WO2015029479A1 - 流体遷移分析装置、流体遷移分析方法、および、プログラム - Google Patents

流体遷移分析装置、流体遷移分析方法、および、プログラム Download PDF

Info

Publication number
WO2015029479A1
WO2015029479A1 PCT/JP2014/056811 JP2014056811W WO2015029479A1 WO 2015029479 A1 WO2015029479 A1 WO 2015029479A1 JP 2014056811 W JP2014056811 W JP 2014056811W WO 2015029479 A1 WO2015029479 A1 WO 2015029479A1
Authority
WO
WIPO (PCT)
Prior art keywords
word
flow
saddle
streamline
pattern
Prior art date
Application number
PCT/JP2014/056811
Other languages
English (en)
French (fr)
Inventor
貴之 坂上
知郎 横山
陽一 澤村
卓 石原
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Publication of WO2015029479A1 publication Critical patent/WO2015029479A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/065Measuring arrangements specially adapted for aerodynamic testing dealing with flow
    • G01M9/067Measuring arrangements specially adapted for aerodynamic testing dealing with flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation

Definitions

  • the present invention relates to a fluid transition analysis device, a fluid transition analysis method, and a program.
  • the structure and control of the flying object are calculated by calculating the lift and drag of the plate obtained along with the flow around the plate. A method is being considered.
  • Non-Patent Document 1 based on numerical calculation, the relationship between the blade shape in the flow around the blades such as maple falling while rotating and the generation / maintenance mechanism of the leading edge vortex (Leading-Edge Vortices) The analysis results are disclosed.
  • the present invention has been made in view of the above-described problems, and provides knowledge on the relationship between the transition of a flow pattern around an object placed in a uniform flow, such as a flying object, and the variation in force applied to the object. It is an object to provide a fluid transition analysis device, a fluid transition analysis method, and a program that can be obtained.
  • the fluid transition analysis device of the present invention is a fluid transition analysis device including a storage unit and a control unit, wherein the storage unit is for an object placed in a uniform flow.
  • the experimental result or numerical calculation result of the force received by the object and the flow around the object in the period is stored, and the control unit performs streamline analysis on the flow around the object at a certain point in the period to obtain a streamline diagram 2 types of flow patterns that can be taken topologically in a single connected external region having one hole are defined based on the streamline analysis means for acquiring the flow line and the streamline diagram acquired by the streamline analysis means
  • any one of the words defining the topological operations that can be taken topologically when adding one hole to the flow pattern is added to the added hole.
  • the word expression forming means for forming the word expression indicating the flow pattern of the flow around the object, the word expression indicating the flow pattern at a certain point of time and the object at the point of time formed by the word expression forming means
  • Corresponding relationship acquisition means for storing correspondence information between the transition of the word expression and the fluctuation of the force received by the object at a plurality of time points to be analyzed by associating with the force received by the object and storing in the storage unit And.
  • the fluid transition analysis device of the present invention is characterized in that, in the fluid transition analysis device described above, the forces received by the object are lift and drag of the object.
  • the fluid transition analysis apparatus is characterized in that, in the fluid transition analysis apparatus described above, the ratio of the force received by the object is a lift-drag ratio of the object.
  • the correspondence relationship information is a table indicating a correspondence relationship between the transition of the word expression and the fluctuation of the force received by the object.
  • the fluid transition analyzer of the present invention is the above-described fluid transition analyzer, wherein the two types of flow patterns are: 1) a pattern I having the above-mentioned suction / outflow pairs and having two ss- ⁇ -saddle connections. 2) It is characterized by being a pattern II having the above-described suction-outflow pair, one saddle point, a homoclinic saddle connection connecting the two, and two ss-saddle connections.
  • the fluid transition analysis apparatus of the present invention is the above-described fluid transition analysis apparatus, wherein the five types of operations that can be taken topologically are: 1) one ss-orbit, one saddle point, a 0 operation to replace the homoclinic saddle connection and two ss-saddle connection with holes therein bear, 2) a single ss-orbit, two on the boundary newly added and two ss- ⁇ -saddle connection A 2 operation to replace one saddle-saddle, 3) B 0 operation to replace one closed orbit with two homoclinic saddle connections with one hole and saddle point added to make a figure 8 Of closed or B 2 operation to replace the bit with a trajectory where two ⁇ -saddles are attached on the boundary of the newly added hole and connected with one ⁇ -saddle connection, and 5) 2k (k> 0) already
  • the word expression forming unit assigns a word defining the five types of operations, 1) one ss-orbit A word defining the above A 0 operation or the above A 2 operation is given on the condition that 2 exists, and 2) the above B 0 operation or the above B 2 operation is executed on the condition that one closed orbit exists. It is characterized in that a prescribed word is given, and 3) a word defining the C operation is given on the condition that a boundary having ⁇ -saddles exists.
  • the fluid transition analysis method of the present invention is a fluid transition analysis method executed in a computer having a storage unit and a control unit, and the storage unit is for an object placed in a uniform flow.
  • the experiment results or numerical calculation results of the force received by the object and the flow around the object in the period are stored, and the flow around the object at a certain point in the period executed by the control unit is analyzed by streamline analysis.
  • the word expression shown and the force received by the object at the time are stored in the storage unit in association with each other, and the correspondence between the transition of the word expression and the fluctuation of the force received by the object at a plurality of time points to be analyzed A correspondence acquisition step of acquiring relationship information.
  • the program of the present invention is a program for causing a computer including a storage unit and a control unit to execute the program, and the storage unit stores objects in a certain period of time for an object placed in a uniform flow.
  • Streamline which memorizes experimental result or numerical calculation result of force received and flow around object, and obtains streamline diagram by streamline analysis of flow around object at a certain point in time in the control unit Based on the analysis step and the streamline diagram obtained in the streamline analysis step, among the words defining two types of flow patterns that can be taken topologically in a single connected external region having one hole
  • any one of the words defining the five types of operations that can be taken topologically when adding one hole to the flow pattern is given by the number of added holes.
  • a word expression forming step for forming a word expression indicating the flow pattern of the flow around the object, and the word expression indicating the flow pattern at a certain time and the time point formed in the word expression forming step.
  • Correspondence that acquires the correspondence information between the transition of the word expression and the fluctuation of the force received by the object at a plurality of time points to be analyzed in association with the force received by the object in And an acquisition step.
  • the present invention also relates to a recording medium, and is characterized by recording the above-described program.
  • the flow around the object at a certain point in time is analyzed by streamline analysis from the experimental result or numerical calculation result of the force received by the object and the flow around the object.
  • the topological The word expression indicating the flow pattern of the flow around the object is formed by adding any one of the words defining the five types of operations that can be taken as many as the number of added holes,
  • the word expression indicating the flow pattern at the time point is associated with the force received by the object at the time point.
  • the present invention has an effect that it is possible to obtain a correspondence relationship between a transition of a flow pattern around an object placed in a uniform flow, such as a flying object, and a change in force applied to the object.
  • the transition order of the phase structure word expression
  • the transition order of the flow pattern with respect to the structure is finite in terms of topology, for example, an aircraft or the like.
  • a structural design or the like can be performed based on a character string expressing the flow pattern.
  • a table showing the correspondence between the transition of the word expression and the variation of the force (lift, drag, ratio, etc.) received by the object is obtained.
  • a tabular list can be obtained.
  • the two types of flow patterns are 1) the pattern I having the above-mentioned suction-and-out pair, and two ss- ⁇ -saddle connections, and 2) the above-mentioned pair of the suction-and-out flow, A pattern II having one saddle point, a homoclinic saddle connection connecting the saddle points, and two ss-saddle connections.
  • the present invention can give a pattern word to the basic flow pattern, and has the effect of being able to handle a specific expression of the flow pattern.
  • the five types of operations that can be taken topologically are: 1) one ss-orbit, one saddle point, and a homoclinic saddle connection that has a hole inside and two holes.
  • a 0 operation to replace the ss-saddle connection 2) a single ss-orbit, a 2 operation to replace the two ss- ⁇ -saddle connection and the newly two ⁇ -saddle on the added border, 3) single the book closed orbit, one adds the hole and saddle point and replace with two homoclinic saddle connection with the figure of eight B 0 operation, 4) a single closed orbit, the boundaries of the holes the newly added ⁇ ⁇ ⁇ -sadd B 2 operation to replace the trajectory with a single ⁇ -saddle connection with le, and 5) two new ⁇ -saddles on the boundary having 2k (k> 0) ⁇ -saddles Is a C operation in which a newly added hole is placed inside the connection with a single saddle connection.
  • FIG. 1 schematically shows a case in which a thin flat plate having a finite thickness is inclined at a certain angle with respect to a uniform flow as an object in the uniform flow within a two-dimensional external region.
  • FIG. 2 is a diagram illustrating a numerical calculation result of the flow around the object.
  • FIG. 3 is a diagram illustrating a numerical calculation result of the flow around the object.
  • FIG. 4 is a graph showing the fluctuation of the force received by the object obtained by the numerical calculation of the flow around the object.
  • FIG. 5 is a flowchart shown in the outline of the present embodiment.
  • FIG. 6 is a diagram schematically showing a flow pattern.
  • FIG. 7 is a diagram describing all characteristic trajectories (streamlines) for performing topological classification of flows in a region.
  • FIG. 8 is a diagram schematically showing three types of flow patterns serving as an initial structure.
  • FIG. 9 is a diagram schematically showing five types of operations for forming a flow by adding one hole.
  • FIG. 10 is a diagram showing all classifications of flow patterns when there are two structures and a uniform flow.
  • FIG. 12 is a block diagram illustrating an example of the fluid transition analysis apparatus 100 to which this embodiment is applied.
  • FIG. 13 is a flowchart illustrating an example of pattern word assignment processing.
  • FIG. 14 is a flowchart illustrating an example of an I-sequence operation word assignment process in algorithm B.
  • FIG. 15 is a flowchart illustrating an example of an I-sequence operation word assignment process in algorithm B.
  • FIG. 16 is a flowchart illustrating an example of II-series operation word assignment processing in algorithm B.
  • FIG. 17 is a flowchart showing another example of the process of assigning operation words of I and II series in algorithm B (I, II-Word alg).
  • FIG. 18 is a flowchart showing another example of assignment processing of operation words of I and II series in algorithm B (I, II-Word alg).
  • FIG. 19 is a diagram showing changes over time in the lift-drag ratio, lift, and drag applied to a single flat plate calculated under the calculation conditions of predetermined parameters.
  • FIG. 19 is a diagram showing changes over time in the lift-drag ratio, lift, and drag applied to a single flat plate calculated under the calculation conditions of predetermined parameters.
  • the experimental result or numerical calculation result of the force (including the ratio of the force received by the object) and the flow around the object in a certain period.
  • the force received by the object is a force received by the object by a uniform flow, specifically, lift (lift) or drag (drag).
  • a lift-drag ratio (ratio of lift to drag) It may be.
  • the experimental result of the flow around the object may be the experimental result of the wind tunnel experiment.
  • the numerical calculation result of the flow around the object may be a computer simulation result using a fluid dynamics calculation method such as Navier-Stokes equation, for example.
  • an object placed in a uniform flow may be an object in a two-dimensional plane, or an object placed in a uniform flow in a three-dimensional space is uniform in a two-dimensional plane.
  • the processing of the present embodiment may be performed by capturing a cross section along the flow.
  • FIG. 1 shows that, in a two-dimensional external region, a thin flat plate having a finite thickness is inclined as an object in a uniform flow at a constant angle with respect to the uniform flow. It is the figure which showed the case typically.
  • the symbol U in the figure indicates a uniform flow
  • cl is the length of the long side of the flat plate
  • is the angle to the uniform flow
  • Lx and Ly are the lengths in the x-axis direction and the y-axis direction.
  • a rectangular area is shown.
  • FIG. 1 for example, in an object such as an aircraft, a train, or an automobile, a uniform flow from a relatively infinite point is generated along the traveling direction. Assuming a cross-section, for an object placed in a uniform flow, an experimental result or numerical calculation result of a force applied to the object and a flow around the object in a certain period may be obtained.
  • FIG. 2 and FIG. 3 are diagrams showing the numerical calculation results of the flow around the object.
  • FIG. 4 is a graph showing the fluctuation of the force received by the object obtained by the numerical calculation of the flow around the object.
  • the details of the numerical calculation conditions for example, Reynolds number: 1370, ⁇ : 15 °, analysis range (Resolution): 1024 ⁇ 256
  • FIGS. 2 to 4 The details of the numerical calculation conditions (for example, Reynolds number: 1370, ⁇ : 15 °, analysis range (Resolution): 1024 ⁇ 256) in FIGS. 2 to 4 are described in the examples described later. The description is omitted here.
  • FIG. 2 illustrates the flow around the object when the uniform flow does not hit the object
  • the flow of this is illustrated.
  • the counterclockwise (counterclockwise) flow has a positive value (yellow side in the color diagram), and the clockwise (clockwise) flow has a negative value (purple side in the color diagram).
  • the straight flow is indicated by 0 (red in the color diagram). That is, the figure shows the vorticity component of the flow, the yellow part shows the region with the counterclockwise positive vortex component, and the blue part shows the region with the clockwise negative vortex component. ing.
  • FIG. 1 shows the vorticity component of the flow
  • the yellow part shows the region with the counterclockwise positive vortex component
  • the blue part shows the region with the clockwise negative vortex component.
  • the broken line indicates lift (lift), the alternate long and short dash line indicates drag, and the solid line indicates lift / drag ratio (I / d ratio).
  • I / d ratio lift / drag ratio
  • the present embodiment performs the following processing.
  • a streamline diagram is obtained by performing streamline analysis on a flow around an object at a certain point in time during which an experimental result or a numerical calculation result is obtained.
  • this embodiment is based on the acquired streamline diagram, out of words (I, II) that define two types of flow patterns that can be taken topologically in a single connected external region having one hole A word (A 0 , A 2 , B 0 , B 2 , C) that specifies five types of operations that can be taken topologically when adding one hole to the flow pattern.
  • a word A 0 , A 2 , B 0 , B 2 , C
  • a word expression indicating a flow pattern of the flow around the object is formed.
  • an algorithm for forming this word expression is referred to as a “word conversion algorithm”. It should be noted that the mathematical details of the “word conversion algorithm” are described in a published paper (T. Yokoyama and T. Sakajo, “Word representation of streamlined topology instructorable flow. 469 (2013) doi: 10.1098 / rspa.2012.558).
  • the present embodiment associates the formed word expression indicating the flow pattern at a certain point in time with the force received by the object at that point in the storage unit, and at a plurality of points to be analyzed.
  • the correspondence information between the transition of the word expression and the fluctuation of the force received by the object is acquired.
  • FIG. 5 is a flowchart showing an outline of the word expression algorithm of the present embodiment.
  • the present embodiment uses a single hole to form a word representation of a flow pattern in a connected outer region topologically having N holes based on a streamline diagram.
  • Any one of the words (referred to as “pattern words”) defining two types of flow patterns that can be taken topologically in a single connected outer region having (1) is given (step SA-1).
  • this embodiment performs 5 types of operations which can be taken topologically when adding one hole to a flow pattern with respect to the word provided in step SA-1 based on a flow diagram.
  • operation words any one of the defined words (referred to as “operation words”) (step SA-2) and repeating the process of step SA-2 until the number of holes becomes N (Step SA-3)
  • a word expression corresponding to a connected external region having N holes corresponding to the streamline diagram is formed.
  • the pattern word assignment (step SA-1) is performed first, and the operation word assignment (step SA-2) is performed later.
  • the present invention is not limited to this, and the operation word assignment is performed first.
  • the pattern word may be given later.
  • the “connected external region” is an expression including a single connected external region and a multiple connected external region
  • the “single connected external region” is a region in two dimensions (plane).
  • the term “multiple connected outer region” refers to a region in two dimensions (a plane) that has a plurality of holes.
  • the expression “hole” here is a mathematical abstract expression, but various expression forms may be applied. For example, when focusing on a uniform flow that occurs relatively when a vehicle moves, if there is one or more structures on the cross-section of the vehicle along the uniform flow, the region is simply It can be treated as a connected external region or a multiple connected external region.
  • one or more holes and a single connection or multiple connection Can be treated as a connected external region.
  • a flow such as “one or more obstacles in the flow” is treated as a flow in the connected external region in this embodiment.
  • an isolated vortex structure or a flow structure (such as an elliptical stopping point) having a periodic orbit around it can be regarded as a “hole”.
  • topological classification of the flow in the connected external region is possible by assigning the word expression to the flow pattern.
  • Topological is a technical term in mathematics and refers to a field of geometry, also called topology (topology).
  • topology topology
  • triangles and quadrilaterals are considered to be different figures due to the difference in the number of their corners, but from the viewpoint of topological geometry, triangles and quadrilaterals can move to each other by deforming rubber bands, for example.
  • the connected external region is expressed as D ⁇ (M) with respect to the number of holes M + 1. For example, when there is only one hole, it is a single connected external region D ⁇ (0), and when there are two holes, it is a double connected external region D ⁇ (1).
  • topological structure a specific structure that characterizes the flow
  • Those that cannot be deformed by continuous (ie, not cut or stuck) deformation of a particular structure are considered different flows.
  • the fluid in this embodiment may be handled as a non-viscous fluid.
  • An inviscid fluid can treat the boundary condition as a “slip condition”.
  • the boundary condition is the “zero boundary condition”.
  • the vortex is a laminar flow near the boundary.
  • the word conversion algorithm for non-viscous fluids may be described in particular, but this embodiment can also be applied to viscous fluids by appropriate boundary expansion.
  • FIG. 6 is a diagram schematically showing a flow pattern.
  • FIG. 6C schematically illustrates a boundary having four ⁇ -saddle points.
  • the vortex is an element that creates a flow that rotates around it.
  • the uniform flow is a basic flow in terms of river flow, and is a flow that crosses the entire region.
  • the uniform flow is a flow such as a relative air flow or a water flow as viewed from an observer riding on the vehicle. That is, in the coordinate system of the moving object, even if air or water is actually stationary, it is possible to imagine the relative flow that flows from the infinity point.
  • a plane may be projected onto a spherical surface by a projection method called stereographic projection (stereo projection / stereo projection) in mathematics.
  • stereographic projection stereo projection / stereo projection
  • the uniform flow corresponds to the flow field as shown in FIG.
  • the position of the north pole and the south pole can be appropriately shifted using the fact that the spherical surface has a highly symmetric shape, so the point at infinity is the south pole,
  • a flow as shown in FIG. 6B is produced near the origin corresponding to the south pole.
  • the flow field of the entire plane can be expressed as a bounded area having a shape as shown in FIG. 7, for example. Therefore, the expression as shown in FIG. 6B is equivalent to a flow in which a uniform flow is contained in the entire plane through an appropriate projection method. In the description of the present embodiment, it is convenient to schematically show the flow, and therefore, it may be expressed in the drawing using such a projection method.
  • FIG. 7 is a diagram describing all the characteristic trajectories (streamlines) that perform topological classification of flows in such a region.
  • ss-orbit the trajectory returning from the pair of suction springs and returning to itself.
  • Each of these lines represents a uniform streamline in the connected outer region.
  • FIG. 7 (b) the trajectory that comes out of the pair of suction and outflow and connects to the boundary is called ss- ⁇ -saddle connection, and the trajectory is connected as shown in FIG. 7 (c).
  • the point on the border is called ss- ⁇ -saddle.
  • FIG. 7 (e) the trajectory leading out from a point on a certain boundary and leading to a point on the same boundary, not from a pair of suction and outflow, is called ⁇ -saddle connection, and FIG. 7 (d) The point on the boundary connected by this is called ⁇ -saddle.
  • a hyperbolic stop point that is not on the boundary as shown in FIG. 7 (h) is called a saddle point (saddle point), but as shown in FIG.
  • the trajectory leading to this saddle point is called ss-saddle connection.
  • a closed curve orbit that creates a boundary or a vortex is called a closed orbit
  • Fig. 7 (i) a trajectory that exits from saddle point and returns to itself. It is called homoclinic saddle connection. It can be mathematically proved that the target flow can only be expressed by a combination of these trajectories.
  • step SA-2 by adding one hole and the structure of the flow associated therewith to the flow of the connected external region D ⁇ (M-1) having M holes,
  • the flow field of many multiple connected external regions D ⁇ (M) is constructed inductively. Therefore, the simplest hole is a single connected external region D ⁇ (0) or a double connected external region D ⁇ (1), which is the initial structure of these inductive structures given in step SA-1. ing.
  • FIG. 8 is a diagram schematically showing three types of flow patterns serving as an initial structure.
  • FIGS. 8A and 8B there are two types of flows, a pattern I and a pattern II, in which the hole is in one single connected external region D ⁇ (0). Both of these patterns have a pair of suction and spring, and it can be proved mathematically that there are only these two types.
  • the double-coupled outer region D ⁇ (1) is composed of these, but has no suction-and-out pair. Is not constructed from here, the initial flow necessary for constituting the flow is a pattern O schematically shown in FIG. 8C.
  • phase structures are represented as a circle S for the simplicity of expression, and the ss-orbit and the closed orbit are not represented because they exist infinitely. It is simply expressed as (d) or (e). Further, as shown in FIG. 8 (c), all the closed orbits in the flow pattern in the double-connected external D ⁇ (1) having no suction / outflow pairs are not written as shown in FIG. 8 (f). Briefly.
  • step SA-2 the five types of operations that can be taken topologically are: 1) A 0 operation that replaces one ss-orbit with one saddle point, a homoclinic saddle connection with two holes inside, and two ss-saddle connections. 2) a single ss-orbit, A 2 operation to replace the two ss- ⁇ -saddle connection and the newly two ⁇ -saddle on the added boundary, 3) B 0 operation that replaces one closed orbit with two homoclinic saddle connections with the addition of one hole and saddle point and a figure of 8.
  • FIG. 9 is a diagram schematically showing five kinds of operations for forming a flow by adding one hole.
  • operation A 0 and A 2 is performed for a single ss-orbit. Further, as shown in FIG. 9 (b), the operation B 0 and B 2 is performed for a single closed orbit. Further, as shown in FIG. 9C, the operation C is performed on a boundary that already has ⁇ -saddles. It can be mathematically proved that there are only five types of operations that enable such a process while maintaining the structural stability (see Theorem 3.1, Collorry 3.1, Theorem 3.2). ).
  • FIG. 10 is a diagram showing all classifications of flow patterns when there are two structures and a uniform flow. As shown in FIG. 10, all the flows in the double connected external region D ⁇ (1) are given to the patterns I and II of the initial structure in the single connected external region D ⁇ (0) by assigning operation words. A pattern can be described. However, all the flow patterns shown in FIG.
  • 10 are not a total of 10 types of 2 types (I, II) ⁇ 5 types (A 0 , A 2 , B 0 , B 2 , C). That is, the operation word cannot arbitrarily arrange five kinds of operation words, but has various restrictions for mathematical reasons.
