WO2015024498A1 - 一种转动时序发生器 - Google Patents

一种转动时序发生器 Download PDF

Info

Publication number
WO2015024498A1
WO2015024498A1 PCT/CN2014/084687 CN2014084687W WO2015024498A1 WO 2015024498 A1 WO2015024498 A1 WO 2015024498A1 CN 2014084687 W CN2014084687 W CN 2014084687W WO 2015024498 A1 WO2015024498 A1 WO 2015024498A1
Authority
WO
WIPO (PCT)
Prior art keywords
locking
shaft
screw
frame
locking frame
Prior art date
Application number
PCT/CN2014/084687
Other languages
English (en)
French (fr)
Inventor
张一飞
武成尚
许辉文
Original Assignee
杭州欧卡索拉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310367636.5A external-priority patent/CN103472887B/zh
Priority claimed from CN201310602365.7A external-priority patent/CN103615506B/zh
Application filed by 杭州欧卡索拉科技有限公司 filed Critical 杭州欧卡索拉科技有限公司
Publication of WO2015024498A1 publication Critical patent/WO2015024498A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/28Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable
    • E06B9/30Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable liftable
    • E06B9/32Operating, guiding, or securing devices therefor
    • E06B9/322Details of operating devices, e.g. pulleys, brakes, spring drums, drives
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/28Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable
    • E06B9/30Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable liftable
    • E06B9/32Operating, guiding, or securing devices therefor
    • E06B9/322Details of operating devices, e.g. pulleys, brakes, spring drums, drives
    • E06B2009/3222Cordless, i.e. user interface without cords

