WO2015022561A1 - 新規微細藻類及びこれを用いたバイオ燃料の産生方法 - Google Patents

新規微細藻類及びこれを用いたバイオ燃料の産生方法 Download PDF

Info

Publication number
WO2015022561A1
WO2015022561A1 PCT/IB2013/001909 IB2013001909W WO2015022561A1 WO 2015022561 A1 WO2015022561 A1 WO 2015022561A1 IB 2013001909 W IB2013001909 W IB 2013001909W WO 2015022561 A1 WO2015022561 A1 WO 2015022561A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
oils
hydrolysis
biofuel
nsx
Prior art date
Application number
PCT/IB2013/001909
Other languages
English (en)
French (fr)
Inventor
前川 孝昭
Original Assignee
エヌエスエックス グローバル プロプライアタリー リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌエスエックス グローバル プロプライアタリー リミティド filed Critical エヌエスエックス グローバル プロプライアタリー リミティド
Publication of WO2015022561A1 publication Critical patent/WO2015022561A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Definitions

  • the present invention relates to a novel microalgae having a growth rate that can ensure economic efficiency and business feasibility, and an extremely high content of fats and oils as raw materials for biofuels, and a method for producing biofuels using the microalgae .
  • Patent Document 1 culture apparatus equipped with a light source emitting a wavelength suitable for the growth of microalgae, microalgae culture method using the same (Patent Document 2), and microalgae under heterotrophic conditions
  • Patent Document 2 culture apparatus equipped with a light source emitting a wavelength suitable for the growth of microalgae, microalgae culture method using the same
  • Patent Document 3 a continuous culture device equipped with a light source for irradiating light quality and photons effective for photoreaction systems in photosynthesis of microalgae even under heterotrophic conditions and this
  • Patent Document 3 There is known a continuous culture method of microalgae (Patent Document 3) using the above.
  • Euglena can be used as a raw material for biofuels (Non-patent Document 1)
  • Euglena has a demand for food and feed, so it does not compete with the demand for food. Raw materials are still needed.
  • An object of the present invention is to provide a novel microalgae having a growth rate capable of ensuring economic efficiency and business feasibility, and an extremely high content of fats and oils as a raw material for biofuel, and production of biofuel using the microalgae It is to provide a method.
  • the present inventor has screened about 6000 kinds of algae collected in Japan over one year. As a result, the inventor has a significant growth rate compared to microalgae known so far, We succeeded in isolating and cultivating new microalgae with extremely high content of paraffinic oils and fats suitable as fuel raw materials.
  • the new microalgae is named New Strain X (NSX), deposited domestically at the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center on March 25, 2011, and based on the Budapest Treaty on August 22, 2013 A request for transfer to an international deposit was made, and FERM BP-22090 was obtained as a deposit number.
  • This application includes the following inventions: (1) A microalga belonging to the genus Ankitrodesmus, which has a needle shape, a cell length of 15 to 100 ⁇ m, and a colony formation as a shape characteristic of the cell. (2) The microalgae according to (1), which contains at least 70% by weight of fats and oils with respect to the dry weight of the microalgae. (3) The microalgae according to (1) or (2), wherein the content of paraffinic fat is higher than the content of olefinic fat. (4) The microalgae according to (1), deposited at the Patent Biological Deposit Center under the deposit number FERM BP-22090.
  • the acidic catalyst is sulfuric acid, acetic acid, or hydrochloric acid.
  • the hydrolysis is performed at 130 ° C to 160 ° C.
  • the present invention makes it possible to supply biofuel efficiently and continuously.
  • the phylogenetic tree of NSX analyzed by 18S rRNA sequence is shown.
  • the growth rate of NSX cultured in combination with heterotrophic (glucose concentration 3 g / L) and autotrophic (air flow rate 50 L / min with 2% CO 2 concentration) is shown.
  • the growth rate of NSX cultured only by autotrophic is shown.
  • the fatty acid composition and free fatty acid content of Euglena gracilis, Senedesmus dimorphus and NSX are shown.
  • the microalgae of the present invention was estimated to be a novel microalgae belonging to the genus Ankitrodesmus (algae) based on the cell shape characteristics and phylogenetic analysis of the 18S rRNA sequence shown in the following examples. (For example, see Non-Patent Documents 2 to 4).
  • the genus Anquistrodesmus is a planktonic microalgae that inhabit freshwater and is present in various parts of Japan, including in the middle and downstream of rivers, ponds, paddy fields and waterways.
  • Anxtrodesmus genus has a cell width of about 1-8 ⁇ m; a cell length of about 15-100 ⁇ m; a bell-shaped, crescent-shaped or needle-shaped shape; colony formation (without clear mucus); It has the morphological characteristics of cells such as chloroplasts and the absence of pyrenoids.
  • the novel microalgae of the present invention has a significant growth rate as shown in the following examples.
  • Productivity on dry matter basis of algae is 1 kg-d. m. If it is possible to secure at least / m 3 / day, it is generally considered that business potential can be expected.
  • the novel microalgae of the present invention also has a very high lipid content and is at least 60% by weight, preferably at least 70% by weight, typically 70% by weight, based on the dry weight of the microalgae. % To 80% by weight of fats and oils. Therefore, the novel microalgae of the present invention has sufficient economic efficiency and businessability in the production of biofuel.
  • the fats and oils contained in the novel microalgae of the present invention are mainly those having C16 and C18 as the number of carbon chains, and the content of paraffinic fats and oils is extremely high.
  • the novel microalgae of the present invention is extremely useful as a raw material for biofuels such as biodiesel fuel (BDF: fatty acid methyl ester, expressed in scientific terms as FAME; hereinafter referred to as BDF) and aircraft fuel.
  • BDF biodiesel fuel
  • FAME fatty acid methyl ester
  • Biodiesel fuel is a general term for fuels that are reformed by chemically treating biomass-derived fats and oils so as to be compatible with diesel engines.
  • biomass-derived fats and oils in general, only the fatty acid methyl ester is internationally standardized as biodiesel, but is not limited thereto.