  • the constraints will be described as follows. That is, as described above with reference to FIG. 9, the operations A 0 and A 2 are performed on one ss-orbit. Therefore, the existence of one ss-orbit is indispensable as a premise for performing this operation. It becomes. Further, since the operations B 0 and B 2 are performed on one closed orbit, the presence of one closed orbit is indispensable as a premise for performing this operation. Further, since the operation C is performed on the boundary having ⁇ -saddles, the presence of the boundary having ⁇ -saddles is indispensable as a premise for performing this operation. Therefore, the rules for arranging the pattern words are different depending on where the pattern words are started from I, II, and O. The rules for arranging the character strings starting from the pattern words I, II, and O, which are derived based on the above constraint conditions, will be described below.
  • Such a character string is called an O-series word (O-Word), and the correctness of the rule can be mathematically proved (see Lemma 3.1).
  • I-1 The possible operations are all of A 0 , A 2 , B 0 , B 2 , and C, and as a result, the word expression starting from I lists these five types of operation words.
  • I-2) In order to include the word B 0 or B 2 in the word expression of the operation sequence, C or A 0 must always exist before that.
  • I-Word I-series word
  • Such a character string is called a II-series word (II-Word), and the correctness of the rule can be mathematically proved (see Lemma 3.4).
  • the upper figure of FIG. 11 is a streamline diagram showing a flat plate section cut along a vertical plane along the flow of a uniform flow (broken line in the figure) and the flow around it
  • the lower figure is a streamline diagram thereof. Is expressed using the stereographic projection method, and both figures are topologically equivalent with only a difference in expression.
  • a word expression indicating a corresponding flow pattern is obtained based on a flow diagram obtained from a numerical calculation result of a force received by an object and a flow around the object.
  • FIG. 12 is a block diagram illustrating an example of the fluid transition analysis apparatus 100 to which the present embodiment is applied, and conceptually illustrates only a portion related to the present embodiment in the configuration.
  • the fluid transition analysis apparatus 100 in this embodiment schematically includes at least a control unit 102 and a storage unit 106, and in this embodiment, an input / output control interface unit 108 and a communication control interface are further provided.
  • the unit 104 is provided.
  • the control unit 102 is a CPU or the like that comprehensively controls the entire fluid transition analysis apparatus 100.
  • the communication control interface unit 104 is an interface connected to a communication device (not shown) such as a router connected to a communication line or the like, and the input / output control interface unit 108 is connected to the input device 112 or the output device 114.
  • the storage unit 106 is a device that stores various databases and tables.
  • Each part of these fluid transition analyzers 100 is connected so that communication is possible via arbitrary communication paths. Further, the fluid transition analysis device 100 is communicably connected to the network 300 via a communication device such as a router and a wired or wireless communication line such as a dedicated line.
  • a communication device such as a router and a wired or wireless communication line such as a dedicated line.
  • Various databases and tables (simulation result file 106a, streamline diagram file 106b, correspondence file 106c, etc.) stored in the storage unit 106 are storage means such as a fixed disk device.
  • the storage unit 106 stores various programs, tables, files, databases, web pages, and the like used for various processes.
  • the simulation result file 106a is a simulation result storage unit that stores data indicating simulation results that are simulated experimentally or mathematically by the simulation unit 102a.
  • the simulation result file 106a may store an experimental result or a numerical calculation result of the force received by the object and the flow around the object.
  • the simulation result file 106a includes a value of a design variable indicating the shape of a structure, and a hydrodynamic simulation result of a predetermined fluid (such as an ocean current or an air current) with respect to the structure (fluid pressure or flow at each spatial coordinate). Or the like.
  • the simulation result file 106a may store, as simulation results, data input in advance via the input device 112 through model measurement in a laboratory such as a wind tunnel experiment.
  • the data stored in the simulation result file 106a is not limited to numerical calculation results, but may be data obtained through model measurement in a laboratory. Even experimental results can be expressed as snapshots that capture the flow state of streamlines by visualizing these data or processing them with a computer.
  • the streamline diagram file 106b is streamline data storage means for storing data indicating streamlines such as a streamline diagram.
  • the streamline data stored in the streamline diagram file 106b may be data indicating streamlines analyzed by the streamline analysis unit 102b based on data indicating simulation results.
  • the correspondence file 106c is correspondence information storage means for storing correspondence information.
  • the correspondence relationship file 106c associates the word expression indicating the flow pattern at a certain point of time acquired by the correspondence relationship acquiring unit 102g with the force (for example, lift force, drag force, ratio thereof) received by the object at that point in time. And stored as correspondence information (correspondence table data, etc.).
  • the word expression data stored in the correspondence file 106c is a character string made up of a combination of pattern words and operation words.
  • the correspondence between the word expression indicating the flow pattern and the force received by the object at a plurality of time points is accumulated, thereby indicating the correspondence between the transition of the word expression and the fluctuation of the force received by the object.
  • Correspondence relationship information is generated.
  • the input / output control interface unit 108 controls the input device 112 and the output device 114.
  • the output device 114 in addition to a monitor (including a home television), a speaker can be used (hereinafter, the output device 114 may be described as a monitor).
  • the input device 112 a keyboard, a mouse, a microphone, and the like can be used.
  • control unit 102 has a control program such as an OS (Operating System), a program that defines various processing procedures, and an internal memory for storing required data. And the control part 102 performs the information processing for performing various processes by these programs.
  • the control unit 102 includes a simulation unit 102a, a streamline analysis unit 102b, a word expression formation unit 102c, and a correspondence acquisition unit 102g in terms of functional concept.
  • the simulation unit 102a is a simulation unit that performs a fluid simulation on an object such as a structure.
  • the simulation unit 102a may experimentally or mathematically simulate a fluid with respect to a structure to obtain an experimental result or a numerical calculation result of a force received by the object and a flow around the object.
  • the simulation unit 102a is not limited to a simulation in a two-dimensional plane, and may perform a fluid simulation in a three-dimensional space.
  • the simulation unit 102a stores data indicating the simulation result in the simulation result file 106a.
  • the simulation unit 102a determines the value of a design variable indicating the shape of the structure, and the hydrodynamic simulation result of a predetermined fluid (such as an ocean current or an air current) with respect to the structure (the pressure or flow direction of the fluid in each spatial coordinate). Or data indicating resistance) may be stored.
  • the simulation unit 102a may use a Navier-Stokes equation, a finite element method, a finite difference method, a finite volume method, or the like as a known hydrodynamic calculation method.
  • the simulation unit 102a may optimize the structure using a known optimization method. For example, the simulation unit 102a performs a fluid simulation on the structure while repeatedly changing the design variable for determining the shape of the structure using an annealing method, a genetic algorithm method, or the like, thereby obtaining an appropriate shape of the structure. (For example, the shape of a pier with little resistance to water flow, etc.) may be obtained.
  • the streamline analysis unit 102b is streamline analysis means for performing streamline analysis.
  • the streamline analysis unit 102b may derive a streamline diagram by performing streamline analysis on the simulation result of the simulation unit 102a.
  • the streamline analysis unit 102b uses a well-known method from the flow experiment result (experiment data, etc.) or the numerical calculation result (numerical simulation result, etc.) around the object stored in the simulation result file 106a. Create a diagram.
  • the streamline analysis unit 102b calculates all the saddle points, ⁇ -saddles, and the like from the numerical simulation result, and then draws all the contour lines of the flow function having the same value as the value of the flow function at that point.
  • a flow diagram can be created by drawing all the contour lines of the flow function having the same value as the value of the flow function on the boundary.
  • the streamline analysis unit 102b may perform streamline analysis after converting it to two-dimensional data in a cross section of the structure.
  • the plane used as a cross section is arbitrary, but preferably, the streamline analysis unit 102b may convert it into two-dimensional data in a cross section along the direction of the fluid flow (uniform flow). For example, in a vehicle such as a train, an automobile, or an aircraft, a cross section may be generated along the traveling direction.
  • the streamline analysis unit 102b may extract a characteristic structure satisfying a condition from the flow field using a technique described in Computational Homology (“Computational Homology by Tomasz Kaczynski, Konstantin Miskaikou, Marian Mrzek”). “See Springer, 2000”).
  • the streamline analysis unit 102b stores the created streamline diagram data in the streamline diagram file 106b.
  • the word expression forming unit 102c defines two types of flow patterns that can be taken topologically in a single connected external region having one hole based on the streamline diagram acquired by the streamline analyzing unit 102b.
  • a word (operation words A 0 , A 2 ) defining five types of operations that can be taken topologically when adding one hole to the flow pattern together with any one of the words (pattern words I, II).
  • B 0 , B 2 , C) is a word expression forming means for forming a word expression indicating a flow pattern of the flow around the object by giving one word of the number of the added holes.
  • the word expression forming unit 102c includes a pattern word adding unit 102d, an operation word adding unit 102e, and a maximal word expressing unit 102f.
  • the pattern word giving unit 102d is one of words (for example, pattern words I and II) that define two types of flow patterns that can be taken topologically in a single connected outer region having one hole. It is a pattern word giving means for giving one word.
  • the pattern word assigning unit 102d defines a total of three types of flow patterns (i.e., a pattern having no suction spring-out pair in the double connected external region having two holes (i.e., Any one of the pattern words I, II, and O) may be given.
  • Pattern I which has a pair of suction and outflow and has two ss- ⁇ -saddle connections
  • 3) a pattern O without a suction spring-out pair It is.
  • the pattern word assigning unit 102d determines whether or not the ss- ⁇ -saddle connection exists in the streamline diagram in an algorithm for obtaining a word expression from the streamline diagram (referred to as “algorithm B”).
  • Algorithm B an algorithm for obtaining a word expression from the streamline diagram.
  • Ss-saddle connection exists in streamline diagram when there is no ss- ⁇ -saddle connection in I classification step that gives word of pattern I when ss- ⁇ -saddle connection exists
  • a II / O classification step that gives a pattern II word when a ss-saddle connection exists, while giving a pattern O word when a ss-saddle connection does not exist Also good.
  • the pattern word assigning unit 102d can appropriately determine the series (I series, II series, O series) to which the streamline diagram belongs.
  • the operation word assigning unit 102e defines words (for example, operation words A 0 , A 2 , B 0 , B 2 ) that define topological operations when one hole is added to the flow pattern.
  • C) is an operation word assigning means for forming a word expression corresponding to a multi-connected external region having N holes by repeatedly assigning any one of the words. More specifically, the five types of operations are: 1) A 0 operation that replaces one ss-orbit with one saddle point, a homoclinic saddle connection with two holes inside, and two ss-saddle connections.
  • the operation word giving unit 102e may give the operation word according to the following constraint conditions. That is, the operation word giving unit 102e gives five types of operation words. 1) Provide the operation word A 0 or A 2 on condition that one ss-orbit exists, 2) Provide the operation word B 0 or B 2 on condition that one closed orbit exists. 3) The operation word C may be given on condition that a boundary having ⁇ -saddles exists. Note that details of specific processing of the operation word assigning unit 102e according to the constraint condition will be described later with reference to a flowchart. In the present embodiment, the operation word assigning unit 102e stores a word expression, which is a character string of the operation word assigned to the pattern word, in the correspondence file 106c.
  • a word expression which is a character string of the operation word assigned to the pattern word
  • the maximal word expression unit 102f is a maximal word expression means for converting the word expression (a character string formed by a combination of a pattern word and an operation word) formed by the pattern word adding unit 102d and the operation word adding unit 102e into a maximal word. is there. That is, in an algorithm for writing all possible flow patterns (hereinafter referred to as “algorithm A”), the word expression group formed by the pattern word assigning unit 102d and the operation word assigning unit 102e writes all the flow patterns. However, there are word expressions that prescribe the same flow patterns and word expressions that prescribe the flow patterns that are inclusive of each other.
  • the maximal word representation unit 102f performs a process for obtaining a maximal word representation on these word representation groups by eliminating redundant word representations and included word representations.
  • the maximal word expression unit 102f replaces the word expressions according to the inclusion relationship shown in the following table to form the maximal word expression.
  • “ ⁇ ” or “ ⁇ ” indicates an inclusion relationship.
  • B 2 and C Since these cannot be interchanged even if they are interchanged, the two cannot be interchanged. This is represented symbolically as B 2 C
  • the correspondence acquisition unit 102g associates the word expression indicating the flow pattern at a certain point of time formed by the word expression forming unit 102c with the force received by the object at the point of time, and stores it in the correspondence file 106c.
  • Corresponding relationship acquisition means for acquiring correspondence information between transitions of word expressions and fluctuations of force received by an object at a plurality of time points to be analyzed.
  • the fluid transition analysis device 100 may be connected to the external system 200 via the network 300.
  • the communication control interface unit 104 performs communication control between the fluid transition analysis device 100 and the network 300 (or a communication device such as a router). That is, the communication control interface unit 104 has a function of communicating data with other terminals via a communication line.
  • the network 300 has a function of connecting the fluid transition analysis device 100 and the external system 200 to each other, such as the Internet.
  • the external system 200 is mutually connected to the fluid transition analysis apparatus 100 via the network 300, and is connected to an external database related to various data such as simulation result data such as experimental results and numerical calculation results, streamline diagram data, and the like.
  • the external system 200 may be configured as a WEB server, an ASP server, or the like.
  • the hardware configuration of the external system 200 may be configured by an information processing apparatus such as a commercially available workstation or a personal computer and its attached devices.
  • Each function of the external system 200 is realized by a CPU, a disk device, a memory device, an input device, an output device, a communication control device, and the like in the hardware configuration of the external system 200 and a program for controlling them.
  • step SA-1 is performed first and the operation word assignment (step SA-2) is performed later.
  • step SA-2 is performed later.
  • the present invention is not limited to this, and the operation word assignment is performed first.
  • the pattern word may be added later.
  • the pattern word assigning unit 102d of the word expression forming unit 102c assigns one of the pattern words I and II (step SA-1).
  • the pattern word assigning unit 102d may assign any one of a total of three types of pattern words I, II, and O, to which the pattern O is added in addition to the above.
  • pattern words are: 1) A pattern word I that defines a pattern having a pair of suction springs and two ss- ⁇ -saddle connections, 2) A pattern word II having a suction spring-out pair, one saddle point, a homoclinic saddle connection linking it and two ss-saddle connections, and 3) a pattern without a suction spring-out pair
  • the defined pattern word O It is.
  • step SA-2 the operation word assigning unit 102e of the word expression forming unit 102c, among the five types of operation words A 0 , A 2 , B 0 , B 2 , C, with respect to the pattern words given by the pattern word giving unit 102d Is given (step SA-2).
  • the five operation words are: 1) An operation word A 0 that defines an operation for replacing one ss-orbit with one saddle point, a homoclinic saddle connection having a hole inside and two ss-saddle connections, 2) An operation word A 2 that defines an operation for replacing one ss-orbit with two ss- ⁇ -saddle connections and two ⁇ -saddles on the newly added boundary, 3) An operation word B 0 stipulating an operation for replacing one closed orbit with two homoclinic saddle connections having a shape of 8 by adding one hole and a saddle point.
  • An operation word B 2 that defines an operation for replacing one closed orbit with a trajectory in which two ⁇ -saddles are attached on the boundary of the newly added hole and connected with one ⁇ -saddle connection, and , 5) Prescribes an operation to add two new ⁇ -saddles to a boundary that already has 2k (k> 0) ⁇ -saddles, and place a newly added hole inside by connecting with one d-saddle connection.
  • Manipulated word C It is. Since the above operation defines an operation for adding a hole, in Algorithm B in which an operation word is assigned to a stream diagram, the reverse of the above operation is performed on the stream diagram. Will be performed (reverse replacement operation).
  • the operation word assigning unit 102e may assign the operation word according to the following constraint conditions. That is, the operation word giving unit 102e gives five types of operation words. 1) Provide the operation word A 0 or A 2 on condition that one ss-orbit exists, 2) Provide the operation word B 0 or B 2 on condition that one closed orbit exists. 3) The operation word C may be given on condition that a boundary having ⁇ -saddles exists.
  • the operation word assigning unit 102e of the word expression forming unit 102c determines whether the number of holes has reached N (step SA-3). For example, the operation word assigning unit 102e assigns (N ⁇ 1) operation words to the pattern words I and II in the single connected external region D ⁇ (0) with one hole until there are N holes. It is determined whether or not it has been completed. In addition, the operation word assigning unit 102e assigns (N-2) operation words to the pattern word O in the double connected external region D ⁇ (1) having two holes until there are N holes. Determine if finished. In Algorithm A, the number of holes in the multiple connected outer region to be obtained is set to N, but in Algorithm B, the number of holes is not set in advance. In the case of algorithm B, the operation word assigning unit 102e determines whether the streamline diagram has reached the initial pattern (I, II, or O) by the replacement operation according to the operation word for the streamline diagram. It may be determined whether the number has reached N.
  • the operation word assigning unit 102e of the word expression forming unit 102c further assigns operation words to the character strings created so far. (Step SA-2).
  • step SA-3 Yes
  • the operation word assigning unit 102e of the word expression forming unit 102c uses the character string created so far as the word expression in the correspondence file 106c. Store and finish processing.
  • the above is an example of the basic processing of the word expression algorithm of the fluid transition analysis apparatus 100 in the present embodiment.
  • By forming the word expression in this way it is possible to express with a word expression which flow pattern the simulation result corresponds to.
  • FIG. 13 is a flowchart illustrating an example of pattern word assignment processing.
  • the given streamline diagram is described for convenience of drawing as a region in a circle as shown in FIG. 10, but this algorithm is an algorithm for determining a flow in an unbounded region that originally has a uniform flow. It is.
  • the flow obtained by numerical simulation and actual measurement is a streamline diagram of an unbounded flow field (the necessary part is cut out from it), so it is a problem whether it is necessary to convert it to an area within a circle.
  • it has been found that such conversion is unnecessary in applying this algorithm. Based on this, if the following processing is performed on a given stream diagram, it can be determined whether the stream diagram is the I series, II series or O series. That is, when the following processing is performed, it is not necessary to convert the stream diagram into a region within a circle by a stereo projection method or the like.
  • the pattern word assigning unit 102d determines whether or not ss- ⁇ -saddle connection exists in the given streamline diagram in the algorithm B that obtains the word expression from the streamline diagram ( Step SA-11).
  • step SA-11 If it is determined that ss- ⁇ -saddle connection exists (step SA-11, Yes), the pattern word assigning unit 102d assigns the pattern word I (step SA-12). That is, the given streamline diagram is determined as the I series.
  • step SA-11, No the pattern word assigning unit 102d determines whether there is an ss-saddle connection in the streamline diagram (step SA-13). ).
  • the pattern word provision part 102d provides the pattern word II (step SA-15). That is, the given streamline diagram is determined as the II series.
  • the pattern word assigning unit 102d assigns the pattern word O (step SA-14). That is, the given streamline diagram is determined as the O series. In the present embodiment, it is assumed that there is a uniform flow, that is, that there is a pair of suction and outflow, so that it should not be determined as the O series. Therefore, in the present embodiment, when it is determined as the O series, the fluid transition analysis device 100 may output an error.
  • FIG. 14 and FIG. 15 are flowcharts showing an example of I-sequence operation word assignment processing in algorithm B.
  • the streamline analysis unit 102b creates a streamline diagram by streamline analysis from the numerical simulation and experimental data stored in the simulation result file 106a (step SB-1). Specifically, the streamline analysis unit 102b calculates all the saddle points, ⁇ -saddles, and the like from the numerical simulation result, and then draws all the contour lines of the flow function having the same value as the value of the flow function at that point. In addition, a flow diagram can be created by drawing all the contour lines of the flow function having the same value as the value of the flow function on the boundary. In addition, the streamline analysis unit 102b may extract a characteristic structure that satisfies a condition from the flow field using a technique described in Computational Homology (Non-Patent Document 1).
  • the streamline analysis unit 102b stores the created streamline diagram data in the streamline diagram file 106b.
  • the streamline analysis unit 102b may handle streamline diagram data by assigning numbers to all the obtained lines, saddle point, ss-orbits, ⁇ -saddle, and boundary. This makes it easy to handle the subsequent preprocessing and algorithms of each series on the computer by assigning the inclusion relations and assigning the rankings to determine the data structure.
  • the streamline analysis unit 102b performs preprocessing on the streamline diagram (step SB-2).
  • the streamline analysis unit 102b performs the following three preprocessing on a given streamline diagram.
  • the number of times these operations are performed is referred to as the number of errors, and is an index of how much streamlines can be expressed in word expression.
  • the ocean current is moving not only in the fluid movement on the plane but also in the vertical direction of the plane.
  • a gas or the like that hits an obstacle may also flow in a direction that is not horizontal with a two-dimensional cross section along a uniform flow.
  • the operation word assigning unit 102e determines whether there is ⁇ -saddle in the streamline diagram preprocessed by the streamline analyzing unit 102b (step SB-3).
  • step SB-3 the operation word assigning unit 102e determines whether or not there is a ss- ⁇ -saddle connection at the boundary where two ⁇ -saddles exist. Determine (step SB-4).
  • Step SB-4 Just when the one with the ss- ⁇ -saddle connection including a boundary that there are two ⁇ -saddle is k pieces (Step SB-4, Yes), the operation word imparting unit 102e, the operation term A 2 k pieces grant (Step SB-5), the streamline analysis unit 102b deletes these two ⁇ -saddles and the boundary on the streamline diagram, and performs an operation k times to replace it with one ss-orbit. (Step SB-6).
  • step SB-4 when there is no ss- ⁇ -saddle connection including the boundary where exactly two ⁇ -saddles exist (step SB-4, No), the operation word assigning unit 102e has exactly two ⁇ -saddles. It is determined whether there is a boundary having a saddle connection on the same boundary (step SB-7).
  • step SB-7 If those just having ⁇ -saddle connection including the boundary of the two ⁇ -saddle there is the k (step SB-7, Yes), the operation word imparting unit 102e, the operation term B 2 and k pieces grant ( In step SB-8), the streamline analysis unit 102b deletes the ⁇ -saddle and the boundary (boundary) connected by the ⁇ -saddle connection on the same boundary on the streamline diagram, and replaces it with a single periodic orbit. The operation is performed k times (step SB-9).