Definitions

  • the present invention relates to a mechanical automatic control device, and more particularly to a rotary timing generator. Background technique
  • timing generators In people's daily life, in order to pursue convenience and efficiency, some living equipment or facilities have mechanical motion mechanisms, and some of them also need timing control, which requires the use of timing generators.
  • the existing timing generators are mostly electronic, and many home living devices or facilities should not occupy too much space, and only need to work for a short time, so the manual driving method is generally adopted, such as the timing generator for the blinds. Since the electronic timing generator needs power supply and needs to be effectively integrated with the mechanical structure of the equipment or facility, it is necessary to set the structure of electromechanical conversion, which inevitably requires more space, so the electronic timing generator is not practical in this case. .
  • the present invention provides a rotary timing generator having more rotation periods and continuously repeating the timing action.
  • a rotation timing generator comprising a switch, a trigger device and a total drive shaft, wherein the switch and the trigger device are located in a cavity formed by a base and a top cover, and are The drive shaft extends through, and the triggering device includes a plurality of hollow drive screws that are drivingly coupled to the torque output of the switch, and a slider threadedly coupled to the drive screw and axially moved by the drive screw.
  • the switch can drive the drive screw so that the slider moves axially on the drive screw respectively, but due to the locking action of the lock structure, the drive screw connected to the different torque output ends of the switch It can only alternately stop and not stop at the same time, so that the corresponding sliders on different drive screws can only alternately reside, which produces a timing control effect.
  • many other types of motion mechanisms can be completed by driving the screw and the slider to drive other types of components.
  • the switch comprises a first locking frame, a second locking frame, and a planetary gear a wheel clutch and a spring
  • the first locking frame and the second locking frame are slidably coupled to the base and slidably coupled to each other
  • the spring sleeve is disposed outside a total drive shaft and located between the first locking frame and the second locking frame
  • the planetary gear clutch Rotatingly coupled to a base and axially fixed, and the planetary gear clutch is drivingly coupled to the total drive shaft
  • the planetary gear clutch is provided with a torque input end and two torque output ends
  • the planetary gear clutch is located at the first locking frame and the second locking frame
  • a contact protrusion and a locking structure for alternately stopping the torque transmission of the two torque output ends of the planetary gear clutch are provided.
  • Both ends of the planetary gear clutch can output torque to drive the motion mechanism to perform the action respectively, and the planetary gear clutch can continue to output torque even if the output torque of one end is blocked, and the function of the first locking frame and the second locking frame is with the planet.
  • the two ends of the gear clutch are connected to prevent the torque transmission at the corresponding end, and the two ends of the planetary gear clutch are disconnected to maintain the torque transmission at the corresponding end, and the first locking frame and the second locking frame can slide on the base, and
  • the planetary gear clutch can be axially fixed in position, and the planetary gear clutch is axially fixed.
  • the moving mechanism on the side of one of the locking frames contacts the other
  • the locked locking frame is pushed by the moving mechanism to be disconnected from the planetary gear clutch, and the planetary gear clutch output end corresponding to the locked locking frame has torque transmission.
  • the structure is set, the proper distance between the first locking frame and the second locking frame is maintained, and the two locking frames are not the same.
  • the connection is established with both ends of the planetary gear clutch, so that only one end of the planetary gear clutch can stop the torque transmission at the same time, thereby achieving the alternate stopping of the motion mechanism driven by the planetary gear clutch, and the effect of the timing control is generated.
  • a spring located between the first locking frame and the second locking frame can provide a thrust to maintain the original spacing between the first locking frame and the second locking frame, regardless of the first lock Which of the fixed frame and the second locking frame is axially swayed by the pushing of the moving mechanism, and the other locking frame that is not pressed by the sliding block will follow the axial swaying due to the presence of the spring
  • the one end of the planetary gear clutch is disconnected from the corresponding locking frame
  • the other end of the planetary gear clutch is connected with the corresponding locking frame to realize the one-way output of the planetary gear clutch torque.
  • the first locking frame comprises a first end rectangular plate and a baffle at both ends of the first locking frame, and a pair of first side sliding frames distributed on both sides of the first locking frame, the first end rectangular plate and the baffle
  • the first side sliding frame is fixedly connected to the first side sliding frame
  • the first end rectangular plate is fixed to the first side sliding frame
  • the second locking frame is located at the first sliding frame.
  • a second end rectangular plate of the end of the locking frame and a second side sliding frame distributed on two sides of the second locking frame, the contact protrusion on the second locking frame is located on the second side sliding frame, the second side
  • the sliding frame passes through the first end rectangular plate and the baffle and is slidably connected thereto.
  • the first side sliding frame passes through the second end rectangular plate and is slidably connected thereto, and the second end rectangular plate is located between the first end rectangular plate and the baffle plate.
  • the spring is located between the second end rectangular plate and the baffle.
  • the first end rectangular plate, the baffle and the first side sliding frame can surround the frame structure, and the first end rectangular plate and the baffle constitute two end faces of the first locking frame, respectively, for facilitating the mating connection with the planetary gear clutch end portion and Supporting the spring, the first sliding frame extends a certain length to facilitate the sliding connection with the second locking frame, and the working state of the switch can be changed when triggered.
  • the second end surface rectangle on the second locking frame The plate simultaneously engages with the end of the planetary gear clutch and supports the spring.
  • the second side sliding frame can form a sliding connection with the first locking frame and can be triggered to form a trigger structure.
  • the locking structure comprises end panel ratchets and clutch ratchets, end faces
  • the plate ratchet is disposed on the first end rectangular plate and the second end rectangular plate, and both face the planetary gear clutch, and the clutch ratchet is disposed on both end faces of the planetary gear clutch.
  • the planetary gear clutch is axially fixed, and the first end rectangular plate and the second end rectangular plate are axially movable with the first locking frame and the second locking frame, respectively, close to or away from the planetary gear clutch end face, when the first end rectangular plate Or when the second end rectangular plate is adjacent to the corresponding planetary gear clutch end face, the engagement of the engaged planetary gear clutch output can be stopped by the engagement of the end plate ratchet and the clutch ratchet to stop the torque transmission.
  • This locking structure is compact and does not take up space, and it works reliably.
  • the planetary gear clutch comprises a planetary carrier, a plurality of planetary gears, a sun gear and an inner ring gear with inner ring gears, the inner ring gear is rotatably coupled to the base, and the planetary carrier is rotatably coupled to the inner ring gear, the planetary gear Rotatingly connected to the planetary carrier, the sun gear is rotatably coupled to the center of the inner ring gear, and the planetary gear meshes with the sun gear and the inner ring gear at the same time.
  • the inner ring gear and the planetary carrier are the two torque transmitting components of the planetary gear clutch.
  • the total drive shaft has a prismatic shape
  • the axle of the sun gear has an axially penetrating central lumen
  • an axially extending hollow shaft is fixed on the end surface of the inner ring gear
  • the shaft is fixed on the end surface of the planetary carrier.
  • the planetary carrier and the inner ring gear are respectively two torque transmission components of the planetary gear clutch. Through the planetary carrier shaft on the planetary carrier and the hollow shaft on the inner ring gear, the output torque of the planetary gear clutch can be respectively Conducted on the drive screw or other rotating component to drive the drive screw or other rotating component to rotate.
  • the sun wheel's axle, hollow shaft and planetary carrier shaft are hollow structures, and their outer circumference can also be processed into a shape suitable for transmitting torque as needed, so that the sun wheel axle, hollow shaft and planetary carrier shaft can be nested.
  • the method is convenient to realize the docking with the corresponding components.
  • the external interface of the sun gear axle is the torque input end of the planetary gear clutch
  • the external interface of the hollow shaft and the planetary carrier shaft is the two torque inputs of the planetary gear clutch as a preferred
  • the one end rectangular plate, the baffle and the first side sliding frame are connected by bolts, and the second end rectangular plate and the second side sliding frame are also connected by bolts.
  • first locking frame and the second locking frame are connected to each other, and the second end rectangular plate is further disposed between the first end rectangular plate and the baffle plate, the first locking frame or the second locking frame must be completed in the state of the component first.
  • the positioning between the first end rectangular plate, the baffle plate and the second end rectangular plate is reassembled, so as to form an embedded connection between the first locking frame and the second locking frame, so that the components of the first locking frame and the second locking frame are both
  • the assembly is formed by bolting, and can be disassembled, so that the connection between the first locking frame and the second locking frame can be conveniently realized.
  • first end rectangular plate and the first side sliding frame are integrally formed, the first side sliding frame is engaged with the baffle, and the second end rectangular plate and the second side sliding frame are also integrally formed.
  • the first locking frame and the second locking frame are integrally formed in one piece or the whole, which can reduce the number of parts and the assembly process, thereby facilitating assembly.
  • the switch is one, the driving screw comprises a first screw and a second screw, the slider comprises a first slider and a second slider, and the first screw and the second screw respectively rotate The rod is threaded, the switch is located between the first screw and the second screw and the planetary gear clutch of the switch is respectively coupled to the first screw and the second screw.
  • the switch can drive the first screw and the second screw to rotate, so that the first slider and the second slider move axially on the first screw and the second screw, respectively, but due to the lock
  • the locking action of the structure, the first screw and the second screw can only alternately stop and cannot stop at the same time, so that the first slider and the second slider can only be alternately moved to stop, thus generating timing control. effect.
  • the prismatic total drive shaft is nested with the central cavity of the polygon to transmit the torque provided by the total drive shaft to the axle of the sun gear. This transmission is compact and simple, and is suitable for use in facilities or equipment where space is limited.
  • the driving screw comprises an upstream end screw and a downstream end screw.
  • the number of upstream end screws is the same as the number of switches and is respectively connected with the upstream output end of the corresponding switch, and the downstream end screw is one and Rotatingly coupled to the downstream output of the final stage switch, the number of sliders being the same as the number of drive screws and threadedly coupled to the drive screw.
  • a rotary timing generator with multiple switches connected in series can drive more moving parts such as sliders, perform more timing control, and perform more functions.
  • the following two-axis structure can also be used to rotate the timing generator:
  • a rotary timing generator includes a casing that is fastened by a top cover and a base, a planetary gear clutch and a first output device and a second output device connected in parallel, and an input end of the planetary gear clutch and a total
  • the drive shaft drive is connected, the planetary gear clutch is provided with two output ends, and the first output device and the second output device are respectively provided with a timing locking member And a driving member, one output end of the planetary gear clutch is simultaneously connected with the timing locking member of the first output device and the driving member of the second output device, and the other output end of the planetary gear clutch is simultaneously driven by the driving device of the first output device And a timing lock of the second output device is drivingly connected.
  • the two output terminals can respectively obtain the opposite output torque, and when either of the two output terminals is blocked, the other one can still output the torque, and the two-axis rotation timing generator utilizes
  • This characteristic of the planetary gear clutch works, and each output can drive the driving members of one of the two output devices of the first output device and the second output device to output torque, but at the same time, the timing of the other output device.
  • the locking member restricts, the timing locking member is started at a certain timing, and the two timing locking members are always operated at different times.
  • the planetary gear clutch output end of which is controlled to stop the torque output, and the planetary gear
  • the other output end of the clutch is not locked by the corresponding timing lock at this time, so that the torque can be transmitted through the corresponding driving member, so that the first output device and the second output device can alternately output power, and the application can be realized as needed.
  • the planetary gear clutch comprises a sun gear, a planetary gear, a planetary carrier and an inner ring carrier, the axle of the sun gear runs through the planetary carrier and the inner ring carrier, and the planetary gear is rotatably coupled to the planetary carrier and simultaneously with the sun gear Engaged with the inner ring carrier, the axle of the sun gear is penetrated by the total drive shaft and is sleeved with the total drive shaft.
  • the input torque of the total drive shaft is transmitted to the axle of the sun gear, and the sun gear drives the planetary gear to rotate, thereby driving the inner ring gear carrier to rotate in the reverse direction, and the reaction force of the inner ring gear carrier on the planetary gear wheel further drives the overall rotation of the planetary gear frame.
  • the planet carrier and the inner ring carrier are the two outputs of the gear clutch.
  • the first output device comprises a hollow first locking shaft, a first spring, a circumference a first locking frame, a ratchet disk with a ratchet at one end end, a first driving shaft, a first screw, and a first slider positioned circumferentially, the first locking shaft sequentially passes through the first spring, the first a locking bracket and a ratchet disc are rotatably sleeved with the first driving shaft, the first driving shaft is drivingly connected with the first screw, the first sliding rod is screwed on the first screw, and the ratchet disc is drivingly connected with the first locking shaft and
  • the first locking frame is provided with a rotation locking structure, and the first sliding block and the first locking frame are provided with a trigger unlocking structure, and the second output device comprises a second driving shaft, a second spring, and a circumferentially positioned second locking frame.
  • the second driving shaft sequentially passes through the second spring, the second locking frame and the second locking shaft, and is connected to the second screw drive, the second sliding
  • the block is threadedly connected to the second screw, and the second locking shaft and the second locking frame are provided with a rotation locking structure, and the second sliding block and the second locking frame are provided with a trigger unlocking structure, the first locking shaft and the second driving shaft Connected to the planetary carrier drive, The first drive shaft and the second lock shaft are drivingly coupled to the inner ring carrier.
  • the first driving shaft and the second driving shaft are a specific form of the driving member
  • the first locking shaft and the second locking shaft are a specific form of the timing locking member
  • the first driving is arranged according to the structure.
  • the shaft and the second driving shaft respectively drive the first screw and the second screw to respectively drive the first slider and the second slider to move axially, respectively, when the first slider and the second slider do not touch the trigger unlocking structure
  • the first locking frame and the second locking frame respectively lock the first locking shaft and the second locking shaft by the rotation locking structure under the pushing of the first spring and the second spring, the first locking shaft and the second locking shaft Locking can block the planet carrier and the inner ring carrier separately.
  • the first locking shaft and the second driving shaft are connected to the planetary carrier in parallel, the first locking shaft and the second driving shaft are moved and stopped by the same movement, and the first driving shaft and the second locking shaft are also Simultaneous movement, when the first locking shaft stops with the effect of the rotation locking structure, the planetary carrier Stop the output, at this time the second drive shaft can not drive the second screw, and at this time, as long as the inner ring carrier has not been blocked by the second locking shaft, the first drive shaft can still drive the first screw; similarly, when the second The locking shaft blocks the inner ring carrier.
  • the first driving shaft cannot drive the first screw
  • the second driving shaft can still drive the second screw. Therefore, by appropriately setting the state position difference between the first output device and the second output device, the alternate movement of the first slider and the second slider can be realized, and the first screw and the second screw are alternately rotated, thereby Get the timing control effect.
  • the outer end surface of the planetary carrier is fixed with a planetary carrier gear
  • the closed end of the inner ring carrier is fixed with an axially extending hollow shaft of the inner ring carrier
  • the inner end of the hollow shaft of the inner ring carrier is provided with an inner ring gear.
  • An external gear, a first locking shaft, a first driving shaft, a second driving shaft and a second locking shaft are respectively provided with a gear
  • the gears on the first locking shaft and the second driving shaft mesh with the planetary gear
  • first The gears on the drive shaft and the second lock shaft mesh with the outer gear of the inner ring carrier.
  • the transmission connection of the first drive shaft, the second drive shaft, the first lock shaft and the second lock shaft to the planetary gear clutch is realized by gear engagement, and the structure is compact and the transmission efficiency is high.
  • the side of the first locking frame facing the ratchet disk is also provided with ratchet teeth, the ratchet teeth of the first locking frame being matched with the ratchet teeth of the ratchet disk.
  • the ratchet of the first locking frame and the ratchet of the ratchet disk constitute a rotational locking structure on the first output device.
  • the ratchet teeth of the first locking frame mesh with the ratchet teeth of the ratchet disk, due to the circumferential positioning of the first locking frame, It has a torsion resistance so that the first locking shaft can be circumferentially stopped by the ratchet disc.
  • the space of such a rotary locking structure is small, and it is very advantageous for the miniaturization of the product to be applied to the timing generator.
  • the opposite faces of the second locking shaft and the second locking frame are respectively provided with matching ratchet teeth.
  • the opposite locking teeth on the second locking shaft and the second locking frame also constitute A rotational locking structure on the second output device.
  • the first locking frame comprises a first rectangular plate and two first locking frame triggering bars, the first locking frame triggering bars being fixed on the top and bottom of the first rectangular plate and projecting axially in the direction of the first screw.
