WO2015025014A1 - Interference-compensated device for measuring an optical signal transmission path - Google Patents

Interference-compensated device for measuring an optical signal transmission path Download PDF

Info

Publication number
WO2015025014A1
WO2015025014A1 PCT/EP2014/067851 EP2014067851W WO2015025014A1 WO 2015025014 A1 WO2015025014 A1 WO 2015025014A1 EP 2014067851 W EP2014067851 W EP 2014067851W WO 2015025014 A1 WO2015025014 A1 WO 2015025014A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
compensation
signal
measuring
receiver
Prior art date
Application number
PCT/EP2014/067851
Other languages
German (de)
French (fr)
Inventor
Rolf Melcher
Achim Stellberger
Michael Domokos
Original Assignee
Elmos Semiconductor Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elmos Semiconductor Ag filed Critical Elmos Semiconductor Ag
Priority to EP14753260.0A priority Critical patent/EP3036561B1/en
Priority to EP16187776.6A priority patent/EP3124993B1/en
Publication of WO2015025014A1 publication Critical patent/WO2015025014A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • a photodiode is typically operated in the reverse direction. It has proved to be particularly advantageous to energize the photodiode for compensation of a (for example ambient) interference radiation resulting photocurrent by a voltage-controlled current source and to keep it in a voltage predetermined operating point.
  • a compensation transmitter and a transmitter simultaneously radiate superimposed into a receiver.
  • the signal of the compensation transmitter is complementary in time, that is selected to be 180 ° out of phase with that of the transmitter. This means that both signals are superposed at the same Einstrahlamplitude in the receiver signal to a DC signal.
  • a control generates a control signal from the received signal. With this control signal, either the transmitter or the compensation transmitter or, according to a fixed control scheme, both transmitters are regulated. If the regulator's gain is correctly chosen, parasitic influences are eliminated. This concerns above all soiling and drift of the receiver.
  • the invention proposes an interference-radiation-compensated device for measuring an optical signal transmission path during a multitude of intermittently successive measurement intervals, in particular for detecting an object and / or for detecting a movement and / or movement device of an object
  • At least one measuring transmitter for transmitting an optical measuring signal
  • at least one receiver for receiving an optical signal
  • the at least one receiver of an interfering radiation e.g. from the
  • At least one first interference radiation unit coupled to the first circuit node for electrically biasing the at least one receiver by providing a first compensation current having a magnitude that is substantially equal to the magnitude of a noise signal generated by the at least one receiver as a result of the interference radiation.
  • the at least one first interference radiation compensation unit has a variable internal resistance
  • control and evaluation unit determines the internal resistance of the mini- at least a first interference radiation compensation unit during a first preparation phase before the measurement phase of a measurement interval to a lower first resistance value and during the measurement phase to a higher second resistance value.
  • interference radiation compensation units For the interference radiation compensation of optical receivers of devices for measuring optical signal transmission paths, interference radiation compensation units are used which generate a current which is substantially equal to that current or the like in the receiver due to the reception of ambient light. Disturbing light arises. If such a noise-compensated receiver is then subjected to a useful or optical measuring signal, as is required for the measurement of the optical signal transmission track is required, then in the control and evaluation subsequently only this received measurement signal is evaluated.
  • the interference radiation compensation should be quite stable, so that the device provides reliable evaluations and measurements of the optical signal transmission path. This is basically no problem with permanently activated devices, ie with devices that are basically always ready to measure. However, since such a procedure also requires energy during the periods in which it is not absolutely necessary to measure, such an approach is not suitable for mobile terminals with limited energy resources. Therefore, in the invention, it is decided to keep the device ready for measurement only for individual measuring intervals. In the periods between the measurement intervals, the device then only requires a comparatively low power consumption.
  • the internal resistance of the interference radiation compensation unit is now in a preparatory phase, which is before the actual Measurement phase of a measurement interval is set to a low first resistance value, while the internal resistance for the duration of the measurement phase is controlled to a higher second resistance value.
  • variable resistance it is meant in the sense of the invention that the resistor can assume one of more than two different values (impedance, ohmic, capacitive and / or inductive), wherein the resistance values are preferably each non-zero and / or unequal infinity.
  • variable is meant in particular not the case ines fixed pre- or internal resistance, which switches as needed or bridged so “activated” or “deactivated” is.
  • the receiver is connected between ground and a working potential, which is defined by the interference radiation compensation unit. It is furthermore possible and encompassed by the invention that the receiver is connected between two circuit nodes, each of these circuit nodes being connected / coupled to an interference radiation compensation unit, ie the device has two interference radiation compensation units. The useful signal is tapped between these two circuit nodes and processed in the control and evaluation.
  • Such a two-channel embodiment of the device has improved robustness to electrical and / or magnetic far-field interference. The idea is to provide two geometrically and / or electrically substantially identical measurement channels that are exposed to far-field perturbations to substantially the same extent to eliminate the perturbation signals generated by far-field perturbations in a downstream (main) subtractor.
  • the at least one receiver is connected between a first and a second circuit node with which it is in each case electrically coupled, wherein the at least one first interference radiation compensation unit is coupled to the first circuit node, wherein the and / or between these circuit nodes pending electrical signals of the control and evaluation unit can be supplied and wherein at least one second interference radiation compensation unit with variable internal resistance is present, which provides a second compensation current, which is substantially equal to the first Kompensa- tion current, and wherein the Control and evaluation unit controls the internal resistance of the second interference radiation compensation unit during a measurement interval in substantially the same manner as the internal resistance of the first interference radiation compensation unit.
  • This interconnection of the receiver with two circuit nodes leads to a common-mode suppression of interference radiation.
  • the receiver alternately receives optical signals which are emitted alternately by the measuring transmitter and by a compensation transmitter.
  • the compensation transmitter radiates directly into the receiver while the transmitter is radiating into the transmission path, the measurement signal being partially reflected in the presence of an object to the receiver. This concept corresponds to the measuring system according to HALIOS ® .
  • control and evaluation unit controls the at least one compensation transmitter for sending the optical compensation signal during a second preparation phase of a measurement interval which follows the first preparation phase and precedes the measurement phase, and the control and evaluation unit the internal resistance of the at least one first interference radiation compensation unit and, if present, the at least one second interference radiation compensation unit for the duration the second preparation phase of a measurement interval sets to a resistance value which is equal to the first and / or second resistance value and between these and is greater than during the measurement interval and greater than outside the second preparation phase.
  • the compensation transmitter preferably transmits continuously, so that the interference radiation compensation unit or units can adjust to this situation in terms of operating point.
  • the or each interference radiation compensation unit has an internal resistance value which is smaller than during the measurement phase; The interference radiation compensation unit or units thus react again relatively quickly, it remains that they are switched to high impedance, if the actual measurement takes place in the measurement phase.
  • the at least one measuring transmitter and / or the at least one compensation transmitter transmits / emits modulated optical signals at least during the measuring phase.
  • At least portions of the compensation signal complementary, that is. out of phase or 180 ° out of phase with the measurement signal. Furthermore, it is expedient that at least portions of the measurement signal and the compensation signal are superimposed on one another, in particular being added or multiplied by the at least one receiver.
  • the at least one interference radiation compensation unit is designed as a voltage-controlled current source, as a gyrator, as a variable impedance, as a variable resistor or as a variable inductance.
  • a further variant of the invention relates to a device for measuring an optical signal transmission path intended for the detection of an object during a plurality of intermittently successive measuring intervals, in particular for detecting an object and / or for detecting a movement and / or direction of movement of an object this device is provided with
  • At least one measuring transmitter for transmitting an optical measuring signal
  • at least one receiver for receiving an optical signal
  • a control and evaluation unit for controlling the at least one measuring transmitter and the at least one receiver for transmitting or receiving an optical signal during a measuring phase of a measuring interval and for evaluation the received optical signal by processing an electrical signal present at a first circuit node electrically coupled to the at least one receiver
  • control and evaluation unit detects on the basis of evaluation signals, whether an object is within the signal transmission path or not, and as long as no object is detected within the transmission path, performs the measurement intervals with a low first repetition frequency
  • control and evaluation unit when an object is detected in the signal transmission path, performs the measurement intervals at a high second repetition frequency.
  • the execution of the measurement intervals with the high second repetition frequency from the last non-detection of an object within the signal transmission path is maintained for a predefinable period of time before it is possible to switch to the low first repetition frequency.
  • the device has a processor for further processing of the evaluation signals of the control and evaluation unit, wherein the processor can initiate or initiate the switchover from the normal mode to the energy-saving mode and vice versa.
  • the device may have a voltage regulator for various components of the device, the voltage regulator in the energy-saving mode supplying individual components with energy that is reduced in relation to the normal mode, in particular not at all.
  • FIG. 1 is an overview of the overall system as a block circuit diagram
  • FIG. 2 shows the time characteristic of various signals of the overall system according to FIG. 1 during a measuring interval or during a measuring cycle
  • FIGS. 3 and 4
  • a device for the interference radiation-compensated control of a photodiode and for the evaluation of the photocurrent has two connections. Between them, the receiving diode D is operated. Via the circuit nodes 61, 62, the receiving diode D is energized by two controlled current sources 27, 28. In this case, two amplifiers 26, 29 detect the potentials on the input lines 30, 31 originating from the connections. If the operating point of the diode changes, for example, by permanent irradiation with sunlight, the generated photocurrent changes. The voltage drop across the receiving diode D changes and the working potentials of the input lines 30, 31 and thus at the inputs of the amplifiers 26, 29. This is registered by the amplifiers 26, 29.
  • the device according to the invention or the method according to the invention is now based on the finding that in most applications, in particular in connection with a gesture control for mobile devices, a permanent measuring operation is not necessary or desirable. Such an operation consumes energy that is extremely “precious” especially for mobile devices, because it is limited in availability.
  • the device should therefore be time-dependent in different system states, i. H. be operated in individual time-separated and consecutive measurement intervals, each having at least one measurement phase.
  • the readjustment by the current sources 27,28 practically switched off. Only the capacitors 24,25 hold the respective operating points. This is equivalent to a change in the internal resistance of the current sources 27, 28.
  • this can be done, for example, by the measuring amplifiers 18, 19 each outputting one signal for overdrive and one signal for understeer.
  • 16 states of the system of two amplifiers 18,19 are possible with two evaluation signals.
  • the four-bit word formed in this way forms a quantitative assessment of each measurement result.
  • the sequence of a measuring interval is controlled, for example, by the digital control block 4 of the (block) circuit diagram according to FIG.
  • a measurement activation signal "Measure” (reference number 66, FIG. 2) is activated at the beginning of the measurement (reference number 67, FIG. 2).
  • the current sources 27, 28 regulate the operating point of the receiving diode D at low impedance.
  • the output of the power supply for a compensation diode K is activated.
  • the compensation diode K already irradiates the photodiode D.
  • the compensation diode K is initially not modulated. Due to the low resistance of the current sources 27,28 the measuring amplifiers 18,19 come quickly to their operating points.
  • the measurement begins by e.g. the radiation of the compensating diode is attenuated or even switched off (see reference numbers 45 and 69 in Figs. 1 and 2).
  • typically at least one of the transmit signals is turned on.
  • the typically at least one measuring transmission diode Hl and / or H2 and / or H3 irradiates the (receiving) photodiode D by way of the transmission path to be measured. In the case of several transmitting diodes, these are driven sequentially (for example cyclically).
  • the compensation transmitting diode K and the typically at least one measuring transmitter diode Hl or H2 or H3 are alternately attenuated or caused to increased radiation. First, this will result in a residual modulation of the output of the input stage. After amplification by an amplifier 36, the thus-received modulated signal can be converted into a DC signal by a demodulator. This can be used to control the amplitude of the modulation of the one Meßsendediode or each one of the transmitting diode Hl, 1-12,1-13 and / or the amplitude of the modulation of the compensation diode K.
  • a control of the compensation diode K is shown by way of example as the case F1 and, as the case F2, a regulation of the measuring transmitter diode or diodes H1, 1-12, 1-13 is shown.
  • the control can be different for the measuring transmitter diodes H1, H2 and H3.
  • the measuring transmitter diodes H1, H2 and H3 are not operated simultaneously but with a time delay. In this case, more than one receiving diode can be used.
  • the time offset is typically chosen such that only one receiving diode D and one transmitting diode H1, H2, H3 are active at a time.
  • the measured value obtained in this way regulates the amplitude of the respective measuring transmitter diode H1, H2, H3. It has been shown that it makes sense to increase this value before the negative feedback.
  • This principle is also known from operational amplifier circuits and serves to suppress parasitic factors and influences.
  • the regulation ideally sets up an equilibrium and the output signal 50 of the demodulator 37 constitutes, after said amplification, a measure for the attenuation of the transmission signal in the transmission channel.
  • the control according to the invention of the current sources 27, 28 starts at the input lines 30, 31 in FIG an input resistance to the effect that the current sources vary in response to typically at least two phases of a measurement cycle (reference numerals A and C, B and C or A and B and C of Fig. 2).
  • the effectiveness of the voltage controlled current sources 27,28 is limited by the real conditions.
  • the current sources 27, 28 can only try to keep the given voltage level up to a maximum current.
  • the measurement interval (from reference numeral 67, Fig. 2, to reference numeral 71, Fig. 2) is terminated by the fact that the "Measure" signal (66) becomes inactive again at the end of the measuring cycle (see reference numeral 71, Fig. 2). All transmit signals are turned off and the measurement result is typically frozen, for example, in a sample-and-hold circuit (not shown).
  • the system may be able to provide at least some and typically each measured value with a quality value of the measurement, that is to perform a measurement signal quality determination. This measure forms part of this application an independent subject of the invention.
  • a sequence of measurement values with associated quality values results, which allow a measurement value estimator to estimate an optimized measurement value and to indicate a probability of the correctness of this measurement value.
  • the resulting measured value vector can be used, for example, as the basis for the feature extraction of a gesture recognition.
  • the integrators can be bridged by bridging their capacitances 20, 21 with the aid of the programmable switches 22, 23. As you can see from this example, a change in the system or circuit topology is also possible. The integrators then become pure impedance transformers.
  • a further improvement of the device can thus be achieved by an assessment of the quality of the measurement signal and / or by a control for optimizing the measurement results.
  • the feedback loop is closed by software because the control algorithms are very application dependent.
  • the current measured by the current source or current sources 27, 28 is measured as a function of time.
  • These measurement results can be made available to the software. This can determine, for example by a Fourier transformation, the interference frequencies that disturb the measurement signal. It is particularly advantageous to select the modulation frequency of the measuring transmitting diodes H1, H2, H3 and the compensation diode K and the repetition frequency of the measuring intervals (reference numeral 67, Fig. 2, to reference numeral 71, Fig. 2) in each case so that they possible with the interference frequencies do not interfere. Thus, for example wise by "frequency hopping” the noise robustness can be raised.
  • Another measure representing an independent concept of the invention is the introduction and / or raising of a threshold for detecting the approach of an object to the measuring transmitter diodes Hl, H2, H3 / receiving diode D.
  • This is a nonlinear filter function, which is typically used in the Block 37 of FIG. 1 is realized, but can also be implemented in a subsequent processing stage. All measured values below or above a threshold are fixed to a predefined value, for example.
  • a computational model of a jammer can be parameterized and times and setting parameters for the measuring system can be predicted, at which and with which the next measuring interval with a particularly good quality can be performed.
  • a voltage regulator 1 is advantageous, which provides the internal operating voltages. This voltage regulator 1 unnecessarily consumes energy in energy-saving mode. It therefore makes sense to realize the smallest possible part (see function block 14) of the circuit so that it can be operated directly with the operating voltage.
  • This function block 14 has only the task, via an interface 54 to 57 to ensure the minimum communication to the main processor with which the measuring system communicates.
  • the interface has, for example, a serial TX and RX two-wire line or an I 2 C bus interface 54, an interrupt output 55 for the main processor, which must be at a defined potential, a non-maskable measuring system reset 56 and a reference voltage input 57. All other systems are switched off. If possible, the normal system oscillator 6 is also switched off and instead this function block 14 of the circuit is supplied with a low frequency from a minimum oscillator 5. This one is much smaller because it does not have to drive the entire IC. Thus, in the power save mode, only the standard blocks 14 and 6 are active. In particular, the band-gap reference 2, the block 4 (digital control), the voltage regulator 1 and all measuring amplifiers and receiving and transmitting devices are switched off.
  • the interface 54 makes sense to configure the function block 14 such that it can only recognize a specific command on the bus, which is sent to a precisely specified register address.
  • Such a protocol can, for example, be such that the function block 14 recognizes a sequence from a start bit and the slave address and from a bit for signaling a write access and then issues an acknowledge bit, whereupon the main processor sends the register address, the function block 14 sends an acknowledge bit and the main processor then sends a parity bit. If the function block 14 has recognized all these data as correct, the voltage regulator, the bandgap reference 2 and all other parts of the circuit are started up in a predefined sequence one after the other and / or in parallel, depending on the type and requirement. The normal I 2 C bus communication is then taken over by the block 4 (Digital Control) again until a next sleep command.
  • Digital Control Digital Control
  • block 4 (Digital Control) causes the essential parts of the measurement system to enter the energy-saving mode.
  • the last part of the shutdown sequence must be controlled by function block 14. This particularly relates to the shutdown of the power supply by switching off the voltage regulator 1, the oscillator 6 and the block 4 (Digital Control) itself.
  • the measured values and preferably also the measured value qualities are stored in a memory (not shown).
  • the measured values stored there can also include configuration data of the system (for example with which of the transmitting diodes H1, H2, H3, with which the compensating diode K and with which receiving diode D and with which quality measured values were recorded.)
  • the measurement results of further measuring signal evaluation blocks such as for example, block 16 (Extrinsic Light Measurement) may be used, but energy may not be "wasted" in normal measurement mode, so bandgap reference 2, for example, provides only one reference voltage for use at different locations in the measurement system are temporarily turned off when their voltage is latched and buffered in, for example, a sample-and-hold circuit, and the bandgap circuit is then regenerated only for the inevitably slowly draining charges from the memory element of the sample-and-hold circuit (typically a capacitor) of Turned on time after time.
  • Another feature of the invention which is essential to the invention, results from the necessary calibration of the measuring
  • the control characteristic of the system in regulating the transmitter diode amplitude Tj is shown in FIG.
  • the amplitude of the component attributable to the respective measuring transmitter diode H1, H2, H3 (see 72,75,77 in FIG. 3) of the photocurrent I PD in the receiving diode D depends on the transmitter diode amplitude T
  • the amplitude of the component attributable to the compensation diode K or the respective compensation diode K (see line 73 in FIG Fig. 3) of the photocurrent I PD in the / a receiving diode D in contrast depends on the transmitter amplitude T, not from.
  • the difference signal 63 is a Gleichsig-.
  • the proportion attributable to the transmission signal is then zero in the difference signal 63.
  • the maximum distance from which an object approaching the receiving diode or up to which an object removing from the receiving diode can still be recognized is determined by the regulating characteristic and / or the fact that, with the maximum amplitude of the transmitting diode signal, the object still exists such a large proportion of the transmitting diode signal is reflected that at the receiving diode, a signal having at least the amplitude of the compensation diode signal is received.
  • a large photocurrent 72 which is synonymous with a near object (and thus for a steep control characteristic)
  • the overall system differs from the measuring system in that, in addition to the measuring system, it also includes optical elements such as mirrors, diaphragms etc. and, of course, the housing.
  • the compensation diode K is switched to a static level.
  • the coupling between the receiving diode D and the compensation diode K is very difficult to stabilize according to experience. Therefore, the coupling is always the same as an application type, but it is assumed to fluctuate from application to application within the same type.
  • the calibration is now carried out so that the switchable reference current sources 41,42,43 are provided, with which the reference current supply 38 is now set so that the measured photocurrent is always set to a same, application-specific predetermined value.
  • the ordinate position of the line 73 in Figs. 3 and 4 are given. This ensures that an operating point is found.
  • This operating point is typically set in such a way that the compensating transmitting diode current is increased until the compensation signal above the system noise becomes measurable.
  • the offset signal is set to such a value that the lowest operating point is assumed.
  • Fremdlichtrobuste device for measuring at least one optical transmission path, characterized in that they has at least one receiver (D) and at least one transmitter (Hl, 1-12,1-13) has and
  • At least said receiver is connected to at least one gyrator or other interfering radiation compensation unit, and
  • At least one compensation transmitter (K) and transmits during a first preparation phase (A) the at least one compensation transmitter (K).
  • Device according to one of the numbers 0 to 6, characterized in that during the at least one measuring cycle following the first Preparation phase (A) a second preparation phase (B) to stabilize a regulator will go through.
  • Device characterized in that during the second preparation phase (B) the at least one gyrator is higher-impedance than at other times, in particular a time outside the second preparation phase (B).
  • Device according to item 7 or 8 characterized in that
  • the at least one compensation transmitter (K) and during the second preparation phase (B) the at least one compensation transmitter (K) is transmitted and modulated.
  • Device according to one of the numbers 3 to 9, characterized in that during at least one measuring cycle after the second preparation phase (B) a measuring phase (C) is passed through.
  • Device characterized in that during the measuring phase (C) the at least one gyrator is higher-impedance than at a time outside the measuring phase (C) and the second preparation phase (B) of the measuring interval.
  • Device according to item 10 or 11 characterized in that
  • Device characterized in that for modulation the at least one compensation transmitter (K) and the at least one transmitter (H) takes place in such a way that at least portions of the compensation transmission signal of said compensation transmitter (K) at least temporarily complementary to the transmission signal of said transmitter (Hl, 1-12,1-13) are.
  • Device / or l5, characterized in that the radiation of at least the said compensation transmitter (K) and at least of said transmitter (H1, H2, H3) are superposed in the receiver (D) in an additive or multiplying manner.
  • Device characterized in that at least during a period in which at least one transmitter (H1, H2, H3) and said compensation transmitter (K) are transmitted and modulated, at least said compensation transmitter (K) and / or said Transmitter (H) are controlled in the amplitude and / or phase so that the receiver (D) receives no more shares at least a predetermined part of the transmission signal or substantially only during a predetermined measurement phase (C) to system noise and Einregelcons a DC signal receives.
  • an offset signal (82) can be added to the receiver signal which, at least in portions, is at times in phase synchronous with the at least one transmission signal (9, 10, 11) of at least one transmitter (H1, H2 , H3) and corresponds with this.