  • the operation word assigning unit 102e has a boundary having four or more saddle-saddles. It is determined whether or not there is a ad-saddle connection on the same boundary with a center / disk inside (step SB-10).
  • step SB-10 When the ⁇ -saddle connection on the boundary including four or more ⁇ -saddles has k boundaries whose inner side is center / disk (step SB-10, Yes), the operation word assigning unit 102e performs the operation K words C are assigned (step SB-11), and the streamline analysis unit 102b has a saddle connection on the same boundary on the streamline diagram, and two saddles connected thereby, The operation of deleting the center / disk surrounded by them is performed k times (step SB-12).
  • step SB-10 when there is no boundary where the inner side is center / disk in the ⁇ -saddle connection on the boundary including four or more ⁇ -saddles (step SB-10, No), the innermost figure eight (that is, ⁇ -saddle in connection, since at least one of its inside there is one) and center / disk, and the number and k-number, the operation word imparting unit 102e, the operation term B 0 and the k grant (step SB ⁇ 13), the streamline analysis unit 102b deletes one sad point and boundary from the innermost figure eye on the streamline diagram, and performs k operations to replace the periodic orbit surrounding the center / disk (k times) ( Step SB- 14).
  • “FIGURE EIGHT” is composed of one saddle point and two homoclinic saddle connections that connect it, and each homoclinic saddle connection encloses a center / disk (such as the figure 8). It refers to the flow structure.
  • step SB-3 a process is returned to step SB-3, and when ⁇ -saddle still exists (step SB-3, Yes), the fluid transition analyzer 100 repeats the process mentioned above.
  • step SB-3 when ⁇ -saddle disappears (step SB-3, No), as shown in FIG. 15, the operation word assigning unit 102e determines whether or not a saddle point (saddle point) exists (step SB3). SB-15).
  • step SB-15 If there is a saddle point (step SB-15, Yes), the operation word assigning unit 102e determines whether or not there is a saddle point existing in the figure eight pattern (step SB-16).
  • step SB-16 If saddle point present in Figure eight pattern is k pieces (step SB-16, Yes), the operation word imparting unit 102e, the operation term B 0 and the k grant (step SB-17), streamline analysis unit 102b Performs the operation of replacing the innermost figure eight pattern on the streamline diagram with a periodic orbit around one center / disk k times (step SB-18).
  • step SB-16, No when there is no saddle point that exists in the FIG. Eight pattern (step SB-16, No), there is a ss-saddle connection that has a homoclinic saddle connection and that has a center / disk inside.
  • the operation word assigning unit 102e assigns the operation word A 0 (step SB-19), the streamline analysis unit 102b includes a saddle point and a homoclinic saddle connection that connects them, and those The operation of deleting the center / disk surrounded by is performed k times (step SB-20).
  • step SB-15 a process returns to step SB-15, and when a saddle point still exists (step SB-15, Yes), the fluid transition analyzer 100 repeats the process mentioned above.
  • step SB-15, No the fluid transition analysis apparatus 100 finishes the process of assigning the operation word of the I series in the algorithm B, and the word expression formed by the word expression forming unit 102c. Is stored in the correspondence file 106c in association with the force received by the object at that time under the control of the correspondence obtaining unit 102g. Incidentally, the maximum word representation portion 102f of the word representations forming unit 102c, select one A 2 from the resulting string, it is moved to the beginning of the string is replaced with I, the rest of the string If rearranged according to the rules, it can be converted into a maximal word.
  • FIG. 16 is a flowchart illustrating an example of II-series operation word assignment processing in algorithm B. It should be noted that, similar to steps SB-1 and SB-2 of the I-sequence operation word assignment process, streamline diagram creation and preprocessing may be performed by streamline analysis.
  • the operation word assigning unit 102e determines whether there is a saddle-saddle for the given streamline diagram (step SC-1).
  • step SC-1 When ⁇ -saddle exists (step SC-1, Yes), the operation word assigning unit 102e has a boundary where there are exactly two ⁇ -saddles and has a ⁇ -saddle connection on the boundary. Is determined (step SC-2).
  • Step SC-2 If those just having ⁇ -saddle connection including the boundary of the two ⁇ -saddle there is k pieces (Step SC-2, Yes), the operation word imparting unit 102e, the operation term B 2 and k pieces grant ( In step SC-3), the streamline analysis unit 102b performs an operation of replacing ⁇ -saddle and ⁇ -saddle connection on the same boundary with a single periodic orbit k times on the streamline diagram (step SC-4). .
  • step SC-2 when there is no one having a ⁇ -saddle connection including a boundary where exactly two ⁇ -saddles exist (step SC-2, No), the operation word assigning unit 102e has a boundary having four or more ⁇ -saddles. It is determined whether or not there is a ⁇ -saddle connection on the same boundary with a center / disk inside (step SC-5).
  • step SC-5 When the ⁇ -saddle connection on the boundary including four or more ⁇ -saddles has k boundaries whose inner side is center / disk (step SC-5, Yes), the operation word assigning unit 102e performs the operation K words C are assigned (step SC-6), and the streamline analysis unit 102b has a saddle connection on the same boundary on the streamline diagram, and two saddles connected by the saddle connection, The operation of deleting the center / disk surrounded by them is performed k times (step SC-7).
  • step SC-5 if there is no boundary where the inner side is center / disk in the ⁇ ⁇ -saddle connection on the boundary including four or more ⁇ -saddles (step SC-5, No), the innermost figure eight exists. since, with the number and k-number, the operation word imparting unit 102e, the operation term B 0 and the k grant (step SC-8), streamline analysis unit 102b, in the drawing flow lines is most inwardly The operation of replacing the figure eight pattern with a periodic orbit surrounding one center / disk is performed k times (step SC-9).
  • step SC-1 a process is returned to step SC-1, and when a saddle-saddle still exists (step SC-1, Yes), the fluid transition analyzer 100 repeats the process mentioned above.
  • step SC-1 when there is no longer ⁇ -saddle (step SC-1, No), the operation word assigning unit 102e determines whether or not a saddle point (saddle point) exists (step SC-10).
  • step SC-10 If there is a saddle point (step SC-10, Yes), the operation word assigning unit 102e determines whether or not there is a saddle point existing in the figure eight pattern (step SC-11).
  • step SC-11 If saddle point present in Figure eight pattern is k pieces (step SC-11, Yes), the operation word imparting unit 102e, the operation term B 0 and the k grant (step SC-12), streamline analysis unit 102b Performs the operation of replacing the innermost figure eight pattern on the streamline diagram with a periodic orbit around one center / disk k times (step SC-13).
  • step SC-11 when there is no saddle point that exists in the FIG. Eight pattern (step SC-11, No), there is an ss-saddle connection that has a homoclinic saddle connection and that has a center / disk inside.
  • step SC-15 the operation of deleting the center / disk surrounded by them is performed k times (step SC-15).
  • step SC-10 a process is returned to step SC-10, and when a saddle point still exists (step SC-10, Yes), the fluid transition analyzer 100 repeats the process mentioned above.
  • step SC-10, No the fluid transition analysis apparatus 100 finishes the II series operation word assignment processing in the algorithm B. If one A0 is selected from the obtained character strings, it is replaced with II and moved to the top of the character string, and the remaining character strings are rearranged according to the rules, and converted to the maximal word (maximal word). Is possible.
  • FIGS. 17 and 18 are flowcharts showing another example of the process of assigning operation words of I and II sequences in algorithm B (I, II-Word alg). Note that, similar to Step SB-1 and Step SB-2 of the assignment process described above, a streamline diagram may be created and preprocessed by streamline analysis. In addition, in the following operation word assignment process, when an operation word is given, it is given from the back to the front.
  • the operation word assigning unit 102e has a saddle that is not connected to a suction-out pair (1-source-sink) for the streamline diagram preprocessed by the streamline analysis unit 102b. It is determined whether or not ⁇ -saddle connection exists (step SI-1).
  • the operation word assigning unit 102e When there is a saddle that is not connected to a suction-out pair (1-source-sink) or there is a saddle connection (step SI-1, Yes), the operation word assigning unit 102e has exactly two saddles. It is determined whether or not there is a boundary having a saddle connection at the boundary where the saddle exists (step SI-2).
  • step SI-2 When there are k pieces having ⁇ -saddle connection at the boundary where exactly two ⁇ ⁇ ⁇ ⁇ -saddles exist (step SI-2, Yes), the operation word assigning unit 102e assigns k operation words B 2 ( In step SI-3), the streamline analysis unit 102b deletes the ⁇ -saddle and the boundary connected by the ⁇ -saddle connection on the same boundary on the streamline diagram, and replaces it with a single periodic orbit. The operation is performed k times (step SI-4).
  • step SI-6 In the case where there is no boundary having ⁇ -saddle connection at the boundary where exactly two ⁇ -saddles exist (step SI-2, No), and when there is the innermost figure eight pattern (step SI-5) yes), the operation word imparting unit 102e impart operation term B 0, operation term imparting unit 102e, the drawing flow lines, replacing the Figure eight patterns in most inwardly single center / disk around the periodic orbit An operation is performed (step SI-6). This operation (operation that assigns the operation word B 0 and replaces it with a periodic orbit) is repeated as much as possible.
  • step SI-5 when there is no saddle point present in the innermost figure eight pattern (step SI-5, No), that is, a saddle connection on the boundary including four or more saddle-saddles, and the inside is center / disk
  • the operation word assigning unit 102e assigns the operation word C
  • the streamline analysis unit 102b is connected to the saddle connection on the boundary by the streamline diagram.
  • step SI-7 The operation of deleting the two saddles-saddle and the center / disk surrounded by them is repeated (step SI-7). This operation (operation for assigning operation word C and deleting center / disk) is repeated as much as possible.
  • Step SI-1 the processing is returned to step SI-1, and there is a saddle that is not yet connected to a suction-out pair (1-source-sink) or there is a saddle-connection (Step SI-1, Yes), the fluid transition analysis apparatus 100 repeats the above-described processing.
  • step SH-1 determines whether ss- ⁇ -saddle exists.
  • step SH-1 When ss- ⁇ -saddle does not exist (step SH-1, No), the streamline analysis unit 102b calculates saddle point (saddle point), homoclinic saddle connection connecting it, and center / disk surrounded by them. The erase operation is performed once (step SH-2).
  • step SH-3 When the ss-saddle is the k, the operation word imparting unit 102e, the operation term A 0 to the k grant (step SH-3).
  • the streamline analyzing unit 102b performs k times the operation of deleting the saddle point (saddle point) and the homoclinic saddle connection connecting the saddle point and the center / disk surrounded by them (step SH-4).
  • the pattern word assigning unit 102d assigns the pattern word II (step SH-5), and the fluid transition analysis device 100 assigns the I and II series operation words in the algorithm B (I, II-Word alg). Finish.
  • the obtained character string is a maximal word.
  • step SH-1 when ss- ⁇ -saddle exists in the above step SH-1 (step SH-1, Yes), the streamline analysis unit 102b has a boundary between these two ⁇ -saddles on the streamline diagram ( The operation of deleting (boundary) and replacing it with one ss-orbit is performed once (step SH-7).
  • step SH-8 When the ss- ⁇ -saddle is the k, the operation word imparting unit 102e, the operation term A 2 to the k grant (step SH-8).
  • the streamline analysis unit 102b deletes these two ⁇ -saddles and the boundary on the streamline diagram, and performs the operation of replacing it with one ss-orbit k times (step SH-9). .
  • step SH-10 the operation word imparting unit 102e, when the ss-saddle is the k, the operation term A 0 to the k grant (step SH-10).
  • the streamline analysis unit 102b performs k times the operation of deleting the saddle point (saddle point) and the homoclinic saddle connection connecting the saddle point and the center / disk surrounded by them (step SH-11).
  • the pattern word assigning unit 102d assigns the pattern word I (step SH-12), and the fluid transition analysis device 100 assigns the I and II series operation words in the algorithm B (I, II-Word alg). Finish.
  • the obtained character string is a maximal word.
  • the topological structures of all structurally stable flows can be expressed by enumerating the operation words.
  • the set of patterns that it expresses may change.
  • the set of patterns represented by the former has an inclusion relationship included in the set of patterns represented by the latter. That is, if a set symbol is used, (IB 0 A 0 ) ⁇ (IA 0 B 0 ) is obtained.
  • the word expression on the side to be included is excluded and only a larger word expression is adopted.
  • This relational expression is symbolically expressed as B 0 A 0 ⁇ A 0 B 0 .
  • a combination of word replacements that gives rise to such an inclusion relationship is given by Lemma 3.7.
  • Theorem 3.3 gives the standard form of the maximal word expression for the O series
  • Theorem 3.4 gives the standard form of the maximal word expression for the I series
  • theorem 3.5 is the one for the II series. Is given in.
  • the algorithm B can be rewritten to become a maximal word expression, or the algorithm A can write out only the maximal word expression.
  • the inventors of the present application have developed and published an algorithm that classifies the phase structure of a structure-stable flow in the motion of a non-viscous and incompressible fluid in a two-dimensional multiple connected region and gives a unique word expression to it. and has (literature “T. Yokoyama and T. Sakajo,” Word representation of streamline topology for structurally stable vortex flows in multiply connected domains ", Proc Roy Soc A 469 (2013) doi:... 10.1098 / rspa.2012 .0558 ”).
  • phase structure (topology) of the flow of the two-dimensional inviscid / incompressible fluid given at each time is unique.
  • the purpose of this study was to give a maximum word expression and to characterize the transition of the lift-drag ratio and the word expression.
  • a viscous / incompressible fluid in a two-dimensional external region is considered, and a thin flat plate having a finite thickness is inclined at a constant angle with respect to a uniform flow.
  • a flow is often used as a model of a wing in a flying object typified by an aircraft, and it is important to consider the force that the flat plate receives from a fluid. For this reason, a lot of wind tunnel experiments and numerical studies have been conducted on these flows.
  • the word structure is used to express the phase structure of the streamlines around the flat plate using a word conversion algorithm, and the change in the word and the fluctuation of the force applied to the flat plate
  • the purpose is to create a classification table that associates the quantitative information with the flow feature structure.
  • the viscous fluid not only forms a flow region with a vortex called a boundary layer in the vicinity of the boundary, but also creates many vortex structures from it through time evolution and releases it around the object. It is known that In applying this theory, the inventors of the present application have intensively studied how to deal with these problems, and found a method that can be suitably applied although there are certain limitations. In addition, according to this embodiment, it becomes possible to clarify where the limit of description by the word expression of the phenomenon of viscous fluid exists.
  • the amount of measurement taken up is the lift and drag acting on the object and the ratio (lift-drag ratio).
  • Lift is the force perpendicular to the flow that an object receives from the fluid, and this is the basic fluid force that supports the flight of the wing.
  • the drag is a resistance force in a flow direction that an object receives from a fluid. The resistance force is difficult to reduce to zero as long as the fluid is viscous and there is an object there (on the other hand, it is known that the resistance force is zero in non-viscous flow).
  • this embodiment is characterized in that description is made for various fluid parameter areas, and a table associating the transition expression of the streamline structure by the word expression and the fluctuation of the lift-drag ratio is presented. Then, if a comprehensive correspondence table is obtained for various parameters, what parameters should be set to stabilize the flow, and what transition order should be derived as the previous step to lead to an ideal flow pattern On the other hand, it is possible to obtain knowledge such as what kind of structural features are necessary to prevent an unstable flow such that the vortex constantly moves. Structural design and the like are possible.
  • the time evolution of this viscous / incompressible flow was obtained by solving the two-dimensional Navier-Stokes equation numerically (approximately).
  • a numerical calculation method called a Volume penalization method (VP method) is used in order to accurately approximate the flow in the vicinity of the boundary ( References “P. Angot, C.-H. Bruneau and P. Fabrie,“ A penalization method to take into account of incompressible in incompressibles..19.
  • a Gaussian filter is used for the flat plate to smooth the mask function representing the flat plate in the VP method. Furthermore, in order to remove the influence of the vortex generated by the flat plate flowing away and the vortex flowing again from the front due to the influence of the periodic boundary condition, a fringe region for artificially eliminating the vorticity is provided at a location sufficiently far behind the flat plate.
  • the number of grid points was 256 in the y direction and 1024 in the x direction.
  • a 4-step fourth-order Runge-Kutta method was used, and the time step size was 5 ⁇ 10 ⁇ 4 .
  • As a parameter specific to the VP method there is a penetration rate to the boundary, and this parameter is set to 10 ⁇ 3 .
  • the initial conditions of the fluid were started from a static state and a uniform flow velocity of 1 was given.
  • the thickness (short side) was 0.1
  • the uniform flow velocity was the representative velocity
  • the Reynolds number was 1370 with the flat plate cord length as the representative length.
  • FIG. 19 is a diagram showing the time-dependent changes in lift-drag ratio, lift, and drag applied to a single flat plate calculated under the above-mentioned parameter calculation conditions.
  • the broken line in a figure has shown the lift
  • the dashed-dotted line has shown the drag
  • the continuous line has shown the lift-drag ratio.
  • the motion after t 5, which is the time of
  • the figure represents the vorticity of the flow, the yellow part represents the area with positive counterclockwise vorticity, and the blue part represents the area with clockwise negative vorticity.
  • phase structure of the streamline is obtained by plotting the contour lines of the stream function calculated by numerical calculation, in a region away from the boundary, the saddle point, ss- ⁇ -saddle connection, ⁇ - All of the trajectories constituting the stable streamlines such as saddle connection and ⁇ -saddle were extracted.
  • the structure is represented by ICCB 0 , but the vortex structure corresponding to this CCB 0 is “confined” by a saddle-connection on the flat plate. The presence of such confinement vortices increases the lift applied to the flat plate, and achieves the maximum lift-drag ratio. However, this confined vortex cannot exist stably, and the structure of the flow changes with time and the lift gradually decreases.
  • the twin vortex structure confined in the shape of figure 8 corresponding to B 0 is taken into the homoclinic saddle connection created by A 0 and can no longer stay on the flat plate. Yes.
  • lift is lost because the confined vortex structure on the flat plate represented by the word CCB 0 changes to the unconfined vortex represented by the word A 0 A 0 . It was clearly found that lift was restored by regenerating CCB 0 's confinement vortex again. According to this example, it was found that the change in the lift-drag ratio can be predicted by looking at the change in the confined vortex state through the word expression of the phase structure of the streamlines.
  • the broken line in a figure has shown the lift
  • the dashed-dotted line has shown the drag
  • the continuous line has shown the lift-drag ratio.
  • the broken line in a figure has shown the lift
  • the dashed-dotted line has shown the drag
  • the continuous line has shown the lift-drag ratio.
  • the results are given only for numerical calculations performed by fixing many parameters such as the Reynolds number, the inclination angle of the flat plate, and the shape of the flat plate to some numerical values.
  • this embodiment can be changed in various ways.
  • it is possible to comprehensively obtain the correspondence table with the breadth and limit of the correspondence relationship obtained here, and it is not limited to the knowledge obtained in this example, and as described above using many numerical calculations. It is possible to obtain a result of careful consideration.
  • a correspondence table obtained by an optimization method for designing a structure such as an aircraft can be used.
  • a flow pattern transition order, a range of parameters for achieving a certain flow pattern, and the like can be obtained. Therefore, the fluid transition analysis apparatus 100 can determine the range of parameters stored in the correspondence file 106c, You may control so that the optimal structure may be searched by the simulation part 102a under restrictions based on information, such as a transition order. For example, while the discharge vortex of A 0 A 0 that attenuates lift exists, the simulation unit 102a allows a large change to the design variable so that the local minimum can be escaped in the annealing method.
  • the global parameter T (temperature) may be set high.
  • the simulation unit 102a displays a set desired pattern. You may adjust so that the search range to specify becomes the said desired pattern. For example, similarly to the above, in the annealing method, the simulation unit 102a sets the global parameter T (temperature) high so as to allow a large change to the design variable when the search range does not match the desired pattern.
  • the global parameter T (temperature) may be set low so as to obtain a small change in the design variable.
  • the present invention is not limited thereto, and may be applied to a two-dimensional fluid simulation. It ’s good.
  • the structural stability refers to a structure in which a specific phase structure of the flow does not change even when a small disturbance (disturbance) is applied to the given flow. This places some restrictions on all possible flow patterns, but the structurally stable flow is important in practice, so that restriction is not particularly problematic. That is, normally, when the flow state is observed or when the flow state is visualized by a computer, an observation error or a calculation error is included, so that a flow structure not depending on such an error is easily observed.
  • the fluid transition analysis apparatus 100 performs processing in response to a request from a client terminal, and the processing result is transmitted to the client terminal. You may make it return to.
  • all or a part of the processes described as being automatically performed can be manually performed, or all of the processes described as being manually performed can be performed.
  • a part can be automatically performed by a known method.
  • each illustrated component is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • each device of the fluid transition analysis device 100 in particular, the processing functions performed by the control unit 102, all or any part thereof are interpreted by a CPU (Central Processing Unit) and the CPU. It may be realized by a program to be executed, or may be realized as hardware by wired logic.
  • the program is recorded on a recording medium to be described later, and is mechanically read by the fluid transition analysis apparatus 100 as necessary. That is, in the storage unit 106 such as a ROM or HD, a computer program for performing various processes by giving instructions to the CPU in cooperation as an OS (Operating System) is recorded. This computer program is executed by being loaded into the RAM, and constitutes the control unit 102 in cooperation with the CPU.
  • OS Operating System
  • the computer program may be stored in an application program server connected to the fluid transition analysis apparatus 100 via an arbitrary network 300, and may be downloaded in whole or in part as necessary. Is possible.
  • the program according to the present invention may be stored in a computer-readable recording medium, or may be configured as a program product.
  • the “recording medium” may be any memory card, USB memory, SD card, flexible disk, magneto-optical disk, ROM, EPROM, EEPROM, CD-ROM, MO, DVD, Blu-ray Disc, etc. Of “portable physical media”.
  • program is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code. Note that the “program” is not necessarily limited to a single configuration, but is distributed in the form of a plurality of modules and libraries, or in cooperation with a separate program typified by an OS (Operating System). Including those that achieve the function.
  • OS Operating System
  • a well-known structure and procedure can be used about the specific structure for reading a recording medium in each apparatus shown in embodiment, a reading procedure, or the installation procedure after reading.
  • Various databases and the like (simulation result file 106a, streamline diagram file 106b, correspondence file 106c and the like) stored in the storage unit 106 include a memory device such as a RAM and a ROM, a fixed disk device such as a hard disk, a flexible disk, and The storage means such as an optical disk stores various programs, tables, databases, web page files, and the like used for various processes and website provision.
  • the fluid transition analysis apparatus 100 may be configured as an information processing apparatus such as a known personal computer or workstation, or may be configured by connecting any peripheral device to the information processing apparatus.
  • the fluid transition analysis apparatus 100 may be realized by installing software (including programs, data, and the like) that causes the information processing apparatus to realize the method of the present invention.
  • the specific form of distribution / integration of the devices is not limited to that shown in the figure, and all or a part of them may be functional or physical in arbitrary units according to various additions or according to functional loads. Can be distributed and integrated. That is, the above-described embodiments may be arbitrarily combined and may be selectively implemented.
  • a fluid transition analysis device for example, in various fields involving design, control and placement of structures, such as flying object design, train pantograph structure, automobile structure such as racing cars, sporting goods such as ski jumping, and high-speed ship design Very useful.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

