-Newtonian index includes, for example, a diiodo aromatic compound, elemental sulfur, a polymerization inhibitor, a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor. In a method of reacting (solution polymerization) in a molten mixture containing a polyarylene sulfide resin, it can be obtained by increasing the molecular weight of the polyarylene sulfide resin to some extent.
 ポリアリーレンスルフィド樹脂の融点は、好ましくは250~300℃の範囲、より好ましくは265~300℃の範囲である。ポリアリーレンスルフィド樹脂の300℃における溶融粘度(V6)は、好ましくは1~2000[Pa・s]の範囲、より好ましくは5~1700[Pa・s]の範囲である。ここで、溶融粘度(V6)は、フローテスターを用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比(オリフィス長/オリフィス径)が10/1であるオリフィスを使用して6分間保持した後の溶融粘度を意味する。 The melting point of the polyarylene sulfide resin is preferably in the range of 250 to 300 ° C, more preferably in the range of 265 to 300 ° C. The melt viscosity (V6) at 300 ° C. of the polyarylene sulfide resin is preferably in the range of 1 to 2000 [Pa · s], more preferably in the range of 5 to 1700 [Pa · s]. Here, for the melt viscosity (V6), using a flow tester, an orifice having a temperature of 300 ° C., a load of 1.96 MPa, and a ratio of the orifice length to the orifice diameter (orifice length / orifice diameter) is 10/1. The melt viscosity after holding for 6 minutes.
 本実施形態に用いられる用いるシリコーン化合物としては、主鎖にシロキサン結合を有する下記一般式(I)で表されるポリオルガノシロキサンが好ましい。
  R30-〔Si(R31-O〕n-R32  (I)
(式中、R30、R31及びR32は、それぞれ独立に水素原子又は有機基を表し、nは2以上の整数である。)
The silicone compound used in the present embodiment is preferably a polyorganosiloxane represented by the following general formula (I) having a siloxane bond in the main chain.
R 30 - [Si (R 31) 2 -O] n 1 -R 32 (I)
(In the formula, R 30 , R 31 and R 32 each independently represent a hydrogen atom or an organic group, and n 1 is an integer of 2 or more.)
 これらの中でも、特に上記一般式(1)中のR30、R31及びR32が総てメチル基であるポリジメチルシロキサンが好ましく、該ポリジメチルシロキサンのメチル基の一部を、水素原子又はその他の置換基に置き換えたものも好ましい。 Among these, polydimethylsiloxane in which R 30 , R 31 and R 32 in the general formula (1) are all methyl groups is preferable, and a part of the methyl groups of the polydimethylsiloxane may be a hydrogen atom or other Those substituted with the above substituents are also preferred.
 その他の置換基としては、炭素原子数2以上のアルキル基、アリール基、ハロゲン化アルキル基、シリルアルキル基、ポリオキシアルキレン基及び反応性官能基が挙げられ、複数のメチル基を置換する場合は、これらの中から、互いに同一又は異なるものを選択可能である。 Examples of other substituents include alkyl groups having 2 or more carbon atoms, aryl groups, halogenated alkyl groups, silylalkyl groups, polyoxyalkylene groups, and reactive functional groups. When a plurality of methyl groups are substituted, From these, the same or different ones can be selected.
 炭素原子数2以上のアルキル基としては、例えば、エチル基、プロピル基、ブチル基、オクチル基、ドデシル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。 Examples of the alkyl group having 2 or more carbon atoms include an ethyl group, a propyl group, a butyl group, an octyl group, and a dodecyl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group.
 ハロゲン化アルキル基としては、例えば、フルオロプロピル基、クロロプロピル基等が挙げられる。 Examples of the halogenated alkyl group include a fluoropropyl group and a chloropropyl group.
 シリルアルキル基は、下記一般式(II)で表されるものがその代表的な具体例として挙げられる。
  -(CH)n-Si(OCH  (II)
(式中、nは1以上の整数である。)
A typical example of the silylalkyl group is represented by the following general formula (II).
— (CH 2 ) n 2 —Si (OCH 3 ) 3 (II)
(In the formula, n 2 is an integer of 1 or more.)
 ポリオキシアルキレン基は、下記一般式(III)で表されるものがその具体例として挙げられる。 Specific examples of the polyoxyalkylene group include those represented by the following general formula (III).
  -〔CH〕k-O-〔CO〕l-〔CO〕m-R33  (III)
(式中、k、l及mは、それぞれ独立に0又は正の整数であり、l及びmは同時に0でない整数をとる。また、R33は水素原子、アルキル基、アリール基、ハロゲン化アルキル基、シリルアルキル基及び後述する反応性官能基からなる群から選ばれる1種以上の置換基である。)
-[CH 2 ] kO- [C 2 H 4 O] 1- [C 3 H 6 O] m-R 33 (III)
(Wherein k, l and m are each independently 0 or a positive integer, and l and m are simultaneously non-zero integers, and R 33 is a hydrogen atom, an alkyl group, an aryl group, an alkyl halide) And one or more substituents selected from the group consisting of a group, a silylalkyl group, and a reactive functional group described later.)
 シリコーン化合物は、反応性官能基を有することが好ましい。反応性官能基の具体例としては、エポキシ基、アミノ基、メルカプト基、ビニル基、カルボキシル基、水酸基、イソシアネート基、アミド基、アシル基、ニトリル基、酸無水基等が挙げられる。これらの反応性官能基は主鎖に直接結合していてもよく、あるいは主鎖に結合したアルキレン基、ポリオキシアルキレン基等の有機基の末端に結合していてもよい。その中で特にカルボキシル基、水酸基、エポキシ基及びアミノ基が好ましく、エポキシ基及びアミノ基がさらに好ましい。 The silicone compound preferably has a reactive functional group. Specific examples of the reactive functional group include an epoxy group, amino group, mercapto group, vinyl group, carboxyl group, hydroxyl group, isocyanate group, amide group, acyl group, nitrile group, and acid anhydride group. These reactive functional groups may be directly bonded to the main chain, or may be bonded to the terminal of an organic group such as an alkylene group or a polyoxyalkylene group bonded to the main chain. Among them, a carboxyl group, a hydroxyl group, an epoxy group, and an amino group are particularly preferable, and an epoxy group and an amino group are more preferable.