  • the first locking frame triggering rod on the first locking frame constitutes a triggering unlocking structure of the first output device. Due to the limitation of product structure and size requirements, the stroke of the first sliding block is limited, and the first locking frame triggering rod is disposed. Thereafter, the first slider can apply a force to the first locking frame at a relatively long distance, change the working state of the first output device, and switch the working step.
  • the second locking frame comprises a second rectangular plate and two second locking frame triggering bars, the second locking frame triggering bars being fixed on the top and bottom of the second rectangular plate and projecting axially in the direction of the second screw.
  • the second locking frame trigger lever on the second locking frame constitutes the triggering unlocking structure of the second output device.
  • the base is provided with a first support plate and a second support plate which are both perpendicular to the axial direction of the base, and the two ends of the planetary gear clutch are respectively rotatably connected to the first support plate and the second support plate
  • the first locking shaft and the second driving shaft are rotatably connected to the second supporting board
  • the first driving shaft and the second locking shaft are rotatably connected to the first supporting board
  • the side wall of the base is provided with two pairs of sockets.
  • the first socket plate and the second socket plate are respectively inserted in the two pairs of sockets.
  • the first socket board and the second bracket board are used for supporting the planetary gear clutch, the first output device and the second output device, and the first socket board and the second bracket board are mated with the base, It is detachable and easy to assemble the biaxial rotation timing generator.
  • the first drive shaft and the second drive shaft are respectively connected to an output shaft, and the output shaft end is exposed outside the casing.
  • the output shaft will be the first drive shaft and the second drive shaft Torque is drawn out of the housing, making torque a form of output that can be utilized.
  • the invention has the advantages that: the structure of the rotation timing generator is improved, the number of continuous rotations of the timing generator can be greatly increased, the continuous repetition of the timing action can be realized, and the timing actions of the different axes of the single input and the double rotation output can be realized. . DRAWINGS
  • Figure 1 is a three-dimensional assembly diagram of a rotation timing generator for removing a top cover
  • Figure 2 is a three-dimensional exploded view of the rotation timing generator
  • Figure 3 is a three-dimensional view of the right axis of the rotation timing generator with the base, the top cover and the total drive shaft removed;
  • Figure 4 is a left-axis three-dimensional decomposition diagram of the rotation timing generator for removing the base, the top cover and the total drive shaft;
  • Figure 5 is a three-dimensional exploded view of the ratchet rectangular plate of the first locking frame of the switch of the rotation timing generator
  • Figure 6 is a three-dimensional exploded view of the side slide frame of the first locking frame of the switch of the rotation timing generator
  • Figure 7 is a three-dimensional exploded view of the side slide frame of the second locking frame of the switch of the rotation timing generator
  • Figure 8 is a three-dimensional view of the rotation timing generator in a first state
  • Figure 9 is a three-dimensional view of the rotation timing generator in the second state
  • Figure 10 is a three-dimensional view of the rotation timing generator in a third state
  • Figure 11 is a three-dimensional view of a rotational timing generator having a two-stage series switch
  • 12 is a three-dimensional separation diagram of a rotation timing generator having a two-stage series switch
  • FIG. 13 is a left-axis three-dimensional exploded view of a rotation timing generator having a two-stage series switch
  • Figure 14 is a three-dimensional assembly diagram of a switch of a rotary timing generator with an integrated structure for two locking frames;
  • Figure 15 is a three-dimensional exploded view of the switch of the rotation timing generator of the two locking frames using an integrated structure
  • Figure 16 is a three-dimensional view of the main part of the first locking frame adopting the integral structure
  • Figure 17 is a three-dimensional diagram of a card using a first locking frame of a unitary structure
  • Figure 18 is a three-dimensional view of a second locking frame using a unitary structure
  • Figure 19 is a three-dimensional assembly diagram of a two-axis rotation timing generator
  • Figure 20 is a three-dimensional exploded view of the planetary gear clutch of the two-axis rotation timing generator;
  • Figure 21 is a three-dimensional exploded view of the first output device of the two-axis rotation timing generator;
  • Figure 22 is a three-dimensional exploded view of the second output device of the two-axis rotation timing generator
  • Figure 23 is a three-dimensional view of the sun gear of the planetary gear clutch of the two-axis rotation timing generator;
  • Figure 24 is a three-dimensional view of the planetary gear carrier of the two-axis rotation timing generator;
  • Figure 25 is the planet of the two-axis rotation timing generator 3D view of the inner ring gear carrier of the gear clutch;
  • Figure 26 is a three-dimensional view of the first screw of the first output device of the two-axis rotation timing generator;
  • Figure 27 is a three-dimensional view of the first drive shaft of the first output device of the two-axis rotation timing generator;
  • Figure 28 is a two-axis rotation sequence a three-dimensional view of the ratchet disk of the first output device of the generator;
  • FIG. 29 is a three-dimensional view of the first locking frame of the first output device of the two-axis rotation timing generator;
  • Figure 30 is a three-dimensional view of the first locking shaft of the first output device of the two-axis rotation timing generator;
  • Figure 31 is a three-dimensional view of the second locking shaft of the second output device of the two-axis rotation timing generator;
  • Figure 32 is a two-axis rotation a three-dimensional view of the second drive shaft of the first output device of the timing generator;
  • FIG. 33 is a three-dimensional view of the first mount plug of the two-axis rotary timing generator;
  • Figure 34 is a three-dimensional view of the base of the two-axis rotation timing generator
  • Figure 35 is a three-dimensional exploded view of the two-axis rotation timing generator
  • Figure 36 is a three-dimensional view of an assembled state of the two-axis rotation timing generator
  • Figure 37 is a three-dimensional schematic diagram of another assembled state of the two-axis rotation timing generator
  • Figure 38 is the first of the two-axis rotation timing generator a three-dimensional map of the state
  • Figure 39 is a three-dimensional view of the second state in the two-axis rotation timing generator.
  • Figure 40 is a three-dimensional view of the third state in the two-axis rotation timing generator. Best way to implement the invention
  • the rotation timing generators of Embodiments 1 to 3 and the rotation directions of the components are all viewed from the right end to the left end in FIG. 1 as an observation angle;
  • the biaxial rotation timing generator of the fourth embodiment and the direction of rotation of each component are both viewed from the right end to the left end in FIG. 19; the following embodiments can be applied to household living equipment or facilities such as shutters.
  • the rotary timing generator includes a switch 34, a triggering device, a base 38, a top cover 39, and a hexagonal cylindrical total drive shaft 2
  • a switcher 34 includes a first locking frame 341, a second locking frame 342, a planetary gear clutch 343, and a spring 344
  • the triggering device including a first slider 351, a second slider 352, a first screw 353, and a second screw 354, a planet
  • the gear clutch 343 includes a planetary carrier 3433, a planetary gear 3432, a sun gear 3431, and an inner ring gear 3434.
  • the planetary gear clutch 343 retains the conventional features, but with slight variations, gp, the head of the planet carrier shaft 34333 of the planetary carrier 3433 is provided with a hexagon socket, and the disk of the planetary carrier 3433 is supported by the planet carrier shaft 34333.
  • a clutch ratchet 34332 is added at one end.
  • the axle of the sun gear 3431 has a hollow structure, and has a central lumen 34314 extending axially.
  • the central lumen 34314 has a regular hexagonal cross section, and the inner ring of the inner ring gear 3434 is provided with a conventional inner ring.
  • the tooth 34346, the closed end of the inner ring gear 3414 extends out of a hollow shaft 34343, and the closed end end of the inner ring gear 3414 is also provided with a clutch ratchet 34332, and the clutch ratchet 34332 on the inner ring gear 3414 is disposed between the inner ring gear 3414 and the inner ring gear 3414.
  • An annular groove 34342, an outer hexagonal shaft 34344 is added to the head of the hollow shaft 34343, as shown in Figs. 3 and 4.
  • the first locking frame 341 is composed of a first end rectangular plate 3411, two H-shaped first side sliding frames 3413 and a baffle 3412.
  • the first end rectangular plate 3411 is parallel to the baffle 3412, and the first end rectangular plate 3411 is One end is provided with an annular distribution end plate ratchet 34112.
  • the ratchet direction of the end plate ratchet 34112 is to prevent the planetary carrier 3433 from rotating clockwise and the inner ring gear 3434 from rotating counterclockwise, the first end rectangular plate 3411 and the baffle 3412
  • the central drive through which the total drive shaft 2 passes, the baffle 3412 has the same outer shape as the first end rectangular plate 3411, except that both ends of the baffle 3412 are flat and have no ratchets.
  • the first side sliding frame 3413 is composed of two first side sliding frame vertical rods 34131 and a first side sliding frame horizontal rod 34133.
  • the upper and lower ends of the two first side sliding frame vertical rods 34131 are respectively provided with a pin hole for the first side.
  • the sliding frame 3413 and the first end rectangular plate 3411 and the baffle 3412 can be bolted together, and both ends of the first sliding frame rail 34133 are respectively provided with a convex portion on both sides of the first end rectangular plate 3411 and the baffle 3412.
  • the end of the first sliding frame rail 34133 is provided with a central square perforation 34135, and one end of the first sliding frame crossbar 34133 is cut off by half thickness to facilitate the position and the second position.
  • the second side sliding frame 3422 of the locking frame 342 is fitted, and the end of the horizontal bar 34133 of the first side sliding frame 3413 protrudes from the vertical rod of the first side sliding frame 3413 to form a first side sliding frame contact protrusion 34137.
  • the thickness of the first side sliding frame vertical rod 34131 is half of the first side sliding frame rail 34133;
  • the second locking frame 342 is composed of a second end rectangular plate 3421 and a pair of horizontally U-shaped second side sliding frames.
  • the 3422 is formed by bolting, and the second end rectangular plate 3421 and the first end rectangular plate 34 of the first locking frame 11 is substantially the same, except that the two sides of the second end rectangular plate 3421 are only provided with a boss in the middle, and the lower side of the boss is also provided with a screw hole, and the second side sliding frame 3422 includes two a two-side sliding frame cross member 34222, and a connecting vertical rod 34221 connected between the two second side sliding frame cross bars 34222, one end of the second side sliding frame cross bar 34222 is cut off by half thickness and a square is also arranged there.
  • the end hole 34224, the other end of the second side sliding frame 34222 is also provided with a pin hole, so that the second side sliding frame 3422 and the second end rectangular plate 3421 can be bolted together, and the second side sliding frame is horizontally
  • the inner side of the connecting vertical rod 34221 of the rod 34422 is half cut to form a notch 34227, and when the second end rectangular plate 3421 is connected with the second side sliding frame 3422, the boss in the middle of the second end rectangular plate 3421 is just embedded in the notch 34227.
  • the first screw 353 and the second screw 354 of the rotation timing generator triggering device are both hollow tubular structures and have smooth journals at both ends, the threads of the first screw 353 are left-handed threads, and the threads of the second screw 354 are right-handed threads.
  • the first screw 353 is provided with a hexagonal shaft 3353 toward one end of the planetary gear clutch 343, and the second screw 354 is provided with a hexagonal hole 3544 toward one end of the planetary gear clutch 343.
  • the first slider 351 and the second slider 352 are both A rectangular plate having a central threaded hole, the internal thread of the first slider 351 is a left-handed thread, and the internal thread of the second slider 352 is a right-handed thread, as shown in FIGS. 3 to 4.
  • the rotary timing generator base 38 has a front end wall 381 and a rear end wall 386, and the remaining second screw support 382, inner ring gear hollow shaft support 383, planetary carrier shaft support 384 and second screw support 385 are not associated with The two side walls are connected with a certain distance to accommodate the axial sliding of the first locking frame 341 and the second locking frame 342 of the switch, see FIG.
  • the rotation timing generator assembly process is to first assemble the planetary carrier 3433, the planetary gears 3332, the sun gear 3431 and the inner ring gear 3434 into a conventional planetary gear clutch, and then the first end rectangular plate 3411 and the second end face rectangle
  • the plates 3421 are respectively sleeved on the planet carrier shaft 34333 of the planetary carrier 3433 and the hollow shaft 34343 of the inner ring gear 3434, while the hollow shaft 34343 also passes through the baffle 3412.
  • the first end rectangular plate 3411 must be made.
  • the end panel ratchets 34112 on the two-end rectangular plate 3421 face the clutch ratchets 34332 on the planetary carrier 3433 and the inner ring gear 3434, respectively, and the spring 344 and the baffle 3412 are sequentially placed on the inner ring gear 3434.
  • the first side sliding frame 3413 of the first locking frame 341 and the second side sliding frame 3422 of the second locking frame 342 are then cross-fitted together, and the second side sliding frame 3413 is passed through the screw 345.
  • the first central sliding frame 3413 is fitted into the boss of the second end rectangular plate 3421 and the screw 345 is passed through the pin hole of the first side sliding frame vertical rod 34131.
  • the end side hole 34224 of the second side sliding frame cross member 34222 is screwed into the screw hole 34115 of the outer boss 34113 on both sides of the first end rectangular plate 3411, and the first side sliding frame 3413 and the first end rectangular plate are inserted.
  • the 3411 is fixedly integrated and the end square hole 34224 of the second side sliding frame rail 3422 is fitted with the outer boss 34113 of the first end rectangular plate 3411, and the screw 345 is passed through the first side sliding frame vertical rod.
  • the pin holes of the 34131 are screwed into the screw holes 34115 of the outer bosses 34113 on both sides of the baffle 3412 such that the end square perforations 34138 of the first side sliding frame 3413 are engaged with the side middle bosses 34114 of the baffle 3412.
  • the first side sliding frame 3413 is fixed integrally with the baffle 3412, thereby compressing the spring 344 between the baffle 3412 of the first locking frame 341 and the second end rectangular plate 3421 of the second locking frame 342 to form a rotation sequence.
  • the switch 34 of the generator at this time, the end of the second side slide rail 34422 is exposed
  • the first end rectangular plate 3411 is externally formed to form a second side sliding frame contact protrusion 34423, as shown in FIG.
  • the hexagonal shaft 3533 of the first screw 353 of the triggering device is inserted into the hexagonal hole of the planetary carrier shaft 34333 of the planetary carrier 3433, and the hexagonal hole 3554 of the second screw 354 is inserted into the switch 34.
  • the first slider 351 and the second slider 352 are screwed into the first screw 353 and the second screw 354, respectively, and the total drive shaft 2 is driven.
  • the assembly is finally placed on the seats between the base 38 and the top cover 39, so that the annular groove of the inner ring gear 3434 34342 is stuck on the inner ring gear hollow shaft support 383, and the planetary carrier 3433 is stuck on the planetary carrier shaft support 384, the first locking frame
  • the first end rectangular plate 3411 of the 341 is between the planetary carrier shaft support 384 and the second screw support 385, and the second end rectangular plate 3421 of the second locking frame 342 and the baffle 3412 of the first locking frame 341 are in the Between the two screw holders 382 and the inner ring gear hollow shaft bearings 383, the smooth journals of the two ends of the first screw 353 fall on the second screw support 385 and the rear end wall 386, respectively, and the two ends of the second screw 354 The smoothing journals respectively fall on the front end wall 381 and the second screw holder 382.
  • the first slider 351 falls between the second screw holder 385
  • FIG. 8 to 10 show a three-dimensional view of the rotation timing generator in three state positions
  • FIG. 8 shows a three-dimensional view of the first state of the rotation timing generator, at which time the first slider 351 and the second locking frame 342 is separated by a distance, the second slider 352 is in close contact with the second screw holder 382 and touches the first side sliding frame contact protrusion 34137 of the first locking frame 341, so that the end panel of the first end rectangular plate 3411 is ratcheted.
  • the 34112 is disengaged from the clutch ratchets 34332 of the planetary carrier 3433.
  • the baffle 3412 of the first locking frame 341 presses the spring 344, and the spring 344 pushes the second end rectangular plate 3421 of the second locking frame 342 onto the upper end.
  • the end panel ratchet 34112 engages with the clutch ratchets 34432 on the inner ring gear 3434 to lock the inner ring gear 3414 so that it cannot rotate counterclockwise.
  • the sun gear 3431 and the planetary carrier are driven.
  • 3433 rotates in the same direction, and the planetary carrier 3433 drives the first screw 353 to rotate in the same direction, so that the first slider 351 moves axially toward the switch 34.
  • the sun gear 3431 is driven in the same direction.
  • Rotating, inner ring gear 3434 Moving the second screw 354 is rotated clockwise, the second screw 354 driven by a second slider 352 moving axially toward the direction switch 34, the second slider 352 has at this time a state in which the second screw holder 382 is in close contact, thereby preventing the locking inner ring gear 3434 from rotating clockwise, and the planetary carrier 3433 and the total drive shaft 2 and the sun gear 343 are rotated counterclockwise without resistance, and the first screw 353 is driven.
  • the first slider 351 moves axially away from the direction of the switch 34.
  • Figure 9 shows a three-dimensional view of the rotation timing generator in the second state position, in which case the second slider 352 is spaced apart from the first locking frame 341, the first slider 351 is in close contact with the holder 385 and touches the first
  • the second side sliding frame of the second locking frame 342 touches the protruding portion 34423 to disengage the end plate ratchet teeth 34112 on the second end rectangular plate 3421 from the clutch ratchet teeth 34332 on the inner ring gear 3434, and at the same time, the second locking frame 342
  • the second end rectangular plate 3421 pushes the spring 344, and the spring 344 pushes the first end rectangular plate 3411 to engage the end panel ratchet 34112 of the first end rectangular plate 3411 with the clutch ratchet 34332 on the planetary carrier 3433 to lock
  • the planetary carrier 3433 does not rotate clockwise.
  • the abutment 385 abuts against the carrier 343, thereby preventing the planetary carrier 3433 from rotating counterclockwise, and the inner ring gear 3434 drives the second screw 354 to rotate clockwise, causing the second slider 352 to move axially away from the switch 34.
  • Figure 10 shows a three-dimensional view of the rotational timing generator in a third state position, A slider 351 and a second slider 352 respectively abut the first locking frame 341 and the second locking frame 342, so that the first locking frame 341 and the second locking frame 342 have no locking effect on the planetary gear clutch 343, such as clockwise.
  • the rotating total drive shaft 2 drives the sun gear 3431 to rotate clockwise.
  • the planetary carrier 3433 rotates clockwise, the inner ring gear 3434 rotates counterclockwise, and the second slider 352 moves axially toward the switch 34, increasing the first
  • the thrust of the locking frame 341 causes the first locking frame 341 to lock the planetary carrier 3433, and the first slider 351 moves axially away from the switch 34 to cancel the thrust on the second locking frame 342, so that the second locking frame 342