  • Oils and fats have characteristics such as high viscosity, and when used as fuel for diesel engines as they are, there is a concern that deposits may adhere to the injection pump and injection nozzle and cause problems. For this reason, production of BDF is performed by converting fats and oils to physical properties close to that of light oil by performing chemical treatment such as removing glycerin from the raw fats and oils by transesterification and reducing the viscosity.
  • BDF can be used as a fuel for diesel engines such as automobiles and ships.
  • BDF can be converted into aviation fuel by reacting with hydrogen at a high temperature under a catalyst to be hydrocarbonated.
  • EN14214 defines the properties in the state of not mixing with diesel oil in Europe.
  • the medium for culturing the novel microalgae of the present invention is not particularly limited, but a medium usually used for culturing microalgae can be used, including various nutrient salts, trace metal salts, vitamins and the like. Good.
  • nutrient salts include nitrogen sources such as NaNO 3 , KNO 3 , NH 4 Cl, and urea, and phosphorus sources such as K 2 HPO 4 , KH 2 PO 4 , and sodium glycerophosphate.
  • the trace metals include iron, magnesium, manganese, calcium, copper, zinc and the like.
  • the vitamin vitamin B 1, vitamin B 2, vitamin B 6, include vitamin B 12 or the like.
  • the composition of a particularly preferred culture solution is shown in Table 1 below.
  • the medium is preferably heat sterilized (preferably at 75 to 121 ° C. for 15 to 60 minutes) or filtered with a 0.2 ⁇ m or less filter.
  • the culture of the novel microalgae of the present invention is performed by uniformly irradiating the microalgae with the light necessary for the photoreaction system in the photosynthesis of the algae in order to enhance the photosynthesis ability of the microalgae. It is preferable that the microalgae is uniformly irradiated with light by stirring the culture solution. Furthermore, in order to autotrophically photosynthesis the carbon dioxide generated in the interior, the ratio of the photon quantum amount having a center wavelength of 430 to 480 nm, 560 to 620 nm and / or 675 to 685 nm and a short wavelength reference is 0, respectively. It is preferable to use one or a plurality of light sources capable of generating light consisting of 5 to 5 and 4 to 10.
  • Examples of such a light source include a light emitting diode.
  • a light emitting diode By setting the ratio of the photon quantity on the basis of the central wavelength and the short wavelength reference as described above, attenuation due to absorption of photons by nutrient sources under heterotrophic conditions can be prevented, and dioxide generated by respiration of microalgae under heterotrophic conditions.
  • the photosynthesis reaction of microalgae can be enhanced by photosynthesis of carbon.
  • the minimum photon amount necessary for the growth of microalgae is preferably 3 to 5 ⁇ E / s / m 2 or more for the photosynthesis effective radiation (PAR) (photon amount of 400 nm to 700 nm) of the photoluminescent material according to the present invention.
  • PAR photosynthesis effective radiation
  • a water-soluble carbohydrate as a carbon source to the medium.
  • examples of such carbohydrates include 6 monosaccharides and 5 monosaccharides such as glucose, fructose, xylose or xylitol, disaccharides or polysaccharides such as sucrose, maltose, trehalose and inulin, woody cellulose, bamboo stalk Saccharide leaves, bagasse and polysaccharides contained in these plants, acid, alkali or enzymatic hydrolysates, or combinations thereof. Particularly preferred is glucose.
  • a bioreactor for culturing microalgae or a culture method using the bioreactor is disclosed in detail in Patent Documents 1 to 3, and these can be used for mass culture of the novel microalgae of the present invention.
  • Biofuel is produced using the novel microalgae of the present invention thus cultured.
  • the cell membrane is crushed after drying the algae, and then lipids are extracted using a nonpolar organic solvent such as hexane or ether.
  • a nonpolar organic solvent such as hexane or ether.
  • the present inventor has paid attention to the fact that algal fats and oils have free fatty acids and are also present in the form of phospholipids in the cells.
  • the yield of BDF is increased. We found that it can be significantly increased.
  • the acidic catalyst that can be used as the hydrolysis is not particularly limited as long as it is not disadvantageous for the production of biofuel, and examples thereof include sulfuric acid, acetic acid, and hydrochloric acid, and sulfuric acid is particularly preferable.
  • the reaction temperature for the hydrolysis is preferably 130 ° C to 160 ° C.
  • the esterification reaction with alcohol is performed in the presence of a large amount of water, and thus the esterification rate is considered to decrease.
  • the temperature for such esterification is typically 60 ° C. to 100 ° C., preferably 70 ° C. to 90 ° C., and optimally 80 ° C.
  • the alcohol used for esterification is not particularly limited as long as biofuel can be produced, but is typically methanol or ethanol.
  • the BDF thus obtained is preferably further purified.
  • various separation methods such as precipitation separation, column separation, liquid phase separation, specific gravity separation, and distillation separation can be used.
  • the novel microalgae of the present invention makes it possible to produce biofuel at a level that ensures economic efficiency on a commercial basis.
  • ITS1-F CTTGGTTCATTTAGAGGAAGTAA
  • ITS1-R ((t / a) TGGT (c / t) (a / g / t) (t / c) AGAGGAAGTAA
  • primers of phylogenetic analysis see, for example, conserveed primer sequences for PCR amplification and sequencing from nuclear ribosomal RNA, Vigilys lab / D. checking).
  • the product in this region was amplified by PCR and analyzed by agarose gel electrophoresis. As a result, the most intense band formation was observed around 300 bp.
  • NSX was presumed to be of the genus Ankitrodesmus and was consistent with the morphological classification.
  • NSX containing a large amount of paraffinic fatty chains is more advantageous than other Euglenas and Senedesmus in response to the requirements of the bio aviation fuel standard ASTM D7566.
  • the amount of hydrogen to be added can be kept low, so NSX is advantageous in reducing the cost of jet fuel.
  • NSX has a slightly higher content of free fatty acid (FFA), and thus the esterification rate tends to be lower in the conventional method.
  • FFA free fatty acid
  • the yield of fatty acid is significantly improved by the hydrolysis method of phospholipid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