Abstract

The radiation interference-compensated device for measuring an optical signal transmission path is provided with at least one measurement transmitter (H1, H2, H3) and at least one receiver (D) which is exposed to a radiation interference from the surrounding area for example. The device further has an actuating and analyzing unit (17) for actuating the at least one transmitter (H1, H2, H3) and the at least one receiver (D) for the purpose of transmitting or receiving an optical signal during a measurement phase (C) of a measurement interval and for analyzing the received optical measurement signal by processing an electric signal which is present at a first circuit node (61, 62) electrically coupled to the at least one receiver (D). A first radiation interference compensation unit (26, 27, 28, 29), which has a variable internal resistance, is coupled to the at least one first circuit node (61, 62) in order to electrically bias the at least one receiver (D) by providing a first compensation current with a level substantially equaling the level of an interference signal generated as a result of the radiation interference from the at least one receiver (D). The actuating and analyzing unit (17) sets the internal resistance of the at least one first radiation interference compensation unit (26, 27, 28, 29) to a lower first resistance value during a first preparation phase (A) prior to the measurement phase (C) of a measurement interval and to a higher second resistance value during the measurement phase (C).

Description

Störkompensierte Vorrichtung zur Vermessung einer optischen Signalübertragungsstrecke  Störkompensierte device for measuring an optical signal transmission path
Einleitung und Stand der Technik Introduction and state of the art
Die Erfindung betrifft eine störstrahlungskompensierte Vorrichtung zur Vermessung einer optischen Signalübertragungsstrecke während einer Vielzahl von insbesondere intermittierend aufeinanderfolgenden Messintervallen insbesondere für die Erkennung eines Objekts und/oder für die Erkennung einer Bewegung und/oder Bewegungsvorrichtung eines Objekts. The invention relates to an interference radiation-compensated device for measuring an optical signal transmission path during a plurality of, in particular, intermittently successive measurement intervals, in particular for the detection of an object and / or for the detection of a movement and / or movement device of an object.
Aus dem Stand der Technik sind verschiedene Verfahren zur Vermessung opti- scher Strecken bekannt. Various methods for measuring optical paths are known from the prior art.
Hierbei wird typischerweise eine Fotodiode in Sperrrichtung betrieben. Es hat sich als besonders vorteilhaft erwiesen, die Fotodiode zur Kompensation eines aus (z. B. Umgebungs-)Störstrahlung resultierenden Fotostroms durch eine spannungsgesteuerte Stromquelle zu bestromen und in einem spannungsmäßig vorbestimmten Arbeitspunkt zu halten. In this case, a photodiode is typically operated in the reverse direction. It has proved to be particularly advantageous to energize the photodiode for compensation of a (for example ambient) interference radiation resulting photocurrent by a voltage-controlled current source and to keep it in a voltage predetermined operating point.
Eine besonders vorteilhafte Anordnung zur Vermessung einer optischen Übertragungsstrecke oder zur Vermessung eines Objekts, das sich innerhalb einer solchen Übertragungsstrecke befindet, ist die Vermessung mit Hilfe einer Kompensationsmethode, wie sie z.B. unter dem Namen HALIOS® bekannt ist. Hierbei strahlen ein Kompensationssender und ein Sender gleichzeitig überlagernd in einen Empfänger ein. Das Signal des Kompensationssenders ist dabei zeitlich komplementär, d.h. um 180° phasenverschoben zu demjenigen des Senders gewählt. Das bedeutet, dass sich beide Signale bei gleicher Einstrahlamplitude in dem Empfängersignal zu einem Gleichsignal überlagern . Eine Regelung erzeugt aus dem Empfangssignal ein Regelsignal. Mit diesem Regelsignal wird nun entweder der Sender oder der Kompensationssender oder auch nach einem festen Regelschema beide Sender geregelt. Bei richtiger Vorzeichenwahl der Verstärkung des Reglers werden parasitäre Einflüsse eliminiert. Dies betrifft vor allem Verschmutzungen und Drift des Empfängers. A particularly advantageous arrangement for measuring an optical transmission path or for measuring an object which is located within such a transmission path, the measurement using a compensation method, as it is known for example under the name HALIOS ® . In this case, a compensation transmitter and a transmitter simultaneously radiate superimposed into a receiver. The signal of the compensation transmitter is complementary in time, that is selected to be 180 ° out of phase with that of the transmitter. This means that both signals are superposed at the same Einstrahlamplitude in the receiver signal to a DC signal. A control generates a control signal from the received signal. With this control signal, either the transmitter or the compensation transmitter or, according to a fixed control scheme, both transmitters are regulated. If the regulator's gain is correctly chosen, parasitic influences are eliminated. This concerns above all soiling and drift of the receiver.
Vorrichtungen der zuvor genannten Art sind beispielhaft EP-A-1 426 783 und DE-B-103 00 223 beschrieben. Devices of the aforementioned type are described by way of example as EP-A-1 426 783 and DE-B-103 00 223.
Es hat sich gezeigt, dass die Verwendung von spannungsgesteuerten Stromquellen zur Einstellung eines Kompensations- bzw. Bias-Stromes für als Empfänger verwendete Fotodioden besonders vorteilhaft ist. Dies ist bei- spielsweise bereits in DE-A-102 56 429 beschrieben. Andere Schaltungen bzw. Bauteile für die Störstrahlungs-Fotostromkompensation können aber ebenso genutzt werden. It has been found that the use of voltage-controlled current sources for setting a compensation or bias current for photodiodes used as a receiver is particularly advantageous. This is already described, for example, in DE-A-102 56 429. However, other circuits or components for the Störstrahlungs photocurrent compensation can also be used.
Ein wesentlicher Nachteil einer Arbeitspunkteinstellung der obigen Art mit Hilfe eines Gyrators ist der niedrige Eingangswiderstand des Gyrators, der das Ausgangssignal der Fotodiode belastet und dämpft. A major disadvantage of an operating point adjustment of the above type with the aid of a gyrator is the low input resistance of the gyrator, which loads and attenuates the output signal of the photodiode.
Dies führt zu einer Reduktion der Empfindlichkeit. Soll ein derartiges System zur Erkennung dreidimensionaler Gesten eingesetzt werden, so wird die Reichweite des Systems herabgesetzt. This leads to a reduction in sensitivity. If such a system is used to detect three-dimensional gestures, the range of the system is reduced.
Auf der anderen Seite kann die Empfindlichkeit für das Messsignal erhöht werden. Dies geschieht jedoch zu Lasten der Störempfindlichkeit. Es ist ein bekanntes Problem, dass beispielsweise optische Gestenerkennungssysteme durch Leuchtstoffröhren gestört werden können. Aufgabe der Erfindung On the other hand, the sensitivity for the measurement signal can be increased. However, this happens at the expense of susceptibility to interference. It is a known problem that, for example, optical gesture recognition systems can be disturbed by fluorescent tubes. Object of the invention
Es ist daher die Aufgabe der Erfindung, eine Störstrahlungs-Kompensations- vorrichtung mit der Möglichkeit einer Arbeitspunkteinstellung insbesondere für Anwendungen in der Gestenerkennung bereitzustellen, die das Messergebnis nicht beeinträchtigt und robust gegenüber externen Störungen ist. It is therefore the object of the invention to provide an interference radiation compensation device with the possibility of operating point adjustment, in particular for applications in gesture recognition, which does not affect the measurement result and is robust against external disturbances.
Zur Lösung dieser Aufgabe wird mit der Erfindung eine störstrahlungskompen- sierte Vorrichtung zur Vermessung einer optischen Signalübertragungsstrecke während einer Vielzahl von insbesondere intermittierend aufeinanderfolgenden Messintervallen insbesondere für die Erkennung eines Objekts und/oder für die Erkennung einer Bewegung und/oder Bewegungsvorrichtung eines Objekts vorgeschlagen, mit To achieve this object, the invention proposes an interference-radiation-compensated device for measuring an optical signal transmission path during a multitude of intermittently successive measurement intervals, in particular for detecting an object and / or for detecting a movement and / or movement device of an object
mindestens einem Messsender zum Senden eines optischen Messsignals, - mindestens einem Empfänger zum Empfangen eines optischen Signals, wobei der mindestens eine Empfänger einer Störstrahlung z.B. aus der at least one measuring transmitter for transmitting an optical measuring signal, - at least one receiver for receiving an optical signal, wherein the at least one receiver of an interfering radiation, e.g. from the
Umgebung ausgesetzt ist, Environment is exposed,
einer Ansteuer- und Auswerteeinheit zur Ansteuerung des mindestens einen Messsenders und des mindestens einen Empfängers zwecks Sen- dens bzw. Empfangens eines optischen Signals während einer Messphase eines Messintervalls und zur Auswertung des empfangenen optischen Messsignals durch Verarbeitung eines elektrischen Signals, das an einem ersten elektrisch mit dem mindestens einen Empfänger gekoppelten Schaltungsknoten ansteht,  a control and evaluation unit for controlling the at least one measuring transmitter and the at least one receiver for transmitting or receiving an optical signal during a measuring phase of a measuring interval and for evaluating the received optical measuring signal by processing an electrical signal electrically connected to a first the circuit node coupled to at least one receiver is present,
- mindestens einer mit dem ersten Schaltungsknoten gekoppelten ersten Störstrahlungs-Kompensationseinheit zur elektrischen Vorspannung des mindestens einen Empfängers durch Bereitstellen eines ersten Kompensationsstroms mit einer Größe, die im Wesentlichen gleich der Größe eines in Folge der Störstrahlung von dem mindestens einen Empfänger erzeugten Störsignals ist, at least one first interference radiation unit coupled to the first circuit node for electrically biasing the at least one receiver by providing a first compensation current having a magnitude that is substantially equal to the magnitude of a noise signal generated by the at least one receiver as a result of the interference radiation.
wobei die mindestens eine erste Störstrahlungs-Kompensationseinheit einen variablen Innenwiderstand aufweist und  wherein the at least one first interference radiation compensation unit has a variable internal resistance, and
wobei die Ansteuer- und Auswerteeinheit den Innenwiderstand der min- destens einen ersten Störstrahlungs-Kompensationseinheit während einer ersten Vorbereitungsphase vor der Messphase eines Messintervalls auf einen niedrigeren ersten Widerstandswert und während der Messphase auf einen höheren zweiten Widerstandswert einstellt. wherein the control and evaluation unit determines the internal resistance of the mini- at least a first interference radiation compensation unit during a first preparation phase before the measurement phase of a measurement interval to a lower first resistance value and during the measurement phase to a higher second resistance value.
Ausgangspunkt für die Überlegungen, die zur Erfindung geführt haben, ist eine reduzierte Strom- bzw. Energieaufnahme einer störstrahlungskompensierten Vorrichtung zur Vermessung einer optischen Signalübertragungsstrecke. Die reduzierte Stromaufnahme ist insbesondere vorteilhaft beim Einsatz einer sol- chen Vorrichtung in mobilen Geräten, die lediglich über begrenzte Energieressourcen verfügen. The starting point for the considerations that led to the invention is a reduced power or energy consumption of an interference-radiation-compensated device for measuring an optical signal transmission path. The reduced power consumption is particularly advantageous when using such a device in mobile devices, which have only limited energy resources.
Wenn optische Signalübertragungsstrecken vermessen werden, um beispielsweise die Annäherung eines Objekts, eine Verschmutzung o.dgl. erkennen zu können, besteht stets das Problem darin, dass derartige Signalübertragungs¬ strecken durch Umgebungslicht "gestört" werden. Dabei stellt sich die weitere Schwierigkeit dahingehend dar, dass die Störsignale weitaus größer sind als die Nutzsignale. Würde man also die Störung vorab nicht kompensieren, be¬ stünde die Gefahr, das Nutzsignal innerhalb des Störsignals nicht so ohne Weiteres erkennen zu können. Man könnte sicherlich mit kodierten Nutzsignalen arbeiten, um dann durch Autokorrelation o.dgl. Korrelationsverfahren das Nutzsignal aus dem Gesamtsignal extrahieren zu können. Derartige auch unter dem Begriff Spreizcode-Verfahren bekannte Systeme sind aber in ihrer Umsetzung recht aufwändig. When measuring optical signal transmission distances, for example, the approach of an object, contamination or the like. To be able to recognize, there is always the problem that such signal transmission ¬ distances are "disturbed" by ambient light. The further difficulty is that the interfering signals are much larger than the useful signals. So one would advance not compensate for the disorder, be ¬ would be the risk of not being able to detect the useful signal within the noise signal easily. One could certainly work with coded payloads, and then by autocorrelation or the like. Correlation method to be able to extract the useful signal from the total signal. However, such systems, which are also known by the term spreading code method, are quite complex in their implementation.
Zur Störstrahlungskompensation optischer Empfänger von Vorrichtungen zur Vermessung optischer Signalübertragungsstrecken werden Störstrahlungs- Kompensationseinheiten eingesetzt, die einen Strom erzeugen, der im Wesentlichen gleich demjenigen Strom ist, der im Empfänger in Folge des Empfangs von Umgebungslicht o.dgl. Störlicht entsteht. Wird dann ein derartig störkompensierter Empfänger mit einem Nutz- bzw. optischen Messsignal beaufschlagt, wie es für die Vermessung der optischen Signalübertragungs- strecke erforderlich ist, so wird in der Ansteuer- und Auswerteeinheit anschließend auch nur noch dieses empfangene Messsignal ausgewertet. For the interference radiation compensation of optical receivers of devices for measuring optical signal transmission paths, interference radiation compensation units are used which generate a current which is substantially equal to that current or the like in the receiver due to the reception of ambient light. Disturbing light arises. If such a noise-compensated receiver is then subjected to a useful or optical measuring signal, as is required for the measurement of the optical signal transmission track is required, then in the control and evaluation subsequently only this received measurement signal is evaluated.
Die Störstrahlungskompensation sollte recht stabil sein, damit die Vorrichtung zuverlässige Auswertungen und Vermessungen der optischen Signalübertragungsstrecke liefert. Dies ist grundsätzlich kein Problem bei dauerhaft aktivierten Vorrichtungen, also bei Vorrichtungen, die im Grunde genommen ständig messbereit sind. Da eine solche Vorgehensweise aber auch während der Zeiträume, in denen nicht zwingend gemessen werden muss, Energie benötigt, eignet sich eine solche Vorgehensweise bei mobilen Endgeräten mit begrenzten Energieressourcen nicht. Daher wird bei der Erfindung dazu übergegangen, die Vorrichtung lediglich für einzelne Messintervalle messbereit zu halten. In den Zeiträumen zwischen den Messintervallen benötigt die Vorrichtung dann lediglich eine vergleichsweise geringe Stromaufnahme. The interference radiation compensation should be quite stable, so that the device provides reliable evaluations and measurements of the optical signal transmission path. This is basically no problem with permanently activated devices, ie with devices that are basically always ready to measure. However, since such a procedure also requires energy during the periods in which it is not absolutely necessary to measure, such an approach is not suitable for mobile terminals with limited energy resources. Therefore, in the invention, it is decided to keep the device ready for measurement only for individual measuring intervals. In the periods between the measurement intervals, the device then only requires a comparatively low power consumption.
