WO2015028920A1 - Gelación ionica sobre sólidos - Google Patents

Gelación ionica sobre sólidos Download PDF

Info

Publication number
WO2015028920A1
WO2015028920A1 PCT/IB2014/064016 IB2014064016W WO2015028920A1 WO 2015028920 A1 WO2015028920 A1 WO 2015028920A1 IB 2014064016 W IB2014064016 W IB 2014064016W WO 2015028920 A1 WO2015028920 A1 WO 2015028920A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
water
insoluble
group
macromolecule
Prior art date
Application number
PCT/IB2014/064016
Other languages
English (en)
French (fr)
Inventor
Herley Fernando CASANOVA
César PÉREZ ZAPATA
César RESTREPO
Johnatan DIOSA ARANGO
Original Assignee
Universidad De Antioquia (Udea)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Antioquia (Udea) filed Critical Universidad De Antioquia (Udea)
Priority to PL14839385T priority Critical patent/PL3040373T4/pl
Priority to US14/914,836 priority patent/US10085948B2/en
Priority to EP14839385.3A priority patent/EP3040373B1/en
Priority to KR1020167007468A priority patent/KR20160048851A/ko
Priority to AU2014313817A priority patent/AU2014313817B2/en
Priority to DK14839385.3T priority patent/DK3040373T3/da
Priority to ES14839385T priority patent/ES2869336T3/es
Priority to MX2016002601A priority patent/MX2016002601A/es
Priority to CA2922601A priority patent/CA2922601C/en
Publication of WO2015028920A1 publication Critical patent/WO2015028920A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/485Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/025Applications of microcapsules not provided for in other subclasses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/005Casein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use

Definitions

  • the invention relates to a process of encapsulation of water insoluble solids comprising the addition of a negatively charged macromolecule to an aqueous suspension of the insoluble solid, followed by a heat treatment and the addition of divalent ions to form a shell covering the solid.
  • the thermal treatment of the macromolecule and the addition of calcium salts at appropriate concentrations and times induces a high adsorption (> 80%) of these compounds on the surface of insoluble solid particles, without generating their colloidal destabilization (formation of aggregates or lumps), thus forming a stable suspension of microcapsules.
  • microcapsules in suspension By variations in the drying and surface chemistry conditions of the microcapsules in suspension, it is possible to modify the degree of aggregation of the dried microcapsules. In this way it is possible to generate microcapsules of individual particles or particle agglomerates.
  • the encapsulation of water insoluble solids can be achieved by physical, physicochemical or chemical processes. Physical processes, such as spray drying, fluidized bed coating or supercritical fluids, expose the material to temperatures above ambient, which can degrade thermolabile compounds (1). Therefore, physicochemical processes such as coacervation or chemical processes such as interfacial polymerization or enzymatic cross-linking represent an alternative microencapsulation that preserves the chemical integrity of the compounds to be encapsulated (2). Microencapsulation physicochemical processes applied to the encapsulation of insoluble solids, usually employ methods based on ionic interactions such as ionic gelation, acid precipitation, coacervation and layer-by-layer processes (2).
  • the ionic gelation consists in the extrusion or emulsification of a charged macromolecule (eg sodium alginate) in the form of drops, in a solution of a counterion (eg calcium chloride), generating at its contact the immediate gelation of the external part of the gout.
  • a charged macromolecule eg sodium alginate
  • a counterion eg calcium chloride
  • the counterions persist in their diffusion into the particle and thus induce their total gelation.
  • the mechanism of diffusion of the counterion usually induces a heterogeneous gelation of the particle, which is not suitable for applications where the release kinetics of an active compound must be controlled (3).
  • Ionic gelation by means of the internal gelation mechanism solves the inconvenience of diffusion gelation by incorporating an inactive form of the counterion, which is activated (e.g. by changing pH) only after mixing with the macromolecule (3).
  • the ionic gelation method has been used for the microencapsulation of polyphenols (2), medications for osteoporosis (4), probiotics (5,6), antibiotics (7) and for the generation of biocompatible capsules of active compounds (8 ).
  • one of its main drawbacks is the high porosity of the microcapsule matrix forming gel, which allows the rapid diffusion of encapsulated compounds (9-11).
  • This problem can be solved by generating a gelated matrix from proteins or mixtures of proteins and polysaccharides, either by heating, enzymatic cross-linking or acidification (1).
  • Obtaining the gelled matrix of the microparticle by heating (12) or acidification may not be viable for compounds susceptible to these environmental conditions and in the case of enzymatic crosslinking, its possibility of use and crosslinking effectiveness are determined by the type of protein used, which limits its range of application.
  • the state of the art of the microencapsulation process by the ionic gelation method shows the need to obtain a gel matrix for the low porosity microparticle, from proteins or mixtures of proteins with polysaccharides, under conditions that do not involve excessive heating or acidification of the means for obtaining it.
  • the present invention achieves, by means of a microencapsulation process, forming a matrix of macromolecules loaded on the surface of water-insoluble solids generating microspheres, by controlled adsorption of macromolecules on the surface of the solid in the presence of low temperature polyvalent ions and its gelation by increasing the temperature to room temperature or higher, depending on the type of macromolecule used.
  • the present invention develops a microencapsulation process of water insoluble solids, by ionic gelation of macromolecules on the surface of the solid particles in suspension with particle diameters between 0.1 and 1000 micrometers.
  • the microcapsules in suspension can be dried by processes such as spray drying, to generate dry microcapsules or agglomerated type microspheres, which contain at least 10% by weight of shell forming material with respect to the weight of the dried microcapsule.
  • FIGURE 1 Transmission electron micrograph of calcium carbonate microcapsule using sodium caseinate as shell forming compound (Example 1).
  • FIGURE 2 Scanning electron micrograph of calcium carbonate microcapsule using sodium caseinate as shell forming compound (Example 1).
  • FIGURE 3 Scanning electron micrograph of calcium carbonate-calcium phosphate microcapsule with acid treatment, using sodium caseinate as a shell forming compound (Example 2).
  • FIGURE 4 Optical photomicrograph of calcium carbonate-calcium phosphate microcapsules with acid treatment with encapsulated cresyl violet (Example 2).
  • FIGURE 5 Particle size distribution of calcium carbonate microcapsules using sodium caseinate as shell forming compound (Example 1).
  • FIGURE 6 Particle size distribution of calcium carbonate-calcium phosphate microcapsules with acid treatment, using sodium caseinate as shell forming compound (Example 2).
  • the invention relates to a process for making microcapsules of water insoluble solids using charged macromolecules as shell forming compounds.
  • the shell formation is achieved by ionic gelation induced by the addition of polyvalent cations to the suspension of insoluble solids prior to sub-ambient heat treatment that allows controlled gelation of the charged macromolecules.
