WO2015024497A1 - Échantillonnage de réseau de sous-station intelligent et méthode d'autodiagnostic de lien de contrôle - Google Patents
Échantillonnage de réseau de sous-station intelligent et méthode d'autodiagnostic de lien de contrôle Download PDFInfo
- Publication number
- WO2015024497A1 WO2015024497A1 PCT/CN2014/084681 CN2014084681W WO2015024497A1 WO 2015024497 A1 WO2015024497 A1 WO 2015024497A1 CN 2014084681 W CN2014084681 W CN 2014084681W WO 2015024497 A1 WO2015024497 A1 WO 2015024497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- fault
- packet
- traffic
- analysis
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/02—Standardisation; Integration
- H04L41/0213—Standardised network management protocols, e.g. simple network management protocol [SNMP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0677—Localisation of faults
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
Definitions
- the invention belongs to the technical field of power automation, and particularly relates to a self-diagnosis method for sampling and controlling links of a smart substation network. Background technique
- the use of the IEC61850 standard promotes the development of process layer bus technology and promotes the development of substation network communication from serial port connection and field bus to Ethernet transmission, which greatly improves the overall level of substation automation, since the sampling and control information can be transmitted through the network. Effectively reducing the complicated cable wiring of the substation not only helps to simplify the whole station structure, but also effectively reduces the construction cost of the substation. More importantly, it can promote the development of advanced application functions of the substation and further improve the overall level of the substation.
- the reliability of intelligent substation network communication directly affects the overall construction level of intelligent substation, which in turn affects the construction of the entire smart grid.
- the reliable operation of the substation network is the key to the network transmission in the substation application.
- the process layer network was adopted.
- the operation of the substation brings potential safety hazards.
- the present invention provides a self-diagnosis method for sampling and control links of a smart substation network, which can timely discover and classify and eliminate various network faults of the network operation, and manage network fault information. And records to further ensure the reliability and safety of network sampling and network control in substation applications, and improve the intelligent level of substation.
- Step 1 Perform IEC61850 communication protocol analysis
- Step 2 Control the active diagnostic test of the link, and then discover the network fault
- Step 3 Perform network fault diagnosis based on SNMP.
- Step 4 Manage network failures.
- the IEC61850 communication protocol analysis includes basic network protocol analysis, advanced network protocol analysis, and network traffic analysis; the details are as follows:
- the data packet is decapsulated layer by layer to obtain the information of different levels of IEC61850 communication protocol, and the IEC61850 communication protocol field decoding is used to identify the abnormal IEC61850 communication protocol application and the forged data packet. And wrong parameter settings;
- the threshold interval is determined by packet distribution and traffic statistics, and a network failure alarm is issued once the threshold is exceeded.
- the basic network protocol analysis mainly analyzes the format, syntax and content of GOOSE messages and SV messages, and belongs to the analysis of a single message content.
- Advanced network protocol analysis for comprehensive comparison analysis of GOOSE messages and SV messages, which is a holistic analysis of GOOSE networks and SV networks;
- the network anomalies that can be found include GOOSE APPID not unique, GOOSE message misorder, GOOSE message drop frame and GOOSE message repetition; 2)
- the network anomalies that can be found include the SV APPID of the whole station is not unique, the SV packet is out of order, the SV data is abnormal, the sampling interval is unstable, and the sampling between the merging units is not synchronized.
- the network traffic indicators are selected for network traffic anomaly detection, and the network traffic threshold is determined by counting the network traffic indicators under the normal operation of the intelligent substation, and then the network traffic threshold is determined.
- the network packet traffic value is compared with the statistical network traffic threshold, and the network fault alarm is performed according to the magnitude of the network traffic difference.
- the network traffic indicators include multicast traffic, VLAN traffic, network received traffic, and network sending traffic.
- the step 2 includes the following steps:
- Step 2-1 Set GOOSE messages and SV messages in the smart substation, use the network message generator to send GOOSE messages and SV messages to the GOOSE network and the SV network respectively, and check the respective GOOSE messages and SV messages. Network delay and packet loss rate, and determine whether the configuration, physical link, and performance of the network device are abnormal.