 シリコーン化合物は、樹脂組成物中で均一に分散されることにより電解液に対する耐久性向上に効果が発揮されるものであり、この観点からシリコーン化合物の粘度(25℃)は、10~100,000mPa・sが好ましく、特に10~80,000mPa・sの範囲にあるオイル状のものが好適である。なお、本実施形態の樹脂組成物中にシリコーン化合物を均一に分散させるため、シリコーン化合物をシリカなどの無機粉体に担持させたものを用いることが好ましい。 The silicone compound is effective in improving the durability against the electrolytic solution by being uniformly dispersed in the resin composition. From this viewpoint, the viscosity (25 ° C.) of the silicone compound is 10 to 100,000 mPa. · S is preferable, and an oily material in the range of 10 to 80,000 mPa · s is particularly preferable. In addition, in order to disperse | distribute a silicone compound uniformly in the resin composition of this embodiment, it is preferable to use what carried the silicone compound on inorganic powders, such as a silica.
 シリコーン化合物中に反応性官能基を含有していると、樹脂組成物へのシリコーン化合物の分散を良好にし、そのため耐衝撃性の向上を計ることができる。さらにシリコーン化合物が成型品表面に滲み出る、いわゆるブリードアウトを抑制する効果がある点からも好ましい。 When the reactive functional group is contained in the silicone compound, the silicone compound is favorably dispersed in the resin composition, so that the impact resistance can be improved. Furthermore, it is preferable also from the point which has the effect which suppresses what is called a bleed out that a silicone compound oozes out on the molded article surface.
 シリコーン化合物中の反応性官能基の含有率は、耐衝撃性、強靭性の付与により好ましい効果を与えることから、400g/当量(以下「g/eq」と略記する。)以上が好ましく、混合の容易さの点で50,000g/eq以下が好ましい。 The content of the reactive functional group in the silicone compound is preferably 400 g / equivalent (hereinafter abbreviated as “g / eq”) or more because it gives a favorable effect by imparting impact resistance and toughness. In terms of ease, 50,000 g / eq or less is preferable.
 また、シリコーン化合物の配合量は、ポリアリーレンスルフィド樹脂及びシリコーン化合物の合計100質量部に対して0.1~10質量部であることが好ましく、0.3~5質量部であることがより好ましく、0.5~3質量部であることがさらに好ましい。 Further, the compounding amount of the silicone compound is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin and the silicone compound. More preferably, it is 0.5 to 3 parts by mass.
 本実施形態のガスケット用樹脂組成物には、シラン化合物を配合してもよい。シラン化合物としては、例えば、アミノアルコキシシラン、エポキシアルコキシシラン、ビニルアルコキシシラン等が挙げられる。これらのシラン化合物は、単独で用いることも2種以上併用することもできる。 A silane compound may be blended in the gasket resin composition of the present embodiment. Examples of the silane compound include aminoalkoxysilane, epoxyalkoxysilane, and vinylalkoxysilane. These silane compounds can be used alone or in combination of two or more.
 アミノアルコキシシランとしては、1分子中にアミノ基を1つ以上有し、アルコキシ基を2つ以上有するシラン化合物であれば用いることができ、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等が挙げられる。 As the aminoalkoxysilane, any silane compound having one or more amino groups in one molecule and two or more alkoxy groups can be used. For example, γ-aminopropyltriethoxysilane, γ-aminopropyl Trimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltri Methoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N- And phenyl-γ-aminopropyltrimethoxysilane.
 エポキシアルコキシシランとしては、1分子中にエポキシ基を1つ以上有し、アルコキシ基を2つ以上有するシラン化合物であれば用いることができ、例えば、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。 As the epoxyalkoxysilane, any silane compound having one or more epoxy groups and two or more alkoxy groups in one molecule can be used. For example, γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane and the like.
 ビニルアルコキシシランとしては、1分子中にビニル基を1つ以上有し、アルコキシ基を2つ以上有するシラン化合物であれば用いることができ、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン等が挙げられる。 As the vinylalkoxysilane, any silane compound having one or more vinyl groups and two or more alkoxy groups in one molecule can be used. For example, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( β-methoxyethoxy) silane and the like.
 本実施形態では、上記各成分に加え、本発明の奏する効果を損なわない範囲で繊維状強化材又は無機質フィラーを添加してもよい。 In the present embodiment, in addition to the above components, a fibrous reinforcing material or an inorganic filler may be added within a range that does not impair the effects of the present invention.
 繊維状強化材としては、例えば、ガラス繊維、PAN系又はピッチ系の炭素繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維、ホウ素繊維、ホウ酸アルミニウム繊維、チタン酸カリウム繊維、ステンレス、アルミニウム、チタン、銅、真ちゅう等の金属の繊維状物の無機質繊維状物質、及びアラミド繊維等の有機質繊維状物質が挙げられる。 Examples of the fibrous reinforcing material include glass fiber, PAN-based or pitch-based carbon fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, aluminum borate fiber, titanic acid. Examples thereof include inorganic fibrous materials such as potassium fibers, stainless steel, aluminum, titanium, copper, brass, and other metallic fibrous materials, and organic fibrous materials such as aramid fibers.