経済性と事業性を確保できる増殖速度を有し、かつバイオ燃料の原料となる油脂の含有率が極めて高い新規な微細藻類を提供する。アンキストロデスムス(Ankistrodesmus)属に属する微細藻類であって、細胞の形状的特徴として、針状、15~100μmの細胞長及び群体形成を有する、微細藻類。

Description

新規微細藻類及びこれを用いたバイオ燃料の産生方法
 本発明は、経済性と事業性を確保できる増殖速度を有し、かつバイオ燃料の原料となる油脂の含有率が極めて高い新規な微細藻類、及び該微細藻類を用いたバイオ燃料の産生方法に関する。
 化石燃料の枯渇や大気汚染などの問題への対策として、再生可能エネルギーの持続可能な生産は、政府や産業界において極めて重要な課題となっている。近年、微細藻類を利用した再生可能なバイオ燃料の開発がバイオディーゼル燃料(BDF)を中心に試みられている。微細藻類は、光合成による有機炭素の生産効率が、高等植物類と比較して極めて高く、また、短期間での高密度培養が可能であるため、資源系バイオマスと呼ばれる間伐材、林地残材、作物植物などを用いた場合と比較して、生物燃料の産生における時間やコストを大幅に削減することが可能となる。
 これまでに、微細藻類を効率よく増殖させるために、微細藻類の光合成反応に必要な光を培養液中に均一に分散照射するための光源及び攪拌器を備えたバイオリアクターやこれを用いた微細藻類の培養方法(特許文献1)、微細藻類の増殖に適した波長を発する光源を備えた培養装置やこれを用いた微細藻類の培養方法(特許文献2)、ならびに従属栄養条件で微細藻類の呼吸によって発生する二酸化炭素を微細藻類の光合成に活用するために、従属栄養条件でも微細藻類の光合成における光反応系に有効な光質及び光量子を照射するための光源を備えた連続培養装置やこれを用いた微細藻類の連続培養方法(特許文献3)が知られている。
 また、バイオ燃料の原料としてユーグレナを使用できることが報告されているが(非特許文献1)、ユーグレナは、食品・飼料としての需要があるため、食料としての需要と競合しない持続可能なバイオ燃料の原料が依然として必要とされる。
WO2010/100795 WO2011/065445 特開2012−183002号公報
Techno Inovation,Vol.21、No.1(通巻79号)2011,(株)筑波バイオテック研究所,前川孝昭 J.Phycol.42,142−154(2005),EVALUATING THE MORPHOSPECIES CONCEPT IN THE SELENASTRACEAE(CHLOROPHYCEAE,CHLOROPHYTA),Marvin W.Fawley et al. Fottea 10(1)2010,Phylogenetic position of Ooplanctella planoconvexa,gen.et comb.nova and Echinocoleum elegans(Oocystaceae,Trebouxiophyceae,Chlorophyta,Marie Pazoutova et al. J.Phycol.35,838−843(1999),THE RELATIONSHIP BETWEEN PSEUDOSCOURFIELDIA MARINA AND PYCNOCOCCUS PROVASOLII(PRASINOPHYCEAE,CHLOROPHYTA):EVIDENCE FROM 18S rDNA SEQUENCE DATA,Marvin W.Fawley et al. Toshiyuki Kimura,Chen Liu,Xiaohong Li,Takaaki Maekawa and Satio Asaoka(2012)Conversion of Isoprenoid Oil by Cataystic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts.Journal of Biomedicine and Biotechnology.Article ID 637125.9 pages
 本発明の課題は、経済性と事業性を確保できる増殖速度を有し、かつバイオ燃料の原料となる油脂の含有率が極めて高い新規な微細藻類、及び該微細藻類を用いたバイオ燃料の産生方法を提供することにある。
 本発明者は、この度、国内で採取した約6000種もの藻類を1年以上かけてスクリーニングした結果、これまでに知られている微細藻類と比較して、有意な増殖速度を有し、かつバイオ燃料の原料として好適なパラフィン系油脂の含有率が極めて高い新規微細藻類を単離・培養することに成功した。かかる新規微細藻類をNew Strain X(NSX)と命名し、2011年3月25日付で独立行政法人 産業技術総合研究所 特許生物寄託センターに国内寄託し、2013年8月22日付でブダペスト条約に基づく国際寄託への移管請求を行い、受託番号としてFERM BP−22090を得た。
 本願は以下の発明を包含する:
 (1)アンキストロデスムス(Ankistrodesmus)属に属する微細藻類であって、細胞の形状的特徴として、針状、15~100μmの細胞長及び群体形成を有する、微細藻類。
