WO2015019977A1 - Polyester film - Google Patents

Polyester film Download PDF

Info

Publication number
WO2015019977A1
WO2015019977A1 PCT/JP2014/070427 JP2014070427W WO2015019977A1 WO 2015019977 A1 WO2015019977 A1 WO 2015019977A1 JP 2014070427 W JP2014070427 W JP 2014070427W WO 2015019977 A1 WO2015019977 A1 WO 2015019977A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
film
layer
resin
raw material
Prior art date
Application number
PCT/JP2014/070427
Other languages
French (fr)
Japanese (ja)
Inventor
久保 耕司
健悟 徳永
渡部 誉之
Original Assignee
帝人デュポンフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013163188A external-priority patent/JP2015030828A/en
Priority claimed from JP2014021452A external-priority patent/JP6377911B2/en
Application filed by 帝人デュポンフィルム株式会社 filed Critical 帝人デュポンフィルム株式会社
Priority to CN201480042989.0A priority Critical patent/CN105408388B/en
Priority to KR1020157035509A priority patent/KR102320305B1/en
Publication of WO2015019977A1 publication Critical patent/WO2015019977A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a polyester film used for industrial use and a method for producing the same. Specifically, the present invention relates to a polyester film having excellent heat whitening prevention properties.
  • Polyester films represented by polyethylene terephthalate are superior in cost performance while having excellent mechanical strength, dimensional stability, flatness, heat resistance, chemical resistance, optical properties, etc. in use.
  • Polyester is usually a linear polymer produced from a dicarboxylic acid component and a glycol component by a polycondensation reaction.
  • known polyesters contain about 1% by weight of cyclic oligomers.
  • Such a cyclic oligomer has a problem that when the polyester film is heat-treated, it is deposited on the film surface and the film is whitened.
  • the processing conditions and use conditions of the film also diversify.
  • Oligomer precipitation on the film surface is particularly important for applications that require high transparency, such as optical applications. This is a serious problem when used for cast supports and the like that require high surface flatness.
  • the heat treatment temperature applied to the post-processing for the purpose of improving the function of the product is increased, and oligomer precipitation due to the heat treatment is becoming more serious.
  • Patent Documents 2 to 5 propose a solid phase polymerization method.
  • Patent Document 6 proposes a method of adjusting the flow rate of inert gas to 1 to 500 liters / kg ⁇ hour during heat treatment.
  • 7 proposes a method of adjusting the degree of vacuum during solid-phase polymerization to 15 to 300 mmHg.
  • Patent Document 8 proposes that the hydroxyl (OH) terminal amount of the polyester resin is set to a predetermined amount or less.
  • Patent Documents 6 and 7 can reduce the amount of the cyclic oligomer while suppressing the progress of the polycondensation reaction of the polyester, there is a problem that the cyclic oligomer is regenerated upon subsequent melting. That is, it is necessary to melt the raw material polyester in the film formation, and even if the amount of the cyclic oligomer in the film raw material is reduced by a conventionally known method, the cyclic oligomer is formed as a by-product due to the thermal history in the film melting film formation. It was inevitable to generate.
  • a decrease in the hydroxyl (OH) terminal amount of the polyester resin means an increase in one terminal carboxyl (COOH) terminal, impairing heat resistance during melt molding and durability in long-term use. It was scarce.
  • An object of the present invention is to solve the above-mentioned problems of the conventional methods, and to provide a polyester film having excellent transparency after heat processing and less precipitation of cyclic oligomers.
  • oligomer precipitation may be observed in a very severe environment, for example, if the temperature of the heat treatment is very high or the time is long.
  • the second aspect of the present invention provides a polyester film that solves the problems of the above-described conventional methods and has excellent transparency after heat processing and less cyclic oligomer precipitation even under more severe conditions. Objective.
  • the first aspect of the present invention is a film made of a polyethylene terephthalate resin, the intrinsic viscosity of the polyethylene terephthalate resin is 0.60 dl / g or more, and the weight fraction of the cyclic trimer oligomer in the film (
  • the polyester film is characterized in that the ratio WCy3 / WCy4 of the weight fraction (WCy4) of WCy3) to the cyclic tetramer oligomer is 5 or less.
  • the first invention preferably further has a specific structure, that is, the film is a laminated film of at least three layers obtained by a coextrusion method, and constitutes the outermost layer. It is preferable that the intrinsic viscosity of the resin is higher than the intrinsic viscosity of the resin constituting the inner layer.
  • the present inventors have made the surface energy in a specific range in a film made of a specific resin, thereby improving the transparency after heat processing under more severe conditions. As a result, the present invention has been found to be excellent, and the second invention has been completed.
  • the second aspect of the present invention is a polyester film according to the first aspect of the present invention, wherein the surface energy on at least one surface is 50 mN / m or more.
  • the film has a coating layer on at least one surface, and the surface energy on the surface of the coating layer is 50 mN / m or more. It is particularly preferable to carry out at
  • the polyester film of the present invention is excellent in transparency after heat processing, and can be post-processed at a high temperature because of less oligomer precipitation, so that it can be used in industrial applications including optical applications that require high quality. Can be preferably used.
  • the polyester film of the present invention is hardly accompanied by an increase in the carboxyl terminal of the polyester resin, it has heat resistance at the time of melt molding and durability in long-term use, and is excellent in practicality.
  • the polyester film of the second invention is excellent in transparency after heat processing under more severe conditions, and since the precipitation of oligomers is small, it can be post-processed at a higher temperature for a longer time. It can be suitably used in industrial applications including optical applications where quality is required.
  • polyester film in the present invention is a film made of polyethylene terephthalate resin.
  • the polyethylene terephthalate resin in the present invention is a polyester having ethylene terephthalate as a main repeating unit.
  • the “main repeating unit” means 80 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more of all repeating units constituting the polyester. That is, the polyester may be a copolyester.
  • the copolymer component include acid components such as isophthalic acid and naphthalenedicarboxylic acid, and glycol components such as diethylene glycol and 1,4-butanediol.
  • the polyethylene terephthalate resin in the present invention is preferably a polyester polymerized using a germanium compound or a titanium compound as a polymerization catalyst, and among these, a germanium compound is particularly preferably used as the polymerization catalyst.
  • a germanium compound is used as the polymerization catalyst
  • the polyester may contain, for example, 0.1 to 100 ppm, preferably 1 to 70 ppm, more preferably 10 to 50 ppm of germanium element.
  • the germanium element is derived from a germanium compound used as a polymerization catalyst for polyester. Examples of such germanium compounds include germanium dioxide, germanium tetroxide, germanium hydroxide, germanium oxalate, and germanium chloride.
  • the polyester resin can contain, for example, 0.1 to 50 ppm, preferably 1 to 30 ppm, more preferably 2 to 20 ppm of titanium element.
  • the titanium element is derived from a titanium compound used as a polymerization catalyst for polyester. Examples of such titanium compounds include titanium chloride, titanium acetate, titanium tetrabutoxide and the like.
  • the polyethylene terephthalate resin obtained from the final polycondensation reactor is usually formed into granules (chips) by a melt extrusion molding method and then supplied to the solid phase polycondensation step.
  • the granular polyethylene terephthalate resin supplied to the solid phase polycondensation step may be preliminarily crystallized by heating to a temperature lower than the temperature at which solid phase polycondensation is performed, and then supplied to the solid phase polycondensation step. Good.
  • a precrystallization step can be performed by heating granular polyethylene terephthalate in a dry state, usually at a temperature of 120 to 200 ° C., preferably 130 to 180 ° C. for 1 minute to 4 hours. It can also be carried out by heating to a temperature of 120 to 200 ° C. for 1 minute or longer in a steam atmosphere or a steam-containing inert gas atmosphere.
  • the solid phase polycondensation step in which such granular polyethylene terephthalate resin is supplied comprises at least one stage, and the polycondensation temperature is usually 190 to 230 ° C., preferably 195 to 225 ° C., and nitrogen gas, argon gas, carbon dioxide gas
  • the solid phase polycondensation reaction is performed under an inert gas atmosphere such as. Of these inert gases, nitrogen gas is preferred.
  • the polyester resin (the granular polyethylene terephthalate resin) as a raw material for forming a film in the present invention, as a result of undergoing the polymerization step, preferably has an intrinsic viscosity of 0.65 or more, more preferably 0.70 or more, More preferably, it should be 0.75 or more. By doing in this way, it becomes easy to make the intrinsic viscosity of a film into the range prescribed
  • the polyester film referred to in the present invention is a polyester film extruded by a so-called extrusion method in which the above-mentioned polyester is usually melt-extruded from an extrusion die, and if necessary, in the biaxial direction of the vertical direction and the horizontal direction.
  • An oriented film Although the stretching in the machine direction and the stretching in the transverse direction may be performed separately, they are manufactured by the simultaneous biaxial stretching method because there are fewer opportunities for contact with the roll and it is difficult to generate scratches on the surface that cause oligomer precipitation. It is preferable to do.
  • the total thickness of the film is usually 25 to 200 ⁇ m, preferably 38 to 188 ⁇ m. If it is less than 25 ⁇ m, the mechanical strength and heat resistance of the film may be insufficient, and problems such as wrinkles may occur in subsequent processing steps. On the other hand, if the thickness of the film exceeds 200 ⁇ m, the film may be too stiff and handleability in the subsequent process may be poor.
  • the intrinsic viscosity (unit: dl / g) of the resin constituting the polyester film of the present invention is 0.60 or more.
  • the intrinsic viscosity is preferably 0.62 or more, more preferably 0.64 or more.
  • both the effect of suppressing the oligomer regeneration and the effect of suppressing the oligomer movement are important. If the intrinsic viscosity of the resin constituting the film is less than 0.60, both effects are It is damaged and appearance defect (whitening) occurs during heat processing.
  • the intrinsic viscosity of the film exhibits the above-described effects when the intrinsic viscosity of the entire polyester film is within the above numerical range. Therefore, when the film is an embodiment of a laminated film described later, the intrinsic viscosity of the laminated film as a whole may be in the above numerical range.
  • the intrinsic viscosity of the polyethylene terephthalate resin constituting the outermost layer of each of the front and back layers constituting the laminated film is preferably 0.60 or more, more preferably 0.62 or more, further preferably The aspect which is 0.64 or more, Most preferably, it is 0.66 or more is preferable.
  • the polyethylene terephthalate resin constituting the outermost layer of the two layers satisfies the above preferred range
  • the intrinsic viscosity of the polyethylene terephthalate resin constituting the inner layer is preferably 0.60 or more, more preferably 0.62 or more. More preferably, the aspect is 0.64 or more.
  • the intrinsic viscosity as a bulk of the entire inner layer may be in the above-mentioned preferable range.
  • the intrinsic viscosity of the resin constituting it is preferably 0.72 or less.
  • the load concerning resin in extrusion molding can be made small, and shear heat_generation
  • thermal decomposition of the resin due to such heat generation can be suppressed.
  • the intrinsic viscosity is more preferably 0.70 or less, and still more preferably 0.68 or less.
  • oligomers can be suppressed while using a resin whose intrinsic viscosity is not excessively high.
  • the polyester film of the present invention can be preferably a laminated polyester film of two or more layers having one outermost layer and another layer, or three or more layers having two outermost layers and an inner layer.
  • the inner layer may be a single layer or a plurality of two or more layers.
  • a laminate structure using a so-called coextrusion method using two or more extruders is preferable.
  • an A / B structure using an A raw material and a B raw material or an A / B / A structure, an A / B / C structure using a C raw material, or a layer having a larger number of layers other than the above. It can be set as the film of a structure.
  • a and C are the outermost layers
  • B is the other layers and the inner layers.
  • the surface flatness can be designed using a raw material that does not contain particles as the A raw material, and the raw material containing particles can be A / B as the B raw material.
  • the film of A / B / A structure using the same raw material can also be set as the film of A / B / A structure using the same raw material, an easy slipping layer can be formed in the surface of one A layer, and the surface defect by film manufacture can also be suppressed.
  • the raw material of B layer can be selected freely, a cost advantage etc. are large.
  • the surface roughness can be designed by the surface A layer, so that the cost advantage is further increased.
  • the polyester film is a laminated film, and the intrinsic viscosity of the resin constituting the outermost layer (sometimes referred to as the surface layer) is the inner layer (sometimes referred to as the core layer.
  • the two-layer configuration It is preferable that the other layers in the above are higher than the intrinsic viscosity of the resin constituting the layer).
  • the intrinsic viscosity of the resin constituting the inner layer refers to the intrinsic viscosity as a bulk of the entire inner layer when there are a plurality of inner layers.
  • the effects of both the oligomer regeneration inhibiting effect and the oligomer migration inhibiting effect tend to be reduced. Precipitation tends to increase and the film may impair the appearance.
  • the thickness of the outermost layer of the film (the thickness of one layer) is preferably 0.5 ⁇ m or more and 30 ⁇ m or less, more preferably 1.0 ⁇ m or more and 25 ⁇ m or less, and further preferably 3 ⁇ m or more and 20 ⁇ m or less.
  • the outermost layer is less than 0.5 ⁇ m, the effect of suppressing the oligomer movement is reduced, and as a result, the precipitation of the cyclic oligomer after heat processing tends to increase, and the film may impair the appearance.
  • the upper limit of the thickness may be 30 ⁇ m or less because the outermost layer of the film may be a thickness that can suppress the migration of the oligomer, and a sufficient effect is exhibited even if it is 20 ⁇ m or less.
  • Lubricant Particles can be added to the polyester film of the present invention as long as the effects of the present invention are not hindered.
  • the particles added to the film include inorganic particles such as silicon dioxide, alumina, zirconium oxide, kaolin, talc, calcium carbonate, titanium oxide, barium oxide, carbon black, molybdenum sulfide, antimony oxide, and the like, and hybrid products thereof. .
  • silicon dioxide is easy to use because it is inexpensive and has various particle sizes.
  • the organic particles include polystyrene or polyacrylate polymethacrylate, an organic / inorganic hybrid product in which a crosslinked structure is achieved by a compound containing two or more carbon-carbon double bonds in one molecule (for example, divinylbenzene).
  • the method is not particularly limited, and a known method can be adopted.
  • it can be added at any stage of producing the polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or before the start of the polycondensation reaction after completion of the transesterification reaction, The polycondensation reaction may proceed.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder is done by methods.
  • thermoplastic resins such as polyethylene naphthalate and polytrimethylene terephthalate can be mixed in the polyester film of the present invention as long as the effects of the present invention are not impaired.
  • blend coloring agents such as a ultraviolet absorber, antioxidant, surfactant, a fluorescent whitening agent, a lubricant agent, a light-shielding agent, a matting agent, and a dye, a pigment.
  • the polyester film of the present invention has a weight fraction of cyclic trimer oligomer in the film (WCy3) (unit: wt%) and a weight fraction of cyclic tetramer oligomer (WCy4) (unit: wt%).
  • the ratio (weight fraction ratio) WCy3 / WCy4 must be 5 or less.
  • the weight fraction ratio is preferably 4 or less, more preferably 3.5 or less, and still more preferably 3 or less.
  • water treatment described in JP-A-3-47830 is performed to sufficiently reduce the activity of the polymerization catalyst, and the resin is sufficiently dried. Can be achieved by providing a suitable thermal history and then using it to form a film.
  • (1) a method in which a chip is once melted and extruded (for example, in the form of a strand) to rechip, and (2) after the chip is melt-extruded, for example, in a film forming apparatus
  • the method include forming a film or the like, then crushing and remelting the molded product, and extruding (for example, in the form of a strand) to rechip.
  • the method described in (2) is particularly preferable, and the weight fraction ratio of the cyclic oligomer is efficiently adjusted to a specified range by mixing the resin with and without heat history in an appropriate ratio. I can do it.
  • This method is a method for producing a film through three steps from step 1 to step 3.
  • the preferred polyester resin in the present invention described above is used, and it is melt-extruded to produce a resin composition 1.
  • the polyester resin is the aforementioned polyethylene terephthalate resin.
  • melt extrusion refers to discharging a molten resin from a die or the like.
  • Resin composition 1 may be, for example, a fiber shape, a film shape, or other three-dimensional solid shape.
  • the other three-dimensional solid shape is neither a fiber shape nor a film shape, and may be a polyhedron such as a cube, a curved surface such as a sphere, a box shape, or a film shape. Including non-sheet-like or plate-like ones.
  • Resin composition 1 contains 90 to 100% by mass of a polyester resin.
  • content is content with respect to 100 mass% of mass of the resin composition 1 obtained.
  • the content oligomer can be reduced by the heat treatment in the subsequent step 2, and finally the weight fraction of the cyclic trimer and the cyclic tetramer in the step 3 is within the range defined by the present invention.
  • the resin molded body 4 can be obtained.
  • the melt extrusion conditions may be appropriately determined according to the melting point of the polyester resin to be used and the shape and characteristics of the resin composition 1 to be obtained.
  • the resin composition 1 obtained here is indirectly a raw material of the resin molding 4 to be finally obtained, and thus characteristics such as appearance are not so important. From the viewpoint of deterioration of the resin, it is preferable that there is less deterioration and less polymer chain scission by hydrolysis. Therefore, it is preferable that the melt extrusion temperature in this process is not too high. Further, if the productivity is too low, the raw material for producing the resin molded body 4 is insufficient, but a certain degree of productivity is necessary. Therefore, it is preferable that the temperature condition is not too low. Further, the melt extrusion time may be appropriately set in consideration of the tendency that the deteriorated product increases if it is too long and the unmelted product increases if it is too short. For example, 5 to 30 minutes.
  • Step 2 the resin composition 1 obtained in Step 1 is melt-kneaded at a temperature of Tm to Tm + 60 ° C., where Tm is the melting point of the polyester constituting the resin composition 1.
  • the resin composition 2 is manufactured by melt extrusion.
  • melt kneading includes a mode in which the resin is moved forward while kneading the resin in the screw portion of the extruder.
  • the resin composition 1 obtained in the step 1 is in the form of pellets, it can be used as it is in the step 2 by being put into an extruder as it is.
  • the resin composition 1 may be put into the extruder after being formed into a shape that can be put into the extruder by pulverization or the like.
  • the pulverized product can be used after being granulated into a pellet by applying pressure.
  • those conditions satisfy the above-described conditions, and the other conditions are the melting point of the polyester resin to be used, the shape and characteristics of the resin composition 2 to be obtained. It may be determined appropriately according to the situation.
  • the resin composition 2 obtained here is a raw material of the resin molded body 4 to be finally obtained, and thus characteristics such as appearance are not so important, but the deterioration of the resin From the viewpoint, it is preferable that there are few deteriorated products and the polymer chain is not broken by hydrolysis. From this viewpoint, it is preferable that the temperature condition is not too high.
  • the temperature condition is not too low.
  • the melt extrusion time may be appropriately set in consideration of the tendency that the deteriorated product increases if it is too long and the unmelted product increases if it is too short. For example, 5 to 30 minutes.
  • the film 1 as the resin composition 1 obtained in the step 1 is a temperature in the temperature range of more than Tm and Tm + 60 ° C. or less, where Tm is the melting point of the polyester constituting the film 1
  • Tm is the melting point of the polyester constituting the film 1
  • Step 3 a resin composition 3 containing the resin composition 2 obtained in Step 2 above is prepared, and the melting point of the polyester constituting the resin composition 1 is defined as Tm.
  • the film 4 as the resin molded body 4 is manufactured by melt-kneading at a temperature of 0 ° C. or less and melt-extruding.
  • the content of the resin composition 2 in the resin composition 3 may be set as appropriate. Further, when the resin composition 2 is a recovered and recycled raw material, the content of the resin composition 2 in the resin composition 3 is a recovery rate, and by adding as much as the characteristics of the resulting resin molded body 4 allow, This is preferable because it reduces costs and improves productivity. From this viewpoint, the content of the resin composition 2 in the resin composition 3 is, for example, 15% by mass or more, preferably 30% by mass or more, more preferably 35% by mass or more, and further preferably 40% by mass or more. . The upper limit is 100% by mass. In addition, content is content with respect to the mass of the resin composition 3 obtained here.
  • the resin composition 3 contains the resin composition 2, but the other components will be obtained as long as the main component is a polyester resin and does not impair the object of the present invention as a subordinate component.
  • a component appropriately selected according to the configuration and characteristics of the resin molded body 4 can be contained.
  • the “principal component” means that it is usually 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more in the remaining components.
  • the polyester resin and appropriately selected components include a polyester resin constituting the resin composition 1.
  • the polyester resin as the remaining component constituting the resin composition 3 and the polyester resin constituting the resin composition 1 may be the same or different. When the polyester resin is employed, the polyester resin may be used in the form of pellets.
  • the resin composition 2 obtained in the step 2 is in the form of pellets, it can be used as it is in the step 3 by putting it in an extruder as it is.
  • the resin composition 2 may be put into the extruder after being formed into a shape that can be put into the extruder by pulverization or the like.
  • the pulverized product can be used after being granulated into a pellet by applying pressure.
  • the film 4 as the resin molded body 4 can be manufactured.
  • the film 4 thus obtained satisfies the above-described ratio range of WCy3 / WCy4.
  • the content of the resin that has undergone such a thermal history is adjusted in each layer, and the thickness ratio between the outermost layer and the inner layer is adjusted as necessary, so that WCy3 / WCy4 as a whole.
  • the ratio can be adjusted to be within the range defined by the present invention.
  • WCy3 in the film is preferably 1% by weight or less, more preferably 0.85% by weight or less.
  • the polyester film of the present invention has a surface on the surface of the film in order to improve the adhesion of the post-processing agent in hard coat processing and the like, and improve the slidability of the surface to suppress problems such as blocking. It is preferable to form a treatment layer. When the slippery layer is not formed, problems such as adhesion in post-processing cannot be maintained, winding properties in the film manufacturing process are inferior, and the film surface is damaged in the film manufacturing process. Sometimes.
  • the surface treatment can be performed on one side or both sides according to the purpose.
  • the surface treatment layer is composed of an adhesive component and an easy-slip component, and the specific surface treatment layer can be said to be the same as that described in the coating layer described later.
  • the polyester film of the second invention preferably has a surface energy on at least one surface of 50 mN / m or more, more preferably 53 mN / m or more, still more preferably 55 mN / m or more, particularly preferably 60 mN. / M or more. Even if the surface energy of the polyester film of the present invention is less than 50 mN / m, the oligomer film is sufficiently precipitated under conditions used in post-processing such as hard coat processing (up to about 1 hour at 150 ° C.). Although it can be suppressed, a slight increase in haze may be observed in processing at a temperature of 180 ° C. or higher or heat processing for several hours.
  • the second aspect of the present invention by increasing the surface energy of the film to 50 mN / m or more, an increase in haze can be prevented even under higher temperature and longer time conditions.
  • This increase in haze is considered to occur because the oligomer diffusion rate increases at a very high temperature such as 180 ° C. or higher, so that slight oligomer deposition occurs on the surface, which deposits on the film surface. .
  • the second aspect of the present invention finds that by increasing the surface energy of the film, it is possible to prevent the oligomer from depositing on the film surface if the amount is small, thereby suppressing an increase in haze. is there.
  • the surface energy on both sides of the polyester film is in the above range.
  • the polyester film made of polyethylene terephthalate resin usually shows a surface energy of less than 50 mN / m in a state where nothing is processed, so that some surface processing is necessary to make the surface energy 50 mN / m or more.
  • the method is not limited as long as the object of the present invention is not violated.
  • Processing methods for increasing the surface energy are generally roughly classified into physical methods and chemical methods. Examples of physical methods include corona treatment, plasma treatment, flame treatment, ultraviolet ray treatment, electron beam / radiation treatment, etc., and from the point of maintaining a clean surface state without impairing the properties of the polyester film, Plasma treatment can be exemplified more preferably.
  • chemical treatment includes chemical treatment, steam treatment, surface grafting treatment, atmospheric pressure plasma treatment in a specific gas atmosphere, electrochemical treatment, and coating treatment.
  • a method of forming a coating layer on one side or both sides of a polyester film by a coating treatment or the like can be preferably exemplified from the viewpoint that surface processing can be performed without impairing the characteristics of the film, which will be described in detail below.
  • Coating Layer Formation of the coating layer is not particularly limited, but can be formed by coating, which is preferable. Note that the coating layer in this case may be referred to as a coating layer.
  • a method of coating a coating using a coater such as a roll coater or die coater after manufacturing the film
  • a method of using a coater in the process of manufacturing the film is preferable from the viewpoint that oligomer precipitation / deposition on the film surface in the film production process can be suppressed.
  • the undercoating is separately performed in the film manufacturing process in order to ensure the adhesion durability of the coating layer.
  • the coating layer is mainly composed of a binder component that has good adhesion to the polyester film and can increase the surface energy of the film.
  • the crosslinking component for improving durability of a coating film, the easy-slip component which provides handling property to a film, etc. can be mix
  • “mainly” means 50% by weight or more, preferably 55% by weight or more, more preferably 60% by weight, based on the solid content of the coating liquid for forming the coating layer.
  • the upper limit of the content of the binder component is not limited, and an optional component described later may be arbitrarily contained in the solid content of the coating liquid, and the content may be selected so that the remainder becomes the binder component.
  • the binder component for increasing the surface energy include polyester resins, acrylic resins, polyurethane resins and the like. Said resin shall also contain those derivatives, respectively.
  • the derivative here refers to a resin obtained by reacting a reactive compound with a copolymer or a functional group with other components. In any case, it is more preferable to contain a hydrophilic functional group for the purpose of increasing the surface energy.
  • a polyester resin binder is preferable from the viewpoint of superior adhesion to a polyester film.
  • the binder component is preferably water dispersible.
  • crosslinking agent to be added for the purpose of enhancing durability melamine-based, epoxy-based, and oxazoline-based resins are generally used, and among them, oxazoline-based resins are particularly preferable in terms of coating properties and durable adhesiveness.
  • the content of the crosslinking agent is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, based on the solid content of the coating liquid for forming the coating layer.
  • inorganic particles or organic particles as the slippery component.
  • the inorganic particles include silicon dioxide, alumina, zirconium oxide, kaolin, talc, calcium carbonate, titanium oxide, barium oxide, carbon black, molybdenum sulfide, antimony oxide and the like and hybrid products thereof.
  • silicon dioxide is easy to use because it is inexpensive and has various particle sizes.
  • the organic particles include polystyrene or polyacrylate polymethacrylate and organic / inorganic hybrid products in which a crosslinked structure is achieved by a compound containing two or more carbon-carbon double bonds in one molecule (for example, divinylbenzene).
  • the blending amount of the particles in the coating layer is usually 0.1 to 10% by weight, preferably 0.1 to 5% by weight. If the blending amount is less than 0.1% by weight, the blocking resistance and the slipperiness may be insufficient. If the blending amount exceeds 10% by weight, the transparency of the film may be hindered, which may hinder online inspection. is there.
  • the coating layer may contain an antistatic agent, an antifoaming agent, a coating property improving agent, a thickener, an antioxidant, an ultraviolet absorber, a foaming agent, a dye, a pigment, and the like.
  • coating method of the coating layer for example, reverse roll coater, gravure coater, rod coater, air doctor coater or other coating apparatus as shown in Yuji Harasaki, Tsuji Shoten, published in 1979, “Coating Method” Can be used.
  • the coating layer of the present invention is preferably applied within the film production process, but is preferably applied before the film stretching or after the longitudinal stretching in the case of stretching by the longitudinal-lateral sequential biaxial method.
  • the thickness of the coating layer is usually in the range of 0.01 to 0.5 ⁇ m, preferably 0.02 to 0.3 ⁇ m as the final dry thickness.
  • the thickness of the coating layer is less than 0.01 ⁇ m, it may be difficult to obtain a uniform coating layer, and oligomer precipitation may not be sufficiently suppressed.
  • the thickness of the coating layer exceeds 0.5 ⁇ m, the films tend to stick to each other, and particularly when the coated film is re-stretched to increase the strength of the film, it adheres to the roll in the process. There is a tendency to become easy. The above problem of sticking appears particularly when the same coating layer is formed on both sides of the film.
  • the film forming the resin molded body 4 is preferably biaxially stretched to obtain a biaxially oriented polyester film.
  • the raw materials obtained in accordance with the above steps 1 to 3 are dried and then supplied to a melt-extrusion apparatus, and heated to a temperature equal to or higher than the melting point of each polymer to melt.
  • the molten polymer is extruded from a die and rapidly cooled and solidified on a rotary cooling drum so that the temperature is equal to or lower than the glass transition temperature to obtain a substantially amorphous unoriented sheet.
  • an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed.
  • the sheet thus obtained is preferably stretched in a biaxial direction to form a film.
  • the unstretched sheet is preferably 2 to 6 times at 70 to 145 ° C. in the machine direction (the film forming machine axis direction; sometimes referred to as the longitudinal direction or MD).
  • the transverse direction in the film plane, the direction perpendicular to the film forming machine axis direction, sometimes referred to as the width direction or TD. It is preferable to perform 2-6 times stretching.
  • the above-mentioned slippery layer and coating layer are formed on the film before stretching and the film before stretching in the biaxial direction (preferably the transverse direction) after stretching in the uniaxial direction (preferably the longitudinal direction). It is also preferable to apply a coating liquid for the purpose of forming a slippery layer or a coating layer.
  • heat treatment is performed at 150 to 240 ° C. for 1 to 600 seconds. Further, at this time, it is preferable to relax by 0.1 to 20% in the longitudinal direction and / or the transverse direction in the maximum temperature zone of the heat treatment and / or the cooling zone at the heat treatment outlet. Further, it is possible to add re-longitudinal stretching and re-lateral stretching as necessary.
  • two or three or more polyester melt extruders may be used to form a laminated film of two or more layers as described above by a so-called coextrusion method.
  • the polyester film of the present invention preferably has an initial haze of 1.00% or less, more preferably 0.80% or less, still more preferably 0.50% or less, particularly preferably 0.30% or less. is there. Thus, it can be suitably used for applications requiring transparency, particularly optical applications.
  • ⁇ Hz150 is more preferably 1.00% or less, further preferably 0.50% or less, particularly preferably 0.20% or less, and most preferably 0.15% or less.
  • the haze after heating at 150 ° C. is preferably 1.00% or less, more preferably 0.80% or less, still more preferably 0.60% or less, and particularly preferably 0.40% or less.
  • the difference between the haze after holding the film at a temperature of 180 ° C. for 240 minutes (haze after heating at 180 ° C.) and the initial haze (haze increase width when heating the film, ⁇ Hz 180) is , Preferably 2.00% or less, the lower the film whitening due to oligomer precipitation, the better the suppression effect.
  • ⁇ Hz180 is more preferably 1.00% or less, further preferably 0.50% or less, particularly preferably 0.20% or less, and most preferably 0.15% or less.
  • the haze after heating 180 ° C. is preferably 3.00% or less, more preferably 2.0% or less, and further preferably 1.5% or less. Furthermore, it is preferably 1.00% or less, more preferably 0.80% or less, further preferably 0.60% or less, and particularly preferably 0.40% or less.
  • the intrinsic viscosity of the sampled polyester is measured by extruding only the resin to be collected at the same discharge rate as the film formation. Or only the outermost layer was removed from the film using a suitable tool such as a knife, and the sample (outermost layer) and the remaining sample (inner layer) were removed for measurement.
  • ⁇ sw is the tension acting between the sample surface and water
  • ⁇ sw is the tension acting between the sample surface and methylene iodide
  • ⁇ w is the surface energy of water
  • ⁇ y is the surface energy of methylene iodide.
  • ⁇ wd is a dispersive component of the surface energy of water
  • ⁇ wp is a polar component of the surface energy of water
  • ⁇ yd is a dispersive component of the surface energy of methylene iodide
  • ⁇ yp is a polar component of the surface energy of methylene iodide.
  • Polar component of surface energy of methylene iodide ( ⁇ yp) : 1.3 mN / m was used.
  • the breaking elongation was measured at five points for the sample pieces before being left in the environmental testing machine, and the average value of the initial breaking elongation was obtained from the average value thereof.
  • the value obtained by dividing the average value of the five points under each aging condition by the average value of the initial breaking elongation was defined as the breaking elongation retention [%]. Based on the obtained value, a breaking elongation deterioration curve was prepared, and durability was evaluated according to the following criteria.
  • the production method of the polyester used in the following examples and comparative examples is as follows.
  • the reaction start temperature was 150 ° C., and the reaction temperature was gradually increased as methanol was distilled off. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to this reaction mixture, 0.04 part of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C.
  • polyesters (A1, A2) were obtained from polyethylene terephthalate resins as polyesters (A1, A2), respectively.
  • the intrinsic viscosity of the obtained polyester (A1) was 0.68 dl / g
  • the intrinsic viscosity of the polyester (A2) was 0.70 dl / g.
  • polyester (B1 to B3) 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials, 0.09 part by weight of germanium oxide as a catalyst is placed in the reactor, and the reaction start temperature is set. The reaction temperature was gradually increased as methanol was distilled off, and the temperature was increased to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to the reaction mixture, a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C.
  • polyester (B1) has an intrinsic viscosity of 0.50 dl / g
  • the polyester (B2) has an intrinsic viscosity of 0.70 dl / g
  • the polyester (B3) has an intrinsic viscosity of 0.60 dl / g (melting point is 256 ° C.). Met.
  • polyester (C1 to C3) After production of polyester (B1), in order to reduce oligomers contained in polyester (B1), the intrinsic viscosity was improved by solid phase polymerization, respectively. .
  • the polyester resin after the solid phase polymerization was heated to a temperature of 150 ° C. for 3 minutes or more under a steam-containing nitrogen gas atmosphere to obtain a polyester (C1).
  • the obtained polyester (C1) had an intrinsic viscosity of 0.75 dl / g.
  • polyester (C2) was obtained in the same manner except that polyester (B2) was used instead of polyester (B1).
  • the obtained polyester (C2) had an intrinsic viscosity of 0.77 dl / g.
  • polyester (C3) was obtained in the same manner except that polyester (B3) was used instead of polyester (B1).
  • the intrinsic viscosity of the obtained polyester (C3) was 0.75 dl / g.
  • (D1) Production method of polyester (D1, D2, D3, E1, E2, H1, G1)
  • Polyester C1 was used and a melt-extruded polyester sheet was obtained at a resin temperature of 290 ° C.
  • this sheet is pulverized, heat-treated for 4 hours while blowing hot air at 150 ° C. in a metal container, remelted at a temperature of 280 to 310 ° C., extruded into a strand shape, and converted into a chip to obtain polyester (D1).
  • the intrinsic viscosity of the obtained polyester (D1) was 0.65 dl / g.
  • polyester (D2) was obtained in the same manner except that polyester C2 was used instead of polyester C1.
  • the intrinsic viscosity of the obtained polyester (D2) was 0.64 dl / g.
  • polyester (D3) was obtained in the same manner except that polyester C3 was used instead of polyester C1.
  • the intrinsic viscosity of the obtained polyester (D2) was 0.65 dl / g.
  • polyester (E1) was obtained in the same manner except that polyester A1 was used instead of polyester C1.
  • the intrinsic viscosity of the obtained polyester (E1) was 0.62 dl / g.
  • polyester (E2) was obtained in the same manner except that polyester A2 was used instead of polyester C1.
  • the obtained polyester (E2) had an intrinsic viscosity of 0.63 l / g.
  • polyester (H1) was obtained in the same manner except that polyester G1 described later was used instead of polyester C1.
  • the obtained polyester (H1) had an intrinsic viscosity of 0.66 dl / g.
  • Production method of polyester (F1, G1) 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials, and 0.05 part by weight of titanium trimellitic acid is used as a catalyst in the reactor to start the reaction. The temperature was set to 150 ° C., and the reaction temperature was gradually increased as methanol was distilled off. After 4 hours, the transesterification reaction was substantially terminated.
  • a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.58 dl / g due to a change in the stirring power of the reaction vessel, the polymer was discharged under nitrogen pressure, and a polyethylene terephthalate resin (pellet) as polyester (F1) Got. The obtained polyester (F1) had an intrinsic viscosity of 0.58 dl / g and a melting point Tm of 254 ° C.
  • polyester (F1) in order to reduce the oligomer contained in the polyester (F1), the intrinsic viscosity was improved by solid phase polymerization.
  • the polyester resin after the solid phase polymerization was heated to a temperature of 150 ° C. for 3 minutes or more in a steam-containing nitrogen gas atmosphere to obtain polyester (G1) (pellet).
  • the obtained polyester (G1) had an intrinsic viscosity of 0.78 dl / g and a melting point Tm of 252 ° C.
  • Example 1 The polyester raw material in which the polyester (C1) and (D1) are mixed at a ratio of 80:20 (weight ratio, the same applies hereinafter) as the raw material for the A layer, and the polyester (C1) and (D1) as the raw material for the B layer.
  • the polyester raw materials mixed at a ratio of 50:50 were respectively fed to two extruders and melted at 285 ° C.
  • the A layer was the outermost layer (surface layer) and the B layer was the inner layer (core layer).
  • the casting drum cooled at 40 degreeC it coextruded by the layer structure of 2 types and 3 layers (A / B / A), and it was made to cool and solidify, and the unoriented sheet was obtained.
  • the film was stretched 3.2 times in the longitudinal direction and 3.6 times in the transverse direction at a stretching temperature of 100 ° C., heat treated at 225 ° C., and 1% in the longitudinal direction.
  • a laminating polyester film having a thickness of 100 ⁇ m was obtained by relaxing 2% in the transverse direction. The thickness of each layer of the obtained film was 15/70/15 ⁇ m.
  • Example 2 The polyester (D1) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (C1) and (D1) in a ratio of 30:70 is used as the raw material for the B layer, and the melt extrusion temperature is 290 ° C.
  • a laminated polyester film was obtained in the same manner as in Example 1 except that.
  • Example 3 A polyester raw material in which the polyester (C1) and (D1) are mixed in a ratio of 90:10 as a raw material for the A layer, and a polyester raw material in which the polyester (C1) and (D1) are mixed in a ratio of 60:40 as a raw material for the B layer.
  • a laminated polyester film was obtained in the same manner as in Example 1 except that the obtained polyester raw material was used and the melt extrusion temperature was 280 ° C.
  • Example 4 A polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 55:45 as a raw material for the A layer, and a polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 30:70 as a raw material for the B layer A laminated polyester film was obtained in the same manner as in Example 1 except that the obtained polyester raw material was used.
  • Example 5 A polyester raw material in which the polyester (G1) and (H1) are mixed in a ratio of 50:50 as a raw material for the A layer, and a polyester raw material (G1) and (H1) in a ratio of 40:60 are mixed as a raw material for the B layer.
  • a laminated polyester film was obtained in the same manner as in Example 4 except that the obtained polyester raw material was used.
  • Example 6 A polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 85:15 as a raw material for the A layer, and a polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 70:30 as a raw material for the B layer.
  • a laminated polyester film was obtained in the same manner as in Example 4 except that the obtained polyester raw material was used.
  • Example 7 A polyester raw material in which the polyester (G1) and (H1) are mixed in a ratio of 70:30 as a raw material for the A layer, and a polyester raw material (G1) and (H1) in a ratio of 10:90 are mixed as a raw material for the B layer.
  • a laminated polyester film was obtained in the same manner as in Example 4 except that the obtained polyester raw material was used.
  • Comparative Example 1 The polyester (A1) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (A1) and (E1) in a ratio of 60:40 is used as the raw material for the B layer, and each melt extrusion temperature is 280 ° C.
  • a laminated polyester film was obtained in the same manner as in Example 1 except that.
  • Comparative Example 2 A polyester raw material in which the polyester (C1) and (D1) are mixed in a ratio of 50:50 as the raw material for the A layer, and a polyester raw material (C1) and (D1) in the ratio of 20:80 as the raw material for the B layer.
  • a laminated polyester film was obtained in the same manner as in Example 1 except that the obtained polyester raw material was used and the melt extrusion temperature was set to 305 ° C.
  • Comparative Example 3 Using a polyester raw material in which the polyesters (A1) and (E1) are mixed at a ratio of 60:40, the mixture is melt-extruded as a single layer at 285 ° C. with an extruder, and cooled and solidified on a casting drum cooled to 40 ° C. A non-oriented sheet was obtained. Thereafter, a polyester film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 1.
  • the coating solutions used in the following Examples and Comparative Examples were produced as aqueous coating solutions having a concentration of 8% by weight of the following compositions (Table 2).
  • Example 8 A polyester raw material in which the polyester (C2) and (D2) are mixed at a ratio of 80:20 (weight ratio, the same applies hereinafter) as the raw material for the A layer, and the polyester (C2) and (D2) as the raw material for the B layer. After the polyester raw materials mixed at a ratio of 50:50 were respectively fed to two extruders and melted at 285 ° C., the A layer was the outermost layer (surface layer) and the B layer was the inner layer (core layer).
  • the coating liquid A was uniformly apply
  • the coated film was continuously stretched 3.2 times in the longitudinal direction and 3.6 times in the transverse direction at a stretching temperature of 100 ° C. using a simultaneous biaxial stretching machine, heat-treated at 225 ° C., and then in the longitudinal direction.
  • a laminated polyester film having a thickness of 100 ⁇ m was obtained by relaxing 1% and 2% in the lateral direction.
  • Example 9 The polyester (D2) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (C2) and (D2) in a ratio of 30:70 is used as the raw material for the B layer, and each melt extrusion temperature is 290 ° C.
  • a laminated polyester film was obtained in the same manner as in Example 8 except that.
  • Example 10 A polyester raw material in which the polyester (C2) and (D2) are mixed in a ratio of 90:10 as a raw material for the A layer, and a polyester raw material in which the polyester (C2) and (D2) are mixed in a ratio of 60:40 as a raw material for the B layer.
  • a laminated polyester film was obtained in the same manner as in Example 8 except that the obtained polyester raw material was used and the melt extrusion temperature was 280 ° C.
  • Example 11 A laminated polyester film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 8 except that the coating liquid applied to both surfaces of the film with an aqueous coating liquid roll coater was changed to the coating liquid B.
  • the thickness of the coating layer was the same as in Example 8.
  • Example 12 A laminated polyester film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 8, except that the coating liquid applied to both surfaces of the film with an aqueous coating liquid roll coater was coating liquid C.
  • the thickness of the coating layer was the same as in Example 9.
  • Example 13 After obtaining the non-oriented sheet, a laminated polyester film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 10 except that the coating liquid was not applied. The thickness of each layer of the obtained film was the same as in Example 8. Both sides of this laminated polyester film were subjected to corona treatment with a corona treatment machine, and the corona discharge intensity was adjusted to obtain a laminated polyester film having a surface energy of 54 mN / m on both sides.
  • Comparative Example 4 The polyester (A2) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (A2) and (E2) in a ratio of 60:40 is used as the raw material for the B layer, and the melt extrusion temperature is 280 ° C.
  • a laminated polyester film was obtained in the same manner as in Example 8 except that.
  • Comparative Example 5 A polyester raw material in which the polyester (C2) and (D2) are mixed in a ratio of 50:50 as the raw material for the A layer, and the polyester (C2) and (D2) in a ratio of 20:80 are mixed as the raw material in the B layer.
  • a laminated polyester film was obtained in the same manner as in Example 8 except that the obtained polyester raw material was used and the melt extrusion temperature was set to 305 ° C.
  • Comparative Example 6 Using a polyester raw material in which the polyesters (A2) and (E2) are mixed at a ratio of 60:40, the mixture is melt-extruded as a single layer at 285 ° C. with an extruder and cooled and solidified on a casting drum cooled to 40 ° C. A non-oriented sheet was obtained. Thereafter, a polyester film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 8.
  • Example 14 A laminated polyester film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 8 except that the coating liquid applied on both sides of the film with an aqueous coating liquid roll coater was changed to the coating liquid D shown below.
  • Example 15 After obtaining the non-oriented sheet, a laminated polyester film having a thickness of 100 ⁇ m was obtained in the same manner as in Example 8 except that the coating liquid was not applied.
  • Table 3 shows the evaluation results of the film obtained above. As shown in Table 3, the polyester film of the present invention was excellent in transparency after heating.
  • the polyester film of the present invention is excellent in transparency after heat processing, and can be post-processed at a high temperature because there is little oligomer precipitation, and it has practical heat resistance and durability, so high quality is required. It can be suitably used in various industrial applications, including display applications and optical applications such as casting films when manufacturing display peripheral members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