- Step 2-2 Send the ICMP packet to detect the online status of the network device, check the returned ICMP error packet, and discover the network fault.
- Step 2-3 Collect and analyze logs of network devices to discover network faults in time.
- the log information of the network device including the router, the switch, and the firewall is collected and analyzed, and the network fault is discovered in time; the analysis process of the network device is divided into log information collection, log information filtering, log format conversion, and log analysis. And alarms;
- the logs of the network device can be divided into management logs, system logs, and security logs according to content and type.
- the management logs record user login events, user exit events, and modify system configuration events.
- the system logs record CPU utilization and memory utilization.
- the security log records an access event and a network attack event that do not comply with the security policy.
- the network fault diagnosis is performed based on the SNMP to obtain the network fault information, which includes the following steps:
- Step 3 Use the SNMP GetRequest packet, GetNextRequest packet, and GetResponse packet to periodically read the SNMP MIB library of the managed object, and obtain the network topology, control link interface status, port network traffic, and device resource usage. Including network structure anomalies, control links are not available, Network failures with abnormal network traffic and low resource allocation of devices;
- Step 3-2 Parsing the SNMP Tmp packet sent by the network device to obtain the network fault information including the cold start, hot start, communication link failure, and communication link recovery of the communication device.
- Step 3-3 Generate a network topology through SNMP and compare it with the designed network topology to discover network faults including network equipment wiring errors and communication link failures.
- the step 4 includes the following steps:
- Step 4-1 Collect network fault information
- the collected network fault information includes network packets, SNMP data, log information of network devices, and a network information database.
- Step 4-2 Network fault diagnosis and analysis
- Network fault diagnosis uses protocol analysis of sampling and control network messages, active diagnostic test of control links, and network fault diagnosis based on SNMP;
- Step 4-3 Perform network fault location
- Step 4-4 Network failure alarm
- the properties of the network fault alarm include the time when the network fault alarm occurred, the alarm object, the type of alarm, and the severity; the severity of the network fault alarm includes emergency alarm, important alarm, secondary alarm, and notification alarm;
- Step 4-5 Exclude and record network failures
- the network fault record includes the date and time, level, location, cause, network failure, and network fault description of the network fault.
- step 4-1 the active fault polling mode or the SNMP Tmp mode is used to collect network fault information.
- network state data is collected from a distributed network, and the network management system issues a query command to the agent process of the managed object, and requests the management object to return to the current working state to achieve the detection purpose;
- the network device In the SNMP Tmp mode, the network device is produced due to a major fault event or security incident.
- the SNMPTmp packet is parsed to determine the object, location, and type of the network fault.
- the network traffic threshold obtained by the statistics is obtained by using the GetRequest packet, the GetNextRequest packet, and the GetResponse packet of the SNMP. Compare the network traffic threshold with a network failure alarm when the network traffic threshold is found to be out of bounds.
- the self-diagnosis method of the sampling and control link of the intelligent substation network not only can prevent and discover network faults in time, but also proposes management, positioning, and elimination after network faults occur. And records, to provide protection for future accident analysis, this method can further improve the reliability of substation network operation, provide guarantee for the stable operation of substation, and improve the intelligent level of substation.
- 1 is a flow chart of a self-diagnosis method for a smart substation network sampling and control link
- Figure 2 is a flow chart of network fault analysis in the self-diagnosis method of the intelligent substation network sampling and control link
- Figure 3 is a flow chart of network fault location in the self-diagnosis method of the intelligent substation network sampling and control link.
- the present invention provides a self-diagnosis method for a smart substation network sampling and control link, which includes the following steps:
- Step 1 Perform an analysis of the IEC61850 communication protocol
- Step 2 Control the active diagnostic test of the link, and then discover the network fault
- Step 3 Perform network fault diagnosis based on SNMP (Simple Network Management Protocol);
- Step 4 Manage network failures.