 無機質フィラーとしては、例えば、マイカ、タルク、ワラステナイト、セリサイト、カオリン、クレー、ベントナイト、アスベスト、アルミナシリケート、ゼオライト、パイロフィライト等の珪酸塩や炭酸カルシウム、炭酸マグネシウム、ドロマイト等の炭酸塩、硫酸カルシウム、硫酸バリウム等の硫酸塩、アルミナ、酸化マグネシウム、シリカ、ジルコニア、チタニア、酸化鉄等の金属酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、燐酸カルシウム等が挙げられる。これらの繊維状強化材及び無機質フィラーは、単独で用いることも2種以上併用することもできる。 Examples of inorganic fillers include silicates such as mica, talc, wollastonite, sericite, kaolin, clay, bentonite, asbestos, alumina silicate, zeolite, pyrophyllite, and carbonates such as calcium carbonate, magnesium carbonate, and dolomite, Examples thereof include sulfates such as calcium sulfate and barium sulfate, metal oxides such as alumina, magnesium oxide, silica, zirconia, titania and iron oxide, glass beads, ceramic beads, boron nitride, silicon carbide, and calcium phosphate. These fibrous reinforcing materials and inorganic fillers can be used alone or in combination of two or more.
 また、本実施形態のガスケット用樹脂組成物には、本発明の奏する効果を損なわない範囲で、酸化防止剤、安定剤、加工熱安定剤、可塑剤、離型剤、着色剤、滑剤、耐候性安定剤、発泡剤、防錆剤、ワックスを適量配合してもよい。 In addition, the resin composition for a gasket of the present embodiment includes an antioxidant, a stabilizer, a processing heat stabilizer, a plasticizer, a release agent, a colorant, a lubricant, and a weather resistance as long as the effects of the present invention are not impaired. An appropriate amount of a stabilizer, a foaming agent, a rust inhibitor, and a wax may be blended.
 さらに、本実施形態のガスケット用樹脂組成物には、要求される特性に合わせてその他の樹脂成分を適宜配合してもよい。ここで用いることができる樹脂成分としては、エチレン、ブチレン、ペンテン、ブタジエン、イソプレン、クロロプレン、スチレン、α-メチルスチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、(メタ)アクリロニトリルなどの単量体の単独重合体又は共重合体、ポリウレタン、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリアセタール、ポリカーボネ-ト、ポリサルホン、ポリアリルサルホン、ポリエーテルサルホン、ポリフェニレンエーテル、ポリエ-テルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、シリコーン樹脂、エポキシ樹脂、フェノキシ樹脂、液晶ポリマー、ポリアリールエーテルなどの単独重合体、ランダム共重合体又はブロック共重合体、グラフト共重合体等が挙げられる。 Furthermore, the resin composition for gaskets of the present embodiment may be appropriately mixed with other resin components in accordance with required characteristics. Examples of the resin component that can be used here include ethylene, butylene, pentene, butadiene, isoprene, chloroprene, styrene, α-methylstyrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, (meth) acrylonitrile, and the like. Monomers or copolymers of monomers, polyesters such as polyurethane, polybutylene terephthalate, polyethylene terephthalate, polyacetal, polycarbonate, polysulfone, polyallylsulfone, polyethersulfone, polyphenylene ether, polyetherketone, poly Homopolymers such as ether ether ketone, polyimide, polyamideimide, polyetherimide, silicone resin, epoxy resin, phenoxy resin, liquid crystal polymer, polyaryl ether, Dam or block copolymer, and graft copolymer and the like.
 本実施形態のガスケット用樹脂組成物の製造する方法としては、具体的には、シリコーン化合物、ポリアリーレンスルフィド樹脂及び必要に応じて配合するその他の配合成分をタンブラー、ヘンシェルミキサー等で均一に混合し、次いで、その混合物を2軸押出機に投入し、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.02~0.2(kg/hr・rpm)の範囲となる条件下で溶融混練する方法が挙げられる。 Specifically, as a method for producing the resin composition for gaskets of the present embodiment, a silicone compound, a polyarylene sulfide resin, and other blending components blended as necessary are uniformly mixed with a tumbler, a Henschel mixer, or the like. Then, the mixture is put into a twin screw extruder, and the ratio (discharge amount / screw rotation number) between the resin component discharge amount (kg / hr) and the screw rotation speed (rpm) is 0.02 to 0.2. Examples of the method include melt kneading under a condition of (kg / hr · rpm).
 上記の製造方法について、さらに詳述すれば、前記した各成分を2軸押出機内に投入し、設定温度330℃、樹脂温度350℃程度の温度条件下に溶融混練する方法が挙げられる。この際、樹脂成分の吐出量は回転数250rpmで5~50kg/hrの範囲となる。なかでも特に分散性の点から20~35kg/hrであることが好ましい。よって、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)は、特に0.08~0.14(kg/hr・rpm)であることが好ましい。 The above production method will be described in more detail. A method in which the above-described components are put into a twin-screw extruder and melt-kneaded under temperature conditions of a preset temperature of 330 ° C. and a resin temperature of about 350 ° C. can be mentioned. At this time, the discharge amount of the resin component is in the range of 5 to 50 kg / hr at a rotational speed of 250 rpm. In particular, it is preferably 20 to 35 kg / hr from the viewpoint of dispersibility. Therefore, the ratio (discharge amount / screw rotation number) between the resin component discharge amount (kg / hr) and the screw rotation speed (rpm) is particularly 0.08 to 0.14 (kg / hr · rpm). Is preferred.
 このようにして溶融混練されたガスケット用樹脂組成物は、通常ペレット状にカッティングされる。また、得られたペレットを成形機に供給して溶融成形することにより、最終的に目的とする形状の成形物が得られる。 The resin composition for a gasket thus melt-kneaded is usually cut into a pellet form. Further, the obtained pellet is supplied to a molding machine and melt-molded to finally obtain a molded product having a desired shape.
 ここで溶融成形する方法は、例えば、射出成形、押出成形、圧縮成形等が挙げられるが、このうち二次電池用ガスケットを成形する方法としては、射出成形が特に好ましい。 Here, examples of the melt molding method include injection molding, extrusion molding, and compression molding. Among these, the injection molding is particularly preferable as a method of molding the secondary battery gasket.