Die Störstrahlungs-Kompensationseinheit ist wie die Ansteuer- und Auswerteeinheit elektrisch mit dem Empfänger gekoppelt. Damit nun ein vom Empfänger empfangenes Nutzsignal zu nahezu 100 % von der Ansteuer- und Auswerteeinheit auch empfangen werden kann, sollte die Störstrahlungs-Kompen- sationseinheit relativ hochohmig ausgeführt sein, so dass das am Ausgang des Empfängers anstehende elektrische Signal nur zu einem sehr geringen Anteil zur Störstrahlungs-Kompensationseinheit "abfließt" und damit in ganz überwiegendem Maße der Ansteuer- und Auswerteeinheit zugeführt werden kann. Eine hochohmige Störstrahlungs-Kompensationseinheit, also eine Störstrah- lungs-Kompensationseinheit mit hohem Innenwiderstand ist aber insoweit nachteilig, als sie die Arbeitspunkteinstellung im Vorfeld der Bereitschaltung der Vorrichtung für den Empfang von Nutzsignalen verlangsamt. Während dieser Phase des Betriebs der Vorrichtung ist es nämlich wünschenswert, wenn die Störstrahlungs-Kompensationseinheit einen geringen Innenwiderstand aufweist. The interference radiation compensation unit is like the control and evaluation unit electrically coupled to the receiver. So that a useful signal received by the receiver can also be received to almost 100% by the control and evaluation unit, the interfering radiation compensation unit should be made relatively high-impedance, so that the electrical signal present at the output of the receiver is only a very small fraction to the interference radiation compensation unit "drains" and thus can be supplied to the predominantly extent of the control and evaluation unit. However, a high-impedance interference radiation compensation unit, that is to say an interference radiation compensation unit with high internal resistance, is disadvantageous insofar as it slows down the operating point setting in advance of the provisioning of the device for the reception of useful signals. Namely, during this phase of the operation of the device, it is desirable for the disturbance radiation compensation unit to have a low internal resistance.
Erfindungsgemäß wird also nun der Innenwiderstand der Störstrahlungs-Kom- pensationseinheit in einer Vorbereitungsphase, die vor der eigentlichen Messphase eines Messintervalls liegt, auf einen niedrigen ersten Widerstandswert eingestellt, während der Innenwiderstand für die Dauer der Messphase auf einen höheren zweiten Widerstandswert gesteuert wird. Mit "variablem" Widerstand ist im Sinne der Erfindung gemeint, dass der Widerstand einen von mehr als zwei unterschiedlichen Werten (Impedanz, ohmsch, kapazitiv und/oder induktiv) annehmen kann, wobei die Widerstandswerte vorzugsweise jeweils ungleich Null und/oder ungleich Unendlich sind. Mit "variabel" ist also insbesondere nicht der Falle ines festen Vor- oder Innenwiderstands gemeint, der je nach Bedarf aufgeschaltet oder überbrückt also "aktiviert" oder "deakti- viert" wird. According to the invention, therefore, the internal resistance of the interference radiation compensation unit is now in a preparatory phase, which is before the actual Measurement phase of a measurement interval is set to a low first resistance value, while the internal resistance for the duration of the measurement phase is controlled to a higher second resistance value. By "variable" resistance it is meant in the sense of the invention that the resistor can assume one of more than two different values (impedance, ohmic, capacitive and / or inductive), wherein the resistance values are preferably each non-zero and / or unequal infinity. By "variable" is meant in particular not the case ines fixed pre- or internal resistance, which switches as needed or bridged so "activated" or "deactivated" is.
Bei der zuvor beschriebenen Variante der Erfindung ist der Empfänger zwischen Masse und einem Arbeitspotential geschaltet, das durch die Störstrah- lungs-Kompensationseinheit definiert ist. Es ist darüber hinaus möglich und von der Erfindung umfasst, dass der Empfänger zwischen zwei Schaltungsknoten geschaltet ist, wobei jeder dieser Schaltungsknoten mit einer Stör- strahlungs-Kompensationseinheit verbunden/gekoppelt ist, die Vorrichtung also zwei Störstrahlungs-Kompensationseinheiten aufweist. Das Nutzsignal wird dabei zwischen diesen beiden Schaltungsknoten abgegriffen und in der Ansteuer- und Auswerteeinheit verarbeitet. Eine derartige Zweikanal-Ausführung der Vorrichtung weist eine verbesserte Robustheit gegenüber elektrischen und/oder magnetischen Fernfeldstörungen auf. Der Gedanke dabei ist es, zwei geometrisch und/oder elektrisch im wesentlichen identische Messkanäle vorzusehen, die Fernfeldstörungen im wesentlichen im gleichen Maße ausgesetzt sind, um die durch Fernfeldstörungen erzeugten Störsignale in einem nachgeschalteten (Haupt-)Differenzbildner zu eliminieren. Sofern die beiden Sensorelemente und/oder Messkanäle eine bekannte Ungleichheit (auch Asymmetrie genannt) aufweisen, kann diese durch eine (ggf. einstellbare) Gewichtung im Differenzbildner ausgeglichen werden, was insbesondere im Hinblick auf eine hohe Unterdrückung von elektromagnetischem Rauschen erfolgt. Insoweit ist es also zweckmäßig, wenn der mindestens eine Empfänger zwischen einem ersten und einem zweiten Schaltungsknoten, mit denen er jeweils elektrisch gekoppelt ist, geschaltet ist, wobei die mindestens eine erste Störstrahlungs-Kompensationseinheit mit dem ersten Schaltungsknoten ge- koppelt ist, wobei die an und/oder zwischen diesen Schaltungsknoten anstehenden elektrischen Signale der Ansteuer- und Auswerteinheit zuführbar sind und wobei mindestens eine zweite Störstrahlungs-Kompensationseinheit mit variablem Innenwiderstand vorhanden ist, die einen zweiten Kompensationsstrom bereitstellt, welcher im Wesentlichen gleich dem ersten Kompensa- tionsstrom ist, und wobei die Ansteuer- und Auswerteeinheit den Innenwiderstand der zweiten Störstrahlungs-Kompensationseinheit während eines Messintervalls in im Wesentlichen gleicher Weise wie den Innenwiderstand der ersten Störstrahlungs-Kompensationseinheit steuert. Diese Verschaltung des Empfängers mit zwei Schaltungsknoten führt zu einer Gleichtaktunterdrückung von Störstrahlungen. In the variant of the invention described above, the receiver is connected between ground and a working potential, which is defined by the interference radiation compensation unit. It is furthermore possible and encompassed by the invention that the receiver is connected between two circuit nodes, each of these circuit nodes being connected / coupled to an interference radiation compensation unit, ie the device has two interference radiation compensation units. The useful signal is tapped between these two circuit nodes and processed in the control and evaluation. Such a two-channel embodiment of the device has improved robustness to electrical and / or magnetic far-field interference. The idea is to provide two geometrically and / or electrically substantially identical measurement channels that are exposed to far-field perturbations to substantially the same extent to eliminate the perturbation signals generated by far-field perturbations in a downstream (main) subtractor. If the two sensor elements and / or measuring channels have a known inequality (also called asymmetry), this can be compensated for by a (possibly adjustable) weighting in the difference former, which takes place in particular with regard to a high suppression of electromagnetic noise. In that regard, it is thus expedient if the at least one receiver is connected between a first and a second circuit node with which it is in each case electrically coupled, wherein the at least one first interference radiation compensation unit is coupled to the first circuit node, wherein the and / or between these circuit nodes pending electrical signals of the control and evaluation unit can be supplied and wherein at least one second interference radiation compensation unit with variable internal resistance is present, which provides a second compensation current, which is substantially equal to the first Kompensa- tion current, and wherein the Control and evaluation unit controls the internal resistance of the second interference radiation compensation unit during a measurement interval in substantially the same manner as the internal resistance of the first interference radiation compensation unit. This interconnection of the receiver with two circuit nodes leads to a common-mode suppression of interference radiation.
Zur weiteren Kompensation von auf die Vorrichtung einwirkenden Störeinflüssen ist es zweckmäßig, wenn der Empfänger wechselweise optische Signale empfängt, die alternierend von dem Messsender und von einem Kompensa- tionssender ausgesendet werden. Der Kompensationssender strahlt dabei direkt in den Empfänger ein, während der Messsender in die Übertragungsstrecke strahlt, wobei das Messsignal bei Vorhandensein eines Objekts zum Empfänger teilweise reflektiert wird. Dieses Konzept entspricht dem Messsystem gemäß HALIOS®. For further compensation of disturbing influences acting on the device, it is expedient if the receiver alternately receives optical signals which are emitted alternately by the measuring transmitter and by a compensation transmitter. The compensation transmitter radiates directly into the receiver while the transmitter is radiating into the transmission path, the measurement signal being partially reflected in the presence of an object to the receiver. This concept corresponds to the measuring system according to HALIOS ® .
Bei einem derartigen Konzept kann in vorteilhafter Weise vorgesehen sein, dass die Ansteuer- und Auswerteeinheit den mindestens einen Kompensationssender zwecks Sendens des optischen Kompensationssignals während einer sich an die erste Vorbereitungsphase anschließenden und der Messphase vorgelagerten zweiten Vorbereitungsphase eines Messintervalls ansteuert und dass die Ansteuer- und Auswerteeinheit den Innenwiderstand der mindestens einen ersten Störstrahlungs-Kompensationseinheit und, sofern vorhanden, der mindestens einen zweiten Störstrahlungs-Kompensationseinheit für die Dauer der zweiten Vorbereitungsphase eines Messintervalls auf einen Widerstandswert einstellt, der gleich dem ersten und/oder zweiten Widerstandswert oder zwischen diesen liegt und größer ist als während des Messintervalls sowie größer ist als außerhalb der zweiten Vorbereitungsphase. In dieser zweiten Vor- bereitungsphase sendet der Kompensationssender vorzugsweise kontinuierlich, so dass sich die Störstrahlungs-Kompensationseinheit bzw. -einheiten arbeitspunktmäßig auf diese Situation einstellen kann/können. Auch in dieser zweiten Vorbereitungsphase, die zwischen der ersten Vorbereitungsphase und der Messphase eines Messintervalls liegt, weist die bzw. jede Störstrahlungs- Kompensationseinheit einen Innenwiderstandswert auf, der kleiner ist als während der Messphase; die Störstrahlungs-Kompensationseinheit bzw. -einheiten reagieren also wiederum relativ schnell, wobei es dabei bleibt, dass sie hochohmig geschaltet sind, wenn die eigentliche Messung in der Messphase erfolgt. In such a concept, it can be provided in an advantageous manner that the control and evaluation unit controls the at least one compensation transmitter for sending the optical compensation signal during a second preparation phase of a measurement interval which follows the first preparation phase and precedes the measurement phase, and the control and evaluation unit the internal resistance of the at least one first interference radiation compensation unit and, if present, the at least one second interference radiation compensation unit for the duration the second preparation phase of a measurement interval sets to a resistance value which is equal to the first and / or second resistance value and between these and is greater than during the measurement interval and greater than outside the second preparation phase. In this second preparatory phase, the compensation transmitter preferably transmits continuously, so that the interference radiation compensation unit or units can adjust to this situation in terms of operating point. Also in this second preparation phase, which lies between the first preparation phase and the measurement phase of a measurement interval, the or each interference radiation compensation unit has an internal resistance value which is smaller than during the measurement phase; The interference radiation compensation unit or units thus react again relatively quickly, it remains that they are switched to high impedance, if the actual measurement takes place in the measurement phase.
In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass der mindestens eine Messsender und/oder der mindestens eine Kompensationssender zumindest während der Messphase modulierte optische Signale aussendet/aussenden. In an advantageous development of the invention, it can be provided that the at least one measuring transmitter and / or the at least one compensation transmitter transmits / emits modulated optical signals at least during the measuring phase.
In einer anderen vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass zumindest Anteile des Kompensationssignals komplementär, d .h. gegenphasig bzw. um 180° phasenverschoben zum Messsignal sind . Ferner ist es zweckmäßig, dass zumindest Anteile des Messsignals und des Kompensationssignals einander überlagernd, insbesondere addierend oder multiplizierend von dem mindestens einen Empfänger empfangen werden. In another advantageous embodiment of the invention can be provided that at least portions of the compensation signal complementary, that is. out of phase or 180 ° out of phase with the measurement signal. Furthermore, it is expedient that at least portions of the measurement signal and the compensation signal are superimposed on one another, in particular being added or multiplied by the at least one receiver.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann ferner vorgesehen sein, dass die mindestens eine Störstrahlungs-Kompensationseinheit als eine spannungsgesteuerte Stromquelle, als ein Gyrator, als eine variable Impedanz, als ein variabler Widerstand oder als eine variable Induktivität ausgebildet ist. Eine weitere Variante der Erfindung betrifft eine Vorrichtung zur Vermessung einer für die Erfassung eines Objekts bestimmten optischen Signalübertragungsstrecke während einer Vielzahl von insbesondere intermittierend aufeinanderfolgenden Messintervallen, insbesondere für die Erkennung eines Objekts und/oder für die Erkennung einer Bewegung und/oder Bewegungsrichtung eines Objekts, wobei diese Vorrichtung versehen ist mit In a further advantageous embodiment of the invention may further be provided that the at least one interference radiation compensation unit is designed as a voltage-controlled current source, as a gyrator, as a variable impedance, as a variable resistor or as a variable inductance. A further variant of the invention relates to a device for measuring an optical signal transmission path intended for the detection of an object during a plurality of intermittently successive measuring intervals, in particular for detecting an object and / or for detecting a movement and / or direction of movement of an object this device is provided with
mindestens einem Messsender zum Senden eines optischen Messsignals, mindesten einem Empfänger zum Empfang eines optischen Signals und einer Ansteuer- und Auswerteeinheit zur Ansteuerung des mindestens einen Messsenders und des mindestens einen Empfängers zwecks Sendens bzw. Empfangens eines optischen Signals während einer Messphase eines Messintervalls und zur Auswertung des empfangenen optischen Signals durch Verarbeitung eines elektrischen Signals, das an einem ersten elektrisch mit dem mindestens einen Empfänger gekoppelten Schaltungsknoten ansteht,  at least one measuring transmitter for transmitting an optical measuring signal, at least one receiver for receiving an optical signal and a control and evaluation unit for controlling the at least one measuring transmitter and the at least one receiver for transmitting or receiving an optical signal during a measuring phase of a measuring interval and for evaluation the received optical signal by processing an electrical signal present at a first circuit node electrically coupled to the at least one receiver;
wobei die Ansteuer- und Auswerteeinheit anhand von Auswertesignalen detektiert, ob sich ein Objekt innerhalb der Signalübertragungsstrecke befindet oder nicht, und so lange, wie kein Objekt innerhalb der Übertragungsstrecke erfasst wird, die Messintervalle mit einer niedrigen ersten Wiederholfrequenz durchführt und  wherein the control and evaluation unit detects on the basis of evaluation signals, whether an object is within the signal transmission path or not, and as long as no object is detected within the transmission path, performs the measurement intervals with a low first repetition frequency and
wobei die Ansteuer- und Auswerteeinheit dann, wenn ein Objekt in der Signalübertragungsstrecke erkannt wird, die Messintervalle mit einer hohen zweiten Wiederholfrequenz durchführt. Hierbei kann vorteilhafterweise vorgesehen sein, dass die Durchführung der Messintervalle mit der hohen zweiten Wiederholfrequenz ab der letzten NichtErkennung eines Objekts innerhalb der Signalübertragungsstrecke für eine vorgebbare Zeitspanne beibehalten bleibt, bevor auf die niedrige erste Wiederholfrequenz umschaltbar ist.  wherein the control and evaluation unit, when an object is detected in the signal transmission path, performs the measurement intervals at a high second repetition frequency. In this case, it can advantageously be provided that the execution of the measurement intervals with the high second repetition frequency from the last non-detection of an object within the signal transmission path is maintained for a predefinable period of time before it is possible to switch to the low first repetition frequency.