  • the subsequent increase in temperature consolidates the shell formation on insoluble solid particles.
  • the process can be repeated to increase the thickness of the shell of the microsphere type microcapsule.
  • microcapsules made by this process can be individual or agglomerated depending on the concentrations of charged macromolecules and the polyvalent cations. Typical diameters of microcapsules generated by the ionic gelation microencapsulation process are between 0.1 and 1000 micrometers. The wet system produces typically spherical capsules.
  • the shell formation process using macromolecules and divalent ions allows more than 80% of the shell forming material to be retained on the surface of the capsule, which generates greater efficiency in the process. Less than 20% of the shell forming material remains in solution after the encapsulation process.
  • the process of encapsulation of water-insoluble solids of the present invention comprises the following steps: a) Develop a solution of macromolecules that have negative charges on their molecular structure.
  • the dried microcapsules can be redispersed in water and treated in acidic medium to be used as an encapsulating medium for water-soluble compounds, such as vitamins, dyes, flavorings, flavorings, molecules with biocidal activity, fertilizers, drugs, proteins, polysaccharides, among others.
  • insoluble solids The characteristics of the encapsulation process of insoluble solids are described as well as the characteristics of the capsules generated by said process. These characteristics can be exchanged with each other to describe both the process and the capsule.
  • Water-insoluble solids should preferably generate surface charge when dispersed in water or another protic solvent, resulting from the dissociation of their functional groups when interacting with the solvent.
  • Metallic and non-metallic minerals are the preferred insoluble solids for the encapsulation process of the present invention, however, other insoluble solids such as phyllosilicates, polymer particles and insoluble solids obtained via synthesis, extraction or bioprocesses, can also be encapsulated. through the process described here.
  • the generation of surface charges on the solid can be monitored by measuring zeta potential, with absolute values that are usually above 5mV.
  • the pH of the system can be adjusted to change the absolute value of the zeta potential, whereby the adsorption of the shell forming charged macromolecules can be promoted.
  • it is sought to generate a pH where electrostatic attractions between the surface of the solid and the macromolecules are maximized without destabilizing the suspension, which can be monitored with the average particle size.
  • the concentration of solids in the system usually must be kept below 50%, preferably close to a value of 30% and depending on the geometry and particle size, this value can be decreased to a one%.
  • shear values greater than 500 s _1 are sufficient for avoid sedimentation of the particles, however, even higher shear values may be required depending on the particle size of the suspension to be encapsulated.
  • Shell-forming macromolecules are typically proteins, polysaccharides or negatively charged synthetic polymers. Proteins include dairy proteins, gelatin, proteins from plant sources, albumins and mixtures thereof.
  • the polysaccharides useful to be used for the elaboration of the hearts comprise hydrocolloids such as gum arabic, xanthan, alginate salts, cellulose derivatives, pectin salts, carrageenans, guar gum and mixtures thereof.
  • the temperature of the system In order to achieve adequate hydration and interaction between the macromolecules and the surface of the water-insoluble solid, it is convenient to lower the temperature of the system to sub-ambient values, preferably at temperatures below 10 ° C and more preferably at temperatures close to 5 ° C.
  • a source of polyvalent cations is added to the suspension of solids in the presence of the macromolecules.
  • the source of polyvalent cations is preferable to be a soluble salt or a salt slightly insoluble in water.
  • calcium chloride is used as a source of polyvalent cations, which can be added directly to the system or preferably in solution with a concentration not greater than 2M. Similarly, the calcium chloride solution can be frozen and added in the form of ice chips to the insoluble solids suspension.
  • the addition of low temperature polyvalent macromolecules and cations can be repeated several times to control the thickness of the microcapsule shell, controlling the concentration of each of them to avoid the agglomeration of suspended particles.
  • the system temperature is increased to induce its ionic gelation, which is achieved at temperatures close to 25 ° C. In some cases the system temperature can be increased up to 80 ° C.
  • a suspension of agglomerated microcapsules in water can be mixed with water-soluble compounds and allow their diffusion into the interparticle spaces.
  • Said water-soluble compounds can interact with the macromolecules present on the surface of the solid, inducing their adsorption, to be subsequently retained inside the agglomerated microcapsule by forming a film of macromolecules by ionic gelation on the outermost part of the agglomerate.
  • a preferred embodiment of the invention corresponds to products comprising a water-soluble compound encapsulated in a microcapsule of water insoluble solids having a macromolecule shell or encapsulated in a microcapsule agglomerate of water insoluble solids.
  • the shell forming material preferably represents at least 10% of the total weight and the macromolecule, is preferably sodium caseinate.
  • the microcapsules of water-insoluble solids obtained by ionic gelation can be used either as active ingredients and / or as diluents, excipients or vehicles in the preparation of pharmaceutical and / or nutracetic compositions.
  • compositions comprising the microcapsules of the invention can be solid, semi-solid or liquid and prepared using conventional methods widely known in the art, including mixing, granulation, compression, among others, depending on the desired composition.
  • the microcapsules of the invention are used as an active ingredient and / or direct compression excipient in tabletting processes and may be accompanied by one or more pharmaceutically, cosmetically or nutraceutically acceptable excipients, diluents and vehicles.
  • the invention will be illustrated below by the following non-limiting examples of the scope of the invention.
  • a sodium caseinate solution (5% w / w) were prepared by hydration for at least 2 hours and cooling to 5 ° C by adjusting the pH to 6.5.
  • 41.2 g of a calcium carbonate suspension (67% w / w) were prepared, to which its pH was adjusted to 6.5, cooled to 5 ° C and mixed with the solution of sodium caseinate. To achieve an adequate mixing of the system, agitation was applied, generating a shear not less than 500 s _1 .
  • EXAMPLE 2 Preparation of microcapsules of Calcium Carbonate-Calcium Phosphate with acid treatment to incorporate water-soluble compound.
  • EXAMPLE 3 Preparation of tablets by direct compression using calcium carbonate microcapsules as active ingredient.
  • Calcium carbonate microcapsules (90% CaCÜ 3 , 10% sodium caseinate) obtained according to Example 1 were added to the feeder hopper of a 36-station Rimek® rotary tableting machine.
  • the tabletting pressure was set at 25 MPa and an average weight per tablet of 1390 mg with a processing speed of 500 tablets / minute.
  • the tablets obtained by direct compression had an average hardness of 15 kPa and a good performance in the dissolution test.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