物体が受ける力と物体周りの流れの実験結果または数値計算結果から、ある時点における、物体周りの流れを流線解析して流線図を取得し、流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、物体周りの流れの流れパターンを示す語表現を形成させ、複数の時点における流れパターンを示す語表現と当該時点における物体が受ける力とを対応付ける。

Description

流体遷移分析装置、流体遷移分析方法、および、プログラム
 本発明は、流体遷移分析装置、流体遷移分析方法、および、プログラムに関する。
 従来、飛翔物体のモデルとして一様流中におかれた一枚板を仮定し、板周辺の流れとともに、それによって得られる板の揚力と抗力の計算を行うことで、飛翔物体の構造や制御方法が検討されている。
 従来の飛翔物体の技術では、境界からの渦生成を抑えることで、安定的に揚力を確保し、飛翔を続けられるように、模型による風洞実験や、流体方程式による数値計算等が行われており、このような定量的なデータに基づいて、最適解が探索されている。その一方で、境界から生成される渦をうまく制御することで、できるかぎり渦の剥離を抑えるための機構の研究開発も行われている。
 ここで、非特許文献1では、回転しながら落下するカエデ等の翼果まわりの流れにおける翼形状と、前縁渦(Leading−Edge Vortices)の生成・維持機構との関係について、数値計算に基づく分析結果が開示されている。
澤村 陽一,石原 卓,"Volume Penalization 法による翼果まわりの流れの数値解析",京都大学数理解析研究所講究録,No.1808,pp.101−120,2012年
 しかしながら、従来の飛翔物体の技術では、風洞実験や数値計算によって、飛翔物体の揚抗比等の時間変動について定量的な解析がなされているものの、流れパターンのような定性的な要素との対応関係の遷移実態については調査分析がなされていないという問題点があった。
 本発明は、上記問題点に鑑みてなされたもので、飛翔物体などのように一様流中におかれた物体まわりの流れパターンの遷移と物体が受ける力の変動との関係についての知見を得ることができる、流体遷移分析装置、流体遷移分析方法、および、プログラムを提供することを目的とする。
 このような目的を達成するため、本発明の流体遷移分析装置は、記憶部と制御部とを備えた流体遷移分析装置において、上記記憶部は、一様流中におかれた物体について、ある期間における、物体が受ける力と物体周りの流れの実験結果または数値計算結果を記憶し、上記制御部は、上記期間中のある時点における、上記物体周りの流れを流線解析して流線図を取得する流線解析手段と、上記流線解析手段により取得された上記流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、上記流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、上記物体周りの流れの流れパターンを示す語表現を形成させる語表現形成手段と、上記語表現形成手段により形成された、ある時点における上記流れパターンを示す上記語表現と当該時点における上記物体が受ける力とを対応付けて上記記憶部に格納して、分析対象とする複数の時点において、上記語表現の遷移と上記物体が受ける力の変動との対応関係情報を取得する対応関係取得手段と、を備えたことを特徴とする。
 また、本発明の流体遷移分析装置は、上記記載の流体遷移分析装置において、上記物体が受ける力は、上記物体の揚力と抗力であることを特徴とする。
 また、本発明の流体遷移分析装置は、上記記載の流体遷移分析装置において、上記物体が受ける力の比は、上記物体の揚抗比であることを特徴とする。
 また、本発明の流体遷移分析装置は、上記記載の流体遷移分析装置において、上記対応関係情報は、上記語表現の遷移と上記物体が受ける力の変動との対応関係を示す表であることを特徴とする。
 また、本発明の流体遷移分析装置は、上記記載の流体遷移分析装置において、上記2種類の流れパターンは、1)上記吸い込み湧き出し対をもち、二つのss−∂−saddle connectionをもつパターンI、2)上記吸い込み湧き出し対をもち、一つのsaddle point、それを結ぶhomoclinic saddle connectionと二つのss−saddle connectionをもつパターンIIであることを特徴とする。
 また、本発明の流体遷移分析装置は、上記記載の流体遷移分析装置において、上記位相幾何学的に採り得る5種類の操作は、1)一本のss−orbitを、一つのsaddle point、それを結び内部に穴をもつhomoclinic saddle connectionと二つのss−saddle connectionに置き換えるA操作、2)一本のss−orbitを、二つのss−∂−saddle connectionと新たに追加した境界上の二つの∂−saddleに置き換えるA操作、3)一本のclosed orbitを、一つの穴とsaddle pointを追加して8の字をした2本のhomoclinic saddle connectionに置き換えるB操作、4)一本のclosed orbitを、新たに追加した穴の境界上に二つ∂−saddleをつけて一本の∂−saddle connectionでつなぐような軌道に置き換えるB操作、および、5)既に2k個(k>0)の∂−saddleをもつ境界に、新たに二つの∂−saddleを付け加えて一本の∂−saddle connectionでつなぎ内部に新たに付け加えた穴を置くC操作、であることを特徴とする。
 また、本発明の流体遷移分析装置は、上記記載の流体遷移分析装置において、上記語表現形成手段は、上記5種類の操作を規定した語を付与する場合に、1)一本のss−orbitが存在することを条件として、上記A操作または上記A操作を規定した語を付与し、2)一本のclosed orbitが存在することを条件として、上記B操作または上記B操作を規定した語を付与し、3)∂−saddlesを持つ境界が存在することを条件として、上記C操作を規定した語を付与することを特徴とする。
 また、本発明の流体遷移分析方法は、記憶部と制御部とを備えたコンピュータにおいて実行される流体遷移分析方法であって、上記記憶部は、一様流中におかれた物体について、ある期間における、物体が受ける力と物体周りの流れの実験結果または数値計算結果を記憶し、上記制御部において実行される、上記期間中のある時点における、上記物体周りの流れを流線解析して流線図を取得する流線解析ステップと、上記流線解析ステップにて取得された上記流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、上記流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、上記物体周りの流れの流れパターンを示す語表現を形成させる語表現形成ステップと、上記語表現形成ステップにて形成された、ある時点における上記流れパターンを示す上記語表現と当該時点における上記物体が受ける力とを対応付けて上記記憶部に格納し、分析対象とする複数の時点において、上記語表現の遷移と上記物体が受ける力の変動との対応関係情報を取得する対応関係取得ステップと、を含むことを特徴とする。
 また、本発明のプログラムは、記憶部と制御部とを備えたコンピュータに実行させるためのプログラムであって、上記記憶部は、一様流中におかれた物体について、ある期間における、物体が受ける力と物体周りの流れの実験結果または数値計算結果を記憶し、上記制御部において、上記期間中のある時点における、上記物体周りの流れを流線解析して流線図を取得する流線解析ステップと、上記流線解析ステップにて取得された上記流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、上記流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、上記物体周りの流れの流れパターンを示す語表現を形成させる語表現形成ステップと、上記語表現形成ステップにて形成された、ある時点における上記流れパターンを示す上記語表現と当該時点における上記物体が受ける力とを対応付けて上記記憶部に格納し、分析対象とする複数の時点において、上記語表現の遷移と上記物体が受ける力の変動との対応関係情報を取得する対応関係取得ステップと、を実行させることを特徴とする。
 また、本発明は記録媒体に関するものであり、上記記載のプログラムを記録したことを特徴とする。
 この発明によれば、物体が受ける力と物体周りの流れの実験結果または数値計算結果から、ある時点における、物体周りの流れを流線解析して流線図を取得し、流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、物体周りの流れの流れパターンを示す語表現を形成させ、複数の時点における流れパターンを示す語表現と当該時点における物体が受ける力とを対応付ける。これにより、本発明は、飛翔物体などのように一様流中におかれた物体まわりの流れパターンの遷移と物体が受ける力の変動との対応関係を得ることができる、という効果を奏する。また、この対応関係により、位相構造(語表現)の遷移順序が特定できるので、構造物に対して流れパターンの遷移順序は、位相的に有限であることを利用して、例えば、航空機等の設計上で理想の流れパターンとなるよう導くために、流れパターンを表現する文字列を基準にして構造設計等を行うことができる。
 また、本発明によれば、物体の揚力および抗力の時間変動と、流れパターンの遷移との対応関係を得ることができるので、飛行機の固定翼や水中翼船の水中翼などの設計や制御において有用な知見を得ることができる、という効果を奏する。
 また、本発明によれば、物体の揚抗比と、流れパターンの遷移との対応関係を得ることができるので、トレードオフの関係にある揚力と抗力について、適切な指標(すなわち揚抗比)を用いた知見を得ることができる、という効果を奏する。
 また、本発明によれば、語表現の遷移と物体が受ける力(揚力、抗力、その比など)の変動との対応関係を示す表を得るので、流線の位相構造の語表現の変化と揚抗比の振動の対応関係について、表形式の一覧を得ることができる、という効果を奏する。
 また、本発明によれば、2種類の流れパターンは、1)上記吸い込み湧き出し対をもち、二つのss−∂−saddle connectionをもつパターンI、および、2)上記吸い込み湧き出し対をもち、一つのsaddle point、それを結ぶhomoclinic saddle connectionと二つのss−saddle connectionをもつパターンIIである。これにより、本発明は、基本となる流れパターンに対してパターン語を付与することができ、具体的な流れパターンの語表現を扱えるようになるという効果を奏する。
 また、本発明によれば、位相幾何学的に採り得る5種類の操作は、1)一本のss−orbitを、一つのsaddle point、それを結び内部に穴をもつhomoclinic saddle connectionと二つのss−saddle connectionに置き換えるA操作、2)一本のss−orbitを、二つのss−∂−saddle connectionと新たに追加した境界上の二つの∂−saddleに置き換えるA操作、3)一本のclosed orbitを、一つの穴とsaddle pointを追加して8の字をした2本のhomoclinic saddle connectionに置き換えるB操作、4)一本のclosed orbitを、新たに追加した穴の境界上に二つ∂−saddleをつけて一本の∂−saddle connectionでつなぐような軌道に置き換えるB操作、および、5)既に2k個(k>0)の∂−saddleをもつ境界に、新たに二つの∂−saddleを付け加えて一本の∂−saddle connectionでつなぎ内部に新たに付け加えた穴を置くC操作、である。これにより、本発明は、流れパターンに位相幾何学的な穴を付加する操作を行う場合に、具体的な操作語の語表現を扱えるようになるという効果を奏する。
 また、本発明によれば、5種類の操作を規定した語を付与する場合に、1)一本のss−orbitが存在することを条件として、上記A操作または上記A操作を規定した語を付与し、2)一本のclosed orbitが存在することを条件として、上記B操作または上記B操作を規定した語を付与し、3)∂−saddlesを持つ境界が存在することを条件として、C操作を規定した語を付与する。これにより、位相幾何学的に操作を行うことができる操作に限定した語表現を形成させることができるという効果を奏する。
図1は、二次元外部領域内において、有限の厚みを持つ薄い一枚の平板が、一様流中の物体として、一様流に対して一定の角度で傾いておかれている場合を模式的に示した図である。 図2は、物体周りの流れの数値計算結果を示す図である。 図3は、物体周りの流れの数値計算結果を示す図である。 図4は、物体周りの流れの数値計算によって、得られた物体が受ける力の変動を示すグラフ図である。 図5は、本実施形態の概要に示すフローチャートである。 図6は、流れのパターンを模式的に示した図である。 図7は、領域における流れの位相的分類を行う特徴的な軌道(流線)を全て記述した図である。 図8は、初期構造となる3種類の流れパターンを模式的に示す図である。 図9は、穴を一つ付け加えて流れを構成する5種類の操作を模式的に示した図である。 図10は、二つの構造物と一様流がある場合の流れパターンの全分類を示す図である。 図11は、図3の物体周りの流れの数値計算結果(t=5.500)から得られた流線図に基づいて形成された語表現ICCBを示す図である。 図12は、本実施形態が適用される流体遷移分析装置100の一例を示すブロック図である。 図13は、パターン語の割り当て処理の一例を示すフローチャートである。 図14は、アルゴリズムBにおけるI系列の操作語の割り当て処理の一例を示すフローチャートである。 図15は、アルゴリズムBにおけるI系列の操作語の割り当て処理の一例を示すフローチャートである。 図16は、アルゴリズムBにおけるII系列の操作語の割り当て処理の一例を示すフローチャートである。 図17は、アルゴリズムB(I,II−Word alg)におけるI,II系列の操作語の割り当て処理の他の例を示すフローチャートである。 図18は、アルゴリズムB(I,II−Word alg)におけるI,II系列の操作語の割り当て処理の他の例を示すフローチャートである。 図19は、所定のパラメータの計算条件下において計算された一枚平板に加わる揚抗比、揚力、抗力の時間変化を表した図である。 図20は、揚抗比が最大になる時刻t=5.5から極小に陥るt=11までの流れの時間発展を示す図である。 図21は、流線抽出の方法を用いて時刻t=5.5からt=11.0までの流れの流線関数の位相構造とその語表現を示す図である。 図22は、揚抗比が極小状態から再び極大に到るまでの、時刻t=11.4から極小に陥るt=13.0までの渦度の時間発展を示す図である。 図23は、流線抽出の方法を用いて時刻t=11.4から13.0までの流れの流線関数の位相構造とその語表現を示す図である。 図24は、平板の角度をθ=20度に変更したパラメータの計算条件下において計算された一枚平板に加わる揚抗比、揚力、抗力の時間変化を表した図である。 図25は、時刻t=9.45,t=11.15,t=13.93,t=15.6のときの流れの渦度を示す図である。 図26は、流線抽出の方法を用いて時刻t=9.45,t=11.15,t=13.93,t=15.6のときの流れの流線関数の位相構造とその語表現を示す図である。 図27は、平板の角度をθ=10度に変更したパラメータの計算条件下において計算された一枚平板に加わる揚抗比、揚力、抗力の時間変化を表した図である。 図28は、時刻t=11.7,t=13.2,t=14.5,t=16.3のときの流れの渦度を示す図である。 図29は、流線抽出の方法を用いて時刻t=11.7,t=13.2,t=14.5,t=16.3のときの流れの流線関数の位相構造とその語表現を示す図である。
 以下に、本発明にかかる流体遷移分析装置、流体遷移分析方法、および、プログラムの実施形態を図面に基づいて詳細に説明する。この実施形態によりこの発明が限定されるものではない。なお、以下の実施の形態の説明では、単連結外部領域において吸い込み湧き出し対を持つ2種類の流れパターン(具体的にはパターン語I,II等)のほかに、二つの穴を有する二重連結外部領域において吸い込み湧き出し対を持たないパターン(具体的にはパターン語0等)も存在することを説明する場合があるが、本実施の形態においては、一様流がある場合を前提とするので、このパターン語0については考慮しなくともよい。
[本発明の実施形態の概要]
 以下、本発明の実施形態の概要について図1~図11を参照して説明し、その後、本実施形態の構成および処理等について詳細に説明する。
 まず、本実施の形態は、一様流中におかれた物体について、ある期間における、物体が受ける力(物体が受ける力の比を含む。)と物体周りの流れの実験結果または数値計算結果を記憶する。ここで、物体が受ける力は、一様流によって物体が受ける力であり、具体的には、揚力(lift)や抗力(drag)であり、一例として、揚抗比(揚力と抗力の比)であってもよい。物体周りの流れの実験結果は、一例として、風洞実験の実験結果でもよい。また、物体周りの流れの数値計算結果は、一例として、ナヴィエ・ストークス方程式等の流体力学計算手法を用いたコンピュータシミュレーション結果であってもよい。
 ここで、一様流中におかれた物体は、2次元平面における物体であってもよく、あるいは、3次元空間における、一様流中におかれた物体は、2次元平面における、一様流に沿った断面で捉えて、本実施の形態の処理を行ってもよい。ここで、図1は、二次元外部領域内において、有限の厚みを持つ薄い一枚の平板が、一様流中の物体として、一様流に対して一定の角度で傾いておかれている場合を模式的に示した図である。図中の記号Uは一様流を示し、clは平板の長辺の長さ、θは一様流に対する角度、LxおよびLyはx軸方向とy軸方向の長さからなる、計算対象の矩形領域を示している。
 図1に示すように、例えば、航空機や列車や自動車等の物体においては、進行方向に沿って相対的に無限遠点からの一様流が発生するので、この一様流に沿った2次元断面を仮定して、一様流中におかれた物体について、ある期間における、物体が受ける力と物体周りの流れの実験結果または数値計算結果を得てもよい。ここで、図2および図3は、物体周りの流れの数値計算結果を示す図である。図4は、物体周りの流れの数値計算によって、得られた物体が受ける力の変動を示すグラフ図である。なお、図2~図4における、数値計算条件の詳細(例えば、レイノルズ数:1370、θ:15°、分析範囲(Resolution):1024×256)については、後述する実施例に記載されているので、ここでは記載を省略する。
 図2では、一様流が物体に当たっていないときの物体周りの流れを図示したものであり、図3では、一様流が物体に当たっているときの、ある時点(t=5.500)の物体周りの流れを図示したものである。左回り(反時計回り)の流れは、正の値(カラー図で黄色側)となっており、右回り(時計回り)の流れは、負の値(カラー図で紫色側)となっており、真っすぐな流れは、0(カラー図で赤色)で示されている。すなわち、図は、流れの渦度成分を表現しており、黄色い部分は反時計回りの正向きの渦成分がある領域を示し、青い部分は時計回りの負向きの渦成分がある領域を表している。図4において、破線は、揚力(lift)を示しており、一点鎖線は、抗力(drag)を示しており、実線は、揚抗比(I/d ratio)を示している。図4に示すように、物体が受ける力のうち、揚力や揚抗比には、大きな時間変動がみられ、周期的に上下に振動している。特に、図4の破線の円で囲ってある3箇所において揚抗比の時間変動が顕著である。
 従来では、ある時点における揚力や揚抗比と、その時点における物体周りの流れのシミュレーション結果を対応づけることは可能であったが、どのような位相構造の変化が、物体が受ける力の変動に影響を及ぼすものであるのか、分析結果や詳細な知見を得ることは困難であった。そこで、本実施の形態は、以下の処理を行うものである。
 すなわち、本実施の形態は、実験結果や数値計算結果を取得した期間中の、ある時点における、物体周りの流れを流線解析して流線図を取得する。
 そして、本実施の形態は、取得した流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語(I,II)のうちのいずれか一語とともに、流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語(A,A,B,B,C)のうちのいずれか一語を、追加された穴の数だけ付与することにより、物体周りの流れの流れパターンを示す語表現を形成させる。なお、本実施の形態において、この語表現を形成させるアルゴリズムを、「語変換アルゴリズム」と呼ぶ。なお、「語変換アルゴリズム」について、その数学的な詳細は公表論文(T. Yokoyama and T. Sakajo, “Word representation of streamline topology for structurally stable vortex flows in multiply connected domains”, Proc. Roy. Soc. A 469 (2013)doi: 10.1098/rspa.2012.0558)を参照することができる。
 最後に、本実施の形態は、形成された、ある時点における流れパターンを示す語表現と当該時点における物体が受ける力とを対応付けて記憶部に格納して、分析対象とする複数の時点において、語表現の遷移と物体が受ける力の変動との対応関係情報を取得する。
 以上が、本実施の形態の概要である。
[語変換アルゴリズム]
 つづいて、上述した語表現を形成させる処理である、語変換アルゴリズムの概要について以下に説明する。ここで、図5は、本実施形態の語表現アルゴリズムの概要を示すフローチャートである。
 図5に示すように、まず、本実施形態は、流線図に基づいて、位相幾何学的にN個の穴を有する連結外部領域における流れパターンの語表現を形成させるために、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語(「パターン語」と呼ぶ。)のうちのいずれか一語を付与する(ステップSA−1)。
 そして、本実施形態は、流線図に基づいて、ステップSA−1にて付与された語に対して、流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語(「操作語」と呼ぶ。)のうちのいずれか一語を付与し(ステップSA−2)、当該ステップSA−2の処理を穴の数がN個となるまで繰り返し行うことにより(ステップSA−3)、流線図に対応するN個の穴を有する連結外部領域に対応する語表現を形成させる。なお、この例では、パターン語の付与(ステップSA−1)が先に行われ、操作語の付与(ステップSA−2)が後に行われるが、これに限られず、操作語の付与を先に行い、後にパターン語の付与を行ってもよいものである。
 ここで、本実施形態において、「連結外部領域」とは、単連結外部領域と多重連結外部領域を含む表現であり、「単連結外部領域」とは、二次元(平面)の中にある領域で、一つの穴があいたものをいい、「多重連結外部領域」とは、二次元(平面)の中にある領域で、複数の穴があいたものをいう。ここでいう「穴」という表現は、数学的な抽象表現であるが、応用上はさまざまな表現形態であってもよい。例えば、乗り物が移動した際に相対的に発生する一様な流れに注目した場合、一様流に沿った乗り物の断面に構造物が一つ又は複数あった状況があれば、その領域は単連結外部領域または多重連結外部領域として扱える。例えば、空気中を進む航空機等の飛行物体や、空気中を進む電車や自動車等の地上走行車両、海上または海中を進む船等の乗り物についても、一または複数の穴と、単連結または多重連結の連結外部領域として扱える。換言すれば、「流れの中に一または複数の障害物がある」ような流れを、本実施形態では、連結外部領域における流れとして扱う。また、孤立した渦構造や周囲に周期軌道を持つような流れ構造(楕円型の停留点など)も「穴」とみなすことができる。
 本実施形態によれば、流れパターンに対して語表現を割り当てることによって、連結外部領域における流れの位相的分類が可能となる。位相的というのは数学の専門用語であり、トポロジー(位相幾何学)とも呼ばれる幾何学の一分野を指す。古典的な幾何学では、三角形や四角形はその角の数の違いにより異なる図形と見なすが、位相幾何学の立場ではそういった細かい情報を見ず、三角形と四角形を例えば輪ゴムを変形させて互いに移りあえるという立場にたって同じ図形と見なす。すなわちすべての多角形は、円と同じと見なす。一方で、円の中にもう一つ円がくりぬかれているような円環領域があったときに円と円環領域は一つの輪ゴムの変形では互いに変形できないので、異なる図形と見なす。連結外部領域では、空いている穴の数が異なれば、それらの図形は位相的に異なると見なす一方で、穴の形さえ同じであれば、その穴の形が円であろうが三角形であろうが線分であろうが同じものとみなす。このような理由から流れの領域を特徴づけるのは穴の数のみであるため、本実施形態では、穴の数M+1に対して連結外部領域をDζ(M)と表現する。例えば、穴が1つのみの場合は、単連結外部領域Dζ(0)であり、穴が2つ在る場合は、二重連結外部領域Dζ(1)となる。
 流れの位相的分類を扱うときは、流れを特徴づけるある特定の構造(「位相構造」と呼ぶ。)を捕まえて、その特定の構造をもった流れが二つあったときに、その双方を特定の構造の連続的な(すなわち切ったり貼ったりしない)変形によって互いに変形できないものは異なる流れと見なす。
[流れの構成要素の説明]
 ここで、本実施形態において扱う流れの構成要素について図6~図8を参照して説明する。本実施形態における「流れ」として非圧縮流れを扱ってもよい。流体の非圧縮性とは、力を加えてもほとんどその体積を変えないような性質をいう。通常の水や大気の流れは、日常生活のスケールで考える場合は、こうした流れの枠組みで考えても概ね差し支えはない。なお、本発明は、これに限られず、圧縮性のある流れを計算上取り扱ってもよい。
 また、本実施形態における流体は、非粘性流体として扱ってもよい。非粘性流体は、境界条件を「すべり条件」として扱うことができる。なお、粘性流体では、境界条件が「ゼロ境界条件」となるが、粘性流体でも、粘性が大きくないとき,境界付近は渦が層状の流れとなっており,その流れの外側境界を、仮想的に拡張することで「すべり条件」として扱うことができる。したがって、本実施形態では、特に、非粘性流体における語変換アルゴリズムにおいて説明することがあるが、適切な境界の拡張により、粘性流体についても本実施形態を適用することができる。
 本実施形態で扱う流れの構成要素は、以下の3つである。一つは障害物、一つは渦(vortex)、一つは一様流(uniform flow)である。障害物は連結外部領域における穴のことであり、この形状は位相的分類を考えている上で円としておいても数学的に与える結果に影響はないことが一般的な流体の数学理論から導くことができる。ここで、図6は、流れのパターンを模式的に示した図である。なお、図6(c)は、4つの∂−saddle点を持つ境界を模式的に示している。
 図6(a)に示すように、渦はそのまわりで回転する流れを作る要素である。一様流とは、川の流れでいえば基本的な流れのことであり、領域全体を横切るような流れである。また、乗り物等の移動物体の場合、一様流とは、その乗り物に乗っている観察者から見た、相対的な気流や水流等の流れである。すなわち、移動物体の座標系においては、実際には空気や水が静止していても、無限遠点から流れてくる相対的な流れを観念することができる。
 一様流を構成する要素は、吸い込み湧き出し対(1−source−sink)と呼ぶ(数学的定義Definition 2.1参照)。
Figure JPOXMLDOC01-appb-M000001
 ここで、一様流ではなく吸い込み湧き出し対と呼ぶことには理由がある。その理由の説明のため、いくつかの数学的な解説を以下に行う。一様流が存在するとき、考えている流れの領域は無限に拡がる平面であり、その中に一つまたは複数の穴(障害物)が埋め込まれているような連結外部領域であるが、このような流れを模式的(Schematic)に表現する上では扱いにくい。そのため、数学におけるstereographic projection(ステレオ射影・立体射影)と呼ばれる射影法によって、平面を球面の上に投影して扱ってもよい。この場合、平面における無限遠点は球面の北極に、平面の原点は南極に対応させることができる。
 このようにしておくと、一様流は球面の北極における流れの湧き出しと吸い込み対といった流れ構造となり、図6(b)のような流れ場に対応していることが数学的に示せる。さらに模式的に流れ場を表現するためには、球面は対称性の高い形状であるということを利用して、北極と南極の位置を適当にずらすことができるので、無限遠点を南極に、ある円形の穴(障害物)の中心を北極にあわせてから、再びstereographic projectionを使って平面に投影すると、南極に対応する原点付近の近くでは図6(b)のような流れができる。さらに無限遠点に中心を持つ円境界は平面の外側円境界に投影されるので、結果として平面全体の流れ場が、例えば図7のような形の有界な領域として表現できる。したがって、図6(b)のような表現は適切な射影法を通じて、平面全体の中に一様流が入っている流れと等価なものである。本実施形態の説明では、流れを模式的に示すために便利であることから、このような射影法を用いて図に表現する場合がある。