Ferner kann die Vorrichtung versehen sein mit einem Prozessor zur Weiterverarbeitung der Auswertesignale der Ansteuer- und Auswerteeinheit, wobei die Ansteuer- und Auswerteeinheit Auswertesignale, die die Nichtexistenz eines Objekts repräsentieren, nicht an den Prozessor überträgt und den Prozessor zumindest über das erstmalige Erkennen eines Objekts innerhalb der Signalübertragungsstrecke informiert. Außerdem oder alternativ kann der Prozessor die Ansteuer- und Auswerteeinheit zum Umschalten der Wiederhol rate der Messintervalle von der hohen ersten Wiederholfrequenz auf die niedrige zweite Wiederholfrequenz veranlassen. Des Weiteren kann der Betrieb der Vorrichtung wahlweise in einem Normalmodus oder in einem Energiesparmodus mit gegenüber dem Normalmodus verringerter Energieaufnahme erfolgen. Furthermore, the device may be provided with a processor for further processing of the evaluation signals of the control and evaluation unit, wherein the control and evaluation unit evaluation signals that the non-existence of a Represent object, not transmitted to the processor and the processor at least informed about the first-time detection of an object within the signal transmission path. Additionally or alternatively, the processor may cause the drive and evaluation unit to switch the repetition rate of the measurement intervals from the high first repetition frequency to the low second repetition frequency. Furthermore, the operation of the device can be done either in a normal mode or in an energy-saving mode with respect to the normal mode reduced power consumption.
Hierbei kann es zweckmäßig sein, wenn die Vorrichtung einen Prozessor zur Weiterverarbeitung der Auswertesignale der Ansteuer- und Auswerteeinheit aufweist, wobei der Prozessor die Umschaltung vom Normalmodus auf den Energiesparmodus und umgekehrt veranlasst oder veranlassen kann. It may be expedient here if the device has a processor for further processing of the evaluation signals of the control and evaluation unit, wherein the processor can initiate or initiate the switchover from the normal mode to the energy-saving mode and vice versa.
Ferner kann die Vorrichtung einen Spannungsregler für verschiedene Kompo- nenten der Vorrichtung aufweisen, wobei der Spannungsregler im Energiesparmodus einzelne der Komponenten mit gegenüber dem Normalmodus verringerter Energie, insbesondere auch gar nicht mit Energie versorgt. Furthermore, the device may have a voltage regulator for various components of the device, the voltage regulator in the energy-saving mode supplying individual components with energy that is reduced in relation to the normal mode, in particular not at all.
Detaillierte Beschreibung der Erfindung Detailed description of the invention
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels sowie unter Bezugnahme auf die Zeichnung näher erläutert. Im Einzelnen zeigen dabei : Fig . 1 eine Übersicht über das Gesamtsystem als Blockschaltungsdiagramm, Fig . 2 den Zeitverlauf verschiedener Signale des Gesamtsystems gemäß Fig. 1 während eines Messintervalls bzw. während eines Messzyklus und Fign. 3 und 4 The invention will be explained in more detail using an exemplary embodiment and with reference to the drawing. In detail, FIG. 1 is an overview of the overall system as a block circuit diagram, Fig. FIG. 2 shows the time characteristic of various signals of the overall system according to FIG. 1 during a measuring interval or during a measuring cycle and FIGS. 3 and 4
Diagramme zur Verdeutlichung einer (Auto-)Kalibrierung des Gesamtsystems.  Diagrams to illustrate a (auto) calibration of the entire system.
Eine erfindungsgemäße Vorrichtung zur störstrahlungskompensierten An- Steuerung einer Fotodiode und zur Auswertung des Fotostroms weist zwei Anschlüsse auf. Zwischen diesen wird die Empfangsdiode D betrieben. Über die Schaltungsknoten 61,62 wird die Empfangsdiode D von zwei gesteuerten Stromquellen 27,28 bestromt. Hierbei erfassen zwei Verstärker 26,29 die Potenziale auf den von den Anschlüssen ausgehenden Eingangsleitungen 30,31. Ändert sich der Arbeitspunkt der Diode zum Beispiel durch permanente Bestrahlung mit Sonnenlicht, so ändert sich der generierte Fotostrom. Der Spannungsabfall über der Empfangsdiode D ändert sich und die Arbeitspotenziale der Eingangsleitungen 30,31 und damit an den Eingängen der Verstärker 26, 29. Dieses wird durch die Verstärker 26,29 registriert. Diese vergleichen die Potenziale auf den Eingangsleitungen 30,31 jeweils mit einem Referenzpotenzial Refl, Ref2. Die Ausgänge der Verstärker 26,29 regeln die Stromquellen 27,28 nun so nach, dass die Spannungswerte der Eingangsleitungen 30,31 wieder den Vorgaben entsprechen. Koppelkondensatoren 24,25 bilden eine Barriere für die Gleichspannungspegel auf den Eingangsleitungen 30,31 zu nachgeordneten Schaltungen. Die Kondensatoren 24,25 sind auf der den Anschlüssen abgewandten Seite mit den Eingängen zu Messverstärkern 18,19 verbunden. Die Ausgänge 33,34 der Messverstärker 18,19 sind jeweils über einstellbare Kapazitäten 20 bzw. 21 auf ihre Eingänge zurückgekoppelt. Eine Differenzstufe 35 bildet das Differenzsignal 63 der beiden Verstärkerausgangs- Signale. Im Idealfall soll dieses Signal 63 das Nutzsignal der Fotodiode darstellen. Wie bereits zuvor beschrieben, führt die oben skizzierte Regelung durch die Verstärker 26,29 der beiden spannungsgesteuerten Stromquellen 27 bzw. 28 und die Änderung der Einstellung der Stromquellen 27,28 zu einer Belastung des Nutzsignals, was die Reichweite massiv einschränkt. A device according to the invention for the interference radiation-compensated control of a photodiode and for the evaluation of the photocurrent has two connections. Between them, the receiving diode D is operated. Via the circuit nodes 61, 62, the receiving diode D is energized by two controlled current sources 27, 28. In this case, two amplifiers 26, 29 detect the potentials on the input lines 30, 31 originating from the connections. If the operating point of the diode changes, for example, by permanent irradiation with sunlight, the generated photocurrent changes. The voltage drop across the receiving diode D changes and the working potentials of the input lines 30, 31 and thus at the inputs of the amplifiers 26, 29. This is registered by the amplifiers 26, 29. These compare the potentials on the input lines 30,31 each with a reference potential Refl, Ref2. The outputs of the amplifiers 26, 29 now regulate the current sources 27, 28 in such a way that the voltage values of the input lines 30, 31 again correspond to the specifications. Coupling capacitors 24, 25 form a barrier to the DC voltage levels on the input lines 30, 31 to downstream circuits. The capacitors 24,25 are connected on the side facing away from the terminals with the inputs to measuring amplifiers 18,19. The outputs 33, 34 of the measuring amplifiers 18, 19 are each fed back via adjustable capacitances 20, 21 to their inputs. A differential stage 35 forms the difference signal 63 of the two amplifier output signals. Ideally, this signal 63 should represent the useful signal of the photodiode. As described above, the control outlined above by the amplifiers 26,29 of the two voltage-controlled current sources 27 and 28 and the change in the setting of the current sources 27,28 leads to a load on the useful signal, which limits the range massively.
Der erfindungsgemäßen Vorrichtung bzw. dem erfindungsgemäßen Verfahren liegt nun die Erkenntnis zugrunde, dass bei den meisten Anwendungen, insbesondere im Zusammenhang mit einer Gestensteuerung für mobile Geräte, ein permanenter Messbetrieb gar nicht notwendig oder erwünscht ist. Ein solcher Betreib verbraucht Energie, die insbesondere bei mobilen Geräten äußerst "kostbar", weil nur begrenzt verfügbar, ist. The device according to the invention or the method according to the invention is now based on the finding that in most applications, in particular in connection with a gesture control for mobile devices, a permanent measuring operation is not necessary or desirable. Such an operation consumes energy that is extremely "precious" especially for mobile devices, because it is limited in availability.
Die Vorrichtung sollte also zeitabhängig in verschiedenen Systemzuständen, d . h. in einzelnen zeitlich getrennten und aufeinanderfolgenden Messintervallen betrieben werden, die jeweils mindestens eine Messphase aufweisen. In diesem Messzustand wird die Nachregelung durch die Stromquellen 27,28 praktisch ausgeschaltet. Einzig die Kondensatoren 24,25 halten die jeweiligen Arbeitspunkte. Dies ist gleichzusetzen mit einer Änderung des Innenwiderstands der Stromquellen 27,28. The device should therefore be time-dependent in different system states, i. H. be operated in individual time-separated and consecutive measurement intervals, each having at least one measurement phase. In this measurement state, the readjustment by the current sources 27,28 practically switched off. Only the capacitors 24,25 hold the respective operating points. This is equivalent to a change in the internal resistance of the current sources 27, 28.
Eine solche schlechte (weil "träge") Regelung verhindert aber die Anpassung an eine Fremdlichtbestrahlung. Es ist daher sinnvoll, pro Messintervall einen weiteren Zustand, nämlich eine (Mess-)Vorbereitungsphase zu definieren, in der der Innenwiderstand der Stromquellen 27,28 minimal ist. In diesem Zu- stand regeln die Stromquellen schnell nach. Ein Nutzsignal würde in der Vorbereitungsphase stark belastet und verfälscht. Daher wird in dieser Vorbereitungsphase noch keine Messung durchgeführt. However, such a poor (because "sluggish") control prevents the adaptation to an external light irradiation. It therefore makes sense to define a further state per measurement interval, namely a (measurement) preparation phase in which the internal resistance of the current sources 27, 28 is minimal. In this state, the power sources quickly regulate. A useful signal would be heavily loaded and distorted in the preparation phase. Therefore, no measurement is performed in this preparation phase.
In einer nicht gezeigten Sample-and-Hold-Schaltung wird das Ergebnis der jeweiligen Messung typischerweise zwischengespeichert. Ein Problem, das sich jedoch nun ergibt, besteht darin, dass eine Störung, die während einer Messung auftritt, die Messverstärker 18,19 über- oder untersteuern kann. Ein solchermaßen gestörtes Messergebnis ist nicht verwendbar. Daher ist es sinnvoll, das Messergebnis quantitativ zu bewerten. In a sample-and-hold circuit, not shown, the result of the respective measurement is typically buffered. However, a problem that now arises is that a disturbance that occurs during a measurement may over- or underdrive the sense amplifiers 18, 19. Such a disturbed measurement result is not usable. Therefore, it makes sense to quantitatively evaluate the measurement result.
Im einfachsten Fall kann dies beispielsweise dadurch geschehen, dass die Messverstärker 18,19 je ein Signal für Übersteuerung und je ein Signal für Untersteuerung ausgeben. Somit sind 16 Zustände des Systems von zwei Messverstärkern 18,19 mit je zwei Bewertungssignalen möglich. Von diesen sind nicht alle sinnvoll, da beispielsweise eine gleichzeitig auftretende Über- und Untersteuerung nicht realistisch, jedoch trotzdem fehlerhaft ist. Trotzdem bildet das vier-Bit-Wort, das auf diese Weise gebildet wird, eine quantitative Bewertung jedes Messergebnisses. In the simplest case, this can be done, for example, by the measuring amplifiers 18, 19 each outputting one signal for overdrive and one signal for understeer. Thus, 16 states of the system of two amplifiers 18,19 are possible with two evaluation signals. Of these, not all make sense because, for example, a simultaneously occurring over- and understeer is not realistic, but still faulty. Nevertheless, the four-bit word formed in this way forms a quantitative assessment of each measurement result.
Im Gegensatz zum Stand der Technik werden also keine Transimpedanzverstärker, sondern Integratoren, die Teil der besagten Messverstärker 18,19 sind, am Eingang des Systems verwendet. In contrast to the prior art, therefore, no transimpedance amplifiers, but integrators, which are part of said measuring amplifiers 18, 19, are used at the input of the system.
Der Ablauf eines Messintervalls wird beispielsweise durch den Digital-Control- Block 4 des (Block-)Schaltbilds nach Fig. 1 gesteuert. Durch dessen Ablaufsteuerung wird ein Messungsaktivierungssignal "Measure" (Bezugszeichen 66, Fig . 2) zu Beginn der Messung (Bezugszeichen 67, Fig . 2) aktiviert. Damit beginnt die erste Vorbereitungsphase A. In dieser Phase A regeln die Stromquellen 27,28 niederohmig den Arbeitspunkt der Empfangsdiode D nach. Der Ausgang der Stromversorgung für eine Kompensationsdiode K wird aktiv geschaltet. Hierdurch bestrahlt die Kompensationsdiode K bereits die Fotodiode D. Die Kompensationsdiode K wird zunächst nicht moduliert. Durch die Niederohmigkeit der Stromquellen 27,28 kommen die Messverstärker 18,19 schnell in ihre Arbeitspunkte. Die Kapazitäten 20,21 bzw. Koppelkondensatoren 24,25 werden auf ihre Arbeitspegel aufgeladen. Die Stromquellen 64,65, 66,67 für den Betrieb von in diesem Ausführungsbeispiel drei Messsendedioden Hl, 1-12,1-13 (wegen der mehrdimensionalen insbesondere 3D-Gestenerken- nung) und die Kompensationsdiode K werden auf die jeweiligen Betriebswerte eingestellt. The sequence of a measuring interval is controlled, for example, by the digital control block 4 of the (block) circuit diagram according to FIG. Through the sequence control, a measurement activation signal "Measure" (reference number 66, FIG. 2) is activated at the beginning of the measurement (reference number 67, FIG. 2). This starts the first preparation phase A. In this phase A, the current sources 27, 28 regulate the operating point of the receiving diode D at low impedance. The output of the power supply for a compensation diode K is activated. As a result, the compensation diode K already irradiates the photodiode D. The compensation diode K is initially not modulated. Due to the low resistance of the current sources 27,28 the measuring amplifiers 18,19 come quickly to their operating points. The capacitors 20,21 and coupling capacitors 24,25 are charged to their working levels. The current sources 64, 65, 66.67 for the operation of in this embodiment, three measuring transmit diodes Hl, 1-12, 1-13 (because of the multi-dimensional particular 3D Gestestenerken- tion) and the compensation diode K are set to the respective operating values.
Am Ende der Phase A zum Zeitpunkt 69 (Fig . 2) wird das Signal "hold" (siehe Bezugszeichen 68, Fig . 2) aktiv. Die spannungsgesteuerten Stromquellen 27,28 gehen von ihren bis dahin eingenommenen niederohmigen in einen hochohmigen Zustand. Damit werden ihre Arbeitspunkte "eingefroren". Zu diesem Zeitpunkt sollte das Differenzsignal 63 der Ausgänge der Messverstärker 18,19 konstant Null sein, da die Arbeitspunkte eingeregelt sind . At the end of phase A at time 69 (FIG. 2), the signal "hold" (see reference numeral 68, FIG. 2) becomes active. The voltage-controlled current sources 27, 28 go from their hitherto assumed low-impedance state into a high-resistance state. This "frozen" their work points. At this point in time, the difference signal 63 of the outputs of the measuring amplifiers 18, 19 should be constantly zero, since the operating points are adjusted.
Da auch das Umschalten in den hochohmigen Zustand zu Störungen führt, ist es sinnvoll, noch einige Zeit verstreichen zu lassen, bis die eigentliche Mes- sung beginnt. Diese Zeit wird Stabilisierungsphase oder zweite Vorbereitungsphase B (Fig . 2) genannt. Sie endet zum Zeitpunkt 70 (Fig. 2). Since switching to the high-impedance state also leads to faults, it makes sense to let some time elapse before the actual measurement begins. This time is called stabilization phase or second preparation phase B (Figure 2). It ends at time 70 (FIG. 2).
Im einfachsten Fall handelt es sich bei den Modulationssignalen 45,46,47,48 für die Kompensationsdiode K bzw. für die Messsendedioden Hl, 1-12,1-13 um 180° phasenverschobene Rechtecksignale, die in der Amplitude regelbar sind, (siehe in Messphase C Fig . 2) In the simplest case, the modulation signals 45, 46, 47, 48 for the compensating diode K or for the measuring transmitting diodes H1, 1-12, 1-13 are square-wave signals which are phase-shifted by 180 ° and whose amplitude can be regulated (see Measuring phase C Fig. 2)
Die Messung beginnt, indem z.B. die Abstrahlung der Kompensationsdiode abgeschwächt oder gar ausgeschaltet wird (siehe Bezugszeichen 45 und 69 in Fign. 1 und 2). Gleichzeitig wird typischerweise mindestens eines der Sendesignale (siehe Bezugszeichen 46 und/oder 46 und/oder 47 in Fign . 1 und 2) eingeschaltet. Die typischerweise mindestens eine Messsendediode Hl und/oder H2 und/oder H3 bestrahlt mit Umweg über die zu vermessende Übertragungsstrecke die (Empfangs-)Fotodiode D. Bei mehreren Sendedioden werden diese (z.B. zyklisch) sequentiell angesteuert. The measurement begins by e.g. the radiation of the compensating diode is attenuated or even switched off (see reference numbers 45 and 69 in Figs. 1 and 2). At the same time, typically at least one of the transmit signals (see reference numerals 46 and / or 46 and / or 47 in Figures 1 and 2) is turned on. The typically at least one measuring transmission diode Hl and / or H2 and / or H3 irradiates the (receiving) photodiode D by way of the transmission path to be measured. In the case of several transmitting diodes, these are driven sequentially (for example cyclically).