The purpose of the present invention is to provide a polyester film which has excellent transparency after a thermal processing, is not susceptible to the precipitation of cyclic oligomers, and also has excellent heat resistance and durability in use applications including display members for which high quality is required. According to the present invention, a polyester film is provided, which comprises a polyethylene terephthalate resin, said film being characterized in that the polyethylene terephthalate resin has an intrinsic viscosity of 0.60 dl/g or more and the ratio (WCy3/WCy4) of the weight fraction (WCy3) of a cyclic trimeric oligomer to the weight fraction (WCy4) of a cyclic tetrameric oligomer in the film is 5 or less.

Description

ポリエステルフィルムPolyester film
 本発明は、工業用などに用いられるポリエステルフィルムおよびその製造方法に関するものである。詳しくは、優れた加熱白化防止性を有するポリエステルフィルムに関するものである。 The present invention relates to a polyester film used for industrial use and a method for producing the same. Specifically, the present invention relates to a polyester film having excellent heat whitening prevention properties.
 ポリエチレンテレフタレートに代表されるポリエステルフィルムは、機械的強度、寸法安定性、平坦性、耐熱性、耐薬品性、光学特性等に優れた特性を有しながらコストパフォーマンスに優れるため、各種の工業用途において使用されている。 Polyester films represented by polyethylene terephthalate are superior in cost performance while having excellent mechanical strength, dimensional stability, flatness, heat resistance, chemical resistance, optical properties, etc. in use.
 ポリエステルは、通常、ジカルボン酸成分とグリコール成分とから重縮合反応により製造される線状ポリマーである。しかし公知のポリエステルは、1重量%程度の環状オリゴマーを含有している。このような環状オリゴマーは、ポリエステルフィルムを加熱処理するとフィルム表面に析出し、フィルムが白化するという問題がある。特に、ポリエチレンテレフタレートフィルムの用途が多様化するにつれフィルムの加工条件、使用条件も多様化しており、フィルム表面へのオリゴマー析出は、特に光学用途等の高度に透明性が要求される用途や、精密な表面平坦性が求められるキャスト支持体などに用いられる場合に大きな問題となっている。近年、製品の機能高度化を目的に後加工に施される熱処理温度が高温化する傾向があり、加熱処理によるオリゴマーの析出はより深刻となりつつある。 Polyester is usually a linear polymer produced from a dicarboxylic acid component and a glycol component by a polycondensation reaction. However, known polyesters contain about 1% by weight of cyclic oligomers. Such a cyclic oligomer has a problem that when the polyester film is heat-treated, it is deposited on the film surface and the film is whitened. In particular, as the use of polyethylene terephthalate film diversifies, the processing conditions and use conditions of the film also diversify. Oligomer precipitation on the film surface is particularly important for applications that require high transparency, such as optical applications. This is a serious problem when used for cast supports and the like that require high surface flatness. In recent years, there is a tendency that the heat treatment temperature applied to the post-processing for the purpose of improving the function of the product is increased, and oligomer precipitation due to the heat treatment is becoming more serious.
 加熱によるオリゴマーの析出を抑制する方法として、特許文献1にあるように特定の塗布層を付与しポリエステルフィルムの表面改質により、加熱析出オリゴマーを抑制する提案がされている。しかしながら、塗布層でオリゴマー析出を抑制する場合、品質に影響しないようなわずかな傷でも析出抑制機能を欠き、そこに集中的に析出が起こるために却って外観を損ねる場合があり、抜本的な対策となりえない。 As a method for suppressing oligomer precipitation due to heating, a proposal has been made to suppress the thermal precipitation oligomer by applying a specific coating layer and modifying the surface of the polyester film as described in Patent Document 1. However, when oligomer deposition is suppressed in the coating layer, even slight scratches that do not affect the quality lack the precipitation suppression function, and the precipitation may occur intensively there. It cannot be.
 そこでポリエステルフィルム中のオリゴマーを低減させるため、固相重合法によりポリエステル原料の環状オリゴマー量を低減することが提案されている(特許文献2~5)。また、ポリエステル中の環状オリゴマー量を低減する他の方法として、特許文献6には、熱処理時に不活性ガスの流量を1~500リットル/kg・時間に調整する方法が提案されており、特許文献7には、固相重合時の減圧度を15~300mmHgに調整する方法が提案されている。更に、特許文献8には、ポリエステル樹脂のヒドロキシル(OH)末端量を所定量以下にすることが提案されている。 Therefore, in order to reduce the oligomer in the polyester film, it has been proposed to reduce the amount of cyclic oligomer of the polyester raw material by a solid phase polymerization method (Patent Documents 2 to 5). As another method for reducing the amount of cyclic oligomer in polyester, Patent Document 6 proposes a method of adjusting the flow rate of inert gas to 1 to 500 liters / kg · hour during heat treatment. 7 proposes a method of adjusting the degree of vacuum during solid-phase polymerization to 15 to 300 mmHg. Further, Patent Document 8 proposes that the hydroxyl (OH) terminal amount of the polyester resin is set to a predetermined amount or less.
特開2005-336394号公報JP 2005-336394 A 特開平9-99530号公報JP-A-9-99530 特開2000-141570号公報JP 2000-141570 A 特開2003-191413号公報JP 2003-191413 A 特開2003-301057号公報Japanese Patent Laid-Open No. 2003-301057 特公昭62-49294号公報Japanese Patent Publication No.62-49294 特公昭62-49295号公報Japanese Patent Publication No.62-49295 特開2011-252128号公報JP 2011-252128 A
 しかしながら、特許文献2~5に提案の方法では、固相重合によりポリエステル中の環状オリゴマー量の低減は図れるものの、同時にポリエステルの重縮合反応も進行し、得られたポリエステルの重合度が高くなる。そのため、ポリエステルの固有粘度が高くなり、押し出し成形を行う際の負荷が大きくなったり、剪断発熱によりポリエステルの温度が上昇し、熱分解を起こしたりする。そのため、高融点物が発生し、得られた成形体等の透明性の悪化や結晶化速度の変動の原因となり問題となる場合があった。 However, in the methods proposed in Patent Documents 2 to 5, although the amount of cyclic oligomer in the polyester can be reduced by solid-phase polymerization, the polycondensation reaction of the polyester also proceeds at the same time, and the degree of polymerization of the obtained polyester increases. For this reason, the intrinsic viscosity of the polyester is increased, the load during extrusion molding is increased, and the temperature of the polyester is increased by shearing heat generation, causing thermal decomposition. For this reason, a high melting point product is generated, which may cause a problem of deterioration of transparency of the obtained molded body or the like and fluctuation of the crystallization speed.
 一方、特許文献6、7に提案の方法では、ポリエステルの重縮合反応の進行を抑制しつつ、環状オリゴマー量の低減が図れるものの、その後の溶融時に環状オリゴマーが再生する問題があった。すなわち、フィルム製膜において原料ポリエステルを溶融する必要があり、従来公知の方法によりフィルム原料中の環状オリゴマー量の低減を行なっても、フィルム溶融製膜での熱履歴により副生成物として環状オリゴマーが生成することは避けられなかった。そのため、フィルム原料の環状オリゴマー量をできるだけ低減する努力がなされていたが、生産性の点から係る対応にも限界があった。よって、フィルム製膜時の溶融押出し工程での環状オリゴマーの再生成により、十分な低オリゴマーフィルムを実現するには至っていなかった。 On the other hand, although the methods proposed in Patent Documents 6 and 7 can reduce the amount of the cyclic oligomer while suppressing the progress of the polycondensation reaction of the polyester, there is a problem that the cyclic oligomer is regenerated upon subsequent melting. That is, it is necessary to melt the raw material polyester in the film formation, and even if the amount of the cyclic oligomer in the film raw material is reduced by a conventionally known method, the cyclic oligomer is formed as a by-product due to the thermal history in the film melting film formation. It was inevitable to generate. For this reason, efforts have been made to reduce the amount of cyclic oligomers in the film raw material as much as possible, but there is a limit to such measures from the viewpoint of productivity. Therefore, a sufficient low oligomer film has not been realized by regenerating the cyclic oligomer in the melt extrusion process during film formation.
 また、ポリエステル樹脂のヒドロキシル(OH)末端量の低下は一方の末端であるカルボキシル(COOH)末端の増加を意味し、溶融成形時の耐熱性や、長期使用における耐久性を損なうため、実用性に乏しいものであった。 In addition, a decrease in the hydroxyl (OH) terminal amount of the polyester resin means an increase in one terminal carboxyl (COOH) terminal, impairing heat resistance during melt molding and durability in long-term use. It was scarce.
 本発明は、上記従来の方法の有する問題点を解決し、加熱加工後の透明性に優れ、環状オリゴマーの析出が少ないポリエステルフィルムを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems of the conventional methods, and to provide a polyester film having excellent transparency after heat processing and less precipitation of cyclic oligomers.
 更には、このようなオリゴマー含有量の少ない樹脂を用いたとしても、非常に厳しい環境下、例えば熱処理の温度が非常に高かったり、時間が長かったりすると、オリゴマーの析出が認められることがある。 Furthermore, even when such a resin having a low oligomer content is used, oligomer precipitation may be observed in a very severe environment, for example, if the temperature of the heat treatment is very high or the time is long.
 そこで第2の本発明は、上記従来の方法の有する問題点を解決し、より厳しい条件下であっても加熱加工後の透明性に優れ、環状オリゴマーの析出が少ないポリエステルフィルムを提供することを目的とする。 Therefore, the second aspect of the present invention provides a polyester film that solves the problems of the above-described conventional methods and has excellent transparency after heat processing and less cyclic oligomer precipitation even under more severe conditions. Objective.
 本発明者らは、上記実情に鑑み鋭意検討を重ねた結果、特定の樹脂を用いることにより、上記課題を容易に解決できることを見いだし、第1の本発明を完成するに至った。 As a result of intensive studies in view of the above circumstances, the present inventors have found that the above-mentioned problems can be easily solved by using a specific resin, and have completed the first present invention.
 すなわち、第1の本発明は、ポリエチレンテレフタレート樹脂からなるフィルムであって、該ポリエチレンテレフタレート樹脂の固有粘度が0.60dl/g以上であるとともに、フィルム中の環状3量体オリゴマーの重量分率(WCy3)と環状4量体オリゴマーの重量分率(WCy4)の比WCy3/WCy4が5以下であることを特徴とする、ポリエステルフィルムである。 That is, the first aspect of the present invention is a film made of a polyethylene terephthalate resin, the intrinsic viscosity of the polyethylene terephthalate resin is 0.60 dl / g or more, and the weight fraction of the cyclic trimer oligomer in the film ( The polyester film is characterized in that the ratio WCy3 / WCy4 of the weight fraction (WCy4) of WCy3) to the cyclic tetramer oligomer is 5 or less.
 また、第1の本発明は、更に特定の構造を有していることが好ましく、すなわち、フィルムが、共押出法にて得られた少なくとも3層以上の積層フィルムであり、最外層を構成する樹脂の固有粘度が、内層を構成する樹脂の固有粘度よりも高い構成を具備することが好ましい。 The first invention preferably further has a specific structure, that is, the film is a laminated film of at least three layers obtained by a coextrusion method, and constitutes the outermost layer. It is preferable that the intrinsic viscosity of the resin is higher than the intrinsic viscosity of the resin constituting the inner layer.
 また、本発明者らは、上記実情に鑑み鋭意検討を重ねた結果、特定の樹脂からなるフィルムにおいてその表面エネルギーを特定範囲とすることで、より厳しい条件下での加熱加工後の透明性に優れることを見出し、第2の本発明を完成するに至った。 In addition, as a result of intensive studies in view of the above circumstances, the present inventors have made the surface energy in a specific range in a film made of a specific resin, thereby improving the transparency after heat processing under more severe conditions. As a result, the present invention has been found to be excellent, and the second invention has been completed.
 すなわち、第2の本発明は、前記第1の本発明に、さらに少なくとも片方の表面における表面エネルギーが50mN/m以上であるポリエステルフィルムである。第2の本発明は、フィルムがその少なくとも片面に被膜層を有し、該被膜層表面における表面エネルギーが50mN/m以上であることがより好ましく、フィルムへの被膜層の形成をフィルム製造工程内で行うことが特に好ましい。 That is, the second aspect of the present invention is a polyester film according to the first aspect of the present invention, wherein the surface energy on at least one surface is 50 mN / m or more. In the second aspect of the present invention, it is more preferable that the film has a coating layer on at least one surface, and the surface energy on the surface of the coating layer is 50 mN / m or more. It is particularly preferable to carry out at
 本発明のポリエステルフィルムは、加熱加工後の透明性に優れ、オリゴマーの析出が少ないため高温での後加工処理が可能であることから、高品位が必要とされる光学用途をはじめとした工業用途において好適に使用できる。 The polyester film of the present invention is excellent in transparency after heat processing, and can be post-processed at a high temperature because of less oligomer precipitation, so that it can be used in industrial applications including optical applications that require high quality. Can be preferably used.
 また、本発明のポリエステルフィルムは、ポリエステル樹脂のカルボキシル末端の増加を伴い難いため、溶融成形時の耐熱性や、長期使用における耐久性を有し、実用性に優れる。 Further, since the polyester film of the present invention is hardly accompanied by an increase in the carboxyl terminal of the polyester resin, it has heat resistance at the time of melt molding and durability in long-term use, and is excellent in practicality.
 また、第2の本発明のポリエステルフィルムは、より厳しい条件下での加熱加工後の透明性に優れ、オリゴマーの析出が少ないためより高温・長時間の後加工処理が可能であることから、高品位が必要とされる光学用途をはじめとした工業用途において好適に使用できる。 In addition, the polyester film of the second invention is excellent in transparency after heat processing under more severe conditions, and since the precipitation of oligomers is small, it can be post-processed at a higher temperature for a longer time. It can be suitably used in industrial applications including optical applications where quality is required.
 以下、本発明をさらに詳細に説明する。
ポリエステルフィルム
 ポリエチレンテレフタレート樹脂
 本発明におけるポリエステルフィルムは、ポリエチレンテレフタレート樹脂からなるフィルムである。
Hereinafter, the present invention will be described in more detail.
Polyester film Polyethylene terephthalate resin The polyester film in the present invention is a film made of polyethylene terephthalate resin.
 本発明におけるポリエチレンテレフタレート樹脂は、エチレンテレフタレートを主たる繰り返し単位としてなるポリエステルである。ここで「主たる繰り返し単位」とは、ポリエステルを構成する全繰り返し単位の80モル%以上、好ましくは90モル%以上、特に好ましくは95モル%以上の繰り返し単位をいう。すなわち、かかるポリエステルは共重
合ポリエステルであってもよい。その場合、共重合成分としては、イソフタル酸、ナフタレンジカルボン酸等の酸成分や、ジエチレングリコール、1,4-ブタンジオール等のグリコール成分を例示することができる。
The polyethylene terephthalate resin in the present invention is a polyester having ethylene terephthalate as a main repeating unit. Here, the “main repeating unit” means 80 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more of all repeating units constituting the polyester. That is, the polyester may be a copolyester. In this case, examples of the copolymer component include acid components such as isophthalic acid and naphthalenedicarboxylic acid, and glycol components such as diethylene glycol and 1,4-butanediol.
 本発明におけるポリエチレンテレフタレート樹脂は、ゲルマニウム化合物またはチタン化合物を重合触媒として重合されたポリエステルであることが好ましく、この中でもゲルマニウム化合物を重合触媒として用いることが特に好ましい。ゲルマニウム化合物を重合触媒として用いる場合、ポリエステルは、ゲルマニウム元素を例えば0.1~100ppm、好ましくは1~70ppm、さらに好ましくは10~50ppm含有することができる。ここでゲルマニウム元素は、ポリエステルの重合触媒として用いたゲルマニウム化合物に由来する。かかるゲルマニウム化合物として、例えば二酸化ゲルマニウム、四酸化ゲルマニウム、水酸化ゲルマニウム、蓚酸ゲルマニウム、塩化ゲルマニウム等を例示することができる。 The polyethylene terephthalate resin in the present invention is preferably a polyester polymerized using a germanium compound or a titanium compound as a polymerization catalyst, and among these, a germanium compound is particularly preferably used as the polymerization catalyst. When a germanium compound is used as the polymerization catalyst, the polyester may contain, for example, 0.1 to 100 ppm, preferably 1 to 70 ppm, more preferably 10 to 50 ppm of germanium element. Here, the germanium element is derived from a germanium compound used as a polymerization catalyst for polyester. Examples of such germanium compounds include germanium dioxide, germanium tetroxide, germanium hydroxide, germanium oxalate, and germanium chloride.
 また、チタン化合物を重合触媒として用いる場合、ポリエステル樹脂はチタン元素を例えば0.1~50ppm、好ましくは1~30ppm、さらに好ましくは2~20ppm含有することができる。ここでチタン元素は、ポリエステルの重合触媒として用いたチタン化合物に由来する。かかるチタン化合物として、例えば塩化チタン、酢酸チタン、チタンテトラブトキシド等を例示することができる。 When a titanium compound is used as a polymerization catalyst, the polyester resin can contain, for example, 0.1 to 50 ppm, preferably 1 to 30 ppm, more preferably 2 to 20 ppm of titanium element. Here, the titanium element is derived from a titanium compound used as a polymerization catalyst for polyester. Examples of such titanium compounds include titanium chloride, titanium acetate, titanium tetrabutoxide and the like.
 このようにして、最終重縮合反応器から得られたポリエチレンテレフタレート樹脂は、通常、溶融押出成形法によって粒状(チップ状)に成形され、次いで固相重縮合工程に供給される。 Thus, the polyethylene terephthalate resin obtained from the final polycondensation reactor is usually formed into granules (chips) by a melt extrusion molding method and then supplied to the solid phase polycondensation step.
 固相重縮合工程に供給される粒状ポリエチレンテレフタレート樹脂は、予め固相重縮合を行なう場合の温度より低い温度に加熱して予備結晶化を行なった後、固相重縮合工程に供給してもよい。このような予備結晶化工程は、粒状ポリエチレンテレフタレートを乾燥状態で通常、120~200℃好ましくは130~180℃の温度に1分~4時間加熱して行なうこともでき、また粒状ポリエチレンテレフタレート樹脂を水蒸気雰囲気下、または水蒸気含有不活性ガス雰囲気下で通常、120~200℃の温度に1分間以上加熱して行なうこともできる。 The granular polyethylene terephthalate resin supplied to the solid phase polycondensation step may be preliminarily crystallized by heating to a temperature lower than the temperature at which solid phase polycondensation is performed, and then supplied to the solid phase polycondensation step. Good. Such a precrystallization step can be performed by heating granular polyethylene terephthalate in a dry state, usually at a temperature of 120 to 200 ° C., preferably 130 to 180 ° C. for 1 minute to 4 hours. It can also be carried out by heating to a temperature of 120 to 200 ° C. for 1 minute or longer in a steam atmosphere or a steam-containing inert gas atmosphere.
 このような粒状ポリエチレンテレフタレート樹脂が供給される固相重縮合工程は少なくとも1段からなり、重縮合温度が通常190~230℃、好ましくは195~225℃であり、窒素ガス、アルゴンガス、炭酸ガスなどの不活性ガス雰囲気下で固相重縮合反応が実施される。これらの不活性ガスの中では窒素ガスが好ましい。 The solid phase polycondensation step in which such granular polyethylene terephthalate resin is supplied comprises at least one stage, and the polycondensation temperature is usually 190 to 230 ° C., preferably 195 to 225 ° C., and nitrogen gas, argon gas, carbon dioxide gas The solid phase polycondensation reaction is performed under an inert gas atmosphere such as. Of these inert gases, nitrogen gas is preferred.
 本発明においてフィルムを形成するための原料としてのポリエステル樹脂(上記粒状ポリエチレンテレフタレート樹脂)は、上記の重合工程を経た結果として、固有粘度を好ましくは0.65以上、より好ましくは0.70以上、更に好ましくは0.75以上となるようにする。このようにすることで、フィルムの固有粘度を本発明が規定する範囲とし易くなる。 The polyester resin (the granular polyethylene terephthalate resin) as a raw material for forming a film in the present invention, as a result of undergoing the polymerization step, preferably has an intrinsic viscosity of 0.65 or more, more preferably 0.70 or more, More preferably, it should be 0.75 or more. By doing in this way, it becomes easy to make the intrinsic viscosity of a film into the range prescribed | regulated by this invention.
 本発明にいうポリエステルフィルムとは、通常上記したポリエステルを押出口金から溶融押し出する、いわゆる押出法により、押し出されたポリエステルフィルムであって、必要に応じ、縦方向および横方向の二軸方向に配向させたフィルムである。縦方向の延伸と横方向の延伸は別に行っても良いが、ロールとの接触機会がより少なく、オリゴマー析出促進の原因ともなる表面の傷を発生させにくいことから、同時二軸延伸法で製造することが好ましい。 The polyester film referred to in the present invention is a polyester film extruded by a so-called extrusion method in which the above-mentioned polyester is usually melt-extruded from an extrusion die, and if necessary, in the biaxial direction of the vertical direction and the horizontal direction. An oriented film. Although the stretching in the machine direction and the stretching in the transverse direction may be performed separately, they are manufactured by the simultaneous biaxial stretching method because there are fewer opportunities for contact with the roll and it is difficult to generate scratches on the surface that cause oligomer precipitation. It is preferable to do.
 フィルムの総厚みは通常25~200μm、好ましくは38~188μmである。25μm未満ではフィルムの機械的な強度や耐熱性が不足して、後の加工工程でシワが入るなどの問題が発生することがある。一方、フィルムの厚みが200μmを超えると、フィルムの腰が強すぎて後工程での取り扱い性が不良となることがある。 The total thickness of the film is usually 25 to 200 μm, preferably 38 to 188 μm. If it is less than 25 μm, the mechanical strength and heat resistance of the film may be insufficient, and problems such as wrinkles may occur in subsequent processing steps. On the other hand, if the thickness of the film exceeds 200 μm, the film may be too stiff and handleability in the subsequent process may be poor.
 フィルムの固有粘度