  • the inner ring gear 3434 loses the locking action, such as rotating the total drive shaft 2 counterclockwise to drive the sun gear 3431 to rotate counterclockwise, at this time, the planetary carrier 3433 rotates counterclockwise, the inner ring gear 3434 rotates clockwise, and the first slider 351 faces the switch.
  • the direction of the device 34 is axially moved to increase the thrust of the second locking frame 342 such that the second locking frame 342 locks the inner ring gear 3434, and the first slider 351 moves axially away from the switch 34 to cancel the first Locking frame 3
  • the thrust of 41 causes the first locking frame 341 to have no locking effect on the carrier 3433.
  • the rotation timing generator is always kept in an input torque of the total drive shaft 2 driving the sun gear 3431, and the two output moving parts first slider 351 and second slider 352 can always have no impact, Switch to each other unimpeded.
  • FIG. 11 shows a three-dimensional assembly of two rotary timing generators connected in series.
  • Figure 12 shows a three-dimensional separation of a rotary timing generator with a two-stage series switch.
  • Figure 13 shows A left-axis three-dimensional exploded view of a rotational timing generator having a two-stage series switcher, in which two switches are a secondary switch 34' and a primary switch 34, a primary switch 34 and the first embodiment
  • the secondary switch 34' is different from the switch 34 of the first embodiment, that is, the short axis of the secondary sun gear 3431' of the secondary switch 34' is changed to the long axis and the head is set to The outer hexagonal head 34313', the inner hexagonal central lumen 34314 extending through the secondary sun gear 3431' is changed to the central circular hole 34314'.
  • the first slider 351 and the first screw of the first-order rotation timing generator are removed. 353.
  • connection relationship of the two series connected rotary timing generators is as follows:
  • the sun gear 3431 of the primary switch 34 is fixedly integrated with the total drive shaft 2, and the secondary sun gear 3431' of the secondary switch 34' is not combined with the total
  • the drive shaft 2 is fitted and directly penetrated, and the long-axis end outer hexagon head 34313' of the secondary sun gear 3431' passes through the secondary inner ring gear 3434' and the second-stage second screw 354' and the primary switch
  • the hexagonal hole of the carrier shaft 34333 of the planetary carrier 3343 of the 34 is fitted and fixed integrally, as shown in FIGS. 12 and 13.
  • Figure 11 shows a state in which the rotational timing generator having a two-stage series switch is in a state in which the secondary first slider 351' of the secondary switch 34' touches the secondary second locking frame 342', The second slider 352' touches the second locking frame 342 of the primary switch 34, and the second slider 352 of the primary switch 34 abuts against the front end wall 381 of the base 38, at this time, the planetary carrier 3433, two The stage planetary carrier 3433' and the secondary sun gear 3431' are locked, such as rotating the total drive shaft 2 counterclockwise, driving the sun gear 3431 to rotate in the same direction, the inner ring gear 3434 driving the second screw 354 to rotate clockwise, the second slider The 352 moves axially away from the switch 34, and is prevented from moving forward by the front end wall 381 of the base 38, so that the inner ring gear 3434 cannot rotate counterclockwise; if the total drive shaft 2 is rotated clockwise, the sun gear 3431 is driven.
  • the inner ring gear 3434 rotates counterclockwise to drive the second slider 352 to move axially toward the switch 34.
  • the second slider 352 touches the first locking frame 341 of the switch 34
  • the second slider 352 stops moving
  • the inner ring gear 3434 also stops rotating
  • the planetary carrier 3433 is unlocked and starts to rotate clockwise
  • the secondary sun gear 3431 ' drives the secondary inner ring gear 3434 ' and the second stage second screw 354' rotates counterclockwise such that the second stage second slider 352' moves axially toward the secondary switch 34', when the second stage second slider 352' touches the secondary switch 34
  • the second stage first locking frame 341 ' the second stage second slider 352 ' stops moving
  • the second inner ring gear 3434 ' also stops rotating
  • the secondary planetary carrier 3433 ' is unlocked and starts to drive the second stage.
  • the first locking frame 341 and the second locking frame 342 of the switch 34 of the rotary timing generator in Embodiment 1 are each a split structure.
  • an injection molding, casting or sheet metal working process is adopted, and
  • the two locking frames of the body structure are respectively changed into an integral structure.
  • FIG. 14 shows a three-dimensional assembly diagram of the switch of the first locking frame 341 and the second locking frame 342 using the integrated structure of the rotation timing generator
  • FIG. 15 shows that the first locking frame 341 and the second locking frame 342 are integrated.
  • a three-dimensional exploded view of the switch 34 that rotates the timing generator FIG. 16 shows a three-dimensional view of the main member of the first lock frame 341 having a unitary structure
  • FIG. 17 shows the block 3412 of the first lock frame 341 having a unitary structure.
  • FIG. 18 shows a three-dimensional view of the second locking frame 342 having a unitary structure.
  • the first side sliding frame 3413 of the first locking frame 341 in the first embodiment becomes the first embodiment.
  • the first locking frame crossbar 3413 of the locking frame 341 is integrated with the first end surface rectangular plate 3411 of the first locking frame 341 in the first embodiment to become the main component of the first locking frame 341, in the first embodiment.
  • the baffle 3412 of the first locking frame 341 becomes the block 3412 of the first locking frame 341 in the embodiment, and the bar block 3412 has barbs 34123 on both sides thereof, and the barbs 34123 on both sides of the block 3412 are embedded into the block 3412.
  • the end square perforation 34138 on the first locking frame crossbar 3413 of the first locking frame 341 main body is the first locking frame 341 in this embodiment, and the second locking frame 342 in the first embodiment is horizontally
  • the two side sliding frame 3422 becomes the second locking frame cross member 3422 in the embodiment, and is integrated with the second end surface rectangular plate 3421 to form the second locking frame 342 in this embodiment, and adopts the first locking of the integral structure.
  • the assembly process of the frame 341, the second locking frame 342 and the planetary gear clutch 343 is completely complete with the first embodiment The same as shown in Figure 14.
  • the rotation timing generator of the present embodiment adopts a two-axis structure.
  • the two-axis rotation timing generator includes a planetary gear clutch 91, a first output device 92, and a second output device. 93.
  • the cover 98 is buckled to form a housing, the planetary gear clutch 91, the first output device 92, the second output device 93, the first socket plate 94, and the second socket Plates 95 are all disposed in the housing.
  • the input end of the planetary gear clutch 91 is drivingly coupled to a total drive shaft 96.
  • the planetary gear clutch 91 is provided with two output ends.
  • the first output device 92 and the second output device 93 are respectively provided with a timing locking member and a driving member.
  • An output end of the planetary gear clutch 91 is simultaneously connected to the timing lock of the first output device 92 and the drive member of the second output device 93.
  • the other output end of the planetary gear clutch 91 is simultaneously driven by the first output device 92.
  • the timing lock of the second output device 93 is drivingly connected.
  • the driving member and the timing locking member are arranged in a crosswise manner, that is, one timing locking member acts on the other driving member, and the respective driving members introduce power to move themselves, and the power Feedback to the respective timing locks causes the timing locks to cross-overly influence adjacent drive members, and since the two outputs of the planetary gear clutch 91 are always inverted, and timing control is employed, the first output device 92 and the second The output device 93 can alternately output power.
  • the first output device 92 includes a first locking shaft 924, a first spring 923, a first locking frame 921, a ratchet disk 922, a first driving shaft 925, a first screw 926, and a first slider 927.
  • the first drive shaft 925 is the drive member of the first output device 92
  • the first lock shaft 924 is the timing lock member of the first output device 92
  • the second output device 93 includes the second drive shaft 934,
  • the second spring 933, the second locking frame 931, the second locking shaft 932, the second screw 936 and the second slider 937, the second driving shaft 934 is the driving member of the second output device 93, and the second locking shaft 932 is Timing lock of the second output device 93.
  • the planetary gear clutch 91 includes a sun gear 911, a planetary gear 912, a planetary carrier 913, and an inner ring carrier 914.
  • the planetary gear clutch 91 retains the conventional features, but with slight variations, S, the axle of the sun gear 911 has a hollow structure.
  • Sun gear with axial penetration The axial center lumen 9111, the central axis of the sun shaft shaft 9111 has a regular hexagon shape, as shown in Fig. 23; one side of the planetary carrier 913 is provided with a planetary carrier gear 9132, see Fig. 24; the closed end of the inner ring carrier 914
  • An inner ring carrier hollow shaft 141 is extended and an inner ring carrier gear 9142 is provided at its end, see FIG.
  • the first slider 927 of the first output device 92 is a rectangular block having an internally threaded hole, and the bottom surface of the first slider 927 abuts the inner bottom surface of the base 97, see FIG. 21; the first screw 926 has a first screw axially penetrating
  • the central lumen 9261, the first screw central lumen 9261 has a cross-sectional shape in the shape of a waist, see FIG.
  • the first drive shaft 925 of the first output device 92 is provided with a first drive shaft gear 9251, and the first drive shaft 925
  • the hollow structure has a first drive shaft central lumen 9253 that is axially penetrated, and the first drive shaft central lumen 9253 has a regular hexagonal cross section, and one end of the first drive shaft 925 is cut into two planes and then formed into a waist shape.
  • the waist hole 9222 is shown in FIG.
  • the first locking frame 921 is composed of a first rectangular plate 9211 and two first locking frame triggering levers 9212, and the two first locking frame triggering bars 9212 are formed by the top and bottom of the first rectangular plate 9211. Extending, the first locking frame trigger lever 9212 becomes the first a trigger unlocking structure between the slider 927 and the first locking frame 921.
  • first rectangular plate 9211 is provided with an annularly distributed first locking end plate ratchet 9213, and the spine of the first locking frame end plate ratchet 9213
  • the tooth direction is a direction for preventing the planetary carrier 913 from rotating counterclockwise
  • the first rectangular plate 9211 of the first locking frame 921 further has a first locking frame central hole 9214 for the first locking shaft 924 to pass through, the first locking frame end plate spine
  • the tooth 9213 and the ratchet disk ratchet 9221 constitute a rotational locking structure of the first output device 92, see FIG. 29;
  • the first locking shaft 924 of the output device 92 has a hollow structure and a first locking shaft annular step 9243.
  • first locking shaft 924 One end of the first locking shaft 924 is provided with a first locking shaft first locking shaft gear 9241, and the other end of the first locking shaft 924 is cut. After two planes, the waist is rounded to the first locking shaft end joint 9342, as shown in FIG.
  • the second slider 937 of the second output device 93 is identical to the first slider 927, the second screw 936 is identical to the first screw 926, and the second locking shaft gear 9321 and the connected ratchet disk 9322 are sequentially disposed on the second locking shaft 932.
  • the second body of the ratchet wheel 9322 is provided with an annularly distributed second locking shaft ratchet 9323.
  • the other end surface of the connected ratchet disk 9322 is closely attached to the second locking shaft gear 9321. See FIG. 31, the second locking frame 931.
  • the structure of the first locking frame 921 is the same.
  • the second locking frame 931 is provided with a second locking frame end plate ratchet 9131 and a second locking frame triggering rod.
  • the second locking frame end plate ratchet teeth 9313 are oriented to block the inner ring carrier. 914 clockwise rotation direction, the second locking bracket end panel ratchet 9313 and the second locking shaft ratchet 9323 constitute a rotation locking structure of the second output device 93, and the second locking frame triggering lever becomes the second slider 937 and the second A trigger unlocking structure between the locking frames 931.
  • the second drive shaft 9344 of the second output device 93 has a hollow structure, and has a second drive shaft central lumen 9261 that penetrates axially.
  • the second drive shaft central lumen 9261 has a regular hexagonal cross section, and the second drive shaft 934
  • the second drive shaft annular step 9345 and the second drive shaft gear 9341 are sequentially disposed at one end, and the other end of the second drive shaft 934 is cut out with two flat drive shaft end joints 9342 which are rounded and rounded, as shown in FIG.
  • the first support plate 94 of the biaxial rotation timing generator is a rectangular thin plate, and the first one of the first insert plate 94 is provided with three circular holes having different aperture sizes: a middle circular hole 941, a side circular hole 942, and a side two circular hole 943, the first one of the first socket plate 94 is respectively located at the top
  • the side and bottom side notches 944 and the side two notches 945, see Fig. 33; the first pedestal insert 95 and the first pedestal insert 94 are identical, see Fig. 35.
  • the two ends of the base 97 of the two-axis rotation timing generator are respectively provided with a left end support 971, a right end support 973, and two pairs of sockets 972 in the middle, as shown in Fig. 34.
  • 35 to 37 show the assembly process of the two-axis rotation timing generator.
  • the sun gear 911, the planetary gear 912, the planetary carrier 913, and the inner ring carrier 914 are assembled together to become the conventional planetary gear clutch 91.
  • the two output ends of the planetary gear clutch 91 are respectively an inner ring carrier gear 9142, a planetary carrier gear 9132, and a second cymbal, and the first spring 923 is sleeved onto the first locking shaft 924 of the first output device 92.
  • the first locking shaft 924 is then passed through the first locking bracket 921 and the ratchet disc 922 to constrain the first spring 923 between the first locking shaft annular step 9243 of the first locking shaft 924 and the end surface of the first locking bracket 921.
  • first assembly Forming the first assembly while passing the first drive shaft end joint 9252 of the first drive shaft 925 through the side circular hole 942 of the intermediate support insert 94 and inserting into the first screw central lumen 9261 to make the first drive
  • the shaft 925 is integral with the first screw 926, and the first slider 927 is screwed onto the first screw 926, and then the second drive shaft 934 is passed through the second spring 933, the second locking frame 931, and the second locking shaft 932.
  • the moving shaft end joint 9343 is inserted into the waist-shaped central lumen of the second screw 936 such that the second driving shaft 934 is integrated with the second screw 936 such that the top and bottom trigger rods of the second locking frame 931 are embedded in the first bearing
  • the side of the inserting plate 94 is notched 945, and then one end of the planetary gear clutch 91 is inserted into the central circular hole 941 of the first abutment insert 94 such that the inner ring carrier gear of the inner ring carrier 914 at one end of the planetary gear clutch 91 9142 respectively meshes with the first drive shaft gear 9251 of the first drive shaft 925 of the first output device 92, the second lock shaft gear 9321 of the second lock shaft 932 of the second output device 93, and the planet at the other end of the planetary gear clutch 91
  • the carrier gear 9132 of the wheel carrier 913 meshes with the first locking shaft gear 9241 of the first locking shaft 924 and the second driving shaft gear 9341 of the second driving shaft 9
  • FIG. 38 to 40 show three-dimensional views of the two-axis rotation timing generator in three state positions, and FIG. 38 shows a three-dimensional view of the first state of the two-axis rotation timing generator, at which time the second slider 937 is near The left end support 971 of the base 97 is away from the first locking frame 931.
  • the first locking frame 921 meshes with the ratchet teeth 9221 of the ratchet disk 922 under the elastic force of the first spring 923, preventing the ratchet disk 922 from rotating counterclockwise, thereby preventing
  • the first locking shaft 924 integral with the ratchet disk 922 rotates counterclockwise, and the first locking shaft 924 meshes with the end planetary carrier gear 9132 of the planetary carrier 913, thereby preventing the planetary carrier 913 from rotating clockwise;
  • the second slider 937 of the second output device 93 overcomes the second spring 933
  • the elastic pushes the top and bottom trigger levers of the second locking frame 931 such that the second locking bracket end panel ratchet teeth 9313 of the second locking bracket 931 are disengaged from the second locking shaft ratchet teeth 9323 of the second locking shaft 932.
  • the sun gear 911 is rotated in the same direction, and the inner ring gear carrier 914 is intended to drive the first screw 926 and the second lock shaft 932 to rotate counterclockwise, such as the first screw 926 driving the first slider.
  • 927 is axially moved toward the left end support direction 981 of the base 97, at which time the first slider 927 is already in a state of being in close contact with the left end support 971 of the base 97, thereby preventing the inner ring carrier 914 from rotating clockwise, such as
  • the second locking shaft 932 is engaged with the second locking frame 931, and the second locking shaft 932 is prevented from rotating counterclockwise.
  • the second locking shaft 932 is reversed without resistance.
  • the hour hand rotates, it does not have any influence on other components; at this time, if the total drive shaft 96 is rotated clockwise, the sun gear 911 rotates in the same direction and the inner ring gear carrier 914 rotates in the opposite direction, and the inner ring gear of the inner ring gear carrier 914 Frame gear 9142 passes the first
  • the driving shaft 925 drives the first screw 926 to rotate clockwise, so that the first slider 927 moves axially toward the first locking frame 921; when the first slider 927 reaches the position touched by the first locking frame 921, the double shaft
  • the rotation timing generator is in the second state as shown in FIG.
  • the first slider 927 pushes the first locking frame 921 against the elastic force of the first spring 923, so that the first The first locking bracket end panel ratchet 9213 of the locking bracket 921 is disengaged from the ratchet teeth of the ratchet disc 922, and the locking between the first locking shaft 924 and the first locking bracket 921 integrated with the ratchet disc 922 is released, and at the same time A slider 927 is blocked by the socket 972 of the base 97 and no longer travels. The first screw 926 is thus prevented from being locked, and the first drive shaft 925 integrally coupled with the first screw 926 is also stopped to rotate, thereby preventing the inner portion.
  • the ring carrier 914 rotates counterclockwise, at which point the planet carrier 913 begins to rotate clockwise.
  • the first locking shaft 924 and the second driving shaft 934 are rotated counterclockwise, the rotation of the first locking shaft 924 does not have any influence on other components, and the second driving shaft 934 drives the second screw 936 connected thereto to be counterclockwise. Rotation, thereby driving the second slider 937 to move axially in the direction of the left end support 971 of the base 97.
  • Figure 40 shows a three-dimensional view of the two-axis rotation timing generator in a third state position, with the first slider 927 and the second slider 937 abutting the first locking frame 921 and the second locking frame 931, respectively, so that the first locking Both the frame 921 and the second locking frame 931 have no locking action on the planetary gear clutch 91.
  • the clockwise rotation of the total drive shaft 96 drives the sun gear 911 to rotate clockwise.
  • the planetary carrier 913 rotates clockwise, and the planetary carrier 913 drives the first.
  • a locking shaft 924 is idling counterclockwise, and the second driving shaft 934 drives the second screw 936 to rotate counterclockwise to drive the second slider 936 to move axially toward the left end support 971 of the base 7, while the inner ring carrier 914 is counterclockwise.
  • the two-axis rotation timing generator is always maintained with one input torque of the total drive shaft 96 driving the sun gear 911, and the two different shaft output moving parts first slider 927 and second slider 937 are always
  • the two different shaft output moving members can also be the first output shaft 99 inserted into the first drive shaft 925 and the second output shaft 910 inserted into the second drive shaft 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