Die Kompensationssendediode K und die typischerweise mindestens eine Messsendediode Hl oder H2 oder H3 werden abwechselnd abgeschwächt bzw. zu verstärkter Abstrahlung veranlasst. Zunächst wird dies zu einer verbleibenden Modulation des Ausgangssignals der Eingangsstufe führen. Nach einer Verstärkung durch einen Verstärker 36 kann das so empfangene modulierte Signal mit einem Demodulator in ein Gleichsignal verwandelt werden. Dies kann zur Regelung der Amplitude der Modulation der einen Messsendediode oder jeweils einer der Sendedioden Hl, 1-12,1-13 und/ oder der Amplitude der Modulation der Kompensationsdiode K verwendet werden. The compensation transmitting diode K and the typically at least one measuring transmitter diode Hl or H2 or H3 are alternately attenuated or caused to increased radiation. First, this will result in a residual modulation of the output of the input stage. After amplification by an amplifier 36, the thus-received modulated signal can be converted into a DC signal by a demodulator. This can be used to control the amplitude of the modulation of the one Meßsendediode or each one of the transmitting diode Hl, 1-12,1-13 and / or the amplitude of the modulation of the compensation diode K.
In Fig. 2 wird beispielhaft als Fall Fl eine Regelung der Kompensationsdiode K gezeigt und als Fall F2 eine Regelung der Messsendediode bzw. -dioden Hl, 1-12,1-13. Die Regelung kann dabei für die Messsendedioden H1,H2 und H3 unterschiedlich sein. Typischerweise werden darüber hinaus die Messsendedioden Hl, H2 und H3 nicht gleichzeitig sondern zeitversetzt betrieben. Dabei können auch mehr als eine Empfangsdiode zum Einsatz kommen. Der Zeitver- satz wird dabei typischerweise so gewählt, dass immer nur eine Empfangsdiode D und eine Sendediode H1,H2,H3 gleichzeitig aktiv sind. In FIG. 2, a control of the compensation diode K is shown by way of example as the case F1 and, as the case F2, a regulation of the measuring transmitter diode or diodes H1, 1-12, 1-13 is shown. The control can be different for the measuring transmitter diodes H1, H2 and H3. Typically, moreover, the measuring transmitter diodes H1, H2 and H3 are not operated simultaneously but with a time delay. In this case, more than one receiving diode can be used. The time offset is typically chosen such that only one receiving diode D and one transmitting diode H1, H2, H3 are active at a time.
Im Folgenden wird die Regelung über die Änderung der Modulationsamplitude der Sendediode H1,H2,H3 erläutert. In the following, the regulation on the change of the modulation amplitude of the transmitting diode H1, H2, H3 will be explained.
Hierbei regelt der so erhaltene Messwert die Amplitude der jeweiligen Messsendediode H1,H2,H3 nach. Es hat sich gezeigt, dass es sinnvoll ist, diesen Wert vor der Gegenkopplung zu verstärken. Dieses Prinzip ist auch aus Operationsverstärkerschaltungen bekannt und dient der Unterdrückung parasitärer Faktoren und Einflüsse. Zum besseren Verständnis sei hier auf die nachfolgend genannten Schriften und Patentanmeldungen verwiesen, deren Inhalte in Kombination mit der hier offenbarten technischen Lehre Teil dieser Anmeldung sind : DE-B-103 46 741, EP-A-2 546 620, EP-A-2 356 000, EP-B-1 410 507, EP-B-1 435 509, EP-A-2 418 512, EP-B-1 269 629, DE-A-103 22 552, DE-B-10 2004 025 345, EP-A-2 405 283, DE-C-44 11 773, WO-A-2012/163725, DE-A- 2006 020 579, DE-B-10 2005 045 993, EP-B-1 979 764, DE-A-10 2012 024 778, DE-A-10 2013 000 376, DE10 2013 003 791.3, DEA-10 2013 000 380, WO-A-2014/096385, WO-A-2013/124018, DE-B-10 2013 002 304, EP-A-2 624 019, DE-A-10 2012 025 564, DE 10 2013 002 674.1, DE-A-10 2013 222 936, DE-A-10 2012 015 442, DE-A-10 2012 015 423, DE-B-10 2012 024 597, EP- A-2 679 982, EP-A-2 597 482, DE-A-10 2013 002 676, EP-A-2 653 885. In this case, the measured value obtained in this way regulates the amplitude of the respective measuring transmitter diode H1, H2, H3. It has been shown that it makes sense to increase this value before the negative feedback. This principle is also known from operational amplifier circuits and serves to suppress parasitic factors and influences. For a better understanding, reference is hereby made to the following documents and patent applications, the contents of which, in combination with the technical teaching disclosed here, are part of this application: DE-B-103 46 741, EP-A-2 546 620, EP-A-2 356 000, EP-B-1 410 507, EP-B-1 435 509, EP-A-2 418 512, EP-B-1 269 629, DE-A-103 22 552, DE-B-10 2004 025 345, EP-A-2 405 283, DE-C-44 11 773, WO-A-2012/163725, DE-A-2006 020 579, DE-B-10 2005 045 993, EP-B-1 979 764 DE-A-10 2012 024 778, DE-A-10 2013 000 376, DE10 2013 003 791.3, DEA-10 2013 000 380, WO-A-2014/096385, WO-A-2013/124018, DE-B -10 2013 002 304, EP-A-2 624 019, DE-A-10 2012 025 564, DE 10 2013 002 674.1, DE-A-10 2013 222 936, DE-A-10 2012 015 442, DE-A-10 2012 015 423, DE-B-10 2012 024 597, EP-A-2 679 982, EP-A-2 597 482, DE-A-10 2013 002 676, EP-A-2 653 885.
Durch die Regelung stellt sich im Idealfall ein Gleichgewicht ein und das Ausgangssignal 50 des Demodulators 37 stellt nach der besagten Verstärkung ein Maß für die Dämpfung des Sendesignals im Übertragungskanal dar. Die erfindungsgemäße Steuerung der Stromquellen 27,28 macht sich an den Eingangsleitungen 30,31 in einem Eingangswiderstand dahingehend bemerkbar, dass die Stromquellen in Abhängigkeit von typischerweise mindestens zwei Phasen eines Messzyklus (Bezugszeichen A und C, B und C oder A und B und C der Fig . 2) schwanken . The regulation ideally sets up an equilibrium and the output signal 50 of the demodulator 37 constitutes, after said amplification, a measure for the attenuation of the transmission signal in the transmission channel. The control according to the invention of the current sources 27, 28 starts at the input lines 30, 31 in FIG an input resistance to the effect that the current sources vary in response to typically at least two phases of a measurement cycle (reference numerals A and C, B and C or A and B and C of Fig. 2).
Natürlich ist die Wirksamkeit der spannungsgesteuerten Stromquellen 27,28 durch die realen Gegebenheiten eingeschränkt. Die Stromquellen 27,28 können nur bis zu einem Maximalstrom versuchen, den jeweils vorgegebenen Spannungspegel zu halten. Of course, the effectiveness of the voltage controlled current sources 27,28 is limited by the real conditions. The current sources 27, 28 can only try to keep the given voltage level up to a maximum current.
Das Messintervall (von Bezugszeichen 67, Fig . 2, bis Bezugszeichen 71, Fig . 2) wird dadurch beendet, dass das "Measure"-Signal (66) am Ende des Messzyklus (siehe Bezugszeichen 71, Fig . 2) wieder inaktiv wird . Alle Sendesignale werden abgeschaltet und das Messergebnis typischerweise beispielsweise in einer (nicht gezeichneten) Sample-and-Hold-Schaltung eingefroren. The measurement interval (from reference numeral 67, Fig. 2, to reference numeral 71, Fig. 2) is terminated by the fact that the "Measure" signal (66) becomes inactive again at the end of the measuring cycle (see reference numeral 71, Fig. 2). All transmit signals are turned off and the measurement result is typically frozen, for example, in a sample-and-hold circuit (not shown).
Je nach Anwendung ist es sinnvoll, in regelmäßigen Zeitabständen ein derartiges Messintervall (von Bezugszeichen 67, Fig . 2, bis Bezugszeichen 71, Fig . 2) in kürzeren oder längeren Zeitabständen zu wiederholen. Höhere Wiederhol- frequenzen für die Messsequenzen haben dabei allerdings eine höhere Stromaufnahme zur Folge. Als eine weitere Maßnahme zur Verbesserung der optischen Abstandsmessung kann das System in die Lage versetzt sein, zumindest einige und typischerweise jeden Messwert mit einem Qualitätswert der Messung zu versehen, also eine Messsignalqualitätsermittlung durchzuführen. Diese Maßnahme bildet im Rahmen dieser Anmeldung einen selbstständigen Erfindungsgegenstand. Depending on the application, it makes sense to repeat such a measuring interval (from reference numeral 67, FIG. 2, to reference numeral 71, FIG. 2) at regular time intervals in shorter or longer time intervals. However, higher repetition frequencies for the measurement sequences result in a higher current consumption. As a further measure for improving the optical distance measurement, the system may be able to provide at least some and typically each measured value with a quality value of the measurement, that is to perform a measurement signal quality determination. This measure forms part of this application an independent subject of the invention.
Somit ergibt sich bei mehreren aufeinanderfolgenden Messintervallen eine Folge von Messwerten mit zugehörigen Qualitätswerten, die es einem Messwertschätzer erlauben, einen optimierten Messwert zu schätzen und eine Wahrscheinlichkeit der Korrektheit dieses Messwertes anzugeben. Der daraus resultierende Messwertvektor kann beispielsweise als Basis für die Feature- Extraktion einer Gestenerkennung genutzt werden. Thus, at several successive measurement intervals, a sequence of measurement values with associated quality values results, which allow a measurement value estimator to estimate an optimized measurement value and to indicate a probability of the correctness of this measurement value. The resulting measured value vector can be used, for example, as the basis for the feature extraction of a gesture recognition.
Dies ist insbesondere dann von Nutzen, wenn ein Störer nicht, wie z.B. Son- nenlicht, mit relativ niedriger Frequenz (beispielsweise aufgrund von Abschattung durch z.B. Bäume), sondern wie z.B. bei Leuchtstoffröhren oder bei der Fahrt in einem Cabrio im Sonnenschein unter Bäumen hindurch relativ schnell moduliert wird. Selbst wenn die Störungsfrequenz in der Nähe der Modulationsfrequenz der Messsendedioden Hl, 1-12,1-13 und des Kompensationssenders K liegt, wird diese Frequenz in der Regel nicht korrekt getroffen. Es kommt zu einer Schwebung im Regelsignal, die erkannt und genutzt werden kann. Die Qualität der Messung wird typischerweise mit der Schwebungsfrequenz zeitabhängig schwanken. Da das System infolge der Bewertung der Messergebnisse nur solche Messwertsequenzen auswertet, die relativ ungestört sind, kommt es de facto somit automatisch zu einer Abtastung des Messsignals nur zu relativ ungestörten Zeiten. Darüber hinaus ist es denkbar, dass nicht nur als gestört erkannte Messwerte verworfen werden, sondern auch solche, für die ein Schätzer eine hohe Störungswahrscheinlichkeit ermittelt. Dies können beispielsweise direkt vorausgehende oder direkt folgende Messwerte sein. Auch sollte ein solches Messsystem Gegenmaßnahmen bei erkannten Störungen einleiten. Hierzu gehört beispielsweise eine Änderung der Messfrequenz. Dies kann sowohl die Wiederholfrequenz der Messintervalle als auch die Modulationsfrequenz der Messsendedioden Hl, 1-12,1-13 und der Kompensationssendediode K betreffen. Auch kann die Schaltung anders parametrisiert werden. Beispiels- weise können die Zeitkonstanten der als Integratoren wirkenden Messverstärker 18,19 geändert werden, indem die Kapazitäten 20,21 veränderbar sind . Im Extremfall können die Integratoren durch Überbrückung ihrer Kapazitäten 20,21 mit Hilfe der programmierbaren Schalter 22,23 überbrückt werden. Es kommt also, wie man an diesem Beispiel sieht, auch eine Änderung der Sys- tem- oder Schaltungstopologie in Frage. Die Integratoren werden dann zu reinen Impedanzwandlern. This is particularly useful when a disturber is not relative, such as sunlight, relatively low frequency (for example, due to shading by eg trees), but as in fluorescent tubes or while driving in a convertible in the sunshine under trees relative is modulated quickly. Even if the disturbance frequency is close to the modulation frequency of the measuring transmitting diodes Hl, 1-12, 1-13 and the compensation transmitter K, this frequency is usually not hit correctly. It comes to a beat in the control signal, which can be recognized and used. The quality of the measurement will typically vary with the beat frequency over time. Since the system evaluates only those measured value sequences as a result of the evaluation of the measurement results, which are relatively undisturbed, there is thus de facto automatically to a sampling of the measurement signal only at relatively undisturbed times. In addition, it is conceivable that not only disturbed recognized measured values are discarded, but also those for which an estimator determines a high probability of interference. These can be, for example, directly preceding or directly following measured values. Also, such a measuring system should initiate countermeasures for detected disturbances. This includes, for example, a change in the measurement frequency. This can relate both to the repetition frequency of the measuring intervals and to the modulation frequency of the measuring transmitting diodes H1, 1-12, 1-13 and the compensating transmitting diode K. Also, the circuit can be parameterized differently. For example, the time constants of the measuring amplifiers 18, 19 acting as integrators can be changed by changing the capacitances 20, 21. In extreme cases, the integrators can be bridged by bridging their capacitances 20, 21 with the aid of the programmable switches 22, 23. As you can see from this example, a change in the system or circuit topology is also possible. The integrators then become pure impedance transformers.
Eine weitere Verbesserung der Vorrichtung kann also durch eine Beurteilung der Qualität des Messsignals und/oder durch eine Regelung zur Optimierung der Messergebnisse erreicht werden. Im Allgemeinen wird die Rückkopplungsschleife durch Software geschlossen, da die Regelalgorithmen sehr stark applikationsabhängig sind. A further improvement of the device can thus be achieved by an assessment of the quality of the measurement signal and / or by a control for optimizing the measurement results. In general, the feedback loop is closed by software because the control algorithms are very application dependent.
Als Stellglied für diese Messsignalqualitätsregelung dient typischerweise eine Änderung der Systemparameter und/oder der Systemtopologie oder -struktur. As an actuator for this measurement signal quality control typically serves a change in the system parameters and / or the system topology or structure.
Eine weitere Möglichkeit, die in die Qualitätsbewertung eines Messergebnisses einfließen kann, ist die Auswertung der Stromquellen-Ströme. Hierzu wird im Block 16 ("Extrinsic Light Measurement" bzw. "Messung des äußeren Lichtes") zeitabhängig der Strom gemessen, den die Stromquelle oder Stromquellen 27,28 liefern. Diese Messergebnisse können der Software zur Verfügung gestellt werden. Diese kann beispielsweise durch eine Fourier-Transformation die Störfrequenzen bestimmen, die das Messsignal stören. Es ist besonders vorteilhaft, die Modulationsfrequenz der Messsendedioden H1,H2,H3 und der Kompensationsdiode K und die Wiederholfrequenz der Messintervalle (Bezugszeichen 67, Fig. 2, bis Bezugszeichen 71, Fig. 2) jeweils so zu wählen, dass sie mit den Störfrequenzen möglichst nicht interferieren. Somit kann beispiels- weise durch "Frequency-Hopping" die Störsignal-Robustheit angehoben werden. Another possibility, which can be included in the quality evaluation of a measurement result, is the evaluation of the current source currents. For this purpose, in block 16 ("extrinsic light measurement" or "measurement of the external light"), the current measured by the current source or current sources 27, 28 is measured as a function of time. These measurement results can be made available to the software. This can determine, for example by a Fourier transformation, the interference frequencies that disturb the measurement signal. It is particularly advantageous to select the modulation frequency of the measuring transmitting diodes H1, H2, H3 and the compensation diode K and the repetition frequency of the measuring intervals (reference numeral 67, Fig. 2, to reference numeral 71, Fig. 2) in each case so that they possible with the interference frequencies do not interfere. Thus, for example wise by "frequency hopping" the noise robustness can be raised.
Des Weiteren ist es denkbar, statt eines monofrequenten Sendesignals ein bandbegrenztes Signal zu verwenden und so schmalbandige Störer durch ein Spread-Spectra-Verfahren in ihrem Einfluss auf das Messergebnis zu reduzieren. Solche möglichen Sendesignale sind beispielsweise geeignete Pseudozu- fallsfolgen (siehe hierzu auch EP-A-2 631 674, deren Inhalt hiermit durch Bezugnahme Gegenstand der vorliegenden Anmeldung ist) Furthermore, it is conceivable to use a band-limited signal instead of a monofrequency transmission signal and thus to reduce narrow-band interferers by means of a spread-spectra method in their influence on the measurement result. Such possible transmission signals are, for example, suitable pseudo-random sequences (see also EP-A-2 631 674, the content of which is hereby incorporated by reference in the present application)