La invención se refiere a un proceso de gelación iónica sobre sólidos para encapsular sólidos insolubles en agua. En el proceso se emplean macromoléculas cargadas negativamente y sales solubles de cationes polivalentes como materiales formadores de coraza, los cuales presentan una alta adsorción sobre la superficie del sólido cuando son sometidos a un tratamiento térmico. El material formador de coraza representa al menos el 10% del peso de la microcápsula seca obtenida. Las microcápsulas obtenidas pueden ser redispersadas en agua y tratadas mediante modificación de su ambiente para ser utilizadas como medio encapsulante de compuestos hidrosolubles y también pueden ser empleadas como principios activos y/o excipientes en la elaboración de composiciones farmacéuticas o nutracéuticas.

Description

GELACIÓN IONICA SOBRE SÓLIDOS
CAMPO TECNICO
La invención se refiere a un proceso de encapsulacion de sólidos insolubles en agua que comprende la adición de una macromolécula cargada negativamente a una suspensión acuosa del sólido insoluble, seguido de un tratamiento térmico y la adición de iones divalentes para formar una coraza que recubre el sólido. El tratamiento térmico de la macromolécula y la adición de sales de calcio a unas concentraciones y tiempos adecuados, induce una alta adsorción (> 80%) de estos compuestos sobre la superficie de las partículas sólidas insolubles, sin generar su desestabilización coloidal (formación de agregados o grumos), formándose así una suspensión estable de microcápsulas.
Mediante variaciones en las condiciones de secado y química de superficie de las microcápsulas en suspensión, es posible modificar el grado de agregación de las microcápsulas secas. De esta forma es posible generar microcápsulas de partículas individuales o aglomerados de partículas.
ANTECEDENTES DE LA INVENCIÓN
La encapsulacion de sólidos insolubles en agua puede lograrse mediante procesos físicos, fisicoquímicos o químicos. Los procesos físicos como el secado por aspersión, recubrimiento en lecho fluidizado o fluidos supercríticos, exponen el material a temperaturas superiores a la ambiente, lo cual puede degradar compuestos termolábiles (1). Por lo tanto, procesos fisicoquímicos como la coacervación o procesos químicos como la polimerización interfacial o entrecruzamiento enzimático, representan una alternativa de microencapsulación que conserva la integridad química de los compuestos a encapsular (2). Los procesos fisicoquímicos de microencapsulación aplicados a la encapsulación de sólidos insolubles, usualmente emplean los métodos basados en las interacciones iónicas tales como la gelación iónica, la precipitación ácida, la coacervación y los procesos capa-por-capa (2). Estos procesos emplean macromoléculas cargadas, tipo proteínas, polisacáridos o polielectrolitos sintéticos que interactúan electrostáticamente con otras macromoléculas o iones de carga contraria en solución o presentes en la superficie del sólido a encapsular. De esta forma se genera un gel de la matriz compleja polimérica que recubre el sólido de interés. La microencapsulación mediante gelación iónica presenta ventajas sobre los otros métodos de interacciones iónicas debido a que emplea una sola macromolécula cargada, simplificando el sistema y los costos del proceso, al igual que permite un mayor control sobre la viscosidad del sistema de trabajo. La gelación iónica consiste en la extrusión o emulsificación de una macromolécula cargada (e.g. alginato de sodio) en forma de gotas, en una solución de un contraión (e.g. cloruro de calcio), generándose en su contacto la inmediata gelación de la parte externa de la gota.
Posteriormente los contraiónes persisten en su difusión hacia el interior de la partícula y así inducir su gelación total. Sin embargo, el mecanismo de difusión del contraión induce usualmente una gelación heterogénea de la partícula, lo cual no es conveniente para aplicaciones donde la cinética de liberación de un compuesto activo debe ser controlada (3). La gelación iónica mediante el mecanismo de gelación interna, resuelve el inconveniente de la gelación por difusión al incorporar una forma inactiva del contraión, la cual se activa (v.g. mediante cambio de pH) solo después de su mezcla con la macromolécula (3).
El método de gelación iónica se ha empleado para la microencapsulación de polifenoles (2), medicamentos para la osteoporosis (4), pro-bióticos (5,6), antibióticos (7) y para la generación de cápsulas biocompatibles de compuestos activos (8). Sin embargo, uno de sus principales inconvenientes es la alta porosidad del gel formador de la matriz de la microcápsula, lo cual permite la rápida difusión de los compuestos encapsulados (9-11). Este problema puede ser resuelto mediante la generación de una matriz gelada a partir de proteínas o mezclas de proteínas y polisacáridos, ya sea mediante calentamiento, entrecruzamiento enzimático o acidificación (1). La obtención de la matriz gelada de la micropartícula mediante calentamiento (12) o acidificación pueden no ser viables para compuestos susceptibles a estas condiciones ambientales y en el caso del entrecruzamiento enzimático, su posibilidad de uso y efectividad de entrecruzamiento están determinadas por el tipo de proteína empleada, lo cual limita su rango de aplicación. El estado del arte del proceso de microencapsulación por el método de gelación iónica muestra la necesidad de obtener una matriz gelada para la micropartícula de baja porosidad, a partir de proteínas o mezclas de proteínas con polisacáridos, bajo condiciones que no impliquen calentamiento excesivo o acidificación del medio para su obtención.
La presente invención logra, mediante un proceso de microencapsulación, formar una matriz de macromoléculas cargadas sobre la superficie de los sólidos insolubles en agua generando microesferas, mediante una adsorción controlada de las macromoléculas sobre la superficie del sólido en presencia de iones polivalentes a baja temperatura y su gelación al aumentar la temperatura hasta temperatura ambiente o superior, dependiendo del tipo de macromolécula empleada.
BREVE DESCRIPCIÓN DE LA INVENCIÓN La presente invención desarrolla un proceso de microencapsulación de sólidos insolubles en agua, mediante la gelación iónica de macromoléculas sobre la superficie de las partículas sólidas en suspensión con diámetros de partícula entre 0,1 y 1000 micrómetros. Las microcápsulas en suspensión pueden ser secadas por procesos como el secado por aspersión, para generar microcápsulas secas o aglomeradas tipo microesferas, que contienen por lo menos un 10% en peso de material formador de coraza con respecto al peso de la microcápsula seca. BREVE DESCRIPCIÓN DE LAS FIGURAS
FIGURA 1. Microfotografía electrónica de transmisión de microcápsula de carbonato de calcio empleando caseinato de sodio como compuesto formador de coraza (Ejemplo 1).
FIGURA 2. Microfotografía electrónica de barrido de microcápsula de carbonato de calcio empleando caseinato de sodio como compuesto formador de coraza (Ejemplo 1).
FIGURA 3. Microfotografía electrónica de barrido de microcápsula de carbonato de calcio-fosfato de calcio con tratamiento ácido, empleando caseinato de sodio como compuesto formador de coraza (Ejemplo 2). FIGURA 4. Microfotografía óptica de microcápsulas de carbonato de calcio- fosfato de calcio con tratamiento ácido con violeta de cresilo encapsulado (Ejemplo 2).
FIGURA 5. Distribución de tamaño de partícula de microcápsulas de carbonato de calcio empleando caseinato de sodio como compuesto formador de coraza (Ejemplo 1).
FIGURA 6. Distribución de tamaño de partícula de microcápsulas de carbonato de calcio-fosfato de calcio con tratamiento ácido, empleando caseinato de sodio como compuesto formador de coraza (Ejemplo 2).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La invención está relacionada con un proceso de elaboración de microcápsulas de sólidos insolubles en agua empleando macromoléculas cargadas como compuestos formadores de coraza. La formación de la coraza se logra mediante gelación iónica inducida por la adición de cationes polivalentes a la suspensión de sólidos insolubles previo tratamiento térmico sub-ambiente que permite una gelación controlada de las macromoléculas cargadas. El aumento posterior de la temperatura consolida la formación de la coraza sobre las partículas sólidas insolubles. El proceso puede ser repetido para aumentar el grosor de la coraza de la microcápsula tipo microesfera.