 図7は、このような領域における流れの位相的分類を行う特徴的な軌道(流線)を全て記述した図である。図7(a)に示すように、まず吸い込み湧き出し対から出て自分自身に戻ってくる軌道をss−orbitと呼ぶ。この線一本一本が連結外部領域での一様流の流線を表す。次に、図7(b)に示すように、吸い込み湧き出し対から出て境界の上につながる軌道をss−∂−saddle connectionと呼び、図7(c)に示すように、その軌道がつながっている境界上の点をss−∂−saddleと呼ぶ。
 また、図7(e)に示すように、吸い込み湧き出し対からではなく、ある境界の上の点から出て同じ境界上の点につながる軌道を∂−saddle connectionと呼び、図7(d)に示すように、これによってつながれている境界上の点を∂−saddleと呼ぶ。また、図7(h)に示すような、境界上にない双曲型の停留点をsaddle point(サドル点)と呼ぶが、図7(f)に示すように、吸い込み湧き出し対から出る軌道で、このsaddle pointにつながる軌道をss−saddle connectionと呼ぶ。また、図7(g)に示すように、境界や渦の回りを作る閉曲線軌道をclosed orbitと呼び、図7(i)に示すように、saddle pointから出てそれ自身に戻るような軌道をhomoclinic saddle connectionと呼ぶ。対象とする流れは、これらの軌道の組み合わせによってしか表現されないことが数学的に証明できる。
 本実施形態では、上述したステップSA−2において、穴の数がM個ある連結外部領域Dζ(M−1)の流れに、一つの穴とそれに伴う流れの構造を付け足すことで、一つ穴の多い多重連結外部領域Dζ(M)の流れ場を帰納的に構成していく。そのため、もっとも簡単な穴が一つの単連結外部領域Dζ(0)や、二重連結外部領域Dζ(1)で、これらの帰納的構成の初期構造になるものをステップSA−1で与えている。
 具体的には、上述した基本となる流れパターンは、3種類あり、
 1)吸い込み湧き出し対をもち、二つのss−∂−saddle connectionをもつパターンI、
 2)吸い込み湧き出し対をもち、一つのsaddle point、それを結ぶhomoclinic saddle connectionと二つのss−saddle connectionをもつパターンII、および
 3)吸い込み湧き出し対をもたないパターンO、
 である。なお、このうち、パターンOについては、吸い込み湧き出し対をもたない、すなわち一様流をもたないパターンであるので、本実施の形態を実施するにあたって考慮しなくともよい。ここで、図8は、初期構造となる3種類の流れパターンを模式的に示す図である。
 すなわち、図8(a)と(b)に示すように、穴が一個の単連結外部領域Dζ(0)にある流れは、パターンIとパターンIIの2種類存在する。これらのパターンは、ともに吸い込み湧き出し対を持ち、数学的にはこれら2種類しかないことが証明できる。一様流を仮定した吸い込み湧き出し対を持つような流れに対して、原則的には二重連結外部領域Dζ(1)は、これらから構成されるが、吸い込み湧き出し対を持たない流れはここから構成されないので、その流れを構成するために必要な初期流れが図8(c)に模式的に示されるパターンOである。なお、これらの位相構造は表現の簡便さのため、吸い込み湧き出し対を丸囲みSと図示し、ss−orbitやclosed orbitは、無限に存在するので表現せず、以後、模式的に図8(d)や(e)のように簡略的に表す。また、図8(c)に示すように、吸い込み湧き出し対を持たない二重連結外部Dζ(1)における流れのパターン内のclosed orbitsも、すべて書かないで図8(f)のように簡略に記す。
[操作語の説明]
 帰納的に流れを構成していくために、穴を一つとそれに伴う流れの構造を追加するという「操作」について、図9および図10を参照して説明する。すなわち、穴の数がM個ある連結外部領域Dζ(M−1)の流れに、一つの穴を加えて多重連結外部領域Dζ(M)の流れを求める操作について説明する。
 上述したステップSA−2において、位相幾何学的に採り得る5種類の操作は、
 1)一本のss−orbitを、一つのsaddle point、それを結び内部に穴をもつhomoclinic saddle connectionと二つのss−saddle connectionに置き換えるA操作、
 2)一本のss−orbitを、二つのss−∂−saddle connectionと新たに追加した境界上の二つの∂−saddleに置き換えるA操作、
 3)一本のclosed orbitを、一つの穴とsaddle pointを追加して8の字をした2本のhomoclinic saddle connectionに置き換えるB操作、
 4)一本のclosed orbitを、新たに追加した穴の境界上に二つ∂−saddleをつけて一本の∂−saddle connectionでつなぐような軌道に置き換えるB操作、および、
 5)既に2k個(k>0)の∂−saddleをもつ境界に、新たに二つの∂−saddleを付け加えて一本の∂−saddle connectionでつなぎ内部に新たに付け加えた穴を置くC操作、
 である。ここで、図9は、穴を一つ付け加えて流れを構成する5種類の操作を模式的に示した図である。
 図9(a)に示すように、操作AとAは一本のss−orbitに対して行われる。また、図9(b)に示すように、操作BとBは、一本のclosed orbitに対して行われる。また、図9(c)に示すように、操作Cは、既に∂−saddlesを持つ境界に対して行われる。なお、構造安定性を維持しながらそのようなことを可能にする操作が、上記の5種類しかないことが数学的に証明可能である(Theorem 3.1, Corollary3.1, Theorem 3.2参照)。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ステップSA−1で与えた初期構造の3種類の流れパターンI,II,Oから、これらの操作を行って一つずつ穴を増やす(M→M+1)ことで、多くの穴を持つ領域における流れが帰納的に構成されるので、本実施形態では、その操作を表す操作語の列を文字列と見なして列挙することで、流れ場の語表現(Word representation)を得ることができる。ここで、図10は、二つの構造物と一様流がある場合の流れパターンの全分類を示す図である。図10に示すように、単連結外部領域Dζ(0)における初期構造のパターンI,IIに対して、操作語を付与することで、二重連結外部領域Dζ(1)における全ての流れパターンを記述することができる。ただし、図10に示す全ての流れパターンは、2種類(I,II)×5種類(A,A,B,B,C)の計10種類とはなっていない。すなわち、操作語は、5種類の操作語を任意に並べてできるわけではなく、数学的な理由から様々な制約がつく。
 ここで、制約について説明すれば以下のようになる。すなわち、図9を用いて上述したように、操作AとAは、一本のss−orbitに対して行われるので、この操作を行う前提として、一本のss−orbitの存在が不可欠となる。また、操作BとBは、一本のclosed orbitに対して行われるので、この操作を行う前提として、一本のclosed orbitの存在が不可欠である。また、操作Cは、∂−saddlesを持つ境界に対して行われるので、この操作を行う前提として、∂−saddlesを持つ境界の存在が不可欠となる。そのため、パターン語をI,II,Oのどこからはじめるかによって並べ方のルールは異なる。上記の制約条件に基づいて導出される、各パターン語I,II,Oからはじまる文字列の並べ方のルールについて、以下に説明する。
 まず、湧き出し吸い込み対を持たないOのパターン語からはじめる場合には、次のようなルールがある。Oから始まる語表現に対して、それが構造安定な流れを表すために以下が必要十分である。
O−1)実際に施すことができる操作は、B,B,Cのみであり、その結果、Oから始まる語表現はこれら三つの語を列挙したものとなる。
O−2)操作列の語表現においてCの語が含まれるためには、それ以前に必ずBが存在しなければならない。
 このような文字列をO系列の語(O−Word)と呼び、そのルールの正しさは数学的に証明可能である(Lemma 3.1参照)。
Figure JPOXMLDOC01-appb-M000005
 次に、パターン語Iから始まる語表現については、以下のルールが成り立つ必要がある。
I−1) 実施可能な操作はA,A,B,B,Cの全てであり、その結果、Iから始まる語表現はこれら5種類の操作語を列挙したものである。
I−2) 操作列の語表現において、BあるいはBの語が含まれるためには、それ以前に必ずCかAが存在しなければならない。
 このような文字列をI系列の語(I−Word)と呼び、そのルールの正しさは数学的に証明可能である(Lemma3.3参照)。
Figure JPOXMLDOC01-appb-M000006
 最後にパターン語IIから始まる語表現については、以下のルールが成り立つ必要がある。
II−1)実施可能な操作はA,B,B,Cであり、その結果、IIから始まる語表現はこれら四つの語を列挙したものである。
II−2)操作列の語表現においてCの語が含まれるためには、それ以前に必ずBが存在しなければならない。
 このような文字列をII系列の語(II−Word)と呼び、そのルールの正しさは数学的に証明可能である(Lemma 3.4参照)。
Figure JPOXMLDOC01-appb-M000007
 ここで、図11は、上述した図3の物体周りの流れの数値計算結果(t=5.500)から得られた流線図(上図または下図)に基づいて形成された語表現ICCBを示す図である。なお、図11上図は、一様流(図中の破線)の流れに沿った鉛直面で切り取った平板断面と、その周りの流れを示す流線図であり、下図は、その流線図をstereographic projection法を用いて表現したものであり、両図は、表現上の差異があるだけで位相的に等価である。このように、本実施の形態によれば、物体が受ける力と物体周りの流れの数値計算結果等から得た流線図に基づいて、対応する流れパターンを示す語表現が得られるので、複数の時点を分析対象とすることによって、語表現の遷移と物体が受ける力の変動との対応関係を得ることができる。
 つづいて、上述した本実施形態の方法をコンピュータにより実施するための装置構成や処理の詳細について、以下に詳しく説明する。なお、以上の本実施形態による方法の全部または一部を、人またはコンピュータにより実施してもよく、以下の実施形態による処理等を人により実施する場合に用いてもよいものである。
[流体遷移分析装置の構成]
 次に、本実施形態における流体遷移分析装置の構成について図12を参照して説明する。図12は、本実施形態が適用される流体遷移分析装置100の一例を示すブロック図であり、該構成のうち本実施形態に関係する部分のみを概念的に示している。
 図12に示すように、本実施形態における流体遷移分析装置100は、概略的に、制御部102と記憶部106を少なくとも備え、本実施形態において、更に、入出力制御インターフェース部108と通信制御インターフェース部104を備える。ここで、制御部102は、流体遷移分析装置100の全体を統括的に制御するCPU等である。また、通信制御インターフェース部104は、通信回線等に接続されるルータ等の通信装置(図示せず)に接続されるインターフェースであり、入出力制御インターフェース部108は、入力装置112や出力装置114に接続されるインターフェースである。また、記憶部106は、各種のデータベースやテーブルなどを格納する装置である。これら流体遷移分析装置100の各部は任意の通信路を介して通信可能に接続されている。更に、この流体遷移分析装置100は、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して、ネットワーク300に通信可能に接続されている。
 記憶部106に格納される各種のデータベースやテーブル(シミュレーション結果ファイル106a、流線図ファイル106b、および、対応関係ファイル106c等)は、固定ディスク装置等のストレージ手段である。例えば、記憶部106は、各種処理に用いる各種のプログラム、テーブル、ファイル、データベース、および、ウェブページ等を格納する。
 これら記憶部106の各構成要素のうち、シミュレーション結果ファイル106aは、シミュレーション部102aにより実験的または数理的にシミュレーションされた、シミュレーション結果を示すデータを記憶するシミュレーション結果記憶手段である。例えば、シミュレーション結果ファイル106aは、物体が受ける力と物体周りの流れの実験結果または数値計算結果を記憶してもよい。一例として、シミュレーション結果ファイル106aは、構造物の形状を示す設計変数の値や、その構造物に対する所定の流体(海流や気流等)の流体力学的シミュレーション結果(各空間座標における流体の圧力や流れの向き等)を示すデータであってもよい。なお、シミュレーション結果ファイル106aは、風洞実験等の実験室内でのモデル計測などを通じて事前に入力装置112を介して入力されたデータをシミュレーション結果として記憶してもよい。シミュレーション結果ファイル106aに記憶されるデータは、数値計算結果に限られず、実験室内でのモデル計測などを通じて得たデータであってもよい。実験結果であっても、それらのデータを可視化したり計算機などで処理をして、流線図という流れの様子をとらえるスナップショットとして表現することができる。
 また、流線図ファイル106bは、流線図等の流線を示すデータを記憶する流線データ記憶手段である。例えば、流線図ファイル106bに記憶される流線データは、シミュレーション結果を示すデータに基づいて流線解析部102bにより解析された流線を示すデータであってもよい。
 また、対応関係ファイル106cは、対応関係情報を記憶する対応関係情報記憶手段である。例えば、対応関係ファイル106cは、対応関係取得部102gにより取得された、ある時点における流れパターンを示す語表現と当該時点における物体が受ける力(例えば、揚力、抗力、それらの比)とを対応付けて対応関係情報(対応表データ等)として記憶する。一例として、対応関係ファイル106cに記憶される語表現データは、パターン語と操作語の組み合わせからなる文字列等である。対応関係ファイル106cにおいて、複数の時点における、流れパターンを示す語表現と物体が受ける力との対応関係が蓄積されることによって、語表現の遷移と物体が受ける力の変動との対応関係を示す、対応関係情報が生成されることとなる。
 図12に戻り、入出力制御インターフェース部108は、入力装置112や出力装置114の制御を行う。ここで、出力装置114としては、モニタ(家庭用テレビを含む。)の他、スピーカを用いることができる(なお、以下においては出力装置114をモニタとして記載する場合がある)。また、入力装置112としては、キーボード、マウス、およびマイク等を用いることができる。
 また、図12において、制御部102は、OS(Operating System)等の制御プログラムや、各種の処理手順等を規定したプログラム、および、所要データを格納するための内部メモリを有する。そして、制御部102は、これらのプログラム等により、種々の処理を実行するための情報処理を行う。制御部102は、機能概念的に、シミュレーション部102a、流線解析部102b、語表現形成部102c、および、対応関係取得部102gを備える。
 このうち、シミュレーション部102aは、構造物等の物体に対する流体のシミュレーションを行うシミュレーション手段である。例えば、シミュレーション部102aは、構造物に対する流体のシミュレーションを実験的または数理的に行って、物体が受ける力と物体周りの流れの実験結果または数値計算結果を取得してもよい。ここで、シミュレーション部102aは、2次元平面におけるシミュレーションに限られず、3次元空間における流体のシミュレーションを行ってもよいものである。なお、本実施形態において、シミュレーション部102aは、シミュレーション結果を示すデータをシミュレーション結果ファイル106aに格納する。例えば、シミュレーション部102aは、構造物の形状を示す設計変数の値や、その構造物に対する所定の流体(海流や気流等)の流体力学的シミュレーション結果(各空間座標における流体の圧力や流れの向きや抵抗等)を示すデータを格納してもよい。ここで、シミュレーション部102aは、公知の流体力学計算手法として、ナヴィエ・ストークス方程式や、有限要素法や、有限差分法、有限体積法等を用いてもよい。
 なお、シミュレーション部102aは、公知の最適化手法を用いて、構造物の最適化を行ってもよい。例えば、シミュレーション部102aは、構造物の形状を決定する設計変数を、焼きなまし法や遺伝的アルゴリズム法等を用いて繰り返し変化させながら、当該構造物に対する流体シミュレーションを行って、適切な構造物の形状(例えば、水流に対する抵抗の少ない橋脚の形状等)を求めてもよい。
 また、流線解析部102bは、流線解析を行う流線解析手段である。ここで、流線解析部102bは、シミュレーション部102aによるシミュレーション結果に対し流線解析を行って流線図を導出してもよい。例えば、流線解析部102bは、シミュレーション結果ファイル106aに記憶された、物体周りの流れの実験結果(実験のデータ等)または数値計算結果(数値シミュレーション結果等)から、公知の手法を用いて流線図を作成する。具体的には、流線解析部102bは、数値シミュレーション結果から、saddle pointや∂−saddleなどをすべて計算した後、その点における流れ関数の値と同じ値を持つ流れ関数の等高線をすべて描画し、また、境界(boundary)上の流れ関数の値と同じ値を持つ流れ関数の等高線をすべて描画することにより流線図の作成が可能となる。なお、3次元のシミュレーション結果の場合、流線解析部102bは、構造物における断面における2次元のデータに変換してから、流線解析を行ってもよい。断面とする平面は任意であるが好適には、流線解析部102bは、流体の流れ方向(一様流)の方向に沿った断面で2次元データに変換してもよい。例えば、列車や自動車や航空機等の乗り物においては、進行方向に沿って断面を生成してもよい。また、流線解析部102bは、Computational Homologyに記載の技術等を用いて、流れ場から条件を満たす特徴的な構造を抽出してもよい(「Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek著 “Computational Homology” Springer, 2000年」参照)。なお、本実施形態において、流線解析部102bは、作成した流線図データを流線図ファイル106bに格納する。
 また、語表現形成部102cは、流線解析部102bにより取得された流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語(パターン語I,II)とともに、流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語(操作語A,A,B,B,C)のうちのいずれか一語を、追加された穴の数だけ付与することにより、物体周りの流れの流れパターンを示す語表現を形成させる語表現形成手段である。ここで、語表現形成部102cは、図12に示すように、パターン語付与部102d、操作語付与部102e、および、極大語表現部102fを備える。
 このうち、パターン語付与部102dは、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語(例えば、パターン語I,II)のうちのいずれか一語を付与するパターン語付与手段である。ここで、パターン語付与部102dは、上記に加えて、二つの穴を有する二重連結外部領域において吸い込み湧き出し対を持たないパターンを追加した、合計3種類の流れパターンを規定する語(すなわちパターン語I,II,O)のうちのいずれか一語を付与してもよい。より具体的には、3種類の流れパターンは、
 1)吸い込み湧き出し対をもち、二つのss−∂−saddle connectionをもつパターンI、
 2)吸い込み湧き出し対をもち、一つのsaddle point、それを結ぶhomoclinic saddle connectionと二つのss−saddle connectionをもつパターンII、および
 3)吸い込み湧き出し対をもたないパターンO、
 である。
 ここで、パターン語付与部102dは、流線図から語表現を求めるアルゴリズム(「アルゴリズムB」と呼ぶ。)において、流線図に、ss−∂−saddle connectionが存在するか否かを判定し、ss−∂−saddle connectionが存在する場合にパターンIの語を与えるI分類ステップと、I分類ステップにおいてss−∂−saddle connectionが存在しない場合に、流線図においてss−saddle connectionが存在するか否かを判定し、ss−saddle connectionが存在する場合にパターンIIの語を与え、一方、ss−saddle connectionが存在しない場合にパターンOの語を与えるII/O分類ステップと、を行ってもよい。これにより、パターン語付与部102dは、流線図が属する系列(I系列,II系列,O系列)を適切に判別することができる。
 また、操作語付与部102eは、流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語(例えば、操作語A,A,B,B,C)のうちのいずれか一語を繰り返し付与することにより、N個の穴を有する多重連結外部領域に対応する語表現を形成させる操作語付与手段である。より具体的には、5種類の操作は、
 1)一本のss−orbitを、一つのsaddle point、それを結び内部に穴をもつhomoclinic saddle connectionと二つのss−saddle connectionに置き換えるA操作、
 2)一本のss−orbitを、二つのss−∂−saddle connectionと新たに追加した境界上の二つの∂−saddleに置き換えるA操作、
 3)一本のclosed orbitを、一つの穴とsaddle pointを追加して8の字をした2本のhomoclinic saddle connectionに置き換えるB操作、
 4)一本のclosed orbitを、新たに追加した穴の境界上に二つ∂−saddleをつけて一本の∂−saddle connectionでつなぐような軌道に置き換えるB操作、および、
 5)既に2k個(k>0)の∂−saddleをもつ境界に、新たに二つの∂−saddleを付け加えて一本の∂−saddle connectionでつなぎ内部に新たに付け加えた穴を置くC操作、
 である。
 ここで、操作語付与部102eは、以下の制約条件に従って操作語を付与してもよい。すなわち、操作語付与部102eは、5種類の操作語を付与する場合に、
 1)一本のss−orbitが存在することを条件に、操作語AまたはAを付与し、
 2)一本のclosed orbitが存在することを条件に、操作語BまたはBを付与し、
 3)∂−saddlesを持つ境界が存在することを条件に、操作語Cを付与してもよい。なお、当該制約条件にしたがった操作語付与部102eの具体的な処理の詳細については、フローチャートを参照して後述する。なお、本実施形態において、操作語付与部102eは、パターン語に対して付与した操作語の文字列である語表現を対応関係ファイル106cに格納する。
 また、極大語表現部102fは、パターン語付与部102dおよび操作語付与部102eにより形成された語表現(パターン語および操作語の組み合せからなる文字列)を極大語に変換する極大語表現手段である。すなわち、全ての採り得る流れパターンを書き出すアルゴリズム(以下、「アルゴリズムA」と呼ぶ。)において、パターン語付与部102dおよび操作語付与部102eにより形成された語表現群は、流れパターンを全て書き出しているものの、互いに同じ流れパターンを規定した語表現や、互いに包含関係となる流れパターンを規定した語表現が存在する。そこで、極大語表現部102fは、これらの語表現群に対して、重複する語表現や、包含される語表現等を排除することにより、極大語表現(maximal word representation)とする処理を行う。例えば、極大語表現部102fは、以下の表で示される包含関係に従って、語表現を入れ替えて極大語表現を形成させる。なお、下表において「=」は一致関係、「≦」または「≧」は包含関係を示す。唯一の例外はBとCであり、これは入れ替えても包含関係が成立しないので、この二つは入れ替えることができないので、このことを、BC||CBと象徴的に表している。なお、当該関係式にしたがった極大語表現部102fの具体的な処理の詳細については、フローチャートを参照して後述する。
Figure JPOXMLDOC01-appb-T000008
 また、対応関係取得部102gは、語表現形成部102cにより形成された、ある時点における流れパターンを示す語表現と当該時点における物体が受ける力とを対応付けて対応関係ファイル106cに格納して、分析対象とする複数の時点において、語表現の遷移と物体が受ける力の変動との対応関係情報を取得する対応関係取得手段である。
 以上が、本実施形態における流体遷移分析装置100の構成の一例である。なお、流体遷移分析装置100は、ネットワーク300を介して外部システム200に接続されてもよい。この場合、通信制御インターフェース部104は、流体遷移分析装置100とネットワーク300(またはルータ等の通信装置)との間における通信制御を行う。すなわち、通信制御インターフェース部104は、他の端末と通信回線を介してデータを通信する機能を有する。また、ネットワーク300は、流体遷移分析装置100と外部システム200とを相互に接続する機能を有し、例えば、インターネット等である。
 また、外部システム200は、ネットワーク300を介して、流体遷移分析装置100と相互に接続され、実験結果や数値計算結果等のシミュレーション結果データや流線図データ等の各種データに関する外部データベースや、接続された情報処理装置に流体遷移分析方法を実行させるためのプログラム等を提供する機能を有する。
 ここで、外部システム200は、WEBサーバやASPサーバ等として構成していてもよい。また、外部システム200のハードウェア構成は、一般に市販されるワークステーション、パーソナルコンピュータ等の情報処理装置およびその付属装置により構成していてもよい。また、外部システム200の各機能は、外部システム200のハードウェア構成中のCPU、ディスク装置、メモリ装置、入力装置、出力装置、通信制御装置等およびそれらを制御するプログラム等により実現される。
 以上で、本実施形態の構成の説明を終える。
[流体遷移分析装置100の処理]
 次に、このように構成された本実施形態における流体遷移分析装置100の処理の一例について、以下に図面を参照して詳細に説明する。
[語表現アルゴリズムの基本処理]
 まず、流体遷移分析装置100により実行される語表現アルゴリズムの基本処理の一例について、上述した図5を再び参照して説明する。以下の基本処理は、全ての採り得る流れパターンを書き出すアルゴリズムAにおいても、流線図から語表現を求めるアルゴリズムBにおいても基本となる処理である。なお、以下の例では、パターン語の付与(ステップSA−1)が先に行われ、操作語の付与(ステップSA−2)が後に行われるが、これに限られず、操作語の付与を先に行い、後にパターン語の付与を行ってもよいものである。
 図5に示すように、まず、語表現形成部102cのパターン語付与部102dは、パターン語I,IIのうちのいずれか一語を付与する(ステップSA−1)。ここで、パターン語付与部102dは、上記に加えてパターンOを追加した、合計3種類のパターン語I,II,Oのうちのいずれか一語を付与してもよい。より具体的には、3種類のパターン語は、
 1)吸い込み湧き出し対をもち、二つのss−∂−saddle connectionをもつパターンを規定するパターン語I、
 2)吸い込み湧き出し対をもち、一つのsaddle point、それを結ぶhomoclinic saddle connectionと二つのss−saddle connectionをもつパターンを規定するパターン語II、および
 3)吸い込み湧き出し対をもたないパターンを規定するパターン語O、
である。
 そして、語表現形成部102cの操作語付与部102eは、パターン語付与部102dにより付与されたパターン語に対して、5種類の操作語A,A,B,B,Cのうちのいずれか一語を付与する(ステップSA−2)。より具体的には、5種類の操作語は、
 1)一本のss−orbitを、一つのsaddle point、それを結び内部に穴をもつhomoclinic saddle connectionと二つのss−saddle connectionに置き換える操作を規定した操作語A
 2)一本のss−orbitを、二つのss−∂−saddle connectionと新たに追加した境界上の二つの∂−saddleに置き換える操作を規定した操作語A
 3)一本のclosed orbitを、一つの穴とsaddle pointを追加して8の字をした2本のhomoclinic saddle connectionに置き換える操作を規定した操作語B
