WO2015019308A1 - Device for regulating a gas and air mixture in a combustion system - Google Patents

Device for regulating a gas and air mixture in a combustion system Download PDF

Info

Publication number
WO2015019308A1
WO2015019308A1 PCT/IB2014/063753 IB2014063753W WO2015019308A1 WO 2015019308 A1 WO2015019308 A1 WO 2015019308A1 IB 2014063753 W IB2014063753 W IB 2014063753W WO 2015019308 A1 WO2015019308 A1 WO 2015019308A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
mixing tube
injector
assembly
Prior art date
Application number
PCT/IB2014/063753
Other languages
Spanish (es)
French (fr)
Inventor
Hector Fabio ARIAS VANEGAS
Claudia Marcela ORREGO ZAPATA
Ruben Dario ESTRADA HERNÁNDEZ
William De Jesus GIL LONDOÑO
Carlos Mario Chica Arrieta
Victor Hugo ECHAVARRÍA VALLEJO
Federico Guillermo FERREIRA LOPEZ
Gabriel Felipe VÁSQUEZ BEDOYA
Original Assignee
Industrias Haceb S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrias Haceb S.A. filed Critical Industrias Haceb S.A.
Publication of WO2015019308A1 publication Critical patent/WO2015019308A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/007Mixing tubes, air supply regulation

Definitions

  • the present invention relates to combustion systems for domestic purposes, for example stoves that use combustible gases for their operation, and in particular with devices used to perform the combustion operation with various types of combustible gases and at different heights above the level of the sea.
  • SCFD gas combustion systems for domestic purposes
  • a state-of-the-art SCFD commonly comprises:
  • a valve (102) connected to the tube (101), which regulates the flow of gas that is transported by the tube (101), an injector (103) located posterior to the valve (102), which injects the gas that is transported in the tube (101),
  • a mixing tube (104) that receives the gas that is injected by the injector (103).
  • the mixing tube (104) is separated from the injector (103) a certain distance, whereby, when the injected gas enters the mixing tube (104), a pressure drop is generated, sucking the air adjacent to the injector (103) towards the mixing tube (104).
  • the air and gas are mixed.
  • the sucked air is called primary air.
  • SCQS combustion system with sealed burner
  • SCQA combustion system with open burner
  • the amount of air induced to the mixing tube (104) is determined, in large part, by the distance between the injector (103) and the mixing tube (104). Once the air contained in the cover (106) is sucked, the cover is supplied with air that enters through the opening where the mixing tube (104) leaves. Being the primary air sucked from the environment where the combustion of the gas develops, there is the possibility Suction not only the air, but also combustion gases close to the flame, which increases the generation of CO, product of the presence of these gases in combustion.
  • the minimum CO emissions that can occur in the SCQS are 600 to 700 ppm, obtaining thermal efficiencies between 48% and 52%. The above ranges may vary with respect to the height above sea level (hereinafter "ASNM") of the SCQS.
  • Another important aspect for combustion in an SCQS is the distance between the injector (103) and the mixing tube (104). This distance is responsible for the rate of primary air that can carry the gas and is a distance set from the factory, therefore the same SCQS can present differences in the characteristic of combustion at different ASNM, such as CO emissions and thermal efficiency, since the rate of primary air varies and therefore the rate of secondary air will also vary.
  • the mixing tube (104) and the injector (103) are under the table (107) (but not within a defined volume, as in the SCQS).
  • the primary air from the environment is taken under the table (106), which is sucked by the gas into the mixing tube (104).
  • the suction is presented since the outgoing gas of the injector (103) has a dynamic pressure greater than the primary air present in the environment, sufficient to drag the primary air into the mixing tube (104) and subsequently to the burner (105).
  • Being the environment from which the open primary air is taken ie unrestricted access, unlike what happens in the SCQS), there must be no recirculation of combustion gases, and therefore the primary air to be sucked will be substantially free of flue gases.
  • the mixing tube (104) used to drive the mixture of primary air and gas towards the burner (105) has a movement free of movement with respect to its longitudinal axis, which allows the distance between the injector (if handled improperly) 103) and the mixing tube (104) is altered, thus varying the primary air rate and secondary air rate, possibly generating gas leaks, and consequently affecting the amount of CO generated and the thermal efficiency of combustion.
  • the distance between the injector (103) and the mixing tube (104) is responsible for the rate of primary air that can be carried by the gas, and is a factory set distance.
  • SCFDs can operate with different combustion gases. Due to the differences in the physicochemical properties of the gases used, the most common being natural gas (hereinafter GN) and liquefied petroleum gas (hereinafter LPG), when an SCFD is preset to operate with a certain gas and requires operating with other gas, it is necessary to make modifications or changes in its components. For the conversion of an SCFD, when changing from one gas to another, the modification or change of four components or factors is taken into account: the valve, the injector, the minimum gas flow and the air regulation. This last factor is necessary to correct the effect of the change in atmospheric pressure on the SCFD to ensure adequate performance and safety of the appliance.
  • GN natural gas
  • LPG liquefied petroleum gas
  • SCFDs work with a defect of primary air with values ranging between 50% and 70%, that is, 100% of the O2 contained in the air necessary for complete combustion, only enters between 50% and 70%, called the primary air rate, and the The rest is obtained from the air surrounding the flame, called secondary air rate.
  • the primary air rate When increasing the ASNM, the partial pressure of the O2 is reduced, reducing its mass content, which affects combustion incomplete To compensate for this it is necessary to increase the primary air rate by modifying the air regulation.
  • the injector for GN and the knob for GN are assembled on the valve;
  • the LPG injector and LPG knob are assembled to the valve.
  • this document does not disclose a system to easily regulate the air-gas mixture.
  • Patent document US7,458,386 also describes an invention corresponding to a valve for use in gas combustion systems that allows the conversion of GN to LPG and vice versa.
  • the valve comprises 2 injectors, one of larger diameter located at one end where the gas leaves and another internal injector to the smaller diameter valve; The circle centers of both injectors are collinear.
  • the internal injector is mounted on a mechanism that allows the movement on its longitudinal axis into the valve.
  • the mechanism is actuated by a knob located on the outside of the valve, which, when rotated, displaces the mechanism, and consequently the internal injector.
  • the knob has 3 positions: closed in which gas is not allowed to enter the valve, GN to operate with GN and LP to operate with LPG. When the knob is in the closed position, gas is not allowed to enter the valve.
  • the device does not contemplate a mechanism that allows to easily regulate the air-gas mixture. 3. Brief description of the graphics
  • FIG. 1 Scheme of a state of the art SCFD.
  • FIG 2. Scheme of a state of the art SCQS.
  • FIG 3. Scheme of a state of the art SCQA.
  • FIG 4. Preferred mode of the invention.
  • FIG 5. Preferred mode of the mobile assembly of the invention.
  • FIG 6. Path of the gas in the preferred embodiment of the invention.
  • FIG 7. Preferred mode of the fixed assembly of the invention.
  • the present invention corresponds to a device for converting gas into an SCFD which allows the gas injector to be safely and easily changed and to vary the distance between the injector and the mixing tube. Apart from changing the injector and regulating the amount of primary air, the conversion of a combustible gas to another combustible gas does not require modifications to the system or component addition. Additionally, the device allows, through the modification of the primary air rate, to optimize combustion to operate the SCFD at different ASNMs and to control unwanted phenomena in the burner related to flame stability.
  • the present invention in its preferred embodiment relates to a device called a gas-air regulator that allows the conversion of a combustible gas to another in an SCFD, and which, through the modification of the primary air rate, optimizes combustion to operate at different ASNMs and control unwanted phenomena in the burner related to flame stability, such as flashback and flame shedding, yellow tips, and that usually result in high concentrations of CO.
  • the gas-air regulator consists of:
  • a mobile set consisting of:
  • the gas-air regulator is located before the burner and after the fuel gas flow regulating valve.
  • the mobile assembly corresponds to the assembly that moves in the gas-air regulator and through which the gas enters the gas-air regulator.
  • the injector (2), the two female guides (3) and the thread (4) are assembled in the base (1).
  • the pipeline that carries the combustible gas is connected to the inlet of the gas-air regulator, using for example an o-ring elastomer seal that is coupled and blocked in the slots (9).
  • the pipeline that carries the combustible gas is connected at its other end to the fuel gas flow regulating valve.
  • the base (1) can be manufactured in any solid material, such as steel, nickel, brass, zamak and aluminum.
  • the geometry of the base is preferably in 90 ° elbow, since it allows the gas-air regulator to be more compact, facilitating its use in kitchen covers.
  • it can be any, but preferably circular, since it facilitates its connection to hoses and tubes, elements commonly used for the transport of combustible gas and whose transverse geometry is circular.
  • the injector (2) is assembled to the base (1) by any fixing technique such as welding, pressure mounting, glue or other technique, preferably threaded into the base (1), since This alternative allows disassembly and assembly of the injector (2) without causing damage to the base (1). It is required to change the injector (2) when converting fuel gas to another fuel gas, since an injector (2) suitable for the operation of each type of fuel gas is required.
  • the injector (2) has a hole (10) through which the combustible gas from the mobile assembly leaves.
  • the two female guides (3) are assembled to the base (1) at 180 ° a female guide (3) of the other, taking as center the center of the hole (10) of the injector (2) ). Additionally, the longitudinal axes of the female guides (3) must be parallel to each other, and with the center axis of the hole (10).
  • the assembly of the female guides (3) to the base (1) can be carried out by welding, riveting, stamping, screwing, but preferably, their manufacture in the casting of the base (1) should be considered.