Eine weitere einen selbstständigen Erfindungsgedanken repräsentierende Maßnahme ist die Einführung und/oder Anhebung einer Schwelle für die Erkennung der Annäherung eines Objekts an die Messsendedioden Hl,H2,H3/Empfangsdiode D. Hierbei handelt es sich um eine nichtlineare Fil- terfunktion, die typischerweise in dem Block 37 der Fig. 1 realisiert ist, aber auch in einer nachfolgenden Verarbeitungsstufe realisiert sein kann. Dabei werden alle Messwerte unterhalb oder oberhalb einer Schwelle beispielsweise auf einen vordefinierten Wert fixiert. Schließlich kann aufgrund der Messungen ein rechnerisches Modell eines Störers parametrisiert werden und Zeitpunkte und Einstellungsparameter für das Messsystem prognostiziert werden, bei und mit denen das nächste Messintervall mit einer besonders guten Qualität durchgeführt werden kann. Nachfolgend soll auf eine weitere Besonderheit der Schaltung nach Fig. 1 eingegangen werden, bei der es sich um einen weiteren selbstständigen Erfindungsgedanken handelt. Another measure representing an independent concept of the invention is the introduction and / or raising of a threshold for detecting the approach of an object to the measuring transmitter diodes Hl, H2, H3 / receiving diode D. This is a nonlinear filter function, which is typically used in the Block 37 of FIG. 1 is realized, but can also be implemented in a subsequent processing stage. All measured values below or above a threshold are fixed to a predefined value, for example. Finally, based on the measurements, a computational model of a jammer can be parameterized and times and setting parameters for the measuring system can be predicted, at which and with which the next measuring interval with a particularly good quality can be performed. Below is a further particularity of the circuit of FIG. 1 will be discussed, in which it is a further independent inventive idea.
Gerade für mobile Anwendungen ist es besonders wichtig, möglichst wenig Energie zu verbrauchen. Daher ist es besonders günstig, wie oben beschrieben, die Messsendedioden bzw. eine der Messsendedioden H1,H2,H3 und nicht die Kompensationsdiode K zu modulieren und das System nur bei Bedarf zu betreiben. Um die erforderliche Betriebsenergie weiter zu reduzieren, ist es sinnvoll, das System nicht zu betreiben, wenn es beispielsweise komplett abgeschattet ist. Dies ist beispielsweise bei einem Einsatz in einem Mobiltelefon dann der Fall, wenn der Nutzer sich das Telefon zum Telefonieren an das Ohr hält. Für die Erkennung derartiger Nutzungssituationen ist es daher sinnvoll, einen weiteren, typischerweise passiven Sensor vorzusehen, der beispielsweise durch Messung des Umgebungslichts die Nutzungssituation vorklassifizieren kann. Auch hier ist ggf. der Einsatz einer innenwiderstandsmodulierten Störstrahlungs-Kompensationsschaltung sinnvoll, wenn modulierte Signale erkannt werden sollen. Die Schaltung gemäß Fig. 1 verfügt über eine solche Schnittstelle 53 (siehe in Fig. 1 oben rechts), die mit einer entsprechenden Eingangs-Hardware 7 versehen ist. Especially for mobile applications, it is particularly important to use as little energy as possible. Therefore, it is particularly favorable, as described above, to modulate the measuring transmitting diodes or one of the measuring transmitting diodes H1, H2, H3 and not the compensation diode K and to operate the system only when required. To further reduce the required operating power, it is It makes sense not to operate the system if it is completely shaded, for example. This is the case when used in a mobile telephone, for example, when the user holds the telephone to his ear for telephoning. For the detection of such usage situations, it is therefore useful to provide another, typically passive sensor, which can pre-classify the usage situation, for example by measuring the ambient light. Again, if necessary, the use of an internal resistance-modulated interference radiation compensation circuit makes sense if modulated signals are to be detected. The circuit according to FIG. 1 has such an interface 53 (see top right in FIG. 1), which is provided with a corresponding input hardware 7.
Darüber hinaus ist es sinnvoll, das ganze System in einen Energiesparmodus zu versetzen, um den Energieverbrauch noch weiter zu reduzieren. Hierbei muss beachtet werden, dass moderne integrierte Schaltungen typischerweise intern mit einer niedrigeren Spannung betrieben werden, als ihre Peripherie. Insoweit ist ein Spannungsregler 1 von Vorteil, der die internen Betriebsspannungen bereitstellt. Dieser Spannungsregler 1 verbraucht im Energiesparmodus unnötig Energie. Es ist daher sinnvoll, einen möglichst kleinen Teil (siehe Funktionsblock 14) der Schaltung so zu realisieren, dass er direkt mit der Betriebsspannung betrieben werden kann. Dieser Funktionsblock 14 hat einzig die Aufgabe, über eine Schnittstelle 54 bis 57 die Minimalkommunikation zum Hauptprozessor, mit dem das Messsystem kommuniziert, sicherzustellen. Die Schnittstelle weist beispielsweise eine serielle TX- und RX-Zweidraht-Leitung oder eine I2C-Bus-Schnittstelle 54, einen Interrupt-Ausgang 55 für den Hauptprozessor, der auf einem definierten Potenzial liegen muss, einen nicht maskierbaren Messsystem- Reset 56 und einer Referenzspannungseingang 57 auf. Alle anderen Systeme sind ausgeschaltet. Wenn möglich wird auch der normale Systemoszillator 6 abgeschaltet und stattdessen dieser Funktions- block 14 der Schaltung mit einer niedrigen Frequenz aus einem Minimaloszillator 5 versorgt. Dieser ist wesentlich kleiner, da er nicht den gesamten IC treiben muss. Somit sind im Energiesparmodus nur die Standard-Blöcke 14 und 6 aktiv. Ausgeschaltet ist insbesondere die Band-Gap-Referenz 2, der Block 4 (Digital- Control), der Spannungsregler 1 und alle Messverstärker und Empfangs- und Sendeeinrichtungen. In addition, it makes sense to put the whole system in a power-saving mode to further reduce energy consumption. It should be noted that modern integrated circuits typically operate internally at a lower voltage than their peripherals. In that regard, a voltage regulator 1 is advantageous, which provides the internal operating voltages. This voltage regulator 1 unnecessarily consumes energy in energy-saving mode. It therefore makes sense to realize the smallest possible part (see function block 14) of the circuit so that it can be operated directly with the operating voltage. This function block 14 has only the task, via an interface 54 to 57 to ensure the minimum communication to the main processor with which the measuring system communicates. The interface has, for example, a serial TX and RX two-wire line or an I 2 C bus interface 54, an interrupt output 55 for the main processor, which must be at a defined potential, a non-maskable measuring system reset 56 and a reference voltage input 57. All other systems are switched off. If possible, the normal system oscillator 6 is also switched off and instead this function block 14 of the circuit is supplied with a low frequency from a minimum oscillator 5. This one is much smaller because it does not have to drive the entire IC. Thus, in the power save mode, only the standard blocks 14 and 6 are active. In particular, the band-gap reference 2, the block 4 (digital control), the voltage regulator 1 and all measuring amplifiers and receiving and transmitting devices are switched off.
Handelt es sich bei der Schnittstelle 54 beispielsweise um eine I2C Schnittstelle, so ist es sinnvoll, den Funktionsblock 14 so zu gestalten, dass er nur einen ganz bestimmten Befehl auf dem Bus erkennen kann, der an eine ganz genau vorgegebene Registeradresse gesendet wird. If the interface 54 is, for example, an I 2 C interface, then it makes sense to configure the function block 14 such that it can only recognize a specific command on the bus, which is sent to a precisely specified register address.
Ein solches Protokoll kann beispielsweise so aussehen, dass der Funktionsblock 14 eine Sequenz aus einem Start-Bit sowie der Slave-Adresse und aus einem Bit zur Signalisierung eines Schreibzugriffs erkennt und daraufhin ein Acknowledge-Bit ausgibt, woraufhin der Hauptprozessor die Registeradresse sendet, der Funktionsblock 14 ein Acknowledge-Bit sendet und der Hauptprozessor daraufhin ein Parity-Bit sendet. Hat der Funktionsblock 14 alle diese Daten als korrekt erkannt, werden der Spannungsregler, die Bandgap-Referenz 2 und alle anderen Teile der Schaltung in einer vordefinierten Sequenz nacheinander und/oder parallel, je nach Typ und Erfordernis, hochgefahren. Die normale I2C-Bus Kommunikation wird dann durch den Block 4 (Digital Control) wieder bis zu einem nächsten Einschlafbefehl übernommen. Nach Empfang eines solchen Einschlafbefehls veranlasst der Block 4 (Digital control) die wesentlichen Teile des Messsystems, in den Energiesparmodus überzugehen. Der letzte Teil der Abschaltsequenz muss jedoch vom Funktionsblock 14 gesteuert werden. Dies betrifft insbesondere die Abschaltung der Energieversorgung durch Abschaltung des Spannungsreglers 1, des Oszillators 6 und des Blocks 4 (Digital Control) selbst. Such a protocol can, for example, be such that the function block 14 recognizes a sequence from a start bit and the slave address and from a bit for signaling a write access and then issues an acknowledge bit, whereupon the main processor sends the register address, the function block 14 sends an acknowledge bit and the main processor then sends a parity bit. If the function block 14 has recognized all these data as correct, the voltage regulator, the bandgap reference 2 and all other parts of the circuit are started up in a predefined sequence one after the other and / or in parallel, depending on the type and requirement. The normal I 2 C bus communication is then taken over by the block 4 (Digital Control) again until a next sleep command. Upon receipt of such a sleep command, block 4 (Digital Control) causes the essential parts of the measurement system to enter the energy-saving mode. However, the last part of the shutdown sequence must be controlled by function block 14. This particularly relates to the shutdown of the power supply by switching off the voltage regulator 1, the oscillator 6 and the block 4 (Digital Control) itself.
Es ist weiter sinnvoll, wenn der Funktionsblock 14 über einen internen Zeitge- ber verfügt, der in regelmäßigen Abständen das System aufwecken kann, ohne dass es dazu des Empfangs eines Befehls des Hauptprozessors über die Schnittstelle 54 bedarf. Es kann sinnvoll sein, wenn das System nach Durchführung von bezüglich Anzahl und Art vordefinierten Messungsintervallen wieder in den Energiesparmodus wechselt, ohne dass es hierzu eines gesonderten Befehls des Hauptprozessors über die Schnittstelle 54 von außen bedarf. It also makes sense if the function block 14 has an internal timer which can wake up the system at regular intervals, without requiring the reception of a command of the main processor via the interface 54. It may be useful if the system again switches to the energy-saving mode after carrying out measurement intervals predefined in terms of number and type, without requiring a separate command from the main processor via the interface 54 from the outside.
Hierbei ist es sinnvoll, wenn die Messwerte und vorzugsweise auch die Messwertqualitäten in einem (nicht gezeigten) Speicher abgelegt werden. Zu den dort abgelegten Messwerten können auch Konfigurationsdaten des Systems zählen (beispielsweise mit welchem der Sendedioden H1,H2,H3, mit welcher der Kompensationsdiode K und mit welcher Empfangsdiode D wann und mit welcher Qualität Messwerte aufgenommen wurden. Auch können dort die Messergebnisse weiterer Messignalbewertungsblöcke wie beispielsweise des Blocks 16 (Extrinsic Light Measurement) abgelegt werden. Im normalen Messbetrieb darf aber trotz des Energiesparmodus keine Energie "verschwendet" werden. Daher kann beispielsweise die Bandgap-Referenz 2, die ja nur eine Referenzspannung für die Verwendung an verschiedenen Stellen im Messsystem liefert, zeitweise abgeschaltet werden, wenn deren Spannung beispielsweise in einer Sample-and-Hold-Schaltung zwischengespeichert und gepuffert ist. Die Bandgap-Schaltung wird dann nur zum Erneuern der unweigerlich langsam abfließenden Ladungen aus dem Speicherelement der Sample-and-Hold-Schaltung (typischerweise ein Kondensator) von Zeit zu Zeit angeschaltet. Ein weiteres selbstständig erfindungswesentliches Merkmal der Vorrichtung ergibt sich aus der notwendigen Kalibration des Messsystems. In this case, it makes sense if the measured values and preferably also the measured value qualities are stored in a memory (not shown). The measured values stored there can also include configuration data of the system (for example with which of the transmitting diodes H1, H2, H3, with which the compensating diode K and with which receiving diode D and with which quality measured values were recorded.) The measurement results of further measuring signal evaluation blocks such as For example, block 16 (Extrinsic Light Measurement) may be used, but energy may not be "wasted" in normal measurement mode, so bandgap reference 2, for example, provides only one reference voltage for use at different locations in the measurement system are temporarily turned off when their voltage is latched and buffered in, for example, a sample-and-hold circuit, and the bandgap circuit is then regenerated only for the inevitably slowly draining charges from the memory element of the sample-and-hold circuit (typically a capacitor) of Turned on time after time. Another feature of the invention, which is essential to the invention, results from the necessary calibration of the measuring system.
Hierzu ist in Fig. 3 die Regelcharakteristik des Systems bei Regelung der Sendediodenamplitude Tj dargestellt. Die Amplitude des auf die jeweilige Mess- sendediode H1,H2,H3 zurückzuführenden Anteils (siehe 72,75,77 in Fig. 3) des Fotostroms IPD in der/einer Empfangsdiode D hängt dabei von der Sendediodenamplitude T| ab. Die Amplitude des auf die Kompensationsdiode K bzw. jeweilige Kompensationsdiode K zurückzuführenden Anteils (siehe Linie 73 in Fig. 3) des Fotostroms IPD in der/einer Empfangsdiode D hängt im Gegensatz dazu von der Senderamplitude T, nicht ab. For this purpose, the control characteristic of the system in regulating the transmitter diode amplitude Tj is shown in FIG. The amplitude of the component attributable to the respective measuring transmitter diode H1, H2, H3 (see 72,75,77 in FIG. 3) of the photocurrent I PD in the receiving diode D depends on the transmitter diode amplitude T | from. The amplitude of the component attributable to the compensation diode K or the respective compensation diode K (see line 73 in FIG Fig. 3) of the photocurrent I PD in the / a receiving diode D in contrast depends on the transmitter amplitude T, not from.
Wenn der Regler eingeschwungen ist, ist das Differenzsignal 63 ein Gleichsig- nal. Der auf das Sendesignal zurückzuführende Anteil ist dann im Differenzsignal 63 Null . Die maximale Distanz, ab der ein sich der Empfangsdiode näherndes Objekt bzw. bis zu der sich ein von der Empfangsdiode entfernendes Objekt noch erkannt werden kann, ist bestimmt durch die Regelcharakteristik und/oder Tatsache, dass bei maximaler Amplitude des Sendediodensignals von dem Objekt noch ein so großer Anteil des Sendediodensignals reflektiert wird, dass an der Empfangsdiode ein Signal mit mindestens der Amplitude des Kompensationsdiodensignals empfangen wird . Für einen großen Fotostrom 72, der gleichbedeutend mit einem nahen Objekt ist (und damit für eine steile Regelcharakteristik), ergibt sich dabei als Schnittpunkt mit 73 ein erster Arbeitspunkt 74. Für einen niedrigeren Fotostrom 75 (und damit bei flacherer Regelcharakteristik) ein weiterer zweiter Arbeitspunkt 76. Bei sehr weit entfernten Objekten kann das rückgestrahlte Licht aber so gering werden, dass sich überhaupt kein Arbeitspunkt mehr ergeben kann. Die Regelcharakteristik im Falle des Fotostroms 77 ist dann so flach, dass sich keine Kreuzung mehr mit der Linie 73 ergibt, die die Amplitude der Kompensationsdiode K repräsentiert, so dass keine sinnvolle Regelung möglich ist. When the controller is settled, the difference signal 63 is a Gleichsig-. The proportion attributable to the transmission signal is then zero in the difference signal 63. The maximum distance from which an object approaching the receiving diode or up to which an object removing from the receiving diode can still be recognized is determined by the regulating characteristic and / or the fact that, with the maximum amplitude of the transmitting diode signal, the object still exists such a large proportion of the transmitting diode signal is reflected that at the receiving diode, a signal having at least the amplitude of the compensation diode signal is received. For a large photocurrent 72, which is synonymous with a near object (and thus for a steep control characteristic), this results in the intersection with 73, a first operating point 74. For a lower photocurrent 75 (and thus flatter control characteristics) another second operating point 76. For very distant objects, however, the reflected light can become so low that no working point can arise at all. The control characteristic in the case of the photocurrent 77 is then so flat that there is no intersection with the line 73, which represents the amplitude of the compensation diode K, so that no meaningful control is possible.