 (2)微細藻類の乾燥重量に対して、少なくとも70重量%の油脂を含有することを特徴とする、(1)に記載の微細藻類。
 (3)パラフィン系油脂の含有率がオレフィン系油脂の含有率よりも高いことを特徴とする、(1)又は(2)に記載の微細藻類。
 (4)特許生物寄託センターに受託番号FERM BP−22090で寄託されている、(1)に記載の微細藻類。
 (5)(1)~(4)のいずれかに記載の微細藻類の培養方法であって、該微細藻類を炭素源として水に可溶な炭水化物及び/又は水に可溶化させた二酸化炭素を含む培養液中で培養することを特徴とする、方法。
 (6)前記炭水化物が単糖類、二糖類、多糖類及びこれらの組み合せからなる群から選択されることを特徴とする、(5)に記載の方法。
 (7)(1)~(4)のいずれかに記載の微細藻類を用いた、バイオ燃料の産生方法であって、酸性触媒を用いた加水分解により微細藻類中のリン脂質から遊離脂肪酸を分離し、かつ微細藻類の細胞内に存在する脂質及び遊離脂肪酸も含めて、アルコールでエステル化することを特徴とする、方法。
 (8)前記酸性触媒が、硫酸、酢酸、又は塩酸であることを特徴とする、(7)に記載の方法。
 (9)前記加水分解が、130℃~160℃で行われることを特徴とする、(7)又は(8)に記載の方法。
 (10)前記エステル化が、60℃~100℃で行われることを特徴とする、(7)~(9)のいずれかに記載の方法。
 (11)前記アルコールが、メタノール又はエタノールであることを特徴とする、(7)~(10)のいずれかに記載の方法。
 本発明により、効率的かつ持続的にバイオ燃料を供給することが可能となる。
18S rRNA配列により解析されたNSXの系統樹を示す。 従属栄養(グルコース濃度3g/L)と独立栄養(CO濃度2%の空気流量50L/分)とを併用して培養したNSXの増殖速度を示す。 独立栄養(CO濃度2%の空気流量50L/分)のみで培養したNSXの増殖速度を示す。 ユーグレナ・グラシリス(Euglena gracilis)、セネデスムス・ジモルファス(Scenedesmus dimorphus)及びNSXの脂肪酸組成及び遊離脂肪酸含有率を示す。
 本発明の微細藻類は、以下の実施例に示される細胞の形状的特徴や18S rRNA配列における系統解析に基づき、アンキストロデスムス(Ankistrodesmus)属に属する新規微細藻類であると推定された(藻類の系統解析については、例えば非特許文献2~4を参照のこと)。アンキストロデスムス属は、淡水に生息する浮遊性微細藻類であり、河川の中・下流、池、水田及び水路などに幅広く、日本各地に存在する。アンキストロデスムス属は、約1~8μmの細胞幅;約15~100μmの細胞長;釣鐘状、三日月状又は針状の形状;群体形成(明瞭な粘質を有さない);1個の葉緑体;ピレノイドが存在しない、といった細胞の形態学的特徴を有する。
 本発明の新規微細藻類は、以下の実施例に示されるとおり有意な増殖速度を有する。藻類の乾物基準での生産性が1kg−d.m./m/日以上を確保できれば、一般に事業性が期待できるものと考えられている。また、本発明の新規微細藻類は、極めて高い脂質含有率を有しており、微細藻類の乾燥重量に対して、少なくとも60重量%、好適には、少なくとも70重量%、典型的には70重量%~80重量%の油脂を含有する。したがって、本発明の新規微細藻類は、バイオ燃料の製造において十分な経済性・事業性を有するものである。また、本発明の新規微細藻類に含有される油脂は、炭素鎖数としてC16及びC18を有するものが主体であり、また、パラフィン系油脂の含有率が極めて高い。このため、本発明の新規微細藻類は、バイオディーゼル燃料(BDF:脂肪酸メチルエステル、学術用語ではFAMEと表す。以下BDFで示す)や航空機燃料といったバイオ燃料の原料として極めて有用である。
 バイオディーゼル燃料(BDF)は、バイオマス由来の油脂に対して、ディーゼルエンジンに適合するように化学処理することにより改質した燃料の総称である。一般には、バイオディーゼルとして国際的に規格化されているものは、脂肪酸メチルエステルのみであるが、これに限定されない。油脂は粘度が高いなどの特徴を有しており、そのままディーゼルエンジンの燃料として使用した場合、噴射ポンプや噴射ノズルに析出物が付着して不具合が発生することが懸念される。このため、BDFの産生は、原料となる油脂からグリセリンをエステル交換により取り除き粘度を下げる等の化学処理を施すことにより、油脂を軽油に近い物性に変換することにより行われる。具体的には、油脂にメタノールと触媒を加えてエステル交換反応を起こし、これに酸を加えて中和させたうえで、脂肪酸メチルエステルとグリセリンに分離させる。分離した脂肪酸メチルエステルを水洗処理してアルカリ触媒を取り除き、さらに蒸留処理をすることでメタノールを除去したものが、BDFとなり、例えば、自動車や船舶などのディーゼルエンジンの燃料として用いることが可能である。また、BDFは、水素と触媒下にて高温で反応させて炭化水素化させることにより、航空機燃料に変換できる。バイオディーゼル燃料品質規制については、欧州ではEN14214において軽油に混合しない状態での性状を規定しており、日本においては、揮発油等の品質の確保等に関する法律施行規則の改正により、FAME混合軽油について満たすべき基準が設けられている。また、民間航空機用の航空機燃料規格は、国際的にASTM D1655によって規定されており、2009年にCTL/GTLの50%混合燃料がASTM D1655と同等な規格としてASTM D7566で承認された。そして2011年にはバイオ合成パラフィンケロシン(Bio−SPK)50%混合燃料がD7566の規格に追加承認されている。