Las microcápsulas elaboradas mediante este proceso pueden ser individuales o aglomeradas dependiendo de las concentraciones de macromoléculas cargadas y de los cationes polivalentes. Los diámetros típicos de las microcápsulas generadas mediante el proceso de microencapsulacion por gelación iónica están entre 0,1 y 1000 micrómetros. El sistema en húmedo produce cápsulas típicamente esféricas.
Las microcápsulas en suspensión acuosa pueden posteriormente secarse mediante secado por aspersión, donde la morfología de las microcápsulas es ajustable variando la temperatura de secado, el pH, la concentración de macromoléculas y la concentración de los cationes polivalentes. Para el sistema seco es posible generar cápsulas individuales o agregados de cápsulas con morfologías esféricas y/o toroidales. El diámetro de partícula de los aglomerados de cápsulas puede variar entre 0,2 y 2000 micrómetros.
El proceso de formación de coraza empleando macromoléculas e iones divalentes permite retener más del 80% del material formador de coraza sobre la superficie de la cápsula, lo cual genera una mayor eficiencia al proceso. Menos de un 20% del material formador de coraza permanece en solución posterior al proceso de encapsulación. El proceso de encapsulacion de sólidos insolubles en agua de la presente invención comprende las siguientes etapas: a) Elaborar una solución de macromoléculas que presenten cargas negativas en su estructura molecular.
b) Ajustar el pH de la solución de macromoléculas y enfriar.
c) Elaborar una suspensión de sólidos insolubles en agua, ajusfando su pH. d) Mezclar la solución de macromoléculas de la etapa a) con la suspensión de sólidos insolubles en agua, aplicando agitación al sistema y controlando su temperatura.
e) Adicionar una solución de iones polivalentes a la suspensión de sólidos insolubles en presencia de las macromoléculas cargadas negativamente. f) Repetir la adición de solución de macromoléculas y de iones polivalentes al sistema sólido microencapsulado para aumentar el espesor de la coraza de la microcápsula.
g) Calentar la suspensión de microcápsulas.
h) Secar la suspensión acuosa de microcápsulas por aspersión para generar así microcápsulas secas individuales o aglomeradas. En una modalidad adicional de la invención, las microcápsulas secas pueden ser redispersadas en agua y tratadas en medio ácido para ser utilizadas como medio encapsulante de compuestos hidrosolubles, tales como vitaminas, colorantes, saborizantes, aromatizantes, moléculas con actividad biocida, fertilizantes, fármacos, proteínas, polisacáridos, entre otros.
Se describen las características del proceso de encapsulacion de sólidos insolubles así como las características de las cápsulas generadas mediante dicho proceso. Estas características pueden intercambiarse entre sí para describir tanto el proceso como la cápsula. Los sólidos insolubles en agua, preferiblemente deben generar carga superficial al ser dispersados en agua u otro solvente prótico, producto de la disociación de sus grupos funcionales al interactuar con el solvente. Los minerales metálicos y no-metálicos son los sólidos insolubles preferidos para el proceso de encapsulacion de la presente invención, sin embargo, otros sólidos insolubles tales como filosilicatos, partículas poliméricas y sólidos insolubles obtenidos vía síntesis, extracción o por bioprocesos, pueden igualmente ser encapsulados mediante el proceso aquí descrito.
La generación de cargas superficiales sobre el sólido puede monitorearse mediante la medición de potencial zeta, con valores absolutos que usualmente están por encima de 5mV. El pH del sistema puede ser ajustado para cambiar el valor absoluto del potencial zeta, con lo cual puede promoverse la adsorción de las macromoléculas cargadas formadoras de coraza. En principio, se busca generar un pH donde se maximicen las atracciones electrostáticas entre la superficie del sólido y las macromoléculas sin desestabilizar la suspensión, la cual puede ser monitoreada con el tamaño promedio de partícula.
El diámetro de partícula del sólido insoluble en agua adecuado para ser encapsulado por el proceso de gelación iónica de la invención debe ser superior a los 0, 1 micrómetros y puede ir incluso hasta varios milímetros. La polidispersidad de la suspensión no es un inconveniente para el proceso de microencapsulación, debido a que el proceso es homogéneo en todo el sistema. La morfología, rugosidad o presencia de poros en las partículas sólidas insolubles en agua tampoco representa un inconveniente para su microencapsulación, dado que la formación de la coraza es uniforme a lo largo de la extensión de la superficie del sólido.
Para lograr un proceso homogéneo de encapsulacion, la concentración de sólidos en el sistema usualmente debe mantenerse inferior al 50%, preferiblemente cercano a un valor de 30% y dependiendo de la geometría y del tamaño de la partícula, éste valor puede ser disminuido hasta un 1%. En aras de alcanzar un proceso homogéneo de encapsulacion, es necesario mantener la suspensión de sólidos con agitación. Usualmente valores de cizalla superiores a 500 s_1 son suficientes para evitar la sedimentación de las partículas, sin embargo, valores de cizalla aún mayores pueden ser requeridos dependiendo del tamaño de partícula de la suspensión a encapsular. Las macromoléculas formadoras de coraza son típicamente proteínas, polisacáridos o polímeros sintéticos cargados negativamente. Las proteínas incluyen proteínas lácteas, gelatina, proteínas de fuentes vegetales, albúminas y sus mezclas. Algunas sales de éstas proteínas como caseinato de sodio y caseinato de calcio también pueden ser empleadas. Los polisacáridos útiles de ser empleados para la elaboración de las corazas comprenden hidrocoloides como la goma arábiga, xantan, sales de alginato, derivados de celulosa, sales de pectinas, carrageninas, goma guar y sus mezclas.
Para lograr una adecuada hidratación e interacción entre las macromoléculas y la superficie del sólido insoluble en agua, es conveniente disminuir la temperatura del sistema a valores sub-ambiente, preferiblemente a temperaturas inferiores a 10°C y más preferiblemente a temperaturas cercanas a los 5°C.
Para inducir la gelación iónica de las macromoléculas sobre la superficie del sólido insoluble, se adiciona una fuente de cationes polivalentes a la suspensión de sólidos en presencia de las macromoléculas. La fuente de cationes polivalentes es preferible que sea una sal soluble o una sal ligeramente insoluble en agua.
En una modalidad preferida, se emplea cloruro de calcio como fuente de cationes polivalentes, el cual puede ser adicionado directamente al sistema o preferiblemente en solución con una concentración no mayor a 2M. De igual forma, la solución de cloruro de calcio puede ser congelada y adicionarse en forma de trozos de hielo a la suspensión de sólidos insolubles. La adición de macromoléculas y cationes polivalentes a baja temperatura puede repetirse en varias ocasiones para controlar el espesor de la coraza de la microcápsula, controlando la concentración de cada una de ellas para evitar la aglomeración de partículas en suspensión. Una vez se lleva a cabo el proceso de adsorción de las macromoléculas sobre la superficie del sólido insoluble, se procede a aumentar la temperatura del sistema para inducir su gelación iónica, lo cual se logra a temperaturas cercanas a los 25°C. En algunos casos se puede incrementar la temperatura del sistema hasta 80°C. Al incrementar la temperatura de la suspensión en presencia de cationes polivalentes, se forma la microcápsula del sólido insoluble. El proceso de gelación iónica induce una alta adsorción, superior al 80%, de las macromoléculas sobre la superficie del sólido insoluble en agua. La suspensión de microcápsulas puede ser secada posteriormente, preferiblemente mediante secado por aspersión, para generar microcápsulas secas de sólidos insolubles. Dependiendo de las condiciones de secado y de las macromoléculas empleadas como formadoras de coraza, es posible generar microcápsulas individuales o aglomerados de microcápsulas con formas geométricas que van desde aglomerados esféricos hasta tipo toroide, los cuales, a pesar de ser redispersables en agua, mantienen su identidad como aglomerados.
