WO2015017924A1 - Aluminerie comprenant un circuit électrique de compensation - Google Patents

Aluminerie comprenant un circuit électrique de compensation Download PDF

Info

Publication number
WO2015017924A1
WO2015017924A1 PCT/CA2014/050722 CA2014050722W WO2015017924A1 WO 2015017924 A1 WO2015017924 A1 WO 2015017924A1 CA 2014050722 W CA2014050722 W CA 2014050722W WO 2015017924 A1 WO2015017924 A1 WO 2015017924A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
compensation
current
tanks
conductors
Prior art date
Application number
PCT/CA2014/050722
Other languages
English (en)
Inventor
Steeve RENAUDIER
Benoit BARDET
Olivier Martin
Christian Duval
Original Assignee
Rio Tinto Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Limited filed Critical Rio Tinto Alcan International Limited
Priority to AU2014305613A priority Critical patent/AU2014305613B2/en
Priority to CN201480044967.8A priority patent/CN105452536B/zh
Priority to SI201431028T priority patent/SI3030695T1/sl
Priority to US14/911,099 priority patent/US10344390B2/en
Priority to EP14834860.0A priority patent/EP3030695B1/fr
Priority to BR112016001961A priority patent/BR112016001961A2/pt
Priority to CA2919050A priority patent/CA2919050C/fr
Priority to EA201690339A priority patent/EA030271B1/ru
Publication of WO2015017924A1 publication Critical patent/WO2015017924A1/fr
Priority to DKPA201670126A priority patent/DK179170B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/24Refining
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts

Definitions

  • the present invention relates to an aluminum smelter, a method of using this smelter and a method for stirring alumina in the electrolysis tanks of this smelter. It is known to produce aluminum industrially from alumina by electrolysis according to the Hall-Héroult method.
  • an electrolytic cell comprising a steel box inside which is arranged a coating of refractory materials, a cathode of carbon material, crossed by cathode conductors for collecting the electrolysis current at the cathode to lead to cathode outlets through the bottom or sides of the box, routing conductors extending substantially horizontally to the next vessel from the cathode outlets, an electrolytic bath in which is dissolved alumina at least one anode assembly comprising at least one anode immersed in said electrolytic bath, an anode frame to which the anode assembly is suspended, and electrolysis current rise conductors extending from bottom to top connected to the conductors for routing the preceding electrolytic cell to convey the electrolysis current from the cathode outlets to the anodic frame e and the anode assembly and the anode of the next vat.
  • the anodes are more particularly of anode type precooked with precooked carbon blocks, that is to say cooked before introduction into the electrolytic cell.
  • Aluminum production plants, or aluminum smelters traditionally comprise several hundred electrolytic cells, aligned transversely in parallel queues and connected in series.
  • MHD magnetohydrodynamic instabilities
  • the horizontal component of the magnetic field generated by the whole the path of the electric current, both in the conductors located inside the tank and those located outside, interacts with the electrical current flowing through the liquids, which generates a stationary deformation of the metal sheet.
  • the unevenness of the metal sheet caused must remain low enough so that the anodes are consumed uniformly with little waste.
  • it is necessary that the horizontal components of the magnetic field are the most antisymmetric possible in liquids (electrolytic bath and metal sheet).
  • antisymmetric means that when we move perpendicular to the central axis of the tank, parallel to the relevant component of the field, and when we go located at equal distance on either side of this central axis, the value of the component considered is opposite.
  • the antisymmetry of the horizontal components of the magnetic field is the configuration providing the most symmetrical interface interface and as flat as possible in the tank. It is known, in particular patent documents FR1079131 and FR2469475, to fight against MHD instabilities by compensating the magnetic field created by the circulation of the electrolysis current, thanks to a particular arrangement of the conductors conducting the electrolysis current.
  • the main advantage of self-compensation is the use of the electrolysis current itself to compensate for MHD instabilities.
  • Another solution for reducing MHD instabilities consists in using a secondary electrical circuit, or external loop, along the rows of electrolysis cells, on the sides.