- the IEC61850 communication protocol analysis includes basic network protocol analysis, advanced network protocol analysis, and network traffic analysis; the details are as follows:
- the data packet is decapsulated layer by layer to obtain the information of different levels of IEC61850 communication protocol, and the IEC61850 communication protocol field decoding is used to identify the abnormal IEC61850 communication protocol application and the forged data packet. And wrong parameter settings; 2) In the analysis of advanced network protocols, according to the characteristics of the data packet, the relationship between the timestamp and the timestamp, the distribution of different IEC61850 communication protocols, network packet traffic, network utilization, the number of bytes of the IEC61850 communication protocol, and each IEC61850 communication protocol. Different types of frame statistics and the order relationship of the packets, determine whether there is a problem with the network data flow, and timely discover network faults;
- the threshold interval is determined by packet distribution and traffic statistics, and a network failure alarm is issued once the threshold is exceeded.
- the basic network protocol analysis mainly analyzes the format, syntax and content of GOOSE messages and SV messages, and belongs to the analysis of a single message content.
- the GOOSE message field content includes a GOOSE APPID, a length, a reserved field, a GocbRef, a DataSet, a GoID, a StNum, and a SqNum;
- the SV packet For the SV packet, check the syntax of the SV packet according to the format definition of the SV packet.
- the SV packet can be decoded by the source address, destination address, VLAN information, SV APPID, Length and SV packet.
- the assignment of the savpdu field determines whether the SV message has an error message.
- Advanced network protocol analysis for comprehensive comparison analysis of GOOSE messages and SV messages, which is a holistic analysis of GOOSE networks and SV networks;
- the network anomalies that can be found include GOOSE APPID not unique, GOOSE message out-of-order, GOOSE message drop frame and GOOSE message repetition;
- the network anomalies that can be found include the SVAPPID of the whole station is not unique, the SV packets are out of order, the SV data is abnormal, the sampling interval is unstable, and the sampling between the merging units is not synchronized.
- the network traffic indicators are selected for network traffic anomaly detection, and the network traffic threshold is determined by counting the network traffic indicators under the normal operation of the intelligent substation, and then the network traffic threshold is determined.
- the network packet traffic value is compared with the statistical network traffic threshold, and the network fault alarm is performed according to the magnitude of the network traffic difference.
- the network traffic indicator includes multicast traffic, VLAN traffic, network receiving (uplink and downlink) traffic, and network sending (uplink and downlink) traffic.
- the step 2 includes the following steps:
- Step 2-1 Set GOOSE messages and SV messages in the smart substation, use the network message generator to send GOOSE messages and SV messages to the GOOSE network and the SV network respectively, and check the respective GOOSE messages and SV messages. Network delay and packet loss rate, and determine whether the configuration, physical link, and performance of the network device are abnormal.
- Step 2-2 ICMP provides unified error report information, and the sent error message is returned to the device that sent the original data, because only the sending device is the logical receiver of the error message.
- the sending device can then determine the type of transmission error based on the ICMP message, but the only function of the ICMP is to report the problem instead of correcting the error, and the task of correcting the error is done by the sender.
- the ICMP packet is periodically sent to detect the online status of the network device, and the returned ICMP error packet is checked to discover a network fault.
- Step 2-3 Collect and analyze logs of network devices to discover network faults in time.
- step 2-1 setting an Ethernet source address, a destination address, an Ethernet type, a VLAN, and a P PDU of the network packet;
- the destination address is a multicast address, and the destination address format of the GOOSE message is 01-0C-CD-01 -XX-XX, and the range is (01 -0C-CD-01 -00-00 and 01 -0C-CD- 01 01 -FF between), the destination address format of the SV message is 01-0C-CD-04-XX-XX, and the range is (01-0C-CD-04-00-00 and 01-0C-CD- Between 04-01-FF);
- the Ethernet type of the GOOSE packet is 88B8, and the Ethernet type of the SV packet is 88BA.
- VLANs For VLANs, set the VLAN ID and VLAN priority.
- the PDU settings are set by referring to the actual network packets captured.
- the log information of the network device including the router, the switch, and the firewall is collected and analyzed, and the network fault is discovered in time; the analysis process of the network device is divided into log information collection, log information filtering, log format conversion, and log analysis. And alarms;
- the logs of the network device can be divided into management logs, system logs, and security logs according to content and type.
- the management logs record user login events, user exit events, and modify system configuration events.
- the system logs record CPU utilization and memory utilization.