Dada la estabilidad de los aglomerados y la presencia de espacios interpartícula, éstos pueden ser empleados para alojar compuestos en estos espacios. Así, en una modalidad adicional de la invención, una suspensión de microcápsulas aglomeradas en agua puede mezclarse con compuestos hidrosolubles y permitir su difusión hacia los espacios interpartícula. Dichos compuestos hidrosolubles pueden interactuar con las macromoléculas presentes en la superficie del sólido, induciendo su adsorción, para posteriormente ser retenidos al interior de la microcápsula aglomerada mediante la formación de una película de macromoléculas por gelación iónica sobre la parte más externa del aglomerado.
Una modalidad preferida de la invención corresponde a productos que comprenden un compuesto hidrosoluble encapsulado en una microcápsula de sólidos insolubles en agua que tiene una coraza de macromoléculas o encapsulado en un aglomerado de microcápsulas de sólidos insolubles en agua. El material formador de coraza, preferiblemente representa al menos un 10% del peso total y la macromolécula, preferiblemente es caseinato de sodio. En una modalidad adicional de la invención, las microcápsulas de sólidos insolubles en agua obtenidas mediante gelación iónica, pueden ser empleadas bien sea como principios activos y/o como diluyentes, excipientes o vehículos en la preparación de composiciones farmacéuticas y/o nutracéticas.
Las composiciones que comprenden las microcápsulas de la invención pueden ser sólidas, semisólidas o líquidas y prepararse utilizando los procedimientos convencionales ampliamente conocidos en la materia, entre ellos, mezcla, granulación, compresión, entre otros, dependiendo de la composición deseada. En una modalidad preferida, las microcápsulas de la invención se utilizan como principio activo y/o excipiente de compresión directa en procesos de obtención de comprimidos y pueden ir acompañadas de uno o más excipientes, diluyentes y vehículos farmacéuticamente, cosméticamente o nutracéuticamente aceptables. La invención se ilustrará a continuación mediante los siguientes ejemplos no limitantes del alcance de la invención.
EJEMPLOS EJEMPLO 1. Elaboración de microcápsulas de Carbonato de Calcio.
Se prepararon 54,0 g de una solución de caseinato de sodio (5% p/p) mediante hidratación durante al menos 2 horas y enfriamiento hasta 5°C ajusfando el pH a 6,5. Por otro lado, se prepararon 41,2 g de una suspensión de carbonato de calcio (67% p/p), a la cual se le ajustó su pH a 6,5, se enfrió a 5 °C y se mezcló con la solución de caseinato de sodio. Para lograr una adecuada mezcla del sistema, se aplicó agitación, generando una cizalla no inferior a 500 s_1.
Una vez terminada la mezcla, se dejó en reposo durante 10 minutos a 5 °C para garantizar homogeneidad en el sistema. Posteriormente se adicionaron lentamente 4,8 g de una solución de cloruro de calcio dihidratado (4,1% p/p). Al terminar la adición, el sistema fue sometido a agitación durante 5 minutos y se incrementó la temperatura a 25 °C hasta obtener una suspensión de microcápsulas. La suspensión fue secada posteriormente en un secador por aspersión Buchi-290 a una temperatura de entrada de 180 °C, una succión de 32 m3/h, bomba de alimentación con velocidad de 5 mL/minuto y un flujo de aire de entrada de 1052 L/h.
EJEMPLO 2. Elaboración de microcápsulas de Carbonato de Calcio-Fosfato de Calcio con tratamiento ácido para incorporar compuesto hidrosoluble.
Se prepararon 54,0 g de una solución de caseinato de sodio (5 % p/p), mediante hidratación durante al menos 2 horas y enfriamiento hasta 5°C, ajusfando su pH a 6,0. Por otra parte, se prepararon 41,2 g de una suspensión de carbonato de calcio-fosfato de calcio en relación 1: 1 (67% p/p), a la cual se le ajustó su pH a 6,0, se enfrió a 5 °C y se mezcló con la solución de caseinato de sodio. Para lograr una adecuada mezcla del sistema, se aplicó agitación al sistema generando una cizalla no inferior a 500 s_1.
Una vez terminada la mezcla, se dejó en reposo durante 10 minutos a 5 °C para garantizar homogeneidad en el sistema. Posteriormente se adicionaron 4,8 g de una solución de cloruro de calcio dihidratado (4,1% p/p), en un lapso de 2 minutos. Al terminar la adición, el sistema fue sometido a agitación durante 20 minutos y se incrementó la temperatura a 25 °C hasta obtener una suspensión de microcápsulas, la cual fue secada posteriormente en un secador por aspersión Buchi-290 a una temperatura de entrada de 200 °C, una succión de 32 m /h, la bomba de alimentación con velocidad de 6 mL/min y un flujo de aire de entrada de 1052 L/h.
Posteriormente, se prepararon 40 g de una suspensión de microcápsulas carbonato de calcio-fosfato de calcio (25%) y se trató con 100 mL de solución 1M de ácido ascórbico hasta garantizar descomposición completa del carbonato de calcio presente en la microcápsula. Paso seguido, la suspensión fue lavada con agua destilada para remover el ácido ascórbico remanente. Las microcápsulas tratadas se recuperaron por sedimentación y el sólido húmedo obtenido fue empleado para elaborar una suspensión de microcápsulas (2%) en presencia de violeta de cresilo (0,5 ppm). Esta suspensión fue enfriada hasta 5 °C por un tiempo de 1 ,5 h y posteriormente se le adicionó caseinato de sodio sólido para lograr una solución al 1% en la proteína.
Luego, se le adicionó lentamente una solución de cloruro de calcio dihidratado (2M) para lograr una concentración 20 mM de calcio en la suspensión final. Este sistema fue dejado en reposo durante 30 minutos a 5 °C y luego a 25°C para generar la microencapsulación del colorante violeta de cresilo. La suspensión de microcápsulas de violeta de cresilo fue sometida a lavado para remover el colorante hidrosoluble no encapsulado.
EJEMPLO 3. Elaboración de tabletas por compresión directa empleando microcápsulas de Carbonato de Calcio como ingrediente activo.
Se adicionaron microcápsulas de Carbonato de Calcio (90% CaCÜ3, 10% caseinato de sodio) obtenidas de acuerdo al Ejemplo 1 a la tolva alimentadora de una tableteadora rotativa Rimek® de 36 estaciones. Se fijó la presión de tableteo en 25 MPa y un peso promedio por tableta de 1390 mg con una velocidad de procesamiento de 500 tabletas/minuto. Las tabletas obtenidas por compresión directa tuvieron una dureza promedio de 15 kPa y un buen comportamiento en la prueba de disolución.
REFERENCIAS BIBLIOGRAFICAS Arup Nag, Kyoung-Sik Han, Harjinder Singh. Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. International Dairy Journal 21 (2011), 247-253. Aude Munin, Florence Edwards-Lévy. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics 3 (2011), 793-829. P. Burey, B. R. Bhandari, T. Howes, M. J. Gidley. Hydrocolloid Gel Particles: Formation, Characterization, and Application. Critical Reviews in Food Science and Nutrition, 48 (2008), 361-377. K. Miladia,b, S. Sfar b, H. Fessi a, A. Elaissari. Drug carriers in osteoporosis: Preparation, drug encapsulation and applications. International Journal of
Pharmaceutics 445 (2013), 181-195. N.T. Annan, A.D. Borza, L. Truelstrup Hansen. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food
Research International 41 (2008), 184-193. Huiyi Song, Weiting Yua, Meng Gaoa, Xiudong Liub, Xiaojun M. Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydrate Polymers 96 (2013), 181-189. Anil, K. Anal, Willem F. Stevens, Carmen Remuñán-López. Ionotropic cross-linked chitosan microspheres for controlled reléase of ampicillin. International Journal of Pharmaceutics 312 (2006), 166-173. EP2359929 System for producing microcapsules and use thereof (Universidad de Salamanca (ES); Eva María Martin del Valle (ES); Miguel Angel Galán Serrano (ES); Edgar Pérez Herrero (ES) 28 de agosto de 2011).
Flavia N. Souza, Clarice Gebara, María CE. Ribeiro, Karina S. Chaves, Mirna L. Gigante, Carlos R.F. Grosso. Production and characterization of microparticles containing pectin and whey proteins. Food Research International 49 (2012), 560- 566. Qiu-Yue Dong,l Meng-Yan Chen,l Yang Xin,l Xue-Yan Qin,l Zhuo Cheng,l Lu- E Shil* & Zhen-Xing Tang. Alginate-based and protein-based materials for probiotics encapsulation: a review. doi: 10.1111/ijfs.12078. US 2007/0275080 Polymer-based microstructures (Engineered Reléase Systems Inc. (US); Bryan E. Laulicht (US); Sasha Bakhru (US) 29 de noviembre de 2007. WO 1992/05708 Improved microencapsulation process and products (Griffith Laboratories Worldwide Inc.; Joseph Janda (US); Donald Bernacchi (US); Suzanne Frieders (US) 16 de abril de 1992).