 本実施形態のガスケット用樹脂組成物は、例えば、ノート型パソコン、携帯電話、ビデオカメラ等の電気機器用途、あるいはハイブリッド自動車(HV)、電気自動車(EV)等の車載用途に用いられる二次電池、特に高容量リチウムイオン二次電池用のガスケット等に特に有用である。 The resin composition for gaskets of the present embodiment is a secondary battery used for electric devices such as notebook computers, mobile phones and video cameras, or in-vehicle applications such as hybrid vehicles (HV) and electric vehicles (EV). In particular, it is particularly useful for gaskets for high capacity lithium ion secondary batteries.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
1.ポリフェニレンスルフィド樹脂(PPS樹脂)
1-1.PPS-1~5の合成
(合成例1)
 p-ジヨードベンゼン(東京化成株式会社、p-ジヨードベンゼン純度98.0%以上)300.0g、固体硫黄(関東化学株式会社製、硫黄(粉末))27.00g、4,4’-ジチオビス安息香酸(和光純薬工業株式会社製、4,4’-ジチオビス安息香酸、Technical Grade)2.0gを180℃に窒素雰囲気下で加熱し、これらを溶解及び混合した。次に220℃に昇温し、絶対圧26.6kPaまで減圧した。系内が320℃で絶対圧133Paとなるように、段階的に温度と圧力変化させて、得られた溶融混合物を加熱しながら、8時間、溶融重合を行った。反応終了後、NMP200gを加えて、220℃で加熱撹拌し、得られた溶解物をろ過した。ろ過後の溶解物にNMP320gを加え、ケーキ洗浄ろ過を行った。得られたNMPを含むケーキにイオン交換水1Lを加え、オートクレーブ中で200℃10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。得られた含水ケーキにイオン交換水1Lを加えて10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。この操作をもう一度繰り返した後、ケーキを120℃で4時間乾燥し、PPS樹脂91gを得た。
1. Polyphenylene sulfide resin (PPS resin)
1-1. Synthesis of PPS-1 to 5 (Synthesis Example 1)
30-0.0 g of p-diiodobenzene (Tokyo Kasei Co., Ltd., p-diiodobenzene purity of 98.0% or more), solid sulfur (sulfur (powder) manufactured by Kanto Chemical Co., Inc.) 27.00 g, 4,4′- Dithiobisbenzoic acid (4,4′-dithiobisbenzoic acid, Technical Grade, manufactured by Wako Pure Chemical Industries, Ltd.) (2.0 g) was heated to 180 ° C. in a nitrogen atmosphere, and these were dissolved and mixed. Next, the temperature was raised to 220 ° C., and the pressure was reduced to an absolute pressure of 26.6 kPa. Melt polymerization was carried out for 8 hours while heating the obtained molten mixture while changing the temperature and pressure stepwise so that the inside pressure was 320 ° C. and the absolute pressure was 133 Pa. After completion of the reaction, 200 g of NMP was added, and the mixture was heated and stirred at 220 ° C., and the resulting dissolved product was filtered. 320 g of NMP was added to the lysate after filtration, and cake washing filtration was performed. 1 L of ion-exchanged water was added to the obtained cake containing NMP, and the mixture was stirred in an autoclave at 200 ° C. for 10 minutes. Next, the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. 1 L of ion-exchanged water was added to the obtained water-containing cake and stirred for 10 minutes. Next, the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. After repeating this operation once more, the cake was dried at 120 ° C. for 4 hours to obtain 91 g of PPS resin.
(合成例2)
 「4,4’-ジチオビス安息香酸」の替りに「2-ヨードアニリン(東京化成株式会社製)」を用いたこと以外は合成例1と同様にして、PPS樹脂91gを得た。
(Synthesis Example 2)
91 g of PPS resin was obtained in the same manner as in Synthesis Example 1 except that “2-iodoaniline (manufactured by Tokyo Chemical Industry Co., Ltd.)” was used instead of “4,4′-dithiobisbenzoic acid”.
(合成例3)
 「4,4’-ジチオビス安息香酸」の替りに「ジフェニルジスルフィド(住友精化株式会社、DPDS)」を用いたこと以外は合成例1と同様にしてPPS樹脂91gを得た。
(Synthesis Example 3)
91 g of PPS resin was obtained in the same manner as in Synthesis Example 1 except that “diphenyl disulfide (Sumitomo Seika Chemicals, DPDS)” was used instead of “4,4′-dithiobisbenzoic acid”.
(合成例4)
 p-ジヨードベンゼン(東京化成株式会社製、p-ジヨードベンゼン純度98.0%以上)300.0g、固体硫黄(関東化学株式会社製、硫黄(粉末))29.15g及び4-ヨードビフェニル(東京化成株式会社製)1.48gを180℃に窒素雰囲気下で加熱し、これらを溶解及び混合した。次に220℃に昇温し、絶対圧46.7kPaまで減圧し、系内が320℃で絶対圧133Paとなるように、段階的に温度と圧力変化させて、得られた溶融混合物を加熱しながら、8時間、溶融重合を行った。反応終了後、NMP200gを加えて、220℃で加熱撹拌し、得られた溶解物をろ過した。ろ過後の溶解物にNMP320gを加え、ケーキ洗浄ろ過を行った。得られたNMPを含むケーキにイオン交換水1Lを加え、オートクレーブ中で200℃10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。得られた含水ケーキにイオン交換水1Lを加えて10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。この操作をもう一度繰り返した後、ケーキを120℃で4時間乾燥し、PPS樹脂91gを得た。
(Synthesis Example 4)
30-0.0 g of p-diiodobenzene (manufactured by Tokyo Chemical Industry Co., Ltd., p-diiodobenzene purity of 98.0% or more), 29.15 g of solid sulfur (manufactured by Kanto Chemical Co., Inc., sulfur (powder)) and 4-iodobiphenyl 1.48 g (manufactured by Tokyo Chemical Industry Co., Ltd.) was heated to 180 ° C. in a nitrogen atmosphere, and these were dissolved and mixed. Next, the temperature is raised to 220 ° C., the pressure is reduced to 46.7 kPa, and the temperature and pressure are changed stepwise so that the system has an absolute pressure of 320 Pa at 320 ° C., and the resulting molten mixture is heated. Then, melt polymerization was performed for 8 hours. After completion of the reaction, 200 g of NMP was added, and the mixture was heated and stirred at 220 ° C., and the resulting dissolved product was filtered. 320 g of NMP was added to the lysate after filtration, and cake washing filtration was performed. 1 L of ion-exchanged water was added to the obtained cake containing NMP, and the mixture was stirred in an autoclave at 200 ° C. for 10 minutes. Next, the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. 1 L of ion-exchanged water was added to the obtained water-containing cake and stirred for 10 minutes. Next, the cake was filtered, and 1 L of ion-exchanged water at 70 ° C. was added to the cake after filtration to wash the cake. After repeating this operation once more, the cake was dried at 120 ° C. for 4 hours to obtain 91 g of PPS resin.