- the security log records an access event and a network attack event that do not comply with the security policy.
- performing network fault diagnosis based on SNMP to obtain network fault information includes the following steps:
- Step 3 Use the SNMP GetRequest packet, GetNextRequest packet, and GetResponse packet to periodically read the SNMP MIB library of the managed object, and obtain the network topology, control link interface status, port network traffic, and device resource usage.
- Network faults including network structure anomalies, control link failures, network traffic anomalies, and low resource allocation of devices;
- Step 3-2 Parsing the SNMP Tmp packet sent by the network device to obtain the network fault information including the cold start, hot start, communication link failure, and communication link recovery of the communication device.
- Step 3-3 Generate a network topology through SNMP and compare it with the designed network topology to discover network faults including network equipment wiring errors and communication link failures.
- the step 4 includes the following steps:
- Step 4-1 Collect network fault information
- the collected network fault information includes network packets, SNMP data, log information of network devices, and a network information database.
- step 4-1 the active fault polling mode or the SNMP Tmp mode is used to collect network fault information.
- network state data is collected from a distributed network, and the network management system issues a query command to the agent process of the managed object, and requests the management object to return to the current working state to achieve the detection purpose;
- the SNMPTmp packet generated on the network device due to a major fault event or a security event is parsed, and the object, location, and type of the network fault are determined.
- the GetRequest packet, the GetNextRequest packet, and the GetResponse packet of the SNMP are used.
- the network periodically reads the statistics of the network traffic threshold, and sets the network packet traffic value to compare the network traffic threshold. When the network traffic threshold is found to be out of bounds, the network fault alarm is generated. Since the network status and traffic are dynamically changing, the threshold needs to be dynamically set according to the condition of the network at that time (for example, the current threshold can be determined by multiplying the average of the period of time before the managed object by a weighting factor).
- Step 4-2 Network fault diagnosis and analysis
- network fault diagnosis uses protocol analysis of sampling and control network messages, active diagnostic test of control links, and network fault diagnosis based on SNMP; Step 4-3: Perform network fault location.
- Step 4-4 Network failure alarm
- the properties of the network fault alarm include the time when the network fault alarm occurred, the alarm object, the type of alarm, and the severity; the severity of the network fault alarm includes emergency alarm, important alarm, secondary alarm, and notification alarm;
- Step 4-5 Exclude and record network failures