Claims

REIVINDICACIONES
1. Un proceso para encapsular un sólido insoluble en agua mediante gelación iónica que comprende: a) elaborar una solución de macromoléculas con cargas negativas en su estructura;
b) elaborar una suspensión acuosa del sólido insoluble en agua;
c) adicionar la solución de macromoléculas cargadas negativamente de la etapa a) a la suspensión acuosa de la etapa b) aplicando agitación y tratamiento térmico;
d) adicionar una fuente de cationes polivalentes a la suspensión acuosa obtenida en la etapa c) hasta formar una coraza que recubre el sólido insoluble;
e) elevar la temperatura del sistema hasta temperatura ambiente o superior.
2. El proceso según la Reivindicación 1 , donde se modifica la temperatura y el pH de la solución de la etapa a) para promover la disociación de los grupos cargados de la macromolécula.
3. El proceso según la Reivindicación 1, donde se repiten los pasos (c) y (d) para controlar el espesor de la coraza que recubre el sólido.
4. El proceso según la Reivindicación 1, donde el sólido insoluble recubierto se somete a una etapa adicional de secado, mediante secador por aspersión a temperaturas iguales o superiores a 180 °C.
5. El proceso según la Reivindicación 4, donde la etapa adicional de secado se lleva a cabo para modificar la morfología de la coraza.
6. El proceso según la Reivindicación 1, donde el tratamiento térmico consiste en un enfriamiento.
7. El proceso según la Reivindicación 1, donde el sólido insoluble en agua se selecciona del grupo que consiste de minerales metálicos y no metálicos, filosilicatos, partículas poliméricas y sólidos insolubles obtenidos vía síntesis, extracción o por bioprocesos.
8. El proceso según la Reivindicación 1, donde el sólido insoluble en agua se selecciona del grupo que consiste de sales insolubles de calcio, caolín, sílice y óxidos metálicos.
9. El proceso según la Reivindicación 1, donde la concentración de sólidos insolubles en la suspensión acuosa está entre el 5% y el 70% (p/p).
10. El proceso según la Reivindicación 1, donde la macromolécula cargada negativamente se selecciona del grupo que consiste de proteínas, polisacáridos y polímeros sintéticos.
11. El proceso según la Reivindicación 10, donde la macromolécula cargada negativamente es caseinato de sodio.
12. El proceso según la Reivindicación 11, donde el tratamiento térmico consiste en llevar la temperatura de la suspensión acuosa de 25°C a 5°C.
13. El proceso según la Reivindicación 1, donde la fuente de cationes polivalentes es una sal de calcio soluble en agua.
14. Un producto obtenido según el proceso de las Reivindicaciones 1 a 13 que comprende un sólido insoluble en agua encapsulado en una coraza de macromoléculas.
15. Un producto según la Reivindicación 14, donde el material formador de coraza representa por lo menos un 10% del peso total.
16. Un producto según la Reivindicación 14, donde el sólido insoluble en agua se selecciona del grupo que consiste de carbonato de calcio, fosfato de calcio, sílice, dióxido de titanio y caolín.
17. Un producto según la Reivindicación 14, donde la macromolécula se selecciona del grupo que consiste de proteínas, polisacáridos y polímeros sintéticos.
18. Un producto según la Reivindicación 14, donde la macromolécula es caseinato de sodio.
19. Una composición que comprende el producto de acuerdo a cualquiera de las Reivindicaciones 14 a 18, donde el sólido insoluble encapsulado se encuentra en forma de aglomerados.
20. Una composición que comprende el producto de acuerdo a cualquiera de las Reivindicaciones 14 a 18 como principio activo.
21. Una composición que comprende el producto de acuerdo a cualquiera de las Reivindicaciones 14 a 18 como diluyente, excipiente o vehículo.
22. Una composición que comprende el producto de acuerdo a cualquiera de las Reivindicaciones 14 a 18 como principio activo y/o excipiente de compresión directa.
23. Una composición según las Reivindicaciones 20 a 22 que además comprende un vehículo.
24. Una composición según la Reivindicación 23, donde el vehículo se selecciona del grupo conformado por vehículos farmacéuticamente aceptables, cosméticamente aceptables y nutracéuticamente aceptables.
25. Un proceso para encapsular un compuesto hidrosoluble en aglomerados de microcápsulas de sólidos insolubles en agua que comprende: a) encapsular mediante gelación iónica dos sólidos insolubles en agua, uno de ellos estable (A) y el otro (B) susceptible a degradación o disolución por cambio en las condiciones ambientales del sistema;
b) elaborar una suspensión acuosa de microcápsulas de los dos sólidos insolubles;
c) modificar las condiciones ambientales adicionando un agente de modificación a la suspensión hasta generar la degradación o disolución del sólido insoluble (B);
d) remover el exceso del agente de modificación;
e) adicionar un compuesto hidrosoluble a la suspensión acuosa permitiendo la difusión del compuesto hidrosoluble hacia el interior de las microcápsulas;
f) elaborar una solución de macromoléculas con cargas negativas en su estructura;
g) adicionar la solución de macromoléculas a la suspensión aplicando agitación y tratamiento térmico;
h) adicionar una fuente de cationes polivalentes a la suspensión hasta formar una coraza que recubre las microcápsulas; y
i) elevar la temperatura del sistema hasta temperatura ambiente o superior.
26. Un proceso según la Reivindicación 25, donde los sólidos insolubles A y B se seleccionan del grupo que consiste de minerales metálicos y no metálicos, filosilicatos, partículas poliméricas y sólidos insolubles obtenidos vía síntesis, extracción o por bioprocesos.
27. Un proceso según la Reivindicación 25, donde el sólido insoluble A se selecciona del grupo que consiste de fosfato de calcio, caolín, sílice, óxidos metálicos y mezclas de los mismos.
28. Un proceso según la Reivindicación 25, donde el sólido insoluble A es fosfato de calcio.
29. Un proceso según la Reivindicación 25, donde el sólido insoluble B, se selecciona del grupo que consiste de carbonato de calcio, óxidos metálicos y mezclas de los mismos.
30. Un proceso según la Reivindicación 25, donde el sólido insoluble B, es carbonato de calcio.
31. Un proceso según la Reivindicación 25, donde el cambio en las condiciones ambientales del sistema, se genera por modificación del pH, procesos de complej ación, fotodegradación e hidrólisis.
32. Un proceso según la Reivindicación 25, donde el cambio en las condiciones ambientales del sistema se genera por modificación del pH.
33. Un proceso según la Reivindicación 25, donde el compuesto hidrosoluble de la etapa e) se selecciona del grupo que consiste de vitaminas, colorantes, saborizantes, aromatizantes, biocidas, fertilizantes, fármacos, proteínas, polisacáridos y mezclas de los mismos.
34. Un proceso según la Reivindicación 25, donde se repiten los pasos (g) y (h) para controlar el espesor de la coraza que recubre la microcápsula.
35. Un proceso según la Reivindicación 25, donde el sólido insoluble recubierto puede someterse a una etapa adicional de secado, mediante secado por aspersión a temperaturas iguales o superiores a 180°C.
36. Un proceso según la Reivindicación 25, donde se lleva a cabo una etapa adicional de secado para deshidratar la microcápsula.
37. Un proceso según la Reivindicación 25, donde la concentración de microcápsulas de sólidos insolubles en la suspensión acuosa está entre el 1 ,0% y el
70,0% (p/p).
38. Un proceso según la Reivindicación 25, donde la macromolécula cargada negativamente se selecciona del grupo que consiste de proteínas, polisacáridos y polímeros sintéticos.
39. Un proceso según la Reivindicación 38, donde la macromolécula cargada negativamente es caseinato de sodio.
40. Un proceso según la Reivindicación 25, donde el tratamiento térmico consiste en un enfriamiento.
41. Un proceso según la Reivindicación 40, donde el tratamiento térmico consiste en llevar la temperatura de 25°C a 5°C.
42. Un proceso según la Reivindicación 25, donde la fuente de cationes polivalentes es una sal de calcio soluble en agua.
43. Un producto obtenido según el proceso de las Reivindicaciones 25 a 42, que comprende un compuesto hidrosoluble encapsulado en una microcápsula de sólidos insolubles en agua que tiene una coraza de macromoléculas o encapsulado en un aglomerado de microcápsulas de sólidos insolubles en agua.
44. Un producto según la Reivindicación 43, donde el compuesto hidrosoluble se selecciona del grupo que consiste de vitaminas, colorantes, saborizantes, aromatizantes, biocidas, fertilizantes, fármacos, proteínas, polisacáridos y mezclas de los mismos.
45. Un producto según la Reivindicación 43, donde el material formador de coraza representa por lo menos un 10% del peso total.
46. Un producto según la Reivindicación 43, donde la macromolécula se selecciona del grupo que consiste de proteínas, polisacáridos, polímeros sintéticos y mezclas de los mismos.
47. Un producto según la Reivindicación 43, donde la macromolécula es caseinato de sodio.
48. Un producto según la Reivindicación 43, donde el sólido insoluble en agua que conforma la microcápsula se selecciona del grupo que consiste de carbonato de calcio, fosfato de calcio, sílice, dióxido de titanio y caolín.
49. Una composición que comprende un producto de acuerdo a cualquiera de las Reivindicaciones 43 a 48, donde las microcápsulas que encapsulan el compuesto hidrosoluble se encuentran en forma de aglomerados.
PCT/IB2014/064016 2013-08-27 2014-08-21 Gelación ionica sobre sólidos WO2015028920A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL14839385T PL3040373T4 (pl) 2013-08-27 2014-08-21 Żelowanie jonowe na ciałach stałych
US14/914,836 US10085948B2 (en) 2013-08-27 2014-08-21 Ionic gelation on solids
EP14839385.3A EP3040373B1 (en) 2013-08-27 2014-08-21 Ionic gelation on solids
KR1020167007468A KR20160048851A (ko) 2013-08-27 2014-08-21 고형물 상에서의 이온성 겔화
AU2014313817A AU2014313817B2 (en) 2013-08-27 2014-08-21 Ionic gelation on solids
DK14839385.3T DK3040373T3 (da) 2013-08-27 2014-08-21 Ionisk gelering på faststoffer
ES14839385T ES2869336T3 (es) 2013-08-27 2014-08-21 Gelificación iónica en sólidos
MX2016002601A MX2016002601A (es) 2013-08-27 2014-08-21 Gelacion ionica sobre solidos.
CA2922601A CA2922601C (en) 2013-08-27 2014-08-21 Ionic gelation on solids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO13-203104 2013-08-27
CO13203104A CO7200056A1 (es) 2013-08-27 2013-08-27 Gelación iónica sobre sólidos