  • This secondary electrical circuit is traversed by a current whose intensity equals a predetermined percentage of the intensity of the electrolysis current.
  • the outer loop generates a magnetic field that compensates for the effects of the magnetic field created by the electrolysis current of the next row of electrolysis cells.
  • the external loop compensation solution has the advantage of having a secondary circuit independent of the main circuit traversed by the electrolysis current.
  • the arrangement of the secondary circuit located on the sides of the tank lines near the short sides of the boxes, at the height of the bath-metal interface, allows compensation of the vertical component without impacting the horizontal component of the magnetic field.
  • the external loop compensation solution significantly reduces the length, mass and electrical losses of the routing conductors, but requires an additional power station and additional independent secondary electrical circuit,
  • the external loop compensation solution involves a combination of magnetic fields, with the current of the series, creating a very strong total ambient field, so that it implies constraints on operations and equipment (for example shielding necessary vehicles), and so that the magnetic field of a queue impacts the stability of the tanks of the next file.
  • constraints on operations and equipment for example shielding necessary vehicles
  • the magnetic field of a queue impacts the stability of the tanks of the next file.
  • junction portion of the electrolysis circuit and the secondary circuit joining the ends of two adjacent rows of electrolytic cells tends to destabilize the end of the tank.
  • this portion of the secondary circuit it is possible to configure this portion of the secondary circuit according to a predetermined path, as is known from patent FR2868436, to correct the magnetic field so that the impact on the tanks end-to-end becomes acceptable.
  • this path lengthens the length of the secondary circuit, therefore the material cost.
  • the usual solution is to move the junction portion of the secondary circuit and the electrolysis circuit of the tanks located at the end of the line, but this increases the space requirement in addition to increasing the length of the electrical conductors so the material and energy cost.
  • the present invention aims to overcome all or part of these disadvantages by providing an aluminum smelter with a magnetic configuration for improved performance and a small footprint.
  • the subject of the present invention is an aluminum smelter, comprising at least one row of electrolysis cells arranged transversely with respect to the length of the line, one of the electrolytic cells comprising a box, and anode assemblies comprising a support and at least one anode, and a cathode crossed by cathode conductors for collecting the electrolysis current at the cathode to lead it to cathode outlets outside the box, characterized in that the electrolytic cell comprises electrical conductors for mounting and connecting to the anode assemblies extending upwardly along two opposite longitudinal edges of the electrolytic cell to conduct the electrolysis current to the anode assemblies, and routing conductors connected to the cathode outlets and for conducting the electrolysis current from the cathodic outputs to the electrical conductors of connection of the next electrolysis cell, and in that the aluminum smelter comprises at least one compensation electric circuit extending under the electrolytic cells, said compensation circuit being traversed by a current l 2 compensation circulating under the electrolysis tanks in the opposite
  • the compensation circuit is traversed by a current l 2 of compensation flowing under the electrolysis tanks in the opposite direction of the overall flow direction of the electrolysis current flowing through the electrolysis cells located above.
  • the intensity of the compensation current I 2 is of the order of 50% to 150% of the intensity of the electrolysis current.
  • the electrical conductors of rise and connection are arranged in the inter-tank spaces, at the two longitudinal sides of the electrolytic cell, on either side of the tank to compensate each other and obtain a substantially antisymmetric distribution of the horizontal components of the magnetic field of the tank providing a small difference in elevation of the aluminum sheet without impacting the vertical component of the magnetic field, so that the electrical conductors of the tank, among the conductors routing, mounting and connection , causing an unfavorable vertical and horizontal magnetic field to be compensated are, in practice, only horizontal-bottomed tank conductors beneath the casing, that is, more specifically the routing conductors.
  • the compensation of this unfavorable magnetic field is then obtained by means of the compensation electric circuit, which can advantageously be traversed by a current I 2 of intensity compensation of the order of 50% to 150% of the intensity of the current electrolysis, and circulating under the electrolysis tanks in the opposite direction of the overall flow direction of the electrolysis current I- ⁇ in the electrolysis tanks located above.