 本発明のポリエステルフィルムは、それを構成する樹脂の固有粘度(単位:dl/g)が0.60以上である。固有粘度は好ましくは0.62以上、更に好ましくは0.64以上である。オリゴマーの析出を抑制するためには、オリゴマー再生抑制効果およびオリゴマー移動抑制の両方の効果が重要であるが、フィルムを構成する樹脂の固有粘度が0.60未満であると、その両方の効果が損なわれ、加熱加工時の外観不良(白化)が発生する。なお、本発明においては、かかるメカニズムを勘案して、フィルムの固有粘度は、ポリエステルフィルム全体としての固有粘度が上記数値範囲にあることによって上述のような効果が奏されるものである。よって、フィルムが後述する積層フィルムの態様である場合は、積層フィルム全体としての固有粘度が上記数値範囲にあればよい。積層フィルムの態様においては、少なくとも該積層フィルムを構成する表裏1層ずつの最外層を構成するポリエチレンテレフタレート樹脂の固有粘度が、好ましくは0.60以上、より好ましくは0.62以上、さらに好ましくは0.64以上、特に好ましくは0.66以上である態様が好ましい。最も好ましい態様は、2層の最外層を構成するポリエチレンテレフタレート樹脂が上記好ましい範囲を満たすとともに、内層を構成するポリエチレンテレフタレート樹脂の固有粘度が、好ましくは0.60以上、より好ましくは0.62以上、さらに好ましくは0.64以上である態様である。なお、ここで内層が複数層である場合は、内層全体のバルクとしての固有粘度が上記好ましい範囲であればよい。
Intrinsic Viscosity of Film The intrinsic viscosity (unit: dl / g) of the resin constituting the polyester film of the present invention is 0.60 or more. The intrinsic viscosity is preferably 0.62 or more, more preferably 0.64 or more. In order to suppress the precipitation of the oligomer, both the effect of suppressing the oligomer regeneration and the effect of suppressing the oligomer movement are important. If the intrinsic viscosity of the resin constituting the film is less than 0.60, both effects are It is damaged and appearance defect (whitening) occurs during heat processing. In the present invention, in consideration of such a mechanism, the intrinsic viscosity of the film exhibits the above-described effects when the intrinsic viscosity of the entire polyester film is within the above numerical range. Therefore, when the film is an embodiment of a laminated film described later, the intrinsic viscosity of the laminated film as a whole may be in the above numerical range. In the aspect of the laminated film, the intrinsic viscosity of the polyethylene terephthalate resin constituting the outermost layer of each of the front and back layers constituting the laminated film is preferably 0.60 or more, more preferably 0.62 or more, further preferably The aspect which is 0.64 or more, Most preferably, it is 0.66 or more is preferable. In the most preferred embodiment, the polyethylene terephthalate resin constituting the outermost layer of the two layers satisfies the above preferred range, and the intrinsic viscosity of the polyethylene terephthalate resin constituting the inner layer is preferably 0.60 or more, more preferably 0.62 or more. More preferably, the aspect is 0.64 or more. Here, when the inner layer is a plurality of layers, the intrinsic viscosity as a bulk of the entire inner layer may be in the above-mentioned preferable range.
 また、本発明のポリエステルフィルムは、それを構成する樹脂の固有粘度が0.72以下であることが好ましい。これにより押出成形において樹脂にかかる負荷を小さくし、剪断発熱を抑制することができる。それによりかかる発熱による樹脂の熱分解を抑制することができる。かかる観点から、固有粘度は、より好ましくは0.70以下、さらに好ましくは0.68以下である。本発明によれば、このように固有粘度が過剰に高くない樹脂を用いながらオリゴマーの抑制ができる。 Further, in the polyester film of the present invention, the intrinsic viscosity of the resin constituting it is preferably 0.72 or less. Thereby, the load concerning resin in extrusion molding can be made small, and shear heat_generation | fever can be suppressed. Thereby, thermal decomposition of the resin due to such heat generation can be suppressed. From this viewpoint, the intrinsic viscosity is more preferably 0.70 or less, and still more preferably 0.68 or less. According to the present invention, oligomers can be suppressed while using a resin whose intrinsic viscosity is not excessively high.
 積層フィルム
 本発明のポリエステルフィルムは、好ましくは1層の最外層と他の層とを有する2層や、2層の最外層と内層とを有する3層以上の積層ポリエステルフィルムであることができる。ここで内層は、1層でも良いし、2層以上の複数層であってもよい。かかる積層の態様とするためには、2台以上の押出機を用いて、いわゆる共押出法を用いて積層構造とさ
れたものが好ましい。
Laminated film The polyester film of the present invention can be preferably a laminated polyester film of two or more layers having one outermost layer and another layer, or three or more layers having two outermost layers and an inner layer. Here, the inner layer may be a single layer or a plurality of two or more layers. In order to obtain such a lamination mode, a laminate structure using a so-called coextrusion method using two or more extruders is preferable.
 層の構成としては、A原料とB原料とを用いたA/B構成、またはA/B/A構成、さらにC原料を用いてA/B/C構成、またはさらに積層数の多い上記以外の構成のフィルムとすることができる。ここでは、例えばAやCが最外層であり、Bが他の層や内層である。より具体的には、例えばA原料として粒子を含有しない原料を用いて表面平坦性を設計し、B原料としては粒子を含有する原料を用いてA/Bとすることができる。又、同様の原料を用いてA/B/A構成のフィルムとし、片方のA層表面に易滑層を形成しフィルム製造での表面欠点を抑制することもできる。この場合B層の原料を自由に選択できることからコスト的な利点などが大きい。また当該フィルムのリサイクル原料をB層に配合しても、表層であるA層により表面粗さの設計ができるので、さらにコスト的な利点が大きくなる。 As the structure of the layer, an A / B structure using an A raw material and a B raw material, or an A / B / A structure, an A / B / C structure using a C raw material, or a layer having a larger number of layers other than the above. It can be set as the film of a structure. Here, for example, A and C are the outermost layers, and B is the other layers and the inner layers. More specifically, for example, the surface flatness can be designed using a raw material that does not contain particles as the A raw material, and the raw material containing particles can be A / B as the B raw material. Moreover, it can also be set as the film of A / B / A structure using the same raw material, an easy slipping layer can be formed in the surface of one A layer, and the surface defect by film manufacture can also be suppressed. In this case, since the raw material of B layer can be selected freely, a cost advantage etc. are large. Further, even if the recycled material of the film is blended in the B layer, the surface roughness can be designed by the surface A layer, so that the cost advantage is further increased.
 本発明においては、ポリエステルフィルムを積層フィルムとし、その最外層(表層と呼称する場合がある。)を構成する樹脂の固有粘度が、内層(芯層と呼称する場合がある。また、2層構成における他の層を便宜的に内層や芯層と呼称する場合がある。)を構成する樹脂の固有粘度よりも高いことが好ましい。ここで内層を構成する樹脂の固有粘度とは、内層が複数層あるに際しては、内層全体のバルクとしての固有粘度を指す。最外層を形成する樹脂の固有粘度が内層を形成する樹脂の固有粘度よりも低いと、オリゴマー再生抑制効果およびオリゴマー移動抑制の両方の効果が低くなる傾向にある結果、加熱加工後の環状オリゴマーの析出が多くなる傾向にありフィルムが外観を損なう場合がある。 In the present invention, the polyester film is a laminated film, and the intrinsic viscosity of the resin constituting the outermost layer (sometimes referred to as the surface layer) is the inner layer (sometimes referred to as the core layer. In addition, the two-layer configuration. It is preferable that the other layers in the above are higher than the intrinsic viscosity of the resin constituting the layer). Here, the intrinsic viscosity of the resin constituting the inner layer refers to the intrinsic viscosity as a bulk of the entire inner layer when there are a plurality of inner layers. If the intrinsic viscosity of the resin that forms the outermost layer is lower than the intrinsic viscosity of the resin that forms the inner layer, the effects of both the oligomer regeneration inhibiting effect and the oligomer migration inhibiting effect tend to be reduced. Precipitation tends to increase and the film may impair the appearance.
 フィルムの最外層の厚み(1層の厚み)は、好ましくは0.5μm以上30μm以下であり、より好ましくは1.0μm以上25μm以下、さらに好ましくは3μm以上20μm以下である。最外層が0.5μm未満では、オリゴマー移動抑制の向上効果が低くなる結果、加熱加工後の環状オリゴマーの析出が多くなる傾向にありフィルムが外観を損なう場合がある。一方、厚みの上限は、フィルムの最外層がオリゴマーの移動を抑制できる厚さであれば良いため30μm以下でよく、20μm以下でも十分な効果を発揮する。 The thickness of the outermost layer of the film (the thickness of one layer) is preferably 0.5 μm or more and 30 μm or less, more preferably 1.0 μm or more and 25 μm or less, and further preferably 3 μm or more and 20 μm or less. When the outermost layer is less than 0.5 μm, the effect of suppressing the oligomer movement is reduced, and as a result, the precipitation of the cyclic oligomer after heat processing tends to increase, and the film may impair the appearance. On the other hand, the upper limit of the thickness may be 30 μm or less because the outermost layer of the film may be a thickness that can suppress the migration of the oligomer, and a sufficient effect is exhibited even if it is 20 μm or less.
 滑剤
 本発明のポリエステルフィルムには、本発明の効果を妨げない範囲で粒子を添加することができる。フィルムに添加する粒子としては、無機粒子として、二酸化ケイ素、アルミナ、酸化ジルコニウム、カオリン、タルク、炭酸カルシウム、酸化チタン、酸化バリウム、カーボンブラック、硫化モリブデン、酸化アンチモン等及びそれらのハイブリッド品が挙げられる。これらの中では、二酸化ケイ素が安価でかつ粒子径が多種あるので利用しやすい。
Lubricant Particles can be added to the polyester film of the present invention as long as the effects of the present invention are not hindered. Examples of the particles added to the film include inorganic particles such as silicon dioxide, alumina, zirconium oxide, kaolin, talc, calcium carbonate, titanium oxide, barium oxide, carbon black, molybdenum sulfide, antimony oxide, and the like, and hybrid products thereof. . Among these, silicon dioxide is easy to use because it is inexpensive and has various particle sizes.
 また、有機粒子としては、炭素-炭素二重結合を一分子中に2個以上含有する化合物(例えばジビニルベンゼン)により架橋構造を達成したポリスチレンまたはポリアクリレートポリメタクリレート、有機・無機ハイブリッド品が挙げられる。本発明において、ポリエステルに粒子を配合する場合、方法としては特に限定されるものではなく、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。 Examples of the organic particles include polystyrene or polyacrylate polymethacrylate, an organic / inorganic hybrid product in which a crosslinked structure is achieved by a compound containing two or more carbon-carbon double bonds in one molecule (for example, divinylbenzene). . In the present invention, when the particles are blended with the polyester, the method is not particularly limited, and a known method can be adopted. For example, it can be added at any stage of producing the polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or before the start of the polycondensation reaction after completion of the transesterification reaction, The polycondensation reaction may proceed. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.
 添加剤
 本発明のポリエステルフィルムには、本発明の効果を損なわない範囲であれば、他の熱可塑性樹脂、例えばポリエチレンナフタレート、ポリトリメチレンテレフタレート等を混合することができる。また、紫外線吸収剤、酸化防止剤、界面活性剤、蛍光増白剤、潤滑剤、遮光剤、マット化剤、および染料、顔料などの着色剤等を配合してもよい。
Additives Other thermoplastic resins such as polyethylene naphthalate and polytrimethylene terephthalate can be mixed in the polyester film of the present invention as long as the effects of the present invention are not impaired. Moreover, you may mix | blend coloring agents, such as a ultraviolet absorber, antioxidant, surfactant, a fluorescent whitening agent, a lubricant agent, a light-shielding agent, a matting agent, and a dye, a pigment.
 オリゴマー分率
 本発明のポリエステルフィルムは、フィルム中の環状3量体オリゴマーの重量分率(WCy3)(単位:重量%)と環状4量体オリゴマーの重量分率(WCy4)(単位:重量%)の比(重量分率比)WCy3/WCy4が5以下であることが必要である。
Oligomer fraction The polyester film of the present invention has a weight fraction of cyclic trimer oligomer in the film (WCy3) (unit: wt%) and a weight fraction of cyclic tetramer oligomer (WCy4) (unit: wt%). The ratio (weight fraction ratio) WCy3 / WCy4 must be 5 or less.
 この重量分率比が5を超えると、加熱工程での外観悪化(白化)が特に顕著になる。かかる観点から、重量分率比は4以下が好ましく、より好ましくは3.5以下、更に好ましくは3以下である。環状オリゴマーの重量分率比を上記の範囲とするためには、たとえば特開平3-47830号公報に記載の水処理などを行い重合触媒の活性を十分に低下させるとともに、その樹脂を十分に乾燥した後に適切な熱履歴を与え、それを用いてフィルムを成形することで達成することができる。樹脂への熱履歴の与え方としては、(1)チップを一度溶融し、(例えばストランド状に)押出して再チップ化する方法、(2)チップを溶融押出後、例えば製膜装置等にてフィルム等に成形した後、該成形物を粉砕・再溶融し、(例えばストランド状に)押出して再チップ化する方法などが挙げられる。(2)に記載した方法は特に好ましく、更には熱履歴を与えた樹脂と与えない樹脂と適当な比率で混合して用いることにより効率的に環状オリゴマーの重量分率比を規定の範囲に調整することが出来る。すなわち、適切な熱履歴を経たものは、WCy3/WCy4の比率が小さくなる傾向にあるので、そのような樹脂の含有量を増やすと全体としてWCy3/WCy4の比率が小さくなる傾向を利用すればよい。以下、一例として具体的な方法を例示する。この方法は工程1から工程3までの3つの工程を経てフィルムを製造する方法である。 When this weight fraction ratio exceeds 5, the appearance deterioration (whitening) in the heating process becomes particularly remarkable. From this viewpoint, the weight fraction ratio is preferably 4 or less, more preferably 3.5 or less, and still more preferably 3 or less. In order to set the weight fraction ratio of the cyclic oligomer within the above range, for example, water treatment described in JP-A-3-47830 is performed to sufficiently reduce the activity of the polymerization catalyst, and the resin is sufficiently dried. Can be achieved by providing a suitable thermal history and then using it to form a film. As a method of giving a thermal history to the resin, (1) a method in which a chip is once melted and extruded (for example, in the form of a strand) to rechip, and (2) after the chip is melt-extruded, for example, in a film forming apparatus Examples of the method include forming a film or the like, then crushing and remelting the molded product, and extruding (for example, in the form of a strand) to rechip. The method described in (2) is particularly preferable, and the weight fraction ratio of the cyclic oligomer is efficiently adjusted to a specified range by mixing the resin with and without heat history in an appropriate ratio. I can do it. That is, since the ratio of WCy3 / WCy4 tends to be small after passing through an appropriate thermal history, the tendency of the ratio of WCy3 / WCy4 to be small as a whole should be utilized when the content of such resin is increased. . Hereinafter, a specific method is illustrated as an example. This method is a method for producing a film through three steps from step 1 to step 3.
 工程1
 まず、工程1として、上述した本発明における好ましいポリエステル樹脂を用い、それを溶融押出して樹脂組成物1を製造する。なお、ここでポリエステル樹脂は前述のポリエチレンテレフタレート樹脂である。また、本発明において「溶融押出により」とは、ダイ等から溶融樹脂を放出することを指すものとする。
Process 1
First, as the process 1, the preferred polyester resin in the present invention described above is used, and it is melt-extruded to produce a resin composition 1. Here, the polyester resin is the aforementioned polyethylene terephthalate resin. In the present invention, “by melt extrusion” refers to discharging a molten resin from a die or the like.
 樹脂組成物1は、例えば繊維状であってもよく、フィルム状であってもよく、その他三次元立体形状であってもよい。なお、本発明においてその他三次元立体形状とは、繊維状ともフィルム状とも言えないものであって、例えば立方体等の多面体や球等の曲面体や、あるいは箱状のもの、フィルム状とは言えないシート状や板状のもの等を含むものである。 Resin composition 1 may be, for example, a fiber shape, a film shape, or other three-dimensional solid shape. In the present invention, the other three-dimensional solid shape is neither a fiber shape nor a film shape, and may be a polyhedron such as a cube, a curved surface such as a sphere, a box shape, or a film shape. Including non-sheet-like or plate-like ones.
 樹脂組成物1は、ポリエステル樹脂90~100質量%を含む。ここで含有量は、得られる樹脂組成物1の質量100質量%に対する含有量である。かかる質量比率範囲とすることによって、続く工程2における熱処理により、含有オリゴマーを低減させることができ、最終的に工程3において環状三量体および環状四量体の重量分率が本発明規定の範囲にある樹脂成形体4を得ることができる。 Resin composition 1 contains 90 to 100% by mass of a polyester resin. Here, content is content with respect to 100 mass% of mass of the resin composition 1 obtained. By setting such a mass ratio range, the content oligomer can be reduced by the heat treatment in the subsequent step 2, and finally the weight fraction of the cyclic trimer and the cyclic tetramer in the step 3 is within the range defined by the present invention. The resin molded body 4 can be obtained.
 樹脂組成物1の溶融押出においては、その溶融押出条件は、用いるポリエステル樹脂の融点や、得ようとする樹脂組成物1の形状や特性に応じて適宜定めればよい。なお、ここで得られる樹脂組成物1は、間接的に、最終的に得ようとする樹脂成形体4の原料となるものであり、よって外観等の特性はそれほど重要ではないものであるが、樹脂の劣化という観点からは、劣化物が少なく、また加水分解によるポリマー鎖の切断が少ない方が好ましい。よって、かかる工程における溶融押出温度は高すぎない方が好ましい。また、生産性が低すぎると、間接的にではあるが、樹脂成形体4を製造するための原料が不足することとなるため、ある程度の生産性は必要である。よって、温度条件が低すぎないことが好ましい。また、溶融押出時間も、長すぎると劣化物が増大し、短すぎると未溶融物が増大する傾向等を勘案して、適宜設定すればよい。例えば5~30分である。 In the melt extrusion of the resin composition 1, the melt extrusion conditions may be appropriately determined according to the melting point of the polyester resin to be used and the shape and characteristics of the resin composition 1 to be obtained. In addition, the resin composition 1 obtained here is indirectly a raw material of the resin molding 4 to be finally obtained, and thus characteristics such as appearance are not so important. From the viewpoint of deterioration of the resin, it is preferable that there is less deterioration and less polymer chain scission by hydrolysis. Therefore, it is preferable that the melt extrusion temperature in this process is not too high. Further, if the productivity is too low, the raw material for producing the resin molded body 4 is insufficient, but a certain degree of productivity is necessary. Therefore, it is preferable that the temperature condition is not too low. Further, the melt extrusion time may be appropriately set in consideration of the tendency that the deteriorated product increases if it is too long and the unmelted product increases if it is too short. For example, 5 to 30 minutes.
 工程2
 工程1に続いて、工程2として、上記工程1で得られた樹脂組成物1を、上記樹脂組成物1を構成するポリエステルの融点をTmとして、Tm以上、Tm+60℃以下の温度で溶融混練し、溶融押出し、樹脂組成物2を製造する。なお、ここで「溶融混練し」とは、押出機におけるスクリュー部において、樹脂を混練しながら前方に移動させる態様を含むものである。
Process 2
Subsequent to Step 1, as Step 2, the resin composition 1 obtained in Step 1 is melt-kneaded at a temperature of Tm to Tm + 60 ° C., where Tm is the melting point of the polyester constituting the resin composition 1. The resin composition 2 is manufactured by melt extrusion. Here, “melt kneading” includes a mode in which the resin is moved forward while kneading the resin in the screw portion of the extruder.
 なお、工程1で得られた樹脂組成物1がペレット状であれば、それをそのまま押出機に投入して、工程2に用いることができる。樹脂組成物1が繊維状、フィルム状、その他三次元立体形状のものである場合は、粉砕等により押出機に投入できる形体としてから、押出機に投入すれば良い。また、粉砕したものを、圧力をかけてペレット状にするいわゆる
造粒をして用いることもできる。
In addition, if the resin composition 1 obtained in the step 1 is in the form of pellets, it can be used as it is in the step 2 by being put into an extruder as it is. When the resin composition 1 has a fibrous shape, a film shape, or other three-dimensional solid shape, the resin composition 1 may be put into the extruder after being formed into a shape that can be put into the extruder by pulverization or the like. In addition, the pulverized product can be used after being granulated into a pellet by applying pressure.
 樹脂組成物2の溶融混練および溶融押出においては、それらの条件は、上記態様を満足した上で、その他の条件は、用いるポリエステル樹脂の融点や、得ようとする樹脂組成物2の形状や特性に応じて適宜定めればよい。なお、ここで得られる樹脂組成物2は、最終的に得ようとする樹脂成形体4の原料となるものであり、よって外観等の特性はそれほど重要ではないものであるが、樹脂の劣化という観点からは、劣化物が少なく、また加水分解によるポリマー鎖の切断が少ない方が好ましい。かかる観点からは、温度条件は高すぎない方が好ましい。また、生産性が低すぎると、樹脂成形体4を製造するための原料が不足することとなるため、ある程度の生産性は必要である。かかる観点からは、温度条件が低すぎないことが好ましい。また、溶融押出時間も、長すぎると劣化物が増大し、短すぎると未溶融物が増大する傾向等を勘案して、適宜設定すればよい。例えば5~30分である。 In the melt-kneading and melt-extrusion of the resin composition 2, those conditions satisfy the above-described conditions, and the other conditions are the melting point of the polyester resin to be used, the shape and characteristics of the resin composition 2 to be obtained. It may be determined appropriately according to the situation. In addition, the resin composition 2 obtained here is a raw material of the resin molded body 4 to be finally obtained, and thus characteristics such as appearance are not so important, but the deterioration of the resin From the viewpoint, it is preferable that there are few deteriorated products and the polymer chain is not broken by hydrolysis. From this viewpoint, it is preferable that the temperature condition is not too high. Further, if the productivity is too low, raw materials for producing the resin molded body 4 are insufficient, and therefore a certain degree of productivity is necessary. From this viewpoint, it is preferable that the temperature condition is not too low. Further, the melt extrusion time may be appropriately set in consideration of the tendency that the deteriorated product increases if it is too long and the unmelted product increases if it is too short. For example, 5 to 30 minutes.