  • the internal transverse geometry of the female guides (3) is preferably in T, although it can be in others as cylindrical, square and rectangular.
  • the internal transverse T-geometry of the female guides (3) facilitates the filling of the mold in the foundry and avoids the block between the female guides (3) and the male guides (5) during the movement.
  • the T-geometry allows a clearance between the female guides (3) and the male guides (5) between 0 or 6 or , preferably a maximum clearance of 2 o .
  • the two female guides (3) are for guiding the mobile assembly during vertical movement.
  • the regulation mechanism allows moving the mobile assembly with respect to the fixed assembly, in order to move them away or closer as the case may be.
  • the preferred embodiment for the materialization of this mechanism is the use of screw.
  • the thread (4) is located in the mobile assembly, in the base (1).
  • the thread (4) is assembled to the base (1) preferably by threading the base (1), other alternatives are to press a nut in the base (1), or by placing a nut inside the casting mold, to When the material is emptied into the mold, the nut is inside the base (1).
  • the thread (4) must be of fine pitch.
  • the screw (7) is inserted into the hole (12) of the support (11), the screw (7) being suspended in the support (11).
  • the end of the headless screw (7) is threaded into the thread (4); by turning the screw (7) it is threaded into the thread (4), and therefore displaces the thread (4) vertically and I get the mobile assembly. That is, the rotational movement is converted into a translational movement.
  • the screw (7) must be threaded in its entire length and with a fine pitch thread. If a fine pitch thread screw (7) is used, the thread (4) must also be a fine pitch thread.
  • the displacement will cause the mobile assembly to approach the fixed assembly or move away, that is, if the screw (7) and the thread (4) are in the right direction of rotation, when operating a direction of rotation to the right, the mobile assembly will approach the fixed assembly.
  • Cable pulley A pulley is fixed to the fixed assembly, and a cable is fixed at one of its ends to the pulley and in the other to the mobile assembly, so when winding the cable the mobile assembly is close to the fixed assembly, and the opposite happens when unrolling the wire.
  • This materialization of the regulation mechanism allows unrestricted displacements as in the previous case, since the displacement can be established as a function of the pulley's turning fraction.
  • Crown screw screw In this case the crown would be fixed in the mobile assembly or the fixed assembly, and the worm would be fixed in the assembly to which the crown is not fixed. When turning the crown, the screw and the assembly to which it is fixed is moved. The travel distance is set based on the crown's turn fraction and the crown's arc length.
  • the fixed set is the set that sets the gas-air regulator, and where the gas and air mixture is performed.
  • the fixed assembly consists of two male guides (5), a mixing tube (6), two fixers (8) and a support (11).
  • the two male guides (5) are assembled to the mixing tube (6) at 180 ° a male guide (5) of the other, taking as a pivot point the longitudinal axis of the mixing tube (6).
  • the longitudinal axes of the male guides (5) must be parallel to each other, and with the longitudinal axis of the mixing tube (6).
  • the assembly of the male guides (5) to the mixing tube (6) can be done by welding, riveting, stamping, screwing, but preferably, their manufacture in the melting of the mixing tube (6) should be considered.
  • the external transverse geometry of the male guides (5) is preferably in T, although it can be in others as cylindrical, square and rectangular.
  • the external transverse T-geometry of the male guides (5) facilitates the filling of the mold in the foundry and prevents blockage between the female guides (3) and the male guides (5) during the movement.
  • the T-geometry allows a clearance between the female guides (3) and the male guides (5) between 0 o and 6 o , preferably a maximum clearance of 2 o .
  • the external transverse geometry used in the male guides (5) must be equal to the internal transverse geometry of the female guides (3).
  • the two male guides (5) move inside the female guides (3) during the movement of the mobile assembly which the regulation mechanism is activated.
  • the geometry of the cross section of the mixing tube (6) is circular, that is to say that the mixing tube It is cylindrical in its preferred mode.
  • the mixing tube (6) can have a square, rectangular, triangular transverse geometry among others.
  • the cylindrical geometry of the mixing tube (6) in the preferred mode allows homogeneity of the gas and air mixture at any point of the internal wall of the mixing tube (6)
  • the two fasteners (8) are assembled to the mixing tube (6) at 180 ° one fixer (8) of the other, taking as a turning point the longitudinal axis of the mixing tube (6).
  • the center axes of the holes (13) located in the fasteners (8) must be parallel to each other, and with the longitudinal axis of the mixing tube (6).
  • the assembly of the fasteners (8) to the mixing tube (6) can be done by welding, riveting, stamping, screwing, but preferably, they must be considered its manufacture in the casting of the mixing tube (6).
  • the function of the fasteners (8) is to fix the fixed assembly to a fixed surface where the SCFD is used.
  • the holes (13) located in the fasteners (8) allow the passage of screws, rivets or pins with which to fix the fixed assembly to the fixed surface where the SCFD is used.
  • the fixed assembly comprises the support (11) having the hole (12) and according to FIG 6, the hole (12) is where the screw (7) passes.
  • the male guides (5) are inserted in the female guides (3).
  • the screw (7) is inserted through the hole (12) and threaded with the thread (4), thus obtaining the gas-air regulator assembly.
  • the mixing tube (6) is concentric and aligned with the injector shaft (2), which guarantees that the gas discharge is made towards the mixing tube.
  • the maximum distance L between the mixing tube (6) and the injector (2) is limited by the opening of the gas discharge angle ⁇ and the diameter of the mixing tube (6).
  • the length of the opposite leg of the discharge angle ⁇ must not exceed the diameter of the mixing tube (6) in order to reduce the gas spill.
  • the maximum distance L according to the equation les:
  • the discharge angle ⁇ is between 0 or maximum 22 °.
  • the minimum distance L is 2 mm.
  • the components of the gas-air regulator can be made of any rigid solid material, which withstands temperatures greater than 180 °, which does not generate galvanic torque with the parts that come into contact, and preferably is tough.
  • the static pressure of the gas and air mixture is stabilized resulting in exceeding the atmospheric pressure at the outlet of the mixing tube (6), since the dynamic pressure of the gas and air mixture is superior to that of the environment.
  • the outlet pressure of the mixing tube (6) must be higher than that of the environment, as this avoids the phenomena of flame recoil and flame shedding. According to FIG 6, after the mixing tube (6), the gas and air mixture is conducted inside the SCFD burner.
  • the injector (2) suitable for the type of gas to be used Before using the gas-air regulator, the injector (2) suitable for the type of gas to be used must be installed, and knowing the ASNM in the location of the SCFD, the appropriate distance L is set. It is necessary to adjust the distance L according to the ASNM, since depending on the distance L to be used, the primary air rate is determined in order to ensure combustion without undesirable effects such as flame with yellow tips, flame release, or emissions of CO higher than 800 PPM.
  • the primary air rate should be between 45% and 80%, preferably 70%.
  • an injector (2) suitable for the gas to be used When changing from one gas to another, an injector (2) suitable for the gas to be used must be installed, and the distance L must be adjusted, since the gas to be used will require another aeration rate primary given the chemical and thermodynamic characteristics of each gas for combustion. For example:
  • the primary air rate when changing from GN to LPG, the primary air rate must be increased, and from LPG to GN, the primary air rate must be reduced.
  • the adjustment of the distance L, according to FIG 6, is achieved by turning the screw (7), which is threaded into the thread (4), and therefore the mobile assembly is moved, moving the mobile assembly closer or further away from the assembly. fixed, and therefore bringing the injector (2) away from the mixing tube (6), thus modifying the distance L.
  • the distance L must be increased between 1 mm and 3 mm. In the event of flame shedding, the distance L must be reduced between 1 mm and 3 mm.
  • Mixer tube diameter (6) is 13 mm.
  • a screw (7) M3 with a length greater than or equal to 5 cm long is used with a thread pitch of 0.5 mm and a right direction of rotation of the screw threads (7).
  • Burner power 2 kW.
  • maximum L is 37.8 mm.
  • the distance traveled by each turn of the screw (7) is 0.5 mm, for every two turns of the screw (7), 1 mm.
  • an injector (2) suitable for GN (the required injector is obtained commercially) is assembled in the base (1), and the gas-air regulator in the SCFD is assembled between the burner and the pipe that gas transportation
  • the distance L between the injector (2) and the mixing tube is 5 mm. This distance L is adjusted by turning the screw (7) and consequently moving the moving assembly until the separation distance is achieved L. Under the given conditions, and the assembly performed, a thermal efficiency between 58% and 62% is achieved. The exact value will depend on the separation distance between the heating object and the flame that is generated, since if they are in contact the heat transfer is by conduction; if they are not in contact the transfer is by convection. Additionally, CO emissions of 600 ppm or less are obtained and flame phenomena with amanilla tips and flame shedding are avoided. Case 2
  • a screw (7) M3 with a length greater than or equal to 5 cm long is used with a 0.5 mm thread pitch and a right direction of rotation of the screw threads
  • the distance traveled by each turn of the screw (7) is 0.5 mm, for every two turns of the screw (7), 1 mm.
  • an injector (2) suitable for LPG (the required injector is obtained commercially) is assembled in the base (1).
  • the gas-air regulator is assembled in the SCFD between the burner and the gas transport pipe.
  • the distance L between the injector (2) and the mixing tube must be 15 mm, this distance L is adjusted by turning the screw (7) and by consequently moving the mobile assembly, until the separation distance is achieved L.
  • the distance L In case the assembly of case 1 is used, once If the injector (2) has been replaced with a suitable LPG injector, the distance L must be modified from 5 mm (distance used in case 1) to 15 mm (distance used in case 2) by turning the screw (7) properly .
  • the distance between the injector (2) and the mixing tube (6) is checked with a measuring instrument.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