(比較合成例)
 NMP600g及び硫化ナトリウム5水塩336.3g(2.0mol)を仕込み、窒素雰囲気下、200℃まで昇温することにより水-NMP混合物を留去した。ついでこの系にp-ジクロロベンゼン292.53gと2,5-ジクロロアニリン1.62gをNMP230gに溶かした溶液を添加し、220℃で5時間さらに240℃で2時間窒素雰囲気下で反応させた。反応容器を冷却後、内容物を取り出し、一部をサンプリングし、未反応2,5-ジクロロアニリンをガスクロマトグラフで定量した。また残りのスラリは熱水で数回洗浄し、ポリマーケーキを濾別した。このケーキを80℃減圧乾燥し、粉末状のPPS樹脂を得た。赤外吸収スペクトルを測定したところ、3380cm-1付近にアミノ基に由来すると見られる吸収スペクトルが観測された。
(Comparative synthesis example)
NMP (600 g) and sodium sulfide pentahydrate (336.3 g (2.0 mol)) were charged, and the mixture was heated to 200 ° C. under a nitrogen atmosphere to distill off the water-NMP mixture. Next, a solution prepared by dissolving 292.53 g of p-dichlorobenzene and 1.62 g of 2,5-dichloroaniline in 230 g of NMP was added to this system and reacted at 220 ° C. for 5 hours and further at 240 ° C. for 2 hours in a nitrogen atmosphere. After cooling the reaction vessel, the contents were taken out, a part was sampled, and unreacted 2,5-dichloroaniline was quantified by gas chromatography. The remaining slurry was washed several times with hot water, and the polymer cake was filtered off. This cake was dried under reduced pressure at 80 ° C. to obtain a powdery PPS resin. When an infrared absorption spectrum was measured, an absorption spectrum which was considered to be derived from an amino group was observed in the vicinity of 3380 cm −1 .
1-2.溶融粘度
 PPS樹脂を島津製作所製フローテスター、CFT-500Cを用い、300℃、荷重:1.96×10Pa、L/D=10/1にて、6分間保持した後に溶融粘度を測定した。
1-2. Melt viscosity PPS resin was measured for 6 minutes using a flow tester CFT-500C manufactured by Shimadzu Corporation at 300 ° C., load: 1.96 × 10 6 Pa, L / D = 10/1, and then the melt viscosity was measured. .
1-3.非ニュートニアン指数
 PPS樹脂をキャピラリーレオメーターにて、温度300℃の条件下、直径1mm、長さ40mmのダイスを用いて100~1000(sec-1)の剪断速度に対する剪断応力を測定し、これらの対数プロットした傾きから計算した値である。
1-3. Non-Newtonian index PPS resin was measured with a capillary rheometer at a temperature of 300 ° C. using a die having a diameter of 1 mm and a length of 40 mm for a shear rate of 100 to 1000 (sec −1 ). Is a value calculated from the slope of the logarithm plot.
1-4.Mw及びMw/Mtop(分子量分布)
 PPS樹脂の重量平均分子量及びピーク分子量を、ゲル浸透クロマトグラフィーを用いて、下記の測定条件により測定した。得られたMw及びMtopからMw/Mtopを算出した。6種類の単分散ポリスチレンを校正に用いた。
 装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC-7000」)
 カラム:UT-805L(昭和電工株式会社製)
 カラム温度:210℃
 溶媒:1-クロロナフタレン
 測定方法:UV検出器(360nm)
1-4. Mw and Mw / Mtop (molecular weight distribution)
The weight average molecular weight and peak molecular weight of the PPS resin were measured under the following measurement conditions using gel permeation chromatography. Mw / Mtop was calculated from the obtained Mw and Mtop. Six types of monodisperse polystyrene were used for calibration.
Apparatus: Ultra-high temperature polymer molecular weight distribution analyzer ("SSC-7000" manufactured by Senshu Kagaku Co., Ltd.)
Column: UT-805L (made by Showa Denko KK)
Column temperature: 210 ° C
Solvent: 1-chloronaphthalene Measurement method: UV detector (360 nm)
 合成したPPS-1~5の特性をまとめて表1に示す。 The properties of synthesized PPS-1 to 5 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
2.ポリフェニレンスルフィド樹脂組成物(PPSコンパウンド)
2-1.原料
 PPS樹脂組成物を調製するため、以下のシリコーン化合物を準備した。
・Si-1:シリコーンパウダー(東レ・ダウコーニング株式会社製、「トレフィルF-202」、シリカにシリコーンオイル(粘度(25℃)62Pa・s)を60質量%担持したパウダー)
・Si-2:アミノ基含有シリコーン(信越化学工業株式会社製、「KF-868」)
2. Polyphenylene sulfide resin composition (PPS compound)
2-1. Raw materials In order to prepare the PPS resin composition, the following silicone compounds were prepared.
Si-1: Silicone powder (Toray Doll Corning Co., Ltd., “Trefil F-202”, Silica oil (viscosity (25 ° C.) 62 Pa · s) 60% by mass) supported on silica)
Si-2: amino group-containing silicone (“KF-868” manufactured by Shin-Etsu Chemical Co., Ltd.)