 本発明の新規微細藻類を培養するための培地としては、特に制限されないが、微細藻類の培養に通常使用されている培地を用いることができ、各種栄養塩、微量金属塩、ビタミン等を含んでよい。栄養塩としては、例えば、NaNO、KNO、NHCl、尿素などの窒素源、KHPO、KHPO、グリセロリン酸ナトリウムなどのリン源が挙げられる。また、微量金属としては、鉄、マグネシウム、マンガン、カルシウム、銅、亜鉛等が挙げられ、ビタミンとしてはビタミンB、ビタミンB、ビタミンB、ビタミンB12等が挙げられる。特に好ましい培養液の組成については以下の表1に示されている。また、培地中に存在するバクテリアによる微細藻類の増殖阻害を防ぐために、培地を加熱滅菌(好適には75~121℃で15~60分間)又は0.2μm以下のフィルターでろ過することが好ましい。
 本発明の新規微細藻類の培養は、微細藻類の光合成能力を高めるために、藻類の光合成における光反応系に必要な光を微細藻類に均一に照射して行われる。培養液を攪拌することにより、光を微細藻類に均一に照射することが好ましい。さらに、内部で発生する二酸化炭素を独立栄養的に光合成するために、430~480nm、560~620nm及び/又は675~685nmの中心波長を有し、かつ短波長基準の光量子量の比率がそれぞれ0.5~5及び4~10からなる光を発生できる、1又は複数の光源を用いることが好ましい。このような光源としては、例えば発光ダイオードが挙げられる。中心波長及び短波長基準の光量子量の比率を上記のように設定することにより、従属栄養下での栄養源による光量子の吸収による減衰を防止し、従属栄養下で微細藻類の呼吸によって発生した二酸化炭素を光合成することで微細藻類の光合成反応を高めることができる。微細藻類の増殖に必要な最小光量子量は、本発明に係る光発光体の光合成有効放射(PAR)(400nm~700nmの光量子量)では3~5μE/s/m以上とすることが好ましい。
 本発明の新規微細藻類の培養における従属栄養下では、炭素源として水に可溶な炭水化物を培地に加えることが好ましい。このような炭水化物としては、例えば、グルコース、フルクトース、キシロース又はキシリトールなどの6単糖類及び5単糖類、蔗糖、マルトース(麦芽糖)、トレハロース、イヌリンなどの2糖類又は多糖類、木質セルロース、竹の茎、ササの葉、バガスやこれらの植物に含まれる多糖類の酸、アルカリ又は酵素による加水分解物、あるいはこれらの組み合せが挙げられる。特に好ましいものはグルコースである。
 微細藻類を培養するためのバイオリアクター又はそれを用いた培養方法については特許文献1~3に詳しく開示されており、これらは本発明の新規微細藻類を大量培養する際に利用することができる。
 このようにして培養した本発明の新規微細藻類を用いて、バイオ燃料が産生される。一般に、藻類からバイオ燃料を産生する場合には、藻類を乾燥させてから細胞膜を破砕し、その後、ヘキサンやエーテルなどの非極性有機溶媒を用いて脂質を抽出することによって行われる。しかしながら、本発明者は、この度、藻類の油脂が遊離脂肪酸を持ち、かつ細胞内でリン脂質の形態でも存在することに着目し、酸性触媒を用いて加水分解することにより、BDFの収率を有意に増大できることを見出した。
 酸性触媒を用いた加水分解法を用いることにより、従来の溶媒抽出では得られなかった遊離脂肪酸を回収することが可能となる。加水分解として用いることができる酸性触媒は、バイオ燃料の製造に不利益とならない限り特に制限されないが、硫酸、酢酸、又は塩酸が挙げられ、特に硫酸が好ましい。加水分解の反応温度は、好適には130℃~160℃である。
 また、加水分解法を用いた場合には、大量の水の存在下で、アルコールによるエステル化反応が行われることになるため、エステル化率が低下するものと考えられるが、本発明者は、鋭意検討した結果、上記加水分解時の温度を下げて、一定の温度でエステル化を行うことにより、高いエステル化率とBDF収率をもたらすことに成功した。このようなエステル化の温度は、典型的には60℃~100℃、好適には70℃~90℃、最適には80℃である。エステル化に用いられるアルコールは、バイオ燃料を産生できる限り特に限定されないが、典型的にはメタノール又はエタノールである。
 このようにして得られたBDFは、更に精製されることが好ましい。精製は、沈殿分離、カラム分離、液相分離、比重分離、蒸留分離など、種々の分離方法を使用することができる。
 このように、本発明の新規微細藻類により、商業的ベースにおいて経済性を確保する水準でバイオ燃料を産生することが可能となる。
 以下に実施例を挙げて本発明をさらに詳細に説明する。
1.新規株NSXの取得