Hier bestehen nun zwei Möglichkeiten : Entweder wird das Kompensationsdiodensignal bei derartig schwachen Empfängersignalen herunter geregelt, was eine Mischregelung entspricht und einen höheren Schaltungsaufwand zu Folge hat, aber durchaus erfolgreich realisiert werden kann, oder zu dem Empfängersignal wird ein zum Sendesignal synchrones Offset-Signal hinzuaddiert, was die Arbeitspunkte 74,76 allesamt durch Dreh-Streckung um den Punkt PO verschiebt (siehe 74', 76' in Fig. 4) und einen neuen Arbeitspunkt 78 für den neuen Fotostrom 77' entstehen lässt. Das Offset-Signal führt zu einem nicht mehr erreichbaren Bereich 79 in dem Diagramm der Fig . 4. Die Erzeugung dieses Offset-Signals ist in Fig . 1 durch einen Kalibrationsblock 81 angedeutet, der für die jeweilige Sender-/Empfängerkombination aus den Sendersignalen 9 bis 12 das Offset-Signal 82 erzeugt, woraus das Signal 82 durch Addition erzeugt wird. There are now two possibilities: Either the Kompensationsdiodensignal is controlled down with such weak receiver signals, which corresponds to a mixed control and has a higher circuit complexity, but can be quite successfully implemented, or to the receiver signal is added to the transmission signal synchronous offset signal, which shifts working points 74, 76 all around the point PO by rotational stretching (see 74 ', 76' in FIG. 4) and creates a new operating point 78 for the new photocurrent 77 '. The offset signal leads to an unreachable area 79 in the diagram of FIG. 4. The generation of this offset signal is shown in FIG. 1 indicated by a calibration block 81, for the respective transmitter / receiver combination of the transmitter signals. 9 12 generates the offset signal 82, from which the signal 82 is generated by addition.
Für die Kalibration eines Gesamtsystems, die Teil das hier beschriebene Sys- tem ist und einen weiteren selbstständigen erfindungsgemäßen Gedanken bildet, wird nun in einem definierten Messaufbau dieses Gesamtsystem vermessen. Das Gesamtsystem unterscheidet sich vom dem Messsystem beispielsweise dadurch, dass es neben dem Messsystem noch optische Elemente wie Spiegel, Blenden etc. und natürlich das Gehäuse umfasst. For the calibration of a complete system, which is part of the system described here and forms another independent inventive idea, this entire system is now measured in a defined measurement setup. The overall system differs from the measuring system in that, in addition to the measuring system, it also includes optical elements such as mirrors, diaphragms etc. and, of course, the housing.
Für die Kalibration wird die Kompensationsdiode K auf einen statischen Pegel geschaltet. Die Kopplung zwischen Empfangsdiode D und Kompensationsdiode K ist erfahrungsgemäß nur sehr schwer zu stabilisieren. Daher ist die Kopplung stets als für einen Applikationstyp gleich, aber von Applikation zu Applikation innerhalb des desselben Typs schwankend anzunehmen. For calibration, the compensation diode K is switched to a static level. The coupling between the receiving diode D and the compensation diode K is very difficult to stabilize according to experience. Therefore, the coupling is always the same as an application type, but it is assumed to fluctuate from application to application within the same type.
Die Kalibration erfolgt nun so, dass die schaltbaren Referenzstromquellen 41,42,43 vorgesehen werden, mit denen die Referenzstromversorgung 38 nun so eingestellt wird, dass der gemessene Fotostrom auf stets einen gleichen, applikationsspezifisch vorgegeben Wert eingestellt wird. Hierdurch kann die Ordinaten-Position der Linie 73 in den Fign . 3 und 4 vorgegeben werden. Somit wird sichergestellt, dass ein Arbeitspunkt gefunden wird. Dieser Arbeitspunkt wird dabei typischerweise in der Art eingestellt, dass der Kompensa- tionssendediodenstrom so lange erhöht wird, bis das Kompensationssignal oberhalb des Systemrauschens messbar wird. Anschließend wird das Offset- Signal auf einen solchen Wert eingestellt, dass der unterste Arbeitspunkt eingenommen wird. The calibration is now carried out so that the switchable reference current sources 41,42,43 are provided, with which the reference current supply 38 is now set so that the measured photocurrent is always set to a same, application-specific predetermined value. As a result, the ordinate position of the line 73 in Figs. 3 and 4 are given. This ensures that an operating point is found. This operating point is typically set in such a way that the compensating transmitting diode current is increased until the compensation signal above the system noise becomes measurable. Subsequently, the offset signal is set to such a value that the lowest operating point is assumed.
Die wesentlichen Merkmale der zuvor genannten Erfindungsgegenstände las- sen sich wie folgt in Untergruppen zusammenfassen : The essential features of the aforementioned subject matter can be summarized in subgroups as follows:
1. Fremdlichtrobuste Vorrichtung zur Vermessung mindestens einer optischen Übertragungsstrecke dadurch gekennzeichnet, dass sie über mindestens einen Empfänger (D) verfügt und über mindestens einen Sender (Hl, 1-12,1-13) verfügt und 1. Fremdlichtrobuste device for measuring at least one optical transmission path, characterized in that they has at least one receiver (D) and at least one transmitter (Hl, 1-12,1-13) has and
mindestens der besagte Empfänger mit mindestens einem Gyrator oder einer anderen Störstrahlungs-Kompensationseinheit verbunden ist und  at least said receiver is connected to at least one gyrator or other interfering radiation compensation unit, and
mindestens dieser besagte Gyrator zu unterschiedlichen Zeitpunkten einen unterschiedlichen Innenwiderstand aufweist. Vorrichtung nach Ziffer 1, dadurch gekennzeichnet, dass es sich bei dem Empfänger um eine Fotodiode oder einen anderen optischen Empfänger handelt, der einen Fotostrom als Signal liefert. Vorrichtung nach einem oder mehreren der vorhergehenden Ziffern, dadurch gekennzeichnet, dass die Messung nicht kontinuierlich sondern in Messzyklen erfolgt. Vorrichtung nach Ziffer 3, dadurch gekennzeichnet, dass zu Beginn mindestens eines Messzyklus eine erste Vorbereitungsphase oder dergleichen Vorbereitungsphase zur Stabilisierung des Arbeitspunktes des Empfängers durchlaufen wird . Vorrichtung nach Ziffer 4, dadurch gekennzeichnet, dass während einer ersten Vorbereitungsphase (A) der mindestens eine Gyrator niederohmi- ger als zu einem Zeitpunkt außerhalb der Vorbereitungsphase (A) ist. Vorrichtung nach Ziffer 4 oder 5, dadurch gekennzeichnet, dass  at least said gyrator at different times has a different internal resistance. Device according to item 1, characterized in that the receiver is a photodiode or another optical receiver which supplies a photocurrent as a signal. Device according to one or more of the preceding figures, characterized in that the measurement is not continuous but in measuring cycles. Device according to item 3, characterized in that at the beginning of at least one measurement cycle, a first preparation phase or similar preparation phase for stabilizing the operating point of the receiver is run through. Device according to item 4, characterized in that during a first preparation phase (A) the at least one gyrator is lower impedance than at a time outside the preparation phase (A). Device according to item 4 or 5, characterized in that
sie mindestens einen Kompensationssender (K) aufweist und während einer ersten Vorbereitungsphase (A) der mindestens eine Kompensationssender (K) sendet. Vorrichtung nach einer der Ziffern 0 bis 6, dadurch gekennzeichnet, dass während des mindestens einen Messzyklus im Anschluss an die erste Vorbereitungsphase (A) eine zweite Vorbereitungsphase (B) zur Stabilisierung eines Reglers durchlaufen wird . Vorrichtung nach Ziffer 7, dadurch gekennzeichnet, dass während der zweiten Vorbereitungsphase (B) der mindestens eine Gyrator hochohmi- ger als zu anderen Zeitpunkten insbesondere einem Zeitpunkt außerhalb der zweiten Vorbereitungsphase (B) ist. Vorrichtung nach Ziffer 7 oder 8, dadurch gekennzeichnet, dass it has at least one compensation transmitter (K) and transmits during a first preparation phase (A) the at least one compensation transmitter (K). Device according to one of the numbers 0 to 6, characterized in that during the at least one measuring cycle following the first Preparation phase (A) a second preparation phase (B) to stabilize a regulator will go through. Device according to item 7, characterized in that during the second preparation phase (B) the at least one gyrator is higher-impedance than at other times, in particular a time outside the second preparation phase (B). Device according to item 7 or 8, characterized in that
sie mindestens einen Kompensationssender (K) aufweist und während der zweiten Vorbereitungsphase (B) der mindestens eine Kompensationssender (K) sendet und moduliert wird. Vorrichtung nach einer der Ziffern 3 bis 9, dadurch gekennzeichnet, dass während mindestens eines Messzyklus im Anschluss an die zweite Vorbereitungsphase (B) eine Messphase (C) durchlaufen wird . Vorrichtung nach Ziffer 10, dadurch gekennzeichnet, dass während der Messphase (C) der mindestens eine Gyrator hochohmiger als zu einem Zeitpunkt außerhalb der Messphase (C) und der zweiten Vorbereitungsphase (B) des Messintervalls ist. Vorrichtung nach Ziffer 10 oder 11, dadurch gekennzeichnet, dass  it has at least one compensation transmitter (K) and during the second preparation phase (B) the at least one compensation transmitter (K) is transmitted and modulated. Device according to one of the numbers 3 to 9, characterized in that during at least one measuring cycle after the second preparation phase (B) a measuring phase (C) is passed through. Device according to item 10, characterized in that during the measuring phase (C) the at least one gyrator is higher-impedance than at a time outside the measuring phase (C) and the second preparation phase (B) of the measuring interval. Device according to item 10 or 11, characterized in that
sie mindestens einen Kompensationssender (K) aufweist und in mindestens einer Messphase (C) mindestens ein Kompensationssender (K) sendet und moduliert wird. Vorrichtung nach einer der Ziffern 10 bis 12, dadurch gekennzeichnet, dass in mindestens einer Messphase (C) mindestens ein Sender (Hl, H2, H3) sendet und moduliert wird. Vorrichtung nach einem oder mehreren der vorhergehenden Ziffern, dadurch gekennzeichnet, dass sie mindestens einen Kompensationssender (K) aufweist und mindestens zeitweise mindestens ein Sender (Hl, 1-12,1-13) und der besagte Kompensationssender (K) senden und moduliert werden. it has at least one compensation transmitter (K) and in at least one measurement phase (C) at least one compensation transmitter (K) is transmitted and modulated. Device according to one of the numbers 10 to 12, characterized in that in at least one measuring phase (C) at least one transmitter (Hl, H2, H3) is transmitted and modulated. Device according to one or more of the preceding figures, characterized in that it has at least one compensation transmitter (K) and at least temporarily at least one transmitter (Hl, 1-12, 1-13) and the said compensation transmitter (K) are transmitted and modulated.
Vorrichtung nach Ziffer 14, dadurch gekennzeichnet, dass zur Modulation der mindestens eine Kompensationssender (K) und der mindestens eine Sender (H) in der Art erfolgt, dass zumindest Anteile des Kompensations- sendesignals des besagten Kompensationssenders (K) zumindest zeitweise komplementär zum Sendesignal des besagten Senders (Hl, 1-12,1-13) sind. Vorrichtung nach Ziffer 14 und/oderl5, dadurch gekennzeichnet, dass die Strahlung zumindest des besagten Kompensationssenders (K) und zumindest des besagten Senders (H1,H2,H3) sich in dem Empfänger (D) addierend oder multiplizierend überlagern. Vorrichtung nach Ziffer 0, dadurch gekennzeichnet, dass mindestens währen eines Zeitraums, in dem mindestens ein Sender (H1,H2,H3) und der besagte Kompensationssender (K) senden und moduliert werden, mindestens der besagte Kompensationssender (K) und/ oder der besagte Sender (H) so in der Amplitude und/oder Phase geregelt werden, dass der Empfänger (D) keine Anteile zumindest eines vorbestimmten Teils des Sendesignals mehr empfängt oder im Wesentlichen nur noch während einer vorbestimmten Messphase (C) bis auf Systemrauschen und Einregelfehler ein Gleichsignal empfängt. Vorrichtung nach einer oder mehreren der vorhergehenden Ziffern, dadurch gekennzeichnet, dasszu dem Empfängersignal ein Offset-Signal (82) addiert werden kann, das zumindest in Anteilen zeitweise phasensynchron zum mindestens einem Sendesignal (9,10,11) mindestens eines Senders (H1,H2,H3) ist und mit diesem korrespondiert. B EZUGSZE IC H E N LISTE Device according to item 14, characterized in that for modulation the at least one compensation transmitter (K) and the at least one transmitter (H) takes place in such a way that at least portions of the compensation transmission signal of said compensation transmitter (K) at least temporarily complementary to the transmission signal of said transmitter (Hl, 1-12,1-13) are. Device according to item 14 and / or l5, characterized in that the radiation of at least the said compensation transmitter (K) and at least of said transmitter (H1, H2, H3) are superposed in the receiver (D) in an additive or multiplying manner. Device according to item 0, characterized in that at least during a period in which at least one transmitter (H1, H2, H3) and said compensation transmitter (K) are transmitted and modulated, at least said compensation transmitter (K) and / or said Transmitter (H) are controlled in the amplitude and / or phase so that the receiver (D) receives no more shares at least a predetermined part of the transmission signal or substantially only during a predetermined measurement phase (C) to system noise and Einregelfehler a DC signal receives. Device according to one or more of the preceding figures, characterized in that an offset signal (82) can be added to the receiver signal which, at least in portions, is at times in phase synchronous with the at least one transmission signal (9, 10, 11) of at least one transmitter (H1, H2 , H3) and corresponds with this. B EZUGSZE IC HEN LIST
Spannungsregler voltage regulators
Bandgap-Referenz  Bandgap reference
Funktionsblock  function block
Digital-Control- Block  Digital Control Block
Minimaloszillator  minimal oscillator
Systemoszillator  system oscillator
Eingangs-Hardware  Input Hardware
Signalleitung  signal line
Signalleitung  signal line
Signalleitung  signal line
Signalleitung  signal line
Funktionsblock  function block
Funktionsblock  function block
Ansteuer-/Auswerteeinheit  Drive / evaluation unit
Messverstärker  measuring amplifiers
Messverstärker  measuring amplifiers
Kapazitäten  capacities
Kapazitäten  capacities
Schalter  switch
Schalter  switch
Koppelkondensatoren  coupling capacitors
Koppelkondensatoren  coupling capacitors
Verstärker  amplifier
Stromquelle  power source
Stromquelle  power source
Verstärker  amplifier
Eingangsleitung  input line
Eingangsleitung  input line
Ausgang  output
Ausgang  output
Differenzstufe Verstärker differential stage amplifier
Demodulator  demodulator
Referenzstromversorgung  Reference Power
Referenzstromquelle  Reference current source
Referenzstromquelle  Reference current source
Referenzstromquelle  Reference current source
Modulationssignal  modulation signal
Modulationssignal  modulation signal
Modulationssignal  modulation signal
Modulationssignal  modulation signal
Ausgangssignal  output
Schnittstelle  interface
RX-Zweidraht-Leitung der Schnittstelle  RX two-wire cable of the interface
Interrupt-Ausgang der Schnittstelle  Interrupt output of the interface
Messsystem-Reset der Schnittstelle  Measuring system reset of the interface
Referenzspannungseingang der Schnittstelle  Reference voltage input of the interface
Schaltungsknoten  circuit node
Schaltungsknoten  circuit node
Differenzsignal  difference signal
Stromquelle  power source
Stromquelle  power source
Stromquelle  power source
Stromquelle  power source
Zeitpunkt  time
Zeitpunkt  time
Fotostrom  photocurrent
Amplitude der Kompensationsdiode repräsentierende Linie Amplitude of the compensation diode representing line
Arbeitspunkt working
Fotostrom  photocurrent
Arbeitspunkt  working
Fotostrom  photocurrent
Fotostrom  photocurrent
Arbeitspunkt 79 Bereich working 79 area
81 Kalibrationsblock  81 Calibration block
82 Offset-Signal  82 offset signal
Hl Messsendediode Hl measuring transmitter diode
H2 Messsendediode H2 measuring transmitter diode
H3 Messsendediode H3 transmitter diode
PO Punkt PO point
Refl Referenzpotenzial  Refl reference potential
Ref2 Referenzpotenzial  Ref2 reference potential
A erste Vorbereitungsphase des MessintervallsA first preparation phase of the measurement interval
B zweite Vorbereitungsphase des MessintervallsB second preparation phase of the measurement interval
C Messphase des Messintervalls C Measurement phase of the measurement interval
D Empfangsdiode  D receiving diode
K Kompensationsdiode  K compensation diode