 工程2の具体例として、上記工程1で得られた樹脂組成物1としてのフィルム1を、上記フィルム1を構成するポリエステルの融点をTmとして、Tmを超え、Tm+60℃以下の温度範囲にある温度tで溶融混練し、溶融押出し、樹脂組成物2としてのペレット2を製造する工程が挙げられる。 As a specific example of the step 2, the film 1 as the resin composition 1 obtained in the step 1 is a temperature in the temperature range of more than Tm and Tm + 60 ° C. or less, where Tm is the melting point of the polyester constituting the film 1 A step of melt-kneading at t, melt-extruding, and producing pellets 2 as the resin composition 2 can be mentioned.
 工程3
 工程2に続いて、工程3として、上記工程2で得られた樹脂組成物2を含む樹脂組成物3を作成し、上記樹脂組成物1を構成するポリエステルの融点をTmとして、Tm以上、Tm+60℃以下の温度で溶融混練し、溶融押出し、樹脂成形体4としてのフィルム4を製造する。
Process 3
Subsequent to Step 2, as Step 3, a resin composition 3 containing the resin composition 2 obtained in Step 2 above is prepared, and the melting point of the polyester constituting the resin composition 1 is defined as Tm. The film 4 as the resin molded body 4 is manufactured by melt-kneading at a temperature of 0 ° C. or less and melt-extruding.
 樹脂組成物3における樹脂組成物2の含有量は適宜設定してよい。また、樹脂組成物2が回収再生原料である場合は、樹脂組成物3における樹脂組成物2の含有量はすなわち回収率となり、得られる樹脂成形体4の特性が許す限り多く添加することによって、コストダウンとなり、生産性向上となり好ましい。かかる観点から、樹脂組成物3における樹脂組成物2の含有量は、例えば15質量%以上であり、好ましくは30質量%以上、より好ましくは35質量%以上、さらに好ましくは40質量%以上である。上限は100質量%である。なお、ここで含有量は、得られる樹脂組成物3の質量に対する含有量である。 The content of the resin composition 2 in the resin composition 3 may be set as appropriate. Further, when the resin composition 2 is a recovered and recycled raw material, the content of the resin composition 2 in the resin composition 3 is a recovery rate, and by adding as much as the characteristics of the resulting resin molded body 4 allow, This is preferable because it reduces costs and improves productivity. From this viewpoint, the content of the resin composition 2 in the resin composition 3 is, for example, 15% by mass or more, preferably 30% by mass or more, more preferably 35% by mass or more, and further preferably 40% by mass or more. . The upper limit is 100% by mass. In addition, content is content with respect to the mass of the resin composition 3 obtained here.
 樹脂組成物3は、樹脂組成物2を含有するものであるが、その余の成分は、主たる成分がポリエステル樹脂であり、そして従たる成分として、本発明の目的を阻害しない限りにおいて、得ようとする樹脂成形体4の構成や特性により適宜選択した成分を含有することができる。ここで、「主たる成分」とは、その余の成分中の通常50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上であることを表す。かかるポリエステル樹脂や適宜選択される成分として、例えば樹脂組成物1を構成するポリエステル樹脂を挙げることができる。樹脂組成物3を構成するその余の成分としてのポリエステル樹脂と、樹脂組成物1を構成するポリエステル樹脂とは、同じものであってもよいし、異なるものであってもよい。ポリエステル樹脂を採用するに際しては、かかるポリエステル樹脂をペレット状にして用いると良い。 The resin composition 3 contains the resin composition 2, but the other components will be obtained as long as the main component is a polyester resin and does not impair the object of the present invention as a subordinate component. A component appropriately selected according to the configuration and characteristics of the resin molded body 4 can be contained. Here, the “principal component” means that it is usually 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more in the remaining components. Examples of the polyester resin and appropriately selected components include a polyester resin constituting the resin composition 1. The polyester resin as the remaining component constituting the resin composition 3 and the polyester resin constituting the resin composition 1 may be the same or different. When the polyester resin is employed, the polyester resin may be used in the form of pellets.
 なお、工程2で得られた樹脂組成物2がペレット状であれば、それをそのまま押出機に投入して、工程3に用いることができる。樹脂組成物2が繊維状、フィルム状、その他三次元立体形状のものである場合は、粉砕等により押出機に投入できる形体としてから、押出機に投入すれば良い。また、粉砕したものを、圧力をかけてペレット状にするいわゆる造粒をして用いることもできる。 In addition, if the resin composition 2 obtained in the step 2 is in the form of pellets, it can be used as it is in the step 3 by putting it in an extruder as it is. When the resin composition 2 has a fibrous shape, a film shape, or other three-dimensional solid shape, the resin composition 2 may be put into the extruder after being formed into a shape that can be put into the extruder by pulverization or the like. In addition, the pulverized product can be used after being granulated into a pellet by applying pressure.
 かくして、樹脂成形体4としてのフィルム4を製造することができる。このようにして得られたフィルム4は、上述したWCy3/WCy4の比率範囲を満足するものである。なお、積層フィルムの態様においては、各層においてこのような熱履歴を経た樹脂の含有量を調整して、さらに必要に応じて最外層と内層との厚み比率も調整して、全体としてWCy3/WCy4の比率を本発明が規定する範囲となるように調整することができる。 Thus, the film 4 as the resin molded body 4 can be manufactured. The film 4 thus obtained satisfies the above-described ratio range of WCy3 / WCy4. In addition, in the aspect of the laminated film, the content of the resin that has undergone such a thermal history is adjusted in each layer, and the thickness ratio between the outermost layer and the inner layer is adjusted as necessary, so that WCy3 / WCy4 as a whole. The ratio can be adjusted to be within the range defined by the present invention.
 また本発明においては、フィルム中のWCy3は1重量%以下が好ましく、より好ましくは0.85重量%以下である。 In the present invention, WCy3 in the film is preferably 1% by weight or less, more preferably 0.85% by weight or less.
 表面処理
 本発明のポリエステルフィルムは、ハードコート加工などにおける後加工剤の接着や、表面の滑り性を向上してブロッキング等の問題を抑制しながら取り扱い性を良好とするために、フィルム表面に表面処理層を形成させることが好ましい。易滑層を形成しない場合には、後加工での接着が保持できなかったり、フィルム製造工程における巻き特性が劣ったり、フィルム製造工程でフィルム表面に傷が発生したりする等の問題が発生することがある。表面処理は、目的に応じて片面または両面に施すことが出来る。
Surface treatment The polyester film of the present invention has a surface on the surface of the film in order to improve the adhesion of the post-processing agent in hard coat processing and the like, and improve the slidability of the surface to suppress problems such as blocking. It is preferable to form a treatment layer. When the slippery layer is not formed, problems such as adhesion in post-processing cannot be maintained, winding properties in the film manufacturing process are inferior, and the film surface is damaged in the film manufacturing process. Sometimes. The surface treatment can be performed on one side or both sides according to the purpose.
 本発明において、表面処理層は、接着性成分や易滑成分を配合して構成され、具体的な表面処理層については、後述の被膜層で説明するのと同様なことが言える。 In the present invention, the surface treatment layer is composed of an adhesive component and an easy-slip component, and the specific surface treatment layer can be said to be the same as that described in the coating layer described later.
 フィルムの表面エネルギー
 第2の本発明のポリエステルフィルムは、その少なくとも片方の表面における表面エネルギーが好ましくは50mN/m以上、より好ましくは53mN/m以上、更に好ましくは55mN/m以上、特に好ましくは60mN/m以上である。本発明のポリエステルフィルムは、仮に表面エネルギーが50mN/m未満であっても、通常、ハードコート加工などの後加工処理で用いられる条件(150℃で最大1時間程度)では十分にオリゴマーの析出を抑制することが出来るが、180℃またはそれを超える温度における加工や数時間に渡る加熱加工ではわずかにヘーズの上昇が認められることがある。
Surface energy of film The polyester film of the second invention preferably has a surface energy on at least one surface of 50 mN / m or more, more preferably 53 mN / m or more, still more preferably 55 mN / m or more, particularly preferably 60 mN. / M or more. Even if the surface energy of the polyester film of the present invention is less than 50 mN / m, the oligomer film is sufficiently precipitated under conditions used in post-processing such as hard coat processing (up to about 1 hour at 150 ° C.). Although it can be suppressed, a slight increase in haze may be observed in processing at a temperature of 180 ° C. or higher or heat processing for several hours.
 そこで第2の本発明は、フィルムの表面エネルギーを50mN/m以上にすることにより、さらなる高温、長時間条件であっても、ヘーズの上昇を防ぐことが出来るというものである。かかるヘーズの上昇は、180℃以上のような非常に高い温度下ではオリゴマーの拡散速度が上がるために、表面にわずかなオリゴマーの析出が生じ、それがフィルム表面に沈着するために生じると考えられる。すなわち、第2の本発明は、フィルムの表面エネルギーを高くすることで、わずかな量であればオリゴマーのフィルム表面への沈着を防ぐことができることを見出し、それによりヘーズの上昇を抑制するものである。 Therefore, according to the second aspect of the present invention, by increasing the surface energy of the film to 50 mN / m or more, an increase in haze can be prevented even under higher temperature and longer time conditions. This increase in haze is considered to occur because the oligomer diffusion rate increases at a very high temperature such as 180 ° C. or higher, so that slight oligomer deposition occurs on the surface, which deposits on the film surface. . That is, the second aspect of the present invention finds that by increasing the surface energy of the film, it is possible to prevent the oligomer from depositing on the film surface if the amount is small, thereby suppressing an increase in haze. is there.
 上記のような観点から、第2の本発明においては、ポリエステルフィルムの両面の表面エネルギーが上記範囲であることが、特に好ましい。 From the above viewpoint, in the second aspect of the present invention, it is particularly preferable that the surface energy on both sides of the polyester film is in the above range.
 ポリエチレンテレフタレート樹脂からなるポリエステルフィルムは、何も加工していない状態では通常50mN/m未満の表面エネルギーを示すため、表面エネルギーを50mN/m以上とするためには何らかの表面加工が必要であるが、本発明の目的に反しない限り、その方法は限定されることはない。表面エネルギーを増加させるための加工方法としては、一般に物理的方法と化学的方法に大別される。物理的方法としては、コロナ処理、プラズマ処理、火炎処理、紫外線処理、電子線・放射線処理などが例示でき、ポリエステルフィルムの特性を損なわず、クリーンな表面状態を維持しやすい点から、コロナ処理およびプラズマ処理がより好ましく例示できる。一方、化学的処理としては、化学薬品処理、蒸気処理、表面グラフト化処理、特定気体雰囲気下における大気圧プラズマ処理、電気化学的処理、コーティング処理が上げられる。この中でも、フィルムの特性を損なわずに表面加工が可能な観点でコーティング処理等によってポリエステルフィルムの片面もしくは両面に被膜層を形成する方法が好ましく例示でき、以下に詳述する。 The polyester film made of polyethylene terephthalate resin usually shows a surface energy of less than 50 mN / m in a state where nothing is processed, so that some surface processing is necessary to make the surface energy 50 mN / m or more. The method is not limited as long as the object of the present invention is not violated. Processing methods for increasing the surface energy are generally roughly classified into physical methods and chemical methods. Examples of physical methods include corona treatment, plasma treatment, flame treatment, ultraviolet ray treatment, electron beam / radiation treatment, etc., and from the point of maintaining a clean surface state without impairing the properties of the polyester film, Plasma treatment can be exemplified more preferably. On the other hand, chemical treatment includes chemical treatment, steam treatment, surface grafting treatment, atmospheric pressure plasma treatment in a specific gas atmosphere, electrochemical treatment, and coating treatment. Among these, a method of forming a coating layer on one side or both sides of a polyester film by a coating treatment or the like can be preferably exemplified from the viewpoint that surface processing can be performed without impairing the characteristics of the film, which will be described in detail below.
 被膜層
 被膜層の形成は、特に限定されないが、コーティングにより形成することができ、好ましい。なお、この場合の被膜層をコーティング層と呼称する場合がある。
Coating Layer Formation of the coating layer is not particularly limited, but can be formed by coating, which is preferable. Note that the coating layer in this case may be referred to as a coating layer.
 ポリエステルフィルムへのコーティングは、大別してフィルムを製造した後にロールコーターやダイコーターなどのコーターを用いて塗剤をコーティングする方法と、フィルムを製造する工程内でコーターを用いて行う方法の2通りがあるが、その中でもフィルム製造工程内でコーティングする方法が、フィルム製造工程内でのフィルム表面へのオリゴマー析出・沈着も抑制できる観点から好ましい。なお、フィルムを製造した後にコーティングを施す場合においても、被膜層の密着耐久性を確保するためには、一般的にフィルム製造工程内での下引きコーティングが別途なされることが好ましい。 There are two types of coating on polyester film: a method of coating a coating using a coater such as a roll coater or die coater after manufacturing the film, and a method of using a coater in the process of manufacturing the film. Among them, the method of coating in the film production process is preferable from the viewpoint that oligomer precipitation / deposition on the film surface in the film production process can be suppressed. Even in the case where the coating is applied after the film is manufactured, it is generally preferable that the undercoating is separately performed in the film manufacturing process in order to ensure the adhesion durability of the coating layer.
 本発明において被膜層は、ポリエステルフィルムとの接着性が良好であり、かつフィルムの表面エネルギーを高めることのできるバインダー成分を主体とするものである。また、塗膜の耐久性を高めるための架橋成分や、フィルムにハンドリング性を付与する易滑成分などを配合することができる。なお、ここで「主体とする」とは、被膜層を形成するための塗液の固形分に対して50重量%以上、好ましくは55重量%以上、より好ましくは60重量%をいう。バインダー成分の含有量の上限は限定されず、塗液の固形分において、後述する任意成分を任意に含有し、その余がバインダー成分となるような含有量を選択すればよい。 In the present invention, the coating layer is mainly composed of a binder component that has good adhesion to the polyester film and can increase the surface energy of the film. Moreover, the crosslinking component for improving durability of a coating film, the easy-slip component which provides handling property to a film, etc. can be mix | blended. Here, “mainly” means 50% by weight or more, preferably 55% by weight or more, more preferably 60% by weight, based on the solid content of the coating liquid for forming the coating layer. The upper limit of the content of the binder component is not limited, and an optional component described later may be arbitrarily contained in the solid content of the coating liquid, and the content may be selected so that the remainder becomes the binder component.
 表面エネルギーを高めるためのバインダー成分としては、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂などが好ましく例示できる。上記の樹脂は、それぞれそれらの誘導体をも含むものとする。ここでいう誘導体とは、他の成分との共重合体、官能基に反応性化合物を反応させた樹脂を指す。いずれの場合も、表面エネルギーを増加させる目的で、親水性官能基を含有させることがより好ましい。中でも、ポリエステルフィルムとの密着性により優れるという観点からポリエステル樹脂バインダーが好ましい。また、この場合において親水性官能基を含有させるには、金属塩基を有する酸成分を共重合させたり、ジエチレングリコール成分、トリエチレングリコールなどのポリアルキレングリコール成分を共重合させたりすることが好ましい。かかる共重合量としては、ポリエステルの全酸成分、または全アルコール成分100モル%に対して、0.1~8モル%が好ましく、より好ましくは2~6モル%である。親水性官能基が少ないと表面エネルギーを高くする効果が低くなり、他方、多いと表面エネルギーは高くなる傾向にあるが、ハードコートなどの密着耐久性が湿熱雰囲気下で劣る傾向にある。特にバインダー成分が水溶性であると湿熱雰囲気下での密着耐久性が大きく劣ることがある。よって、バインダー成分は水分散性であることが好ましい。 Preferred examples of the binder component for increasing the surface energy include polyester resins, acrylic resins, polyurethane resins and the like. Said resin shall also contain those derivatives, respectively. The derivative here refers to a resin obtained by reacting a reactive compound with a copolymer or a functional group with other components. In any case, it is more preferable to contain a hydrophilic functional group for the purpose of increasing the surface energy. Among these, a polyester resin binder is preferable from the viewpoint of superior adhesion to a polyester film. In this case, in order to contain a hydrophilic functional group, it is preferable to copolymerize an acid component having a metal base or to copolymerize a polyalkylene glycol component such as a diethylene glycol component or triethylene glycol. The amount of copolymerization is preferably 0.1 to 8 mol%, more preferably 2 to 6 mol%, based on 100 mol% of the total acid component or total alcohol component of the polyester. When the amount of hydrophilic functional groups is small, the effect of increasing the surface energy is low. On the other hand, when the amount is large, the surface energy tends to be high, but the adhesion durability of a hard coat or the like tends to be poor in a humid and hot atmosphere. In particular, when the binder component is water-soluble, the adhesion durability under a moist heat atmosphere may be greatly deteriorated. Therefore, the binder component is preferably water dispersible.
 耐久性を高める目的で添加する架橋剤としては、メラミン系、エポキシ系、オキサゾリン系樹脂が一般に用いられ、その中でも塗布性、耐久接着性の点でオキサゾリン系樹脂が特に好ましい。架橋剤の含有量としては、被膜層を形成するための塗液の固形分に対して、1~40重量%が好ましく、さらには2~30重量%が好ましい。 As the crosslinking agent to be added for the purpose of enhancing durability, melamine-based, epoxy-based, and oxazoline-based resins are generally used, and among them, oxazoline-based resins are particularly preferable in terms of coating properties and durable adhesiveness. The content of the crosslinking agent is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, based on the solid content of the coating liquid for forming the coating layer.
 一方、易滑成分としては無機系粒子や有機系粒子を含有させることが好ましい。無機粒子としては、二酸化ケイ素、アルミナ、酸化ジルコニウム、カオリン、タルク、炭酸カルシウム、酸化チタン、酸化バリウム、カーボンブラック、硫化モリブデン、酸化アンチモン等及びそれらのハイブリッド品が挙げられる。これらの中では、二酸化ケイ素が安価でかつ粒子径が多種あるので利用しやすい。有機粒子としては、炭素-炭素二重結合を一分子中に2個以上含有する化合物(例えばジビニルベンゼン)により架橋構造を達成したポリスチレンまたはポリアクリレートポリメタクリレート、有機・無機ハイブリッド品が挙げられる。被膜層中における粒子の配合量は、通常0.1~10重量%、好ましくは0.1~5重量%である。かかる配合量が0.1重量%未満では、耐ブロッキング性や易滑性が不十分となる場合があり、10重量%を超えるとフィルムの透明性を阻害し、オンライン検査で支障となる場合がある。 On the other hand, it is preferable to contain inorganic particles or organic particles as the slippery component. Examples of the inorganic particles include silicon dioxide, alumina, zirconium oxide, kaolin, talc, calcium carbonate, titanium oxide, barium oxide, carbon black, molybdenum sulfide, antimony oxide and the like and hybrid products thereof. Among these, silicon dioxide is easy to use because it is inexpensive and has various particle sizes. Examples of the organic particles include polystyrene or polyacrylate polymethacrylate and organic / inorganic hybrid products in which a crosslinked structure is achieved by a compound containing two or more carbon-carbon double bonds in one molecule (for example, divinylbenzene). The blending amount of the particles in the coating layer is usually 0.1 to 10% by weight, preferably 0.1 to 5% by weight. If the blending amount is less than 0.1% by weight, the blocking resistance and the slipperiness may be insufficient. If the blending amount exceeds 10% by weight, the transparency of the film may be hindered, which may hinder online inspection. is there.
 また、必要に応じて被膜層は、帯電防止剤、消泡剤、塗布性改良剤、増粘剤、酸化防止剤、紫外線吸収剤、発泡剤、染料、顔料などを含有していてもよい。 If necessary, the coating layer may contain an antistatic agent, an antifoaming agent, a coating property improving agent, a thickener, an antioxidant, an ultraviolet absorber, a foaming agent, a dye, a pigment, and the like.
 被膜層の塗布方法としては、例えば、原崎勇次著、槙書店、1979年発行、「コーティング方式」に示されるような、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクターコーターまたはこれら以外の塗布装置を使用することができる。 As the coating method of the coating layer, for example, reverse roll coater, gravure coater, rod coater, air doctor coater or other coating apparatus as shown in Yuji Harasaki, Tsuji Shoten, published in 1979, “Coating Method” Can be used.
 本発明の被膜層は、フィルム製造工程内で塗工するのが好ましいが、特にフィルム延伸前、または縦-横の逐次二軸法で延伸する場合の縦延伸後で塗布するのが好ましい。 The coating layer of the present invention is preferably applied within the film production process, but is preferably applied before the film stretching or after the longitudinal stretching in the case of stretching by the longitudinal-lateral sequential biaxial method.
 被膜層の厚みは、最終的な乾燥厚さとして、通常0.01~0.5μm、好ましくは0.02~0.3μmの範囲である。塗布層の厚さが0.01μm未満の場合は、均一な被膜層を得ることが難しい場合があり、オリゴマー析出を十分に抑制出来ないことがある。塗布層の厚さが0.5μmを超える場合は、フィルムが相互に固着しやすくなったり、特にフィルムの高強度化のために塗布処理フィルムを再延伸する場合は、工程中のロールに粘着しやすくなったりする傾向がある。上記の固着の問題は、特にフィルムの両面に同一の塗布層を形成する場合に顕著に現れる。 The thickness of the coating layer is usually in the range of 0.01 to 0.5 μm, preferably 0.02 to 0.3 μm as the final dry thickness. When the thickness of the coating layer is less than 0.01 μm, it may be difficult to obtain a uniform coating layer, and oligomer precipitation may not be sufficiently suppressed. When the thickness of the coating layer exceeds 0.5 μm, the films tend to stick to each other, and particularly when the coated film is re-stretched to increase the strength of the film, it adheres to the roll in the process. There is a tendency to become easy. The above problem of sticking appears particularly when the same coating layer is formed on both sides of the film.
 二軸配向ポリエステルフィルムの製造方法
 以下、本発明のポリエステルフィルムの製造方法に関して一例を挙げて具体的に説明するが、本発明の要旨を満足する限り、本発明は以下の例示に特に限定されるものではない。
Hereinafter, although an example is given and demonstrated concretely about the manufacturing method of the polyester film of this invention, as long as the summary of this invention is satisfied, this invention is specifically limited to the following illustrations. It is not a thing.