The present invention includes a device for converting a gas into another in a combustion system for household use, controlling the primary air rate for the gas and air mixture at different altitudes above sea level, and making it possible to control CO emissions. In order to convert from one gas to another, the use of an injector that is suitable for the gas to be used is considered, and the distance between the injector and the mixing tube in which the mixture of gas and air takes place is modified, the distance between the injector and the mixing tube must be adjusted according to the gas discharge angle, the diameter of the mixing tube, the thermodynamic features of the gas and the altitude above sea level. The device referred to as gas-air regulator includes a stationary assembly, a regulating mechanism and a mobile assembly, the regulating mechanism moves the mobile assembly toward or away from the stationary assembly, thus modifying the distance from the injector to the mixing tube, and thus the primary air rate.

Description

Dispositivo para regulación de mezcla de gas y aire en un sistema de combustión. Device for regulation of gas and air mixture in a combustion system.
1. Campo de la invención 1. Field of the invention
El presente invento está relacionado con los sistemas de combustión con fines domésticos, por ejemplo estufas que utilizan gases combustibles para su operación, y en particular con dispositivos utilizados para realizar la operación de combustión con varios tipos de gases combustibles y a diferentes alturas sobre el nivel del mar. The present invention relates to combustion systems for domestic purposes, for example stoves that use combustible gases for their operation, and in particular with devices used to perform the combustion operation with various types of combustible gases and at different heights above the level of the sea.
2. Descripción del estado del arte 2. Description of the state of the art
En los sistemas de combustión de gases con fines domésticos (en adelante SCFD) se presentan varios retos técnicos, siendo especialmente relevantes para la presente invención dos: la conversión del SCFD cuando se cambia el tipo de gas, y el ajuste de la mezcla de aire-gas a fin decontrolar las emisiones de COdurante la combustión. Estos dos retos técnicos generan inconvenientes técnicos en el proceso de combustión como son la eficiencia térmica, emisiones de CO y posibles fugas de gas que representan potenciales accidentes para los operadores del sistema. In the gas combustion systems for domestic purposes (hereinafter SCFD) several technical challenges arise, two of which are especially relevant for the present invention: the conversion of the SCFD when the type of gas is changed, and the adjustment of the air mixture -Gas in order to control CO emissions during combustion. These two technical challenges generate technical inconveniences in the combustion process such as thermal efficiency, CO emissions and possible gas leaks that represent potential accidents for system operators.
Sumado a los dos retos técnicos anteriores, está el reto de la altura donde opera el SCFD. Un SCFD tendrá un desempeño distinto dependiendo de la altura de operación con respecto el nivel del mar, dado que las condiciones ambientales y termodinámicas cambian con respecto a dicha altura, en especial la concentración de oxigeno ((¾) presente en el aire, fundamental en el proceso de combustión. In addition to the two previous technical challenges, there is the challenge of the height where the SCFD operates. An SCFD will have a different performance depending on the operating height with respect to sea level, since the environmental and thermodynamic conditions change with respect to that height, especially the concentration of oxygen ((¾) present in the air, fundamental in the combustion process.
Haciendo referencia a la FIG. 1, un SCFD del estado de la técnica comprende comúnmente: Referring to FIG. 1, a state-of-the-art SCFD commonly comprises:
• un tubo (101) que transporte el gas,  • a tube (101) that carries the gas,
• una válvula (102) conectada al tubo (101), la cual regula el flujo del gas que es transportado por el tubo (101), un inyector (103) ubicado posterior a la válvula (102), que inyecta el gas que es transportado en el tubo (101), • a valve (102) connected to the tube (101), which regulates the flow of gas that is transported by the tube (101), an injector (103) located posterior to the valve (102), which injects the gas that is transported in the tube (101),
un tubo mezclador (104) que recibe el gas que es inyectado por el inyector (103). El tubo mezclador (104) está separado del inyector (103) cierta distancia, por lo cual, al ingresar el gas inyectado al tubo mezclador (104), se genera una caída de presión, succionando el aire contiguo al inyector (103) hacia el tubo mezclador (104). En el tubo mezclador (104) se mezcla el aire y el gas. El aire succionado es denominado aire primario.  a mixing tube (104) that receives the gas that is injected by the injector (103). The mixing tube (104) is separated from the injector (103) a certain distance, whereby, when the injected gas enters the mixing tube (104), a pressure drop is generated, sucking the air adjacent to the injector (103) towards the mixing tube (104). In the mixing tube (104) the air and gas are mixed. The sucked air is called primary air.
y un quemador (105) posterior al tubo mezclador (104), al cual llega la mezcla gas-aire, donde por una ignición se produce la combustión. La combustión en este tipo de sistemas de combustión no es completa en tanto la mezcla aire-gas no contiene el aire necesario (estequiométrico). Por tal razón, cuando se desarrolla la combustión,la llama producto de la combustión quema cierto porcentaje de aire circundante al entorno de la llama, el cual es denominado aire secundario.  and a burner (105) after the mixing tube (104), which reaches the gas-air mixture, where combustion occurs by ignition. The combustion in this type of combustion systems is not complete as long as the air-gas mixture does not contain the necessary air (stoichiometric). For this reason, when combustion develops, the combustion product flame burns a certain percentage of air surrounding the flame environment, which is called secondary air.
En los SCFDs, se conoce convencionalmente dos sistemas de combustión:(i) el sistema de combustión con quemador sellado (en adelante,"SCQS") y (ii) el sistema de combustión con quemador abierto (en adelante, "SCQA"). Acorde con la FIG. 2, en un SCQS el inyector (103) y el tubo mezclador (104), están dentro de una cubierta (106), a la cual ingresa el aire a través de la abertura por donde sale el tubo mezclador (104). Durante la combustión el aire primario es succionado dado que el gas saliente del inyector (103) tiene una presión dinámica superior al aire primario presente en el entorno, presión dinámica suficiente para arrastrar al aire primario hacia el tubo mezclador (104) y posteriormente al quemador (105). La cantidad de aire inducido hacia el tubo mezclador (104) está determinada, en gran parte, por la distancia entre el inyector (103) y el tubo mezclador (104). Una vez el aire contenido en la cubierta (106) es succionado, la cubierta se abastece de aire que ingresa por la abertura por donde sale el tubo mezclador (104). Al ser el aire primario succionado del entorno donde se desarrolla la combustión del gas, existe la posibilidad de succionar no solo el aire, sino tambiéngases de combustión cercanos a la llama, lo cual aumenta la generación de CO, producto de la presencia de estos gases en la combustión. Las emisiones de CO mínimas que se pueden presentar en los SCQS son de 600 a 700 ppm, obteniendo eficiencias térmicas entre 48% a 52%. Los rangos anteriores pueden variar con respecto a la altura sobre el nivel del mar (en adelante, "ASNM") del SCQS. Otro aspecto importante para la combustión en un SCQS es la distancia entre el inyector (103) y el tubo mezclador (104). Esta distancia es la responsable de la tasa de aire primario que pueda arrastrar el gas y es una distancia fijada desde fábrica, por consiguiente un mismo SCQS puede presentar diferencias en la característica de la combustión a diferentes ASNM, tales como las emisiones de CO y la eficiencia térmica, dado que la tasa de aire primario varía y por consiguiente la tasa de aire secundario también variará. In SCFDs, two combustion systems are conventionally known: (i) the combustion system with sealed burner (hereinafter, "SCQS") and (ii) the combustion system with open burner (hereinafter, "SCQA"). According to FIG. 2, in an SCQS the injector (103) and the mixing tube (104), are inside a cover (106), to which the air enters through the opening through which the mixing tube (104) exits. During combustion the primary air is sucked out since the outgoing gas of the injector (103) has a dynamic pressure greater than the primary air present in the environment, sufficient dynamic pressure to drag the primary air into the mixing tube (104) and subsequently to the burner (105). The amount of air induced to the mixing tube (104) is determined, in large part, by the distance between the injector (103) and the mixing tube (104). Once the air contained in the cover (106) is sucked, the cover is supplied with air that enters through the opening where the mixing tube (104) leaves. Being the primary air sucked from the environment where the combustion of the gas develops, there is the possibility Suction not only the air, but also combustion gases close to the flame, which increases the generation of CO, product of the presence of these gases in combustion. The minimum CO emissions that can occur in the SCQS are 600 to 700 ppm, obtaining thermal efficiencies between 48% and 52%. The above ranges may vary with respect to the height above sea level (hereinafter "ASNM") of the SCQS. Another important aspect for combustion in an SCQS is the distance between the injector (103) and the mixing tube (104). This distance is responsible for the rate of primary air that can carry the gas and is a distance set from the factory, therefore the same SCQS can present differences in the characteristic of combustion at different ASNM, such as CO emissions and thermal efficiency, since the rate of primary air varies and therefore the rate of secondary air will also vary.
Acorde con la FIG. 3, en un SCQA el tubo mezclador (104) y el inyector (103) están debajo de la mesa (107) (pero no dentro de un volumen definido, como sucede en el SCQS). En un SCQA se toma el aire primario del entorno debajo de la mesa (106), el cual es succionado por el gas hacia el tubo mezclador (104). La succión se presenta dado que el gas saliente del inyector (103) tiene una presión dinámica superior al aire primario presente en el entorno, suficiente para arrastrar al aire primario hacia el tubo mezclador (104) y posteriormente al quemador (105). Al ser el entorno de donde se toma el aire primario abierto (es decir de acceso irrestricto, a diferencia de lo que sucede en el SCQS), no debe existir recirculación de gases de combustión, y por consiguiente el aire primario a succionar estará sustancialmente libre de gases de combustión. El tubo mezclador (104) utilizado para conducir la mezcla de aire primario y gas hacia el quemador (105) tiene un movimiento libre de desplazamiento con respecto a su eje longitudinal, lo cual permite que ante una manipulación inadecuada, la distancia entre el inyector (103) y el tubo mezclador (104) se altere, variando así la tasa de aire primario y tasa aire secundario, posiblemente generando escapes de gas, y por consiguiente afectando la cantidad de CO generada y la eficiencia térmica de la combustión. La distancia entre el inyector (103) y el tubo mezclador (104) es la responsable de la tasa de aire primario que pueda arrastrar el gas, y es una distancia fijada desde fábrica. Por consiguiente, un mismo SCQA puede presentar diferencias en la característica de la combustión a diferentes ASNM, tales como las emisiones de CO y la eficiencia térmica, lo cual requiere de un ajuste al momento de instalación. According to FIG. 3, in a SCQA the mixing tube (104) and the injector (103) are under the table (107) (but not within a defined volume, as in the SCQS). In an SCQA, the primary air from the environment is taken under the table (106), which is sucked by the gas into the mixing tube (104). The suction is presented since the outgoing gas of the injector (103) has a dynamic pressure greater than the primary air present in the environment, sufficient to drag the primary air into the mixing tube (104) and subsequently to the burner (105). Being the environment from which the open primary air is taken (ie unrestricted access, unlike what happens in the SCQS), there must be no recirculation of combustion gases, and therefore the primary air to be sucked will be substantially free of flue gases. The mixing tube (104) used to drive the mixture of primary air and gas towards the burner (105) has a movement free of movement with respect to its longitudinal axis, which allows the distance between the injector (if handled improperly) 103) and the mixing tube (104) is altered, thus varying the primary air rate and secondary air rate, possibly generating gas leaks, and consequently affecting the amount of CO generated and the thermal efficiency of combustion. The distance between the injector (103) and the mixing tube (104) is responsible for the rate of primary air that can be carried by the gas, and is a factory set distance. By consequently, the same SCQA may present differences in the combustion characteristic of different ASNMs, such as CO emissions and thermal efficiency, which requires an adjustment at the time of installation.