  • the magnetic field is weak or virtually canceled near the tanks and rows of tanks and the aluminum plant according to the invention, so that the constraints related to strong magnetic fields on the operations and equipment used in the aluminum smelter are deleted. Also, the magnetic field of a queue no longer affects the stability of the tanks of the neighboring queue so that neighboring tank lines can be brought together and two rows of neighboring tanks can in particular be placed in the same building of reduced width, so that significant savings in structural costs can be realized even when a compensation circuit is used.
  • the compensation circuit passes under the electrolytic cells, and not on the sides of the electrolysis cell line or rows.
  • a space is clear on both sides of the row or rows of electrolysis tanks. This allows to consider a lateral clearance of each electrolysis tank, and more particularly the box, which is less expensive than lifting.
  • the absence of heavy and expensive lifting solutions offers significant structural savings.
  • the compensation electric circuit is a secondary electrical compensation circuit distinct from the electrical circuit traversed by the electrolysis current I-I. Separate means that the two circuits are not electrically connected.
  • the compensation circuit is damaged and cut or can not no longer operate normally, this affects the efficiency, because the compensation circuit can no longer compensate the magnetic field generated by the circulation of the electrolysis current, but the smelter can continue to operate in degraded mode with a lower yield without suffering from detrimental stop, since the current flowing in the compensation circuit is intended for magnetic field compensation only and not for the production of aluminum.
  • the use of a separate secondary compensation circuit also offers the possibility of changing over time the compensation magnetic field created by this compensation circuit. It is necessary for this purpose to vary the intensity of the current flowing in the secondary electrical compensation circuit. This is of paramount importance in terms of scalability and adaptability.
  • the secondary electrical compensation circuit may be more particularly powered by a clean power station, different from the station supplying the electrolysis cells with electrolysis current.
  • the aluminum plant comprises two rows of tanks arranged parallel to one another, fed by the same station, and electrically connected in series so that the electrolysis current flowing in the first two rows of tanks then circulates in the second of the two rows of tanks in a direction generally opposite to that in which it circulated in the first of the two rows, and in that the compensation circuit forms a loop under these two rows of parallel tanks.
  • the secondary electrical compensation circuit forms a loop under the tanks, it becomes advantageous to use an electrical conductor made of a superconducting material in order to achieve it, and it is above all possible to carry out several turns in series, as described in the application for WO2013007893 in the name of the applicant.
  • the electrolytic cell comprises for each of its two longitudinal edges a plurality of electrical conductors rise and connect distributed at predetermined intervals over substantially the entire length of the corresponding longitudinal edge.
  • the rise and connection conductors may be arranged at regular intervals in the longitudinal direction of the electrolytic cell. This improves the equilibrium of the horizontal longitudinal component (that is to say parallel to the length of the tank) of the magnetic field.
  • a tank operating with an intensity of 400 to 1000k amps can for example preferably comprise from 4 to 40 distributed rise and connection conductors. regularly over the entire length of each of its two longitudinal edges.
  • electrical conductor upstream and upstream connection and electrical conductor upstream and downstream connection is meant electrical conductors rise and connect arranged respectively next to the longitudinal edge upstream or downstream of the electrolytic cell, the upstream longitudinal edge corresponding to the one that is closest to the beginning of the electrolysis cell line and the downstream longitudinal edge corresponding to the longitudinal edge of the electrolysis cell farthest from the beginning of the electrolysis cell line, taking into account the meaning overall flow of electrolysis current at the scale of the electrolysis cell line.
  • the electrical conductors for mounting and connection are arranged substantially symmetrically with respect to a longitudinal median plane of the electrolytic cell.
  • the rising and connecting electrical conductors extending along one of the two longitudinal edges of the electrolytic cell are arranged substantially symmetrically with respect to the electrical conductors for mounting and connection.
  • extending along the opposite longitudinal edge of the electrolytic cell with respect to a longitudinal median plane of the electrolytic cell, that is to say a plane substantially perpendicular to a transverse direction of the vessel and separating it from ci in two substantially equal parts. This further enhances the advantageous antisymmetric characteristic of the horizontal magnetic field distribution in liquids.