- the network fault record includes the date and time, level, location, cause, network failure, and network fault description of the network fault.
- Network fault alarms and records provide an evidence retention mechanism for network link self-diagnosis, and provide strong technical support for the operation and maintenance of intelligent substation, helping operators to analyze problems and solve problems.
- appropriate fault troubleshooting measures should be taken based on the results of the fault analysis and the knowledge of the historical fault database. If the new network link fails, the new fault information is written to the historical fault database to provide guidance for future troubleshooting.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
La présente invention concerne un échantillonnage de réseau de sous-station intelligent et une méthode d'autodiagnostic de lien de contrôle, comprenant les étapes suivantes : analyse de protocole de communication CEI 61850; diagnostic indépendant et test d'un lien de contrôle pour trouver un dysfonctionnement de réseau; diagnostic de dysfonctionnement de réseau basé sur SNMP; et gestion de dysfonctionnement de réseau. La présente invention concerne un échantillonnage de réseau de sous-station intelligent et une méthode d'autodiagnostic de lien de contrôle. La présente invention peut trouver rapidement divers dysfonctionnements de réseau pendant le fonctionnement du réseau, localiser et dépanner les dysfonctionnements, et gérer plus avant et enregistrer les informations sur les dysfonctionnements de réseau, garantissant ainsi plus avant la fiabilité des applications et la sécurité de l'échantillonnage de réseau et du contrôle de réseau dans une sous-station, et améliorant l'intelligence de la sous-station.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310361597.8 | 2013-08-19 | ||
CN201310361597.8A CN103457791B (zh) | 2013-08-19 | 2013-08-19 | 一种智能变电站网络采样和控制链路的自诊断方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015024497A1 true WO2015024497A1 (fr) | 2015-02-26 |
Family
ID=49739776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/084681 WO2015024497A1 (fr) | 2013-08-19 | 2014-08-19 | Échantillonnage de réseau de sous-station intelligent et méthode d'autodiagnostic de lien de contrôle |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103457791B (fr) |
WO (1) | WO2015024497A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104601375A (zh) * | 2015-01-05 | 2015-05-06 | 广州至德电力科技有限公司 | 一种智能变电站通信网络监控系统、整定方法及监控方法 |
CN106656838A (zh) * | 2016-10-19 | 2017-05-10 | 赛尔网络有限公司 | 一种流量分析方法及系统 |
CN109379255A (zh) * | 2018-12-12 | 2019-02-22 | 国网宁夏电力有限公司电力科学研究院 | 一种基于智能交换机过程层网络流量监测预警方法 |
CN111800313A (zh) * | 2020-07-03 | 2020-10-20 | 国网四川省电力公司电力科学研究院 | 一种数字式继电保护测试仪报文输出性能测试方法 |
CN113259491A (zh) * | 2021-07-01 | 2021-08-13 | 华自科技股份有限公司 | 一种goose双网通信数据处理方法及装置 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103457791B (zh) * | 2013-08-19 | 2016-09-28 | 国家电网公司 | 一种智能变电站网络采样和控制链路的自诊断方法 |
WO2015169392A1 (fr) * | 2014-05-09 | 2015-11-12 | Abb Technology Ltd | Procédé de fourniture d'informations d'état d'une condition de santé de canal dans un réseau de communication |