 4)一本のclosed orbitを、新たに追加した穴の境界上に二つ∂−saddleをつけて一本の∂−saddle connectionでつなぐような軌道に置き換える操作を規定した操作語B、および、
 5)既に2k個(k>0)の∂−saddleをもつ境界に、新たに二つの∂−saddleを付け加えて一本の∂−saddle connectionでつなぎ内部に新たに付け加えた穴を置く操作を規定した操作語C、
 である。なお、上記の操作は、穴を追加する場合の操作を規定したものであることから、ある流線図に操作語を割り当てていくアルゴリズムBにおいては、当該流線図に対して上記操作の逆の操作(逆の置き換え操作)を行うことになる。
 ここで、操作語付与部102eは、上記の操作がss−orbitやclosed orbit等の存在を前提にしていることから、以下の制約条件に従って操作語を付与してもよい。すなわち、操作語付与部102eは、5種類の操作語を付与する場合に、
 1)一本のss−orbitが存在することを条件に、操作語AまたはAを付与し、
 2)一本のclosed orbitが存在することを条件に、操作語BまたはBを付与し、
 3)∂−saddlesを持つ境界が存在することを条件に、操作語Cを付与してもよい。
 そして、語表現形成部102cの操作語付与部102eは、穴の数がN個に達したか否かを判定する(ステップSA−3)。例えば、操作語付与部102eは、穴が1つの単連結外部領域Dζ(0)におけるパターン語I,IIに対して、穴がN個となるまで(N−1)個の操作語を付与し終えたか否かを判定する。また、操作語付与部102eは、穴が2つの二重連結外部領域Dζ(1)におけるパターン語Oに対して、穴がN個となるまで(N−2)個の操作語を付与し終えたか否かを判定する。なお、アルゴリズムAにおいては、求める多重連結外部領域の穴の数をN個と設定しているが、アルゴリズムBにおいては予め穴の数を設定していない。アルゴリズムBの場合は、操作語付与部102eは、流線図に対する操作語に従った置き換え操作によって、流線図が初期パターン(I,II,またはO)に達したか否かで、穴の数がN個に達したか否かを判定してもよい。
 穴の数がN個に達していない場合(ステップSA−3,No)、語表現形成部102cの操作語付与部102eは、これまでに作成した文字列に対して、更に操作語を付与する(ステップSA−2)。
 一方、穴の数がN個に達した場合(ステップSA−3,Yes)、語表現形成部102cの操作語付与部102eは、これまでに作成した文字列を語表現として対応関係ファイル106cに格納して処理を終える。
 以上が、本実施形態における流体遷移分析装置100の語表現アルゴリズムの基本処理の一例である。このように語表現を形成させることによって、シミュレーション結果がどの流れパターンに対応するか語表現にて表すことができる。
[アルゴリズムB]
 つづいて、上述した語表現形成部102cによる基本処理を基礎として、流線図から語表現を求めるアルゴリズムBの処理の詳細について、以下に図13~図20を参照して説明する。
[B−1.パターン語の割り当て処理]
 上述した基本処理のステップSA−1におけるパターン語の割り当て処理について図13を参照して以下に説明する。図13は、パターン語の割り当て処理の一例を示すフローチャートである。
 ここで、与えられた流線図は、図10に示したように円内の領域として描画の便宜上記載したが、本アルゴリズムは、もともと一様流を持つ非有界な領域における流れの判定アルゴリズムである。数値シミュレーションや実際の計測によって得られる流れは非有界な流れ場(から必要な部分を切り出した)の流線図であることから、円内の領域への変換が必要であるかどうかが問題になるが、本願発明者らによる鋭意検討の結果、本アルゴリズムを適用するにあたり、そのような変換は不要であることがわかった。それに基づいて、与えられた流線図に対して以下の処理を施せば、その流線図がI系列かII系列かO系列かがわかる。すなわち、以下の処理を実施する場合に、流線図をステレオ射影法等によって円内の領域へ変換することは不要である。
 図13に示すように、パターン語付与部102dは、流線図から語表現を求めるアルゴリズムBにおいて、与えられた流線図において、ss−∂−saddle connectionが存在するか否かを判定する(ステップSA−11)。
 ss−∂−saddle connectionが存在すると判定した場合(ステップSA−11,Yes)、パターン語付与部102dは、パターン語Iを付与する(ステップSA−12)。すなわち、与えられた流線図はI系列と判定される。
 一方、ss−∂−saddle connectionが存在しない場合(ステップSA−11,No)、パターン語付与部102dは、流線図においてss−saddle connectionが存在するか否かを判定する(ステップSA−13)。
 そして、ss−saddle connectionが存在すると判定した場合(ステップSA−13,Yes)、パターン語付与部102dは、パターン語IIを付与する(ステップSA−15)。すなわち、与えられた流線図はII系列と判定される。
 一方、ss−saddle connectionが存在しない場合(ステップSA−13,No)、パターン語付与部102dは、パターン語Oを付与する(ステップSA−14)。すなわち、与えられた流線図はO系列と判定される。なお、本実施の形態では、一様流があること、すなわち吸い込み湧き出し対があることを前提としているため、O系列とは判定されないはずである。そのため、本実施の形態において、O系列と判定された場合には、流体遷移分析装置100は、エラーを出力してもよい。
 以上が、パターン語の割り当て処理の一例である。
[B−2.I系列における操作語の割り当て処理]
 つづいて、アルゴリズムBにおけるI系列の操作語の割り当て処理の一例について、図14および図15を参照して説明する。図14および図15は、アルゴリズムBにおけるI系列の操作語の割り当て処理の一例を示すフローチャートである。
 図14に示すように、流線解析部102bは、シミュレーション結果ファイル106aに記憶された、数値シミュレーションや実験データから、流線解析により流線図を作成する(ステップSB−1)。具体的には、流線解析部102bは、数値シミュレーション結果から、saddle pointや∂−saddleなどをすべて計算した後、その点における流れ関数の値と同じ値を持つ流れ関数の等高線をすべて描画し、また、境界(boundary)上の流れ関数の値と同じ値を持つ流れ関数の等高線をすべて描画することにより流線図の作成が可能となる。そのほか、流線解析部102bは、Computational Homology(非特許文献1)に記載の技術等を用いて、流れ場から条件を満たす特徴的な構造を抽出してもよい。なお、本実施形態において、流線解析部102bは、作成した流線図データを流線図ファイル106bに格納する。なお、データ管理上、流線解析部102bは、得られたすべての線やsaddle point, ss−orbits, ∂−saddle, boundaryに番号をつけて流線図データを扱ってもよい。これにより、それらの包含関係をつけてその順位をつけてデータ構造を決めることによって、以降の前処理や各系列のアルゴリズムを計算機上で扱いやすくなる。
 そして、流線解析部102bは、流線図に対して前処理を施す(ステップSB−2)。例えば、流線解析部102bは、与えられた流線図に対して以下の三つの前処理を施す。なお、これらの操作を施した回数をエラー数と呼び、語表現にてどの程度流線を表すことができているかの指標となる。例えば、渦潮では、平面上の流体の動きにとどまらず、平面の垂直方向にも海流が移動している。また、航空機等の物体について、一様流に沿った二次元断面と水平でない方向にも、障害物にぶつかった気体等が流れ込む場合がある。そこで、以下の前処理を行うことで、平面状の流れと近似して、前処理を行った回数(エラー回数)だけ、真から外れていることの指標としている。
1. ∂−saddleの安定多様体、不安定多様体あるいは極限集合が、sink,sourceのlimit cycleを含むならば、それを閉じてsink,source,limit cycleを消去する。
2. sinkの(吸引)領域を、center/diskとhomoclinic(∂−)saddle connectionに置き換える。
3. sourceの(発散)領域を、center/disk とhomoclinic(∂−)saddle connectionに置き換える。
 そして、操作語付与部102eは、流線解析部102bにより前処理が施された流線図について、∂−saddleが存在するか判定する(ステップSB−3)。
 ∂−saddleが存在する場合(ステップSB−3,Yes)、操作語付与部102eは、ちょうど2つの∂−saddleが存在する境界で、ss−∂−saddle connectionを持つものがあるか否かを判定する(ステップSB−4)。
 ちょうど二つの∂−saddleが存在する境界を含むss−∂−saddle connectionを持つものがk個ある場合(ステップSB−4,Yes)、操作語付与部102eは、操作語Aをk個付与し(ステップSB−5)、流線解析部102bは、流線図上において、これら二つの∂−saddlesと境界(boundary)を消去して、一本のss−orbitに置き換える操作をk回行う(ステップSB−6)。
 一方、ちょうど二つの∂−saddleが存在する境界を含むss−∂−saddle connectionを持つものがない場合(ステップSB−4,No)、操作語付与部102eは、ちょうど2つの∂−saddleが存在する境界で、同じ境界上の∂−saddle connectionを持つものがあるか否かを判定する(ステップSB−7)。
 ちょうど2つの∂−saddleが存在する境界を含む∂−saddle connectionを持つものがk個ある場合(ステップSB−7,Yes)、操作語付与部102eは、操作語Bをk個付与し(ステップSB−8)、流線解析部102bは、流線図上において、同じ境界上の∂−saddle connectionで結ばれた∂−saddleと境界(boundary)を消去して一本のperiodic orbit に置き換える操作をk回行う(ステップSB−9)。
 一方、ちょうど二つの∂−saddleが存在する境界を含む∂−saddle connectionを持つものがない場合(ステップSB−7,No)、操作語付与部102eは、4つ以上の∂−saddleを持つ境界の中に、同じ境界上の∂−saddle connectionで、その内側がcenter/diskであるものがあるか否かを判定する(ステップSB−10)。
 ∂−saddleを4つ以上含む境界上の∂−saddle connectionで、その内側がcenter/diskであるような境界がk個ある場合(ステップSB−10,Yes)、操作語付与部102eは、操作語Cをk個付与し(ステップSB−11)、流線解析部102bは、流線図上において、同じ境界上の∂−saddle connectionと、それによって結ばれている二つの∂−saddleと、それらに囲まれるcenter/diskを消去する操作をk回行う(ステップSB−12)。
 一方、∂−saddleを4つ以上含む境界上の∂−saddle connectionで、その内側がcenter/diskであるような境界がない場合(ステップSB−10,No)、もっとも内側にあるFigure eight(すなわち∂−saddle connectionで、その内側の少なくとも片方がcenter/diskであるもの)が存在するので、その数をk個とし、操作語付与部102eは、操作語Bをk個付与し(ステップSB−13)、流線解析部102bは、流線図上において、もっとも内側にあるFigure eightからsaddle pointとboundaryを一つ消去して、center/diskを囲むperiodic orbitに置き換える操作をk回行う(ステップSB−14)。ここで、「Figure eight」とは、一つのサドル点とそれをつなぐ二つのhomoclinic saddle connectionsからなり、各homoclinic saddle connectionはその内部にcenter/diskを囲んでいるような(8の字のような形をした)流れの構造を指す。
 そして、以上の処理を行った後、処理をステップSB−3に戻し、まだ∂−saddleが存在する場合は(ステップSB−3,Yes)、流体遷移分析装置100は、上述した処理を繰り返す。
 一方、∂−saddleがなくなった場合は(ステップSB−3,No)、図15に示すように、操作語付与部102eは、saddle point(サドル点)が存在するか否かを判定する(ステップSB−15)。
 saddle pointが存在する場合(ステップSB−15,Yes)、操作語付与部102eは、Figure eightパターンに存在するsaddle pointがあるか否かを判定する(ステップSB−16)。
 Figure eightパターンに存在するsaddle pointがk個ある場合(ステップSB−16,Yes)、操作語付与部102eは、操作語Bをk個付与し(ステップSB−17)、流線解析部102bは、流線図上において、もっとも内側にあるFigure eightパターンを一つのcenter/diskまわりのperiodic orbitに置き換える操作をk回行う(ステップSB−18)。
 一方、Figure eightパターンに存在するsaddle pointがない場合(ステップSB−16,No)、ss−saddle connectionで,かつhomoclinic saddle connectionを持ち、その内側がcenter/diskであるものが存在するので、その数をk個とし、操作語付与部102eは、操作語Aを付与し(ステップSB−19)、流線解析部102bは、saddle point(サドル点)とそれを結ぶhomoclinic saddle connectionおよび、それらに囲まれるcenter/diskを消去する操作をk回行う(ステップSB−20)。
 そして、以上の処理を行った後、処理をステップSB−15に戻し、まだsaddle pointが存在する場合は(ステップSB−15,Yes)、流体遷移分析装置100は、上述した処理を繰り返す。
 一方、saddle pointがもはやない場合は(ステップSB−15,No)、流体遷移分析装置100は、アルゴリズムBにおけるI系列の操作語の割り当て処理を終え、語表現形成部102cにより形成された語表現は、対応関係取得部102gの制御により、その時点で物体が受ける力に対応付けて、対応関係ファイル106cに格納される。なお、語表現形成部102cの極大語表現部102fは、得られた文字列の中から一つAを選んで、それをIと置き換えて文字列の先頭に移動させ、残りの文字列をルールに従って並び替えれば、極大語(maximal word)に変換することができる。
[B−3.II系列における操作語の割り当て処理]
 つづいて、アルゴリズムBにおけるII系列の操作語の割り当て処理の一例について、図16を参照して説明する。図16は、アルゴリズムBにおけるII系列の操作語の割り当て処理の一例を示すフローチャートである。なお、I系列の操作語の割り当て処理のステップSB−1およびステップSB−2と同様に、流線解析により流線図の作成と前処理が行われていてもよい。
 図16に示すように、操作語付与部102eは、与えられた流線図について、∂−saddleが存在するか判定する(ステップSC−1)。
 ∂−saddleが存在する場合(ステップSC−1,Yes)、操作語付与部102eは、ちょうど2つの∂−saddleが存在する境界で、その境界上の∂−saddle connectionを持つものがあるか否かを判定する(ステップSC−2)。
 ちょうど2つの∂−saddleが存在する境界を含む∂−saddle connectionを持つものがk個ある場合(ステップSC−2,Yes)、操作語付与部102eは、操作語Bをk個付与し(ステップSC−3)、流線解析部102bは、流線図上において、同じ境界上の∂−saddleと∂−saddle connectionを一本のperiodic orbitに置き換える操作をk回行う(ステップSC−4)。
 一方、ちょうど2つの∂−saddleが存在する境界を含む∂−saddle connectionを持つものがない場合(ステップSC−2,No)、操作語付与部102eは、4つ以上の∂−saddleを持つ境界の中に、同じ境界上の∂−saddle connectionで、その内側がcenter/diskであるものがあるか否かを判定する(ステップSC−5)。
 ∂−saddleを4つ以上含む境界上の∂−saddle connectionで、その内側がcenter/diskであるような境界がk個ある場合(ステップSC−5,Yes)、操作語付与部102eは、操作語Cをk個付与し(ステップSC−6)、流線解析部102bは、流線図上において、同じ境界上の∂−saddle connectionと、それによって結ばれている二つの∂−saddleと、それらに囲まれるcenter/diskを消去する操作をk回行う(ステップSC−7)。
 一方、∂−saddleを4つ以上含む境界上の∂−saddle connectionで、その内側がcenter/diskであるような境界がない場合(ステップSC−5,No)、もっとも内側にあるFigure eightが存在するので、その数をk個とし、操作語付与部102eは、操作語Bをk個付与し(ステップSC−8)、流線解析部102bは、流線図上において、もっとも内側にあるFigure eightパターンを、一つのcenter/diskを囲むperiodic orbitに置き換える操作をk回行う(ステップSC−9)。
 そして、以上の処理を行った後、処理をステップSC−1に戻し、まだ∂−saddleが存在する場合は(ステップSC−1,Yes)、流体遷移分析装置100は、上述した処理を繰り返す。
 一方、∂−saddleがもはやない場合は(ステップSC−1,No)、操作語付与部102eは、saddle point(サドル点)が存在するか否かを判定する(ステップSC−10)。
 saddle pointが存在する場合(ステップSC−10,Yes)、操作語付与部102eは、Figure eightパターンに存在するsaddle pointがあるか否かを判定する(ステップSC−11)。
 Figure eightパターンに存在するsaddle pointがk個ある場合(ステップSC−11,Yes)、操作語付与部102eは、操作語Bをk個付与し(ステップSC−12)、流線解析部102bは、流線図上において、もっとも内側にあるFigure eightパターンを一つのcenter/diskまわりのperiodic orbitに置き換える操作をk回行う(ステップSC−13)。
 一方、Figure eightパターンに存在するsaddle pointがない場合(ステップSC−11,No)、ss−saddle connectionで,かつhomoclinic saddle connectionを持ち、その内側がcenter/diskであるものが存在するので、その数をk個とし、操作語付与部102eは、操作語Aをk個付与し(ステップSC−14)、流線解析部102bは、saddle point(サドル点)とそれを結ぶhomoclinic saddle connectionおよび、それらに囲まれるcenter/diskを消去する操作をk回行う(ステップSC−15)。
 そして、以上の処理を行った後、処理をステップSC−10に戻し、まだsaddle pointが存在する場合は(ステップSC−10,Yes)、流体遷移分析装置100は、上述した処理を繰り返す。
 一方、saddle pointがもはやない場合は(ステップSC−10,No)、流体遷移分析装置100は、アルゴリズムBにおけるII系列の操作語の割り当て処理を終える。なお、得られた文字列の中から一つAを選んで、それをIIと置き換えて文字列の先端に移動し、残りの文字列をルールに従って並び替えれば極大語(maximal word)に変換することが可能である。
 以上が、流線図からI系列およびII系列の語表現を求めるアルゴリズムBの処理の詳細な例である。これにより、吸い込み湧き出し対を有する流線図に対応する語表現を適切に求めることができる。なお、以上のアルゴリズムBの処理は、一例に過ぎず、本発明は、上記のアルゴリズムに限定されるものではない。例えば、アルゴリズムBの処理の他の例として、以下の処理を行ってもよいものである。
[B−4.I,II系列における操作語の割り当て処理(亜種アルゴリズム)]
 ここで、アルゴリズムBにおける操作語I,IIの割り当て処理の他の例(亜種アルゴリズム)について、図17および図18を参照して説明する。図17および図18は、アルゴリズムB(I,II−Word alg)におけるI,II系列の操作語の割り当て処理の他の例を示すフローチャートである。なお、上述した割り当て処理のステップSB−1およびステップSB−2と同様に、流線解析により流線図の作成と前処理が行われていてもよい。また、以下の操作語の割り当て処理において、操作語を付与する場合は、後ろから前に付与するものとする。
 図17および図18に示すように、操作語付与部102eは、流線解析部102bにより前処理が施された流線図について、吸い込み湧き出し対(1−source−sink)に繋がっていないsaddleが存在する、または、∂−saddle connectionが存在するか判定する(ステップSI−1)。
 吸い込み湧き出し対(1−source−sink)に繋がっていないsaddleが存在する、または、∂−saddle connectionが存在する場合(ステップSI−1,Yes)、操作語付与部102eは、ちょうど2つの∂−saddleが存在する境界で、∂−saddle connectionを持つものがあるか否かを判定する(ステップSI−2)。
 ちょうど2つの∂−saddleが存在する境界で、∂−saddle connectionを持つものがk個ある場合(ステップSI−2,Yes)、操作語付与部102eは、操作語Bをk個付与し(ステップSI−3)、流線解析部102bは、流線図上において、同じ境界上の∂−saddle connectionで結ばれた∂−saddleと境界(boundary)を消去して一本のperiodic orbit に置き換える操作をk回行う(ステップSI−4)。
 ちょうど2つの∂−saddleが存在する境界で、∂−saddle connectionを持つものがない場合であって(ステップSI−2,No)、もっとも内側にあるFigure eightパターンがある場合(ステップSI−5,Yes)、操作語付与部102eは、操作語Bを付与し、操作語付与部102eは、流線図上において、もっとも内側にあるFigure eightパターンを一つのcenter/diskまわりのperiodic orbitに置き換える操作を行う(ステップSI−6)。この操作(操作語Bを付与し、periodic orbitに置き換える操作)は、可能な限り繰り返し実行される。
 一方、もっとも内側にあるFigure eightパターンに存在するsaddle pointがない場合(ステップSI−5,No)、すなわち∂−saddleを4つ以上含む境界上の∂−saddle connectionで、その内側がcenter/diskであるような境界がある場合、操作語付与部102eは、操作語Cを付与し、流線解析部102bは、流線図上において、その境界上の∂−saddle connectionと、それによって結ばれている二つの∂−saddleと、それらに囲まれるcenter/diskを消去する操作を繰り返し行う(ステップSI−7)。この操作(操作語Cを付与し、center/diskを消去する操作)は、可能な限り繰り返し実行される。
 そして、以上の処理を行った後、処理をステップSI−1に戻し、まだ吸い込み湧き出し対(1−source−sink)に繋がっていないsaddleが存在する、または、∂−saddle connectionが存在する場合は(ステップSI−1,Yes)、流体遷移分析装置100は、上述した処理を繰り返す。
 一方、吸い込み湧き出し対(1−source−sink)に繋がっているsaddleのみが存在し、かつ、∂−saddle connectionがもはやない場合は(ステップSI−1,No)、図18に示すように、操作語付与部102eは、ss−∂−saddleが存在するか判定する(ステップSH−1)。
 そして、ss−∂−saddleが存在しない場合(ステップSH−1,No)、流線解析部102bは、saddle point(サドル点)とそれを結ぶhomoclinic saddle connectionおよび、それらに囲まれるcenter/diskを消去する操作を1回行う(ステップSH−2)。
 そして、ss−saddleがk個あるとき、操作語付与部102eは、操作語Aをk個付与する(ステップSH−3)。
 そして、流線解析部102bは、saddle point(サドル点)とそれを結ぶhomoclinic saddle connectionおよび、それらに囲まれるcenter/diskを消去する操作をk回行う(ステップSH−4)。
 そして、パターン語付与部102dは、パターン語IIを付与し(ステップSH−5)、流体遷移分析装置100は、アルゴリズムB(I,II−Word alg)におけるI,II系列の操作語の割り当て処理を終える。なお、得られた文字列は極大語(maximal word)である。
 一方、上記のステップSH−1において、ss−∂−saddleが存在する場合(ステップSH−1,Yes)、流線解析部102bは、流線図上において、これら二つの∂−saddlesと境界(boundary)を消去して、一本のss−orbitに置き換える操作を1回行う(ステップSH−7)。
 そして、ss−∂−saddleがk個あるとき、操作語付与部102eは、操作語Aをk個付与する(ステップSH−8)。
 そして、流線解析部102bは、流線図上において、これら二つの∂−saddlesと境界(boundary)を消去して、一本のss−orbitに置き換える操作をk回行う(ステップSH−9)。
 そして、操作語付与部102eは、ss−saddleがk個あるとき、操作語Aをk個付与する(ステップSH−10)。
 そして、流線解析部102bは、saddle point(サドル点)とそれを結ぶhomoclinic saddle connectionおよび、それらに囲まれるcenter/diskを消去する操作をk回行う(ステップSH−11)。
 そして、パターン語付与部102dは、パターン語Iを付与し(ステップSH−12)、流体遷移分析装置100は、アルゴリズムB(I,II−Word alg)におけるI,II系列の操作語の割り当て処理を終える。なお、得られた文字列は極大語(maximal word)である。
 以上が、流線図から語表現を求めるI系列およびII系列のアルゴリズムBの処理(亜種アルゴリズム)の詳細な例である。これにより、任意の流線図に対応する語表現を適切に求めることができる。
[極大語表現]
 得られる語表現には冗長性がある場合があるので、パターン語の組み合わせから全文字列を生成したのち、各文字列が極大語になっているか否かを判定し、冗長性のない極大語表現を得る原理と方法について説明する。
 すなわち、操作語を付与する場合の制約条件に従えば、原則的にはすべての構造安定な流れの位相構造は、操作語を列挙することで表現することができる。ただし、注意すべき点は、「一つの流れパターンを表現する語は複数ある」ということである。また一方で「一つの語表現で表される流れのパターンも複数ある」という点である。この実例は、IAとIA等にみることができる。語表現という観点からすれば、後者の点は特に大きな問題ではない。ある一つの語がある流れパターンの集合(グループ)を表現するにすぎないからである。一方、前者の点は一つの流れを複数の語が表現すると冗長であり、たいへん紛らわしいので問題である。そこで、「極大語表現(maximal word representation)」というものを用いてこの問題を解決することができる。
 この極大語表現は、I系列,II系列,O系列で与えられている操作を表す文字列の順序の入れ替えによって、それが表現している流れの集合がどうなるかを調べることによって導入される。例えば、文字IAとIAなる二つの語表現について、これらが表す流れのパターンは同じであることが示されるのでAとAの入れ替えによって表現されるパターンは変化しない。そこで、「AのほうがAより先に語表現の中で現れる」というルールを追加して、重複するIAという表現を排除する。このような文字の入れ替えに関して起こる、語表現されるパターンの変化を象徴的にA=Aのように表現することにする。このように語を入れ替えても、それが表すパターンが変化しないような組み合わせが、Lemma3.5とLemma3.6に与えられる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 一方で、語を入れ替えることによって、それが表現するパターンの集合が変化する場合もある。例えばIBとIAについては、前者が表すパターンの集合は後者が表すパターンの集合に含まれる包含関係がある。すなわち集合の記号を使えば、(IB)⊂(IA)となる。このように入れ替えによって、一方が一方のパターンの集合を含んでしまう場合は、含まれる側の語表現は排除して、より大きな語表現のみを採用する。この関係式を象徴的にB≦Aと表現することにする。このような包含関係を生むような語の入れ替えの組み合わせはLemma3.7で与えられる。