一种转动时序发生器,包括切换器(34)、触发装置和总驱动轴(2),切换器(34)和触发装置位于由一底座(38)和一顶盖(39)扣合而成的腔体中,且被总驱动轴(2)贯穿,触发装置包括若干与切换器(34)扭矩输出端传动连接的、中空的驱动螺杆,以及螺纹连接于驱动螺杆上且在驱动螺杆驱动下做轴向移动的滑块;其双轴式结构包括由顶盖和底座扣合而成的壳体,壳体内设有一行星齿轮离合器(91)及并联的第一输出装置(92)和第二输出装置(93),行星齿轮离合器(91)的输入端与一总驱动轴(96)传动连接,行星齿轮离合器(91)上设有两个输出端。该转动时序发生器可大幅增加时序发生器的连续转动圈数,实现时序动作的连续重复,还可实现单输入和双转动输出不同轴的时序动作。

Description

一种转动时序发生器
技术领域
本发明涉及一种机械式自动控制装置, 更具体的说, 它涉及一种 转动时序发生器。 背景技术
在人们日常生活中, 为了追求便利和高效, 有些生活设备或设施 具有机械运动机构, 其中有一些还需要进行时序控制, 这就要用到时 序发生器。现有的时序发生器多为电子式, 而很多家用生活设备或设 施不宜占用太多空间, 且只需进行短时间工作, 因此一般采用人工驱 动方式, 比如用于百叶窗的时序发生器。 电子式的时序发生器由于需 要电源供应且需要与设备或设施的机械结构进行有效融合,需要设置 机电转换的结构, 难免需要更多空间, 因此电子式的时序发生器在这 种场合不太实用。 美国 The McGraw-Hi l l Companies 在 2001年出版 的 《Mechanisms and mechanical devices sourcebook^第三片反记载 了一种转动时序发生器,该转动时序发生器由普通的行星差动齿轮机 构和棘爪机构装配而成, 从一个顺时针转动中, 可以获得顺时针和逆 时针两个同轴转动, 它的单输入和双转动输出都是同轴的, 并且在整 个转动周期中输出转矩都是恒定的, 该时序发生器不需要笨重的棘 齿、 摩擦离合器或凸轮轨道从动件, 可以应用在自动化生产线设备、 家用电器和汽车上。但如果要求一个动作结束,另一个动作马上开始, 连续重复这种时序动作且其中每个动作的持续时间可以任意调整,则 上述转动时序发生器不再适用,因为此种转动时序发生器无论正反转 都最多只能转一圈。为此, 需要一种新的转动时序发生器来满足这种 要求,同时这种转动时序发生器还可以通过串联方式来扩展完成一个 动作完毕接着下一个动作开始这种重复的时序动作。 发明的公开
为了克服现有的转动时序发生器只能转动一周,无法连续重复时 序动作的缺陷, 本发明提供了一种具有更多转动周期, 可连续重复时 序动作的转动时序发生器。
本发明的技术方案是: 一种转动时序发生器, 包括切换器、 触发 装置和总驱动轴,切换器和触发装置位于由一底座和一顶盖扣合而成 的腔体中, 且被总驱动轴贯穿, 触发装置包括若干与切换器扭矩输出 端传动连接的、 中空的驱动螺杆, 以及螺纹连接于驱动螺杆上且在驱 动螺杆驱动下做轴向移动的滑块。在总驱动轴的驱动下, 切换器可带 动驱动螺杆, 使得滑块分别在驱动螺杆上作轴向移动, 但由于锁止结 构的锁止作用,连接在切换器不同扭矩输出端上的驱动螺杆只能交替 停转而不能同时停转,进而使得不同驱动螺杆上的相应滑块也只能作 交替的驻留, 这样就产生了时序控制效果。 在应用中, 继续以驱动螺 杆和滑块带动其它更多种类的部件,就可完成很多具体的运动机构的 动作。
作为优选, 所述的切换器包括第一锁定架、 第二锁定架、 行星齿 轮离合器和弹簧,第一锁定架和第二锁定架均滑动连接于底座上且相 互滑动连接,弹簧套于一总驱动轴外且位于第一锁定架和第二锁定架 之间, 行星齿轮离合器转动连接在一底座上并轴向固定, 且行星齿轮 离合器与总驱动轴传动连接,行星齿轮离合器设有一扭矩输入端和两 个扭矩输出端, 行星齿轮离合器位于第一锁定架和第二锁定架之间, 第一锁定架和第二锁定架上设有可使行星齿轮离合器两个扭矩输出 端交替停止扭矩传输的触压突出部及锁止结构。行星齿轮离合器的两 端均可输出扭矩从而分别带动运动机构执行动作,且行星齿轮离合器 即使一端输出扭矩受阻, 另一端仍可继续输出扭矩, 第一锁定架和第 二锁定架的功能是与行星齿轮离合器的两端发生连接后阻止相应端 的扭矩传输,而与行星齿轮离合器的两端脱离连接后则可保持相应端 的扭矩传输, 第一锁定架和第二锁定架均可在底座上滑动, 而且相互 间也可滑动拉近或拉开, 而行星齿轮离合器轴向位置固定, 在第一锁 定架和第二锁定架这两个锁定架中,其中一个锁定架所在侧的运动机 构接触到另一锁定架上的触压突出部时,被触到的锁定架会被该运动 机构推移, 脱离与行星齿轮离合器的连接, 被触到的锁定架对应的行 星齿轮离合器输出端就有扭矩传输, 进行结构设置时, 第一锁定架和 第二锁定架间保持适当的间距,两个锁定架不会同时与行星齿轮离合 器的两端建立连接,这样行星齿轮离合器在同一时间内就只能有一端 停止扭矩传输, 从而实现行星齿轮离合器所带动运动机构的交替停 止, 产生时序控制的效果。位于第一锁定架和第二锁定架之间的弹簧 可提供推力使第一锁定架和第二锁定架间维持原有间距,无论第一锁 定架和第二锁定架中哪个锁定架受到运动机构的推压而产生轴向窜 动, 由于弹簧的存在, 未受到滑块推压的另一个锁定架都会紧跟已发 生轴向窜动的锁定架,这样行星齿轮离合器一端与对应锁定架断开连 接时, 行星齿轮离合器的另一端便与对应的锁定架建立连接, 实现行 星齿轮离合器扭矩的单向输出。
作为优选,第一锁定架包括位于第一锁定架两端的第一端面矩形 板和挡板, 以及一对分布在第一锁定架两侧的第一侧滑框, 第一端面 矩形板、挡板和第一侧滑框固连, 所述第一锁定架上的触压突出部位 于第一侧滑框上, 第一端面矩形板和第一侧滑框固连, 第二锁定架包 括位于第二锁定架端部的第二端面矩形板和分布在第二锁定架两侧 的第二侧滑框, 所述第二锁定架上的触压突出部位于第二侧滑框上, 第二侧滑框贯穿第一端面矩形板和挡板并与它们滑动连接,第一侧滑 框贯穿第二端面矩形板并与之滑动连接,第二端面矩形板位于第一端 面矩形板和挡板之间, 弹簧位于第二端面矩形板和挡板之间。第一端 面矩形板、挡板和第一侧滑框可围合成框架结构, 第一端面矩形板和 挡板构成第一锁定架的两个端面,分别便于与行星齿轮离合器端部进 行配合连接及支持弹簧, 第一侧滑框延伸一定的长度, 便于与第二锁 定架形成滑动穿连,且受触发时可使切换器工作状态发生变化,同理, 第二锁定架上的第二端面矩形板同时起到与行星齿轮离合器端部进 行配合连接及支持弹簧的作用,第二侧滑框则可与第一锁定架形成滑 动穿连, 且可被触发构成触发结构。
作为优选, 所述的锁止结构包括端面板棘齿和离合器棘齿, 端面 板棘齿设于第一端面矩形板和第二端面矩形板上,且均朝向行星齿轮 离合器, 离合器棘齿设于行星齿轮离合器两端端面上。行星齿轮离合 器轴向位置固定,而第一端面矩形板和第二端面矩形板可分别随第一 锁定架及第二锁定架轴向移动, 靠近或远离行星齿轮离合器端面, 当 第一端面矩形板或第二端面矩形板靠近对应的行星齿轮离合器端面 时, 通过端面板棘齿和离合器棘齿的啮合, 可以使啮合的行星齿轮离 合器输出端停转从而停止扭矩传输。 此种锁止结构, 紧凑不占空间, 而且工作可靠。
作为优选, 行星齿轮离合器包括行星轮架、 若干行星齿轮、 太阳 轮和带有内环齿的内环齿轮, 内环齿轮转动连接在底座上, 行星轮架 转动连接在内环齿轮上, 行星齿轮转动连接在行星轮架上, 太阳轮转 动连接在内环齿轮的中心, 行星齿轮同时与太阳轮及内环齿轮啮合。 内环齿轮和行星轮架是行星齿轮离合器的两个扭矩传输部件,太阳轮 转动时会带动各行星齿轮转动, 行星齿轮又带动内环齿轮, 而行星轮 架周向上又未加固定,因此即使内环齿轮和行星轮架中有一个转动受 阻, 另一个在行星齿轮与内环齿轮间的相互作用力的作用下仍可转 动。
作为优选, 总驱动轴呈棱柱形, 太阳轮的轮轴具有轴向贯通的中 心管腔, 内环齿轮的端面上固设有轴向伸出的中空轴, 行星轮架的端 面上固设有轴向伸出的中空的行星轮架轴。行星轮架和内环齿轮分别 为行星齿轮离合器的两个扭矩传输部件,通过行星轮架上的行星轮架 轴和内环齿轮上的中空轴,行星齿轮离合器的两端输出扭矩可以分别 传导到驱动螺杆上或其它转动部件上,从而带动驱动螺杆或其它转动 部件转动。 太阳轮的轮轴、 中空轴及行星轮架轴均为空心结构, 它们 的外周也可根据需要加工成适于传递扭矩的形状, 这样太阳轮的轮 轴、中空轴及行星轮架轴可以通过嵌套方式方便地实现与对应部件的 对接, 太阳轮轮轴的对外接口即是行星齿轮离合器的扭矩输入端, 中 空轴及行星轮架轴的对外接口即是行星齿轮离合器的两个扭矩输入 作为优选, 第一端面矩形板、 挡板和第一侧滑框通过螺栓连接, 第二端面矩形板和第二侧滑框也通过螺栓连接。由于第一锁定架和第 二锁定架互相连接,且第二端面矩形板还要置于第一端面矩形板和挡 板之间,第一锁定架或第二锁定架必须要先以部件状态完成第一端面 矩形板、挡板和第二端面矩形板间的定位再组装, 这样才能形成第一 锁定架与第二锁定架间的嵌入连接,因此第一锁定架和第二锁定架的 部件均通过螺栓连接方式组装成形, 可以拆卸, 从而能方便地实现第 一锁定架和第二锁定架的连接。
作为另选, 第一端面矩形板和第一侧滑框为一体成型结构, 第一 侧滑框与挡板卡接, 第二端面矩形板和第二侧滑框亦为一体成型结 构。第一锁定架和第二锁定架整体或大部采用一体成型结构, 可以减 少零部件数目以及装配工序, 从而方便装配。
作为优选, 切换器为一个, 所述驱动螺杆包括第一螺杆和第二螺 杆, 所述滑块包括第一滑块、 第二滑块, 第一螺杆和第二螺杆分别转 杆螺纹连接,切换器位于第一螺杆和第二螺杆之间且切换器的行星齿 轮离合器分别与第一螺杆和第二螺杆传动连接。 在总驱动轴的驱动 下, 切换器可带动第一螺杆和第二螺杆转动, 使得第一滑块和第二滑 块分别在第一螺杆和第二螺杆上作轴向移动,但由于锁止结构的锁止 作用, 第一螺杆和第二螺杆只能交替停转而不能同时停转, 进而使得 第一滑块和第二滑块也只能作交替的移动中止,这样就产生了时序控 制效果。棱柱形的总驱动轴与多边形的中心管腔嵌套后可以将总驱动 轴提供的扭矩传递给太阳轮的轮轴, 此种传动方式结构紧凑而简单, 而空间有限的设施或设备上很适用。
作为另选, 切换器为多个, 各切换器逐个串联, 首个切换器与总 驱动轴传动连接, 自首个切换器往后, 后一级切换器的扭矩输入端与 前一级切换器的下游端输出端传动连接,所述驱动螺杆包括上游端螺 杆和下游端螺杆,上游端螺杆数目与切换器数目相同且分别与相应的 切换器的上游输出端传动连接,下游端螺杆为一根且与末级切换器的 下游输出端转动连接,所述滑块数目与所述驱动螺杆数目相同且分别 螺纹连接在驱动螺杆上。多个切换器串联而成的转动时序发生器可以 带动更多诸如滑块等运动部件,执行更多的时序控制,完成更多功能。
转动时序发生器也可以采用下面的双轴结构:
一种转动时序发生器, 包括由顶盖和底座扣合而成的壳体, 壳体 内设有一行星齿轮离合器及并联的第一输出装置和第二输出装置,行 星齿轮离合器的输入端与一总驱动轴传动连接,行星齿轮离合器上设 有两个输出端,第一输出装置和第二输出装置上各设有一时序锁定件 和一驱动件,行星齿轮离合器的一个输出端同时与第一输出装置的时 序锁定件及第二输出装置的驱动件传动连接,行星齿轮离合器的另一 个输出端同时与第一输出装置的驱动件及第二输出装置的时序锁定 件传动连接。行星齿轮离合器的输入端输入扭矩时, 两个输出端可以 分别得到转向相反的输出扭矩, 且两个输出端中任一个输出受阻时, 另外一个仍可输出扭矩,本双轴转动时序发生器利用行星齿轮离合器 的这一特性进行工作,每个输出端都可带动第一输出装置和第二输出 装置两个输出装置之一的驱动件工作以输出扭矩,但同时又受另一个 输出装置的时序锁定件制约, 时序锁定件按一定的时序启动, 且设置 两个时序锁定件始终不同时工作, 当其中一个时序锁定件工作时, 受 其制约的行星齿轮离合器输出端停止扭矩输出,而行星齿轮离合器另 一个输出端此时则未受对应的时序锁定件锁定,因而可以通过对应的 驱动件传递扭矩,这样第一输出装置和第二输出装置就可以交替输出 动力, 应用时便可根据需要实现按一定时序完成具体工作的各歩骤。
作为优选, 行星齿轮离合器包括太阳轮、 行星齿轮、行星轮架和 内环齿轮架, 太阳轮的轮轴贯穿行星轮架和内环齿轮架, 行星齿轮转 动连接在行星轮架上并同时与太阳轮和内环齿轮架啮合,太阳轮的轮 轴被总驱动轴贯穿且与总驱动轴传动套接。 总驱动轴输入扭矩, 传递 到太阳轮的轮轴上, 太阳轮带动行星齿轮转动, 进而带动内环齿轮架 反向转动,同时内环齿轮架对行星齿轮的反作用力又推动行星轮架整 体转动, 因此行星轮架和内环齿轮架就是齿轮离合器的两个输出端。
作为优选, 第一输出装置包括中空的第一锁定轴、 第一弹簧、 周 向被定位的第一锁定架、一端端面带棘齿的棘轮盘、 中空的第一驱动 轴、第一螺杆和周向被定位的第一滑块, 第一锁定轴依次贯穿第一弹 簧、第一锁定架和棘轮盘后与第一驱动轴转动套接, 第一驱动轴与第 一螺杆传动连接, 第一滑块螺纹连接在第一螺杆上, 棘轮盘与第一锁 定轴传动连接且与第一锁定架间设有转动锁定结构,第一滑块与第一 锁定架间设有触发解锁结构, 第二输出装置包括第二驱动轴、第二弹 簧、 周向被定位的第二锁定架、 第二锁定轴、第二螺杆和周向被定位 的第二滑块, 第二驱动轴依次贯穿第二弹簧、第二锁定架和第二锁定 轴后与第二螺杆传动连接, 第二滑块螺纹连接在第二螺杆上, 第二锁 定轴与第二锁定架间设有转动锁定结构,第二滑块与第二锁定架间设 有触发解锁结构, 第一锁定轴和第二驱动轴与行星轮架传动连接, 第 一驱动轴和及第二锁定轴与内环齿轮架传动连接。第一驱动轴、第二 驱动轴为所述驱动件的一种具体形式, 第一锁定轴、第二锁定轴为所 述时序锁定件的一种具体形式, 按所述结构设置, 第一驱动轴和第二 驱动轴可分别驱动第一螺杆和第二螺杆,进而分别带动第一滑块和第 二滑块轴向运动, 当第一滑块和第二滑块未触动所述触发解锁结构 时, 第一锁定架、第二锁定架分别在第一弹簧和第二弹簧的推动下通 过所述转动锁定结构将第一锁定轴和第二锁定轴锁定,第一锁定轴和 第二锁定轴锁定可以分别阻停行星轮架和内环齿轮架。第一锁定轴和 第二驱动轴由于并行连接在行星轮架上,因此第一锁定轴和第二驱动 轴由始终同歩运动及停止, 同理, 第一驱动轴和及第二锁定轴也同歩 动停, 当第一锁定轴随所述转动锁定结构的起效而停转时, 行星轮架 停止输出, 此时第二驱动轴无法驱动第二螺杆, 而此时只要内环齿轮 架尚未被第二锁定轴阻停, 第一驱动轴就仍可驱动第一螺杆; 同理, 当第二锁定轴阻停内环齿轮架, 第一驱动轴无法驱动第一螺杆时, 第 二驱动轴仍可驱动第二螺杆。 因此, 通过合理设置, 使第一输出装置 和第二输出装置间保持状态位置差,就可实现第一滑块和第二滑块的 交替移动,第一螺杆和第二螺杆的交替转动,从而取得时序控制效果。
作为优选, 行星轮架外端面固设有一行星轮架齿轮, 内环齿轮架 的闭合端固设有一轴向延伸的内环齿轮架中空轴,内环齿轮架中空轴 端部设有一内环齿轮架外齿轮, 第一锁定轴、 第一驱动轴、 第二驱动 轴及第二锁定轴上分别设有一齿轮,第一锁定轴和第二驱动轴上的齿 轮与行星轮架齿轮啮合,第一驱动轴和第二锁定轴上的齿轮与内环齿 轮架外齿轮啮合。 此处通过齿轮啮合实现第一驱动轴、 第二驱动轴、 第一锁定轴和第二锁定轴与行星齿轮离合器的传动连接, 结构紧凑, 传动效率高。
作为优选, 第一锁定架上朝向棘轮盘的一面也设有棘齿, 第一锁 定架的棘齿与棘轮盘的棘齿匹配。第一锁定架的棘齿与棘轮盘的棘齿 构成了第一输出装置上的转动锁定结构,第一锁定架的棘齿与棘轮盘 的棘齿啮合时, 由于第一锁定架周向定位, 具有抗扭能力, 因此可通 过棘轮盘将第一锁定轴周向止动。 此种转动锁定结构空间占用很小, 应用于本时序发生器上对于产品的小型化十分有利。
作为优选,第二锁定轴和第二锁定架二者相对的面上分别设有互 相匹配的棘齿。 同样, 第二锁定轴和第二锁定架上相对的棘齿也构成 了第二输出装置上的转动锁定结构。
作为优选, 第一锁定架包括第一矩形板和两第一锁定架触发杆, 第一锁定架触发杆固定在第一矩形板顶部和底部,并朝第一螺杆方向 轴向伸出。第一锁定架上的第一锁定架触发杆构成了第一输出装置的 触发解锁结构, 由于受产品结构及尺寸要求的限制, 第一滑块的行程 是有限的, 设置第一锁定架触发杆后, 第一滑块可在相对较远距离上 对第一锁定架施加作用力, 改变第一输出装置的工作状态, 切换工作 歩骤。
作为优选, 第二锁定架包括第二矩形板和两第二锁定架触发杆, 第二锁定架触发杆固定在第二矩形板顶部和底部,并朝第二螺杆方向 轴向伸出。 同样, 第二锁定架上的第二锁定架触发杆构成了第二输出 装置的触发解锁结构。
作为优选,底座上设有均与底座轴向垂直的第一支座插板和第二 支座插板,行星齿轮离合器两端分别转动连接在第一支座插板和第二 支座插板上, 第一锁定轴和第二驱动轴转动连接在第二支座插板上, 第一驱动轴和第二锁定轴转动连接在第一支座插板,底座侧壁设有两 对插口, 第一支座插板和第二支座插板分别插在两对插口中。第一支 座插板和第二支座插板用于支撑行星齿轮离合器、第一输出装置和第 二输出装置, 第一支座插板和第二支座插板与底座插接配合, 可装可 卸, 便于本双轴转动时序发生器的装配。
作为优选, 第一驱动轴和第二驱动轴上分别传动连接一输出轴, 输出轴末端露出于所述壳体外。输出轴将第一驱动轴和第二驱动轴的 扭矩引出到壳体外, 使得扭矩也成为一种可利用的输出形式。