 上述した工程1~3において、工程3の溶融押出した後、樹脂成形体4としてのフィルムの製膜においては、二軸延伸して二軸配向ポリエステルフィルムとすることが好ましい。上記工程1~3に準じてえられた原料を乾燥後に溶融押出装置に供給し、それぞれのポリマーの融点以上である温度に加熱し溶融する。次いで、溶融したポリマーをダイから押出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。 In the above-described Steps 1 to 3, after the melt extrusion in Step 3, the film forming the resin molded body 4 is preferably biaxially stretched to obtain a biaxially oriented polyester film. The raw materials obtained in accordance with the above steps 1 to 3 are dried and then supplied to a melt-extrusion apparatus, and heated to a temperature equal to or higher than the melting point of each polymer to melt. Next, the molten polymer is extruded from a die and rapidly cooled and solidified on a rotary cooling drum so that the temperature is equal to or lower than the glass transition temperature to obtain a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum. In the present invention, an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed.
 本発明においては、このようにして得られたシートを2軸方向に延伸してフィルム化することが好ましい。延伸条件について具体的に述べると、前記未延伸シートを、好ましくは縦方向(製膜機械軸方向のこと。長手方向またはMDと呼称する場合がある。)に70~145℃で2~6倍に延伸し、縦1軸延伸フィルムとした後、横方向(フィルム面内において製膜機械軸方向と垂直な方向のこと。幅方向またはTDと呼称する場合がある。)に90~160℃で2~6倍延伸を行うことが好ましい。この際、延伸する前のフィルム、1軸方向(好ましくは縦方向)に延伸した後、2軸方向(好ましくは横方向)に延伸する前のフィルムに、前述の易滑層や塗布層を形成するための塗液を塗布して易滑層や塗布層を形成することもでき、好ましい。また、第2の本発明においては、この際、延伸する前のフィルム、または、1軸方向(好ましくは縦方向)に延伸した後、2軸方向(好ましくは横方向)に延伸する前のフィルムに、被膜層を形成するための塗液を塗布して被膜層を形成することが好ましい。 In the present invention, the sheet thus obtained is preferably stretched in a biaxial direction to form a film. Specifically describing the stretching conditions, the unstretched sheet is preferably 2 to 6 times at 70 to 145 ° C. in the machine direction (the film forming machine axis direction; sometimes referred to as the longitudinal direction or MD). To 90.degree. C. in the transverse direction (in the film plane, the direction perpendicular to the film forming machine axis direction, sometimes referred to as the width direction or TD). It is preferable to perform 2-6 times stretching. At this time, the above-mentioned slippery layer and coating layer are formed on the film before stretching and the film before stretching in the biaxial direction (preferably the transverse direction) after stretching in the uniaxial direction (preferably the longitudinal direction). It is also preferable to apply a coating liquid for the purpose of forming a slippery layer or a coating layer. In the second aspect of the present invention, the film before stretching, or the film before stretching in the uniaxial direction (preferably the longitudinal direction) and before stretching in the biaxial direction (preferably the transverse direction). Further, it is preferable to form a coating layer by applying a coating liquid for forming the coating layer.
 次いで、150~240℃で1~600秒間熱処理を行う。さらにこの際、熱処理の最高温度ゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1~20%弛緩する方法が好ましい。また、必要に応じて再縦延伸、再横延伸を付加することも可能である。 Next, heat treatment is performed at 150 to 240 ° C. for 1 to 600 seconds. Further, at this time, it is preferable to relax by 0.1 to 20% in the longitudinal direction and / or the transverse direction in the maximum temperature zone of the heat treatment and / or the cooling zone at the heat treatment outlet. Further, it is possible to add re-longitudinal stretching and re-lateral stretching as necessary.
 本発明においては、ポリエステルの溶融押出機を2台または3台以上用いて、いわゆる共押出法により上述したような2層または3層以上の積層フィルムとすることもできる。 In the present invention, two or three or more polyester melt extruders may be used to form a laminated film of two or more layers as described above by a so-called coextrusion method.
 フィルム特性
 本発明のポリエステルフィルムは、初期ヘーズが1.00%以下であることが好ましく、より好ましくは0.80%以下、さらに好ましくは0.50%以下、特に好ましくは0.30%以下である。これによって透明性が要求される用途、特には光学用途により好適に用いることができる。
Film Properties The polyester film of the present invention preferably has an initial haze of 1.00% or less, more preferably 0.80% or less, still more preferably 0.50% or less, particularly preferably 0.30% or less. is there. Thus, it can be suitably used for applications requiring transparency, particularly optical applications.
 また、フィルムを温度150℃にて240分保持した後のヘーズ(150℃加熱後ヘーズ)と上記初期ヘーズとの差(フィルム加熱時のヘーズ上昇幅、ΔHz150)は、2.00%以下であることが好ましく、低いほどオリゴマー析出によるフィルム白化が抑制効果に優れることとなる。ΔHz150は、より好ましくは1.00%以下、さらに好ましくは0.50%以下、特に好ましくは0.20%以下、最も好ましくは0.15%以下である。 Further, the difference between the haze after holding the film at a temperature of 150 ° C. for 240 minutes (haze after heating at 150 ° C.) and the initial haze (haze increase width when heating the film, ΔHz 150) is 2.00% or less. It is preferable that the lower the value, the better the whitening effect due to oligomer precipitation. ΔHz150 is more preferably 1.00% or less, further preferably 0.50% or less, particularly preferably 0.20% or less, and most preferably 0.15% or less.
 上記初期ヘーズを満たしながら上記ΔHz150を満たすことは、困難であるが、本発明によれば達成することが可能である。 It is difficult to satisfy ΔHz150 while satisfying the initial haze, but it can be achieved according to the present invention.
 150℃加熱後ヘーズは、好ましくは1.00%以下、より好ましくは0.80%以下、さらに好ましくは0.60%以下、特に好ましくは0.40%以下である。 The haze after heating at 150 ° C. is preferably 1.00% or less, more preferably 0.80% or less, still more preferably 0.60% or less, and particularly preferably 0.40% or less.
 また、第2の本発明においては、フィルムを温度180℃にて240分保持した後のヘーズ(180℃加熱後ヘーズ)と上記初期ヘーズとの差(フィルム加熱時のヘーズ上昇幅、ΔHz180)は、2.00%以下であることが好ましく、低いほどオリゴマー析出によるフィルム白化が抑制効果に優れることとなる。ΔHz180は、より好ましくは1.00%以下、さらに好ましくは0.50%以下、特に好ましくは0.20%以下、最も好ましくは0.15%以下である。 In the second aspect of the present invention, the difference between the haze after holding the film at a temperature of 180 ° C. for 240 minutes (haze after heating at 180 ° C.) and the initial haze (haze increase width when heating the film, ΔHz 180) is , Preferably 2.00% or less, the lower the film whitening due to oligomer precipitation, the better the suppression effect. ΔHz180 is more preferably 1.00% or less, further preferably 0.50% or less, particularly preferably 0.20% or less, and most preferably 0.15% or less.
 上記初期ヘーズを満たしながら上記ΔHz180を満たすことは一般に困難であるが、第2の本発明によれば達成することが可能である。 It is generally difficult to satisfy ΔHz180 while satisfying the initial haze, but it can be achieved according to the second aspect of the present invention.
 加熱後ヘーズ180℃は、好ましくは3.00%以下、より好ましくは2.0%以下、さらに好ましくは1.5%以下である。また、さらには、好ましくは1.00%以下、より好ましくは0.80%以下、さらに好ましくは0.60%以下、特に好ましくは0.40%以下である。 The haze after heating 180 ° C. is preferably 3.00% or less, more preferably 2.0% or less, and further preferably 1.5% or less. Furthermore, it is preferably 1.00% or less, more preferably 0.80% or less, further preferably 0.60% or less, and particularly preferably 0.40% or less.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例中「部」とあるのは「重量部」を示す。また、本発明で用いた測定法は次のとおりである。
(1)ポリエステルの固有粘度の測定
 試料0.6gをオルソクロロフェノール50ml中に加熱溶解した後、一旦冷却させ、遠心分離機により不溶物を取り除き、その溶液をオストワルド式粘度管を用いて35℃の温度条件で測定した溶液粘度から算出した。最外層部、または内層部のみの極限粘度の測定については、溶融押出機から共押出する工程で、採取する樹脂のみを製膜と同吐出量で押出を行ってサンプリングしたポリエステルの極限粘度を測定する方法、または、フィルムから最外層のみをナイフなど適当な道具を用いて削り取り、削り取ったサンプル(最外層)および残ったサンプル(内層)を測定に供した。
(2)初期ヘーズ
 JIS K7361に準じ、日本電色製ヘーズメーターNDH-2000にて測定した。フィルム面内任意の5か所について測定し、平均値を求めた。
(3)フィルム加熱時のヘーズ上昇幅
 150℃または180℃に加熱した熱風オーブン中で、フィルムサンプルを240分保持し、加熱後のフィルムのヘーズ(150℃加熱後ヘーズ、180℃加熱後ヘーズ)を上記(2)に記載の方法に準じてそれぞれ測定した。これらの測定値(150℃加熱後ヘーズ、180℃加熱後ヘーズ)から(2)で測定した初期ヘーズ値を差し引き、加熱処理に伴うヘーズの上昇幅(ΔHz150、ΔHz180)を求めた。
(4)環状オリゴマーの重量分率
 フィルム0.05gにヘキサフルオロイソプロパノール/クロロホルムの混合溶媒を加え、溶解させ、次いでこの溶液をアセトニトリルに投入し、ポリマー成分を沈殿させる。沈殿物をろ過し、上澄み液を乾固する。該乾固物をアセトニトリル2mlに溶解させて、液体クロマトグラム用サンプル溶液を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In the examples and comparative examples, “parts” means “parts by weight”. The measuring method used in the present invention is as follows.
(1) Measurement of intrinsic viscosity of polyester 0.6 g of a sample was dissolved in 50 ml of orthochlorophenol by heating and then cooled once, insoluble matter was removed by a centrifuge, and the solution was removed at 35 ° C. using an Ostwald type viscosity tube. It calculated from the solution viscosity measured on the temperature conditions. For the measurement of the intrinsic viscosity of only the outermost layer or the inner layer, in the process of co-extrusion from the melt extruder, the intrinsic viscosity of the sampled polyester is measured by extruding only the resin to be collected at the same discharge rate as the film formation. Or only the outermost layer was removed from the film using a suitable tool such as a knife, and the sample (outermost layer) and the remaining sample (inner layer) were removed for measurement.
(2) Initial haze Measured with a Nippon Denshoku haze meter NDH-2000 according to JIS K7361. Measurements were made at any five points in the film plane, and the average value was determined.
(3) Haze rise during film heating Hold the film sample for 240 minutes in a hot air oven heated to 150 ° C. or 180 ° C. and heat the film after heating (haze after heating at 150 ° C., haze after heating at 180 ° C.) Were measured according to the method described in (2) above. From these measured values (haze after heating at 150 ° C., haze after heating at 180 ° C.), the initial haze value measured in (2) was subtracted to determine the increase in haze (ΔHz 150, ΔHz 180) associated with the heat treatment.
(4) Weight fraction of cyclic oligomer A mixed solvent of hexafluoroisopropanol / chloroform is added to 0.05 g of a film to dissolve it, and then this solution is put into acetonitrile to precipitate a polymer component. Filter the precipitate and dry the supernatant. The dried product was dissolved in 2 ml of acetonitrile to obtain a sample solution for liquid chromatogram.
 株式会社島津製作所製液体クロマトグラムLC20Aを用い、野村化学株式会社製Develosil  ODS-MG3をカラムとして使用し、展開液として水-アセトニトリル混合溶液を用いて波長254nmのUV光によりクロマトグラムを得、環状オリゴマーはテレフタル酸ジメチルで作製した検量線を代用して定量した。
(5)表面エネルギー
 表面エネルギーが既知である水、およびヨウ化メチレンのサンプル表面に対する接触角:θw、θyを接触角計(協和界面科学社製「CA-X型」)を使用し、25℃、50%RHの条件で測定した。これらの測定値を用い、以下の様にして表面エネルギーγsを算出した。
Using a liquid chromatogram LC20A manufactured by Shimadzu Corporation, Develosil ODS-MG3 manufactured by Nomura Chemical Co., Ltd. is used as a column, a water-acetonitrile mixed solution is used as a developing solution, and a chromatogram is obtained with UV light having a wavelength of 254 nm. The oligomer was quantified by substituting a calibration curve prepared with dimethyl terephthalate.
(5) Surface energy The contact angles of water and methylene iodide with known surface energy: θw and θy were measured using a contact angle meter (“CA-X type” manufactured by Kyowa Interface Science Co., Ltd.) at 25 ° C. And 50% RH. Using these measured values, the surface energy γs was calculated as follows.
 表面エネルギーγsは、分散性成分γsdと極性成分γspとの和である。即ち、
   γs=γsd+γsp (式1)
また、Youngの式より、
   γs=γsw+γw・cosθw (式2)
   γs=γsy+γy・cosθy (式3)
 ここで、γswはサンプル表面と水との間に働く張力、γswはサンプル表面とヨウ化メチレンとの間に働く張力、γwは水の表面エネルギー、γyはヨウ化メチレンの表面エネルギーである。
The surface energy γs is the sum of the dispersive component γsd and the polar component γsp. That is,
γs = γsd + γsp (Formula 1)
From the Young equation,
γs = γsw + γw · cos θw (Formula 2)
γs = γsy + γy · cos θy (Formula 3)
Here, γsw is the tension acting between the sample surface and water, γsw is the tension acting between the sample surface and methylene iodide, γw is the surface energy of water, and γy is the surface energy of methylene iodide.
 また、Fowkesの式より、
   γsw=γs+γw-2×(γsd・γwd)1/2-2×(γsp・γwp)1/2  (式4)
   γsy=γs+γy-2×(γsd・γyd)1/2-2×(γsp・γyp)1/2  (式5)
である。ここで、γwdは水の表面エネルギーの分散性成分、γwpは水の表面エネルギーの極性成分、γydはヨウ化メチレンの表面エネルギーの分散性成分、γypはヨウ化メチレンの表面エネルギーの極性成分である。
From the Fowkes equation,
γsw = γs + γw-2 × (γsd · γwd) 1/2 -2 × (γsp · γwp) 1/2 ( Formula 4)
γsy = γs + γy−2 × (γsd · γyd) 1/2 −2 × (γsp · γyp) 1/2 (Formula 5)
It is. Here, γwd is a dispersive component of the surface energy of water, γwp is a polar component of the surface energy of water, γyd is a dispersive component of the surface energy of methylene iodide, and γyp is a polar component of the surface energy of methylene iodide. .
 式1~5の連立方程式を解くことにより、表層張力γs=γsd+γspを算出できる。この時、水の表面エネルギー(γw):72.8mN/m、よう化メチレンの表面エネルギー(γy):50.5mN/m、水の表面エネルギーの分散性成分(γwd):21.8mN/m、水の表面エネルギーの極性成分(γwp):51.0mN/m、ヨウ化メチレンの表面エネルギーの分散性成分(γyd):49.5mN/m、ヨウ化メチレンの表面エネルギーの極性成分(γyp):1.3mN/mを用いた。
(6)耐久性評価
 フィルムの縦方向に100mm長、横方向に10mm幅に切り出した短冊状の試料片を用い、温度121℃、湿度100%RHに設定した環境試験機内に放置し、10、20、30、40時間の4条件でエージングを行ったサンプルを5枚ずつ作成し、それぞれの条件について試料の縦方向の破断伸度をn=5で測定し、その平均値を求めた。引張試験は東洋ボールドウィン社製(商品名「テンシロン」)を用いて行い、初期チャック間距離50mm、引張速度50mm/minにて実施した。同様に、環境試験機内に放置する前の試料片について破断伸度を5点測定し、それらの平均値より初期破断伸度の平均値を求めた。各エージング条件の5点の平均値を、初期破断伸度の平均値で割った値を破断伸度保持率[%]とした。得られた値をもとに破断伸度劣化曲線を作成し、下記基準にて耐久性を評価した。
By solving the simultaneous equations of Equations 1 to 5, the surface layer tension γs = γsd + γsp can be calculated. At this time, the surface energy of water (γw): 72.8 mN / m, the surface energy of methylene iodide (γy): 50.5 mN / m, the dispersive component of the surface energy of water (γwd): 21.8 mN / m Polar component of surface energy of water (γwp): 51.0 mN / m, Dispersive component of surface energy of methylene iodide (γyd): 49.5 mN / m, Polar component of surface energy of methylene iodide (γyp) : 1.3 mN / m was used.
(6) Durability evaluation Using a strip-shaped sample piece cut to a length of 100 mm in the vertical direction and a width of 10 mm in the horizontal direction, the film is left in an environmental test machine set at a temperature of 121 ° C. and a humidity of 100% RH. Five samples were aged at 4 conditions of 20, 30, and 40 hours, and the longitudinal elongation at break of the sample was measured at n = 5 for each condition, and the average value was obtained. The tensile test was performed using Toyo Baldwin (trade name “Tensilon”), and the initial chuck distance was 50 mm and the tensile speed was 50 mm / min. Similarly, the breaking elongation was measured at five points for the sample pieces before being left in the environmental testing machine, and the average value of the initial breaking elongation was obtained from the average value thereof. The value obtained by dividing the average value of the five points under each aging condition by the average value of the initial breaking elongation was defined as the breaking elongation retention [%]. Based on the obtained value, a breaking elongation deterioration curve was prepared, and durability was evaluated according to the following criteria.
  ◎:破断伸度保持率半減時間が40時間以上
  ○:破断伸度保持率半減時間が30時間以上40時間未満
  ×:破断伸度保持率半減時間が30時間未満
(7)融点
 示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、試料10mg、昇温速度20℃/分で室温から300℃まで昇温して測定した。
◎: Breaking elongation retention half-life of 40 hours or more ○: Breaking elongation retention half-life of 30 hours or more and less than 40 hours ×: Breaking elongation retention half-life of less than 30 hours (7) Melting point Differential scanning calorimetry Using an apparatus (TA Instruments 2100 DSC), the temperature was increased from room temperature to 300 ° C. with a sample of 10 mg and a temperature increase rate of 20 ° C./min.
 以下の実施例および比較例で用いたポリエステルの製造方法は次のとおりである。
(8)ポリエステルの製造
(8-1) ポリエステル(A1、A2)の製造方法
 テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒としてマンガン0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04部を添加した後、三酸化アンチモン0.04部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、所望の固有粘度に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステル(A1、A2)としてのポリエチレンテレフタレート樹脂をそれぞれ得た。得られたポリエステル(A1)の固有粘度は0.68dl/g、ポリエステル(A2)の固有粘度は0.70dl/gであった。
(8-2)ポリエステル(B1~B3)の製造方法
 テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酸化ゲルマニウム0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04部を添加した後、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、所望の固有粘度に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステル(B1)としてのポリエチレンテレフタレート樹脂を得た。得られたポリエステル(B1)の固有粘度は0.50dl/g、ポリエステル(B2)の固有粘度は0.70dl/g、ポリエステル(B3)の固有粘度は0.60dl/g(融点は256℃)であった。
(8-3)ポリエステル(C1~C3)の製造方法
 ポリエステル(B1)の製造後に、ポリエステル(B1)中に含有されるオリゴマーを低減させるために、それぞれ固相重合にて固有粘度を向上させた。固相重合後のポリエステル樹脂を水蒸気含有窒素ガス雰囲気下で150℃の温度に3分間以上加熱し、ポリエステル(C1)を得た。得られたポリエステル(C1)の固有粘度は0.75dl/gであった。また、ポリエステル(B1)の代りに、ポリエステル(B2)を使用するほかは同様にして、ポリエステル(C2)を得た。得られたポリエステル(C2)の固有粘度は0.77dl/gであった。また、ポリエステル(B1)の代りに、ポリエステル(B3)を使用するほかは同様にして、ポリエステル(C3)を得た。得られたポリエステル(C3)の固有粘度は0.75dl/gであった。
(8-4) ポリエステル(D1、D2、D3、E1、E2、H1,G1)の製造方法
 ポリエステルC1を使用し、樹脂温290℃で溶融押出しポリエステルシートを得た。次にこのシートを粉砕し、金属製の容器内で150℃の熱風を吹き込みながら4時間熱処理をした後に温度280~310℃にて再溶融、ストランド状に押出してチップ化し、ポリエステル(D1)を得た。得られたポリエステル(D1)の固有粘度は0.65dl/gであった。
The production method of the polyester used in the following examples and comparative examples is as follows.
(8) Production of polyester (8-1) Production method of polyester (A1, A2) 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol were used as starting materials, and 0.09 part by weight of manganese was used as a catalyst in the reactor. The reaction start temperature was 150 ° C., and the reaction temperature was gradually increased as methanol was distilled off. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to this reaction mixture, 0.04 part of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to the desired intrinsic viscosity due to a change in the stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure to obtain polyethylene terephthalate resins as polyesters (A1, A2), respectively. . The intrinsic viscosity of the obtained polyester (A1) was 0.68 dl / g, and the intrinsic viscosity of the polyester (A2) was 0.70 dl / g.
(8-2) Production method of polyester (B1 to B3) 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials, 0.09 part by weight of germanium oxide as a catalyst is placed in the reactor, and the reaction start temperature is set. The reaction temperature was gradually increased as methanol was distilled off, and the temperature was increased to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to the reaction mixture, a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to the desired intrinsic viscosity due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure to obtain a polyethylene terephthalate resin as polyester (B1). The obtained polyester (B1) has an intrinsic viscosity of 0.50 dl / g, the polyester (B2) has an intrinsic viscosity of 0.70 dl / g, and the polyester (B3) has an intrinsic viscosity of 0.60 dl / g (melting point is 256 ° C.). Met.
(8-3) Method for producing polyester (C1 to C3) After production of polyester (B1), in order to reduce oligomers contained in polyester (B1), the intrinsic viscosity was improved by solid phase polymerization, respectively. . The polyester resin after the solid phase polymerization was heated to a temperature of 150 ° C. for 3 minutes or more under a steam-containing nitrogen gas atmosphere to obtain a polyester (C1). The obtained polyester (C1) had an intrinsic viscosity of 0.75 dl / g. Further, polyester (C2) was obtained in the same manner except that polyester (B2) was used instead of polyester (B1). The obtained polyester (C2) had an intrinsic viscosity of 0.77 dl / g. Further, polyester (C3) was obtained in the same manner except that polyester (B3) was used instead of polyester (B1). The intrinsic viscosity of the obtained polyester (C3) was 0.75 dl / g.