Figure JPOXMLDOC01-appb-M000011
 これらの語の入れ替えによる包含関係式をまとめたものが下の表である。なお、BC||CBは、BとCが入れ替えても包含関係が成立しないので、この二つは入れ替えることができないことを表している。
Figure JPOXMLDOC01-appb-T000012
 なお、ある適切なアルゴリズムを1つ固定すると、これらの語表現の入れ替えによりできる極大語表現は、一つのパターンに対して、必ず一つしかないということを数学的に証明可能である(Lemma 3.8参照)。
Figure JPOXMLDOC01-appb-M000013
 さらに、これに基づいて極大語表現の標準形を求めることができる。O系列に対する極大語表現の標準形を与えたのがTheorem 3.3であり、I系列に対する極大語表現の標準形を与えたのがTheorem 3.4であり、II系列に対するそれはTheorem 3.5で与えられている。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 上記の理論に基づいて、文字列が極大語になっているか否かを判定し、アルゴリズムBにおいて極大語表現になるように書き換えたり、アルゴリズムAにおいて極大語表現のみを書き出したりすることができる。これにより、重複なく文字列を得ることができるので、位相上、一つの流れパターンについて、一つの語表現を割り当てることができ、冗長性を排除することができる。
 本願発明者らは、二次元多重連結領域内における非粘性・非圧縮流体の運動における、構造安定な流れについて、その位相構造を分類し、それに一意の語表現を与えるアルゴリズムを開発し発表を行っている(文献「T. Yokoyama and T. Sakajo, “Word representation of streamline topology for structurally stable vortex flows in multiply connected domains”, Proc. Roy. Soc. A 469 (2013)doi: 10.1098/rspa.2012.0558」参照).
 以下の本実施形態にかかる実施例においては、上述の文献における「語変換アルゴリズム」を用いて、各時刻において与えられた二次元非粘性・非圧縮流体の流れの位相構造(トポロジー)に一意な極大語表現を与え、揚抗比の遷移と語表現による特徴づけを行うことを目的とした。
 より具体的には、「語変換アルゴリズム」を各時刻における瞬間の流線構造に対して適用することで、非定常な流れの時間発展を、その流線構造の極大語表現の変化として特徴づけた。そこで、本実施形態を具体的な問題に適用した結果について以下に記述する。
 まず、上述した図1に示すように、二次元外部領域内における粘性・非圧縮流体を考え、その中に有限の厚みを持つ薄い一枚の平板が一様流に対して一定の角度で傾いておかれている状況を考える(各記号の説明は後ほど与える)。このような流れは、航空機に代表される飛翔物体における翼のモデルとしてしばしば用いられ、流体からその平板が受ける力を考えることが応用上重要である。そのため、こうした流れに対して、数多くの風洞実験や数値計算による定量的な研究が行われてきた。本実施例では、こうした従来の研究手法とは全く異なり、語変換アルゴリズムを用いて平板回りの流れの流線の位相構造を語表現して、その語の変化と平板が受ける力の変動を対応づけることにより、その定量的な情報と流れの特徴構造を対応づける分類表を作ることを目的とする。
 本語表現の理論は、非粘性流体に対して作られたものであるが、対象とする流体は粘性流体であるため、理論の適用を無条件に行うことはできないので、特に以下の観点を考慮して工夫した。すなわち、非粘性流体における流れの境界条件は、物体境界に接する方向に流体が流れるという「すべり境界条件(slip boundary condition)」を課すのが自然であるが、粘性流体では流体が物体境界で動かない「すべりなし境界条件」を課す必要がある。
 この境界条件のために、粘性流体では境界の近傍に境界層とよばれる渦ありの流れ領域が形成されるだけでなく、時間発展を通じてそこから多くの渦構造が生成され、物体の周辺に放出されることが知られている。本理論を適用するにあたって、本願発明者らは、これらの問題にどう対処するかを鋭意検討し、そこには一定の制限がつくものの、好適に適用することができる方法を見出した。なお、本実施形態によれば、粘性流体の現象の語表現による記述の限界がどこにあるかについて明らかにすることも可能となる。
 本実施形態において、とりあげる計測量は、物体に働く揚力と抗力およびその比(揚抗比)である。揚力とは、流体から物体が受ける流れに垂直な向きの力で、これが翼の飛翔を支える基本的な流体力である。一方、抗力は、流体から物体が受ける流れ方向の抵抗力である。抵抗力は、流体に粘性があり、そこに物体がある以上ゼロにすることは難しい(一方で、非粘性の流れにおいては抵抗力がゼロとなることが知られている)ので、ここで着目すべき量は得られる揚力と抗力のトレードオフを表す揚力と抗力の比(=揚抗比)である。
 この揚抗比を大きくしたまま時間変動を抑えて流れを安定化させることが効率的な飛翔物体の設計には重要であるが、一般に流体運動が非定常である場合は、揚抗比は一定でなく時間的に大きな変動を示す。従来、このような変動が周辺の流れの構造のどのような変化によってもたらされるかについて精密な記述が行われた例は極めて少ない。特に、本願のように、ある流れパターンの流れに対して、一意な語表現を与えるという汎用性・可搬性の高い形式で、記述された例は全くない。
 そこで、本実施例では、様々な流体のパラメータ領域に対して記述を試み、語表現による流線構造の遷移表現と揚抗比の変動を対応づける表を提示することを特徴とする。そして、様々なパラメータについて網羅的に対応表が得られれば、どのようなパラメータに設定すれば流れが安定するか、理想的な流れパターンに導くには、前段階としてどのような遷移順序で導けばよいのか、反対に、渦が絶えず移動するような不安定な流れにならないようにするにはどのような構造の特徴が必要かなどの知見を得ることができ、語表現を基準として様々な構造設計等が可能となる。
 本実施例において、この粘性・非圧縮流れの時間発展は、二次元のナヴィエ・ストークス方程式を数値的(近似的)に解くことで求めた。流れの中に平板のような境界が存在している場合について、境界近傍の流れを精度良く近似するために、本実施例では、Volume penalization法(VP法)と呼ばれる数値計算手法を用いた(文献「P. Angot, C.−H. Bruneau and P. Fabrie, “A penalization method to take into account obstacles in incompressible viscous flows”, Num. Math. 81 (1999) pp. 497−520.」参照)。
 なお、この流体方程式の数値計算法には、他にも有限要素法や有限差分法、有限体積法といったものが数多く知られているが、いずれの手法で解いても十分な近似精度がある離散化を行えば、その結果得られる流れの様子はほとんど同じであるため、どの数値計算法を用いるかについては本質的なものではない。ここで、本実施形態が実施可能であることを示す意味でも、本実施例において、用いた数値計算パラメータを以下に示す。本実施例では、空間離散化はフーリエ・スペクトル法を用いて行い、x軸、y軸方向に周期境界条件を課した。なお、その手法及びパラメータについて、文献「D.Kolomenskiy, K.Schneider, “A Fourier spectral method for the Navier− Stokes equations with volume penalization for moving solid obstacles”, Journal of Computatonal Physics 228 (2009) pp. 5687−5709」を参考にした。
 また、本実施例では、平板に対してガウシアンフィルタを用いて、VP法において平板を表すマスク関数を平滑化している。さらに、平板で生じる渦が流れ去って周期境界条件の影響で再び前方からその渦が流入する影響を取り除くため、渦度を人工的に消すフリンジ領域を平板後方に十分離れた箇所に設けている(文献「澤村陽一, 石原卓, “Volume Penalization 法による翼果まわりの流れの数値解析”,京都大学数理解析研究所講究録No.1808 (2012) pp.101−120」参照)。
 数値計算のパラメータとして、空間のサイズはy方向Ly=4、x方向Lx=16、すなわち計算領域は、縦横比1:4の長方形とした。また、格子点数は、y方向に256、x方向に1024とした。時間方向の積分は、4段4次精度ルンゲクッタ法を用い、時間刻み幅5×10−4とした。VP法特有のパラメータとして、境界への浸透率があり、このパラメータは、10−3とした。流体の初期条件は、静止状態からスタートし、一様流の速度を1として与えた。平板形状は、コード長(長辺)をcl=2、厚み(短辺)を0.1とし、一様流速度を代表速度、平板のコード長を代表長さとしたレイノルズ数は1370とした。また、平板の一様流に対する迎角はθ=15度とした。なお、本実施形態を適用するにあたって、これらのパラメータを、どれを変えるか、どの範囲で変更するかについては、これに限定されず、制約のない限り任意である。なお、パラメータのうち、レイノルズ数と迎角は、その値を変更することで揚抗比が大きく変化するので重要と考えられる。このほか、厚みについても値を変更すれば、その揚抗比に影響を与えると考えられる。本実施例では、以下に示すように、与えた特定のパラメータについて計算された流れに対応する語表現の変化と揚抗比の遷移の対応づけを行った。
 まず、図19は、上記のパラメータの計算条件下において計算された一枚平板に加わる揚抗比、揚力、抗力の時間変化を表した図である。なお、図中の破線は、揚力を示しており、一点鎖線は、抗力を示しており、実線は、揚抗比を示している。図19に示すように、時刻t=5まで揚抗比は、単調に増加した後、急激に減少し、それ以降は揚抗比の振動が見られる。このような時刻t=5までは、静止状態の初期値からある一定の準定常的な運動状態にいたるまでの遷移過程と考えられるので、本実施例では、揚抗比が振動を繰り返すようになる時刻であるt=5以後の運動について分析対象とした。特に、この揚抗比振動の最初の一周期(t=5.5からt=12.8まで)について詳細に検討して、その流線構造の語表現との対応関係を得た。
 図20は、揚抗比が最大になる時刻t=5.5から極小に陥るt=11までの流れの時間発展を示す図である。また、図22は、揚抗比が極小状態から再び極大に到るまでの、時刻t=11.4から極小に陥るt=13.0までの渦度の時間発展を示す図である。図は流れの渦度を表現しており、黄色い部分は反時計回りの正の渦度がある領域を表し、青い部分は時計回りの負の渦度がある領域を表している。
 従来技術では、渦度の時間発展の様子を観察するのみであり、どのような流れの構造がこうした揚抗比の変化を起こしているのかを判定することは困難であった。そこで、本実施例では、これらの流れに対して語変換アルゴリズムを適用して、各時刻における流線の位相構造の語表現を与えた。しかし、上で述べたように、ここで扱っている流体は粘性流体であるため境界条件の違いを考慮して工夫を施さなければならない。そこで、まず、与えられた数値計算結果から、この語変換アルゴリズムをどう適用したかについて、詳しく解説する。
 まず、流線の位相構造は数値計算によって計算される流れ関数の等高線をプロットすることで得られるので、境界から離れた領域ではこれら等高線の中からsaddle pointやss−∂−saddle connection、∂−saddle connection、∂−saddleといった構造安定な流線を構成する軌道をすべて抽出した。
 つぎに、図20や図22によると、平板の境界付近では境界層が形成され、その中では渦度が層状(すなわち、黄色や青色の薄い層)に分布していることがわかった。また、この近傍での流れ関数の振る舞いは平板にほぼ平行になっていることがわかる。このことから、平板の境界を少し拡大して、境界層の上端を仮想的な境界と見なすことで、流れ場の境界条件を滑り境界条件とすることができ、非粘性流体に対する語表現の理論を適用することができるようになった。なお、本実施例の数値計算で用いた程度のレイノルズ数で成り立つことがわかったが、このような境界層の穏やかな振る舞いは常に保証されるわけではない。例えば、実際に流れの速度が速くなったりしてレイノルズ数が高くなると、もはやこうした境界層の穏やかな振る舞いは期待できず、そのような流れ場に対しては、非粘性流体を前提とした語変換アルゴリズムでは、境界付近での流れを表現することは困難になることが予想される。その意味で、本実施形態を用いて各パラメータについて網羅的な分析を行えば、こうした語表現が可能なパラメータ領域を確定するのもできるようになる。
 本実施例の数値計算結果に対しては、プログラムB亜種アルゴリズムを用いて境界を仮想的に拡張することで非粘性流体についての語変換アルゴリズムを適用することができ、図21および図23に示すように、渦度の時間発展の計算結果と対応する語表現が得られた。図21は、上記の流線抽出の方法を用いて時刻t=5.5からt=11.0までの流れの流線関数の位相構造とその語表現を示す図である。図23は、流線抽出の方法を用いて時刻t=11.4から13.0までの流れの流線関数の位相構造とその語表現を示す図である。
 図21に示すように、揚抗比は最大から極小に変化した時間間隔(t=5.5~11.0)において、時刻t=5.5のとき(図21(a))の流線構造はICCBで表現されるが、このCCBに対応する渦構造は、平板の上に∂−saddle connectionによって「閉じ込められて」いる。こうした閉じ込め渦の存在が平板に加わる揚力を増加させ、最大の揚抗比を実現している。しかし、この閉じ込め渦は安定には存在できず、時間発展とともに流れの構造は変化して次第に揚力が減少していく。
 時刻t=6.6の流線の位相構造(図21(b))の語表現はIACBとなる。前の時刻で閉じ込められていた渦のうちBに対応する8の字状に閉じこめられた双子渦構造はAによって作られるhomoclinic saddle connectionに取り込まれてしまうため平板の上にもはや留まれなくなっている。このBに対応する双子渦構造はIACなる語表現を持つt=7.7の流線構造(図21(c))においてはAなる二つの渦構造に分解して、その後は平板の外側へ押し出される。
 一方で、時刻t=8.8(図21(d))において、平板上側に生成する境界層から生成された渦度が平板の後端に集まってくることで、語Cに対応する新しい渦構造が生成され、その語表現はIACCに変化する。それ以後の流線位相構造(図21(e)および(f))を表現する語は変化しないものの、この新しい渦構造は時刻t=11にかけて成長して大きくなってゆき、この時刻で揚抗比は極小に到達する。
 そして、図23に示すように、揚抗比が極小から極大に変化した時間間隔(t=11.4~13.0)において、時刻t=11.4の流線の位相構造(図23(a))までは語表現は変化せずIACCのままであるが、時刻t=11.8(図23(b))からは再びその位相構造の変化が始まる。
 時刻t=11.8では、その流線構造がIACCBで表現されるが、このときには平板の上に語CCBに対応する∂−saddle connectionによって閉じ込められたt=5.5の時と同様のCCBに対応する渦構造が再び生成されて、その構造が時刻t=12.6まで継続する。この遷移のおかげで時刻t=11付近で極小状態にあった揚抗比が、この閉じ込め渦の出現により次の極大状態へ遷移していることがわかる。
 時刻t=12.2(図23(c))や時刻t=12.6(図23(d))における流線構造とそれに対応する語表現は少しずつ変化するものの、その語の中に含まれるCCBという語に対応する閉じ込め渦の構造が消えないことから、このCCBの閉じこめ渦構造が揚抗比の極大化に重要であることがわかる。実際、t=13では閉じ込め渦が再び崩れてIACなる構造へと変化するため、急速に揚抗比が次の極小状態へと向かっていく。
 本実施例で取得された対応関係から得られた知見について纏めると、以下の通りである。
(1)翼の特性を記述する揚力・抗力比に対する従来にない流れの特徴づけが可能になったこと
(2)CCBの文字に対応する構造が揚力を増加させること
(3)Aに対応する放出渦の生成が揚力を減退させること
(4)この振動を繰り返すことで翼まわりの揚力抗力比の振動が生まれること
(5)与えられた翼回りの速度や翼の大きさなどをみれば、この特徴が再現される範囲を特定することができること
 以上が与えられた流れの時間発展の語変換アルゴリズムを用いた定性的な語表現の変化と定量的な平板が流体から受ける揚抗比の振動の対応の記述の実施例である。従来、流れの時間発展の図20や図22のような表示から、揚抗比の遷移がどのような流れの構造に対応して発現しているかを見つけるのは難しかったが、本実施例により、図21や図23で示される流線の位相構造を語表現で得ることによって、分析が容易になった。より具体的には、本実施例では、CCBという語が表現する平板上の閉じ込め渦構造がAという語が表現する非閉じ込め渦に変化していくことで揚力が失われ、また再びCCBの閉じこめ渦が再生されることで揚力が回復していくことが明確にわかった。本実施例により、こうした流線の位相構造の語表現を通して閉じこめ渦状態の変化をみることによって、揚抗比の変化を予想できることがわかった。
 なお、平板(羽根)の角度を変えても同じ考察が成立する。ここで、上記の実施例において平板の傾き角度を、20度および10度に設定して再計算した実施例について、図24~図29を参照して説明する。ここで、図24は、平板の角度をθ=20度に変更したパラメータの計算条件下において計算された一枚平板に加わる揚抗比、揚力、抗力の時間変化を表した図である。なお、図中の破線は、揚力を示しており、一点鎖線は、抗力を示しており、実線は、揚抗比を示している。
 図24に示すように、平板の角度が20度のとき、揚力・揚抗比の変化は、時刻t=9.45およびt=13.95のとき揚抗比が極小になり、時刻t=11.15およびt=15.6のとき揚抗比が極大になる。ここで、図25は、時刻t=9.45,t=11.15,t=13.95,t=15.6のときの流れの渦度を示す図である。また、図26は、流線抽出の方法を用いて時刻t=9.45,t=11.15,t=13.95,t=15.6のときの流れの流線関数の位相構造とその語表現を示す図である。
 すなわち、揚抗比が極小になる時刻t=9.45(図25(a))およびt=13.95(図25(c))、揚抗比が極大になる時刻t=11.15(図25(b))および時刻t=15.6(図25(d))の流れについて、図26に示すように語表現を割り当てた。図26(a)に示すように、極小となっているときの時刻t=9.45では、語表現Wordは、IACC、図26(c)ではIACBなる語表現を持つ。また、極大になっているときは、t=11.15のときはIACCBなる語表現を持ち、t=15.6のときはICBとなっている。このように、極小時にはAに相当する構造が生じて、閉じこめ渦に相当する構造が崩れて揚抗比が減ずる一方で、極大時には閉じこめ渦に相当する(C)CBの構造が見られ、角度が15度の場合と同様のことが成立することが分かった。ここで、図27は、平板の角度をθ=10度に変更したパラメータの計算条件下において計算された一枚平板に加わる揚抗比、揚力、抗力の時間変化を表した図である。なお、図中の破線は、揚力を示しており、一点鎖線は、抗力を示しており、実線は、揚抗比を示している。
 図27に示すように、平板の角度が10度のとき、揚力・揚抗比の変化は、時刻t=11.7,t=14.5のとき揚抗比が極小になり、時刻t=13.2とt=16.3のとき揚抗比が極大になる。図28は、時刻t=11.7,t=13.2,t=14.5,t=16.3のときの流れの渦度を示す図である。また、図29は、流線抽出の方法を用いて時刻t=11.7,t=13.2,t=14.5,t=16.3のときの流れの流線関数の位相構造とその語表現を示す図である。
 すなわち、揚抗比が極小になる時刻t=11.7(図28(a)),t=14.5(図28(c))と、極大になる時刻t=13.2(図28(b))とt=16.3(図28(d))の場合について、本アルゴリズムによって図29に示すように語表現を割り当てた。その結果、それぞれIACB(t=11.7,図29(a)),IAC(t=14.5,図29(c)),ICCB(t=13.2,図29(b)),ICB(t=16.3,図29(d))となった。このように、揚抗比の極小時にはAに相当する渦構造の射出によるCCBの構造が崩れており、極大時には(C)CBに相当する閉じこめ渦の構造があって揚力増加を招いている。
 なお、本実施例では、レイノルズ数や平板の傾き角度や、平板の形状など多くのパラメータをいくつかの数値に固定して行った数値計算に対してのみ与えられた結果であり、ここで得られた流線の位相構造の語表現の変化と揚抗比の振動の対応関係がユニバーサルなものかについては知見を完全には得ていないが、本実施の形態を、こうしたパラメータをいろいろ変えることによって、ここで得られたような対応関係の広さと限界を、対応表を網羅的に得ることが可能となり、本実施例で得た知見に限られず、多くの数値計算を用いて上記のような考察結果を得ることが可能となる。
 なお、本実施の形態によれば、一例として航空機等の構造物設計の最適化手法において得られた対応表を利用することができる。例えば、上述の実施形態により、流れパターンの遷移順序や、ある流れパターンとなるためのパラメータの範囲等が得られるので、流体遷移分析装置100は、対応関係ファイル106cに記憶されたパラメータの範囲や遷移順序等の情報に基づく制約の下で、シミュレーション部102aにより最適な構造物が探索されるよう制御してもよい。例えば、揚力を減衰させるAの放出渦が存在している間は、シミュレーション部102aは、焼きなまし法において、ローカルミニマムを抜け出せるように、設計変数に対して大きな変更を許容するように、グローバルパラメータT(温度)を高く設定してもよい。このほか、航空機等の設計において理想的な流れパターン(例えば、揚力を増加させるCCBのパターン)があるか否か語表現との一致不一致に従って、シミュレーション部102aは、設定された所望のパターンを規定する探索範囲が当該所望のパターンになるよう調整してもよい。例えば、上記と同様に、シミュレーション部102aは、焼きなまし法において、探索範囲が所望のパターンと不一致の場合は、設計変数に対して大きな変更を許容するようにグローバルパラメータT(温度)を高く設定し、一方、探索範囲が所望のパターンと一致している場合は、設計変数に対して小さな変更を求めるようにグローバルパラメータT(温度)を低く設定してもよい。このように、河川や海洋、飛行など物体配置と流れの相互作用の最適状態を、短時間および低コストで高精度の計算を行うことが可能となる。また、目的に応じた流線パターンの特定によって、構造物設計の省力化を図ることができる。
[他の実施形態]
 さて、これまで本発明の実施形態について説明したが、本発明は、上述した実施形態以外にも、特許請求の範囲に記載した技術的思想の範囲内において種々の異なる実施形態にて実施されてよいものである。
 特に上記の実施形態においては、本発明を、三次元流体のシミュレーションにおける断面(構造物の断面等)について適用した例について説明したが、これに限られず、二次元流体のシミュレーションに適用してもよいものである。
 また、上述の実施の形態において、構造安定性について記述した箇所があったが、本発明は、構造安定な流れのみを扱うことに限られない。なお、構造安定とは、与えられた流れに小さな擾乱(乱れ)が加わっても流れの特定の位相構造が変化しないものを呼ぶ。これはすべての起こりうる流れのパターンに対してある種の制限をつけることになるが、構造安定な流れは実用上重要なものであるため、その制限は特に問題とならない。すなわち、通常、流れの様子を観測したり、計算機によって流れの様子を可視化した場合には、観測誤差や計算誤差が入るので、こういった誤差によらない流れ構造が観測されやすいからである。
 例えば、流体遷移分析装置100がスタンドアローンの形態で処理を行う場合を一例に説明したが、流体遷移分析装置100は、クライアント端末からの要求に応じて処理を行い、その処理結果を当該クライアント端末に返却するようにしてもよい。
 また、実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。
 このほか、上記文献中や図面中で示した処理手順、制御手順、具体的名称、各処理の登録データや検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。
 また、流体遷移分析装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。
 例えば、流体遷移分析装置100の各装置が備える処理機能、特に制御部102にて行われる各処理機能については、その全部または任意の一部を、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて実現してもよく、また、ワイヤードロジックによるハードウェアとして実現してもよい。尚、プログラムは、後述する記録媒体に記録されており、必要に応じて流体遷移分析装置100に機械的に読み取られる。すなわち、ROMまたはHDなどの記憶部106などには、OS(Operating System)として協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。このコンピュータプログラムは、RAMにロードされることによって実行され、CPUと協働して制御部102を構成する。
 また、このコンピュータプログラムは、流体遷移分析装置100に対して任意のネットワーク300を介して接続されたアプリケーションプログラムサーバに記憶されていてもよく、必要に応じてその全部または一部をダウンロードすることも可能である。
 また、本発明に係るプログラムを、コンピュータ読み取り可能な記録媒体に格納してもよく、また、プログラム製品として構成することもできる。ここで、この「記録媒体」とは、メモリーカード、USBメモリ、SDカード、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD−ROM、MO、DVD、および、Blu−ray Disc等の任意の「可搬用の物理媒体」を含むものとする。
 また、「プログラム」とは、任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものをも含む。なお、実施形態に示した各装置において記録媒体を読み取るための具体的な構成、読み取り手順、あるいは、読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
 記憶部106に格納される各種のデータベース等(シミュレーション結果ファイル106a、流線図ファイル106b、対応関係ファイル106c等)は、RAM、ROM等のメモリ装置、ハードディスク等の固定ディスク装置、フレキシブルディスク、および、光ディスク等のストレージ手段であり、各種処理やウェブサイト提供に用いる各種のプログラム、テーブル、データベース、および、ウェブページ用ファイル等を格納する。
 また、流体遷移分析装置100は、既知のパーソナルコンピュータ、ワークステーション等の情報処理装置として構成してもよく、また、該情報処理装置に任意の周辺装置を接続して構成してもよい。また、流体遷移分析装置100は、該情報処理装置に本発明の方法を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより実現してもよい。
 更に、装置の分散・統合の具体的形態は図示するものに限られず、その全部または一部を、各種の付加等に応じて、または、機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。すなわち、上述した実施形態を任意に組み合わせて実施してもよく、実施形態を選択的に実施してもよい。
 以上詳述に説明したように、本発明によれば、飛翔物体などのように一様流中におかれた物体まわりの流れパターンの遷移と物体が受ける力の変動との関係についての知見を得ることができる、流体遷移分析装置、流体遷移分析方法、および、プログラムを提供することができる。例えば、飛行物体の設計、列車のパンタグラフの構造、レーシングカー等の自動車の構造、スキージャンプなどのスポーツ用品の設計、高速船の設計など、構造物の設計や制御や配置を伴う様々な分野において極めて有用である。
 100 流体遷移分析装置
 102 制御部
 102a シミュレーション部
 102b 流線解析部
 102c 語表現形成部
 102d パターン語付与部
 102e 操作語付与部
 102f 極大語表現部
 102g 対応関係取得部
 104 通信制御インターフェース部
 106 記憶部
 106a シミュレーション結果ファイル
 106b 流線図ファイル
 106c 対応関係ファイル
 108 入出力制御インターフェース部
 112 入力装置
 114 出力装置
 200 外部システム
 300 ネットワーク