本发明的有益效果是: 改善了转动时序发生器的结构, 可大幅增 加时序发生器的连续转动圈数, 实现时序动作的连续重复, 还可以实 现单输入和双转动输出不同轴的时序动作。 附图说明
图 1为去除顶盖的转动时序发生器的三维组装图;
图 2为转动时序发生器的三维分解图;
图 3为去除底座、顶盖和总驱动轴的转动时序发生器的右轴视三维分 解图;
图 4为去除底座、顶盖和总驱动轴的转动时序发生器的左轴视三维分 解图;
图 5 为转动时序发生器的切换器的第一锁定架的棘轮矩形板的三维 分解图;
图 6 为转动时序发生器的切换器的第一锁定架的侧滑框的三维分解 图;
图 7 为转动时序发生器的切换器的第二锁定架的侧滑框的三维分解 图;
图 8为转动时序发生器处于第一状态时的三维图;
图 9为转动时序发生器处于第二种状态时的三维图;
图 10为转动时序发生器处于第三种状态时的三维图;
图 11为具有两级串联切换器的转动时序发生器的三维图; 图 12为具有两级串联切换器的转动时序发生器的三维分离图; 图 13 为具有两级串联切换器的转动时序发生器的左轴视三维分解 图;
图 14为两锁定架采用一体结构的转动时序发生器的切换器的三维组 装图;
图 15为两锁定架采用一体结构的转动时序发生器的切换器的三维分 解图;
图 16为采用一体结构的第一锁定架的主件三维图;
图 17为采用一体结构的第一锁定架的卡快三维图;
图 18为采用一体结构的第二锁定架的三维图;
图 19为双轴转动时序发生器的三维组装图;
图 20为双轴转动时序发生器的行星齿轮离合器三维分解图; 图 21为双轴转动时序发生器的第一输出装置三维分解图;
图 22为双轴转动时序发生器的第二输出装置三维分解图;
图 23为双轴转动时序发生器的行星齿轮离合器的太阳轮三维图; 图 24为双轴转动时序发生器的行星齿轮离合器的行星轮架三维图; 图 25 为双轴转动时序发生器的行星齿轮离合器的内环齿轮架三维 图;
图 26为双轴转动时序发生器的第一输出装置的第一螺杆三维图; 图 27为双轴转动时序发生器的第一输出装置的第一驱动轴三维图; 图 28为双轴转动时序发生器的第一输出装置的棘轮盘三维图; 图 29为双轴转动时序发生器的第一输出装置的第一锁定架三维图; 图 30为双轴转动时序发生器的第一输出装置的第一锁定轴三维图; 图 31为双轴转动时序发生器的第二输出装置的第二锁定轴三维图; 图 32为双轴转动时序发生器的第一输出装置的第二驱动轴三维图; 图 33为双轴转动时序发生器的第一支座插板三维图;
图 34为双轴转动时序发生器的底座三维图;
图 35为双轴转动时序发生器的三维分解图;
图 36为双轴转动时序发生器的一种组装状态的三维示意图; 图 37为双轴转动时序发生器的另一种组装状态的三维示意图; 图 38为双轴转动时序发生器中第一种状态时的三维图;
图 39为双轴转动时序发生器中第二种状态时的三维图;
图 40为双轴转动时序发生器中第三种状态时的三维图。 实现本发明的最佳方法
下面结合附图具体实施例对本发明作进一歩说明, 言及实施例 1〜实施例 3 的转动时序发生器以及各零部件的旋转方向时均以图 1 中从右端往左端的方向作为观察视角;言及实施例 4的双轴转动时序 发生器以及各零部件的旋转方向时均以图 19中从右端往左端的方向 作为观察视角;下列实施例均可应用于百叶窗等家用生活设备或设施 上。
实施例 1:
如图 1、 图 2、 图 3和图 4所示, 转动时序发生器包括的切换器 34、 触发装置、 底座 38、 顶盖 39和六棱柱形的总驱动轴 2, 切换器 34包括第一锁定架 341、 第二锁定架 342、 行星齿轮离合器 343和弹 簧 344, 所述触发装置包括第一滑块 351、 第二滑块 352、 第一螺杆 353和第二螺杆 354, 行星齿轮离合器 343包括行星轮架 3433、 行星 齿轮 3432、 太阳轮 3431和内环齿轮 3434。
行星齿轮离合器 343保留了常规的特征, 但略有变化, gp, 行星 轮架 3433的行星轮架轴 34333的头部设有一内六角孔,行星轮架 3433 的圆盘靠行星轮架轴 34333 的一端增设离合器棘齿 34332, 太阳轮 3431的轮轴为中空结构, 具有轴向贯通的中心管腔 34314, 中心管腔 34314的横断面呈正六角形, 内环齿轮 3434的内环设有惯常的内环 齿 34346, 内环齿轮 3414的闭合端延伸出一中空轴 34343, 同时内环 齿轮 3414闭合端端面也增设离合器棘齿 34332, 内环齿轮 3414上的 离合器棘齿 34332与内环齿轮 3414之间设置一环形槽 34342, 中空 轴 34343的头部增设一外六方轴 34344, 见图 3和图 4。
第一锁定架 341 由第一端面矩形板 3411、 两个 H形的第一侧滑 框 3413和一挡板 3412 构成, 第一端面矩形板 3411与挡板 3412平 行, 第一端面矩形板 3411的一面设有环形分布的端面板棘齿 34112, 端面板棘齿 34112的棘齿方向为阻止行星轮架 3433顺时针旋转和内 环齿轮 3434逆时针旋转, 第一端面矩形板 3411及挡板 3412的两侧 均各设有三个凸台, 包括位于上、下端的外侧凸台 34113和位于中间 的中凸台 34114, 其中外侧凸台 34113上设有螺孔 34115, 第一端面 矩形板 3411还具有供总驱动轴 2通过的中心孔,挡板 3412与第一端 面矩形板 3411外形相同,只是挡板 3412的两端皆为平面,没有棘齿, 第一侧滑框 3413 由两第一侧滑框竖杆 34131 和一第一侧滑框横杆 34133构成, 两第一侧滑框竖杆 34131的上下端各设有一销孔, 以便 第一侧滑框 3413与第一端面矩形板 3411和挡板 3412可用螺栓固定 在一起, 第一侧滑框横杆 34133 的两端各设有一与第一端面矩形板 3411和挡板 3412的两侧中凸台 34114相嵌合的端部方形穿孔 34138, 第一侧滑框横杆 34133的中部设有一中部方形穿孔 34135, 第一侧滑 框横杆 34133的一端削除一半厚度, 以便让出位置与第二锁定架 342 的第二侧滑框 3422嵌合,第一侧滑框 3413的横杆 34133末段从第一 侧滑框 3413 的竖杆处伸出, 形成第一侧滑框触压突出部 34137, 第 一侧滑框竖杆 34131的厚度为第一侧滑框横杆 34133的一半;第二锁 定架 342由一第二端面矩形板 3421和一对横卧式 U形的第二侧滑框 3422以螺栓连接而构成, 第二端面矩形板 3421与第一锁定架的第一 端面矩形板 3411基本相同, 不同之处在于, 第二端面矩形板 3421两 侧仅在中部设有凸台, 该凸台两旁的较低平面上也设有螺孔, 第二侧 滑框 3422包括两根第二侧滑框横杆 34222, 以及连接在两根第二侧 滑框横杆 34222之间的连接竖杆 34221, 第二侧滑框横杆 34222的一 端削除一半厚度且在该处也设置一方形的端部穿孔 34224, 第二侧滑 框横杆 34222的另一端也设有一销孔, 以便第二侧滑框 3422与第二 端面矩形板 3421可用螺栓固定在一起, 与第二侧滑框横杆 34222相 连接的连接竖杆 34221的内侧削除一半厚度形成一缺口 34227, 第二 端面矩形板 3421与第二侧滑框 3422连接时, 第二端面矩形板 3421 中部的凸台正好嵌在缺口 34227中, 见图 5〜图 7。 转动时序发生器触发装置的第一螺杆 353和第二螺杆 354皆为中 空管状结构且两端皆为光滑轴颈, 第一螺杆 353的螺纹为左旋螺纹, 第二螺杆 354的螺纹为右旋螺纹,第一螺杆 353朝向行星齿轮离合器 343 的一端设有外六角轴 3533, 第二螺杆 354朝向行星齿轮离合器 343的一端设有内六角孔 3544,第一滑块 351与第二滑块 352皆为具 有中心螺纹孔的矩形板, 第一滑块 351的内螺纹为左旋螺纹, 第二滑 块 352的内螺纹为右旋螺纹, 见图 3〜图 4。
转动时序发生器底座 38具有前端壁为 381和后端壁 386, 其余 第二螺杆支座 382、 内环齿轮中空轴支座 383、 行星轮架轴支座 384 及第二螺杆支座 385不与两侧壁相连而留有一定间距,以容纳切换器 的第一锁定架 341和第二锁定架 342的轴向滑移, 见图 2。
转动时序发生器装配过程是, 首先将行星轮架 3433、 行星齿轮 3432、太阳轮 3431和内环齿轮 3434装配在一起成为惯常的行星齿轮 离合器,之后将第一端面矩形板 3411和第二端面矩形板 3421分别套 在行星轮架 3433 的行星轮架轴 34333 和内环齿轮 3434 的中空轴 34343上, 同时中空轴 34343还穿过挡板 3412, 此过程中必须使第一 端面矩形板 3411、 第二端面矩形板 3421上的端面板棘齿 34112分别 与行星轮架 3433上以及内环齿轮 3434上的离合器棘齿 34332相向面 对,再将弹簧 344和挡板 3412依次套在内环齿轮 3434的中空轴 34343 上, 然后将第一锁定架 341的第一侧滑框 3413与第二锁定架 342的 第二侧滑框 3422相互交叉嵌合在一起, 用螺钉 345穿过第二侧滑框 3413的销孔并旋入第二端面矩形板 3421的凸台两侧的螺孔中而将两 者固定为一体, 使得第一侧滑框 3413上的中部方形穿孔 34135与第 二端面矩形板 3421的凸台嵌合在一起, 将螺钉 345穿过第一侧滑框 竖杆 34131的销孔和第二侧滑框横杆 34222的端部方孔 34224并旋入 第一端面矩形板 3411的两侧的外侧凸台 34113的螺孔 34115中, 将 第一侧滑框 3413与第一端面矩形板 3411固定为一体并使得第二侧滑 框横杆 34222的端部方孔 34224与第一端面矩形板 3411的外侧凸台 34113嵌合在一起, 再将螺钉 345穿过第一侧滑框竖杆 34131的销孔 并旋入挡板 3412两侧的外侧凸台 34113的螺孔 34115中, 使得第一 侧滑框 3413 的端部方形穿孔 34138 与挡板 3412 的侧边中部凸台 34114嵌合而将第一侧滑框 3413与挡板 3412固定为一体, 由此将弹 簧 344压缩在第一锁定架 341的挡板 3412和第二锁定架 342的第二 端面矩形板 3421之间, 形成转动时序发生器的切换器 34, 此时, 第 二侧滑框横杆 34222的末端露出于第一端面矩形板 3411外而形成第 二侧滑框触压突出部 34223, 见图 2。 然后分别将触发装置的第一螺 杆 353的外六角轴 3533插入到行星轮架 3433的行星轮架轴 34333的 内六角孔中,第二螺杆 354的内六角孔 3554套入到切换器 34的内环 齿轮 3434的中空轴 34343的端部外六方轴 34344上, 再分别将第一 滑块 351、 第二滑块 352旋入到第一螺杆 353、 第二螺杆 354上, 并 将总驱动轴 2穿过上述各部件并与太阳轮 3431的中心管腔 34314嵌 合固定为一体,最后将上述装配件安放在底座 38和顶盖 39之间的各 支座上, 使得内环齿轮 3434的环形槽 34342卡在内环齿轮中空轴支 座 383上, 行星轮架 3433卡在行星轮架轴支座 384上, 第一锁定架 341的第一端面矩形板 3411处于行星轮架轴支座 384和第二螺杆支 座 385之间, 第二锁定架 342的第二端面矩形板 3421和第一锁定架 341 的挡板 3412处于第二螺杆支座 382和内环齿轮中空轴支座 383 之间,第一螺杆 353的两端光滑轴颈分别落在第二螺杆支座 385和后 端壁 386上, 第二螺杆 354的两端光滑轴颈分别落在前端壁 381、 第 二螺杆支座 382上,第一滑块 351落在第二螺杆支座 385、后端壁 386 之间, 第二滑块 352落在前端壁 381、 第二螺杆支座 382之间, 从而 装配成为转动时序发生器。
图 8〜图 10显示了转动时序发生器处于三种状态位置时的三维 图, 图 8显示了转动时序发生器的第一种状态的三维图, 此时第一滑 块 351与第二锁定架 342相隔一段距离,第二滑块 352紧贴第二螺杆 支座 382且碰触第一锁定架 341的第一侧滑框触压突出部 34137, 使 第一端面矩形板 3411的端面板棘齿 34112与行星轮架 3433的离合器 棘齿 34332脱离, 同时, 第一锁定架 341的挡板 3412推压弹簧 344, 弹簧 344推压第二锁定架 342的第二端面矩形板 3421, 使其上的端 面板棘齿 34112与内环齿轮 3434上的离合器棘齿 34332啮合而锁定 内环齿轮 3414使之不能逆时针旋转, 此时如顺时针旋转总驱动轴 2, 则带动太阳轮 3431和行星轮架 3433同向旋转, 行星轮架 3433再带 动第一螺杆 353同向旋转, 使得第一滑块 351朝切换器 34方向轴向 移动, 如逆时针旋转总驱动轴 2, 则带动太阳轮 3431 同向旋转, 内 环齿轮 3434欲带动第二螺杆 354顺时针旋转, 第二螺杆 354带动第 二滑块 352朝切换器 34方向轴向移动, 此时第二滑块 352已经处于 与第二螺杆支座 382贴紧的状态, 从而阻止锁定内环齿轮 3434顺时 针旋转, 而行星轮架 3433与总驱动轴 2和太阳轮 343无阻力地逆时 针旋转, 带动第一螺杆 353 同向旋转, 第一滑块 351朝背离切换器 34方向轴向移动。
图 9显示了转动时序发生器处于第二种状态位置时的三维图,此 时第二滑块 352与第一锁定架 341相隔一段距离,第一滑块 351紧贴 支座 385且碰触第二锁定架 342的第二侧滑框触压突出部 34223, 使 第二端面矩形板 3421上的端面板棘齿 34112与内环齿轮 3434上的离 合器棘齿 34332脱离,同时,第二锁定架 342的第二端面矩形板 3421 推压弹簧 344, 弹簧 344推压第一端面矩形板 3411, 使第一端面矩形 板 3411的端面板棘齿 34112与行星轮架 3433上的离合器棘齿 34332 啮合而锁定行星轮架 3433使之不能顺时针旋转, 此时如顺时针旋转 总驱动轴 2, 则带动太阳轮 3431顺时针旋转和内环齿轮 3434逆时针 旋转, 内环齿轮 3434再带动第二螺杆 354逆时针旋转,第二滑块 352 朝切换器 34方向轴向移动; 如逆时针旋转总驱动轴 2, 则带动太阳 轮 3431与行星轮架 3433逆时针旋转和内环齿轮 3434顺时针旋转, 行星轮架 3433再带动第一螺杆 353逆时针旋转, 使得第一滑块 351 朝切换器 34方向轴向移动, 此时第一滑块 351已经触碰第二锁定架 342并与支座 385紧贴, 从而阻止行星轮架 3433逆时针旋转, 而内 环齿轮 3434带动第二螺杆 354顺时针旋转, 使得第二滑块 352朝背 离切换器 34方向轴向移动。
图 10显示了转动时序发生器处于第三种状态位置的三维图, 第 一滑块 351、 第二滑块 352分别抵住第一锁定架 341和第二锁定架 342,使得第一锁定架 341和第二锁定架 342皆对行星齿轮离合器 343 无锁定作用,如顺时针旋转总驱动轴 2带动太阳轮 3431顺时针旋转, 此时行星轮架 3433顺时针旋转, 内环齿轮 3434逆时针旋转, 第二滑 块 352朝切换器 34方向轴向移动, 加大对第一锁定架 341的推力, 使得第一锁定架 341锁定行星轮架 3433, 而第一滑块 351朝背离切 换器 34方向轴向移动而撤销对第二锁定架 342的推力, 使得第二锁 定架 342对内环齿轮 3434失去锁定作用, 如逆时针旋转总驱动轴 2 带动太阳轮 3431逆时针旋转, 此时行星轮架 3433逆时针旋转, 内环 齿轮 3434顺时针旋转, 第一滑块 351朝切换器 34方向轴向移动, 加 大对第二锁定架 342的推力,使得第二锁定架 342锁定内环齿轮 3434, 而第一滑块 351朝背离切换器 34方向轴向移动而撤销对第一锁定架 341的推力, 使得第一锁定架 341对行星轮架 3433无锁定作用。
由上可知,转动时序发生器始终保持在一总驱动轴 2驱动太阳轮 3431的一个输入扭矩情况下, 两个输出运动件第一滑块 351、第二滑 块 352总是能够依次无冲击、 无阻碍地相互切换。
实施例 2:
使用一个转动时序发生器, 在一个动作完成后自动碰触切换器 34 来触发下一个动作开始, 如果在第二个动作完成后还需接着完成 下一个动作, 则需要将两个切换器像串联电阻一样串联在一起, 图 11显示了两个串联连接的转动时序发生器的三维装配图, 图 12显示 了具有两级串联切换器的转动时序发生器的三维分离图, 图 13显示 了具有两级串联切换器的转动时序发生器的左轴视三维分解图,图中 两个切换器分别为二级切换器 34' 和一级切换器 34, 一级切换器 34 与实施例 1的完全相同, 二级切换器 34' 与实施例 1中切换器 34有 一处不同, 即二级切换器 34' 的二级太阳轮 3431' 的一端短轴改为 长轴且其头部设置为外六角头 34313', 贯穿二级太阳轮 3431' 的内 六角中心管腔 34314改为中心圆孔 34314', 本实施例中去除了一级 转动时序发生器的第一滑块 351和第一螺杆 353。