Publications (1)

Publication Number Publication Date
WO2015028920A1 true WO2015028920A1 (es) 2015-03-05

Family

ID=52585667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/064016 WO2015028920A1 (es) 2013-08-27 2014-08-21 Gelación ionica sobre sólidos

Country Status (12)

Country Link
US (1) US10085948B2 (es)
EP (1) EP3040373B1 (es)
KR (1) KR20160048851A (es)
AU (1) AU2014313817B2 (es)
CA (1) CA2922601C (es)
CO (1) CO7200056A1 (es)
DK (1) DK3040373T3 (es)
ES (1) ES2869336T3 (es)
MX (1) MX2016002601A (es)
PL (1) PL3040373T4 (es)
PT (1) PT3040373T (es)
WO (1) WO2015028920A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203454A1 (es) * 2015-06-19 2016-12-22 Universidad De Antioquia (Udea) Proceso de elaboracion de microcapsulas tipo coloidosomas
WO2020188483A1 (es) 2019-03-18 2020-09-24 Universidad De Antioquia Proceso para recubrir sólidos insolubles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243930A1 (en) * 1986-05-01 1987-11-04 Pharmacaps, Inc. Gelatin-encapsulated controlled-release composition
WO1992005708A1 (en) 1990-10-05 1992-04-16 Griffith Laboratories Worldwide, Inc. Improved microencapsulation process and products
US5427935A (en) * 1987-07-24 1995-06-27 The Regents Of The University Of Michigan Hybrid membrane bead and process for encapsulating materials in semi-permeable hybrid membranes
WO1996002638A1 (en) * 1994-07-14 1996-02-01 Ciba-Geigy Ag Granular formulation containing microorganisms, a process for the preparation and the use thereof
US20050064027A1 (en) * 2001-12-15 2005-03-24 Spherics, Inc. Bioadhesive drug delivery system with enhanced gastric retention
WO2007069094A2 (en) * 2005-12-13 2007-06-21 Philip Morris Products S.A. Carbon beads with multimodal pore size distribution
US20070275080A1 (en) 2003-10-31 2007-11-29 Engineered Release Systems Inc. Polymer-Based Microstructures
EP2359929A1 (en) 2010-02-11 2011-08-24 Universidad de Salamanca System for producing microcapsules and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097868B2 (en) * 2001-08-23 2006-08-29 Bio-Dar Ltd. Stable coated microcapsules
US9016374B2 (en) * 2009-06-12 2015-04-28 Baker Hughes Incorporated Heat removal in drilling and production operations
EP2292102A1 (en) * 2009-09-02 2011-03-09 Lipofoods, S.L. Microcapsules containing salts for food products
AR078889A1 (es) * 2009-11-06 2011-12-07 Procter & Gamble Encapsulados y composiciones detergentes que los comprende
US20120258150A1 (en) * 2011-04-11 2012-10-11 Holly Balasubramanian Rauckhorst Particles comprising volatile materials and particle gas saturated solution processes for making same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243930A1 (en) * 1986-05-01 1987-11-04 Pharmacaps, Inc. Gelatin-encapsulated controlled-release composition
US5427935A (en) * 1987-07-24 1995-06-27 The Regents Of The University Of Michigan Hybrid membrane bead and process for encapsulating materials in semi-permeable hybrid membranes
WO1992005708A1 (en) 1990-10-05 1992-04-16 Griffith Laboratories Worldwide, Inc. Improved microencapsulation process and products
WO1996002638A1 (en) * 1994-07-14 1996-02-01 Ciba-Geigy Ag Granular formulation containing microorganisms, a process for the preparation and the use thereof
US20050064027A1 (en) * 2001-12-15 2005-03-24 Spherics, Inc. Bioadhesive drug delivery system with enhanced gastric retention
US20070275080A1 (en) 2003-10-31 2007-11-29 Engineered Release Systems Inc. Polymer-Based Microstructures
WO2007069094A2 (en) * 2005-12-13 2007-06-21 Philip Morris Products S.A. Carbon beads with multimodal pore size distribution
EP2359929A1 (en) 2010-02-11 2011-08-24 Universidad de Salamanca System for producing microcapsules and use thereof