(8-4) Production method of polyester (D1, D2, D3, E1, E2, H1, G1) Polyester C1 was used and a melt-extruded polyester sheet was obtained at a resin temperature of 290 ° C. Next, this sheet is pulverized, heat-treated for 4 hours while blowing hot air at 150 ° C. in a metal container, remelted at a temperature of 280 to 310 ° C., extruded into a strand shape, and converted into a chip to obtain polyester (D1). Obtained. The intrinsic viscosity of the obtained polyester (D1) was 0.65 dl / g.
 また、ポリエステルC1の代りに、ポリエステルC2を使用するほかは同様にして、ポリエステル(D2)を得た。得られたポリエステル(D2)の固有粘度は0.64dl/gであった。 Further, polyester (D2) was obtained in the same manner except that polyester C2 was used instead of polyester C1. The intrinsic viscosity of the obtained polyester (D2) was 0.64 dl / g.
 また、ポリエステルC1の代りに、ポリエステルC3を使用するほかは同様にして、ポリエステル(D3)を得た。得られたポリエステル(D2)の固有粘度は0.65dl/gであった。 Further, polyester (D3) was obtained in the same manner except that polyester C3 was used instead of polyester C1. The intrinsic viscosity of the obtained polyester (D2) was 0.65 dl / g.
 また、ポリエステルC1の代りに、ポリエステルA1を使用するほかは同様にして、ポリエステル(E1)を得た。得られたポリエステル(E1)の固有粘度は0.62dl/gであった。 Further, polyester (E1) was obtained in the same manner except that polyester A1 was used instead of polyester C1. The intrinsic viscosity of the obtained polyester (E1) was 0.62 dl / g.
 また、ポリエステルC1の代りに、ポリエステルA2を使用するほかは同様にして、ポリエステル(E2)を得た。得られたポリエステル(E2)の固有粘度は0.63l/gであった。 Further, polyester (E2) was obtained in the same manner except that polyester A2 was used instead of polyester C1. The obtained polyester (E2) had an intrinsic viscosity of 0.63 l / g.
 また、ポリエステルC1の代りに、後述のポリエステルG1を使用するほかは同様にして、ポリエステル(H1)を得た。得られたポリエステル(H1)の固有粘度は0.66dl/gであった。
(8-5) ポリエステル(F1、G1)の製造方法
 テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒としてトリメリット酸チタン0.05重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシ
ッドフォスフェート0.04部を添加した後、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、固有粘度0.58dl/gに相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステル(F1)としてのポリエチレンテレフタレート樹脂(ペレット)を得た。得られたポリエステル(F1)の固有粘度は0.58dl/g、融点Tmは254℃であった。
Further, polyester (H1) was obtained in the same manner except that polyester G1 described later was used instead of polyester C1. The obtained polyester (H1) had an intrinsic viscosity of 0.66 dl / g.
(8-5) Production method of polyester (F1, G1) 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials, and 0.05 part by weight of titanium trimellitic acid is used as a catalyst in the reactor to start the reaction. The temperature was set to 150 ° C., and the reaction temperature was gradually increased as methanol was distilled off. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to the reaction mixture, a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.58 dl / g due to a change in the stirring power of the reaction vessel, the polymer was discharged under nitrogen pressure, and a polyethylene terephthalate resin (pellet) as polyester (F1) Got. The obtained polyester (F1) had an intrinsic viscosity of 0.58 dl / g and a melting point Tm of 254 ° C.
 また、ポリエステル(F1)の製造後に、ポリエステル(F1)中に含有されるオリゴマーを低減させるために、固相重合にて固有粘度を向上させた。固相重合後のポリエステル樹脂を水蒸気含有窒素ガス雰囲気下で150℃の温度に3分間以上加熱し、ポリエステル(G1)(ペレット)を得た。得られたポリエステル(G1)の固有粘度は0.78dl/g、融点Tmは252℃であった。 Further, after the production of the polyester (F1), in order to reduce the oligomer contained in the polyester (F1), the intrinsic viscosity was improved by solid phase polymerization. The polyester resin after the solid phase polymerization was heated to a temperature of 150 ° C. for 3 minutes or more in a steam-containing nitrogen gas atmosphere to obtain polyester (G1) (pellet). The obtained polyester (G1) had an intrinsic viscosity of 0.78 dl / g and a melting point Tm of 252 ° C.
 実施例1
 A層の原料として上記ポリエステル(C1)と(D1)を80:20(重量比、以下同様)の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C1)と(D1)を50:50の割合で混合したポリエステル原料を、2台の押出機に各々を供給し、各々285℃で溶融した後、A層を最外層(表層)、B層を内層(芯層)として、40℃に冷却したキャスティングドラム上に、2種3層(A/B/A)の層構成で共押出し冷却固化させて無配向シートを得た。次いで、同時2軸延伸機を用いて、延伸温度100℃にて縦方向に3.2倍、横方向に3.6倍延伸し、225℃で熱処理を行った後、縦方向に1%、横方向に2%弛緩し、厚さ100μmの積層ポリエステルフィルムを得た。得られたフィルムの各層の厚みは、15/70/15μmであった。
Example 1
The polyester raw material in which the polyester (C1) and (D1) are mixed at a ratio of 80:20 (weight ratio, the same applies hereinafter) as the raw material for the A layer, and the polyester (C1) and (D1) as the raw material for the B layer. After the polyester raw materials mixed at a ratio of 50:50 were respectively fed to two extruders and melted at 285 ° C., the A layer was the outermost layer (surface layer) and the B layer was the inner layer (core layer). On the casting drum cooled at 40 degreeC, it coextruded by the layer structure of 2 types and 3 layers (A / B / A), and it was made to cool and solidify, and the unoriented sheet was obtained. Next, using a simultaneous biaxial stretching machine, the film was stretched 3.2 times in the longitudinal direction and 3.6 times in the transverse direction at a stretching temperature of 100 ° C., heat treated at 225 ° C., and 1% in the longitudinal direction. A laminating polyester film having a thickness of 100 μm was obtained by relaxing 2% in the transverse direction. The thickness of each layer of the obtained film was 15/70/15 μm.
 実施例2
 A層の原料として上記ポリエステル(D1)を用い、B層の原料として上記ポリエステル(C1)と(D1)を30:70の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を290℃とする以外は実施例1と同様に積層ポリエステルフィルムを得た。
Example 2
The polyester (D1) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (C1) and (D1) in a ratio of 30:70 is used as the raw material for the B layer, and the melt extrusion temperature is 290 ° C. A laminated polyester film was obtained in the same manner as in Example 1 except that.
 実施例3
 A層の原料として上記ポリエステル(C1)と(D1)を90:10の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C1)と(D1)を60:40の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を280℃とする以外は実施例1と同様に積層ポリエステルフィルムを得た。
Example 3
A polyester raw material in which the polyester (C1) and (D1) are mixed in a ratio of 90:10 as a raw material for the A layer, and a polyester raw material in which the polyester (C1) and (D1) are mixed in a ratio of 60:40 as a raw material for the B layer. A laminated polyester film was obtained in the same manner as in Example 1 except that the obtained polyester raw material was used and the melt extrusion temperature was 280 ° C.
 実施例4
 A層の原料として上記ポリエステル(C3)と(D3)を55:45の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C3)と(D3)を30:70の割合で混合したポリエステル原料を用いた以外は実施例1と同様に積層ポリエステルフィルムを得た。
Example 4
A polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 55:45 as a raw material for the A layer, and a polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 30:70 as a raw material for the B layer A laminated polyester film was obtained in the same manner as in Example 1 except that the obtained polyester raw material was used.
 実施例5
 A層の原料として上記ポリエステル(G1)と(H1)を50:50の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(G1)と(H1)を40:60の割合で混合したポリエステル原料を用いる以外は実施例4と同様にして積層ポリエステルフィルムを得た。
Example 5
A polyester raw material in which the polyester (G1) and (H1) are mixed in a ratio of 50:50 as a raw material for the A layer, and a polyester raw material (G1) and (H1) in a ratio of 40:60 are mixed as a raw material for the B layer. A laminated polyester film was obtained in the same manner as in Example 4 except that the obtained polyester raw material was used.
 実施例6
 A層の原料として上記ポリエステル(C3)と(D3)を85:15の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C3)と(D3)を70:30の割合で混合したポリエステル原料を用いる以外は実施例4と同様にして積層ポリエステルフィルムを得た。
Example 6
A polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 85:15 as a raw material for the A layer, and a polyester raw material in which the polyester (C3) and (D3) are mixed in a ratio of 70:30 as a raw material for the B layer. A laminated polyester film was obtained in the same manner as in Example 4 except that the obtained polyester raw material was used.
 実施例7
 A層の原料として上記ポリエステル(G1)と(H1)を70:30の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(G1)と(H1)を10:90の割合で混合したポリエステル原料を用いる以外は実施例4と同様にして積層ポリエステルフィルムを得た。
Example 7
A polyester raw material in which the polyester (G1) and (H1) are mixed in a ratio of 70:30 as a raw material for the A layer, and a polyester raw material (G1) and (H1) in a ratio of 10:90 are mixed as a raw material for the B layer. A laminated polyester film was obtained in the same manner as in Example 4 except that the obtained polyester raw material was used.
 比較例1
 A層の原料として上記ポリエステル(A1)を用い、B層の原料として上記ポリエステル(A1)と(E1)を60:40の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を280℃とする以外は実施例1と同様に積層ポリエステルフィルムを得た。
Comparative Example 1
The polyester (A1) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (A1) and (E1) in a ratio of 60:40 is used as the raw material for the B layer, and each melt extrusion temperature is 280 ° C. A laminated polyester film was obtained in the same manner as in Example 1 except that.
 比較例2
 A層の原料として上記ポリエステル(C1)と(D1)を50:50の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C1)と(D1)を20:80の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を305℃とする以外は実施例1と同様に積層ポリエステルフィルムを得た。
Comparative Example 2
A polyester raw material in which the polyester (C1) and (D1) are mixed in a ratio of 50:50 as the raw material for the A layer, and a polyester raw material (C1) and (D1) in the ratio of 20:80 as the raw material for the B layer. A laminated polyester film was obtained in the same manner as in Example 1 except that the obtained polyester raw material was used and the melt extrusion temperature was set to 305 ° C.
 比較例3
 上記ポリエステル(A1)と(E1)を60:40の割合で混合したポリエステル原料を用いて、押出機で285℃にて単層で溶融押出し、40℃に冷却したキャスティングドラム上で冷却固化させて無配向シートを得た。以降は実施例1と同様にして厚さ100μmのポリエステルフィルムを得た。
Comparative Example 3
Using a polyester raw material in which the polyesters (A1) and (E1) are mixed at a ratio of 60:40, the mixture is melt-extruded as a single layer at 285 ° C. with an extruder, and cooled and solidified on a casting drum cooled to 40 ° C. A non-oriented sheet was obtained. Thereafter, a polyester film having a thickness of 100 μm was obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、以下の実施例および比較例で用いた塗液は、下記組成物(表2)の濃度8重量%の水性塗液として製造した。 Also, the coating solutions used in the following Examples and Comparative Examples were produced as aqueous coating solutions having a concentration of 8% by weight of the following compositions (Table 2).
 塗液の製造 Manufacturing of coating liquid
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
樹脂成分:酸成分がテレフタル80モル%/イソフタル15モル%/5-ナトリウムスルホイソフタル酸5モル%、グリコール成分がエチレングリコール60モル%/ジエチレングリコール40モル%で構成されている共重合ポリエステル(Tg=43℃)(水分散性)。
架橋剤:メチルメタクリレート30モル%/2-イソプロペニル-2-オキサゾリン30モル%/ポリエチレンオキシド(n=10)メタクリレート10モル%/アクリルアミド30モル%で構成されているオキサゾリン基を有する重合体(Tg=50℃)。
フィラー:シリカフィラー(平均粒径40nm)
添加剤:カルナバワックス
濡れ剤1:ポリオキシエチレン(n=7)ラウリルエーテル
濡れ剤2:ドデシルベンゼンスルホン酸ナトリウム
 実施例8
 A層の原料として上記ポリエステル(C2)と(D2)を80:20(重量比、以下同様)の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C2)と(D2)を50:50の割合で混合したポリエステル原料を、2台の押出機に各々を供給し、各々285℃で溶融した後、A層を最外層(表層)、B層を内層(芯層)として、40℃に冷却したキャスティングドラム上に、2種3層(A/B/A)の層構成で共押出し冷却固化させて無配向シートを得た。次いで水性塗液ロールコーターにて、フィルム両面に塗液Aを均一に塗布し90℃で乾燥した。この塗布フィルムを引き続き同時2軸延伸機を用いて、延伸温度100℃にて縦方向に3.2倍、横方向に3.6倍延伸し、225℃で熱処理を行った後、縦方向に1%、横方向に2%弛緩し、厚さ100μmの積層ポリエステルフィルムを得た。得られたフィルムの各層の厚みは、A層/B層/A層=15/70/15μmで、被膜層の厚みは両面とも0.08μmであった。また、得られたフィルムの表面エネルギーは62mN/mであった。
Resin component: Copolyester (Tg = 80 mol% of terephthalic acid / 15 mol% of isophthalic acid / 5 mol% of 5-sodium sulfoisophthalic acid and 60 mol% of ethylene glycol / 40 mol% of diethylene glycol) 43 ° C.) (water dispersibility).
Crosslinking agent: polymer having an oxazoline group composed of 30 mol% methyl methacrylate / 2 mol% 2-isopropenyl-2-oxazoline / 10 mol% polyethylene oxide (n = 10) methacrylate / 30 mol% acrylamide (Tg = 50 ° C.).
Filler: Silica filler (average particle size 40 nm)
Additive: Carnauba wax wetting agent 1: Polyoxyethylene (n = 7) lauryl ether wetting agent 2: Sodium dodecylbenzenesulfonate Example 8
A polyester raw material in which the polyester (C2) and (D2) are mixed at a ratio of 80:20 (weight ratio, the same applies hereinafter) as the raw material for the A layer, and the polyester (C2) and (D2) as the raw material for the B layer. After the polyester raw materials mixed at a ratio of 50:50 were respectively fed to two extruders and melted at 285 ° C., the A layer was the outermost layer (surface layer) and the B layer was the inner layer (core layer). On the casting drum cooled at 40 degreeC, it coextruded by the layer structure of 2 types and 3 layers (A / B / A), and it was made to cool and solidify, and the unoriented sheet was obtained. Subsequently, the coating liquid A was uniformly apply | coated to both surfaces of the film with the aqueous coating liquid roll coater, and it dried at 90 degreeC. The coated film was continuously stretched 3.2 times in the longitudinal direction and 3.6 times in the transverse direction at a stretching temperature of 100 ° C. using a simultaneous biaxial stretching machine, heat-treated at 225 ° C., and then in the longitudinal direction. A laminated polyester film having a thickness of 100 μm was obtained by relaxing 1% and 2% in the lateral direction. The thickness of each layer of the obtained film was A layer / B layer / A layer = 15/70/15 μm, and the thickness of the coating layer was 0.08 μm on both sides. Moreover, the surface energy of the obtained film was 62 mN / m.
 実施例9
 A層の原料として上記ポリエステル(D2)を用い、B層の原料として上記ポリエステル(C2)と(D2)を30:70の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を290℃とする以外は実施例8と同様に積層ポリエステルフィルムを得た。
Example 9
The polyester (D2) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (C2) and (D2) in a ratio of 30:70 is used as the raw material for the B layer, and each melt extrusion temperature is 290 ° C. A laminated polyester film was obtained in the same manner as in Example 8 except that.
 実施例10
 A層の原料として上記ポリエステル(C2)と(D2)を90:10の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C2)と(D2)を60:40の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を280℃とする以外は実施例8と同様に積層ポリエステルフィルムを得た。
Example 10
A polyester raw material in which the polyester (C2) and (D2) are mixed in a ratio of 90:10 as a raw material for the A layer, and a polyester raw material in which the polyester (C2) and (D2) are mixed in a ratio of 60:40 as a raw material for the B layer. A laminated polyester film was obtained in the same manner as in Example 8 except that the obtained polyester raw material was used and the melt extrusion temperature was 280 ° C.
 実施例11
 水性塗液ロールコーターにてフィルム両面に塗布する塗液を塗液Bとする以外は実施例8と同様にして、厚さ100μの積層ポリエステルフィルムを得た。被膜層の厚みは実施例8と同じとした。
Example 11
A laminated polyester film having a thickness of 100 μm was obtained in the same manner as in Example 8 except that the coating liquid applied to both surfaces of the film with an aqueous coating liquid roll coater was changed to the coating liquid B. The thickness of the coating layer was the same as in Example 8.
 実施例12
 水性塗液ロールコーターにてフィルム両面に塗布する塗液を塗液Cとする以外は実施例8と同様にして、厚さ100μの積層ポリエステルフィルムを得た。被膜層の厚みは実施例9と同じとした。
Example 12
A laminated polyester film having a thickness of 100 μm was obtained in the same manner as in Example 8, except that the coating liquid applied to both surfaces of the film with an aqueous coating liquid roll coater was coating liquid C. The thickness of the coating layer was the same as in Example 9.
 実施例13
 無配向シートを得たのちに、塗液の塗布を行わない以外は実施例10と同様にして、厚さ100μの積層ポリエステルフィルムを得た。得られたフィルムの各層の厚みは実施例8と同一であった。この積層ポリエステルフィルムの両面に、コロナ処理機でコロナ処理を行い、コロナ放電強度を調節して、表面エネルギーが両面とも54mN/mの積層ポリエステルフィルムを得た。
Example 13
After obtaining the non-oriented sheet, a laminated polyester film having a thickness of 100 μm was obtained in the same manner as in Example 10 except that the coating liquid was not applied. The thickness of each layer of the obtained film was the same as in Example 8. Both sides of this laminated polyester film were subjected to corona treatment with a corona treatment machine, and the corona discharge intensity was adjusted to obtain a laminated polyester film having a surface energy of 54 mN / m on both sides.
 比較例4
 A層の原料として上記ポリエステル(A2)を用い、B層の原料として上記ポリエステル(A2)と(E2)を60:40の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を280℃とする以外は実施例8と同様に積層ポリエステルフィルムを得た。
Comparative Example 4
The polyester (A2) is used as the raw material for the A layer, the polyester raw material obtained by mixing the polyesters (A2) and (E2) in a ratio of 60:40 is used as the raw material for the B layer, and the melt extrusion temperature is 280 ° C. A laminated polyester film was obtained in the same manner as in Example 8 except that.
 比較例5
 A層の原料として上記ポリエステル(C2)と(D2)を50:50の割合で混合したポリエステル原料、および、B層の原料として上記ポリエステル(C2)と(D2)を20:80の割合で混合したポリエステル原料を用い、それぞれの溶融押出温度を305℃とする以外は実施例8と同様に積層ポリエステルフィルムを得た。
Comparative Example 5
A polyester raw material in which the polyester (C2) and (D2) are mixed in a ratio of 50:50 as the raw material for the A layer, and the polyester (C2) and (D2) in a ratio of 20:80 are mixed as the raw material in the B layer. A laminated polyester film was obtained in the same manner as in Example 8 except that the obtained polyester raw material was used and the melt extrusion temperature was set to 305 ° C.
 比較例6
 上記ポリエステル(A2)と(E2)を60:40の割合で混合したポリエステル原料を用いて、押出機で285℃にて単層で溶融押出し、40℃に冷却したキャスティングドラム上で冷却固化させて無配向シートを得た。以降は実施例8と同様にして厚さ100μmのポリエステルフィルムを得た。
Comparative Example 6
Using a polyester raw material in which the polyesters (A2) and (E2) are mixed at a ratio of 60:40, the mixture is melt-extruded as a single layer at 285 ° C. with an extruder and cooled and solidified on a casting drum cooled to 40 ° C. A non-oriented sheet was obtained. Thereafter, a polyester film having a thickness of 100 μm was obtained in the same manner as in Example 8.
 実施例14
 水性塗液ロールコーターにてフィルム両面に塗布する塗液を下記に示す塗液Dとする以外は実施例8と同様にして、厚さ100μの積層ポリエステルフィルムを得た。
Example 14
A laminated polyester film having a thickness of 100 μm was obtained in the same manner as in Example 8 except that the coating liquid applied on both sides of the film with an aqueous coating liquid roll coater was changed to the coating liquid D shown below.
 実施例15
 無配向シートを得たのちに、塗液の塗布を行わない以外は実施例8と同様にして、厚さ100μの積層ポリエステルフィルムを得た。
Example 15
After obtaining the non-oriented sheet, a laminated polyester film having a thickness of 100 μm was obtained in the same manner as in Example 8 except that the coating liquid was not applied.
 上記で得られたフィルムの評価結果を表3に示す。表3にある通り、本発明のポリエステルフィルムは、加熱後の透明性に優れたものであった。 Table 3 shows the evaluation results of the film obtained above. As shown in Table 3, the polyester film of the present invention was excellent in transparency after heating.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のポリエステルフィルムは、加熱加工後の透明性に優れ、オリゴマーの析出が少ないため高温での後加工処理が可能であり、実用的な耐熱性、耐久性を有することから、高品位が必要とされるディスプレイ部材用途や、ディスプレイ周辺部材を製造する際のキャスト用フィルムなどの光学用途をはじめ、各種の工業用途において好適に使用できる。 The polyester film of the present invention is excellent in transparency after heat processing, and can be post-processed at a high temperature because there is little oligomer precipitation, and it has practical heat resistance and durability, so high quality is required. It can be suitably used in various industrial applications, including display applications and optical applications such as casting films when manufacturing display peripheral members.