2-2.コンパウンドの作製
 表2に記載する配合組成で各原料をタンブラーを用いて均一に混合した後、2軸混練押出機(東芝機械株式会社製、「TEM-35B」)を用いて300℃で溶融混練して、ペレット状のコンパウンドを得た。
2-2. Compound preparation Each raw material was uniformly mixed using a tumbler with the composition shown in Table 2, and then melt kneaded at 300 ° C using a twin-screw kneading extruder ("TEM-35B" manufactured by Toshiba Machine Co., Ltd.). Thus, a pellet-like compound was obtained.
3.評価
3-1.引張強度及び引張伸び
 得られたコンパウンドから、ASTM4号ダンベル形状に射出成形した評価用成形品を、ASTM D638に従って、株式会社島津製作所製の「オートグラフ AG-5000C」を用いて、引張破断伸びを測定した。
3. Evaluation 3-1. Tensile Strength and Tensile Elongation Evaluation moldings obtained by injection molding into the ASTM No. 4 dumbbell shape from the obtained compound were subjected to tensile elongation at break using “Autograph AG-5000C” manufactured by Shimadzu Corporation according to ASTM D638. It was measured.
3-2.圧縮応力緩和試験
 樹脂組成物ペレットを射出成形機を用いて成形し、射出成形機により縦8mm×横8mm×厚さ3mmの平板を成形し、図1に示すような圧縮応力緩和用試験片を作製した。この試験片を用い、恒温槽を備えた株式会社島津製作所製「オートグラフ AG-50KNX」により10%歪み下(温度条件:23℃及び60℃)で圧縮応力緩和を測定し、100時間後の圧縮応力を求めた。
3-2. Compressive stress relaxation test Resin composition pellets are molded using an injection molding machine, and a flat plate of 8 mm length × 8 mm width × 3 mm thickness is molded by an injection molding machine, and a test piece for compressive stress relaxation as shown in FIG. Produced. Using this test piece, the compression stress relaxation was measured under 10% strain (temperature conditions: 23 ° C. and 60 ° C.) by “Autograph AG-50KNX” manufactured by Shimadzu Corporation equipped with a thermostatic bath. The compressive stress was determined.
3-3.気密性の評価
 樹脂組成物ペレットを射出成形機を用いて成形し、形状が縦8mm×横8mm×高さ10mmで厚さ0.8mmの箱形成型品を作製した。次いで、この箱形成型品に電解液(1mol/LのLiPF6/エチレンカーボネート(EC):ジメチルカーボネート(DMC)(容量1:1混合溶液)溶液、キシダ化学株式会社製)を入れ、圧縮応力緩和試験で用いた縦8mm×横8mm×厚さ3mmの平板で一定応力(10%歪み下)で封をした気密試験用サンプルを作成する。これを60℃の乾熱下で100時間放置し、液の漏れ具合について確認した。なお、評価結果は以下のように表示した。
○:100時間後に液の漏れが生じない。
×:100時間後に液の漏れが生じる。
3-3. Evaluation of airtightness The resin composition pellets were molded using an injection molding machine to produce a box-shaped product having a shape of 8 mm long × 8 mm wide × 10 mm high and 0.8 mm thick. Next, an electrolytic solution (1 mol / L LiPF6 / ethylene carbonate (EC): dimethyl carbonate (DMC) (capacity 1: 1 mixed solution) solution, manufactured by Kishida Chemical Co., Ltd.)) is put into this box forming product, and the compression stress relaxation is performed. An airtightness test sample sealed with a constant stress (under 10% strain) on a flat plate of 8 mm length × 8 mm width × 3 mm thickness used in the test is prepared. This was left for 100 hours under dry heat at 60 ° C., and the liquid leakage was confirmed. The evaluation results were displayed as follows.
○: No liquid leakage occurs after 100 hours.
X: Liquid leakage occurs after 100 hours.
3-4.キャビティーバランス
 40個分のキャビティーを有するワッシャー金型を用いて、一次スプルーに最も近い位置のキャビティー(C1)が完全に充填される限りで最低の成形条件でPPSコンパウンドを射出成形した。成形条件は75トン成形機、シリンダー温度320℃、金型温度140℃、保圧無しとした。
 成型後の、キャビティー(C1)と同じランナーにある一次スプルーから最も遠いキャビティー(C10)の充填度を比較した。充填度(質量%)は、キャビティー(C1)の成形品に対する、キャビティー(C10)の成形品の質量比から求めた。キャビティー(C10)の充填度が高いほど、キャビティーバランスが優れていると言える。充填度に基づいて、各組成物のキャビティーバランスを以下の基準で判定した。
AA:100~90質量%
A:89~80質量%
B:79~70質量%
C:69~60質量%
D:59%質量以下
3-4. Cavity Balance Using a washer mold having 40 cavities, the PPS compound was injection molded under the lowest molding conditions as long as the cavity (C1) closest to the primary sprue was completely filled. The molding conditions were a 75-ton molding machine, a cylinder temperature of 320 ° C, a mold temperature of 140 ° C, and no holding pressure.
The degree of filling of the cavity (C10) farthest from the primary sprue in the same runner as the cavity (C1) after molding was compared. The degree of filling (% by mass) was determined from the mass ratio of the molded product of the cavity (C10) to the molded product of the cavity (C1). It can be said that the higher the degree of filling of the cavity (C10), the better the cavity balance. Based on the degree of filling, the cavity balance of each composition was determined according to the following criteria.