 千葉県千葉市稲毛区内の池からガラス瓶により採水し、採水したサンプルから、倒立顕微鏡下で異物とみられる他種藻類の除去を行い、目的とする微細藻類を単離した。その後、単離した微細藻類を滅菌MDM培地(表1)において数回行い、1週間ごとに植え継ぎ、形態学的にそろった段階で好気下、静置培養した。その後、滅菌MDM培地に2%w/w寒天を加えた培地で一か月ごとに植え継ぐことで継代培養を行った。
Figure JPOXMLDOC01-appb-T000001
 新規微細藻類の具体的特徴は、以下のとおりである。
 培養液の外観的特徴:緑色の懸濁液(明瞭なコロニー又はカルスを形成しない)
 細胞の形状的特徴
 形状:針状
 大きさ:15~100μm
 群体形成の有無:有
 光要求性
 光強度:50~100μmol/m・s
 明暗周期:不要
2.NSXの系統解析
 18S rRNAのスペーサー領域に、ユニバーサルプライマーとして、ITS1−F(CTTGGTCATTTAGAGGAAGTAA)およびITS1−R((t/a)TGGT(c/t)(a/g/t)(t/c)AGAGGAAGTAA)を使用した(系統解析のプライマーについては、例えば、Conserved primier sequences for PCR amplification and sequencing from nuclear ribosomal RNA,Vilgalys lab,DUKE University,http://biology.duke.edu/fungi/mycolab/primers.htmを参照のこと)。この領域の産物をPCRによるDNAの増殖を図ったのち、これをアガロースゲル電気泳動により分析したところ、300bp付近が最も濃いバンド形成がみられた。この付近の塩基配列に対して、インターネット内のBLASTを用いて、ITS1領域の塩基配列(270bp付近)相同性検索を行った。この結果、NSXはアンキストロデスムス(Ankistrodesmus)属と推定され、形態学的な分類とも一致した。
 上記の検索とBLAST内のGenBandの塩基配列を用いて近隣結合系統樹の作成を行った(図1)。この結果、NSXはシーケンス法を用いることで、同属のアンキストロデスムス(Ankistrodesmus)属と分離できること、NSXはこれまでに登録されている株とは異なる株であることが確認された。
3.NSXの培養
 従属栄養(グルコース濃度3g/L)と独立栄養(CO濃度2%の空気流量50L/分)の同時反応操作を行うステンレス製バイオリアクター(1,000L)において、滅菌MDM培地中、最低の光量子強度(400~700nmの波長範囲)35μmol/m・sで培養し、1回の引抜量を500/Lとして1日あたりの増殖速度を求めた結果、平均増殖速度は0.998g/L/日であった(図2)。
 独立栄養(CO濃度2%の空気流量50L/分)だけの操作を行うステンレス製バイオリアクター(1,000L)において、上記と同じ条件下で培養した時の平均増殖速度は0.57g/L/日であった(図3)。また、同じ独立栄養培養条件下(CO濃度2%の空気流量50L/分)で培養した他の3種の微細藻類(ユードリナ、セネデスムス、クロレラ)と比較した結果、NSXは有意な増殖速度を有することが判明した(結果は示さない)。
 これらの結果は、NSXが商業的ベースにおいて経済性を確保する水準であることを示す。
4.NSXの抽出
 NSX乾物重量に対して5%の酸性触媒(硫酸)を用い、表2に示される温度・時間にて加水分解を行い、バイオ燃料として脂肪酸を抽出した。当該加水分解法を用いることにより、溶媒抽出では得られない遊離脂肪酸を回収することができ、従来法における脂肪酸 収率を著しく改善することができる。
Figure JPOXMLDOC01-appb-T000002
 なお、上記加水分解操作では水分がおよそ90%となるため、この水の存在によってエステル化率が低いと推定されていた。しかしながら、表3に示す通り、2種類のアルコール(メタノール及びエタノール)に対するエステル化において、加水分解時の反応温度を80℃に下げることによって、加水分解に用いた反応器で高いバイオディーゼル燃料(BDF)収率を得ることができた。これにより、BDFを得るためのプロセス時間を半減することができる。
Figure JPOXMLDOC01-appb-T000003
 図4に示す通り、パラフィン系脂肪鎖を多く含むNSXはバイオ航空燃料の規格ASTM D7566の要求に対して、他のユーグレナ属やセネデスムス属より有利である。また非特許文献5に記載される脱炭酸・水素化における炭化水素の製造工程では、添加する水素の量を低く保てるため、ジェット燃料の低コスト化にNSXは有利である。一方NSXは遊離脂肪酸(FFA)の含有量がやや高いためにエステル化率が従来法では低くなる傾向にあるが、上述したとおり、リン脂質の加水分解法によって、脂肪酸収率を有意に改善することができ、また、加水分解を行った反応器においてそのままエステル化することができるので、BDF化をふくめた全体のプロセス時間の短縮が従来法の半分になる、といった優位性を確保することができる。NSX以外の2種のオレフィンの多い藻類(Euglena gracilis及びScenedesmus dimorphus)についても同様の結果が得られた。