Claims (9)

  1.  ポリエチレンテレフタレート樹脂からなるフィルムであって、該ポリエチレンテレフタレート樹脂の固有粘度が0.60dl/g以上であるとともに、フィルム中の環状3量体オリゴマーの重量分率(WCy3)と環状4量体オリゴマーの重量分率(WCy4)の比WCy3/WCy4が5以下であることを特徴とする、ポリエステルフィルム。 A film made of polyethylene terephthalate resin, wherein the intrinsic viscosity of the polyethylene terephthalate resin is 0.60 dl / g or more, and the weight fraction (WCy3) of the cyclic trimer oligomer in the film and the cyclic tetramer oligomer A polyester film having a weight fraction (WCy4) ratio WCy3 / WCy4 of 5 or less.
  2.  フィルムが、共押出法にて得られた少なくとも3層以上の積層フィルムであり、最外層を構成する樹脂の固有粘度が、内層を構成する樹脂の固有粘度よりも高い請求項1に記載のポリエステルフィルム。 The polyester according to claim 1, wherein the film is a laminated film of at least three layers obtained by a coextrusion method, and the intrinsic viscosity of the resin constituting the outermost layer is higher than the intrinsic viscosity of the resin constituting the inner layer. the film.
  3.  WCy3/WCy4が4以下である請求項1記載のポリエステルフィルム。 The polyester film according to claim 1, wherein WCy3 / WCy4 is 4 or less.
  4.  WCy3/WCy4が3以下である請求項1記載のポリエステルフィルム。 The polyester film according to claim 1, wherein WCy3 / WCy4 is 3 or less.
  5.  ポリエチレンテレフタレート樹脂の固有粘度が0.62dl/g以上0.72dl/g以下である請求項1記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the intrinsic viscosity of the polyethylene terephthalate resin is 0.62 dl / g or more and 0.72 dl / g or less.
  6.  ポリエチレンテレフタレート樹脂が、ゲルマニウム化合物またはチタン化合物を重合触媒として重合されたポリエステルである請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the polyethylene terephthalate resin is a polyester polymerized by using a germanium compound or a titanium compound as a polymerization catalyst.
  7.  フィルムの少なくとも片方の表面における表面エネルギーが50mN/m以上である請求項1~6のいずれかに記載のポリエステルフィルム。 7. The polyester film according to claim 1, wherein the surface energy of at least one surface of the film is 50 mN / m or more.
  8.  フィルムが、その少なくとも片面に被膜層を有し、該被膜層表面における表面エネルギーが50mN/m以上である請求項7に記載のポリエステルフィルム。 The polyester film according to claim 7, wherein the film has a coating layer on at least one surface thereof, and the surface energy on the surface of the coating layer is 50 mN / m or more.
  9.  フィルムへの被膜層の形成をフィルム製造工程内で行うことを特徴とする、請求項8に記載のポリエステルフィルム。 The polyester film according to claim 8, wherein the film layer is formed on the film within the film production process.
PCT/JP2014/070427 2013-08-06 2014-08-04 Polyester film WO2015019977A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480042989.0A CN105408388B (en) 2013-08-06 2014-08-04 Polyester film
KR1020157035509A KR102320305B1 (en) 2013-08-06 2014-08-04 Polyester film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-163188 2013-08-06
JP2013163188A JP2015030828A (en) 2013-08-06 2013-08-06 Polyester film
JP2014-021452 2014-02-06
JP2014021452A JP6377911B2 (en) 2014-02-06 2014-02-06 Polyester film