Los SCFD pueden operar con diferentes gases de combustión. Debido a las diferencias en las propiedades fisicoquímicas de los gases utilizados, siendo los más comunes gas natural (en adelante GN) y gas licuado de petróleo (en adelante GLP), cuando un SCFD está preajustado para operar con un determinado gas y requiere operar con otro gas, es necesario que se le realicen modificaciones o cambios en sus componentes. Para la conversión de un SCFD, cuando se cambia de un gas a otro, se tiene en cuenta la modificación o cambio de cuatro componentes o factores: la válvula, el inyector, el flujo mínimo de gas y la regulación de aire. Este último factor es necesario para corregir el efecto que tiene el cambio de presión atmosférica sobre el SCFD para asegurar el adecuado desempeño y seguridad del artefacto. Por ejemplo, una inadecuada regulación de aire puede ocasionar deficiencia en el arrastre de aire primario (tasa de aireación) promoviendo la generación de altas concentraciones de monóxido de CO, cuyos efectos por inhalación van desde dolor de cabeza hasta la muerte. Es por ello que las modificaciones o cambios de los factores antes mencionados hacen complejo, inseguro y costoso el proceso de conversión de un gas a otro. Una conversión de un SCFD requiere de la intervención del SCFD, el cual muchas veces viene cerrado herméticamente de fábrica, y si la persona que realiza la modificación no cuenta con las herramientas necesarias para garantizar de nuevo la hermeticidad, el SCFD presentará fugas de gas combustible, situación que representa riesgos de incendio o explosión. En este sentido, la dificultad de la conversión obliga a los fabricantes a usar SCFD mucho más robustos y costosos, que incluyen el uso de SCQS, y utilizan mucho más material de aluminio en su construcción, requieren de accesorios como racores, anillos de compresión para las conexión al circuito de gas, tubería de aluminio de mayor diámetro y espesor, válvulas con bypass e inyectores especiales, entre otros, elevando el costo de los SCFD y ubicándolos en un nicho de mercado de gama media y alta. En el caso de SCFD de gama baja (es decir, productos que por su bajo precio de venta están construidos con materiales y componentes de especificaciones básicas y que están orientados a segmentos socioeconómicos de ingresos bajos), el SCFD utiliza componentes más simples y económicos. Por ejemplo, el quemador, tapa quemador y tubos de transporte de gas están fabricados en lámina o chapa metálica y no están diseñados para permitir una fácil conversión a otro gas. Igualmente, requieren de la intervención de una persona calificada para el cambio de válvulas o inyectores, y la regulación de aire queda susceptible de modificar accidentalmente por el usuario, generando así un riesgo de mal funcionamiento y peligro de seguridad, como son las emisiones de monóxido de carbono. Comúnmente en la conversión de un SCFD de un gas a otro, se realiza modificaciones en el diámetro del inyector o cambio del inyector por uno de diámetro diferente y acorde con el gas de nuevo uso, y/o modificación de la válvula o cambio de la misma, a fin de modificar el caudal de gas. En ambos casos (es decir, modificación o cambio de inyector, y modificación o cambio de la válvula), se realiza modificaciones en la regulación de aire y flujo mínimo de gas. Las modificaciones dependerán de la experticia de la persona que interviene el SCFD, dado que es un proceso empírico que depende de la habilidad de la persona en la modificación de la válvula y el inyector, y adicionalmente no está considerando la localización del SCFD con respecto a la ASNM y por consiguiente las concentraciones de oxígeno, pudiendo presentarse inconvenientes técnicos en el SCFD como son disminución de la eficiencia térmica, aumento en las emisiones de CO, retroceso de llama, entre otras. SCFDs can operate with different combustion gases. Due to the differences in the physicochemical properties of the gases used, the most common being natural gas (hereinafter GN) and liquefied petroleum gas (hereinafter LPG), when an SCFD is preset to operate with a certain gas and requires operating with other gas, it is necessary to make modifications or changes in its components. For the conversion of an SCFD, when changing from one gas to another, the modification or change of four components or factors is taken into account: the valve, the injector, the minimum gas flow and the air regulation. This last factor is necessary to correct the effect of the change in atmospheric pressure on the SCFD to ensure adequate performance and safety of the appliance. For example, inadequate air regulation can cause deficiency in primary air entrainment (aeration rate) promoting the generation of high concentrations of CO monoxide, whose effects from inhalation range from headache to death. That is why the modifications or changes of the aforementioned factors make the process of conversion from one gas to another complex, insecure and expensive. A conversion of an SCFD requires the intervention of the SCFD, which is often sealed at the factory, and if the person making the modification does not have the necessary tools to guarantee airtightness again, the SCFD will leak fuel gas , situation that represents risks of fire or explosion. In this sense, the difficulty of conversion forces manufacturers to use SCFD much more robust and expensive, which include the use of SCQS, and use much more aluminum material in their construction, requiring accessories such as fittings, compression rings for the connection to the gas circuit, aluminum pipe of greater diameter and thickness, valves with bypass and special injectors, among others, raising the cost of SCFDs and placing them in a niche market of medium and high range. In the case of low-end SCFD (that is, products that, due to their low sale price, are built with materials and components of basic specifications and are oriented to low-income socioeconomic segments), the SCFD uses simpler and cheaper components. For example, the burner, burner cap and gas transport tubes are made of sheet or sheet metal and are not designed to allow easy conversion to another gas. Likewise, they require the intervention of a qualified person for the change of valves or injectors, and the regulation of air is likely to be accidentally modified by the user, thus generating a risk of malfunction and safety hazard, such as monoxide emissions. carbon Commonly in the conversion of an SCFD from one gas to another, modifications in the diameter of the injector or change of the injector by one of different diameter and according to the gas of new use, and / or modification of the valve or change of the gas are made same, in order to modify the gas flow. In both cases (ie, modification or change of injector, and modification or change of the valve), modifications are made to the regulation of air and minimum gas flow. The modifications will depend on the expertise of the person involved in the SCFD, since it is an empirical process that depends on the ability of the person to modify the valve and the injector, and additionally is not considering the location of the SCFD with respect to the ASNM and consequently the oxygen concentrations, being able to present technical inconveniences in the SCFD as they are decrease of the thermal efficiency, increase in the emissions of CO, flashback, among others.
La generación de emisiones de CO se presenta dado que la reacción de oxidación (combustión) entre el gas combustible y aire normalmente es incompleta. Cuando la reacción es completa, los únicos gases de combustión son C(¾ y ¾0; cuando es incompleta, es decir, con defecto de aire, los gases de combustión generan otros gases, entre ellos el CO. Generalmente, los SCFD funcionan con defecto de aire primario con valores que oscilan entre 50% y 70%, esto es, del 100% del O2 contenido en el airenecesario para la combustión completa, solo ingresa entre el 50% y el 70%, denominado tasa de aire primario, y el resto se obtiene del aire circundante a la llama, denominado tasa de aire secundario. Al aumentar la ASNM se disminuye la presión parcial del O2, reduciéndose su contenido másico, lo cual incide en la combustión incompleta. Para compensar esto es necesario aumentar la tasa de aire primario modificando la regulación de aire. The generation of CO emissions occurs because the oxidation (combustion) reaction between combustible gas and air is usually incomplete. When the reaction is complete, the only flue gases are C (¾ and ¾0; when it is incomplete, that is, with an air defect, the flue gases generate other gases, including CO. Generally, SCFDs work with a defect of primary air with values ranging between 50% and 70%, that is, 100% of the O2 contained in the air necessary for complete combustion, only enters between 50% and 70%, called the primary air rate, and the The rest is obtained from the air surrounding the flame, called secondary air rate.When increasing the ASNM, the partial pressure of the O2 is reduced, reducing its mass content, which affects combustion incomplete To compensate for this it is necessary to increase the primary air rate by modifying the air regulation.
En el estado del arte se reportan dispositivos que facilitan el intercambio de tipos de gas, pero que no incorporan mecanismos que a la vez permitan regular de manera fácil y segura la mezcla de aire-gas para atender los inconvenientes técnicos de la combustión del gas con respecto a la ASNM, las emisiones de CO y la eficiencia térmica de la combustión. La invención descrita en el documento de patente US7, 641,470 B2, que consiste en una válvula para regular caudal de gas, en la cual son intercambiables el inyector por donde sale el gas y la perilla que se utiliza para accionar el caudal de gas. La válvula suministra los diferentes flujos de gas requerido girando en una pluralidad de posiciones angulares dependiendo del gas a utilizar. La válvula permite la operación del sistema de combustión con GN o GLP. Para uso de GN, se ensambla en la válvula el inyector para GN y la perilla para GN; en caso de uso de GLP, se ensambla a la válvula el inyector para GLP y la perilla para GLP. Sin embargo, este documento no se divulga un sistema para regular con facilidad la mezcla aire-gas. In the state of the art, devices that facilitate the exchange of types of gas are reported, but that do not incorporate mechanisms that at the same time allow to easily and safely regulate the air-gas mixture to address the technical drawbacks of gas combustion with regarding ASNM, CO emissions and thermal combustion efficiency. The invention described in US7, 641,470 B2, which consists of a valve for regulating gas flow, in which the injector through which the gas exits and the knob used to drive the gas flow are interchangeable. The valve supplies the different gas flows required by rotating in a plurality of angular positions depending on the gas to be used. The valve allows the operation of the combustion system with GN or LPG. For use of GN, the injector for GN and the knob for GN are assembled on the valve; In case of LPG use, the LPG injector and LPG knob are assembled to the valve. However, this document does not disclose a system to easily regulate the air-gas mixture.
El documento de patente US7,458,386, igualmente describe una invención correspondiente a una válvula de uso en sistemas de combustión de gases que permite convertir de GN a GLP y viceversa. La válvula comprende 2 inyectores, uno de mayor diámetro ubicado en un extremo donde sale el gas y otro inyector interno a la válvula de menor diámetro; los centro de circulo de ambos inyectores son colineales. El inyector interno está montado sobre un mecanismo que permite el desplazamiento sobre su eje longitudinal al interior de la válvula. El mecanismo es accionado por una perilla ubicada en el exterior de la válvula, la cual al girarla desplaza al mecanismo, y por consiguiente al inyector interior. La perrilla tiene 3 posiciones: cerrado en la cual no se permite ingreso de gas a la válvula, GN para operar con GN y LP para operar con GLP. Cuando la perilla esta en posición de cerrado, no se permite el ingreso de gas a la válvula. Sin embargo, como en el caso de la patente US7641470B2, el dispositivo no contempla un mecanismo que permita regular con facilidad la mezcla aire-gas. 3. Breve descripción de los gráficos Patent document US7,458,386 also describes an invention corresponding to a valve for use in gas combustion systems that allows the conversion of GN to LPG and vice versa. The valve comprises 2 injectors, one of larger diameter located at one end where the gas leaves and another internal injector to the smaller diameter valve; The circle centers of both injectors are collinear. The internal injector is mounted on a mechanism that allows the movement on its longitudinal axis into the valve. The mechanism is actuated by a knob located on the outside of the valve, which, when rotated, displaces the mechanism, and consequently the internal injector. The knob has 3 positions: closed in which gas is not allowed to enter the valve, GN to operate with GN and LP to operate with LPG. When the knob is in the closed position, gas is not allowed to enter the valve. However, as in the case of US7641470B2, the device does not contemplate a mechanism that allows to easily regulate the air-gas mixture. 3. Brief description of the graphics