AA: 100 to 90% by mass
A: 89-80% by mass
B: 79 to 70% by mass
C: 69-60 mass%
D: 59% or less
3-5.発生ガス量
 ガスクロマトグラフ質量分析装置を用いて、PPS樹脂単体及びPPSコンパウンドについて、所定量のサンプルを325℃で15分間加熱し、そのときの発生ガス量を質量%として定量した。
3-5. Generated Gas Amount Using a gas chromatograph mass spectrometer, for a single PPS resin and a PPS compound, a predetermined amount of sample was heated at 325 ° C. for 15 minutes, and the amount of generated gas at that time was quantified as mass%.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2に示される結果から明らかなように、実施例で作製した樹脂組成物は、キャビティーバランスに優れており、機械的強度が高く、気密性にも優れた成形品を形成でき、ガスケットとして用いた場合、二次電池に必要とされる気密性を維持することができる。 As is apparent from the results shown in Table 2, the resin compositions prepared in the examples have excellent cavity balance, high mechanical strength, and can form molded products with excellent airtightness. When used, the airtightness required for the secondary battery can be maintained.

Claims (7)

  1.  正極、負極、封口体、ガスケット、セパレータ及び電解液から構成される二次電池に用いられるガスケット用樹脂組成物であって、
     ポリアリーレンスルフィド樹脂及びシリコーン化合物を含有し、
     前記ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、前記ジヨード芳香族化合物、前記単体硫黄及び前記重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、ガスケット用樹脂組成物。
    A resin composition for a gasket used for a secondary battery composed of a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte solution,
    Containing a polyarylene sulfide resin and a silicone compound,
    The polyarylene sulfide resin comprises reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, the elemental sulfur, and the polymerization inhibitor. The resin composition for gaskets which can be obtained by this.
  2.  前記ポリアリーレンスルフィド樹脂が、前記重合禁止剤に由来するヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を有する、請求項1に記載のガスケット用樹脂組成物。 The resin composition for a gasket according to claim 1, wherein the polyarylene sulfide resin has at least one group selected from the group consisting of a hydroxy group, an amino group, a carboxyl group and a carboxyl group salt derived from the polymerization inhibitor. object.
  3.  前記ポリアリーレンスルフィド樹脂が、300℃における0.95~1.75の非ニュートニアン指数、及び、0.80~1.70のMw/Mtopを有し、
     前記Mw及びMtopはそれぞれゲル浸透クロマトグラフィーにより測定される重量平均分子量及びピーク分子量である、請求項1又は2に記載のガスケット用樹脂組成物。
    The polyarylene sulfide resin has a non-Newtonian index of 0.95 to 1.75 at 300 ° C. and Mw / Mtop of 0.80 to 1.70;
    The resin composition for a gasket according to claim 1 or 2, wherein the Mw and Mtop are respectively a weight average molecular weight and a peak molecular weight measured by gel permeation chromatography.
  4.  請求項1~3のいずれか一項に記載のガスケット用樹脂組成物からなる二次電池用ガスケット。 A gasket for a secondary battery comprising the resin composition for a gasket according to any one of claims 1 to 3.
  5.  正極、負極、封口体、ガスケット、セパレータ及び電解液から構成される二次電池に用いられるガスケット用樹脂組成物の製造方法であって、
     ポリアリーレンスルフィド樹脂及びシリコーン化合物を混合する工程を有し、
     前記ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、前記ジヨード芳香族化合物、前記単体硫黄及び前記重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、ガスケット用樹脂組成物の製造方法。
    A method for producing a resin composition for a gasket used in a secondary battery comprising a positive electrode, a negative electrode, a sealing body, a gasket, a separator, and an electrolyte solution,
    Having a step of mixing a polyarylene sulfide resin and a silicone compound,
    The polyarylene sulfide resin comprises reacting a diiodo aromatic compound, elemental sulfur, and a polymerization inhibitor in a molten mixture containing the diiodo aromatic compound, the elemental sulfur, and the polymerization inhibitor. The manufacturing method of the resin composition for gaskets which can be obtained by this.
  6.  前記ポリアリーレンスルフィド樹脂が、前記重合禁止剤に由来するヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を有する、請求項5に記載のガスケット用樹脂組成物の製造方法。 The resin composition for a gasket according to claim 5, wherein the polyarylene sulfide resin has at least one group selected from the group consisting of a hydroxy group, an amino group, a carboxyl group, and a carboxyl group salt derived from the polymerization inhibitor. Manufacturing method.
  7.  前記ポリアリーレンスルフィド樹脂が、300℃における0.95~1.75の非ニュートニアン指数、及び、0.80~1.70のMw/Mtopを有し、
     前記Mw及びMtopはそれぞれゲル浸透クロマトグラフィーにより測定される重量平均分子量及びピーク分子量である、請求項5又は6に記載のガスケット用樹脂組成物の製造方法。
    The polyarylene sulfide resin has a non-Newtonian index of 0.95 to 1.75 at 300 ° C. and Mw / Mtop of 0.80 to 1.70;
    The method for producing a resin composition for a gasket according to claim 5 or 6, wherein Mw and Mtop are respectively a weight average molecular weight and a peak molecular weight measured by gel permeation chromatography.