Claims

Ansprüche claims
1. Störstrahlungskompensierte Vorrichtung zur Vermessung einer optischen Signalübertragungsstrecke während einer Vielzahl von insbesondere intermittierend aufeinanderfolgenden Messintervallen insbesondere für die Erkennung eines Objekts und/oder für die Erkennung einer Bewegung und/oder Bewegungsvorrichtung eines Objekts, mit 1. Störstrahlungskompensierte device for measuring an optical signal transmission path during a plurality of particular intermittently successive measurement intervals, in particular for the detection of an object and / or for the detection of a movement and / or movement device of an object, with
mindestens einem Messsender (Hl, 1-12,1-13) zum Senden eines optischen Messsignals,  at least one measuring transmitter (Hl, 1-12, 1-13) for transmitting an optical measuring signal,
mindestens einem Empfänger (D) zum Empfangen eines optischen Signals, wobei der mindestens eine Empfänger (D) einer Störstrahlung z. B. aus der Umgebung ausgesetzt ist,  at least one receiver (D) for receiving an optical signal, wherein the at least one receiver (D) of an interference radiation z. B. is exposed from the environment,
einer Ansteuer- und Auswerteeinheit (17) zur Ansteuerung des mindestens einen Messsenders (Hl, 1-12,1-13) und des mindestens einen Empfängers (D) zwecks Sendens bzw. Empfangens eines optischen Signals während einer Messphase (C) eines Messintervalls und zur Auswertung des empfangenen optischen Messsignals durch Verarbeitung eines elektrischen Signals, das an einem ersten elektrisch mit dem mindestens einen Empfänger (D) gekoppelten ersten Schaltungsknoten (61,62) ansteht, mindestens einer mit dem ersten Schaltungsknoten (61,62) gekoppelten ersten Störstrahlungs-Kompensationseinheit (26,27,28,29) zur elektrischen Vorspannung des mindestens einen Empfängers (D) durch Bereitstellen eines ersten Kompensationsstroms mit einer Größe, die im Wesentlichen gleich der Größe eines in Folge der Störstrahlung von dem mindestens einen Empfänger (D) erzeugten Störsignals ist,  a control and evaluation unit (17) for controlling the at least one measuring transmitter (Hl, 1-12, 1-13) and the at least one receiver (D) for transmitting or receiving an optical signal during a measuring phase (C) of a measuring interval and for evaluating the received optical measurement signal by processing an electrical signal which is present at a first first circuit node (61, 62) electrically coupled to the at least one receiver (D), at least one first interference radiation device coupled to the first circuit node (61, 62) Compensation unit (26,27,28,29) for electrically biasing the at least one receiver (D) by providing a first compensation current having a magnitude substantially equal to the magnitude of a noise generated by the at least one receiver (D) as a result of the noise is
wobei die mindestens eine erste Störstrahlungs-Kompensations- einheit (26,27,28,29) einen variablen Innenwiderstand aufweist und  wherein the at least one first interference radiation compensation unit (26, 27, 28, 29) has a variable internal resistance, and
wobei die Ansteuer- und Auswerteeinheit (17) den Innenwiderstand der mindestens einen ersten Störstrahlungs-Kompensa- tionseinheit (26,27,28,29) während einer ersten Vorbereitungsphase (A) vor der Messphase (C) eines Messintervalls auf einen niedrigeren ersten Widerstandswert und während der Messphase (C) auf einen höheren zweiten Widerstandswert einstellt. wherein the control and evaluation unit (17) determines the internal resistance of the at least one first interference radiation compensation tion unit (26,27,28,29) during a first preparation phase (A) before the measurement phase (C) of a measurement interval to a lower first resistance value and during the measurement phase (C) to a higher second resistance value.
2. Störstrahlungskompensierte Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Empfänger (D) zwischen dem ersten Schaltungsknoten (61,62) und einem zweiten Schaltungsknoten (61,62), mit denen er jeweils elektrisch gekoppelt ist, geschaltet ist, wobei die mindestens eine erste Störstrahlungs-Kom- pensationseinheit (26,27) mit dem ersten Schaltungsknoten (61) gekoppelt ist, dass die an und/oder zwischen diesen Schaltungsknoten (61,62) anstehenden elektrischen Signale der Ansteuer- und Auswerteinheit (17) zuführbar sind und dass mindestens eine zweite Störstrahlungs-Kompensationseinheit (28,29) mit variablem Innenwiderstand vorhanden ist, die einen zweiten Kompensationsstrom bereitstellt, welcher im Wesentlichen gleich dem ersten Kompensationsstrom ist, und dass die Ansteuer- und Auswerteeinheit (17) den Innenwiderstand der zweiten Störstrahlungs-Kompensationseinheit (28,29) während eines Messintervalls in im Wesentlichen gleicher Weise wie den Innenwiderstand der ersten Störstrahlungs-Kompen- sationseinheit (27,28) steuert. 2. An interference radiation compensated device according to claim 1, characterized in that the at least one receiver (D) between the first circuit node (61,62) and a second circuit node (61,62), with which it is electrically coupled, is connected the at least one first interference compensation unit (26, 27) is coupled to the first circuit node (61), that the electrical signals present at and / or between these circuit nodes (61, 62) can be fed to the control and evaluation unit (17) and that there is at least one second variable internal impedance compensation unit (28, 29) providing a second compensation current substantially equal to the first compensation current, and in that the drive and evaluation unit (17) determines the internal resistance of the second interference radiation Compensation unit (28,29) during a measurement interval in substantially the same manner as the Innenwid the first interference radiation compensation unit (27, 28).
3. Störstrahlungskompensierte Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens ein Kompensationssender (K) zum Senden eines optischen Kompensationssignals vorhanden ist, dem der mindestens eine Empfänger (D) ausgesetzt ist, dass die Ansteuer- und Auswerteeinheit (17) den mindestens einen Kompensationssender (K) zwecks Sendens des optischen Kompensationssignals während einer sich an die erste Vorbereitungsphase (A) anschließenden und der Messphase (C) vorgelagerten zweite Vorbereitungsphase (B) eines Messintervalls ansteuert und dass die Ansteuer- und Auswerteeinheit (17) den Innenwiderstand der mindes- tens einen ersten Störstrahlungs-Kompensationseinheit (26,27) und, sofern vorhanden, der mindestens einen zweiten Störstrahlungs- Kompensationseinheit (28,29) für die Dauer der zweiten Vorbereitungsphase (B) eines Messintervalls auf einen Widerstandswert einstellt, der gleich dem zweiten Widerstandswert ist oder zwischen dem ersten und dem zweiten Widerstandswert liegt und der größer als während des Messintervalls sowie größer als außerhalb der zweiten Vorbereitungsphase (B) ist. 3. Störstrahlungskompensierte device according to claim 1 or 2, characterized in that at least one compensation transmitter (K) for transmitting an optical compensation signal is present to which the at least one receiver (D) is exposed, that the control and evaluation unit (17) the at least a compensating transmitter (K) for sending the optical compensation signal during a subsequent to the first preparation phase (A) and the measuring phase (C) upstream second preparation phase (B) controls a measurement interval and that the control and evaluation unit (17) the internal resistance of the mindes - a first interference radiation compensation unit (26, 27) and, if present, the at least one second interference radiation compensation unit (28, 29) for the duration of the second preparation phase (B) of a measurement interval to a resistance value which is equal to the second resistance value or between the first and the second resistance value and which is greater than during the measurement interval and greater than outside the second preparation phase (B).
Störstrahlungskompensierte Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Messsender (Hl, 1-12,1-13) und/oder der mindestens eine Kompensationssender (K) zumindest während der Messphase (C) modulierte optische Signale aussendet/aussenden. Störstrahlungskompensierte device according to one of claims 1 to 3, characterized in that the at least one measuring transmitter (Hl, 1-12,1-13) and / or the at least one compensation transmitter (K) at least during the measuring phase (C) emits modulated optical signals / emit.
Störstrahlungskompensierte Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass zumindest Anteile des Kompensationssignals komplementär, d .h. gegenphasig bzw. um 180° phasenverschoben zum Messsignal sind. An interference-radiation-compensated device according to claim 4, characterized in that at least portions of the compensation signal are complementary, i. E. out of phase or 180 ° out of phase with the measurement signal.
Störstrahlungskompensierte Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass zumindest Anteile des Messsignals und des Kompensationssignals einander überlagernd, insbesondere addierend oder multiplizierend von dem mindestens einen Empfänger (D) empfangen werden. Störstrahlungskompensierte device according to one of claims 3 to 5, characterized in that at least portions of the measurement signal and the compensation signal are superimposed on each other, in particular adding or multiplying received by the at least one receiver (D).
Störstrahlungskompensierte Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die mindestens eine Stör- strahlungs-Kompensationseinheit (26,27,28,29) als eine spannungsgesteuerte Stromquelle, als ein Gyrator, als eine variable Impedanz, als ein variabler Widerstand oder als eine variable Induktivität ausgebildet ist. An interference radiation compensated device according to any one of claims 1 to 6, characterized in that the at least one interference radiation compensation unit (26, 27, 28, 29) is a voltage controlled current source, a gyrator, a variable impedance, a variable resistance or is designed as a variable inductance.
PCT/EP2014/067851 2013-08-22 2014-08-21 Interference-compensated device for measuring an optical signal transmission path WO2015025014A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14753260.0A EP3036561B1 (en) 2013-08-22 2014-08-21 Interference-compensated device for measuring an optical signal transmission path
EP16187776.6A EP3124993B1 (en) 2013-08-22 2014-08-21 Disturbance-compensated device for measuring an optical signal transfer route

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EPPCT/EP2013/067480 2013-08-22
EP2013067480 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025014A1 true WO2015025014A1 (en) 2015-02-26

Family

ID=49083662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/067851 WO2015025014A1 (en) 2013-08-22 2014-08-21 Interference-compensated device for measuring an optical signal transmission path

Country Status (1)

Country Link
WO (1) WO2015025014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017237A1 (en) 2014-11-21 2016-05-25 Mechaless Systems Gmbh Measuring system for energy-saving optical distance measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1426783A1 (en) * 2002-12-02 2004-06-09 Gerd Reime Method and device to measure an modulated light signal
DE10300223B3 (en) * 2003-01-03 2004-06-24 Gerd Reime Optoelectronic measuring device with stray light compensation provided by intensity regulation of additional light source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1426783A1 (en) * 2002-12-02 2004-06-09 Gerd Reime Method and device to measure an modulated light signal
DE10300223B3 (en) * 2003-01-03 2004-06-24 Gerd Reime Optoelectronic measuring device with stray light compensation provided by intensity regulation of additional light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017237A1 (en) 2014-11-21 2016-05-25 Mechaless Systems Gmbh Measuring system for energy-saving optical distance measurement

Similar Documents

Publication Publication Date Title
EP3000185B1 (en) Method and system for transmitting data via direct current lines
DE102016215038B4 (en) LOOP SENSOR INTERFACE USING A TERMINATED SYMMETRIC PHYSICAL LAYER
EP0890242B1 (en) Process for determining potential shifts between electronic modules in a wire bus network
DE102007005187A1 (en) Method and device for determining a distance to a retroreflective object
WO2012013757A1 (en) Opto-electronic measuring arrangement with electro-optical basic coupling
WO2013156557A1 (en) Sensor system and method for measuring the transmission properties of a transmission path of a measuring system between a transmitter and a receiver
EP1437816A2 (en) Circuit arrangement for providing electric power from an eletromagnetic field
DE19723645A1 (en) Arrangement for signal transmission between a transmitter and a receiver
DE102006048594A1 (en) Circuit arrangement for contactless data exchange and chip card
DE102013216556B4 (en) receiving circuit
DE112010001151T5 (en) DEVICE AND METHOD FOR REDUCING INTERFERENCE IN RECEIVED COMMUNICATION SIGNALS
DE102014019983B3 (en) Sensor interface systems and methods
DE60309969T2 (en) Optical transmission device and optical transmission method for a burst radio signal
DE102013005065A1 (en) NEAR FIELD COMMUNICATION DEVICE
DE112021005775T5 (en) DEVICES AND METHODS FOR PARALLELIZING TRANSISTORS
WO2015025014A1 (en) Interference-compensated device for measuring an optical signal transmission path
DE102004018539A1 (en) Method for data communication between a base station and a transponder
EP3036561B1 (en) Interference-compensated device for measuring an optical signal transmission path
EP2953247A1 (en) Field device having a switched-mode power supply
EP3036560B1 (en) Method for calibrating an apparatus for measuring an optical signal transmission path
EP3036559B1 (en) Device for measuring an optical transmission path
DE60122646T2 (en) Signal compensation circuit and demodulator circuit
DE102013020793A1 (en) Receiver for a telecommunication system
WO2015025011A1 (en) Device for measuring an optical transmission path
WO2015025009A1 (en) Method for calibrating an apparatus for measuring an optical signal transmission path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014753260

Country of ref document: EP