FIG. 1. Esquema de un SCFD del estado de la técnica. FIG 2. Esquema de un SCQS del estado de la técnica. FIG. 1. Scheme of a state of the art SCFD. FIG 2. Scheme of a state of the art SCQS.
FIG 3. Esquema de un SCQA del estado de la técnica. FIG 4. Modalidad preferida del invento. FIG 5. Modalidad preferida del conjunto móvil del invento. FIG 3. Scheme of a state of the art SCQA. FIG 4. Preferred mode of the invention. FIG 5. Preferred mode of the mobile assembly of the invention.
FIG 6. Trayectoria del gas en la modalidad preferida del invento. FIG 7. Modalidad preferida del conjunto fijo del invento. FIG 6. Path of the gas in the preferred embodiment of the invention. FIG 7. Preferred mode of the fixed assembly of the invention.
4. Breve descripción del invento 4. Brief description of the invention
El presente invento corresponde a un dispositivo para la conversión de gas en un SCFD el cual permite cambiar de manera segura y fácil el inyector de gas y variar la distancia entre el inyector y el tubo mezclador. Aparte del cambio del inyector y la regulación de la cantidad de aire primario, la conversión de un gas combustible a otro gas combustible no requiere de modificaciones en el sistema o adicción de componentes. Adicionalmente, el dispositivo permite, a través de la modificación de la tasa de aire primario, optimizar la combustión para operar el SCFD a diferentes ASNM y controlar fenómenos indeseados en el quemador relacionados con la estabilidad de llama. The present invention corresponds to a device for converting gas into an SCFD which allows the gas injector to be safely and easily changed and to vary the distance between the injector and the mixing tube. Apart from changing the injector and regulating the amount of primary air, the conversion of a combustible gas to another combustible gas does not require modifications to the system or component addition. Additionally, the device allows, through the modification of the primary air rate, to optimize combustion to operate the SCFD at different ASNMs and to control unwanted phenomena in the burner related to flame stability.
5. Descripción detallada de la invención El presente invento en su modalidad preferida se refiere a un dispositivo denominado regulador gas-aire que permite la conversión de un gas combustible a otro en un SCFD, y que permite, a través de la modificación de la tasa de aire primario, optimizar la combustión para operar a distintas ASNM y controlar fenómenos indeseados en el quemador relacionados con la estabilidad de llama, como son el retroceso y desprendimiento de llama, puntas amarillas, y que por lo general resultan en altas concentraciones de CO. Acorde con la FIG 4, el regulador gas-aire se compone de: 5. Detailed description of the invention The present invention in its preferred embodiment relates to a device called a gas-air regulator that allows the conversion of a combustible gas to another in an SCFD, and which, through the modification of the primary air rate, optimizes combustion to operate at different ASNMs and control unwanted phenomena in the burner related to flame stability, such as flashback and flame shedding, yellow tips, and that usually result in high concentrations of CO. In accordance with FIG 4, the gas-air regulator consists of:
• Un conjunto móvil conformado por: • A mobile set consisting of:
a. una base (1);  to. a base (1);
b. un inyector (2);  b. an injector (2);
c. dos guías hembras (3); y  C. two female guides (3); Y
d. una rosca (4);  d. a thread (4);
• Mecanismo de regulación, el cual preferiblemente es: • Regulation mechanism, which is preferably:
a. un tornillo (7);  to. a screw (7);
• Un conjunto fijo, conformado por: • A fixed set, consisting of:
a. dos guías macho (5);  to. two male guides (5);
b. un tubo mezclador (6);  b. a mixing tube (6);
c. dos fijadores (8); y  C. two fixers (8); Y
d. un soporte (11).  d. a support (11).
El regulador gas-aire está ubicado previo al quemador y posterior a la válvula reguladora de caudal de gas combustible. The gas-air regulator is located before the burner and after the fuel gas flow regulating valve.
El conjunto móvil corresponde al conjunto que se desplaza en el regulador gas-aire y por el cual ingresa el gas al regulador gas-aire. Haciendo referencia a la FIG 5, en la base (1) se ensambla el inyector (2), las dos guías hembras (3) y la rosca (4). A la base (1) se conecta la tubería que transporta el gas combustible a la entrada del regulador gas-aire, usando por ejemplo un sello por elastómero o-ring que se acopla y bloquea en las ranuras (9). La tubería que transporta el gas combustible se conecta en su otro extremo a la válvula reguladora de caudal de gas combustible. La base (1) puede ser fabricada en cualquier material sólido, como puede ser acero, níquel, latón, zamak y aluminio. La geometría de la base es preferiblemente en codo de 90°, dado que permite que el regulador gas-aire sea más compacto, facilitando su uso en cubiertas de cocina. En cuanto a su geometría transversal, puede ser cualquiera, pero preferiblemente circular pues facilita su conexión a mangueras y tubos, elementos comúnmente utilizados para el transporte de gas combustible y cuya geometría transversal es circular. The mobile assembly corresponds to the assembly that moves in the gas-air regulator and through which the gas enters the gas-air regulator. Referring to FIG 5, the injector (2), the two female guides (3) and the thread (4) are assembled in the base (1). To the base (1) the pipeline that carries the combustible gas is connected to the inlet of the gas-air regulator, using for example an o-ring elastomer seal that is coupled and blocked in the slots (9). The pipeline that carries the combustible gas is connected at its other end to the fuel gas flow regulating valve. The base (1) can be manufactured in any solid material, such as steel, nickel, brass, zamak and aluminum. The geometry of the base is preferably in 90 ° elbow, since it allows the gas-air regulator to be more compact, facilitating its use in kitchen covers. As for its transverse geometry, it can be any, but preferably circular, since it facilitates its connection to hoses and tubes, elements commonly used for the transport of combustible gas and whose transverse geometry is circular.
Acorde con la FIG 5, el inyector (2) es ensamblado a la base (1) mediante cualquier técnica de fijación como puede ser soldadura, montaje a presión, por pegamento u otra técnica, preferiblemente roscado en la base (1), dado que esta alternativa permite desmontar y montar el inyector (2) sin ocasionar daños en la base (1). Se requiere cambiar el inyector (2) cuando se hace conversión de gas combustible a otro gas combustible, dado que se requiere un inyector (2) adecuado para la operación de cada tipo de gas combustible. El inyector (2) tiene un orificio (10) por el cual sale el gas combustible del conjunto móvil. According to FIG 5, the injector (2) is assembled to the base (1) by any fixing technique such as welding, pressure mounting, glue or other technique, preferably threaded into the base (1), since This alternative allows disassembly and assembly of the injector (2) without causing damage to the base (1). It is required to change the injector (2) when converting fuel gas to another fuel gas, since an injector (2) suitable for the operation of each type of fuel gas is required. The injector (2) has a hole (10) through which the combustible gas from the mobile assembly leaves.
Acorde con la FIG 5, las dos guías hembras (3) son ensambladas a la base (1) a 180° una guía hembra (3) de la otra, tomando como punto de giro el centro del orificio (10) del inyector (2). Adicionalmente, los ejes longitudinales de las guías hembras (3), deben ser paralelos entre sí, y con el eje de centro del orificio (10). El ensamble de las guías hembras (3) a la base (1) puede realizarse por soldadura, remachado, estampado, atornillado, pero preferiblemente, deben ser considerada su manufactura en la fundición de la base (1). La geometría transversal interna de las guías hembras (3) es preferiblemente en T, aunque puede ser en otras como cilindrico, cuadrado y rectangular. La geometría transversal interna en T de las guías hembras (3) facilita el llenado del molde en la fundición y evita el bloque entre las guías hembras (3) y las guías macho (5) durante el desplazamiento. La geometría en T permite una holgura entre las guías hembra (3) y las guías macho (5) entre 0o y 6o, preferiblemente una holgura máxima de 2o. Las dos guías hembras (3) son para el guiado del conjunto móvil durante el desplazamiento vertical. According to FIG 5, the two female guides (3) are assembled to the base (1) at 180 ° a female guide (3) of the other, taking as center the center of the hole (10) of the injector (2) ). Additionally, the longitudinal axes of the female guides (3) must be parallel to each other, and with the center axis of the hole (10). The assembly of the female guides (3) to the base (1) can be carried out by welding, riveting, stamping, screwing, but preferably, their manufacture in the casting of the base (1) should be considered. The internal transverse geometry of the female guides (3) is preferably in T, although it can be in others as cylindrical, square and rectangular. The internal transverse T-geometry of the female guides (3) facilitates the filling of the mold in the foundry and avoids the block between the female guides (3) and the male guides (5) during the movement. The T-geometry allows a clearance between the female guides (3) and the male guides (5) between 0 or 6 or , preferably a maximum clearance of 2 o . The two female guides (3) are for guiding the mobile assembly during vertical movement.
El mecanismo de regulación, permite desplazar el conjunto móvil con respecto al conjunto fijo, a fin de alejarlos o acercarlos según sea el caso. La modalidad preferida para la materialización de este mecanismo es el uso de tornillo. Acorde con la FIG 5, la rosca (4) es localizada en el conjunto móvil, en la base (1). Para el posicionamiento de la rosca (4) se debe tener en cuenta que el eje longitudinal de la rosca (4) debe ser paralelo al eje de centro del orificio (10) ubicado en el inyector (2). La rosca (4) se ensambla a la base (1) preferiblemente realizando un roscado en la base (1), otras alternativas son ensamblar a presión una tuerca en la base (1), o ubicando una tuerca dentro del molde de fundición, para cuando el material sea vaciado en el molde, la tuerca quede en el interior de la base (1). Otra alternativa es ensamblar una tuerca en la base (1) por soldadura. Preferiblemente la rosca (4) debe ser de paso fino. Acorde con la FIG 6, el tornillo (7) es introducido en el orificio (12) del soporte (11), quedando el tornillo (7) suspendido en el soporte (11). El extremo del tornillo (7) sin cabeza es roscado en la rosca (4); al girar el tornillo (7)se rosca en la rosca (4), y por consiguiente desplaza a la rosca (4) verticalmente y consigo al conjunto móvil. Es decir, el movimiento rotacional es convertido en movimiento de translación. La cantidad de movimiento vertical, que se denomina L, está en función del número de vueltas n que se realizan y el paso p de la rosca del tornillo, tal como lo expresa la ecuación L= n x p. Preferiblemente el tornillo (7), debe ser roscado en toda su longitud y de rosca de paso fino. Sí se utiliza tornillo (7) de rosca de paso fino, la rosca (4) también debe ser de rosca de paso fino. The regulation mechanism allows moving the mobile assembly with respect to the fixed assembly, in order to move them away or closer as the case may be. The preferred embodiment for the materialization of this mechanism is the use of screw. According to FIG 5, the thread (4) is located in the mobile assembly, in the base (1). For the positioning of the thread (4) it must be taken into account that the longitudinal axis of the thread (4) must be parallel to the center axis of the hole (10) located in the injector (2). The thread (4) is assembled to the base (1) preferably by threading the base (1), other alternatives are to press a nut in the base (1), or by placing a nut inside the casting mold, to When the material is emptied into the mold, the nut is inside the base (1). Another alternative is to assemble a nut in the base (1) by welding. Preferably the thread (4) must be of fine pitch. According to FIG 6, the screw (7) is inserted into the hole (12) of the support (11), the screw (7) being suspended in the support (11). The end of the headless screw (7) is threaded into the thread (4); by turning the screw (7) it is threaded into the thread (4), and therefore displaces the thread (4) vertically and I get the mobile assembly. That is, the rotational movement is converted into a translational movement. The amount of vertical movement, which is called L, is a function of the number of turns n that are made and the pitch p of the screw thread, as expressed by the equation L = n x p. Preferably the screw (7) must be threaded in its entire length and with a fine pitch thread. If a fine pitch thread screw (7) is used, the thread (4) must also be a fine pitch thread.