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ANIL; K. ANAL; WILLEM F. STEVENS; CARMEN REMUNAN-LOPEZ: "lonotropic crosslinked chitosan microspheres for controlled release of ampicillin", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 312, 2006, pages 166 - 173
ARUP NAG; KYOUNG-SIK HAN; HARJINDER SINGH: "Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum", INTERNATIONAL DAIRY JOURNAL, vol. 21, no. 2011, pages 247 - 253, XP028364173, DOI: doi:10.1016/j.idairyj.2010.11.002
AUDE MUNIN; FLORENCE EDWARDS-LEVY: "Encapsulation of Natural Polyphenolic Compounds; a Review", PHARMACEUTICS, vol. 3, 2011, pages 793 - 829, XP055269882, DOI: doi:10.3390/pharmaceutics3040793
FLAVIA N. SOUZA; CLARICE GEBARA; MARIA CE. RIBEIRO; KARINA S. CHAVES; MIRNA L. GIGANTE; CARLOS R.F. GROSSO: "Production and characterization of microparticles containing pectin and whey proteins", FOOD RESEARCH INTERNATIONAL, vol. 49, 2012, pages 560 - 566, XP028951902, DOI: doi:10.1016/j.foodres.2012.07.041
FRAVEL, D.R. ET AL.: "Encapsulation of Potential Biocontrol Agents in an Alginate-Clay Matrix''.", PHYTOPATHOLOGY, vol. 75, no. 7, 1985, pages 774 - 777, XP001469422 *
HUIYI SONG; WEITING YUA; MENG GAOA; XIUDONG LIUB; XIAOJUN M: "Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process", CARBOHYDRATE POLYMERS, vol. 96, 2013, pages 181 - 189, XP028544286, DOI: doi:10.1016/j.carbpol.2013.03.068
K. MILADIA,B; S. SFAR B; H. FESSI A; A. ELAISSARI: "Drug carriers in osteoporosis: Preparation, drug encapsulation and applications", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 445, 2013, pages 181 - 195, XP029001643, DOI: doi:10.1016/j.ijpharm.2013.01.031
N.T. ANNAN; A.D. BORZA; L. TRUELSTRUP HANSEN: "Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions", FOOD RESEARCH INTERNATIONAL, vol. 41, 2008, pages 184 - 193, XP002631973
P. BUREY; B. R. BHANDARI; T. HOWES; M. J. GIDLEY: "Hydrocolloid Gel Particles: Formation, Characterization, and Application", CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, vol. 48, 2008, pages 361 - 377, XP055224723, DOI: doi:10.1080/10408390701347801
QIU-YUE DONG; MENG-YAN CHEN; YANG XIN; L XUE-YAN QIN; L ZHUO CHENG; I LU- E SHIL; ZHEN-XING TANG, ALGINATE-BASED AND PROTEIN-BASED MATERIALS FOR PROBIOTICS ENCAPSULATION: A REVIEW
TRIPATHI, G.K. ET AL.: "Formulation and In-vitro Evaluation of pH- Sensitive Oil Entrapped Polymeric Blend Amoxicillin Beads for the Eradication of Helicobacter pylori''.", IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH, vol. 11, no. 2, 2012, pages 447 - 455, XP055320275 *
TRIVEDI UTKARSH, M. ET AL.: "Stomach specific gellam gum loaded cefpodoxime proxetil floating beads: formulation and optimization by 3-level-2-factor full factorial design''.", JOURNAL OF PHARMACY RESEARCH, vol. 5, no. ISSUE, 2012, pages 3106 - 3111, XP008185857 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203454A1 (es) * 2015-06-19 2016-12-22 Universidad De Antioquia (Udea) Proceso de elaboracion de microcapsulas tipo coloidosomas
US10773231B2 (en) * 2015-06-19 2020-09-15 Nexentia S.A.S. Method for producing colloidosome microcapsules
WO2020188483A1 (es) 2019-03-18 2020-09-24 Universidad De Antioquia Proceso para recubrir sólidos insolubles

Also Published As

Publication number Publication date
CA2922601C (en) 2021-07-13
EP3040373A4 (en) 2017-03-15
US20160271071A1 (en) 2016-09-22
CO7200056A1 (es) 2015-02-27
PL3040373T3 (pl) 2021-08-16
EP3040373B1 (en) 2020-12-16
AU2014313817B2 (en) 2018-06-14
AU2014313817A1 (en) 2016-03-17
PL3040373T4 (pl) 2021-08-16
ES2869336T3 (es) 2021-10-25
CA2922601A1 (en) 2015-03-05
PT3040373T (pt) 2021-04-21
DK3040373T3 (da) 2021-03-22
MX2016002601A (es) 2016-10-13
KR20160048851A (ko) 2016-05-04
US10085948B2 (en) 2018-10-02
EP3040373A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
Sun et al. Stabilization of zein nanoparticles with k-carrageenan and tween 80 for encapsulation of curcumin
Patil et al. A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres
JP5526033B2 (ja) 微粒子製造装置および微粒子製造方法
US9700519B2 (en) Spray dry method for encapsulation of biological moieties and chemicals in polymers cross-linked by multivalent ions for controlled release applications
Hsu et al. Development of pH-sensitive pectinate/alginate microspheres for colon drug delivery
Paques Alginate nanospheres prepared by internal or external gelation with nanoparticles
Huang et al. One-Step microfluidic synthesis of spherical and bullet-like alginate microcapsules with a core–shell structure
Wang et al. Layer-by-layer assembled biopolymer microcapsule with separate layer cavities generated by gas-liquid microfluidic approach
CN105997936A (zh) 一种羧甲基壳聚糖纳米微粒固定化多孔多层海藻酸钠胶球的制备方法
Safdar et al. Preparation, characterization and stability evaluation of ionic liquid blended chitosan tripolyphosphate microparticles
Premjit et al. Recent trends in folic acid (vitamin B9) encapsulation, controlled release, and mathematical modelling
RU2646482C2 (ru) Способ получения нанокапсул метронидазола в каррагинане
ES2869336T3 (es) Gelificación iónica en sólidos
RU2613108C1 (ru) Способ получения нанокапсул метронидазола в конжаковой камеди
RU2631883C2 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в конжаковой камеди
CN104910446A (zh) 一种温度控制制备的具有温度分级释放性能的天然高分子母子微球及其制备方法
Arredondo-Ochoa et al. Current processing methods in the development of micro-and nanoencapsulation from edible polymers
Doniparthi et al. Alginate Based Micro Particulate Systems for Drug Delivery
Bleiel et al. Encapsulation efficiency and capacity of bioactive delivery systems
Huang et al. Frontier in gellan gum-based microcapsules obtained by emulsification: Core-shell structure, interaction mechanism, intervention strategies
RU2609824C1 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в альгинате натрия
RU2618453C2 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане
Borah Overview of Materials and Techniques for Encapsulation of Natural Products: A Mini-Review
RU2611368C1 (ru) Способ получения нанокапсул метронидазола в альгинате натрия
Khanal et al. Synthesis and Characterization of Alginate-Based Hydrogel Microbeads for Magnesium Release

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2922601

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14914836

Country of ref document: US

Ref document number: MX/A/2016/002601

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004332

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014313817

Country of ref document: AU

Date of ref document: 20140821

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167007468

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014839385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839385

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016004332

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160226