CN104092588B (zh) * | 2014-07-23 | 2017-11-21 | 哈尔滨工程大学 | 一种基于SNMP与NetFlow结合的网络异常流量检测方法 |
CN105281945B (zh) * | 2014-09-19 | 2020-04-07 | 中国人民解放军第二炮兵工程大学 | 基于数据流的确定性网络完整性故障检测方法 |
CN105592489A (zh) * | 2014-11-12 | 2016-05-18 | 中兴通讯股份有限公司 | 一种传输数据管理方法和装置 |
CN104579839B (zh) * | 2015-01-05 | 2018-09-18 | 广州至德电力科技有限公司 | 一种变电站通信网络状态在线监测系统及方法 |
CN105139473B (zh) * | 2015-05-06 | 2018-06-29 | 东莞团诚自动化设备有限公司 | 机械设备运行数据主动检测记录器及记录方法 |
CN104979908B (zh) * | 2015-06-25 | 2017-05-17 | 云南电网有限责任公司电力科学研究院 | 一种变电站网络在线故障分析方法 |
CN105721195B (zh) * | 2016-01-19 | 2019-05-17 | 华南理工大学 | 一种基于二次系统状态估计的变电站智能诊断方法 |
CN105871847B (zh) * | 2016-04-01 | 2018-11-30 | 国网江苏省电力公司电力科学研究院 | 一种智能变电站网络异常流量检测方法 |
CN106130950A (zh) * | 2016-05-20 | 2016-11-16 | 南京理工大学 | 针对iec61850协议sv报文的异常检测方法 |
CN105930724A (zh) * | 2016-06-16 | 2016-09-07 | 上海电机学院 | 一种基于大数据的智能电表入侵检测方法 |
CN106357423A (zh) * | 2016-08-19 | 2017-01-25 | 南京国电南自电网自动化有限公司 | 一种基于故障树的智能变电站二次设备异常诊断方法 |
CN106685928A (zh) * | 2016-12-06 | 2017-05-17 | 国网浙江省电力公司绍兴供电公司 | 适用于数字化变电站间隔层smv网络攻击分级检测方法 |
EP3557816A4 (fr) | 2017-01-24 | 2020-07-22 | China Techenergy Co., Ltd | Procédé d'auto-diagnostic de protocole de communication de système d'instrumentation et de commande de niveau de sécurité d'une centrale nucléaire |
CN107064780A (zh) * | 2017-06-23 | 2017-08-18 | 上海电力通信有限公司 | 一种数字化变电站的电路检测方法 |
CN108322332A (zh) * | 2017-12-28 | 2018-07-24 | 贵阳忆联网络有限公司 | 一种数据灾难响应系统及方法 |
CN110266553A (zh) * | 2018-03-12 | 2019-09-20 | 南京南瑞继保电气有限公司 | 一种装置运维数据自动获取方法 |
CN108632297A (zh) * | 2018-05-21 | 2018-10-09 | 安徽国电京润电力科技有限公司 | 一种电力调度自动化系统的高安全网络架构 |
CN109066989B (zh) * | 2018-09-06 | 2021-05-28 | 广东电网有限责任公司 | 具备数据校验和异常告警功能的变电站测控装置及方法 |
CN109462495A (zh) * | 2018-09-30 | 2019-03-12 | 北京工业大学 | 一种船舶硬件与通信系统检测系统及方法 |
CN109522263B (zh) * | 2018-11-16 | 2021-10-29 | 郑州云海信息技术有限公司 | 一种i2c链路监控系统 |
CN109902373B (zh) * | 2019-02-21 | 2023-06-23 | 国网山东省电力公司临沂供电公司 | 一种辖区变电站故障诊断、定位方法及系统 |
CN110336698A (zh) * | 2019-07-05 | 2019-10-15 | 精英数智科技股份有限公司 | 一种故障数据分析方法、服务器及存储介质 |
CN110365406B (zh) * | 2019-07-16 | 2020-11-24 | 中国联合网络通信集团有限公司 | Ip网络光端口性能评价方法及设备 |
CN112532465A (zh) * | 2019-08-23 | 2021-03-19 | 中兴通讯股份有限公司 | Snmp链路检测方法、装置、通信设备及存储介质 |
CN111181812B (zh) * | 2020-01-03 | 2022-04-08 | 四川新网银行股份有限公司 | 基于网络流量的链路故障检测方法 |
CN112073326B (zh) * | 2020-07-30 | 2023-05-12 | 许继集团有限公司 | 一种智能变电站过程层网络数据流控制方法 |
KR102221052B1 (ko) * | 2020-11-30 | 2021-02-25 | 윤동권 | Sdn 오픈플로우 프로토콜을 지원하는 네트워크 장비의 장애처리 시스템 |
CN112763960B (zh) * | 2021-01-04 | 2022-11-18 | 山东电工电气集团有限公司 | 一种就地模块的自运维方法 |
CN113867325B (zh) * | 2021-10-27 | 2024-06-18 | 国核自仪系统工程有限公司 | 仪控系统的通信诊断方法及系统 |
CN115913903A (zh) * | 2022-11-09 | 2023-04-04 | 云南电网有限责任公司普洱供电局 | 一种录波主站组网设备网络故障自动修复方法及系统 |
CN115632883A (zh) * | 2022-12-20 | 2023-01-20 | 武汉大学 | 基于旁路技术的工控网络流量分析安全检测系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102164058A (zh) * | 2011-05-13 | 2011-08-24 | 北京航空航天大学 | 基于iec61850标准变电站通信网络与系统测试方法 |
CN201956747U (zh) * | 2010-11-16 | 2011-08-31 | 邢台供电公司 | 基于iec61850通讯的电力机房监控系统 |
CN102368715A (zh) * | 2011-11-15 | 2012-03-07 | 浙江省电力公司 | 基于iec-61850协议网关的交换机集中网管实现设备 |
CN103457791A (zh) * | 2013-08-19 | 2013-12-18 | 国家电网公司 | 一种智能变电站网络采样和控制链路的自诊断方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103001328B (zh) * | 2012-11-19 | 2014-06-18 | 山东大学 | 一种智能变电站的故障诊断与评估方法 |