Claims (11)

  1.  アンキストロデスムス(Ankistrodesmus)属に属する微細藻類であって、細胞の形状的特徴として、針状、15~100μmの細胞長及び群体形成を有する、微細藻類。
  2.  微細藻類の乾燥重量に対して、少なくとも70重量%の油脂を含有することを特徴とする、請求項1に記載の微細藻類。
  3.  パラフィン系油脂の含有率がオレフィン系油脂の含有率よりも高いことを特徴とする、請求項1又は2に記載の微細藻類。
  4.  特許生物寄託センターに受託番号FERM BP−22090で寄託されている、請求項1に記載の微細藻類。
  5.  請求項1~4のいずれか1項に記載の微細藻類の培養方法であって、該微細藻類を炭素源として水に可溶な炭水化物及び/又は水に可溶化させた二酸化炭素を含む培養液中で培養することを特徴とする、方法。
  6.  前記炭水化物が、単糖類、二糖類、多糖類及びこれらの組み合せからなる群から選択されることを特徴とする、請求項5に記載の方法。
  7.  請求項1~4のいずれか1項に記載の微細藻類を用いた、バイオ燃料の産生方法であって、酸性触媒を用いた加水分解により微細藻類中のリン脂質から遊離脂肪酸を分離し、かつ微細藻類の細胞内に存在する脂質及び遊離脂肪酸も含めて、アルコールでエステル化することを特徴とする、方法。
  8.  前記酸性触媒が、硫酸、酢酸、又は塩酸であることを特徴とする、請求項7に記載の方法。
  9.  前記加水分解が、130℃~160℃で行われることを特徴とする、請求項7又は8に記載の方法。
  10.  前記エステル化が、60℃~100℃で行われることを特徴とする、請求項7~9のいずれか1項に記載の方法。
  11.  前記アルコールが、メタノール又はエタノールであることを特徴とする、請求項7~10のいずれか1項に記載の方法。
PCT/IB2013/001909 2013-08-15 2013-09-05 新規微細藻類及びこれを用いたバイオ燃料の産生方法 WO2015022561A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-168925 2013-08-15
JP2013168925A JP5611429B1 (ja) 2013-08-15 2013-08-15 新規微細藻類及びこれを用いたバイオ燃料の産生方法

Publications (1)

Publication Number Publication Date
WO2015022561A1 true WO2015022561A1 (ja) 2015-02-19

Family

ID=52468087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/001909 WO2015022561A1 (ja) 2013-08-15 2013-09-05 新規微細藻類及びこれを用いたバイオ燃料の産生方法

Country Status (2)

Country Link
JP (1) JP5611429B1 (ja)
WO (1) WO2015022561A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104560720B (zh) * 2014-12-12 2017-06-23 中国海洋大学 一株海洋拟双孢藻及其应用和培养方法
KR102495262B1 (ko) * 2015-07-27 2023-02-03 에스케이에코프라임 주식회사 극성지질을 포함하는 오일로부터 바이오디젤의 제조방법 및 제조장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183002A (ja) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp 微細藻類連続培養装置およびこの装置を用いた微細藻類連続培養方法
WO2013073528A1 (ja) * 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 燃料油の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183002A (ja) * 2011-03-03 2012-09-27 Research Institute Of Tsukuba Bio-Tech Corp 微細藻類連続培養装置およびこの装置を用いた微細藻類連続培養方法
WO2013073528A1 (ja) * 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 燃料油の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRIENITZ L. ET AL.: "TRADITIONAL GENERIC CONCEPTS VERSUS 18S rRNA GENE PHYLOGENY IN THE GREEN ALGAL FAMILY SELENASTRACEAE (CHLOROPHYCEAE, CHLOROPHYTA", JOURNAL OF PHYCOLOGY, vol. 37, no. ISSUE, October 2001 (2001-10-01), pages 852 - 865 *
TAKAAKI MAEKAWA ET AL.: "Thermal Transfer Problems of the Cultivation of Microalgae in the Cold Climate Regions and Manufacturing Biological Diesel Fuel (BDF) Come from Microalgae", JOURNAL OF THE HEAT TRANSFER SOCIETY OF JAPAN, vol. 52, no. 218, January 2013 (2013-01-01), pages 38 - 43 *

Also Published As

Publication number Publication date
JP5611429B1 (ja) 2014-10-22
JP2015035985A (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
Chhandama et al. Microalgae as a feedstock for the production of biodiesel: A review
Bharathiraja et al. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products
Chen et al. Review of biological and engineering aspects of algae to fuels approach
CN101528913B (zh) 藻类中链长脂肪酸和烃
Gouveia et al. Microalgae as a Feedstock for Biofuels
Taher et al. A review of enzymatic transesterification of microalgal oil‐based biodiesel using supercritical technology
Suali et al. Conversion of microalgae to biofuel
Kowthaman et al. A comprehensive insight from microalgae production process to characterization of biofuel for the sustainable energy
Rahman et al. Fatty acid of microalgae as a potential feedstock for biodiesel production in Indonesia
Thangam et al. Bio-refinery approaches based concomitant microalgal biofuel production and wastewater treatment
Konur Current state of research on algal biodiesel
Veillette et al. Biodiesel from microalgae lipids: from inorganic carbon to energy production
Singh et al. Microalgae based biorefinery: Assessment of wild fresh water microalgal isolate for simultaneous biodiesel and β-carotene production
Baky et al. Lipid induction in Dunaliella salina culture aerated with various levels CO2 and its biodiesel production.
US9879288B2 (en) Use of marine algae for producing polymers
Tan et al. Biodiesel from microalgae
Makut Algal biofuel: emergent applications in next‐generation biofuel technology
Devi et al. Co-cultivation of microalgae-cyanobacterium under various nitrogen and phosphorus regimes to concurrently improve biomass, lipid accumulation and easy harvesting
JP5611429B1 (ja) 新規微細藻類及びこれを用いたバイオ燃料の産生方法
Karemore et al. Recent inventions and trends in algal biofuels research
US20140171608A1 (en) Use of marine algae for producing polymers
Poonia et al. Algae: The high potential resource for biofuel production
Awasthi et al. Development of algae for the production of bioethanol, biomethane, biohydrogen and biodiesel
Nunes et al. Biofuel production
Bruno et al. Biomass and lipid productivity by four fresh water microalgae in photoreactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891504

Country of ref document: EP

Kind code of ref document: A1