Publications (1)

Publication Number Publication Date
WO2015019977A1 true WO2015019977A1 (en) 2015-02-12

Family

ID=52461310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070427 WO2015019977A1 (en) 2013-08-06 2014-08-04 Polyester film

Country Status (4)

Country Link
KR (1) KR102320305B1 (en)
CN (1) CN105408388B (en)
TW (1) TWI636072B (en)
WO (1) WO2015019977A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031160A (en) * 2015-09-23 2017-08-11 可隆工业株式会社 Optical Polyester Film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512847A (en) * 1994-05-10 1997-12-22 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー polyester
JP2003119305A (en) * 2001-08-07 2003-04-23 Teijin Dupont Films Japan Ltd Readily bondable polyester film for optical use
JP2003171487A (en) * 2001-12-10 2003-06-20 Teijin Dupont Films Japan Ltd Easily adhesive laminated film for optical use
JP2003341000A (en) * 2002-05-29 2003-12-02 Toyobo Co Ltd Easily adhesive polyester film for optical use
JP2004050405A (en) * 2002-05-27 2004-02-19 Teijin Dupont Films Japan Ltd Laminated polyester film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141570A (en) 1998-11-12 2000-05-23 Mitsubishi Polyester Film Copp Mold release laminated polyester film
TW555780B (en) * 2001-03-19 2003-10-01 Nanya Plastics Corp Manufacturing method of reducing cyclic oligomer content in polyester
JP2003191413A (en) 2001-12-26 2003-07-08 Mitsubishi Polyester Film Copp Laminated polyester film
JP2003301057A (en) 2002-04-09 2003-10-21 Mitsubishi Polyester Film Copp Easily adherent polyester film for optical application
JP2005336394A (en) 2004-05-28 2005-12-08 Mitsubishi Polyester Film Copp Laminated polyester film
KR101662872B1 (en) * 2009-09-29 2016-10-05 도요보 가부시키가이샤 Polyester film for solar cells
JP5604994B2 (en) * 2010-06-04 2014-10-15 東洋紡株式会社 Lens sheet base film
JP5655379B2 (en) 2010-06-04 2015-01-21 東洋紡株式会社 Polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512847A (en) * 1994-05-10 1997-12-22 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー polyester
JP2003119305A (en) * 2001-08-07 2003-04-23 Teijin Dupont Films Japan Ltd Readily bondable polyester film for optical use
JP2003171487A (en) * 2001-12-10 2003-06-20 Teijin Dupont Films Japan Ltd Easily adhesive laminated film for optical use
JP2004050405A (en) * 2002-05-27 2004-02-19 Teijin Dupont Films Japan Ltd Laminated polyester film
JP2003341000A (en) * 2002-05-29 2003-12-02 Toyobo Co Ltd Easily adhesive polyester film for optical use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAZUO YUGI, HOWA POLYESTER JUSHI HANDBOOK, 22 December 1989 (1989-12-22), pages 176 - 179 , 204 *
L. H. PEEBLES JR. ET AL.: "Isolation and identification of the linear and cyclic oligomers of poly(ethylene terephthalate) and the mechanism of cyclic oligomer formation", JOURNAL OF POLYMER SCIENCE PART A-1: POLYMER CHEMISTRY, vol. 7, no. 2, 1969, pages 479 - 496 *
WAN SHIK HA ET AL.: "Kinetic studies on the formation of cyclic oligomers in poly (ethylene terephthalate", JOURNAL OF POLYMER SCIENCE: POLYMER CHEMISTRY, vol. 17, no. 7, 1979, pages 2103 - 2118 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031160A (en) * 2015-09-23 2017-08-11 可隆工业株式会社 Optical Polyester Film

Also Published As

Publication number Publication date
KR102320305B1 (en) 2021-11-01
KR20160040460A (en) 2016-04-14
CN105408388A (en) 2016-03-16
TW201512240A (en) 2015-04-01
CN105408388B (en) 2017-07-21
TWI636072B (en) 2018-09-21

Similar Documents

Publication Publication Date Title
JP6318756B2 (en) Polyester film
JP5819432B2 (en) Multilayer biodegradable film
JP7129084B2 (en) Adhesive layer laminated polyester film
JP2024099691A (en) Biaxially oriented polyester film
US20110054090A1 (en) Polyester film
JP6594550B2 (en) Polyester film and method for producing polyester film
JP4232004B2 (en) Biaxially oriented polyester film
JP4979105B2 (en) Optical polyester film
JP2016210066A (en) Laminated polyester film
JP6377911B2 (en) Polyester film
JP2015030828A (en) Polyester film
JP6243179B2 (en) Laminated film
WO2015019977A1 (en) Polyester film
JP6178204B2 (en) Method for producing polyester resin molded body
JP4799066B2 (en) Laminated polyester film
JP2011242733A (en) Polyester film for protecting polarizing plate
JP7187774B2 (en) polyester film
JP2010031116A (en) Biaxially oriented polyester film and magnetic recording medium using it
JP6374214B2 (en) Laminated film with coating layer
WO2015072560A1 (en) Polyester film for use in solar cell and protective film, for use in solar cell, comprising said polyester film
JP4644902B2 (en) White laminated polyester film
JP5833428B2 (en) Method for producing laminated film
JP5886026B2 (en) Laminated film
JP4183949B2 (en) Method for producing biaxially oriented polyester film
JP2006249210A (en) Light scattering biaxially stretched polyester film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042989.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035509

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834802

Country of ref document: EP

Kind code of ref document: A1