两个串联连接的转动时序发生器的连接关系如下: 一级切换器 34的太阳轮 3431与总驱动轴 2嵌合固定为一体, 二级切换器 34' 的 二级太阳轮 3431' 不与总驱动轴 2嵌合而直接让其贯穿, 二级太阳 轮 3431' 的长轴端部外六角头 34313' 穿过二级内环齿轮 3434' 和 二级第二螺杆 354' 后与一级切换器 34的行星轮架 3433的行星轮架 轴 34333的内六角孔嵌合固定为一体, 见图 12和图 13。
图 11显示了具有两级串联切换器的转动时序发生器所处的一种 状态, 即二级切换器 34' 的二级第一滑块 351' 触碰二级第二锁定架 342', 二级第二滑块 352' 触碰一级切换器 34的第二锁定架 342, 而 一级切换器 34的第二滑块 352紧贴底座 38的前端壁 381, 此时行星 轮架 3433、 二级行星轮架 3433' 和二级太阳轮 3431' 被锁定, 如逆 时针旋转总驱动轴 2, 带动太阳轮 3431同向旋转, 内环齿轮 3434带 动第二螺杆 354顺时针旋转, 第二滑块 352朝背离切换器 34方向轴 向移动, 因被底座 38的前端壁 381抵住而无法前行, 使得内环齿轮 3434无法逆时针旋转; 如顺时针旋转总驱动轴 2, 带动太阳轮 3431 同向旋转, 内环齿轮 3434逆时针旋转, 带动第二滑块 352朝切换器 34方向轴向移动, 当第二滑块 352碰触切换器 34的第一锁定架 341 时, 第二滑块 352停止移动, 内环齿轮 3434也跟随停止旋转, 行星 轮架 3433被解锁而开始顺时针旋转, 并带动二级太阳轮 3431 ' 顺时 针旋转, 二级太阳轮 3431 ' 带动二级内环齿轮 3434 ' 和二级第二螺 杆 354 ' 逆时针旋转, 使得二级第二滑块 352 ' 朝二级切换器 34 ' 方 向轴向移动, 当二级第二滑块 352 ' 碰触二级切换器 34 ' 的二级第一 锁定架 341 ' 时, 二级第二滑块 352 ' 停止移动, 二级内环齿轮 3434 ' 也跟随停止旋转, 二级行星轮架 3433 ' 被解锁而开始带动二级第一 螺杆 353 ' —道顺时针旋转, 使得二级第一滑块 351 ' 朝背离二级切 换器 34 ' 方向轴向移动直至抵达底座 38的后端壁, 在二级第一滑块 351 ' 抵达底座 38的后端壁后, 逆时针反旋总驱动轴 2, 则各个滑块 依次按原路返回。
实施例 3:
实施例 1中的转动时序发生器的切换器 34的第一锁定架 341、 第二锁定架 342各为分体结构, 本实施例中采用注塑、铸造或钣金加 工工艺, 则可以将采用分体结构的两个锁定架分别改为一体结构。
图 14 显示了第一锁定架 341、 第二锁定架 342采用一体结构的 转动时序发生器的切换器的三维组装图, 图 15 显示了第一锁定架 341、第二锁定架 342采用一体结构的转动时序发生器的切换器 34的 三维分解图, 图 16 显示了采用一体结构的第一锁定架 341的主件三 维图, 图 17 显示了采用一体结构的第一锁定架 341的卡块 3412的 三维图, 图 18 显示了采用一体结构的第二锁定架 342的三维图, 由 图中可见, 实施例 1中的第一锁定架 341的第一侧滑框 3413变为本 实施例中的第一锁定架 341 的第一锁定架横杆 3413, 并与实施例 1 中的第一锁定架 341的第一端面矩形板 3411合为一体成为第一锁定 架 341的主件, 实施例 1中的第一锁定架 341的挡板 3412变为本实 施例中的第一锁定架 341 的卡块 3412, 且卡块 3412两侧带有倒钩 34123,将卡块 3412的两侧倒钩 34123嵌入到第一锁定架 341主件的 第一锁定架横杆 3413上的端部方形穿孔 34138内成为本实施例中的 第一锁定架 341, 实施例 1中的第二锁定架 342的横卧式第二侧滑框 3422变为本实施例中的第二锁定架横杆 3422, 并与第二端面矩形板 3421合为一体成为本实施例中的第二锁定架 342,采用一体结构的第 一锁定架 341、 第二锁定架 342与行星齿轮离合器 343的装配过程与 实施例 1完全相同, 见图 14。
上述具有两级串联连接的转动时序发生器的原理很容易扩充成 为多级串联连接的转动时序发生器。
实施例 4
本实施例的转动时序发生器采用双轴结构, 如图 19、 图 20、 图 21和图 22所示, 双轴转动时序发生器包括行星齿轮离合器 91、第一 输出装置 92、第二输出装置 93、第一支座插板 94、第二支座插板 95、 底座 97、 顶盖 98、 六棱柱形的总驱动轴 96、 第一输出轴 99和第二 输出轴 910, 底座 97和顶盖 98扣合成一壳体, 行星齿轮离合器 91、 第一输出装置 92、 第二输出装置 93、 第一支座插板 94、 第二支座插 板 95均设于该壳体中。 行星齿轮离合器 91 的输入端与一总驱动轴 96传动连接, 行星齿轮离合器 91上设有两个输出端, 第一输出装置 92和第二输出装置 93上各设有一时序锁定件和一驱动件, 行星齿轮 离合器 91的一个输出端同时与第一输出装置 92的时序锁定件及第二 输出装置 93的驱动件传动连接,行星齿轮离合器 91的另一个输出端 同时与第一输出装置 92的驱动件及第二输出装置 93的时序锁定件传 动连接。第一输出装置 92和第二输出装置 93之间, 驱动件和时序锁 定件交叉配置, 即一方的时序锁定件作用于另一方的驱动件, 各自的 驱动件引入动力, 使自身运动, 而动力又反馈到各自的时序锁定件上 使得时序锁定件可交叉影响相邻的驱动件,而且由于行星齿轮离合器 91的两个输出始终反相, 且采用时序控制, 因而第一输出装置 92和 第二输出装置 93就可以交替输出动力。 本实施例中, 所述第一输出 装置 92包括第一锁定轴 924、 第一弹簧 923、 第一锁定架 921、 棘轮 盘 922、 第一驱动轴 925、 第一螺杆 926和第一滑块 927, 第一驱动 轴 925即是第一输出装置 92的驱动件, 而第一锁定轴 924即是第一 输出装置 92 的时序锁定件; 所述第二输出装置 93包括第二驱动轴 934、第二弹簧 933、第二锁定架 931、第二锁定轴 932、第二螺杆 936 和第二滑块 937, 第二驱动轴 934即是第二输出装置 93的驱动件, 第二锁定轴 932即是第二输出装置 93的时序锁定件。
行星齿轮离合器 91包括太阳轮 911、 行星齿轮 912、 行星轮架 913和内环齿轮架 914, 行星齿轮离合器 91保留了常规的特征, 但略 有变化, S , 太阳轮 911的轮轴为中空结构, 具有轴向贯通的太阳轮 轴中心管腔 9111, 太阳轮轴中心管腔 9111的横断面呈正六角形, 见 图 23 ; 行星轮架 913的一侧增设一行星轮架齿轮 9132, 见图 24; 内 环齿轮架 914的闭合端延伸出一内环齿轮架中空轴 141并在其端部设 置一内环齿轮架齿轮 9142, 见图 25。
第一输出装置 92的第一滑块 927为具有内螺纹孔的矩形块, 第 一滑块 927的底面紧贴底座 97内部底面, 见图 21 ; 第一螺杆 926具 有轴向贯通的第一螺杆中心管腔 9261, 第一螺杆中心管腔 9261的横 断面呈腰圆形状, 见图 26 ; 第一输出装置 92的第一驱动轴 925 上设 置一第一驱动轴齿轮 9251, 第一驱动轴 925为中空结构, 具有轴向 贯通的第一驱动轴中心管腔 9253, 第一驱动轴中心管腔 9253的横断 面呈正六角形,第一驱动轴 925的一端削出两平面后成腰圆形第一驱 动轴端部接头 9252, 见图 27 ; 第一输出装置 92的棘轮盘 922的一端 部设有环形分布的棘轮盘棘齿 9221, 另一端部设有一凸台 9223, 棘 轮盘 922的中心孔为腰圆孔 9222, 见图 28; 第一锁定架 921由第一 矩形板 9211和两第一锁定架触发杆 9212构成,两第一锁定架触发杆 9212由第一矩形板 9211的顶部和底部伸出,第一锁定架触发杆 9212 成为第一滑块 927与第一锁定架 921之间的触发解锁结构,第一矩形 板 9211的一端面设有环形分布的第一锁定架端面板棘齿 9213, 第一 锁定架端面板棘齿 9213的棘齿方向为阻止行星轮架 913逆时针旋转 的方向,第一锁定架 921的第一矩形板 9211还具有供第一锁定轴 924 通过的第一锁定架中心孔 9214, 第一锁定架端面板棘齿 9213与棘轮 盘棘齿 9221构成第一输出装置 92的转动锁定结构, 见图 29; 第一 输出装置 92的第一锁定轴 924具有中空结构和第一锁定轴环形台阶 9243, 第一锁定轴 924 的一端设置有第一锁定轴第一锁定轴齿轮 9241,第一锁定轴 924的另一端削出两平面后成腰圆形第一锁定轴端 部接头 9342, 见图 30。
第二输出装置 93的第二滑块 937和第一滑块 927相同, 第二螺 杆 936与第一螺杆 926相同,第二锁定轴 932上依次设置第二锁定轴 齿轮 9321和连体棘轮盘 9322, 连体棘轮盘 9322—端面设有环形分 布的第二锁定轴棘齿 9323, 连体棘轮盘 9322的另一端面与第二锁定 轴齿轮 9321紧贴固定, 见图 31, 第二锁定架 931与第一锁定架 921 结构相同, 第二锁定架 931上设有第二锁定架端面板棘齿 9313和第 二锁定架触发杆, 第二锁定架端面板棘齿 9313方向为阻止内环齿轮 架 914顺时针旋转的方向, 第二锁定架端面板棘齿 9313与第二锁定 轴棘齿 9323构成第二输出装置 93的转动锁定结构,第二锁定架触发 杆成为第二滑块 937与第二锁定架 931之间的触发解锁结构。第二输 出装置 93的第二驱动轴 9344为中空结构,具有轴向贯通的第二驱动 轴中心管腔 9261, 第二驱动轴中心管腔 9261的横断面呈正六角形, 第二驱动轴 934的一端依次设置第二驱动轴环形台阶 9345和第二驱 动轴齿轮 9341, 第二驱动轴 934的另一端削出两平面成腰圆形的第 二驱动轴端部接头 9342, 见图 32。
双轴转动时序发生器的第一支座插板 94为一矩形薄板, 第一支 座插板 94壁面上设有三个孔径大小不一的圆孔: 中圆孔 941、 侧一 圆孔 942和侧二圆孔 943, 第一支座插板 94的两侧分别设有位于顶 部和底部的侧一缺口 944和侧二缺口 945, 见图 33 ; 第一支座插板 95和第一支座插板 94完全相同, 见图 35。
双轴转动时序发生器的底座 97的两端分别设有左端部支座 971, 右端部支座 973, 中间设有两对插口 972, 见图 34。
图 35〜图 37显示了双轴转动时序发生器的装配过程, 第一歩, 将太阳轮 911、 行星齿轮 912、 行星轮架 913和内环齿轮架 914装配 在一起成为惯常的行星齿轮离合器 91, 行星齿轮离合器 91的两个输 出端分别为内环齿轮架齿轮 9142、 行星轮架齿轮 9132, 第二歩, 将 第一弹簧 923套入到第一输出装置 92的第一锁定轴 924上, 然后再 将第一锁定轴 924穿过第一锁定架 921和棘轮盘 922,将第一弹簧 923 约束在第一锁定轴 924的第一锁定轴环形台阶 9243和第一锁定架 921 的端面之间, 形成第一组件,同时将第一驱动轴 925的第一驱动轴端 部接头 9252穿过中间支座插板 94的侧一圆孔 942并插入第一螺杆中 心管腔 9261而使第一驱动轴 925与第一螺杆 926成为一体, 并将第 一滑块 927旋到第一螺杆 926上,接着将第二驱动轴 934穿过第二弹 簧 933、 第二锁定架 931和第二锁定轴 932, 将第二弹簧 933约束在 第二驱动轴 934的第二驱动轴环形台阶 9345和第二锁定架 931的端 面之间形成第二组件,同时第二滑块 937旋到第二螺杆 936上并将第 二螺杆的一端插入第一支座插板 4的侧二圆孔 943中, 见图 36, 第 三歩, 将第一输出装置 92的第一组件套到第一驱动轴 925上, 使得 第一锁定架 921的顶部和底部第一锁定架触发杆 9212嵌入第一支座 插板 94的侧一缺口 944, 再将第二输出装置 93的第二组件的第二驱 动轴端部接头 9343插入第二螺杆 936的腰圆形中心管腔从而使第二 驱动轴 934与第二螺杆 936成为一体,使得第二锁定架 931的顶部和 底部触发杆嵌入第一支座插板 94的侧二缺口 945, 然后将行星齿轮 离合器 91的一端插入第一支座插板 94的中心圆孔 941中,使得行星 齿轮离合器 91一端的内环齿轮架 914的内环齿轮架齿轮 9142分别与 第一输出装置 92的第一驱动轴 925的第一驱动轴齿轮 9251、 第二输 出装置 93的第二锁定轴 932的第二锁定轴齿轮 9321啮合,行星齿轮 离合器 91另一端的行星轮架 913的行星轮架齿轮 9132分别与第一锁 定轴 924的第一锁定轴齿轮 9241、 第二驱动轴 934的第二驱动轴齿 轮 9341啮合,并将第二支座插板 95上的三个圆孔与上述三个部件的 另一端接合, 最后将第一支座插板 94、第二支座插板 95插入底座 97 上的插口 972并分别在第一驱动轴 925和第二驱动轴 934配上六棱柱 形的第一输出轴 99和第二输出轴 910, 从而装配成为双轴转动时序 发生器。
图 38〜图 40显示了双轴转动时序发生器处于三种状态位置时的 三维图, 图 38显示了双轴转动时序发生器的第一种状态的三维图, 此时第二滑块 937靠近底座 97的左端部支座 971而远离第一锁定架 931, 第一锁定架 921在第一弹簧 923的弹力作用下与棘轮盘 922的 棘齿 9221啮合,阻止棘轮盘 922逆时针旋转,从而阻止与棘轮盘 922 连为一体的第一锁定轴 924逆时针旋转,而第一锁定轴 924与行星轮 架 913的端部行星轮架齿轮 9132啮合, 从而阻止行星轮架 913顺时 针旋转; 此时第二输出装置 93的第二滑块 937克服第二弹簧 933的 弹力推压第二锁定架 931的顶部和底部触发杆, 使得第二锁定架 931 的第二锁定架端面板棘齿 9313与第二锁定轴 932的第二锁定轴棘齿 9323脱离啮合, 此时, 如逆时针旋转总驱动轴 96, 则带动太阳轮 911 同向旋转,内环齿轮架 914欲带动第一螺杆 926和第二锁定轴 932逆 时针旋转, 如第一螺杆 926带动第一滑块 927朝底座 97的左端部支 座方向 981轴向移动, 此时第一滑块 927已经处于与底座 97的左端 部支座 971贴紧的状态, 从而阻止内环齿轮架 914顺时针旋转, 如第 二锁定轴 932与第二锁定架 931啮合,则第二锁定轴 932被阻止逆时 针旋转, 如第二锁定轴 932未与第二锁定架 931啮合, 则第二锁定轴 932无阻力地逆时针旋转, 对其它部件不产生任何影响; 此时, 如顺 时针旋转总驱动轴 96,则带动太阳轮 911同向旋转和内环齿轮架 914 异向旋转, 内环齿轮架 914的内环齿轮架齿轮 9142通过第一驱动轴 925带动第一螺杆 926顺时针旋转, 使得第一滑块 927朝第一锁定架 921方向轴向移动; 当第一滑块 927抵达与第一锁定架 921碰触的位 置时, 双轴转动时序发生器就处于如图 39所示的第二种状态, 继续 顺时针旋转总驱动轴 96, 则第一滑块 927克服第一弹簧 923的弹力 推压第一锁定架 921, 使得第一锁定架 921的第一锁定架端面板棘齿 9213与棘轮盘 922的棘齿脱离啮合, 与棘轮盘 922连为一体的第一 锁定轴 924和第一锁定架 921间的锁定被解除,同时第一滑块 927被 底座 97的插口 972阻挡不再前行, 第一螺杆 926因此被卡阻停转, 与第一螺杆 926连为一体的第一驱动轴 925也随之停止旋转,从而阻 止内环齿轮架 914逆时针旋转, 此时行星轮架 913开始顺时针旋转, 带动第一锁定轴 924和第二驱动轴 934逆时针旋转, 第一锁定轴 924 的旋转对其它部件不产生任何影响,第二驱动轴 934带动与其连为一 体的第二螺杆 936—起逆时针旋转, 从而驱使第二滑块 937往底座 97的左端部支座 971方向轴向移动。
图 40 显示了双轴转动时序发生器处于第三种状态位置的三维 图, 第一滑块 927、 第二滑块 937分别抵住第一锁定架 921和第二锁 定架 931, 使得第一锁定架 921和第二锁定架 931皆对行星齿轮离合 器 91无锁定作用,如顺时针旋转总驱动轴 96带动太阳轮 911顺时针 旋转, 此时行星轮架 913顺时针旋转, 行星轮架 913带动第一锁定轴 924逆时针空转, 而第二驱动轴 934带动第二螺杆 936逆时针旋转, 驱使第二滑块 936向底座 7的左端部支座 971轴向移动,同时内环齿 轮架 914逆时针旋转, 带动第二锁定轴 932顺时针空转, 而第一驱动 轴 925带动第一螺杆 926顺时针旋转, 驱使第一滑块 926抵近底座 97的插口 972而被阻止继续轴向前行, 如逆时针旋转总驱动轴 96, 则带来相反的结果, 即第一滑块 926向底座 97的左端部支座 971轴 向移动, 第二滑块 936抵近底座 97的插口 972而被阻止继续轴向前 行。
由上可知, 双轴转动时序发生器始终保持在一总驱动轴 96驱动 太阳轮 911的一个输入扭矩情况下,两个不同轴输出运动件第一滑块 927、 第二滑块 937总是能够依次无冲击、 无阻碍地相互切换, 两个 不同轴输出运动件也可以是插入第一驱动轴 925的第一输出轴 99和 插入第二驱动轴 34的第二输出轴 910。