PCT/JP2014/072635 2013-08-30 2014-08-28 Resin composition for gasket, production method therefor, and gasket for secondary battery WO2015030137A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015534308A JP6233415B2 (en) 2013-08-30 2014-08-28 Resin composition for gasket, method for producing the same, and gasket for secondary battery
CN201480048085.9A CN105493310B (en) 2013-08-30 2014-08-28 Gasket resin combination, its manufacturing method and secondary cell gasket
KR1020167007667A KR20160049537A (en) 2013-08-30 2014-08-28 Resin composition for gasket, production method therefor, and gasket for secondary battery
KR1020217042596A KR102595639B1 (en) 2013-08-30 2014-08-28 Resin composition for gasket, production method therefor, and gasket for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179608 2013-08-30
JP2013179608 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030137A1 true WO2015030137A1 (en) 2015-03-05

Family

ID=52586685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072635 WO2015030137A1 (en) 2013-08-30 2014-08-28 Resin composition for gasket, production method therefor, and gasket for secondary battery

Country Status (4)

Country Link
JP (1) JP6233415B2 (en)
KR (2) KR20160049537A (en)
CN (1) CN105493310B (en)
WO (1) WO2015030137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220076515A (en) * 2019-11-15 2022-06-08 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Secondary batteries, battery modules and devices

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210341B2 (en) * 2013-08-30 2017-10-11 Dic株式会社 Multilayer molded body and fuel parts using the same
CN110283457B (en) * 2013-09-26 2023-03-31 Dic株式会社 Polyarylene sulfide resin composition, molded article thereof, and surface mount electronic component
CN111448682B (en) * 2018-02-23 2022-10-18 株式会社Lg新能源 Gasket for secondary battery and secondary battery including the same
KR102335697B1 (en) * 2018-02-23 2021-12-07 주식회사 엘지에너지솔루션 Corrosion inhibitor for gasket, gasket for secondary battery comprising the corrosion inhibitor, and secondary battery comprising the gasket
KR20210152726A (en) * 2020-06-09 2021-12-16 에스케이케미칼 주식회사 Resin composition for gasket and gasket for secondary battery comprising the same
KR20220000502A (en) * 2020-06-26 2022-01-04 에스케이케미칼 주식회사 Resin composition for electric vehicle component and electric vehicle component comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506228A (en) * 1989-06-12 1992-10-29 イーストマン コダック カンパニー Low molecular weight terminated copoly(arylene sulfide)
JP2010501661A (en) * 2006-08-24 2010-01-21 エスケー ケミカルズ カンパニー リミテッド Process for producing poly (arylene sulfide)
JP2011029166A (en) * 2009-06-23 2011-02-10 Dic Corp Resin composition for gasket, manufacturing method therefor, and gasket for secondary battery
WO2012057319A1 (en) * 2010-10-29 2012-05-03 東レ株式会社 Polyarylene sulfide production method and polyarylene sulfide
JP2013518933A (en) * 2010-02-01 2013-05-23 エスケー ケミカルズ カンパニー リミテッド Process for producing iodine-reduced polyarylene sulfide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172489A (en) * 1984-09-17 1986-04-14 Mitsubishi Electric Corp Picture area detecting device
US5656392A (en) 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries
JP2005078890A (en) 2003-08-29 2005-03-24 Toray Ind Inc Polyamide resin composition for battery gasket
KR101750014B1 (en) * 2010-05-12 2017-06-23 에스케이케미칼 주식회사 Polyarylene sulfide having excellent formability and preparation method threrof
JP5708898B2 (en) * 2013-03-25 2015-04-30 Dic株式会社 Method for producing polyarylene sulfide resin and polyarylene sulfide resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506228A (en) * 1989-06-12 1992-10-29 イーストマン コダック カンパニー Low molecular weight terminated copoly(arylene sulfide)
JP2010501661A (en) * 2006-08-24 2010-01-21 エスケー ケミカルズ カンパニー リミテッド Process for producing poly (arylene sulfide)
JP2011029166A (en) * 2009-06-23 2011-02-10 Dic Corp Resin composition for gasket, manufacturing method therefor, and gasket for secondary battery
JP2013518933A (en) * 2010-02-01 2013-05-23 エスケー ケミカルズ カンパニー リミテッド Process for producing iodine-reduced polyarylene sulfide
WO2012057319A1 (en) * 2010-10-29 2012-05-03 東レ株式会社 Polyarylene sulfide production method and polyarylene sulfide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220076515A (en) * 2019-11-15 2022-06-08 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Secondary batteries, battery modules and devices
KR102616024B1 (en) 2019-11-15 2023-12-19 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Secondary batteries, battery modules and devices
JP7416934B2 (en) 2019-11-15 2024-01-17 寧徳時代新能源科技股▲分▼有限公司 Secondary batteries, battery modules and devices
US11894568B2 (en) 2019-11-15 2024-02-06 Contemporary Amperex Technology Co., Limited Secondary battery, battery column, and apparatus

Also Published As

Publication number Publication date
KR102595639B1 (en) 2023-10-31
CN105493310B (en) 2018-11-23
JPWO2015030137A1 (en) 2017-03-02
CN105493310A (en) 2016-04-13
KR20220002719A (en) 2022-01-06
JP6233415B2 (en) 2017-11-22
KR20160049537A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6233415B2 (en) Resin composition for gasket, method for producing the same, and gasket for secondary battery
JP5310326B2 (en) Polyphenylene sulfide resin composition and method for producing the same
WO2014115536A1 (en) Polyphenylene sulfide resin composition, method for producing same, and molded article of same
JP2017155221A (en) Polyphenylene sulfide resin composition and molded article
JP2018009148A (en) Method for producing polyarylene sulfide resin composition
JP2019119810A (en) Polyphenylene sulfide resin composition and manufacturing method therefor
JP2012131968A (en) Reflector plate with metal film formed thereon
JPH09272801A (en) Polyarylene sulfide resin molding product
JP2018053118A (en) Polyarylene sulfide resin composition and method for producing the same
JP5135727B2 (en) Method for producing polyarylene sulfide composition
WO2019173428A1 (en) Polyaryletherketone composition
JP5720125B2 (en) Resin composition for gasket, method for producing the same, and gasket for secondary battery
JP2022109212A (en) Polyphenylene sulfide resin composition and compact
JP7443757B2 (en) Insulating member for batteries made of polyphenylene sulfide resin composition
JP4090880B2 (en) Polyarylene sulfide resin
JP2018100364A (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP2001002920A (en) Polyarylene sulfide resin composition
JP6337971B2 (en) Polyphenylene sulfide resin composition and method for producing the same
JP2008214383A (en) Polyarylene sulfide resin composition
JP5050728B2 (en) Polyetherimide resin composition
WO2023053914A1 (en) Polyarylene sulfide resin composition and molded article
JP2014141567A (en) Polyphenylenesulfide resin composition and method for producing the same
JPH11106656A (en) Polyarylene sulfide resin composition
JP2012096360A (en) Reflecting plate with metal film formed
JP2018536068A (en) Polyarylene sulfide resin composition and molded article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048085.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167007667

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14839846

Country of ref document: EP

Kind code of ref document: A1