Dependiendo del sentido de giro del tornillo (7) y de la rosca (4) (sentido de giro que debe ser igual para ambos) y el sentido del giro que se accione, el desplazamiento hará que el conjunto móvil se acerque al conjunto fijo o se aleje, es decir, sí el tornillo (7) y la rosca (4) son de sentido de giro derecho, al accionar un sentido de giro a derecha, el conjunto móvil se acercará al conjunto fijo. Algunas alternativas adicionales para materializar el mecanismo de regulación son: Depending on the direction of rotation of the screw (7) and the thread (4) (direction of rotation that must be the same for both) and the direction of rotation that is activated, the displacement will cause the mobile assembly to approach the fixed assembly or move away, that is, if the screw (7) and the thread (4) are in the right direction of rotation, when operating a direction of rotation to the right, the mobile assembly will approach the fixed assembly. Some additional alternatives to materialize the regulation mechanism are:
• Un eje o regla marcada con un extremo fijado al conjunto móvil o conjunto fijo, y el otro extremo sin fijar, pero ranuras que se incrustan en el extremo fijo o móvil respectivamente. Las ranuras deben corresponder a las marcas, y cada marca a una unidad de medida, por ejemplo una marca corresponde a un milímetro; así el desplazamiento correspondería al número de ranuras desplazadas. El inconveniente en esta materialización del mecanismo de regulación, es que el desplazamiento es limitado en distancia desplazada por la separación entre ranuras, y por consiguiente no se puede realizar en fracciones entre ranura y ranura. • An axis or ruler marked with one end fixed to the mobile assembly or fixed assembly, and the other end not fixed, but grooves that are embedded in the fixed or mobile end respectively. The grooves must correspond to the marks, and each mark to a unit of measurement, for example a mark corresponds to a millimeter; thus the displacement would correspond to the number of slots displaced. The drawback in this materialization of the regulation mechanism is that the displacement is limited in distance displaced by the separation between slots, and therefore cannot be performed in fractions between groove and groove.
• Polea cable. Se fija una polea al conjunto fijo, y un cable es fijado en uno de sus extremos a la polea y en el otro al conjunto móvil, así al enrollar el cable el conjunto móvil es acercado a al conjunto fijo, y lo contrario sucede al desenrollar el cable. Esta materialización del mecanismo de regulación, permite desplazamientos no limitados como el caso anterior, ya que se puede establecer el desplazamiento en función de fracción de giro de la polea. · Tornillo sinfín corona. En este caso la corona se fijaría en el conjunto móvil o el conjunto fijo, y el tornillo sinfín se fijaría en el conjunto al cual no está fijado la corona. Al girar la corona, se desplaza el tornillo sinfín y el conjunto al cual está fijado. La distancia de desplazamiento se establece en función de fracción de giro de la corona y la longitud de arco de la corona. • Cable pulley. A pulley is fixed to the fixed assembly, and a cable is fixed at one of its ends to the pulley and in the other to the mobile assembly, so when winding the cable the mobile assembly is close to the fixed assembly, and the opposite happens when unrolling the wire. This materialization of the regulation mechanism allows unrestricted displacements as in the previous case, since the displacement can be established as a function of the pulley's turning fraction. Crown screw screw. In this case the crown would be fixed in the mobile assembly or the fixed assembly, and the worm would be fixed in the assembly to which the crown is not fixed. When turning the crown, the screw and the assembly to which it is fixed is moved. The travel distance is set based on the crown's turn fraction and the crown's arc length.
El conjunto fijo es el conjunto que fija el regulador gas-aire, y donde se realiza la mezcla de gas y aire. Acorde con la FIG 7, el conjunto fijo se conforma de dos guías macho (5), un tubo mezclador (6), dos fijadores (8) y un soporte (11). Acorde con la FIG 7, las dos guías macho (5) son ensambladas al tubo mezclador (6) a 180° una guía macho (5) de la otra, tomando como punto de giro el eje longitudinal del tubo mezclador (6). Adicionalmente, los ejes longitudinales de las guías macho (5), deben ser paralelos entre sí, y con el eje longitudinal del tubo mezclador (6). El ensamble de las guías macho (5) al tubo mezclador (6) puede realizarse por soldadura, remachado, estampado, atornillado, pero preferiblemente, deben ser considerada su manufactura en la fundición del tubo mezclador (6). La geometría transversal externa de las guías macho (5) es preferiblemente en T, aunque puede ser en otras como cilindrico, cuadrado y rectangular. La geometría transversal externa en T de las guías macho (5) facilita el llenado del molde en la fundición y evita el bloqueo entre las guías hembras (3) y las guías macho (5) durante el desplazamiento. La geometría en T permite una holgura entre las guías hembra (3) y las guías macho (5) entre 0o y 6o, preferiblemente una holgura máxima de 2o. La geometría transversal externa que se utilice en las guía macho (5), debe ser igual a la geometría transversal interna de las guías hembra (3). Las dos guías macho (5) se desplazan al interior de las guías hembras (3) durante el desplazamiento del conjunto móvil cual el mecanismo de regulación es accionado. The fixed set is the set that sets the gas-air regulator, and where the gas and air mixture is performed. In accordance with FIG 7, the fixed assembly consists of two male guides (5), a mixing tube (6), two fixers (8) and a support (11). According to FIG 7, the two male guides (5) are assembled to the mixing tube (6) at 180 ° a male guide (5) of the other, taking as a pivot point the longitudinal axis of the mixing tube (6). Additionally, the longitudinal axes of the male guides (5) must be parallel to each other, and with the longitudinal axis of the mixing tube (6). The assembly of the male guides (5) to the mixing tube (6) can be done by welding, riveting, stamping, screwing, but preferably, their manufacture in the melting of the mixing tube (6) should be considered. The external transverse geometry of the male guides (5) is preferably in T, although it can be in others as cylindrical, square and rectangular. The external transverse T-geometry of the male guides (5) facilitates the filling of the mold in the foundry and prevents blockage between the female guides (3) and the male guides (5) during the movement. The T-geometry allows a clearance between the female guides (3) and the male guides (5) between 0 o and 6 o , preferably a maximum clearance of 2 o . The external transverse geometry used in the male guides (5) must be equal to the internal transverse geometry of the female guides (3). The two male guides (5) move inside the female guides (3) during the movement of the mobile assembly which the regulation mechanism is activated.
Acorde con la FIG 6, en el tubo mezclador (6) se da la mezcla de gas y aire, y acorde con la FIG 4, la geometría de la sección transversal del tubo mezclador (6) es circular, es decir que el tubo mezclador es cilindrico en su modalidad preferida. No obstante, el tubo mezclador (6) puede tener una geometría transversal cuadrada, rectangular, triangular entre otras. La geometría cilindrica del tubo mezclador (6) en la modalidad preferida, permite homogeneidad de la mezcla de gas y aire en cualquier punto de la pared interna del tubo mezclador (6) Acorde con la FIG 7, los dos fijadores (8) son ensamblados al tubo mezclador (6) a 180° un fijador (8) del otro, tomando como punto de giro el eje longitudinal del tubo mezclador (6). Adicionalmente, los ejes de centro de los orificios (13) localizados en los fijadores (8) deben ser paralelos entre sí, y con el eje longitudinal del tubo mezclador (6). El ensamble de los fijadores (8) al tubo mezclador (6) puede realizarse por soldadura, remachado, estampado, atornillado, pero preferiblemente, deben ser considerada su manufactura en la fundición del tubo mezclador (6). La función de los fijadores (8) es fijar el conjunto fijo a una superficie fija donde se utiliza el SCFD. Los orificios (13) localizados en los fijadores (8) posibilitan el paso de tornillos, remaches o pines con los cuales fijar el conjunto fijo a la superficie fija donde se utiliza el SCFD. Acorde con la FIG 7, el conjunto fijo comprende el soporte (11) que tiene el orificio (12) y acorde con la FIG 6, el orificio (12) es por donde pasa el tornillo (7). According to FIG 6, in the mixing tube (6) the mixture of gas and air is given, and according to FIG 4, the geometry of the cross section of the mixing tube (6) is circular, that is to say that the mixing tube It is cylindrical in its preferred mode. However, the mixing tube (6) can have a square, rectangular, triangular transverse geometry among others. The cylindrical geometry of the mixing tube (6) in the preferred mode allows homogeneity of the gas and air mixture at any point of the internal wall of the mixing tube (6) According to FIG 7, the two fasteners (8) are assembled to the mixing tube (6) at 180 ° one fixer (8) of the other, taking as a turning point the longitudinal axis of the mixing tube (6). Additionally, the center axes of the holes (13) located in the fasteners (8) must be parallel to each other, and with the longitudinal axis of the mixing tube (6). The assembly of the fasteners (8) to the mixing tube (6) can be done by welding, riveting, stamping, screwing, but preferably, they must be considered its manufacture in the casting of the mixing tube (6). The function of the fasteners (8) is to fix the fixed assembly to a fixed surface where the SCFD is used. The holes (13) located in the fasteners (8) allow the passage of screws, rivets or pins with which to fix the fixed assembly to the fixed surface where the SCFD is used. According to FIG 7, the fixed assembly comprises the support (11) having the hole (12) and according to FIG 6, the hole (12) is where the screw (7) passes.
Para el ensamblaje del regulador gas-aire, acorde con la FIG 4, se insertan las guías macho (5) en las guías hembra (3). Después, acorde a la FIG 6, se inserta el tornillo (7) a través del orificio (12) y se rosca con la rosca (4), obteniendo así el ensamble del regulador gas-aire. Acorde con la FIG 4 se logra que el tubo mezclador (6) este concéntrico y alineado con el eje del inyector (2), lo que garantiza que la descarga del gas se haga hacia el tubo mezclador. Acorde con la FIG 6, la distancia L máxima entre el tubo mezclador (6) y el inyector (2) es limitada por la abertura del ángulo α de descarga del gas y el diámetro del tubo mezclador (6). La longitud del cateto opuesto del ángulo α de descarga no debe exceder el diámetro del tubo mezclador (6) con el fin de reducir el derrame de gas.La distancia L máxima, acorde con la ecuación les: For the assembly of the gas-air regulator, according to FIG 4, the male guides (5) are inserted in the female guides (3). Then, according to FIG 6, the screw (7) is inserted through the hole (12) and threaded with the thread (4), thus obtaining the gas-air regulator assembly. According to FIG 4 it is achieved that the mixing tube (6) is concentric and aligned with the injector shaft (2), which guarantees that the gas discharge is made towards the mixing tube. According to FIG 6, the maximum distance L between the mixing tube (6) and the injector (2) is limited by the opening of the gas discharge angle α and the diameter of the mixing tube (6). The length of the opposite leg of the discharge angle α must not exceed the diameter of the mixing tube (6) in order to reduce the gas spill.The maximum distance L, according to the equation les:
. . radio del tubo mezclador . . mixing tube radius
L máxima = a ,  L maximum = a,
Sen (—)  Sen (-)
(ecuaciónl).  (equation).
El ángulo de descarga α es entre 0o y máximo 22°. La distancia L mínima es 2 mm. The discharge angle α is between 0 or maximum 22 °. The minimum distance L is 2 mm.