Claims

权利要求
1. 一种转动时序发生器, 其特征是包括切换器(34)、 触发装置和总 驱动轴 (2), 切换器(34)和触发装置位于由一底座 (38)和一顶盖
(39) 扣合而成的腔体中, 且被总驱动轴 (2) 贯穿, 触发装置包括 若干与切换器(34)扭矩输出端传动连接的、 中空的驱动螺杆, 以及 螺纹连接于驱动螺杆上且在驱动螺杆驱动下做轴向移动的滑块。
2.根据权利要求 1所述的转动时序发生器,其特征是所述的切换器包 括第一锁定架 (341)、 第二锁定架 (342)、 行星齿轮离合器 (343) 和弹簧(344), 第一锁定架 (341)和第二锁定架 (342)均滑动连接 于一底座(38)上且相互滑动连接, 弹簧(344)套于一总驱动轴(2) 外且位于第一锁定架 (341)和第二锁定架 (342)之间, 行星齿轮离 合器 (343) 转动连接在底座 (38) 上并轴向固定, 且行星齿轮离合 器 (343) 与总驱动轴 (2) 传动连接, 行星齿轮离合器 (343) 上设 有一扭矩输入端和两个扭矩输出端, 行星齿轮离合器 (343) 位于第 一锁定架 (341) 和第二锁定架 (342) 之间, 第一锁定架 (341) 和 第二锁定架(342)上设有可使行星齿轮离合器(343)两个扭矩输出 端交替停止扭矩传输的触压突出部及锁止结构。
3. 根据权利要求 2 所述的转动时序发生器, 其特征是第一锁定架 (341) 包括位于第一锁定架 (341) 两端的第一端面矩形板 (3411) 和挡板(3412), 以及一对分布在第一锁定架(341)两侧的第一侧滑 框(3413),第一端面矩形板(3411)、挡板(3412)和第一侧滑框(3413) 固连, 所述第一锁定架 (341) 上的突出部位于第一侧滑框 (3413) 上, 第一端面矩形板(3411)和第一侧滑框(3413) 固连, 第二锁定 架(342)包括位于第二锁定架(342)端部的第二端面矩形板(3421) 和分布在第二锁定架(342)两侧的第二侧滑框(3422), 所述第二锁 定架( 342 )上的突出部位于第二侧滑框( 3422 )上,第二侧滑框( 3422 ) 贯穿第一端面矩形板(3411)和挡板(3412)并与它们滑动连接, 第 一侧滑框(3413)贯穿第二端面矩形板(3421)并与之滑动连接, 第 二端面矩形板 (3421) 位于第一端面矩形板 (3411) 和挡板 (3412) 之间, 弹簧 (344) 位于第二端面矩形板 (3421) 和挡板 (3412) 之 间。
4. 根据权利要求 3所述的转动时序发生器, 其特征是所述的锁止结 构包括端面板棘齿和离合器棘齿, 端面板棘齿设于第一端面矩形板
(3411) 和第二端面矩形板 (3412) 上, 且均朝向行星齿轮离合器 (343), 离合器棘齿设于行星齿轮离合器 (343) 两端端面上。
5. 根据权利要求 2或 3或 4所述的转动时序发生器, 其特征是行星 齿轮离合器 (343) 包括行星轮架 (3433)、 若干行星齿轮 (3432)、 太阳轮(3431)和带有内环齿 (34346) 的内环齿轮(3434), 内环齿 轮(3434)转动连接在底座 (38) 上, 行星轮架 (3433) 转动连接在 内环齿轮(3434)上, 行星齿轮(3432)转动连接在行星轮架(3433) 上, 太阳轮(3431)转动连接在内环齿轮(3434) 的中心, 行星齿轮
(3432) 同时与太阳轮 (3431) 及内环齿轮 (3434) 啮合。
6. 根据权利要求 5所述的转动时序发生器, 其特征是总驱动轴 (2) 呈棱柱形, 太阳轮(3431) 的轮轴具有轴向贯通的中心管腔, 内环齿 轮 (3434) 的端面上固设有轴向伸出的中空轴 (34343), 行星轮架 (3433) 的端面上固设有轴向伸出的中空的行星轮架轴 (34333)。
7. 根据权利要求 3或 4所述的转动时序发生器, 其特征是第一端面 矩形板 (3411)、 挡板 (3412)和第一侧滑框 (3413)通过螺栓连接, 第二端面矩形板 (3421) 和第二侧滑框 (3422) 也通过螺栓连接。
8. 根据权利要求 3或 4所述的转动时序发生器, 其特征是第一端面 矩形板(3411)和第一侧滑框(3413)为一体成型结构, 第一侧滑框
(3413) 与挡板(3412)卡接, 第二端面矩形板(3421)和第二侧滑 框 (3422) 亦为一体成型结构。
9. 根据权利要求 1-8任一项所述的转动时序发生器, 其特征是切换 器( 34 )为一个,所述驱动螺杆包括第一螺杆( 353 )和第二螺杆( 354 ), 所述滑块包括第一滑块 (351)、 第二滑块 (352), 第一螺杆 (353) 和第二螺杆(354)分别转动连接于底座(38)的两端,第一滑块(351) 和第二滑块 (352) 分别与第一螺杆 (353) 和第二螺杆 (354) 螺纹 连接, 切换器(34)位于第一螺杆 (353)和第二螺杆 (354)之间且 切换器(34) 的行星齿轮离合器(343)分别与第一螺杆(353)和第 二螺杆 (354) 传动连接。
10. 根据权利要求 1-8任一项所述的转动时序发生器, 其特征是切换 器(34) 为多个, 各切换器(34)逐个串联, 首个切换器与总驱动轴
(2) 传动连接, 自首个切换器往后, 后一级切换器的扭矩输入端与 前一级切换器的下游扭矩输出端传动连接,所述驱动螺杆包括上游端 螺杆和下游端螺杆, 上游端螺杆数目与切换器(34)数目相同且分别 与相应切换器(34) 的上游扭矩输出端传动连接, 下游端螺杆为一根 且与末个切换器的下游扭矩输出端传动连接,所述滑块数目与所述驱 动螺杆数目相同且分别螺纹连接在驱动螺杆上。
11. 一种转动时序发生器, 包括由顶盖 (98)和底座 (97) 扣合而成 的壳体, 其特征是壳体内设有一行星齿轮离合器(91)及并联的第一 输出装置 (92) 和第二输出装置 (93), 行星齿轮离合器 (91) 的输 入端与一总驱动轴(96)传动连接, 行星齿轮离合器(91)上设有两 个输出端, 第一输出装置(92)和第二输出装置(93)上各设有一时 序锁定件和一驱动件, 行星齿轮离合器(91)的一个输出端同时与第 一输出装置(92) 的时序锁定件及第二输出装置(93) 的驱动件传动 连接,行星齿轮离合器 (91)的另一个输出端同时与第一输出装置 (92) 的驱动件及第二输出装置 (93) 的时序锁定件传动连接。
12. 根据权利要求 11所述的转动时序发生器, 其特征是行星齿轮离 合器 (91) 包括太阳轮 (911)、 行星齿轮 (912)、 行星轮架 (913) 和内环齿轮架 (914), 太阳轮(911) 的轮轴贯穿行星轮架 (913)和 内环齿轮架 (914), 行星齿轮(912)转动连接在行星轮架 (913)上 并同时与太阳轮 (911) 和内环齿轮架 (914) 啮合, 太阳轮 (911) 的轮轴被总驱动轴 (96) 贯穿且与总驱动轴 (96) 传动套接。
13. 根据权利要求 12所述的转动时序发生器, 其特征是第一输出装 置(92)包括中空的第一锁定轴 (924)、 第一弹簧(923)、 周向被定 位的第一锁定架(921)、 一端端面带棘齿的棘轮盘(922)、 中空的第 一驱动轴(925)、 第一螺杆(926)和周向被定位的第一滑块(927), 第一锁定轴 (924)依次贯穿第一弹簧(923)、 第一锁定架 (921)和 棘轮盘(922)后与第一驱动轴 (925)转动套接, 第一驱动轴 (925) 与第一螺杆(926)传动连接, 第一滑块(927)螺纹连接在第一螺杆
(926) 上, 棘轮盘 (922) 与第一锁定轴 (924) 传动连接且与第一 锁定架 (921) 间设有转动锁定结构, 第一滑块(927)与第一锁定架
(921) 间设有触发解锁结构, 第二输出装置 (93) 包括第二驱动轴
(934)、 第二弹簧(933)、 周向被定位的第二锁定架(931)、 第二锁 定轴 (932)、 第二螺杆 (936) 和周向被定位的第二滑块 (937), 第 二驱动轴 (934)依次贯穿第二弹簧(933)、 第二锁定架 (931)和第 二锁定轴 (932) 后与第二螺杆 (936) 传动连接, 第二滑块 (937) 螺纹连接在第二螺杆( 936 )上,第二锁定轴( 932 )与第二锁定架( 931 ) 间设有转动锁定结构, 第二滑块(937)与第二锁定架(931) 间设有 触发解锁结构, 第一锁定轴(924)和第二驱动轴(934)与行星轮架
(913) 传动连接, 第一驱动轴 (925) 和第二锁定轴 (932) 与内环 齿轮架 (914) 传动连接。
14. 根据权利要求 13 所述的转动时序发生器, 其特征是行星轮架 (913) 外端面固设有一行星轮架齿轮 (9132), 内环齿轮架 (914) 的闭合端固设有一轴向延伸的内环齿轮架中空轴 (9141), 内环齿轮 架中空轴 (9141) 端部设有一内环齿轮架外齿轮 (9142), 第一锁定 轴(924)、第一驱动轴(925)、第二驱动轴(934)及第二锁定轴(932) 上分别设有一齿轮, 第一锁定轴(924)和第二驱动轴(934)上的齿 轮与行星轮架齿轮 (9132) 啮合, 第一驱动轴 (925) 和及第二锁定 轴 (932) 上的齿轮与内环齿轮架外齿轮 (9142) 啮合。
15. 根据权利要求 13所述的转动时序发生器, 其特征是第一锁定架 (921)上朝向棘轮盘(922) 的一面也设有棘齿, 第一锁定架 (921) 的棘齿与棘轮盘 (922) 的棘齿匹配。
16. 根据权利要求 13所述的转动时序发生器, 其特征是第二锁定轴 (932)和第二锁定架(931)二者相对的面上分别设有互相匹配的棘
ΙΛΙ。
17. 根据权利要求 13所述的转动时序发生器, 其特征是第一锁定架 (921)包括第一矩形板(9211)和两第一锁定架触发杆(9212), 第 一锁定架触发杆(9212) 固定在第一矩形板(9211)顶部和底部, 并 朝第一螺杆 (926) 方向轴向伸出。
18. 根据权利要求 13所述的转动时序发生器, 其特征是第二锁定架 (931) 包括第二矩形板和两第二锁定架触发杆, 第二锁定架触发杆 固定在第二矩形板顶部和底部, 并朝第二螺杆(936)方向轴向伸出。
19. 根据权利要求 13至 18中任一项所述的转动时序发生器, 其特征 是底座 (97) 上设有均与底座 (97) 轴向垂直的第一支座插板 (94) 和第二支座插板(95) , 行星齿轮离合器(91)两端分别转动连接在 第一支座插板 (94) 和第二支座插板 (95) 上, 第一锁定轴 (924) 和第二驱动轴 (934) 转动连接在第二支座插板 (95) 上, 第一驱动 轴 (925)和第二锁定轴 (932)转动连接在第一支座插板(94) , 底 座(97 )侧壁设有两对插口,第一支座插板(94)和第二支座插板(95 ) 分别插在两对插口中。
20. 根据权利要求 13至 18中任一项所述的转动时序发生器, 其特征 是第一驱动轴(925 )和第二驱动轴(934)上分别传动连接一输出轴, 输出轴末端露出于所述壳体外。
PCT/CN2014/084687 2013-08-22 2014-08-19 一种转动时序发生器 WO2015024498A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310367636.5 2013-08-22
CN201310367636.5A CN103472887B (zh) 2013-08-22 2013-08-22 切换器及应用该切换器的转动时序发生器
CN201310602365.7 2013-11-22
CN201310602365.7A CN103615506B (zh) 2013-11-22 2013-11-22 双轴转动时序发生器

Publications (1)

Publication Number Publication Date
WO2015024498A1 true WO2015024498A1 (zh) 2015-02-26

Family

ID=52483080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084687 WO2015024498A1 (zh) 2013-08-22 2014-08-19 一种转动时序发生器

Country Status (1)

Country Link
WO (1) WO2015024498A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090308547A1 (en) * 2008-06-16 2009-12-17 Jae-Suk Kwak One Cord Blind
US20100186907A1 (en) * 2009-01-27 2010-07-29 Franz Kraler Device for driving and turning the slats of a Venetian blind
CN102839907A (zh) * 2012-07-30 2012-12-26 杭州欧卡索拉科技有限公司 百叶窗的滑块机构及带齿轮离合器翻转机构的滑块系统
CN103472887A (zh) * 2013-08-22 2013-12-25 杭州欧卡索拉科技有限公司 切换器及应用该切换器的转动时序发生器
CN103615185A (zh) * 2013-11-22 2014-03-05 杭州欧卡索拉科技有限公司 一种百叶窗翻转分机构及包含该机构的时序控制滑块系统
CN103615506A (zh) * 2013-11-22 2014-03-05 杭州欧卡索拉科技有限公司 双轴转动时序发生器
CN103726776A (zh) * 2013-08-22 2014-04-16 杭州欧卡索拉科技有限公司 时序控制滑块系统及应用该滑块系统的百叶窗升降翻转器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090308547A1 (en) * 2008-06-16 2009-12-17 Jae-Suk Kwak One Cord Blind
US20100186907A1 (en) * 2009-01-27 2010-07-29 Franz Kraler Device for driving and turning the slats of a Venetian blind
CN102839907A (zh) * 2012-07-30 2012-12-26 杭州欧卡索拉科技有限公司 百叶窗的滑块机构及带齿轮离合器翻转机构的滑块系统
CN103472887A (zh) * 2013-08-22 2013-12-25 杭州欧卡索拉科技有限公司 切换器及应用该切换器的转动时序发生器
CN103726776A (zh) * 2013-08-22 2014-04-16 杭州欧卡索拉科技有限公司 时序控制滑块系统及应用该滑块系统的百叶窗升降翻转器
CN103615185A (zh) * 2013-11-22 2014-03-05 杭州欧卡索拉科技有限公司 一种百叶窗翻转分机构及包含该机构的时序控制滑块系统
CN103615506A (zh) * 2013-11-22 2014-03-05 杭州欧卡索拉科技有限公司 双轴转动时序发生器

Similar Documents

Publication Publication Date Title
US9445671B2 (en) Locking regulation device for drawer slide rail
US9303433B2 (en) Transmission mechanism of a lock assembly
TW201522814A (zh) 徑向約束系統
WO2012071979A1 (zh) 机械锁式差速器
TWM431053U (en) Electric tool with manual/automatic speed change
US8210074B2 (en) Dismantling device
US20210198922A1 (en) Electric locking mechanism
TWI703019B (zh) 扳機三維棘齒逆止構造
WO2015024498A1 (zh) 一种转动时序发生器
CN103615506B (zh) 双轴转动时序发生器
NL2009423C2 (en) Reverse speed-change control mechanism.
TW201620781A (zh) 自行車三速內變速機構
CN111173365B (zh) 一种执手
CN103472887B (zh) 切换器及应用该切换器的转动时序发生器
CN103352967A (zh) 一种纸币收纳箱
TWM530774U (zh) 雙向棘輪快拆裝置
US9333630B2 (en) Dual-drive, self-ratcheting, mechanism with multiple input ports
TW201219260A (en) Drive transmission capable of multi-speed gear-shifting by reverse rotation
CN217558013U (zh) 电动执行器机构及机动车
CN220988201U (zh) 电动折叠脚踏及座椅
CN213758402U (zh) 一种击发稳定的补片吻合器
DE2253517C3 (de) Vorrichtung zur Kupplung eines Antriebsmotors mit einer schaltnockentragenden Zeitgeberwelle für die Programmsteuerung von Haushaltsmaschinen
TWM544551U (zh) 馬達式電子鎖
CN116492190A (zh) 一种便于使用的按摩椅
CN112253614A (zh) 一种齿轮咬合活动关节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837901

Country of ref document: EP

Kind code of ref document: A1