Claims (9)

  1.  記憶部と制御部とを備えた流体遷移分析装置において、
     上記記憶部は、
     一様流中におかれた物体について、ある期間における、物体が受ける力と物体周りの流れの実験結果または数値計算結果を記憶し、
     上記制御部は、
     上記期間中のある時点における、上記物体周りの流れを流線解析して流線図を取得する流線解析手段と、
     上記流線解析手段により取得された上記流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、上記流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、上記物体周りの流れの流れパターンを示す語表現を形成させる語表現形成手段と、
     上記語表現形成手段により形成された、ある時点における上記流れパターンを示す上記語表現と当該時点における上記物体が受ける力とを対応付けて上記記憶部に格納して、分析対象とする複数の時点において、上記語表現の遷移と上記物体が受ける力の変動との対応関係情報を取得する対応関係取得手段と、
     を備えたことを特徴とする、流体遷移分析装置。
  2.  請求項1に記載の流体遷移分析装置において、
     上記物体が受ける力は、上記物体の揚力と抗力であること
     を特徴とする、流体遷移分析装置。
  3.  請求項2に記載の流体遷移分析装置において、
     上記物体が受ける力の比は、上記物体の揚抗比であること
     を特徴とする、流体遷移分析装置。
  4.  請求項1乃至3のいずれか一つに記載の流体遷移分析装置において、
     上記対応関係情報は、
     上記語表現の遷移と上記物体が受ける力の変動との対応関係を示す表であること
     を特徴とする、流体遷移分析装置。
  5.  請求項1乃至4のいずれか一つに記載の流体遷移分析装置において、
     上記2種類の流れパターンは、
     1)上記吸い込み湧き出し対をもち、二つのss−∂−saddle connectionをもつパターンI、および
     2)上記吸い込み湧き出し対をもち、一つのsaddle point、それを結ぶhomoclinic saddle connectionと二つのss−saddle connectionをもつパターンII、
     であることを特徴とする、流体遷移分析装置。
  6.  請求項1乃至5のいずれか一つに記載の流体遷移分析装置において、
     上記位相幾何学的に採り得る5種類の操作は、
     1)一本のss−orbitを、一つのsaddle point、それを結び内部に穴をもつhomoclinic saddle connectionと二つのss−saddle connectionに置き換えるA操作、
     2)一本のss−orbitを、二つのss−∂−saddle connectionと新たに追加した境界上の二つの∂−saddleに置き換えるA操作、
     3)一本のclosed orbitを、一つの穴とsaddle pointを追加して8の字をした2本のhomoclinic saddle connectionに置き換えるB操作、
     4)一本のclosed orbitを、新たに追加した穴の境界上に二つ∂−saddleをつけて一本の∂−saddle connectionでつなぐような軌道に置き換えるB操作、および、
     5)既に2k個(k>0)の∂−saddleをもつ境界に、新たに二つの∂−saddleを付け加えて一本の∂−saddle connectionでつなぎ内部に新たに付け加えた穴を置くC操作、
     であることを特徴とする、流体遷移分析装置。
  7.  請求項6に記載の流体遷移分析装置において、
     上記語表現形成手段は、
     上記5種類の操作を規定した語を付与する場合に、
     1)一本のss−orbitが存在することを条件として、上記A操作または上記A操作を規定した語を付与し、
     2)一本のclosed orbitが存在することを条件として、上記B操作または上記B操作を規定した語を付与し、
     3)∂−saddlesを持つ境界が存在することを条件として、上記C操作を規定した語を付与すること
     を特徴とする、流体遷移分析装置。
  8.  記憶部と制御部とを備えたコンピュータにおいて実行される流体遷移分析方法であって、
     上記記憶部は、
     一様流中におかれた物体について、ある期間における、物体が受ける力と物体周りの流れの実験結果または数値計算結果を記憶し、
     上記制御部において実行される、
     上記期間中のある時点における、上記物体周りの流れを流線解析して流線図を取得する流線解析ステップと、
     上記流線解析ステップにて取得された上記流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、上記流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、上記物体周りの流れの流れパターンを示す語表現を形成させる語表現形成ステップと、
     上記語表現形成ステップにて形成された、ある時点における上記流れパターンを示す上記語表現と当該時点における上記物体が受ける力とを対応付けて上記記憶部に格納し、分析対象とする複数の時点において、上記語表現の遷移と上記物体が受ける力の変動との対応関係情報を取得する対応関係取得ステップと、
     を含むことを特徴とする、流体遷移分析方法。
  9.  記憶部と制御部とを備えたコンピュータに実行させるためのプログラムであって、
     上記記憶部は、
     一様流中におかれた物体について、ある期間における、物体が受ける力と物体周りの流れの実験結果または数値計算結果を記憶し、
     上記制御部において、
     上記期間中のある時点における、上記物体周りの流れを流線解析して流線図を取得する流線解析ステップと、
     上記流線解析ステップにて取得された上記流線図に基づいて、一つの穴を有する単連結外部領域において位相幾何学的に採り得る2種類の流れパターンを規定する語のうちのいずれか一語とともに、上記流れパターンに一つの穴を加える場合に位相幾何学的に採り得る5種類の操作を規定した語のうちのいずれか一語を、追加された穴の数だけ付与することにより、上記物体周りの流れの流れパターンを示す語表現を形成させる語表現形成ステップと、
     上記語表現形成ステップにて形成された、ある時点における上記流れパターンを示す上記語表現と当該時点における上記物体が受ける力とを対応付けて上記記憶部に格納し、分析対象とする複数の時点において、上記語表現の遷移と上記物体が受ける力の変動との対応関係情報を取得する対応関係取得ステップと、
     を実行させることを特徴とする、プログラム。
PCT/JP2014/056811 2013-08-27 2014-03-06 流体遷移分析装置、流体遷移分析方法、および、プログラム WO2015029479A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-176146 2013-08-27
JP2013176146 2013-08-27

Publications (1)

Publication Number Publication Date
WO2015029479A1 true WO2015029479A1 (ja) 2015-03-05

Family

ID=52586062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056811 WO2015029479A1 (ja) 2013-08-27 2014-03-06 流体遷移分析装置、流体遷移分析方法、および、プログラム

Country Status (1)

Country Link
WO (1) WO2015029479A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225717A (zh) * 2017-12-15 2018-06-29 中国航空工业集团公司沈阳空气动力研究所 一种风洞试验内流阻力测量方法
CN113686535A (zh) * 2021-08-11 2021-11-23 中国南方电网有限责任公司超高压输电公司广州局 一种用于模拟输电线路连续性倒塌的风洞试验系统及方法
CN114264837A (zh) * 2021-11-23 2022-04-01 河南省漯河水文水资源勘测局 一种水文测验用测流装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011420A (ja) * 1996-06-20 1998-01-16 Toshio Miyauchi 物体周りの流れ推定方法
JP2006126015A (ja) * 2004-10-28 2006-05-18 Mitsubishi Heavy Ind Ltd 二次元風洞および耐風安定性評価方法
JP2009532710A (ja) * 2007-06-04 2009-09-10 ビ−エイイ− システムズ パブリック リミテッド カンパニ− データへのインデックス付けおよびデータ圧縮
JP2013079878A (ja) * 2011-10-04 2013-05-02 Japan Aerospace Exploration Agency 流体測定方法および装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011420A (ja) * 1996-06-20 1998-01-16 Toshio Miyauchi 物体周りの流れ推定方法
JP2006126015A (ja) * 2004-10-28 2006-05-18 Mitsubishi Heavy Ind Ltd 二次元風洞および耐風安定性評価方法
JP2009532710A (ja) * 2007-06-04 2009-09-10 ビ−エイイ− システムズ パブリック リミテッド カンパニ− データへのインデックス付けおよびデータ圧縮
JP2013079878A (ja) * 2011-10-04 2013-05-02 Japan Aerospace Exploration Agency 流体測定方法および装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SAKAJO TAKASHI ET AL.: "Classification of Streamline Topologies for Structurally Stable Vortex Flows in Multiply Connected Domains", PROC INT CONF FLOW DYN ( CD-ROM, vol. 9 TH, 2012, pages 228 - 229 *
TAKUMI HAYASHIGUCHI ET AL.: "Topology Saitekika ni yoru Tei Re Suiki no Tei Teiko Buttai Keijo to Jikken Kensho", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS CHUGOKU SHIKOKU SHIBU SOKAI . KOENKAI KOEN RONBUNSHU, vol. 50 TH, 28 February 2012 (2012-02-28), pages ROMBUNNO.1005 *
TSUGUO KONDO: "Senshinteki Kuriki Gijutsu Dai 2 Bu: Nagare no Seigyo to Jikken Keisoku Dai 15 Kai Numerical Investigation on Optimum Body Shape in Low Reynolds Number Flow (Drag Minimization and Lift Maximization by Topology Optimization", AERONAUTICAL AND SPACE SCIENCES JAPAN, vol. 60, no. 12, 5 December 2012 (2012-12-05), pages 438 - 444 *
YOICHI SAWAMURA ET AL.: "Volume Penalization-ho ni yoru Yokuka Model Mawari no Nagare no Suchi Kaiseki", PROCEEDINGS ON ORGANIZING COMMITTEE ON COMPUTATIONAL FLUID DYNAMICS SYMPOSIUM ( CD-ROM, vol. 25 TH, 2011, pages ROMBUNNO.A06 - 5 *
YOKOYAMA TOMOO ET AL.: "Word representation of streamline topologies for structurally stable vortex flows in multiply connected domains", PROC R SOC A MATH PHYS ENG SCI, vol. 469, no. 2150, 8 February 2013 (2013-02-08), pages 20120558 , 1 - 18 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225717A (zh) * 2017-12-15 2018-06-29 中国航空工业集团公司沈阳空气动力研究所 一种风洞试验内流阻力测量方法
CN113686535A (zh) * 2021-08-11 2021-11-23 中国南方电网有限责任公司超高压输电公司广州局 一种用于模拟输电线路连续性倒塌的风洞试验系统及方法
CN113686535B (zh) * 2021-08-11 2023-08-11 中国南方电网有限责任公司超高压输电公司广州局 一种用于模拟输电线路连续性倒塌的风洞试验系统及方法
CN114264837A (zh) * 2021-11-23 2022-04-01 河南省漯河水文水资源勘测局 一种水文测验用测流装置
CN114264837B (zh) * 2021-11-23 2024-05-14 河南省漯河水文水资源勘测局 一种水文测验用测流装置

Similar Documents

Publication Publication Date Title
Iaccarino et al. Immersed boundary technique for turbulent flow simulations
US20060089803A1 (en) Method and device for numberical analysis of flow field of non-compressive viscous fluid, directly using v-cad data
US20080221839A1 (en) Annular sealing assembly for insertion between two mechanical members in relative motion, in particular a linear reciprocating motion, as a rod and the relative guiding seat of a mono-tube shock-adsorber
Gupta et al. An insight on NURBS based isogeometric analysis, its current status and involvement in mechanical applications
Mark Ware et al. Automated production of schematic maps for mobile applications
Mayeur et al. Reynolds-averaged Navier–Stokes simulations on NACA0012 and ONERA-M6 wing with the ONERA elsA solver
Papoutsakis et al. An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows
Williamschen et al. Parallel anisotropic block-based adaptive mesh refinement algorithm for three-dimensional flows
WO2015029479A1 (ja) 流体遷移分析装置、流体遷移分析方法、および、プログラム
US20090112527A1 (en) Methods and systems for improving meshes used in computational fluid simulations
Khatouri et al. Metamodeling techniques for CPU-intensive simulation-based design optimization: a survey
Evans et al. Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
Lima et al. DFNMesh: Finite element meshing for discrete fracture matrix models
JP5899323B2 (ja) 流れパターンの語表現方法、語表現装置、および、プログラム
Junqueira-Junior et al. On the scalability of CFD tool for supersonic jet flow configurations
Müller Multiresolution schemes for conservation laws
DesJardin et al. Initialization of high‐order accuracy immersed interface CFD solvers using complex CAD geometry
JP6440629B2 (ja) 流体遷移経路取得装置、流体遷移経路取得方法、および、プログラム
Qi et al. A parallel methodology of adaptive Cartesian grid for compressible flow simulations
Evans et al. Design optimisation using computational fluid dynamics applied to a land–based supersonic vehicle, the BLOODHOUND SSC
Satterwhite Development of CPanel, an unstructured panel code, using a modified TLS velocity formulation
Wang et al. Local Inverse Mapping Implicit Hole-Cutting Method for Structured Cartesian Overset Grid Assembly
Özkan Development of Cartesian based mesh generator with body fitted boundary layers
Li et al. Sensitivity-Based Parameterization for Aerodynamic Shape Global Optimization
De Souza How to–Understand Computational Fluid Dynamics Jargon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP