WO2015020163A1 - Elastic monofilament - Google Patents

Elastic monofilament Download PDF

Info

Publication number
WO2015020163A1
WO2015020163A1 PCT/JP2014/070923 JP2014070923W WO2015020163A1 WO 2015020163 A1 WO2015020163 A1 WO 2015020163A1 JP 2014070923 W JP2014070923 W JP 2014070923W WO 2015020163 A1 WO2015020163 A1 WO 2015020163A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic monofilament
monofilament
elastic
unit
component
Prior art date
Application number
PCT/JP2014/070923
Other languages
French (fr)
Japanese (ja)
Inventor
田中 伸明
弘至 土倉
中村 浩太
秀敏 坂井
卓也 良本
Original Assignee
東レ株式会社
東レ・モノフィラメント株式会社
東レ・デュポン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52461491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015020163(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ株式会社, 東レ・モノフィラメント株式会社, 東レ・デュポン株式会社 filed Critical 東レ株式会社
Priority to KR1020167006010A priority Critical patent/KR102168814B1/en
Priority to MX2016001715A priority patent/MX2016001715A/en
Priority to US14/910,895 priority patent/US20160194788A1/en
Priority to EP14834881.6A priority patent/EP3031960B1/en
Priority to CN201480055594.4A priority patent/CN105765118B/en
Priority to CA2920777A priority patent/CA2920777C/en
Publication of WO2015020163A1 publication Critical patent/WO2015020163A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent

Definitions

  • the present invention is excellent in fatigue resistance against repeated deformation in the bending direction, and has various industrial uses such as marine materials, building materials, safety materials, clothing materials, civil engineering materials, agricultural materials, vehicle materials, and sports materials, particularly elasticity.
  • the present invention relates to an elastic monofilament suitable for use in a woven / knitted structure.
  • thermoplastic elastomers Monofilaments using thermoplastic elastomers are known to have excellent rubber elasticity, and woven and knitted fabrics using such monofilaments made of thermoplastic elastomer have excellent elasticity.
  • Development of medical materials such as supporters, sports materials such as trampolines, bedding materials such as beds, and seating materials such as office chairs / car seats is underway.
  • Patent Documents 1 to 3 propose that a woven or knitted fabric using a thermoplastic elastomer can be suitably used for an office chair or an automobile chair.
  • thermoplastic elastomer monofilament whose main component is polyester or polyether is known, but a monofilament composed of a conventional thermoplastic elastomer.
  • the knitted and knitted fabrics using the knitted fabric have a problem of lowering the elastic recovery rate at the time of repeated deformation, that is, the settling at the time of long-term use.
  • the woven and knitted fabric has excellent mechanical properties and elastic recovery properties at the time of repeated deformation.
  • Elastic monofilaments have been proposed for the purpose of obtaining (see Patent Documents 2 and 3).
  • Patent Document 2 discloses a sheath (core-sheath structure) / core (core-sheath structure) in which the core material occupies 50% or more of the area ratio of the core portion of the fiber cross-sectional area, using a two-component polyester elastomer as a main raw material.
  • the core component has a melting point of 150 ° C. or more and less than 200 ° C.
  • the sheath component has a melting point lower than the melting point of the core component by 20 ° C. or more and less than 50 ° C.
  • Patent Document 3 discloses that a single-component monofilament using a polymer composed of a specific component and having a creep rate of 5% or less at 80 ° C. for 24 hours under a 15% elongation stress at room temperature is caused by repeated deformation. Proposed as a monofilament with little change in properties.
  • the elastic monofilament it is considered necessary for the elastic monofilament to exhibit high rubber elasticity, and a single component monofilament made of a thermoplastic elastomer (see Patent Document 3) and a core-sheath composite monofilament made of two kinds of polymers.
  • a single component monofilament made of a thermoplastic elastomer see Patent Document 3
  • a core-sheath composite monofilament made of two kinds of polymers in any of (see Patent Document 2), it is assumed that the monofilament (both the core and the sheath in the case of the core-sheath composite monofilament) is made of a thermoplastic elastomer and exhibits as high rubber elasticity as possible. .
  • an object of the present invention is to provide an elastic monofilament that is excellent in anti-sagging resistance during actual use of an elastic sheet or the like.
  • the present inventors have repeated the monofilament tension direction in order to improve the sag resistance of the woven or knitted fabric.
  • the fatigue resistance against deformation has been improved, but this alone is not sufficient, and it is necessary to improve the fatigue resistance against repeated deformation in the monofilament bending direction.
  • transformation was examined, it discovered that the settling resistance of a woven or knitted fabric could be improved significantly by adopting the following structure.
  • the elastic monofilament of the present invention has a core-sheath composite structure having a diameter of 0.1 to 1.0 mm and a core component ratio of 2 to 40% by volume, and the core component is thermoplastic in the polymer. It is a thermoplastic polyester having a polyester unit of 95 to 100% by mass, a sheath component is a copolymer thermoplastic elastomer having a hard segment and a soft segment, and has a tensile strength of 0.3 to 3.0 cN / dtex. It is a characteristic elastic monofilament.
  • the intrinsic viscosity (IV) of the thermoplastic polyester used for the core component is 0.7 or more.
  • the hard segment includes an aromatic polyester unit as a main structural unit
  • the soft segment includes an aliphatic polyether unit and / or an aliphatic polyester unit as a main structural unit.
  • the aromatic polyester unit is a polybutylene terephthalate unit
  • the aliphatic polyether unit and / or the aliphatic polyester unit is a poly (tetramethylene oxide) glycol unit.
  • the ratio of the hard segment to the soft segment is 35:65 to 75:25 (mass ratio).
  • the bending hardness of the elastic monofilament of the present invention is 2.0 to 10 cN, and after heat treatment at 160 ° C. under a constant length for 3 minutes, 0.1 cN
  • the dimensional change rate when held for 12 hours under the / dtex tension is 0 to 5%.
  • an elastic monofilament having excellent fatigue resistance in the bending direction can be obtained.
  • the elastic monofilament of the present invention is different from the conventional elastic monofilament using only a thermoplastic elastomer because the thermoplastic polyester unit of 95 to 100% by mass of the thermoplastic polyester unit in the polymer is arranged in the core component.
  • the core component bears a part of the stress that the filament receives when the monofilament is stretched and / or bent. For this reason, even when the elastic monofilament of the present invention is stretched and / or bent, the deformation and plastic deformation of the thermoplastic elastomer component are easily suppressed.
  • the elastic monofilament of the present invention is difficult to recover even when subjected to elongation and / or bending deformation, it has been used for woven and knitted fabrics represented by trampolines, supporters, beds, car seats, office chairs and the like. However, the set resistance of the woven or knitted fabric can be remarkably improved.
  • FIG. 1 is a schematic side view for explaining a method for measuring the amount of settling in the present invention.
  • the elastic monofilament of the present invention has a core-sheath composite structure having a diameter of 0.1 to 1.0 mm and a core component ratio of 2 to 40% by volume, and the core component is thermoplastic in the polymer.
  • the elastic monofilament of the present invention combines a thermoplastic elastomer having rubber elasticity and a thermoplastic polyester resin such as a specific polyethylene terephthalate that does not have rubber elasticity in a specific configuration, thereby being resistant to repeated deformation in the bending direction.
  • the fatigue resistance is improved, and the elasticity of the monofilament tensile direction, which was assumed not to be reduced by the prior art, is reduced. Is found to be obtained.
  • the usage mode of the elastic monofilament of the present invention a case where an elastic fabric using an elastic monofilament as a weft and a polyethylene terephthalate monofilament as a warp is used for an office chair or a car seat will be described as an example.
  • the load at the time of sitting is applied to the elastic fabric from a substantially vertical direction.
  • the elastic monofilament whose movement is suppressed by the warp with respect to the load from the vertical direction to the elastic fabric is greatly deformed in the bending direction.
  • the elastic monofilament is compressed inside the bent portion, and the elastic monofilament is greatly expanded outside the bent portion.
  • the core component is constant.
  • the stretch deformation and plastic deformation of the thermoplastic elastomer component on the outer side of the bend are suppressed, and the excellent stretch-back property of the thermoplastic elastomer disposed on the sheath component is unlikely to be impaired.
  • a thermoplastic polyester such as polyethylene terephthalate
  • creep elongation when exposed to bending deformation for a long time is also suppressed. For this reason, it is thought that the woven or knitted fabric using the elastic monofilament of the present invention is difficult to stick over a long period of time and can continue to exhibit excellent elasticity.
  • the ratio of the core component is in the range of 2 to 40% by volume from the viewpoint of achieving both improved heat-resistant creep characteristics and elasticity in the bending direction.
  • the ratio of the core component is less than 2% by volume, it is not possible to suppress over-extension on the outside of the bend due to the above-described core component, and when the core component exceeds 40% by volume, the thermoplastic elastomer component Therefore, the target elasticity is hardly exhibited.
  • the core component is preferably in the range of 3 to 20% by volume, more preferably in the range of 3 to 13% by volume.
  • an irregular cross-sectional shape such as an ellipse, a square, a polygon, and a multi-leaf cross-section can be taken in addition to the round cross-section.
  • the diameter of the elastic monofilament of the present invention is 1.0 mm or less, preferably 0.7 mm or less. If the diameter is too large, the absolute amount of elongation outside the bending at the time of bending deformation increases and plastic deformation is likely to occur, and it becomes easy to cause settling when a woven or knitted fabric is formed. In order for the elastic monofilament to exhibit its function, there is essentially no lower limit of the diameter. However, if the diameter is too small, the core-sheath composite form becomes difficult, so the diameter is 0.1 mm or more.
  • the average diameter of the cross section of the elastic monofilament is L1
  • the average diameter of the cross section of the core component is L2
  • the sheath component along an arbitrary line segment t drawn from the center of gravity of the cross section of the core component to the outer periphery of the elastic monofilament is Lt
  • Lt corresponding to an arbitrary line segment t over the entire outer periphery of the elastic monofilament satisfies the following relationship. ⁇ 15 (%) ⁇ (Lt ⁇ LT) ⁇ 100 / LT ⁇ 15 (%)
  • LT (L1 ⁇ L2) / 2.
  • the average diameters L1 and L2 of the cross section represent the diameter of the area equivalent circle. If the above relationship is satisfied, the thickness of the sheath component maintains a constant thickness over the entire circumference of the elastic monofilament, so that there is no region where the amount of the sheath component is small, or there is no extremely large portion. Therefore, problems such as excessive elongation during bending deformation and tearing of the sheath component and non-uniform elastic recovery are unlikely to occur.
  • thermoplastic polyester examples include polybutylene terephthalate, polyethylene terephthalate, polypropylene terephthalate, polyethylene naphthalate, and aromatic polyester. From the viewpoint of versatility, heat resistance, and high rigidity. Polyethylene terephthalate is preferably used.
  • the intrinsic viscosity (IV) of the thermoplastic polyester used for the core component is preferably 0.7 or more, more preferably 1.0 or more. If the intrinsic viscosity (IV) is too low, the load per molecular chain when the core component is subjected to stress increases, and the resulting elastic monofilament tends to become loose. From the viewpoints of improving the creep properties, mechanical properties, and deformation control properties of the resulting elastic monofilament, the intrinsic viscosity has no inherent upper limit, but the intrinsic viscosity (IV) is 1.4 or less from the viewpoint of melt processability. It is preferable that
  • the thermoplastic polyester used for the core component is a polymer having a thermoplastic polyester unit of 95 to 100% by mass.
  • the thermoplastic polyester unit means a component other than a component having a polyester skeleton and corresponding to a thermoplastic elastomer described later.
  • a copolymer of a component copolymerizable with the thermoplastic polyester or another thermoplastic polymer that can be blended can be used as long as it is less than 5% by mass.
  • thermoplastic polyester unit when the thermoplastic polyester unit is less than 95% by mass, the mechanical properties of the thermoplastic polyester are impaired by copolymerization or blending, and as a result, an elastic monofilament that is prone to settling when formed into a woven or knitted fabric.
  • copolymerizable components include aromatic dicarboxylic acids such as isophthalic acid and naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, and azelaic acid, diol compounds such as diethylene glycol and 1,4-butanediol, Examples thereof include polyfunctional compounds, 5-sulfoisophthalic acid metal salts, and phosphorus-containing compounds.
  • the thermoplastic polyester constituting the core component is so-called 100% by mass consisting of thermoplastic polyester units. A homopolymer is preferred.
  • thermoplastic polyester used in the core component is a matting agent or pigment such as titanium oxide, calcium carbonate, kaolin, clay, etc., as long as the effects of the present invention are not impaired, specifically, 5% by mass or less.
  • Additives such as dyes, lubricants, antioxidants, heat resistance agents, heat resistance agents, light resistance agents, ultraviolet absorbers, antistatic agents and flame retardants can be included.
  • titanium oxide is contained in an amount of 0.01 to 1% by mass from the viewpoint of improving the durability of the elastic monofilament, although the glossiness of the resulting elastic monofilament is suppressed and a high-class feeling is produced and the detailed mechanism is unknown. It is preferable to do.
  • the thermoplastic elastomer constituting the sheath component of the elastic monofilament of the present invention is a copolymer thermoplastic elastomer having a hard segment and a soft segment such as a styrene elastomer, a polyester elastomer, a polyurethane elastomer, and a polyamide elastomer. is required.
  • the reason is that blend-type thermoplastic elastomers represented by olefin elastomers are insufficient in heat resistance, and have concerns about interfacial peeling of sea-island components, recyclability, and the like.
  • the thermoplastic elastomer used in the present invention has a melting point of 150 ° C. or higher, particularly preferably 180 ° C. or higher, from the viewpoints of heat resistance and mechanical properties.
  • the hard segment is mainly composed of aromatic dicarboxylic acid or an ester-forming derivative thereof and an aromatic polyester unit formed from a diol or an ester-forming derivative thereof. Is a preferred embodiment.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, anthracene dicarboxylic acid, diphenyl-4,4′- Examples thereof include dicarboxylic acid, diphenoxyethanedicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid, and sodium 3-sulfoisophthalate.
  • the aromatic dicarboxylic acid is mainly used. If necessary, a part of the aromatic dicarboxylic acid may be used as 1,4-cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, and 4,4′-dicyclohexyldicarboxylic acid. It can also be substituted with an alicyclic dicarboxylic acid such as an acid, or an aliphatic dicarboxylic acid such as adipic acid, succinic acid, oxalic acid, sebacic acid, dodecanedioic acid, and dimer acid. Furthermore, ester-forming derivatives of dicarboxylic acids such as lower alkyl esters, aryl esters, carbonates and acid halides can of course be used equally.
  • diols having a molecular weight of 400 or less such as 1,4-butanediol, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.
  • Aliphatic diols such as 1,1-cyclohexanedimethanol, 1,4-dicyclohexanedimethanol, tricyclodecane dimethanol and the like, and xylylene glycol, bis (p-hydroxy) diphenyl, bis (p -Hydroxy) diphenylpropane, 2,2'-bis [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxyethoxy) phenyl] sulfone, 1,1-bis [4- (2- Hydroxyethoxy) phenyl
  • Aromatic diols such as cyclohexane, 4,4′-dihydroxy-p-terphenyl, and 4,4′-dihydroxy-p-quarterphenyl are preferably used, such diols being ester-forming derivatives such as acetyl It can also be used in the form of body or alkali metal salt.
  • dicarboxylic acids can be used in combination of two or more.
  • a preferred example of such a hard segment is a polybutylene terephthalate unit derived from terephthalic acid and / or dimethyl terephthalate and 1,4-butanediol.
  • a hard segment composed of a polybutylene terephthalate unit derived from terephthalic acid and / or dimethyl terephthalate and a polybutylene isophthalate unit derived from isophthalic acid and / or dimethyl isophthalate and 1,4-butanediol is also preferably used. It is done.
  • the soft segment of the polyester elastomer used in the present invention is mainly composed of an aliphatic polyether unit and / or an aliphatic polyester unit.
  • Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) Examples thereof include ethylene oxide addition polymers of glycol, and copolymer glycols of ethylene oxide and tetrahydrofuran.
  • polyesters examples include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
  • the elastic properties of the resulting polyester elastomers indicate that poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol ethylene oxide adducts, ethylene oxide and tetrahydrofuran
  • copolymer glycol, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like is preferred, and among these, poly (tetramethylene oxide) glycol is a preferred embodiment.
  • the number average molecular weight of these soft segments is preferably about 300 to 6000 in the copolymerized state.
  • the elastic monofilament of the present invention preferably has a ratio of the hard segment to the soft segment, that is, a copolymerization ratio in the range of 35:65 to 75:25 (mass ratio).
  • the third component is used outside the sheath component made of thermoplastic elastomer or thermoplastic for the purpose of imparting thermal adhesiveness, etc., as long as the effects of the present invention are not impaired. It can arrange
  • the thermoplastic elastomer constituting the sheath component preferably has a Shore D hardness of 30 to 65.
  • Shore D hardness By setting the Shore D hardness in the above range, it is possible to suppress excessive elongation during bending deformation while controlling the amount of hard segments that are easily plastically deformed.
  • thermoplastic elastomer used for the sheath component is a matting agent or pigment such as titanium oxide, calcium carbonate, kaolin, or clay as long as the effect of the present invention is not impaired, specifically, 5% by mass or less.
  • Dyes, lubricants, antioxidants, heat resistance agents, heat resistance agents, light resistance agents, ultraviolet absorbers, antistatic agents and flame retardants are examples of matting agent or pigment such as titanium oxide, calcium carbonate, kaolin, or clay as long as the effect of the present invention is not impaired, specifically, 5% by mass or less.
  • Dyes lubricants, antioxidants, heat resistance agents, heat resistance agents, light resistance agents, ultraviolet absorbers, antistatic agents and flame retardants.
  • the elastic monofilament of the present invention has a tensile strength in the range of 0.3 to 3.0 cN / dtex, preferably 0.3 to 2.94 cN / dtex, more preferably 0.5 to 2.5 cN / dtex. dtex.
  • a tensile strength in the range of 0.3 to 3.0 cN / dtex, preferably 0.3 to 2.94 cN / dtex, more preferably 0.5 to 2.5 cN / dtex. dtex.
  • the elastic monofilament of the present invention preferably has a bending hardness of 2.0 to 10.0 cN, and a more preferable range is 2.5 to 8.0 cN. If the bending hardness is too low, there is a concern that the elastic monofilament will extend excessively on the outside of the bending at the time of bending. On the other hand, if the bending hardness is too large, it is difficult to bend and deform and the target elasticity may not be exhibited. Occurs. From this point of view, the bending hardness is preferably in the above range in order to obtain a monofilament having excellent durability and elasticity.
  • the elastic monofilament of the present invention has a dimensional change rate of 0 to 5% when heat-treated for 3 minutes at 160 ° C. under a constant length and then held for 12 hours under a tension of 0.1 cN / dtex. preferable.
  • the heat treatment for 3 minutes at a temperature of 160 ° C. assumes that the elastic monofilament is woven or knitted and is subjected to heat setting or the like. After heat treatment at a constant length of 160 ° C.
  • the elastic monofilament of the present invention preferably has a boiling water shrinkage of 3 to 10%.
  • the elastic monofilament of the present invention can be used alone, or a plurality of the elastic monofilaments of the present invention can be used, or the elastic monofilament of the present invention and a filament of another material can be used together.
  • the elastic monofilament of the present invention can be produced by a core-sheath composite spinning method using a conventionally known co-extrusion equipment, it can be produced with high productivity and at low cost.
  • thermoplastic polyester polymer constituting the core component of the core-sheath composite monofilament and the thermoplastic elastomer constituting the sheath component are melted by separate extruders, each is measured with a gear pump and allowed to flow into the composite pack.
  • Two types of polymer, core component and sheath component, flowed into the composite pack are filtered through a metal non-woven filter or metal mesh in the pack and then introduced into the composite base, and the core component is surrounded by the sheath component. It is spun at.
  • the polymer used for spinning is previously set to a moisture content of less than 200 ppm using a vacuum dryer or the like. Is a preferred embodiment.
  • the moisture content satisfies the above range, not only is the composite abnormality difficult to occur, but an elastic monofilament having excellent durability can be easily obtained.
  • a master chip containing a large amount of desired pigments, light resistance agents, antibacterial agents, etc. is prepared, and thermoplasticity is obtained.
  • a polyester resin and / or a thermoplastic elastomer resin can be blended in a necessary amount to be spun.
  • thermoplastic elastomer resin for the purpose of reducing deterioration due to ultraviolet rays during actual use.
  • a light-resistant additive-added master chip for imparting a light-resistant agent to the elastic monofilament of the present invention “Hytrel” (registered trademark) 21UV manufactured by Toray DuPont can be exemplified.
  • the molten monofilament spun from the composite die is allowed to pass through a heating cylinder and / or a heat insulating cylinder arranged immediately below the composite die from the viewpoint of removing the distortion of the molecular structure generated in the die hole. is there.
  • the length of the heating tube and / or the heat insulating tube is preferably in the range of 10 to 150 mm from the viewpoint of reducing fineness unevenness in the longitudinal direction of the obtained elastic monofilament.
  • the molten monofilament that has passed through the heating tube and / or the heat insulating tube is cooled in a cooling bath using water or polyethylene glycol as a solvent, and then taken up by a take-up roll that rotates at a desired surface speed.
  • the temperature of the cooling bath can be changed while confirming the roundness and fineness unevenness of the obtained elastic monofilament, but the cooling temperature for obtaining the elastic monofilament of the present invention is exemplified by the range of 20 to 80 ° C. can do.
  • the take-up speed may be a speed at which the cooling and solidification of the molten monofilament is completed in the cooling bath, and in order to set the fiber structure of the undrawn yarn within a suitable range for obtaining the elastic monofilament of the present invention.
  • a range of 5 to 50 m / min is preferable.
  • the unstretched monofilament that has been taken up by the take-up roll is once taken up or is used for the drawing step without being taken up once.
  • the number of drawing steps in the drawing step is preferably a multistage drawing method having two or more steps.
  • steam, and a dry heat drawing machine can be used.
  • the stretching temperature of the second stage may be set to the melting point ⁇ 50 ° C. to the melting point ⁇ 10 ° C. of the thermoplastic elastomer disposed in the sheath component. This is a preferred embodiment.
  • the stretching temperature of the second stage in the above range where the molecular mobility of the thermoplastic elastomer is extremely high, excessive orientation of the thermoplastic elastomer in the stretching process is suppressed, and excellent elasticity is obtained even when deformed in the bending direction. It is possible to obtain an elastic monofilament having the same.
  • the stretched elastic monofilament is then subjected to relaxation heat treatment.
  • the relaxation magnification is preferably in the range of 0.99 to 0.85 from the viewpoint of suppressing yarn swaying and ensuring elastic recovery when subjected to repeated bending deformation.
  • the relaxation heat treatment temperature is preferably set to the melting point of the thermoplastic elastomer arranged in the sheath component from ⁇ 50 ° C. to the melting point of ⁇ 10 ° C., and more preferably, the melting point of the thermoplastic elastomer from ⁇ 40 ° C. to the melting point of ⁇ 10 ° C. Can be illustrated.
  • the relaxation heat treatment temperature within the above range, the thermal fusion between the elastic monofilaments is suppressed in the heat treatment process, and the excessive orientation generated in the sheath component is relaxed in the stretching process, thereby deforming in the bending direction. In this case, a monofilament having excellent elasticity can be obtained.
  • the total draw ratio obtained by multiplying the draw ratio by the relaxation ratio is set to less than 4.0 times.
  • less than 3.8 times can be exemplified.
  • the elastic monofilament after the relaxation treatment is wound by a winder, and at this time, the winding tension is preferably in the range of 0.10 cN / dtex or less.
  • the winding tension is preferably 0.02 cN / dtex or more.
  • the elastic monofilament of the present invention can be obtained.
  • the elastic monofilament of the present invention is particularly excellent in bending direction settling resistance, elasticity and creep properties after application of high temperature, so it is a marine product, building material, safety material, clothing material, civil engineering material, agricultural material, vehicle material.
  • it can be suitably used for elastic woven knitted structures such as car seats and office chairs that are easily deformed in the bending direction during actual use.
  • the melting point was defined as the temperature at which the extreme value of the melting endotherm curve obtained by measuring 10 mg of a sample at a heating rate of 10 ° C./min using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer.
  • E 0 the elongation when a load of 0.1 cN / dtex was applied
  • E 12 elongation when left for 12 hours in a state where a load of 0.1 cN / dtex was applied
  • E 12 -E 0 was defined as a dimensional change rate after heat treatment.
  • the number of measurements n was set to 5, and the average value thereof was adopted.
  • the treated sample (elastic monofilament) was removed from the bending wear characteristic tester and immediately suspended in a state where a load 2 of 6 g / mm 2 was applied as shown in FIG.
  • the distance A (mm) of the perpendicular drawn from the line a connecting the markings toward the maximum deformation point was determined, and the average value of the five measurements was used as the amount of stickiness.
  • copolymer thermoplastic elastomer (A-1) 51.9 parts by mass of terephthalic acid, 39.7 parts by mass of 1,4-butanediol and 47.6 parts by mass of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400, 0.04 parts by mass of titanium tetrabutoxide and mono -0.02 part by mass of n-butyl-monohydroxytin oxide was charged in a reaction vessel equipped with a helical ribbon type stirring blade, gradually heated from a temperature of 190 ° C and heated to a temperature of 225 ° C in 3 hours, The esterification reaction was carried out while allowing the reaction water to flow out of the system.
  • copolymer thermoplastic elastomer (A-2) 32.9 parts by mass of terephthalic acid, 9.6 parts by mass of isophthalic acid, 40.3 parts by mass of 1,4-butanediol and 46.7 parts by mass of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400 were added to titanium tetra Both 0.04 parts by weight of butoxide and 0.02 parts by weight of mono-n-butyl-monohydroxytin oxide were charged into a reaction vessel equipped with a helical ribbon type stirring blade and heated gradually from a temperature of 190 ° C. in 3 hours. The esterification reaction was carried out while heating to a temperature of 225 ° C.
  • Examples 1 to 6, Comparative Example 2, Comparative Example 4 As a polymer for the core component, a polyethylene terephthalate polymer (T manufactured by Toray Industries, Inc.) having a melting point of 257 ° C. dried to a moisture content of less than 100 ppm, an intrinsic viscosity of 1.21, and containing 0.1% by mass of titanium oxide. -701T) and a copolymer thermoplastic elastomer (A-1) dried to a moisture content of less than 100 ppm as the sheath component polymer, and a setting temperature of ⁇ 30 mm extruder of 295 ° C.
  • T polyethylene terephthalate polymer
  • A-1 copolymer thermoplastic elastomer
  • each molten polymer was filtered through a 200-mesh wire mesh, and then discharged from a core-sheath composite die having a hole diameter of 1.5 mm and 10 holes.
  • the discharged filament is passed through a heat insulating cylinder having a length of 30 mm attached immediately below the base, and then passed through a cooling water bath having a temperature of 25 ° C.
  • the obtained unstretched monofilament was stretched in the first stage at a stretch ratio described in Table 1 using a hot water tank adjusted to a temperature of 90 ° C. without being wound up, and then listed in Table 1. Using a dry heat stretching tank adjusted to the temperature, the second stage stretching was performed at the magnification described in Table 1.
  • the monofilament after drawing is subjected to relaxation heat treatment at a magnification shown in Table 1 using a dry heat bath adjusted to the temperature shown in Table 1, and the wound elastic monofilament is taken up with the winding tension shown in Table 1. Obtained.
  • the properties of the obtained monofilament were as shown in Tables 1 and 2.
  • Comparative Example 2 since the ratio of the core component was small, it was not possible to suppress overextension on the outer side of the bend, and the amount of settling was large.
  • the tensile strength exceeded 3.05 cN / dtex, and the elasticity in the bending direction was impaired.
  • Example 7 The same procedure as in Example 1 was performed except that 97% by mass of the copolymer-based thermoplastic elastomer (A-1) and 3% by mass of “Hytrel” (registered trademark) 21UV were used as the polymer for the sheath component. .
  • the properties of the obtained monofilament were as shown in Table 1.
  • Example 8 Comparative Example 3, Comparative Example 5
  • Example 1 except that a polyethylene terephthalate polymer (T-301T manufactured by Toray Industries, Inc.) containing a melting point of 257 ° C., an intrinsic viscosity of 0.71, and 0.1% by mass of titanium oxide was used as the core component polymer. It was done in the same way. The properties of the obtained monofilament were as shown in Tables 1 and 2. In Comparative Example 3 and Comparative Example 5, the tensile strength exceeded 3.05 cN / dtex, and the elasticity in the bending direction was impaired.
  • T-301T manufactured by Toray Industries, Inc.
  • Copolymer thermoplastic elastomer (A-1) dried to a moisture content of less than 150 ppm as the core component polymer, and copolymer thermoplastic to the moisture content of less than 150 ppm as the sheath component polymer
  • the elastomer (A-2) was melted with a ⁇ 30 mm extruder having a set temperature of 250 ° C. and a ⁇ 40 mm extruder having a set temperature of 215 ° C., respectively, and then heated to 250 ° C. using a gear pump kept at a temperature of 245 ° C. and 250 ° C., respectively.
  • the same procedure as in Example 1 was carried out except that it was introduced into a composite spinning pack kept at a temperature.
  • the properties of the obtained elastic monofilament were as shown in Table 2.
  • the elastic monofilament of the present invention was excellent in the bending-direction set resistance, elasticity, and creep properties after application of high temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

The present invention provides an elastic monofilament having exceptional fatigue resistance and elasticity especially in a bending direction and exceptional creep properties after high temperature is applied. This elastic monofilament has a sheath-core conjugated structure having a diameter of 0.1-1.0 mm and a core component ratio of 2-40 vol.%. In the elastic monofilament, the core component is a thermoplastic polyester having 95-100 mass% of thermoplastic polyester units in the polymer, the sheath component is a copolymerization system thermoplastic elastomer having a hard segment and a soft segment, and the tensile strength of the elastic monofilament is 0.3-3.0 cN/dtex.

Description

弾性モノフィラメントElastic monofilament
 本発明は、曲げ方向の繰り返し変形に対する耐疲労性に優れ、水産資材、建築資材、安全資材、衣料資材、土木資材、農業資材、車両資材、およびスポーツ資材等の各種産業用途、特に弾性を有する織編構造体用途に好適な弾性モノフィラメントに関するものである。 The present invention is excellent in fatigue resistance against repeated deformation in the bending direction, and has various industrial uses such as marine materials, building materials, safety materials, clothing materials, civil engineering materials, agricultural materials, vehicle materials, and sports materials, particularly elasticity. The present invention relates to an elastic monofilament suitable for use in a woven / knitted structure.
 熱可塑性エラストマーを用いたモノフィラメントは、優れたゴム弾性を有することが知られており、このような熱可塑性エラストマー製モノフィラメントを用いた織編物は優れた弾性を有することから、ストッキング等の衣料資材、サポーター等の医療資材、トランポリン等のスポーツ資材、ベッド等の寝装資材、および事務用椅子/カーシート等の着座資材用途への展開が進められている。例えば、特許文献1~3には、熱可塑性エラストマーを用いた織編物が事務用椅子や自動車用椅子用途等に好適に使用可能であることが提案されている。 Monofilaments using thermoplastic elastomers are known to have excellent rubber elasticity, and woven and knitted fabrics using such monofilaments made of thermoplastic elastomer have excellent elasticity. Development of medical materials such as supporters, sports materials such as trampolines, bedding materials such as beds, and seating materials such as office chairs / car seats is underway. For example, Patent Documents 1 to 3 propose that a woven or knitted fabric using a thermoplastic elastomer can be suitably used for an office chair or an automobile chair.
 このような用途に適用される織編物を構成するモノフィラメントの一例として、その主成分をポリエステルやポリエーテルとする熱可塑性エラストマー製モノフィラメントが知られているが、従来の熱可塑性エラストマーで構成されるモノフィラメントを用いた織編物は、繰り返し変形時の弾性回復率の低下、いわゆる長期使用時のヘタリが課題となっており、この課題に対して、力学特性および繰り返し変形時の弾性回復性に優れる織編物を得ることを目的として弾性モノフィラメントが提案されている(特許文献2と3参照。)。 As an example of a monofilament constituting a woven or knitted fabric applied to such a use, a thermoplastic elastomer monofilament whose main component is polyester or polyether is known, but a monofilament composed of a conventional thermoplastic elastomer. The knitted and knitted fabrics using the knitted fabric have a problem of lowering the elastic recovery rate at the time of repeated deformation, that is, the settling at the time of long-term use. Against this issue, the woven and knitted fabric has excellent mechanical properties and elastic recovery properties at the time of repeated deformation. Elastic monofilaments have been proposed for the purpose of obtaining (see Patent Documents 2 and 3).
 具体的に特許文献2には、2成分のポリエステル系エラストマーを主原料とし、繊維断面積に占めるコア部の面積比が50%以上であるシース(芯鞘構造の鞘)・コア(芯鞘構造の芯)形状であり、コア部成分の融点が150℃以上200℃未満であり、且つシース部成分の融点はコア部成分の融点より20℃以上50℃未満低い弾性複合モノフィラメントを用いて、シース側に配置される低融点成分を部分融解あるいは融着させ、編・織組織の交点部において融着点を形成して拘束力を向上させることにより、布帛の繰り返し変形時における編織構造の変化が少なく長期の耐久性に優れる効果が得られると記載されている。 Specifically, Patent Document 2 discloses a sheath (core-sheath structure) / core (core-sheath structure) in which the core material occupies 50% or more of the area ratio of the core portion of the fiber cross-sectional area, using a two-component polyester elastomer as a main raw material. The core component has a melting point of 150 ° C. or more and less than 200 ° C., and the sheath component has a melting point lower than the melting point of the core component by 20 ° C. or more and less than 50 ° C. By partially melting or fusing the low melting point component arranged on the side, forming a fusion point at the intersection of the knitting / woven structure to improve the binding force, the change in the knitted fabric structure during repeated deformation of the fabric It is described that an effect that is small and excellent in long-term durability can be obtained.
 また、特許文献3には、特定の成分で構成されるポリマーを用い、且つ、室温で15%伸長応力下における80℃、24時間のクリープ率が5%以下の単成分モノフィラメントが、繰返し変形による特性変化が少ないモノフィラメントとして提案されている。 Patent Document 3 discloses that a single-component monofilament using a polymer composed of a specific component and having a creep rate of 5% or less at 80 ° C. for 24 hours under a 15% elongation stress at room temperature is caused by repeated deformation. Proposed as a monofilament with little change in properties.
 これらの提案においては、弾性モノフィラメントには高いゴム弾性を発現することが必要と考えられ、熱可塑性エラストマーからなる単成分モノフィラメント(特許文献3参照。)、および2種のポリマーからなる芯鞘複合モノフィラメント(特許文献2参照。)のいずれにおいても、モノフィラメント(芯鞘複合モノフィラメントの場合は芯および鞘のいずれも)は、熱可塑性エラストマーで構成され極力高いゴム弾性を発現させることが前提となっている。 In these proposals, it is considered necessary for the elastic monofilament to exhibit high rubber elasticity, and a single component monofilament made of a thermoplastic elastomer (see Patent Document 3) and a core-sheath composite monofilament made of two kinds of polymers. In any of (see Patent Document 2), it is assumed that the monofilament (both the core and the sheath in the case of the core-sheath composite monofilament) is made of a thermoplastic elastomer and exhibits as high rubber elasticity as possible. .
特表平9-507782号公報Japanese National Patent Publication No. 9-507782 特開平11-152625号公報JP-A-11-152625 特開平11-172532号公報JP-A-11-172532
 しかしながら、上記の特許文献2と3に開示されている弾性シート等のヘタリ改善に関する提案では、実使用時の耐ヘタリ性はなお十分ではなかった。
そこで本発明の目的は、弾性シート等の実使用時における耐ヘタリ性に優れた弾性モノフィラメントを提供することにある。
However, in the proposals related to the improvement of the settling of the elastic sheet and the like disclosed in Patent Documents 2 and 3, the settling resistance at the time of actual use is still insufficient.
Accordingly, an object of the present invention is to provide an elastic monofilament that is excellent in anti-sagging resistance during actual use of an elastic sheet or the like.
 本発明者らは、従来のモノフィラメントから得られた織編物に所望の耐ヘタリ性が得られない原因を検討した結果、従来技術では織編物の耐ヘタリ性を向上させるためにモノフィラメント引張方向の繰り返し変形に対する耐疲労性を改善していたが、これのみでは不十分であり、モノフィラメント曲げ方向の繰り返し変形に対する耐疲労性を向上させることが必要であろうとの考えの下、モノフィラメントの曲げ方向の繰り返し変形に対する耐疲労性を改善する構成を検討したところ、下記構成を採用することにより、従来と比較して織編物の耐ヘタリ性を格段に向上させうることを見出したものである。 As a result of investigating the cause that the desired sag resistance cannot be obtained in the woven or knitted fabric obtained from the conventional monofilament, the present inventors have repeated the monofilament tension direction in order to improve the sag resistance of the woven or knitted fabric. The fatigue resistance against deformation has been improved, but this alone is not sufficient, and it is necessary to improve the fatigue resistance against repeated deformation in the monofilament bending direction. When the structure which improves the fatigue resistance with respect to a deformation | transformation was examined, it discovered that the settling resistance of a woven or knitted fabric could be improved significantly by adopting the following structure.
 本発明の弾性モノフィラメントは、直径が0.1~1.0mmで、芯成分の比率が2~40体積%である芯鞘複合構造を有し、前記の芯成分が、重合体中の熱可塑性ポリエステル単位が95~100質量%の熱可塑性ポリエステルで、鞘成分が、ハードセグメントとソフトセグメントを有する共重合系熱可塑性エラストマーであり、引張強度が0.3~3.0cN/dtexであることを特徴とする弾性モノフィラメントである。 The elastic monofilament of the present invention has a core-sheath composite structure having a diameter of 0.1 to 1.0 mm and a core component ratio of 2 to 40% by volume, and the core component is thermoplastic in the polymer. It is a thermoplastic polyester having a polyester unit of 95 to 100% by mass, a sheath component is a copolymer thermoplastic elastomer having a hard segment and a soft segment, and has a tensile strength of 0.3 to 3.0 cN / dtex. It is a characteristic elastic monofilament.
 また、本発明の弾性モノフィラメントの好ましい態様によれば、前記の芯成分に使用される熱可塑性ポリエステルの固有粘度(IV)は0.7以上である。 Further, according to a preferred embodiment of the elastic monofilament of the present invention, the intrinsic viscosity (IV) of the thermoplastic polyester used for the core component is 0.7 or more.
 本発明の弾性モノフィラメントの好ましい態様によれば、前記のハードセグメントは、芳香族ポリエステル単位を主たる構成単位とし、前記のソフトセグメントは、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位を主たる構成単位とすることであり、前記の芳香族ポリエステル単位は、ポリブチレンテレフタレート単位であり、前記の脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位は、ポリ(テトラメチレンオキシド)グリコール単位である。 According to a preferred aspect of the elastic monofilament of the present invention, the hard segment includes an aromatic polyester unit as a main structural unit, and the soft segment includes an aliphatic polyether unit and / or an aliphatic polyester unit as a main structural unit. The aromatic polyester unit is a polybutylene terephthalate unit, and the aliphatic polyether unit and / or the aliphatic polyester unit is a poly (tetramethylene oxide) glycol unit.
 本発明の弾性モノフィラメントの好ましい態様によれば、前記のハードセグメントと前記のソフトセグメントの比率は、35:65~75:25(質量比)である。 According to a preferred aspect of the elastic monofilament of the present invention, the ratio of the hard segment to the soft segment is 35:65 to 75:25 (mass ratio).
 本発明の弾性モノフィラメントの好ましい態様によれば、本発明の弾性モノフィラメントの曲げ硬さは2.0~10cNであり、そして定長下160℃の温度条件下で3分間熱処理した後、0.1cN/dtex張力下で12時間保持した際の寸法変化率は、0~5%である。 According to a preferred embodiment of the elastic monofilament of the present invention, the bending hardness of the elastic monofilament of the present invention is 2.0 to 10 cN, and after heat treatment at 160 ° C. under a constant length for 3 minutes, 0.1 cN The dimensional change rate when held for 12 hours under the / dtex tension is 0 to 5%.
 本発明によれば、曲げ方向の耐疲労性に優れた弾性モノフィラメントが得られる。これにより、トランポリン、サポーター、ベッド、カーシート、および事務用椅子等に代表される織編物の実使用時の耐ヘタリ性を格段に向上させることが可能となる。 According to the present invention, an elastic monofilament having excellent fatigue resistance in the bending direction can be obtained. Thereby, it becomes possible to remarkably improve the settling resistance at the time of actual use of the woven or knitted fabric represented by the trampoline, the supporter, the bed, the car seat, and the office chair.
 本発明の弾性モノフィラメントは、従来の熱可塑性エラストマーのみを用いた弾性モノフィラメントとは異なり、芯成分に重合体中の熱可塑性ポリエステル単位が95~100質量%の熱可塑性ポリエステルを配していることから、モノフィラメントが伸長および/または屈曲された際にフィラメントが受ける応力の一部を芯成分が担う。このため、本発明の弾性モノフィラメントは、伸長および/または屈曲された際にも熱可塑性エラストマー成分の伸長変形、および、塑性変形が抑制され易い。即ち、本発明の弾性モノフィラメントは、伸長および/または屈曲変形を受けた際にもヘタリ難いことから、トランポリン、サポーター、ベッド、カーシート、および事務用椅子等に代表される織編物に使用したにも、前記の織編物の耐ヘタリ性を格段に向上されることが可能となる。 The elastic monofilament of the present invention is different from the conventional elastic monofilament using only a thermoplastic elastomer because the thermoplastic polyester unit of 95 to 100% by mass of the thermoplastic polyester unit in the polymer is arranged in the core component. The core component bears a part of the stress that the filament receives when the monofilament is stretched and / or bent. For this reason, even when the elastic monofilament of the present invention is stretched and / or bent, the deformation and plastic deformation of the thermoplastic elastomer component are easily suppressed. That is, since the elastic monofilament of the present invention is difficult to recover even when subjected to elongation and / or bending deformation, it has been used for woven and knitted fabrics represented by trampolines, supporters, beds, car seats, office chairs and the like. However, the set resistance of the woven or knitted fabric can be remarkably improved.
図1は、本発明におけるヘタリ量の測定方法を説明するための模式側面図である。FIG. 1 is a schematic side view for explaining a method for measuring the amount of settling in the present invention.
 本発明の弾性モノフィラメントは、直径が0.1~1.0mmで、芯成分の比率が2~40体積%である芯鞘複合構造を有し、前記の芯成分が、重合体中の熱可塑性ポリエステル単位が95~100質量%の熱可塑性ポリエステルで、鞘成分が、ハードセグメントとソフトセグメントを有する共重合系熱可塑性エラストマーであり、引張強度が0.3~3.0cN/dtexの弾性モノフィラメントである。 The elastic monofilament of the present invention has a core-sheath composite structure having a diameter of 0.1 to 1.0 mm and a core component ratio of 2 to 40% by volume, and the core component is thermoplastic in the polymer. A thermoplastic polyester having a polyester unit of 95 to 100% by mass, a sheath component is a copolymer thermoplastic elastomer having a hard segment and a soft segment, and an elastic monofilament having a tensile strength of 0.3 to 3.0 cN / dtex. is there.
 すなわち、本発明の弾性モノフィラメントは、ゴム弾性を有する熱可塑性エラストマーとゴム弾性を有さない特定のポリエチレンテレフタレート等の熱可塑性ポリエステル樹脂とを特定の構成で組み合わせることにより、曲げ方向の繰り返し変形に対する耐疲労性を向上させたものであり、従来技術では低下させないことが前提であったモノフィラメント引張方向のゴム弾性を、あえて低下させることにより、曲げ方向の弾性を保持しつつ、耐ヘタリに関する顕著な効果が得られることを見いだしたものである。 That is, the elastic monofilament of the present invention combines a thermoplastic elastomer having rubber elasticity and a thermoplastic polyester resin such as a specific polyethylene terephthalate that does not have rubber elasticity in a specific configuration, thereby being resistant to repeated deformation in the bending direction. The fatigue resistance is improved, and the elasticity of the monofilament tensile direction, which was assumed not to be reduced by the prior art, is reduced. Is found to be obtained.
 このような顕著な効果が得られた理由については、下記のように推測している。 The reason why such a remarkable effect was obtained is presumed as follows.
 本発明の弾性モノフィラメントの使用態様の典型例として、弾性モノフィラメントを緯糸に用い、ポリエチレンテレフタレートモノフィラメントを経糸に用いた弾性織物を、事務用椅子やカーシート等に使用する場合を例に説明する。このような使用態様では、弾性織物に対して着座時の荷重は略垂直方向から付与される。このとき、弾性モノフィラメント1本の変形挙動について着目してみると、弾性織物に垂直方向からの荷重に対し経糸により移動を抑制された弾性モノフィラメントは、大きく曲げ方向に変形する。さらに、弾性モノフィラメントの屈曲部について微視的に着目してみると、屈曲部の内側では弾性モノフィラメントは圧縮され、屈曲部の外側では弾性モノフィラメントは大きく伸長される。 As a typical example of the usage mode of the elastic monofilament of the present invention, a case where an elastic fabric using an elastic monofilament as a weft and a polyethylene terephthalate monofilament as a warp is used for an office chair or a car seat will be described as an example. In such a use mode, the load at the time of sitting is applied to the elastic fabric from a substantially vertical direction. At this time, paying attention to the deformation behavior of one elastic monofilament, the elastic monofilament whose movement is suppressed by the warp with respect to the load from the vertical direction to the elastic fabric is greatly deformed in the bending direction. Further, when microscopically focusing on the bent portion of the elastic monofilament, the elastic monofilament is compressed inside the bent portion, and the elastic monofilament is greatly expanded outside the bent portion.
 このような場において、従来の熱可塑性エラストマーのみを用いた弾性モノフィラメントにおいては、屈曲外側において大きく伸長することにより、本来熱可塑性エラストマーの有する弾性変形可能伸び以上の変形が生じて塑性変形を引き起こし、結果として織編物にヘタリが生じるものと考えられる。 In such a field, in the elastic monofilament using only the conventional thermoplastic elastomer, by extending greatly on the outer side of the bending, a deformation beyond the elastically deformable elongation inherent in the thermoplastic elastomer occurs, causing plastic deformation, As a result, it is considered that the knitted and knitted fabrics are set.
 一方、同様の場において、本発明のように、芯成分にポリエチレンテレフタレート等の熱可塑性ポリエステルを用い、鞘成分に熱可塑性エラストマーを特定の構成で配した芯鞘型複合モノフィラメントでは、芯成分が一定の応力を担うことにより屈曲外側における熱可塑性エラストマー成分の伸長変形、および、塑性変形が抑制され、鞘成分に配した熱可塑性エラストマーの優れたストレッチバック性が損なわれ難い。更に、芯成分にポリエチレンテレフタレート等の熱可塑性ポリエステルを配することにより、長時間曲げ変形に曝された際のクリープ伸びも抑制される。このため、本発明の弾性モノフィラメントを用いた織編物は、長期にわたってヘタリ難く、優れた弾性を発現し続けることができるものと考えられる。 On the other hand, in the same case, in the core-sheath type composite monofilament in which a thermoplastic polyester such as polyethylene terephthalate is used as the core component and a thermoplastic elastomer is arranged in a specific configuration as in the present invention, the core component is constant. By taking this stress, the stretch deformation and plastic deformation of the thermoplastic elastomer component on the outer side of the bend are suppressed, and the excellent stretch-back property of the thermoplastic elastomer disposed on the sheath component is unlikely to be impaired. Furthermore, by arranging a thermoplastic polyester such as polyethylene terephthalate as the core component, creep elongation when exposed to bending deformation for a long time is also suppressed. For this reason, it is thought that the woven or knitted fabric using the elastic monofilament of the present invention is difficult to stick over a long period of time and can continue to exhibit excellent elasticity.
 本発明の弾性モノフィラメントにおいては、耐熱クリープ特性の向上、および、曲げ方向への弾性を両立させる観点から、芯成分の割合が2~40体積%の範囲であることが必要である。芯成分の割合が2体積%未満の場合は、前述の芯成分による屈曲外側の過伸長を抑制することができず、また、芯の成分が40体積%を超える場合には、熱可塑性エラストマー成分が少なくなり過ぎるため目的とする弾性が発現し難い。このような観点から、芯成分は3~20体積%の範囲であることが好ましく、より好ましくは3~13体積%の範囲である。 In the elastic monofilament of the present invention, it is necessary that the ratio of the core component is in the range of 2 to 40% by volume from the viewpoint of achieving both improved heat-resistant creep characteristics and elasticity in the bending direction. When the ratio of the core component is less than 2% by volume, it is not possible to suppress over-extension on the outside of the bend due to the above-described core component, and when the core component exceeds 40% by volume, the thermoplastic elastomer component Therefore, the target elasticity is hardly exhibited. From such a viewpoint, the core component is preferably in the range of 3 to 20% by volume, more preferably in the range of 3 to 13% by volume.
 また、本発明の弾性モノフィラメントの断面形状としては、丸断面の他に、楕円、四角、多角および多葉断面などの異形断面形状をとることができる。 Further, as the cross-sectional shape of the elastic monofilament of the present invention, an irregular cross-sectional shape such as an ellipse, a square, a polygon, and a multi-leaf cross-section can be taken in addition to the round cross-section.
 本発明の弾性モノフィラメントは、その直径が1.0mm以下であり、0.7mm以下であることが好ましい。直径が太すぎる場合には、屈曲変形時の屈曲外側の伸長絶対量が増大して塑性変形が生じ易くなり、織編物としたときにヘタリを引き起こし易くなる。弾性モノフィラメントがその機能を発現するうえで、直径の下限値は本来無いが、直径が細すぎる場合には芯鞘複合形態の形が困難となることから、直径は0.1mm以上である。 The diameter of the elastic monofilament of the present invention is 1.0 mm or less, preferably 0.7 mm or less. If the diameter is too large, the absolute amount of elongation outside the bending at the time of bending deformation increases and plastic deformation is likely to occur, and it becomes easy to cause settling when a woven or knitted fabric is formed. In order for the elastic monofilament to exhibit its function, there is essentially no lower limit of the diameter. However, if the diameter is too small, the core-sheath composite form becomes difficult, so the diameter is 0.1 mm or more.
 ここで、弾性モノフィラメントの断面の平均直径をL1とし、芯成分の断面の平均直径をL2とし、芯の成分の断面の重心から弾性モノフィラメントの外周に引いた任意の線分tに沿った鞘成分の厚みをLtとしたとき、弾性モノフィラメントの外周全周に渡って任意の線分tに対応するLtが、次の関係を満足することが好ましい。
-15(%)≦(Lt-LT)×100/LT≦15(%)
ここで、LT=(L1-L2)/2である。
Here, the average diameter of the cross section of the elastic monofilament is L1, the average diameter of the cross section of the core component is L2, and the sheath component along an arbitrary line segment t drawn from the center of gravity of the cross section of the core component to the outer periphery of the elastic monofilament When the thickness of the elastic monofilament is Lt, it is preferable that Lt corresponding to an arbitrary line segment t over the entire outer periphery of the elastic monofilament satisfies the following relationship.
−15 (%) ≦ (Lt−LT) × 100 / LT ≦ 15 (%)
Here, LT = (L1−L2) / 2.
 断面の平均直径L1およびL2は、面積相当円の直径を表すものとする。上記の関係を満足すると、鞘成分の厚みが弾性モノフィラメントの全周に渡って一定の厚みを保持することから、部分的に鞘成分量が少ない領域が生じたり、極端に多い部分が生じたりしないため、屈曲変形時に過伸長して鞘成分が裂けたり弾性回復性が不均一になる等の問題を生じ難い。 The average diameters L1 and L2 of the cross section represent the diameter of the area equivalent circle. If the above relationship is satisfied, the thickness of the sheath component maintains a constant thickness over the entire circumference of the elastic monofilament, so that there is no region where the amount of the sheath component is small, or there is no extremely large portion. Therefore, problems such as excessive elongation during bending deformation and tearing of the sheath component and non-uniform elastic recovery are unlikely to occur.
 芯の成分に使用することができる熱可塑性ポリエステルとしては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレンナフタレート、および芳香族ポリエステル等が挙げられるが、汎用性、耐熱性および高剛性の観点から、ポリエチレンテレフタレートが好ましく用いられる。 Examples of the thermoplastic polyester that can be used for the core component include polybutylene terephthalate, polyethylene terephthalate, polypropylene terephthalate, polyethylene naphthalate, and aromatic polyester. From the viewpoint of versatility, heat resistance, and high rigidity. Polyethylene terephthalate is preferably used.
 芯成分に使用される熱可塑性ポリエステルの固有粘度(IV)は、0.7以上であることが好ましく、より好ましくは1.0以上である。固有粘度(IV)が低すぎると、芯成分が応力を受ける際の分子鎖一本当たりの負荷が大きくなるため、得られる弾性モノフィラメントがヘタる可能性が高くなる傾向にある。得られる弾性モノフィラメントのクリープ特性向上、機械特性向上、および曲げ付与時の変形制御性の観点から、固有粘度に本来上限は無いが、溶融加工性の観点から固有粘度(IV)は1.4以下であることが好ましい。 The intrinsic viscosity (IV) of the thermoplastic polyester used for the core component is preferably 0.7 or more, more preferably 1.0 or more. If the intrinsic viscosity (IV) is too low, the load per molecular chain when the core component is subjected to stress increases, and the resulting elastic monofilament tends to become loose. From the viewpoints of improving the creep properties, mechanical properties, and deformation control properties of the resulting elastic monofilament, the intrinsic viscosity has no inherent upper limit, but the intrinsic viscosity (IV) is 1.4 or less from the viewpoint of melt processability. It is preferable that
 本発明において、芯成分に使用される熱可塑性ポリエステルは、熱可塑性ポリエステル単位が95~100質量%の重合体である。ここで熱可塑性ポリエステル単位とは、ポリエステル骨格を有しかつ後述する熱可塑性エラストマーに該当する成分以外をいう。熱可塑性ポリエステル単位以外の構造の成分としては、5質量%未満であれば、熱可塑性ポリエステルと共重合可能な成分との共重合体またはブレンド可能な他の熱可塑性ポリマーを用いることができる。 In the present invention, the thermoplastic polyester used for the core component is a polymer having a thermoplastic polyester unit of 95 to 100% by mass. Here, the thermoplastic polyester unit means a component other than a component having a polyester skeleton and corresponding to a thermoplastic elastomer described later. As a component having a structure other than the thermoplastic polyester unit, a copolymer of a component copolymerizable with the thermoplastic polyester or another thermoplastic polymer that can be blended can be used as long as it is less than 5% by mass.
 一方、熱可塑性ポリエステル単位が95質量%未満の場合には、共重合あるいはブレンドにより熱可塑性ポリエステルの機械特性が損なわれるため、結果的に織編物としたときにヘタリが生じ易い弾性モノフィラメントとなる。共重合可能な成分としては、イソフタル酸やナフタレンジカルボン酸などの芳香族ジカルボン酸、アジピン酸、セバシン酸、およびアゼライン酸などの脂肪族ジカルボン酸、ジエチレングリコールや1,4-ブタンジオールなどのジオール化合物、多官能化合物、5-スルホイソフタル酸金属塩、および含リン化合物などが挙げられるが、本発明では、芯成分を構成する熱可塑性ポリエステルは実質的に100質量%が熱可塑性ポリエステル単位からなる、所謂ホモポリマーであることが好ましい。 On the other hand, when the thermoplastic polyester unit is less than 95% by mass, the mechanical properties of the thermoplastic polyester are impaired by copolymerization or blending, and as a result, an elastic monofilament that is prone to settling when formed into a woven or knitted fabric. Examples of the copolymerizable components include aromatic dicarboxylic acids such as isophthalic acid and naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, and azelaic acid, diol compounds such as diethylene glycol and 1,4-butanediol, Examples thereof include polyfunctional compounds, 5-sulfoisophthalic acid metal salts, and phosphorus-containing compounds. In the present invention, the thermoplastic polyester constituting the core component is so-called 100% by mass consisting of thermoplastic polyester units. A homopolymer is preferred.
 また、芯成分に使用される熱可塑性ポリエステルは、本発明の効果を損なわない範囲、具体的には5質量%以下であれば、酸化チタン、炭酸カルシウム、カオリン、クレーなどの艶消し剤、顔料、染料、滑剤、酸化防止剤、耐熱剤、耐蒸熱剤、耐光剤、紫外線吸収剤、帯電防止剤および難燃剤などの添加剤を含むことができる。中でも、酸化チタンに関しては、得られる弾性モノフィラメントのテカリが抑制され高級感が生じること、および、詳細な機構は不明であるものの、弾性モノフィラメント耐久性向上の観点から、0.01~1質量%含有することが好ましい。 Further, the thermoplastic polyester used in the core component is a matting agent or pigment such as titanium oxide, calcium carbonate, kaolin, clay, etc., as long as the effects of the present invention are not impaired, specifically, 5% by mass or less. Additives such as dyes, lubricants, antioxidants, heat resistance agents, heat resistance agents, light resistance agents, ultraviolet absorbers, antistatic agents and flame retardants can be included. Among them, titanium oxide is contained in an amount of 0.01 to 1% by mass from the viewpoint of improving the durability of the elastic monofilament, although the glossiness of the resulting elastic monofilament is suppressed and a high-class feeling is produced and the detailed mechanism is unknown. It is preferable to do.
 本発明の弾性モノフィラメントの鞘成分を構成する熱可塑性エラストマーとしては、スチレン系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマーの如きハードセグメントとソフトセグメントを有する共重合系熱可塑性エラストマーであることが必要である。その理由は、 オレフィン系エラストマーに代表されるブレンド型熱可塑性エラストマーでは、耐熱性が不足したり、海島成分の界面剥離や、リサイクル性等に懸念を有するためである。本発明で用いられる熱可塑性エラストマーに関しては、耐熱性および機械特性等の観点から、その融点が150℃以上であり、特に180℃以上であることが好ましい。 The thermoplastic elastomer constituting the sheath component of the elastic monofilament of the present invention is a copolymer thermoplastic elastomer having a hard segment and a soft segment such as a styrene elastomer, a polyester elastomer, a polyurethane elastomer, and a polyamide elastomer. is required. The reason is that blend-type thermoplastic elastomers represented by olefin elastomers are insufficient in heat resistance, and have concerns about interfacial peeling of sea-island components, recyclability, and the like. The thermoplastic elastomer used in the present invention has a melting point of 150 ° C. or higher, particularly preferably 180 ° C. or higher, from the viewpoints of heat resistance and mechanical properties.
 本発明で用いられるポリエステル系エラストマーとしては、ハードセグメントは、主として芳香族ジカルボン酸またはそのエステル形成性誘導体と、ジオールまたはそのエステル形成性誘導体から形成される芳香族ポリエステル単位を主たる構成単位とすることが好ましい態様である。 As the polyester-based elastomer used in the present invention, the hard segment is mainly composed of aromatic dicarboxylic acid or an ester-forming derivative thereof and an aromatic polyester unit formed from a diol or an ester-forming derivative thereof. Is a preferred embodiment.
 前記の芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、アントラセンジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-スルホイソフタル酸、および3-スルホイソフタル酸ナトリウムなどが挙げられる。 Specific examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, anthracene dicarboxylic acid, diphenyl-4,4′- Examples thereof include dicarboxylic acid, diphenoxyethanedicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid, and sodium 3-sulfoisophthalate.
 本発明においては、前記の芳香族ジカルボン酸を主として用いるが、必要によっては、この芳香族ジカルボン酸の一部を、1,4-シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸および4,4’-ジシクロヘキシルジカルボン酸などの脂環族ジカルボン酸や、アジピン酸、コハク酸、シュウ酸、セバシン酸、ドデカンジオン酸、およびダイマー酸などの脂肪族ジカルボン酸に置換することもできる。さらに、ジカルボン酸のエステル形成性誘導体、例えば、低級アルキルエステル、アリールエステル、炭酸エステルおよび酸ハロゲン化物などももちろん同等に用い得る。 In the present invention, the aromatic dicarboxylic acid is mainly used. If necessary, a part of the aromatic dicarboxylic acid may be used as 1,4-cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, and 4,4′-dicyclohexyldicarboxylic acid. It can also be substituted with an alicyclic dicarboxylic acid such as an acid, or an aliphatic dicarboxylic acid such as adipic acid, succinic acid, oxalic acid, sebacic acid, dodecanedioic acid, and dimer acid. Furthermore, ester-forming derivatives of dicarboxylic acids such as lower alkyl esters, aryl esters, carbonates and acid halides can of course be used equally.
 次に、前記のジオールの具体例としては、分子量400以下のジオール、例えば、1,4-ブタンジオール、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,1-シクロヘキサンジメタノール、1,4-ジシクロヘキサンジメタノール、トリシクロデカンジメタノールなどの脂環族ジオール、およびキシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシ)ジフェニルプロパン、2,2’-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、および4,4’-ジヒドロキシ-p-クオーターフェニルなどの芳香族ジオールが好ましく用いられ、このようなジオールは、エステル形成性誘導体、例えば、アセチル体やアルカリ金属塩などの形でも用い得る。 Next, specific examples of the diol include diols having a molecular weight of 400 or less, such as 1,4-butanediol, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc. Aliphatic diols such as 1,1-cyclohexanedimethanol, 1,4-dicyclohexanedimethanol, tricyclodecane dimethanol and the like, and xylylene glycol, bis (p-hydroxy) diphenyl, bis (p -Hydroxy) diphenylpropane, 2,2'-bis [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxyethoxy) phenyl] sulfone, 1,1-bis [4- (2- Hydroxyethoxy) phenyl Aromatic diols such as cyclohexane, 4,4′-dihydroxy-p-terphenyl, and 4,4′-dihydroxy-p-quarterphenyl are preferably used, such diols being ester-forming derivatives such as acetyl It can also be used in the form of body or alkali metal salt.
 これらのジカルボン酸、その誘導体、ジオール成分およびその誘導体は、2種以上併用することもできる。 These dicarboxylic acids, their derivatives, diol components and their derivatives can be used in combination of two or more.
 このようなハードセグメントの好ましい例は、テレフタル酸および/またはジメチルテレフタレートと1,4-ブタンジオールから誘導されるポリブチレンテレフタレート単位である。また、テレフタル酸および/またはジメチルテレフタレートから誘導されるポリブチレンテレフタレート単位と、イソフタル酸および/またはジメチルイソフタレートと1,4-ブタンジオールから誘導されるポリブチレンイソフタレート単位からなるハードセグメントも好ましく用いられる。 A preferred example of such a hard segment is a polybutylene terephthalate unit derived from terephthalic acid and / or dimethyl terephthalate and 1,4-butanediol. Further, a hard segment composed of a polybutylene terephthalate unit derived from terephthalic acid and / or dimethyl terephthalate and a polybutylene isophthalate unit derived from isophthalic acid and / or dimethyl isophthalate and 1,4-butanediol is also preferably used. It is done.
 本発明で用いられるポリエステル系エラストマーのソフトセグメントは、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位を主たる構成単位とするものである。脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、およびエチレンオキシドとテトラヒドロフランの共重合体グリコールなどが挙げられる。 The soft segment of the polyester elastomer used in the present invention is mainly composed of an aliphatic polyether unit and / or an aliphatic polyester unit. Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) Examples thereof include ethylene oxide addition polymers of glycol, and copolymer glycols of ethylene oxide and tetrahydrofuran.
 また、脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。これらの脂肪族ポリエーテルおよび/または脂肪族ポリエステルのなかで、得られるポリエステル系エラストマーの弾性特性からは、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、エチレンオキシドとテトラヒドロフランの共重合体グリコール、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、およびポリエチレンアジペートなどの使用が好ましく、これらの中でも特にポリ(テトラメチレンオキシド)グリコールが構成単位であることが好ましい態様である。また、これらのソフトセグメントの数平均分子量は、共重合された状態において300~6000程度であることが好ましい。 Examples of the aliphatic polyester include poly (ε-caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate. Among these aliphatic polyethers and / or aliphatic polyesters, the elastic properties of the resulting polyester elastomers indicate that poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol ethylene oxide adducts, ethylene oxide and tetrahydrofuran The use of copolymer glycol, poly (ε-caprolactone), polybutylene adipate, polyethylene adipate and the like is preferred, and among these, poly (tetramethylene oxide) glycol is a preferred embodiment. The number average molecular weight of these soft segments is preferably about 300 to 6000 in the copolymerized state.
 本発明の弾性モノフィラメントは、前記のハードセグメントと前記のソフトセグメントの比率、即ち共重合比率が35:65~75:25(質量比)の範囲であることが好ましい。ハードセグメントとソフトセグメントの比率を前記の範囲とすることにより、複合紡糸時に熱分解し難い熱特性を得られるだけで無く、鞘成分が適度な弾性を有するため、ストレッチバック性に優れた弾性モノフィラメントを得ることができる。 The elastic monofilament of the present invention preferably has a ratio of the hard segment to the soft segment, that is, a copolymerization ratio in the range of 35:65 to 75:25 (mass ratio). By setting the ratio of the hard segment to the soft segment within the above range, not only can the thermal properties be difficult to pyrolyze during composite spinning, but also the sheath component has moderate elasticity, so it is an elastic monofilament with excellent stretch-back properties Can be obtained.
 また、本発明の弾性モノフィラメントにおいては、本発明の効果を損なわない範囲であれば、熱接着性の付与等の目的で第3成分を、熱可塑性エラストマーからなる鞘成分の外側、または、熱可塑性ポリエステルからなる芯成分の更に内側に配することができる。 In addition, in the elastic monofilament of the present invention, the third component is used outside the sheath component made of thermoplastic elastomer or thermoplastic for the purpose of imparting thermal adhesiveness, etc., as long as the effects of the present invention are not impaired. It can arrange | position inside the core component which consists of polyester further.
 本発明の弾性モノフィラメントにおいて、鞘成分を構成する熱可塑性エラストマーは、ショアーD硬度が30~65の範囲であることが好ましい。ショアーD硬度を前記の範囲とすることにより、塑性変形し易いハードセグメントの量をコントロールしつつ、屈曲変形時の過大な伸長を抑制することが可能となる。 In the elastic monofilament of the present invention, the thermoplastic elastomer constituting the sheath component preferably has a Shore D hardness of 30 to 65. By setting the Shore D hardness in the above range, it is possible to suppress excessive elongation during bending deformation while controlling the amount of hard segments that are easily plastically deformed.
 また、鞘成分に使用される熱可塑性エラストマーは、本発明の効果を損なわない範囲、具体的には5質量%以下であれば、酸化チタン、炭酸カルシウム、カオリン、クレーなどの艶消し剤、顔料、染料、滑剤、酸化防止剤、耐熱剤、耐蒸熱剤、耐光剤、紫外線吸収剤、帯電防止剤および難燃剤などを含むことができる。 The thermoplastic elastomer used for the sheath component is a matting agent or pigment such as titanium oxide, calcium carbonate, kaolin, or clay as long as the effect of the present invention is not impaired, specifically, 5% by mass or less. , Dyes, lubricants, antioxidants, heat resistance agents, heat resistance agents, light resistance agents, ultraviolet absorbers, antistatic agents and flame retardants.
 本発明の弾性モノフィラメントは、その引張強度が0.3~3.0cN/dtexの範囲であり、好ましくは0.3~2.94cN/dtexであり、さらに好ましくは0.5~2.5cN/dtexである。引張強度が前記の範囲を満足する場合、織編工程等の高次加工工程において断糸等による工程通過性悪化を引き起こし難く、かつ、十分に弾性を保持した弾性モノフィラメントとなる。特に、引張強度が3.0cN/dtexを超える場合、芯鞘複合モノフィラメントの剛性が高すぎて曲げ方向の弾性が損なわれるため、織編構造体とした際のゴム弾性が損なわれ易い。 The elastic monofilament of the present invention has a tensile strength in the range of 0.3 to 3.0 cN / dtex, preferably 0.3 to 2.94 cN / dtex, more preferably 0.5 to 2.5 cN / dtex. dtex. When the tensile strength satisfies the above range, an elastic monofilament that hardly causes deterioration of process passability due to yarn breakage or the like in a high-order processing step such as a weaving and knitting step and sufficiently retains elasticity. In particular, when the tensile strength exceeds 3.0 cN / dtex, the rigidity of the core-sheath composite monofilament is too high and the elasticity in the bending direction is impaired.
 本発明の弾性モノフィラメントは、曲げ硬さが2.0~10.0cNであることが好ましく、より好ましい範囲として2.5~8.0cNを例示することができる。曲げ硬さが低すぎる場合には、屈曲時に屈曲外側で過度に弾性モノフィラメントが伸長する懸念があり、一方、曲げ硬さが大きすぎる場合には、屈曲変形し難く目的とする弾性が発現しない懸念が生じる。このような観点から、耐久性に優れ、且つ、弾性に優れたモノフィラメントを得るためにも、曲げ硬さは前記の範囲であることが好ましい。 The elastic monofilament of the present invention preferably has a bending hardness of 2.0 to 10.0 cN, and a more preferable range is 2.5 to 8.0 cN. If the bending hardness is too low, there is a concern that the elastic monofilament will extend excessively on the outside of the bending at the time of bending. On the other hand, if the bending hardness is too large, it is difficult to bend and deform and the target elasticity may not be exhibited. Occurs. From this point of view, the bending hardness is preferably in the above range in order to obtain a monofilament having excellent durability and elasticity.
 本発明の弾性モノフィラメントは、定長下で160℃の温度条件下で3分間熱処理した後、0.1cN/dtex張力下で12時間保持した際の寸法変化率が0~5%であることが好ましい。ここで160℃の温度で3分の熱処理とは、弾性モノフィラメントを織編物として、熱セット等が施されることを想定したものであり、定長で160℃の温度で3分間熱処理した後、0.1cN/dtex張力下で12時間保持した際の寸法変化率が前記範囲を満足する場合には、織編物等の製品として熱セットされた後も過度に伸長することなく、且つ、優れたクリープ特性を有することができる。定長下で160℃の温度条件下で3分間熱処理した後の、0.1cN/dtex張力下で12時間保持した際の寸法変化率のより好ましい範囲としては、0~3%を例示することができる。 The elastic monofilament of the present invention has a dimensional change rate of 0 to 5% when heat-treated for 3 minutes at 160 ° C. under a constant length and then held for 12 hours under a tension of 0.1 cN / dtex. preferable. Here, the heat treatment for 3 minutes at a temperature of 160 ° C. assumes that the elastic monofilament is woven or knitted and is subjected to heat setting or the like. After heat treatment at a constant length of 160 ° C. for 3 minutes, When the rate of dimensional change when held under a tension of 0.1 cN / dtex for 12 hours satisfies the above range, it does not stretch excessively even after being heat set as a product such as a woven or knitted fabric, and is excellent. Can have creep properties. As a more preferable range of the dimensional change rate after being heat-treated for 3 minutes under a temperature condition of 160 ° C. under a constant length and held under a tension of 0.1 cN / dtex for 12 hours, 0 to 3% is exemplified. Can do.
 本発明の弾性モノフィラメントは、その沸水収縮率が3~10%であることが好ましい。沸水収縮率を前記範囲とすることにより、熱付与時の寸法安定性に優れ、織編物とした際にも皺のより難い品位に優れた製品を得ることが可能となる。 The elastic monofilament of the present invention preferably has a boiling water shrinkage of 3 to 10%. By setting the boiling water shrinkage in the above range, it is possible to obtain a product that is excellent in dimensional stability at the time of heat application and that is more difficult to wrinkle even when made into a woven or knitted fabric.
 本発明の弾性モノフィラメントは、単独で使用することは勿論、本発明の弾性モノフィラメントを複数本用いること、または、本発明の弾性モノフィラメントと他素材のフィラメントと合糸して用いることができる。 The elastic monofilament of the present invention can be used alone, or a plurality of the elastic monofilaments of the present invention can be used, or the elastic monofilament of the present invention and a filament of another material can be used together.
 次に、本発明の弾性モノフィラメントの製造方法について詳細に説明するが、弾性モノフィラメントの製造方法はこれに限られるものではない。 Next, the method for producing the elastic monofilament of the present invention will be described in detail, but the method for producing the elastic monofilament is not limited to this.
 本発明の弾性モノフィラメントは、従来知られた共押出設備を用いた芯鞘複合紡糸法により製造することができるため、生産性が高く低コストで生産することが可能である。 Since the elastic monofilament of the present invention can be produced by a core-sheath composite spinning method using a conventionally known co-extrusion equipment, it can be produced with high productivity and at low cost.
 すなわち、芯鞘複合モノフィラメントの芯成分を構成する熱可塑性ポリエステルポリマーと鞘成分を構成する熱可塑性エラストマーとを、別々のエクストルーダーで溶融した後、それぞれギヤポンプで計量して複合パック中に流入させる。複合パック内に流入された芯成分と鞘成分の2種のポリマーは、パック内で金属不織布フィルターや金属メッシュで濾過された後、複合口金に導入され、芯成分が鞘成分に囲まれた形態で紡出される。 That is, after the thermoplastic polyester polymer constituting the core component of the core-sheath composite monofilament and the thermoplastic elastomer constituting the sheath component are melted by separate extruders, each is measured with a gear pump and allowed to flow into the composite pack. Two types of polymer, core component and sheath component, flowed into the composite pack are filtered through a metal non-woven filter or metal mesh in the pack and then introduced into the composite base, and the core component is surrounded by the sheath component. It is spun at.
 このとき、紡糸に使用される熱可塑性エラストマーおよび熱可塑性ポリエステルの紡糸機内における加水分解を抑制する目的で、紡糸に用いられるポリマーを、事前に真空乾燥機等を用いて水分率200ppm未満とすることが好ましい態様である。水分率が前記の範囲を満足する場合、複合異常が生じ難いだけで無く、耐久性に優れた弾性モノフィラメントを得やすくなる。 At this time, for the purpose of suppressing hydrolysis in the spinning machine of the thermoplastic elastomer and the thermoplastic polyester used for spinning, the polymer used for spinning is previously set to a moisture content of less than 200 ppm using a vacuum dryer or the like. Is a preferred embodiment. When the moisture content satisfies the above range, not only is the composite abnormality difficult to occur, but an elastic monofilament having excellent durability can be easily obtained.
 また、弾性モノフィラメントに、原着化、耐光性付与および抗菌性付与等の機能付与を行う場合、所望の顔料、耐光剤および抗菌剤等を多量に含有したマスターチップを作製しておき、熱可塑性ポリエステル樹脂および/または熱可塑性エラストマー樹脂に、これらを必要量ブレンドして紡糸をすることができる。 In addition, when imparting functions such as original deposition, light resistance and antibacterial properties to an elastic monofilament, a master chip containing a large amount of desired pigments, light resistance agents, antibacterial agents, etc. is prepared, and thermoplasticity is obtained. A polyester resin and / or a thermoplastic elastomer resin can be blended in a necessary amount to be spun.
 特に本発明の弾性モノフィラメントには、実使用時の紫外線等に起因する劣化を低減する目的で、熱可塑性エラストマー樹脂に耐光剤を添加することが好ましい態様である。本発明の弾性モノフィラメントに耐光剤を付与するための好ましい耐光剤添加マスターチップとして、東レ・デュポン製“ハイトレル”(登録商標)21UVを例示することができる。 Particularly, in the elastic monofilament of the present invention, it is preferable to add a light-proofing agent to the thermoplastic elastomer resin for the purpose of reducing deterioration due to ultraviolet rays during actual use. As a preferred light-resistant additive-added master chip for imparting a light-resistant agent to the elastic monofilament of the present invention, “Hytrel” (registered trademark) 21UV manufactured by Toray DuPont can be exemplified.
 複合口金から紡出された溶融モノフィラメントは、複合口金直下に配置された加熱筒および/または断熱筒内を通過させることが、口金孔内で生じた分子構造の歪を除去する観点から好ましい態様である。加熱筒および/または断熱筒の長さは、得られる弾性モノフィラメントの長手方向の繊度斑低減の観点から、10~150mmの範囲とすることが好ましい。 In a preferred embodiment, the molten monofilament spun from the composite die is allowed to pass through a heating cylinder and / or a heat insulating cylinder arranged immediately below the composite die from the viewpoint of removing the distortion of the molecular structure generated in the die hole. is there. The length of the heating tube and / or the heat insulating tube is preferably in the range of 10 to 150 mm from the viewpoint of reducing fineness unevenness in the longitudinal direction of the obtained elastic monofilament.
 必要に応じて、加熱筒および/または断熱筒を通過した溶融モノフィラメントは、溶媒を水やポリエチレングリコール等とする冷却浴内で冷却した後、所望の表面速度で回転する引取ロールで引き取られる。冷却浴の温度に関しては、得られる弾性モノフィラメントの真円度や繊度斑を確認しながら変更することができるが、本発明の弾性モノフィラメントを得るための冷却温度としては20~80℃の範囲を例示することができる。また、引取速度については、冷却浴中で溶融モノフィラメントの冷却固化が完了する速度であれば良く、未延伸糸の繊維構造を本発明の弾性モノフィラメントを得るために好適な範囲に設定するためには、5~50m/分の範囲とすることが好ましい。 If necessary, the molten monofilament that has passed through the heating tube and / or the heat insulating tube is cooled in a cooling bath using water or polyethylene glycol as a solvent, and then taken up by a take-up roll that rotates at a desired surface speed. The temperature of the cooling bath can be changed while confirming the roundness and fineness unevenness of the obtained elastic monofilament, but the cooling temperature for obtaining the elastic monofilament of the present invention is exemplified by the range of 20 to 80 ° C. can do. Further, the take-up speed may be a speed at which the cooling and solidification of the molten monofilament is completed in the cooling bath, and in order to set the fiber structure of the undrawn yarn within a suitable range for obtaining the elastic monofilament of the present invention. A range of 5 to 50 m / min is preferable.
 引取ロールで引き取られた未延伸モノフィラメントは一旦巻き取られた後、または、一旦巻き取ることなく延伸工程に供される。延伸工程における延伸段数は、本発明の弾性モノフィラメントを得るためには2段以上の多段延伸法を採用することが好ましい。また、延伸時の熱媒についても、温水、PEG浴、蒸気および乾熱延伸機を使用することができる。 The unstretched monofilament that has been taken up by the take-up roll is once taken up or is used for the drawing step without being taken up once. In order to obtain the elastic monofilament of the present invention, the number of drawing steps in the drawing step is preferably a multistage drawing method having two or more steps. Moreover, also about the heat medium at the time of extending | stretching, warm water, a PEG bath, a vapor | steam, and a dry heat drawing machine can be used.
 また、延伸温度については、本発明の弾性モノフィラメントを得るためには、2段目の延伸温度を、鞘成分に配される熱可塑性エラストマーの融点-50℃~融点-10℃に設定することが好ましい態様である。2段目の延伸温度を熱可塑性エラストマーの分子運動性が極めて高い前記範囲に設定することにより、延伸工程における熱可塑性エラストマーの過度な配向を抑制し、曲げ方向に変形した際も優れた弾性を有する弾性モノフィラメントを得ることが可能となる。 Regarding the stretching temperature, in order to obtain the elastic monofilament of the present invention, the stretching temperature of the second stage may be set to the melting point −50 ° C. to the melting point −10 ° C. of the thermoplastic elastomer disposed in the sheath component. This is a preferred embodiment. By setting the stretching temperature of the second stage in the above range where the molecular mobility of the thermoplastic elastomer is extremely high, excessive orientation of the thermoplastic elastomer in the stretching process is suppressed, and excellent elasticity is obtained even when deformed in the bending direction. It is possible to obtain an elastic monofilament having the same.
 延伸後の弾性モノフィラメントは、次いで弛緩熱処理が施される。弛緩倍率は、糸揺れ抑制および繰り返し曲げ変形に供された際の弾性回復性の確保の観点から、0.99~0.85の範囲であることが好ましい。また、弛緩熱処理温度は、鞘成分に配される熱可塑性エラストマーの融点-50℃~融点-10℃に設定することが好ましく、より好ましい範囲として熱可塑性エラストマーの融点-40℃~融点-10℃を例示することができる。弛緩熱処理温度を前記の範囲に設定することにより、熱処理工程において弾性モノフィラメント間の熱融着を抑制しつつ、延伸工程において、鞘成分に生じた過度の配向を緩和することにより、曲げ方向に変形した際も優れた弾性を有するモノフィラメントを得ることが可能となる。 The stretched elastic monofilament is then subjected to relaxation heat treatment. The relaxation magnification is preferably in the range of 0.99 to 0.85 from the viewpoint of suppressing yarn swaying and ensuring elastic recovery when subjected to repeated bending deformation. The relaxation heat treatment temperature is preferably set to the melting point of the thermoplastic elastomer arranged in the sheath component from −50 ° C. to the melting point of −10 ° C., and more preferably, the melting point of the thermoplastic elastomer from −40 ° C. to the melting point of −10 ° C. Can be illustrated. By setting the relaxation heat treatment temperature within the above range, the thermal fusion between the elastic monofilaments is suppressed in the heat treatment process, and the excessive orientation generated in the sheath component is relaxed in the stretching process, thereby deforming in the bending direction. In this case, a monofilament having excellent elasticity can be obtained.
 本発明の芯鞘樹脂構成において、前述の本発明の引張強度の範囲を満足させるためには、延伸倍率に弛緩倍率を乗じて得られる総延伸倍率を4.0倍未満に設定することが好ましく、より好ましい範囲として3.8倍未満を例示することができる。 In the core-sheath resin structure of the present invention, in order to satisfy the above-described range of the tensile strength of the present invention, it is preferable to set the total draw ratio obtained by multiplying the draw ratio by the relaxation ratio to less than 4.0 times. As a more preferable range, less than 3.8 times can be exemplified.
 弛緩処理後の弾性モノフィラメントは巻取機によって巻き取られるが、このとき、巻き取り張力は0.10cN/dtex以下の範囲とすることが好ましい。巻き取り張力を前記の範囲とすることにより、巻取り時に弾性モノフィラメントが受ける負荷が低減され、結果として耐久性に優れた弾性モノフィラメントを得ることが可能となる。巻き取り張力の下限は、実使用に適用可能な巻き取りパッケージを得るためには、0.02cN/dtex以上であることが好ましい。 The elastic monofilament after the relaxation treatment is wound by a winder, and at this time, the winding tension is preferably in the range of 0.10 cN / dtex or less. By setting the winding tension within the above range, the load applied to the elastic monofilament during winding is reduced, and as a result, an elastic monofilament having excellent durability can be obtained. In order to obtain a winding package applicable to actual use, the lower limit of the winding tension is preferably 0.02 cN / dtex or more.
 このようにして、本発明の弾性モノフィラメントを得ることができる。 Thus, the elastic monofilament of the present invention can be obtained.
 本発明の弾性モノフィラメントは、特に曲げ方向の耐ヘタリ性、弾性および高温付与後のクリープ特性に優れていることから、水産資材、建築資材、安全資材、衣料資材、土木資材、農業資材、車両資材、およびスポーツ資材等の各種産業用途は勿論のこと、特に実使用時に曲げ方向に変形を受け易いカーシートや事務用椅子等の弾性織編構造体用途に好適に利用することができる。 The elastic monofilament of the present invention is particularly excellent in bending direction settling resistance, elasticity and creep properties after application of high temperature, so it is a marine product, building material, safety material, clothing material, civil engineering material, agricultural material, vehicle material. In addition to various industrial uses such as sports materials and the like, it can be suitably used for elastic woven knitted structures such as car seats and office chairs that are easily deformed in the bending direction during actual use.
 次に、実施例によって本発明の弾性モノフィラメントについて、更に詳しく説明する。実施例において用いた特性の定義と測定方法は、次のとおりである。測定n数については、特に記載していない場合は1で行った。 Next, the elastic monofilament of the present invention will be described in more detail by way of examples. The definition and measuring method of the characteristics used in the examples are as follows. The number of measurements n was 1 unless otherwise specified.
 [直径]
アンリツ製レーザー外径測定器を使用して、弾性モノフィラメントの外径を長さ方向に10点測定し、得られた外径の平均値を直径とした。
[diameter]
Using an Anritsu laser outer diameter measuring instrument, the outer diameter of the elastic monofilament was measured at 10 points in the length direction, and the average value of the obtained outer diameters was taken as the diameter.
 [繊度]
JIS L1013:2010 8.3.1 B法に準じて、測定した。
[Fineness]
Measured according to JIS L1013: 2010 8.3.1 B method.
 [強力、伸度および引張強度]
オリエンテック社製テンシロンUTM-4-100型引張試験機を用い、JIS L1013:2010 8.5.1に準じて、定速緊張形つかみ間隔25cmにてモノフィラメントの強力を3点測定し、その試行回数3回の平均強力、平均伸度を求めた。強度に関しては、平均強力を前記の繊度で除して求めた。
[Strength, elongation and tensile strength]
Using a Tensilon UTM-4-100 type tensile tester manufactured by Orientec Co., Ltd., the strength of the monofilament was measured at three points with a constant-speed tension-type gripping interval of 25 cm in accordance with JIS L1013: 2010 8.5.1. The average strength and average elongation of 3 times were obtained. The strength was determined by dividing the average strength by the fineness.
 [芯成分の直径と芯成分の比率]
弾性モノフィラメントを、繊維軸と垂直方向に切断して得られた切断面をキーエンス製デジタルマイクロスコープVHX-100Fで観察し、デジタルマイクロスコープの長さ測定ツールを用いて芯成分の直径を測定し、面積測定ツールを用いて得られた弾性モノフィラメントの断面積および芯成分の断面積から、芯成分の比率(体積%)を求めた。
[Ratio of core component diameter to core component]
The cut surface obtained by cutting the elastic monofilament in a direction perpendicular to the fiber axis is observed with a digital microscope VHX-100F manufactured by Keyence, and the diameter of the core component is measured using the length measurement tool of the digital microscope. The ratio (volume%) of the core component was determined from the cross-sectional area of the elastic monofilament and the cross-sectional area of the core component obtained using the area measurement tool.
 [融点]
パーキンエルマー社製示差走査型熱量計DSC-7型を用い、試料10mgを昇温速度10℃/分にして測定して得られた融解吸熱曲線の極値を与える温度を融点とした。
[Melting point]
The melting point was defined as the temperature at which the extreme value of the melting endotherm curve obtained by measuring 10 mg of a sample at a heating rate of 10 ° C./min using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer.
 [曲げ硬さ]
水平方向に10mm間隔で2本設置された直径2mmのステンレス棒の下に、長さ約4cmにカットした弾性モノフィラメントをセットし、2本のステンレス棒の中央部の位置で弾性モノフィラメントに、直径1mmのJ字型ステンレス製フックを掛け、(株)メネベア製TCM-200型万能引張・圧縮試験機を用いて、ステンレス製フックを速度50mm/分で引き上げ、このとき生じる最大応力を曲げ硬さとした。
[Bending hardness]
An elastic monofilament cut into a length of about 4 cm is set under a 2 mm diameter stainless steel rod installed at intervals of 10 mm in the horizontal direction, and a diameter of 1 mm is placed on the elastic monofilament at the center of the two stainless steel rods. A stainless steel hook was pulled up at a speed of 50 mm / min using a T-200 type universal tensile / compression tester manufactured by Menebea Co., Ltd., and the maximum stress generated at this time was defined as bending hardness. .
 [沸水収縮率(沸収)]
JIS L1013:2010 8.18.1(B法)に準じて、測定した。
[Boiling water shrinkage (boiling yield)]
It measured according to JIS L1013: 2010 8.18.1 (B method).
 [固有粘度]
フラスコ内にオルトクロロフェノール100mLに対し、ウィレー型粉砕機(フィルター穴径1mm)で粉砕した試料8gを加え、160℃の温度で10分間熱処理する。熱処理後のフラスコを流水で15分間冷却した後、得られた溶液の相対粘度ηを、オストワルド式粘度計を用いて25℃の温度で測定し、固有粘度=(K1×η)+K2の近似式によって固有粘度を求めた。定数K1は0.0242であり、定数K2は0.2634である。
[Intrinsic viscosity]
Into the flask, 8 g of a sample pulverized with a Willet pulverizer (filter hole diameter: 1 mm) is added to 100 mL of orthochlorophenol, and heat-treated at a temperature of 160 ° C. for 10 minutes. After the heat-treated flask was cooled with running water for 15 minutes, the relative viscosity η of the obtained solution was measured at a temperature of 25 ° C. using an Ostwald viscometer, and the approximate viscosity of intrinsic viscosity = (K1 × η) + K2. The intrinsic viscosity was determined by The constant K1 is 0.0242 and the constant K2 is 0.2634.
 [熱処理後寸法変化率]
長さ30cmの鉄製プレートに、原糸の弛みや、原糸間の隙間が無いように10回巻き付けた原糸サンプル(弾性モノフィラメント)を160℃の温度の乾熱オーブンで3分間熱処理した後、乾熱オーブンから取り出し、自然冷却した。次に、熱処理後の原糸サンプルを、オリエンテック社製テンシロンUTM-4-100型引張試験機に糸長25cmで取り付けた後、0.1cN/dtexの荷重を付与した際の伸度(E)%と、0.1cN/dtexの荷重を付与した状態で12時間放置した際の伸度(E12)%を求め、E12-Eを熱処理後寸法変化率とした。測定n数=5とし、これらの平均値を採用した。
[Dimensional change after heat treatment]
A raw yarn sample (elastic monofilament) wound 10 times on an iron plate having a length of 30 cm so that there is no slack in the raw yarn and no gap between the raw yarns was heat treated in a dry heat oven at a temperature of 160 ° C. for 3 minutes, Removed from dry heat oven and allowed to cool naturally. Next, after the heat-treated raw yarn sample was attached to a Tensilon UTM-4-100 type tensile tester manufactured by Orientec Co., Ltd. with a yarn length of 25 cm, the elongation when a load of 0.1 cN / dtex was applied (E 0 )% and elongation (E 12 )% when left for 12 hours in a state where a load of 0.1 cN / dtex was applied, and E 12 -E 0 was defined as a dimensional change rate after heat treatment. The number of measurements n was set to 5, and the average value thereof was adopted.
 [弾性評価]
市販のバドミントンラケットに、弾性モノフィラメントを経緯共に0.1cN/dtex荷重で張設した。弾性モノフィラメントを張設後、被験者に打球面と垂直方向から掌で5回の繰り返し荷重-除重運動をさせたのち、下記の基準で点数付けを実施した。被験者数は10人とし、10人の点数の平均値を結果として用いた。3点~5点を合格とした。
5点:優れたゴム弾性を有する、
4点:3点と5点の中間、
3点:ゴム弾性を有する、
2点:3点と1点の中間、
1点:硬い。
[Elasticity evaluation]
An elastic monofilament was stretched with a 0.1 cN / dtex load on a commercially available badminton racket. After tensioning the elastic monofilament, the subject was subjected to 5 repeated load-dewetting motions with the palm from the direction perpendicular to the ball striking face, and then scored according to the following criteria. The number of subjects was 10, and the average value of the scores of 10 people was used as a result. Three to five points were accepted.
5 points: excellent rubber elasticity,
4 points: halfway between 3 and 5 points
3 points: rubber elasticity
2 points: halfway between 3 points and 1 point,
1 point: Hard.
 [ヘタリ量]
JIS L1095:2008 9.10.(B法)に準じた屈曲摩耗特性試験機を用い、固定された直径0.6mmの摩擦子(硬質鋼線SWP-A)の上に接触させた、片端を把持し、予め摩擦子の往復ストローク幅の外側に間隔200mmのマーキングを施した弾性モノフィラメントを、当該弾性モノフィラメントが摩擦子の左右各55°の角度で屈曲するように設けられた2個のフリーローラーの下に掛け、モノフィラメントの把持された糸端とは逆の糸端に2.5kg/mmの荷重を付与した状態で試験機にセットし、往復ストローク25mm、速度120往復/分で摩擦子を弾性モノフィラメントに250回往復接触させた後、前記荷重を付与した状態で24時間保持した。
[Steel amount]
JIS L1095: 2008 9.10. Using a bending wear characteristic testing machine according to (Method B), grip one end of the frictional element (hard steel wire SWP-A) with a fixed diameter of 0.6 mm, and reciprocate the frictional element in advance. Gripping the elastic monofilament with markings of 200 mm on the outside of the stroke width under two free rollers provided so that the elastic monofilament bends at an angle of 55 ° to the left and right of the friction element. Set on the testing machine with a load of 2.5 kg / mm 2 applied to the yarn end opposite to the yarn end, and contact the elastic element with the elastic monofilament 250 times with a reciprocating stroke of 25 mm and a speed of 120 reciprocations per minute. Then, the load was applied for 24 hours.
 処理後のサンプル(弾性モノフィラメント)を屈曲磨耗特性試験機から取り外し、直ちに図1記載の如く6g/mmの荷重2を付与した状態で鉛直方向に吊るした。吊るしたサンプル(弾性モノフィラメント1)について、マーキング間を結んだ線aから変形最大点に向かって引いた垂線の距離A(mm)を求め、測定5回の平均値をヘタリ量とした。 The treated sample (elastic monofilament) was removed from the bending wear characteristic tester and immediately suspended in a state where a load 2 of 6 g / mm 2 was applied as shown in FIG. For the suspended sample (elastic monofilament 1), the distance A (mm) of the perpendicular drawn from the line a connecting the markings toward the maximum deformation point was determined, and the average value of the five measurements was used as the amount of stickiness.
 [共重合系熱可塑性エラストマー(A-1)の製造]
 テレフタル酸51.9質量部、1,4-ブタンジオール39.7質量部および数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール47.6質量部を、チタンテトラブトキシド0.04質量部とモノ-n-ブチル-モノヒドロキシスズオキサイド0.02質量部を共にヘリカルリボン型攪拌翼を備えた反応容器に仕込み、190℃の温度から徐々に加熱して3時間で225℃の温度まで加熱し、反応水を系外に流出させながらエステル化反応を行った。反応混合物にテトラ-n-ブチルチタネート0.2質量部を追添加し、”イルガノックス”(登録商標)1098(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.05質量部を添加した後、245℃の温度に昇温し、次いで、50分かけて系内の圧力を27Paの減圧とし、その条件下で1時間50分重合を行った。得られたポリマーを水中にストランド状で吐出し、カッティングによりハード/ソフト比48/52(質量比)である共重合系熱可塑性エラストマー(A-1)のペレットを得た。得られたペレットの融点は200℃であり、ショアー硬度Dは47であった。
[Production of copolymer thermoplastic elastomer (A-1)]
51.9 parts by mass of terephthalic acid, 39.7 parts by mass of 1,4-butanediol and 47.6 parts by mass of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400, 0.04 parts by mass of titanium tetrabutoxide and mono -0.02 part by mass of n-butyl-monohydroxytin oxide was charged in a reaction vessel equipped with a helical ribbon type stirring blade, gradually heated from a temperature of 190 ° C and heated to a temperature of 225 ° C in 3 hours, The esterification reaction was carried out while allowing the reaction water to flow out of the system. After adding 0.2 parts by mass of tetra-n-butyl titanate to the reaction mixture and adding 0.05 parts by mass of “Irganox” (registered trademark) 1098 (hindered phenol antioxidant manufactured by Ciba Geigy), The temperature was raised to 245 ° C., and then the pressure in the system was reduced to 27 Pa over 50 minutes, and polymerization was carried out for 1 hour and 50 minutes under the conditions. The obtained polymer was discharged into water in the form of a strand, and pellets of a copolymerized thermoplastic elastomer (A-1) having a hard / soft ratio of 48/52 (mass ratio) were obtained by cutting. The obtained pellet had a melting point of 200 ° C. and a Shore hardness D of 47.
 [共重合系熱可塑性エラストマー(A-2)の製造]
 テレフタル酸32.9質量部、イソフタル酸9.6質量部、1,4-ブタンジオール40.3質量部および数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール46.7質量部を、チタンテトラブトキシド0.04質量部とモノ-n-ブチル-モノヒドロキシスズオキサイド0.02質量部を共にヘリカルリボン型攪拌翼を備えた反応容器に仕込み、190℃の温度から徐々に加熱して3時間で225℃の温度まで加熱し、反応水を系外に流出させながらエステル化反応を行った。反応混合物にテトラ-n-ブチルチタネート0.15質量部を追添加し、”イルガノックス” (登録商標)1098(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.05質量部を添加した後、245℃の温度に昇温し、次いで、50分かけて系内の圧力を27Paの減圧とし、その条件下で1時間50分重合を行った。得られたポリマーを水中にストランド状で吐出し、カッティングによりハード/ソフト比49/51(質量比)である共重合系熱可塑性エラストマー(A-2)のペレットとした。得られたペレットの融点は160℃であり、ショアー硬度Dは40であった。
[Production of copolymer thermoplastic elastomer (A-2)]
32.9 parts by mass of terephthalic acid, 9.6 parts by mass of isophthalic acid, 40.3 parts by mass of 1,4-butanediol and 46.7 parts by mass of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400 were added to titanium tetra Both 0.04 parts by weight of butoxide and 0.02 parts by weight of mono-n-butyl-monohydroxytin oxide were charged into a reaction vessel equipped with a helical ribbon type stirring blade and heated gradually from a temperature of 190 ° C. in 3 hours. The esterification reaction was carried out while heating to a temperature of 225 ° C. and allowing reaction water to flow out of the system. After adding 0.15 parts by mass of tetra-n-butyl titanate to the reaction mixture and adding 0.05 parts by mass of “Irganox” (registered trademark) 1098 (hindered phenol antioxidant manufactured by Ciba Geigy), The temperature was raised to 245 ° C., and then the pressure in the system was reduced to 27 Pa over 50 minutes, and polymerization was carried out for 1 hour and 50 minutes under the conditions. The obtained polymer was discharged into water in the form of a strand, and cut into pellets of a copolymer thermoplastic elastomer (A-2) having a hard / soft ratio of 49/51 (mass ratio). The obtained pellet had a melting point of 160 ° C. and a Shore hardness D of 40.
 (実施例1~6、比較例2、比較例4)
芯成分用ポリマーとして、水分率が100ppm未満となるまで乾燥した融点が257℃で、固有粘度が1.21であり、酸化チタンを0.1質量%含有するポリエチレンテレフタレートポリマー(東レ株式会社製T-701T)を用い、鞘成分用ポリマーとして、水分率が100ppm未満となるまで乾燥した共重合系熱可塑性エラストマー(A-1)を用いて、それぞれ設定温度が295℃のφ30mmエクストルーダーと、設定温度が245℃のφ40mmエクストルーダーで溶融した後、それぞれ245℃と295℃の温度に保温されたギヤポンプを用いて、表1に記載の外径(直径)および芯成分の比率となるように計量し、290℃の温度に保温された複合紡糸パックに導入した。複合紡糸パック内では、それぞれの溶融ポリマーを200メッシュの金網で濾過した後、孔径が1.5mmで、孔数が10の芯鞘複合口金から吐出した。吐出されたフィラメントは、口金直下に取り付けられた長さ30mmの断熱筒を通過させた後、エアーギャップ30mmを有して設置された25℃の温度の冷却水浴を通過させ、表面速度20m/分で回転する引取ローラーで未延伸モノフィラメントとして引き取った。得られた未延伸モノフィラメントは、一旦巻き取ることなく90℃の温度に調温された温水槽を用いて、表1記載の延伸倍率で1段目の延伸をおこなった後、表1に記載の温度に調温した乾熱延伸槽を用いて、表1に記載の倍率で2段目の延伸を施した。延伸後のモノフィラメントは、引き続き表1に記載の温度に調温した乾熱槽を用いて、表1に記載の倍率で弛緩熱処理を行い、表1に記載の巻き取り張力で巻き取り弾性モノフィラメントを得た。得られたモノフィラメントの特性は、表1と表2に示すとおりであった。
比較例2は、芯成分の比率が少ないため屈曲外側の過伸長を抑制することができず、ヘタリ量が大きかった。比較例4は、引張強度が3.05cN/dtexを超えており、曲げ方向の弾性が損なわれていた。
(Examples 1 to 6, Comparative Example 2, Comparative Example 4)
As a polymer for the core component, a polyethylene terephthalate polymer (T manufactured by Toray Industries, Inc.) having a melting point of 257 ° C. dried to a moisture content of less than 100 ppm, an intrinsic viscosity of 1.21, and containing 0.1% by mass of titanium oxide. -701T) and a copolymer thermoplastic elastomer (A-1) dried to a moisture content of less than 100 ppm as the sheath component polymer, and a setting temperature of Φ30 mm extruder of 295 ° C. After melting with a φ40mm extruder with a temperature of 245 ° C, weighed the outer diameter (diameter) and core component ratios listed in Table 1 using gear pumps kept at temperatures of 245 ° C and 295 ° C, respectively. And introduced into a composite spin pack kept at a temperature of 290 ° C. In the composite spinning pack, each molten polymer was filtered through a 200-mesh wire mesh, and then discharged from a core-sheath composite die having a hole diameter of 1.5 mm and 10 holes. The discharged filament is passed through a heat insulating cylinder having a length of 30 mm attached immediately below the base, and then passed through a cooling water bath having a temperature of 25 ° C. installed with an air gap of 30 mm, and a surface speed of 20 m / min. It was taken up as an unstretched monofilament with a take-up roller that was rotated at the same time. The obtained unstretched monofilament was stretched in the first stage at a stretch ratio described in Table 1 using a hot water tank adjusted to a temperature of 90 ° C. without being wound up, and then listed in Table 1. Using a dry heat stretching tank adjusted to the temperature, the second stage stretching was performed at the magnification described in Table 1. The monofilament after drawing is subjected to relaxation heat treatment at a magnification shown in Table 1 using a dry heat bath adjusted to the temperature shown in Table 1, and the wound elastic monofilament is taken up with the winding tension shown in Table 1. Obtained. The properties of the obtained monofilament were as shown in Tables 1 and 2.
In Comparative Example 2, since the ratio of the core component was small, it was not possible to suppress overextension on the outer side of the bend, and the amount of settling was large. In Comparative Example 4, the tensile strength exceeded 3.05 cN / dtex, and the elasticity in the bending direction was impaired.
 (実施例7)
鞘成分用ポリマーとして、97質量%の共重合系熱可塑性エラストマー(A-1)と、3質量%の“ハイトレル”(登録商標)21UVを用いたこと以外は、実施例1と同様におこなった。得られたモノフィラメントの特性は、表1に示すとおりであった。
(Example 7)
The same procedure as in Example 1 was performed except that 97% by mass of the copolymer-based thermoplastic elastomer (A-1) and 3% by mass of “Hytrel” (registered trademark) 21UV were used as the polymer for the sheath component. . The properties of the obtained monofilament were as shown in Table 1.
 (実施例8、比較例3、比較例5)
芯成分用ポリマーとして融点が257℃で、固有粘度が0.71、酸化チタンを0.1質量%含有するポリエチレンテレフタレートポリマー(東レ株式会社製T-301T)を用いたこと以外は、実施例1と同様におこなった。得られたモノフィラメントの特性は、表1と表2に示すとおりであった。
比較例3と比較例5は、引張強度が3.05cN/dtexを超えており、曲げ方向の弾性が損なわれていた。
(Example 8, Comparative Example 3, Comparative Example 5)
Example 1 except that a polyethylene terephthalate polymer (T-301T manufactured by Toray Industries, Inc.) containing a melting point of 257 ° C., an intrinsic viscosity of 0.71, and 0.1% by mass of titanium oxide was used as the core component polymer. It was done in the same way. The properties of the obtained monofilament were as shown in Tables 1 and 2.
In Comparative Example 3 and Comparative Example 5, the tensile strength exceeded 3.05 cN / dtex, and the elasticity in the bending direction was impaired.
 (比較例1)
芯成分用ポリマーとして、水分率が150ppm未満となるまで乾燥した共重合系熱可塑性エラストマー(A-1)を、鞘成分用ポリマーとして、水分率が150ppm未満となるまで乾燥した共重合系熱可塑性エラストマー(A-2)を、それぞれ設定温度250℃のφ30mmエクストルーダー、設定温度215℃のφ40mmエクストルーダーで溶融した後、それぞれ245℃と250℃の温度に保温されたギヤポンプを用いて250℃の温度に保温された複合紡糸パックに導入したこと以外は、実施例1と同様におこなった。得られた弾性モノフィラメントの特性は、表2に示すとおりであった。
(Comparative Example 1)
Copolymer thermoplastic elastomer (A-1) dried to a moisture content of less than 150 ppm as the core component polymer, and copolymer thermoplastic to the moisture content of less than 150 ppm as the sheath component polymer The elastomer (A-2) was melted with a φ30 mm extruder having a set temperature of 250 ° C. and a φ40 mm extruder having a set temperature of 215 ° C., respectively, and then heated to 250 ° C. using a gear pump kept at a temperature of 245 ° C. and 250 ° C., respectively. The same procedure as in Example 1 was carried out except that it was introduced into a composite spinning pack kept at a temperature. The properties of the obtained elastic monofilament were as shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表1と表2に示すとおり、本発明の弾性モノフィラメントは、曲げ方向の耐ヘタリ性、弾性および高温付与後のクリープ特性に優れていた。 As shown in Tables 1 and 2, the elastic monofilament of the present invention was excellent in the bending-direction set resistance, elasticity, and creep properties after application of high temperature.
1.屈曲摩耗特性試験後の弾性モノフィラメント
2.荷重
a.マーキング間を結んだ線
A.マーキング間を結んだ線aから変形最大点に向かって引いた垂線の距離(ヘタリ量)
1. 1. Elastic monofilament after bending abrasion characteristic test Load a. Line connecting the markings A. The distance of the perpendicular line drawn from the line a connecting the markings toward the maximum deformation point (sag amount)

Claims (7)

  1. 直径が0.1~1.0mmで、芯成分の比率が2~40体積%である芯鞘複合構造を有し、前記芯成分が、重合体中の熱可塑性ポリエステル単位が95~100質量%の熱可塑性ポリエステルで、鞘成分が、ハードセグメントとソフトセグメントを有する共重合系熱可塑性エラストマーであり、引張強度が0.3~3.0cN/dtexであることを特徴とする弾性モノフィラメント。 It has a core-sheath composite structure having a diameter of 0.1 to 1.0 mm and a core component ratio of 2 to 40% by volume, and the core component is 95 to 100% by mass of the thermoplastic polyester unit in the polymer. An elastic monofilament, wherein the sheath component is a copolymer thermoplastic elastomer having a hard segment and a soft segment as a sheath component, and has a tensile strength of 0.3 to 3.0 cN / dtex.
  2.  芯成分に使用される熱可塑性ポリエステルの固有粘度(IV)が0.7以上である請求項1記載の弾性モノフィラメント。 2. The elastic monofilament according to claim 1, wherein the thermoplastic polyester used for the core component has an intrinsic viscosity (IV) of 0.7 or more.
  3.  ハードセグメントが、芳香族ポリエステル単位を主たる構成単位とし、ソフトセグメントが、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位を主たる構成単位とする請求項2記載の弾性モノフィラメント。 3. The elastic monofilament according to claim 2, wherein the hard segment has an aromatic polyester unit as a main constituent unit, and the soft segment has an aliphatic polyether unit and / or an aliphatic polyester unit as a main constituent unit.
  4.  芳香族ポリエステル単位が、ポリブチレンテレフタレート単位であり、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位が、ポリ(テトラメチレンオキシド)グリコール単位である請求項3記載の弾性モノフィラメント。 4. The elastic monofilament according to claim 3, wherein the aromatic polyester unit is a polybutylene terephthalate unit, and the aliphatic polyether unit and / or the aliphatic polyester unit is a poly (tetramethylene oxide) glycol unit.
  5.  ハードセグメントとソフトセグメントの比率が、35:65~75:25(質量比)である請求項1~4のいずれかに記載の弾性モノフィラメント。 The elastic monofilament according to any one of claims 1 to 4, wherein the ratio of the hard segment to the soft segment is 35:65 to 75:25 (mass ratio).
  6.  曲げ硬さが2.0~10cNである請求項1~5のいずれかに記載の弾性モノフィラメント。 The elastic monofilament according to any one of claims 1 to 5, wherein the bending hardness is 2.0 to 10 cN.
  7.  定長下160℃の温度条件下で3分間熱処理した後、0.1cN/dtexの張力下で12時間保持した際の寸法変化率が0~5%である請求項1~6のいずれかに記載の弾性モノフィラメント。 7. The dimensional change rate is 0 to 5% when heat-treated for 3 minutes under a temperature condition of 160 ° C. under constant length and then held for 12 hours under a tension of 0.1 cN / dtex. The elastic monofilament as described.
PCT/JP2014/070923 2013-08-09 2014-08-07 Elastic monofilament WO2015020163A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167006010A KR102168814B1 (en) 2013-08-09 2014-08-07 Elastic monofilament
MX2016001715A MX2016001715A (en) 2013-08-09 2014-08-07 Elastic monofilament.
US14/910,895 US20160194788A1 (en) 2013-08-09 2014-08-07 Elastic monofilament
EP14834881.6A EP3031960B1 (en) 2013-08-09 2014-08-07 Elastic monofilament
CN201480055594.4A CN105765118B (en) 2013-08-09 2014-08-07 Elastic monofilament
CA2920777A CA2920777C (en) 2013-08-09 2014-08-07 Elastic monofilament

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-166304 2013-08-09
JP2013166304 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015020163A1 true WO2015020163A1 (en) 2015-02-12

Family

ID=52461491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070923 WO2015020163A1 (en) 2013-08-09 2014-08-07 Elastic monofilament

Country Status (8)

Country Link
US (1) US20160194788A1 (en)
EP (1) EP3031960B1 (en)
JP (1) JP6489773B2 (en)
KR (1) KR102168814B1 (en)
CN (1) CN105765118B (en)
CA (1) CA2920777C (en)
MX (1) MX2016001715A (en)
WO (1) WO2015020163A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220254A (en) * 2015-10-20 2016-01-06 江苏金麟户外用品有限公司 A kind of preparation method of modification jumping cloth
WO2018181699A1 (en) * 2017-03-31 2018-10-04 東レ株式会社 Elastic monofilament and woven knitted goods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6745211B2 (en) * 2016-12-28 2020-08-26 株式会社ジェイエスピー Sheet core material
JP7107429B2 (en) * 2019-12-23 2022-07-27 東レ株式会社 Separation membrane and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148769A (en) * 1991-11-25 1993-06-15 Toray Monofilament Co Ltd Conjugated monofilament for industrial woven or knit fabric
JPH05163654A (en) * 1991-12-16 1993-06-29 Teijin Ltd Cushion structural material and its production
JPH09507782A (en) 1994-11-10 1997-08-12 ミリケン・リサーチ・コーポレーション Seat structure
JPH11152625A (en) 1997-11-21 1999-06-08 Toyobo Co Ltd Conjugate elastic monofilament
JPH11172532A (en) 1997-12-09 1999-06-29 Toyobo Co Ltd Elastic filament excellent in durability and its production
JP2004024520A (en) * 2002-06-25 2004-01-29 Toyobo Co Ltd High-performance brush having excellent cleaning performance
JP2004176228A (en) * 2002-11-28 2004-06-24 Asahi Kasei Fibers Corp Hot melt conjugate monofilament

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584240A (en) * 1984-08-06 1986-04-22 E. I. Du Pont De Nemours And Company Coextruded monofilament fishline
JP2595739B2 (en) 1990-01-19 1997-04-02 東レ株式会社 Composite short fiber
JPH11200157A (en) * 1998-01-07 1999-07-27 Toyobo Co Ltd Elastic composite filament excellent in fire retardant property
US20020104548A1 (en) * 2000-12-01 2002-08-08 Vipul Bhupendra Dave Monofilament tape
JP4496002B2 (en) * 2004-04-26 2010-07-07 帝人ファイバー株式会社 Method for producing cup material made of multilayer fiber structure and breast cup
US20060216506A1 (en) * 2005-03-22 2006-09-28 Jian Xiang Multicomponent fibers having elastomeric components and bonded structures formed therefrom
JP5246997B2 (en) * 2005-09-16 2013-07-24 グンゼ株式会社 Elastomeric core-sheath conjugate fiber
CN101454493B (en) * 2006-05-31 2011-08-31 花王株式会社 Stretch nonwoven fabric
DE102007009119A1 (en) 2007-02-24 2008-08-28 Teijin Monofilament Germany Gmbh Electrically conductive threads, fabrics produced therefrom and their use
EP2341168A4 (en) * 2008-09-26 2012-03-07 Toray Industries Polyester monofilament, method for producing same, and method for producing screen gauze using same
JP5268709B2 (en) * 2009-02-27 2013-08-21 日本無機株式会社 Thermal bond nonwoven filter medium and air filter using the same
CN102378833B (en) * 2009-03-31 2014-07-02 郡是株式会社 Core-sheath conjugate fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148769A (en) * 1991-11-25 1993-06-15 Toray Monofilament Co Ltd Conjugated monofilament for industrial woven or knit fabric
JPH05163654A (en) * 1991-12-16 1993-06-29 Teijin Ltd Cushion structural material and its production
JPH09507782A (en) 1994-11-10 1997-08-12 ミリケン・リサーチ・コーポレーション Seat structure
JPH11152625A (en) 1997-11-21 1999-06-08 Toyobo Co Ltd Conjugate elastic monofilament
JPH11172532A (en) 1997-12-09 1999-06-29 Toyobo Co Ltd Elastic filament excellent in durability and its production
JP2004024520A (en) * 2002-06-25 2004-01-29 Toyobo Co Ltd High-performance brush having excellent cleaning performance
JP2004176228A (en) * 2002-11-28 2004-06-24 Asahi Kasei Fibers Corp Hot melt conjugate monofilament

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3031960A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220254A (en) * 2015-10-20 2016-01-06 江苏金麟户外用品有限公司 A kind of preparation method of modification jumping cloth
WO2018181699A1 (en) * 2017-03-31 2018-10-04 東レ株式会社 Elastic monofilament and woven knitted goods

Also Published As

Publication number Publication date
KR102168814B1 (en) 2020-10-22
EP3031960A4 (en) 2017-03-22
KR20160040292A (en) 2016-04-12
MX2016001715A (en) 2016-07-26
EP3031960A1 (en) 2016-06-15
CN105765118B (en) 2021-03-26
JP6489773B2 (en) 2019-03-27
CA2920777C (en) 2021-08-17
EP3031960B1 (en) 2020-06-10
US20160194788A1 (en) 2016-07-07
JP2015057522A (en) 2015-03-26
CA2920777A1 (en) 2015-02-12
CN105765118A (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6489773B2 (en) Elastic monofilament
WO2010113862A1 (en) Core-sheath conjugate fiber and process for producing same
JP2006214056A (en) Woven fabric
JP2006097178A (en) Conjugate fiber
KR101489424B1 (en) Polyester complex-fiber with highly elasticity and method for manufacturing thereof
JP5202407B2 (en) Core-sheath conjugate fiber and knitted fabric using the same
WO2018181699A1 (en) Elastic monofilament and woven knitted goods
JP5178413B2 (en) Hollow modified polyester multifilament
JP5373481B2 (en) Polyester blended yarn
JP2013209785A (en) Latent crimpable polyester conjugated fiber yarn
KR101590231B1 (en) Polyester multi-filament fiber with twisted yarn effect and method for manufacturing thereof
JP4974942B2 (en) Conjugate fiber
JP2009235618A (en) Conjugate fiber
JP2007327147A (en) Long and short conjugate spun yarn and cloth by using the same
JP5737833B2 (en) Elastomeric core-sheath conjugate fiber
JP3832608B2 (en) Durable elastic filament and method for producing the same
JP5992238B2 (en) Latent crimped polyester composite fiber yarn and its woven or knitted fabric
JP2006283224A (en) Core-sheath conjugate filament yarn and fabric and modified cross-section fiber fabric each using the same yarn
JP2022143330A (en) Composite fiber with latent crimping ability and nonwoven fabric made from the same
JP5328956B2 (en) Conjugate fiber
JP5041836B2 (en) Method for producing conjugate fiber
JP6054077B2 (en) Latent crimped polyester composite fiber yarn and its woven or knitted fabric
JP2009191437A (en) Sportswear formed of stretch knitted cloth
JP2009191438A (en) Outerwear formed of stretch knitted cloth
JP2012012747A (en) Polyester combined filament yarn excellent in antistaticity and wrinkle recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014834881

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2920777

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14910895

Country of ref document: US

Ref document number: MX/A/2016/001715

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167006010

Country of ref document: KR

Kind code of ref document: A