CN103217569B (zh) * | 2013-05-06 | 2015-11-18 | 广东电网公司珠海供电局 | 智能变电站同源smv采样信息的实时电流诊断方法及设备 |
-
2013
- 2013-08-19 CN CN201310361597.8A patent/CN103457791B/zh active Active
-
2014
- 2014-08-19 WO PCT/CN2014/084681 patent/WO2015024497A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201956747U (zh) * | 2010-11-16 | 2011-08-31 | 邢台供电公司 | 基于iec61850通讯的电力机房监控系统 |
CN102164058A (zh) * | 2011-05-13 | 2011-08-24 | 北京航空航天大学 | 基于iec61850标准变电站通信网络与系统测试方法 |
CN102368715A (zh) * | 2011-11-15 | 2012-03-07 | 浙江省电力公司 | 基于iec-61850协议网关的交换机集中网管实现设备 |
CN103457791A (zh) * | 2013-08-19 | 2013-12-18 | 国家电网公司 | 一种智能变电站网络采样和控制链路的自诊断方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104601375A (zh) * | 2015-01-05 | 2015-05-06 | 广州至德电力科技有限公司 | 一种智能变电站通信网络监控系统、整定方法及监控方法 |
CN104601375B (zh) * | 2015-01-05 | 2017-12-01 | 广州至德电力科技有限公司 | 一种智能变电站通信网络监控系统、整定方法及监控方法 |
CN106656838A (zh) * | 2016-10-19 | 2017-05-10 | 赛尔网络有限公司 | 一种流量分析方法及系统 |
CN109379255A (zh) * | 2018-12-12 | 2019-02-22 | 国网宁夏电力有限公司电力科学研究院 | 一种基于智能交换机过程层网络流量监测预警方法 |
CN111800313A (zh) * | 2020-07-03 | 2020-10-20 | 国网四川省电力公司电力科学研究院 | 一种数字式继电保护测试仪报文输出性能测试方法 |
CN113259491A (zh) * | 2021-07-01 | 2021-08-13 | 华自科技股份有限公司 | 一种goose双网通信数据处理方法及装置 |
CN113259491B (zh) * | 2021-07-01 | 2021-11-02 | 华自科技股份有限公司 | 一种goose双网通信数据处理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103457791B (zh) | 2016-09-28 |
CN103457791A (zh) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015024497A1 (fr) | Échantillonnage de réseau de sous-station intelligent et méthode d'autodiagnostic de lien de contrôle | |
CN105282772B (zh) | 无线网数通设备监控系统及设备监控方法 | |
CN113507436B (zh) | 一种针对goose协议的电网嵌入式终端模糊测试方法 | |
CN107547540B (zh) | Iec-60870-5-104协议报文监控方法 | |
CN109639503B (zh) | 一种基于变电站过程层网络设备的异常报文追溯实现方法 | |
CN112468592B (zh) | 一种基于电力信息采集的终端在线状态侦测方法及系统 | |
CN113612647B (zh) | 一种告警处理方法及装置 | |
CN112383509B (zh) | 一种基于数据流的物联网设备安全监测系统及方法 | |
CN103873285A (zh) | 信息网络统一管理平台 | |
CN112333020A (zh) | 一种基于五元组的网络安全监测及数据报文解析系统 | |
WO2021249546A1 (fr) | Procédé de surveillance de réseau, dispositif électronique et support de stockage | |
CN103297298A (zh) | 用于智能变电站的网络风暴实时快速检测方法 | |
CN110971467A (zh) | 一种网络集中化管理系统 | |
US20150227126A1 (en) | Communication configuration analysis in process control systems | |
CN105388395A (zh) | 基于goose的牵引网故障测距系统及其数据传输方法 | |
CN113285937B (zh) | 一种基于传统变电站配置文件和iec103协议流量的安全审计方法及系统 | |
KR20050002263A (ko) | 망 관리에서의 장애 관리 시스템 및 그 방법 | |
CN113630285A (zh) | 宽带网络质量诊断方法、装置及系统 | |
Wang et al. | Fault information and diagnosis modeling of on-line communication monitoring system for digital substation | |
CN115913903A (zh) | 一种录波主站组网设备网络故障自动修复方法及系统 | |
CN117896295A (zh) | 一种过程层交换机故障诊断业务的故障可视化方法及系统 | |
Song et al. | Airborne test switching network status automatic monitoring technology | |
Hongyan et al. | Network Fault Recognition Method Based on Network Topology Monitoring | |
Tao et al. | Research and Implementation of Remote Operation and Maintenance Technology for Power Grid Based on TCP Protocol Proxy | |
CN111130868A (zh) | 一种处理故障信息的方法及相关设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14837291 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14837291 Country of ref document: EP Kind code of ref document: A1 |