Los componentes del regulador gas-aire se pueden elaborar en cualquier material sólido rígido, que soporte temperaturas mayores a 180°, que no genere par galvánico con las piezas que entre en contacto, y preferiblemente sea tenaz. Una vez se ha realizado el montaje del regulador gas-aire acorde a la FIG 4, se procede al ensamblaje del regulador gas- aire en el SCFD. El regulador gas- aire es conectado a la manguera que transporte el gas. Acorde con la FIG 5, el gas ingresa a la base (1) pasa al inyector (2) y sale por el orificio (10). Acorde con la FIG 6, después del gas salir por el orificio (10), es liberado al ambiente y recibido en el tubo mezclador (6). Entre el inyector (2) y el tubo mezclador (6) existe una distancia de separación L, la cual depende del ángulo a, el diámetro del tubo mezclador (6), del gas que se utilice y la ASNM en la que se localice el SCFD. Al salir el gas por el orificio (10), la presión de descarga del gas es superior a la presión atmosférica, situación que genera un fenómeno de arrastre de aire circundante al gas hacia el tubo mezclador (6). Al entrar el gas al tubo mezclador (6) se genera una caída de presión inferior alrededor de la entrada del tubo mezclador (6) generando un fenómeno venturi y por consiguiente arrastrando consigo el aire circundante a la entrada del tubo mezclador (6). No obstante a lo largo del tubo mezclador (6) la presión estática de la mezcla gas y aire se estabiliza resultando superior a la presión atmosférica en la salida del tubo mezclador (6), dado que la presión dinámica de la mezcla gas y aire es superior a la del ambiente. La presión de salida del tubo mezclador (6) debe ser superior a la del ambiente, ya que así se evita los fenómenos de retroceso de llama y el desprendimiento de llama. Acorde con la FIG 6, posterior al tubo mezclador (6) la mezcla gas y aire es conducida al interior del quemador del SCFD. The components of the gas-air regulator can be made of any rigid solid material, which withstands temperatures greater than 180 °, which does not generate galvanic torque with the parts that come into contact, and preferably is tough. Once the assembly of the gas-air regulator according to FIG 4 has been carried out, the gas-air regulator is assembled in the SCFD. The gas-air regulator is connected to the hose that carries the gas. According to FIG 5, the gas enters the base (1) passes to the injector (2) and exits through the hole (10). According to FIG 6, after the gas exiting the hole (10), it is released into the environment and received in the mixing tube (6). Between the injector (2) and the mixing tube (6) there is a separation distance L, which depends on the angle a, the diameter of the mixing tube (6), the gas used and the ASNM in which the SCFD When the gas exits the orifice (10), the gas discharge pressure is higher than the atmospheric pressure, a situation that generates a phenomenon of air entrainment surrounding the gas towards the mixing tube (6). When the gas enters the mixing tube (6) a lower pressure drop is generated around the inlet of the mixing tube (6) generating a venturi phenomenon and consequently dragging the surrounding air to the inlet of the mixing tube (6). However, along the mixing tube (6) the static pressure of the gas and air mixture is stabilized resulting in exceeding the atmospheric pressure at the outlet of the mixing tube (6), since the dynamic pressure of the gas and air mixture is superior to that of the environment. The outlet pressure of the mixing tube (6) must be higher than that of the environment, as this avoids the phenomena of flame recoil and flame shedding. According to FIG 6, after the mixing tube (6), the gas and air mixture is conducted inside the SCFD burner.
Antes de utilizar el regulador gas-aire, se debe instalar el inyector (2) adecuado para el tipo de gas a utilizar, y sabiendo la ASNM en la localiza el SCFD, se fija la distancia L adecuada. Es necesario ajustar la distancia L acorde con la ASNM, ya que dependiendo de la distancia L a utilizar, se determina la tasa de aire primario a fin de garantizar una combustión sin efectos indeseables como llama con puntas amarrillas, desprendimiento de llama, o emisiones de CO superiores a las 800 PPM. La tasa de aire primario debe estar entre 45% y 80%, preferiblemente 70%. Before using the gas-air regulator, the injector (2) suitable for the type of gas to be used must be installed, and knowing the ASNM in the location of the SCFD, the appropriate distance L is set. It is necessary to adjust the distance L according to the ASNM, since depending on the distance L to be used, the primary air rate is determined in order to ensure combustion without undesirable effects such as flame with yellow tips, flame release, or emissions of CO higher than 800 PPM. The primary air rate should be between 45% and 80%, preferably 70%.
Al cambiar de un gas a otro, se debe instalar un inyector (2) adecuado para el gas a utilizar, y ajustar la distancia L, dado que el gas a utilizar requerirá otra tasa de aireación primaria dada las características químicas y termodinámicas de cada gas para su combustión. Por ejemplo: When changing from one gas to another, an injector (2) suitable for the gas to be used must be installed, and the distance L must be adjusted, since the gas to be used will require another aeration rate primary given the chemical and thermodynamic characteristics of each gas for combustion. For example:
• para la combustión de GN, por cada porción en volumen de GN, se requiere 9,5 porciones de aire en volumen, es decir que la relación es 1 :9,5; • for the combustion of GN, for each portion by volume of GN, 9.5 portions of air by volume are required, ie the ratio is 1: 9.5;
· para la combustión de GLP, por cada porción volumen de GLP, se requieren 23 porciones en volumen de aire, es decir, la relación es 1 :23.  · For the combustion of LPG, for each volume portion of LPG, 23 parts by volume of air are required, that is, the ratio is 1: 23.
Por consiguiente al cambiar de GN a GLP, se debe aumentar la tasa de aire primario, y de GLP a GN, se debe reducir la tasa de aire primario. Therefore, when changing from GN to LPG, the primary air rate must be increased, and from LPG to GN, the primary air rate must be reduced.
A mayor distancia L, será mayor la entrada de aire al tubo mezclador (6), resultando una mayor tasa de aireación primaria, y a menor distancia L, menor entrada de aire al tubo mezclador (6), resultando una menor tasa de aireación primaria. El ajuste de la distancia L, acorde con la FIG 6, se logra girando el tornillo (7), el cual se rosca en la rosca (4), y por consiguiente se desplaza el conjunto móvil, acercando o alejando el conjunto móvil del conjunto fijo, y por consiguiente acercando o alejando el inyector (2) del tubo mezclador (6), logrando así modificar la distancia L. The greater the distance L, the greater the air inlet to the mixing tube (6), resulting in a higher rate of primary aeration, and the smaller the distance L, the less air inlet to the mixing tube (6), resulting in a lower rate of primary aeration. The adjustment of the distance L, according to FIG 6, is achieved by turning the screw (7), which is threaded into the thread (4), and therefore the mobile assembly is moved, moving the mobile assembly closer or further away from the assembly. fixed, and therefore bringing the injector (2) away from the mixing tube (6), thus modifying the distance L.
Si posterior al ajuste de la distancia L acorde al gas a utilizar, se presenta llama con puntas amarillas, se debe aumentar la distancia L entre 1 mm y 3 mm. En caso de presentarse desprendimiento de llama, se debe reducir la distancia L entre 1 mm y 3 mm. If after adjusting the distance L according to the gas to be used, there is a flame with yellow tips, the distance L must be increased between 1 mm and 3 mm. In the event of flame shedding, the distance L must be reduced between 1 mm and 3 mm.
Ejemplos Examples
Caso 1. Datos: Case 1. Data:
• Gas a utilizar en el SCFD: GN  • Gas to be used in the SCFD: GN
· Localización del SCFD: o ASNM: 1600 m · Location of the SCFD: o ASNM: 1600 m
o Presión atmosférica: 85131 Pa  o Atmospheric pressure: 85131 Pa
Presión manométrica del GN en la tubería de transporte: 2000 Pa, por consiguiente la presión absoluta del GN es 87131 Pa.  Pressure gauge of the GN in the transport pipe: 2000 Pa, therefore the absolute pressure of the GN is 87131 Pa.
Angulo α = 22°  Angle α = 22 °
Diámetro del tubo mezclador (6) es 13 mm.  Mixer tube diameter (6) is 13 mm.
Se utiliza un tornillo (7) M3 con una longitud mayor o igual a 5 cm de largo con un paso de rosca de 0.5 mm y sentido de giro a derecha de los hilos del tornillo (7).  A screw (7) M3 with a length greater than or equal to 5 cm long is used with a thread pitch of 0.5 mm and a right direction of rotation of the screw threads (7).
Potencia del quemador: 2 kW.  Burner power: 2 kW.
Acorde con la ecuación 1, L máxima es 37,8 mm. According to equation 1, maximum L is 37.8 mm.
La distancia que se recorre por cada giro del tornillo (7) es 0,5 mm, por cada dos vueltas del tornillo (7), 1 mm. The distance traveled by each turn of the screw (7) is 0.5 mm, for every two turns of the screw (7), 1 mm.
Dadas las condiciones anteriores, se ensambla en la base (1) un inyector (2) adecuado para GN (el inyector requerido se obtiene comercialmente), y se procede a ensamblar el regulador gas-aire en el SCFD entre el quemador y la tubería que transporte del gas. A fin de lograr una tasa de aire primario del 70%, para las condiciones dadas, la distancia L entre el inyector (2) y el tubo mezclador es de 5 mm. Esta distancia L se ajusta girando el tornillo (7) y por consiguiente desplazando el conjunto móvil hasta lograr la distancia de separación L. Bajo las condiciones dadas, y el ensamblaje realizado, se logra una eficiencia térmica entre el 58% y el 62%. El valor exacto dependerá de la distancia de separación entre el objeto de calentamiento y la llama que se genere, ya que si estas están en contacto la transferencia de calor es por conducción; si no están en contacto la transferencia es por convección. Adicionalmente se obtienen emisiones de CO de 600 ppm o menos y se evitan los fenómenos de llama con puntas amanilla y desprendimiento de llama. Caso 2. Given the above conditions, an injector (2) suitable for GN (the required injector is obtained commercially) is assembled in the base (1), and the gas-air regulator in the SCFD is assembled between the burner and the pipe that gas transportation In order to achieve a primary air rate of 70%, for the given conditions, the distance L between the injector (2) and the mixing tube is 5 mm. This distance L is adjusted by turning the screw (7) and consequently moving the moving assembly until the separation distance is achieved L. Under the given conditions, and the assembly performed, a thermal efficiency between 58% and 62% is achieved. The exact value will depend on the separation distance between the heating object and the flame that is generated, since if they are in contact the heat transfer is by conduction; if they are not in contact the transfer is by convection. Additionally, CO emissions of 600 ppm or less are obtained and flame phenomena with amanilla tips and flame shedding are avoided. Case 2
Datos Data
Gas a utilizar en el SCFD: GLP Gas to be used in the SCFD: LPG
Localización del SCFD:  SCFD location:
o ASNM: 1600 m  o ASNM: 1600 m
o Presión atmosférica: 85131 Pa  o Atmospheric pressure: 85131 Pa
Presión manométrica de GLP en la tubería de transporte  Pressure gauge of LPG in the transport pipe
consiguiente la presión absoluta del GLP es 88031 Pa.  consequently the absolute pressure of the LPG is 88031 Pa.
• Angulo α = 22°  • Angle α = 22 °
• Diámetro del tubo mezclador (6) es 13 mm.  • Mixer tube diameter (6) is 13 mm.
• Se utiliza un tornillo (7) M3 con una longitud mayor o igual a 5 cm de largo con un paso de rosca de 0.5 mm y sentido de giro a derecha de los hilos del tornillo • A screw (7) M3 with a length greater than or equal to 5 cm long is used with a 0.5 mm thread pitch and a right direction of rotation of the screw threads
(7). (7).
• Potencia del quemador: 2 kW. Acorde con la ecuación 1, L máxima es 37,8 mm.  • Burner power: 2 kW. According to equation 1, maximum L is 37.8 mm.
La distancia que se recorre por cada giro del tornillo (7) es 0,5 mm, por cada dos vueltas del tornillo (7), 1 mm. The distance traveled by each turn of the screw (7) is 0.5 mm, for every two turns of the screw (7), 1 mm.
Dadas las condiciones anteriores, se ensambla en la base (1), un inyector (2) adecuado para GLP (el inyector requerido se obtiene comercialmente). Se ensambla el regulador gas-aire en el SCFD entre el quemador y la tubería que transporte del gas. Given the above conditions, an injector (2) suitable for LPG (the required injector is obtained commercially) is assembled in the base (1). The gas-air regulator is assembled in the SCFD between the burner and the gas transport pipe.
A fin de lograr una tasa de aire primario del 70%, para las condiciones dadas, la distancia L entre el inyector (2) y el tubo mezclador debe ser de 15 mm, esta distancia L se ajusta girando el tornillo (7) y por consiguiente desplazando el conjunto móvil, hasta lograr la distancia de separación L.En caso de utilizarse el montaje del caso 1, una vez cambiado el inyector (2) por uno inyector adecuado para GLP, se debe modificar la distancia L de 5 mm (distancia utilizada en el caso 1) a 15 mm (distancia utilizada en el caso 2) girando el tornillo (7) de manera adecuada. Se verifica la distancia entre el inyector (2) y el tubo mezclador (6) con un instrumento de medida. Se debe entender que la presente invención no se halla limitada a las modalidades descritas e ilustradas, pues como será evidente para una persona versada en el arte, existen variaciones y modificaciones posibles que no se apartan del espíritu de la invención, el cual solo se encuentra definido por las siguientes reivindicaciones. In order to achieve a primary air rate of 70%, for the given conditions, the distance L between the injector (2) and the mixing tube must be 15 mm, this distance L is adjusted by turning the screw (7) and by consequently moving the mobile assembly, until the separation distance is achieved L. In case the assembly of case 1 is used, once If the injector (2) has been replaced with a suitable LPG injector, the distance L must be modified from 5 mm (distance used in case 1) to 15 mm (distance used in case 2) by turning the screw (7) properly . The distance between the injector (2) and the mixing tube (6) is checked with a measuring instrument. It should be understood that the present invention is not limited to the modalities described and illustrated, since as will be evident to a person versed in art, there are possible variations and modifications that do not depart from the spirit of the invention, which is only found defined by the following claims.

Claims

REIVINDICACIONES
Regulador gas-aire para la regulación de la mezcla de gas-aire en un SCFDque comprende: Gas-air regulator for the regulation of the gas-air mixture in an SCFD comprising:
un conjunto móvil por el cual ingresa el gas al regulador gas-aire y sale del conjunto móvil a través deun inyector;  a mobile assembly by which the gas enters the gas-air regulator and leaves the mobile assembly through an injector;
un mecanismo de regulaciónque desplaza verticalmente el conjunto móvil en relación con un conjunto fijo;  a regulation mechanism that moves the mobile assembly vertically in relation to a fixed assembly;
el conjunto fijo en el cual se realiza la mezcla de gas-aire en un tubo mezclador; donde el mecanismo de regulación regula la tasa de aire primario mediante el ajuste de la distancia entre el inyector y el tubo mezclador.  the fixed assembly in which the gas-air mixture is carried out in a mixing tube; where the regulating mechanism regulates the primary air rate by adjusting the distance between the injector and the mixing tube.
El regulador gas-aire de la reivindicación 1, caracterizado porque el conjunto móvil comprende: The gas-air regulator of claim 1, characterized in that the mobile assembly comprises:
una base por la cual ingresa el gas al regulador gas-aire;  a base by which the gas enters the gas-air regulator;
el inyectorconectado a la base por el cual sale el gas del conjunto móvil; dos guías hembra para el guiado del conjunto móvildurante el desplazamiento vertical y;  the injector connected to the base through which the gas comes out of the mobile assembly; two female guides for guiding the mobile assembly during vertical movement and;
una rosca conectada a la base.  a thread connected to the base.
El regulador gas-aire de la reivindicación 1 , caracterizado porque el mecanismo de regulación comprende: The gas-air regulator of claim 1, characterized in that the regulating mechanism comprises:
Un tornillosuspendido del conjunto fijo y enroscado a la rosca del conjunto móvil, de tal manera que el conjunto móvil se desplace verticalmente con el giro del tornillo.  A screw suspended from the fixed assembly and screwed to the thread of the mobile assembly, such that the mobile assembly moves vertically with the rotation of the screw.
El regulador gas-aire de la reivindicación 3, caracterizado porque el conjunto fijo comprende: dos guías macho que se desplazan al interior de las dos guías hembras del conjunto móvil; The gas-air regulator of claim 3, characterized in that the fixed assembly comprises: two male guides that move inside the two female guides of the mobile assembly;
un tubo mezclador por donde ingresa el gas y el aire y se mezclan para posteriormente continuar al quemador; a mixing tube through which the gas and air enter and mix and then continue to the burner;
un soporte de donde se suspende el tornillo del mecanismo de regulación; dos fijadores para fijar el conjunto fijo a una superficie fija. a support from which the regulation mechanism screw is suspended; two fasteners to fix the fixed assembly to a fixed surface.
PCT/IB2014/063753 2013-08-09 2014-08-07 Device for regulating a gas and air mixture in a combustion system WO2015019308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO13-190036 2013-08-09
CO13190036A CO7180030A1 (en) 2013-08-09 2013-08-09 Device for regulation of gas and air mixture in a combustion system

Publications (1)

Publication Number Publication Date
WO2015019308A1 true WO2015019308A1 (en) 2015-02-12

Family

ID=52460735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/063753 WO2015019308A1 (en) 2013-08-09 2014-08-07 Device for regulating a gas and air mixture in a combustion system

Country Status (2)

Country Link
CO (1) CO7180030A1 (en)
WO (1) WO2015019308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425582A (en) * 2019-07-31 2019-11-08 安徽冠东科技有限公司 A kind of rotary gas burning regulating device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR581354A (en) * 1924-05-06 1924-11-27 Mixing injector for gas train allowing the adjustment of air and gas and more specially adaptable to commercial iron tubes
US2857961A (en) * 1954-07-13 1958-10-28 Brown Fintube Co Oil burners
GB944286A (en) * 1959-04-11 1963-12-11 Cannon Ind Ltd Improvements relating to gas burners of cooker hotplates
US3914093A (en) * 1973-01-18 1975-10-21 Flaregas Eng Ltd Combustion apparatus
GB2100411A (en) * 1981-06-12 1982-12-22 Sabaf Spa Burner for gas cookers and hobs
DE8815084U1 (en) * 1987-12-03 1989-01-19 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Gas burner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR581354A (en) * 1924-05-06 1924-11-27 Mixing injector for gas train allowing the adjustment of air and gas and more specially adaptable to commercial iron tubes
US2857961A (en) * 1954-07-13 1958-10-28 Brown Fintube Co Oil burners
GB944286A (en) * 1959-04-11 1963-12-11 Cannon Ind Ltd Improvements relating to gas burners of cooker hotplates
US3914093A (en) * 1973-01-18 1975-10-21 Flaregas Eng Ltd Combustion apparatus
GB2100411A (en) * 1981-06-12 1982-12-22 Sabaf Spa Burner for gas cookers and hobs
DE8815084U1 (en) * 1987-12-03 1989-01-19 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Gas burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425582A (en) * 2019-07-31 2019-11-08 安徽冠东科技有限公司 A kind of rotary gas burning regulating device

Also Published As

Publication number Publication date
CO7180030A1 (en) 2015-02-09

Similar Documents

Publication Publication Date Title
CN102317684B (en) Gas burner
ES2813439T3 (en) Apparatus for controlling and adjusting the combustion in a combustible gas burner
US20200378600A1 (en) Methods and systems for minimizing NOx and CO emissions in natural draft heaters
BR112017019329A2 (en) ? domestic premixed ventilated gas cooker?
US20140230701A1 (en) Natural draft low swirl burner
BR112013018907B1 (en) separate flow path type of air-gas mixing device
ES2928359T3 (en) Burner
WO2015019308A1 (en) Device for regulating a gas and air mixture in a combustion system
US10835078B2 (en) Gas tap for a gas burner, and a gas cooking appliance incorporating said gas tap
AU2016262635A1 (en) Double venturi burner
JP6536041B2 (en) Combustion system
KR20200029107A (en) Lpg supply system with hot-water vaporizer and pre-mix
KR102521859B1 (en) Burner for gas furnace
JP2017067410A (en) Composite heat source machine
JP2016109352A (en) Boiler equipment
TWI674152B (en) A gas nozzle with gas regulation which is applied to various gas cookers
RU148944U1 (en) GAS BLOW BURNER
US20240151394A1 (en) Mixing device for a gas heater
RU2704448C2 (en) Method for heating gas streams by open flame and device for realizing said method
CN206338806U (en) A kind of Novel burner nozzle device and the heater with it
RU2780599C1 (en) Burner
US11242997B2 (en) Portable propane fuel heater assembly
CN203848322U (en) Efficient combustion control device of gas-fired boiler
ITVI20090114A1 (en) MULTIGAS BURNER HEAD WITH ASPIRATED OR BLOWN AIR
US11015804B2 (en) Gas burner system for a plurality of gas types

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833983

Country of ref document: EP

Kind code of ref document: A1