  • electrolysis is of the order 30-70% upstream and 30-70% downstream, and preferably 40-60% upstream and 40-60% downstream, respectively.
  • the current distribution between the electrical conductors of rise and connection arranged upstream of the electrolytic cell and the electrical conductors of rise and connection arranged downstream of the electrolytic cell is 45-55% upstream and 45-55% downstream respectively. This further enhances the advantageous antisymmetric characteristic of the horizontal magnetic field distribution in liquids.
  • the routing conductors extend under the electrolytic cell substantially straight, and only in a direction transverse to the electrolysis cell. This limits the length and cost of the electrical conductors by minimizing the length of the conductors extending in the longitudinal direction of the vessel.
  • the magnetic fields generated by such longitudinal electrical conductors are also limited in embodiments of the prior art, especially with regard to self-compensated tanks.
  • the space is clear on both sides of the row or rows of electrolytic cells, which limits at least the longitudinal dimension of the entire tanks / electrical conductors and allows to consider a release side of each electrolysis tank, and more particularly the box, which is less expensive than lifting.
  • the compensation electric circuit may comprise electrical conductors extending substantially parallel to a transverse axis of the electrolysis cells.
  • the compensation electric circuit comprises electrical conductors forming a plurality of secondary electrical secondary compensation sub-circuits independent of each other.
  • Each of these secondary electrical compensation sub-circuits is traversed by an intensity compensation current that can be variable independently of the intensity of the electrolysis current.
  • independent secondary electrical sub-circuit compensation is meant sub-circuit not electrically connected to the other secondary electrical sub-circuits compensation, and can be powered by a separate power station from that of other secondary electrical sub-circuits compensation.
  • the compensation electric circuit may comprise electrical conductors forming several turns in parallel and / or in series under the electrolysis cells.
  • the compensation electric circuit comprises electrical conductors extending parallel under the electrolysis cells.
  • the electrical conductors of the compensation electric circuit may be arranged substantially symmetrically with respect to a transverse median plane of the electrolysis cells, that is to say a plane substantially perpendicular to a longitudinal direction of the electrolysis cells and separating the tank in two substantially equal parts.
  • the electrical conductors forming the compensation electric circuit or, where appropriate, the secondary electrical compensation sub-circuits extend under the electrolysis cells together forming a layer of two to twelve, preferably three to ten , parallel electrical conductors.
  • said electrical conductors are substantially equidistant and distributed substantially symmetrically with respect to a transverse center axis of the electrolysis cells.
  • each module may comprise, for example, an electrical conductor of the compensation electric circuit and a number of routing conductors and associated risers and connection conductors for each electrolysis cell.
  • the conductor circuit, and therefore each tank, can be composed of a number of modules, determining the length of the tanks and the intensity of the current flowing through the tanks.
  • the choice of the number of modules per tank during the design or an extension of the length of the tanks by the addition of such modules does not disturb the magnetic equilibrium of the tanks, unlike the lengthening of tanks of the self-compensated or compensated type by of the magnetic compensation circuits arranged on the sides of known prior art tanks for which the conductor circuits must be completely redrawn.
  • the ratio of the amount of material forming the conductor circuit brought to the production surface of the tanks does not deteriorate when extending the tanks, it increases proportionally to the number of modules and the intensity through the tanks.
  • the tanks can be elongated simply according to the needs and the intensity of the current passing through them is not limited. It then becomes possible to increase the intensity of the current passing through the tanks above 1000 k amperes, or even 2000 k amperes.
  • the rising and connecting electrical conductors extending along one of the two longitudinal edges of the electrolytic cell are arranged in staggered relation to electrical conductors for mounting and connecting arranged on the adjacent longitudinal edge of a previous or next separate electrolytic cell.
  • the electrical conductors upstream and upstream connection of an electrolysis vessel N are arranged in staggered relation to the electrical conductors of upstream and downstream connection of the electrolytic cell N-1, that is to say say of the electrolysis tank preceding it.
  • the electric compensation circuit is traversed by an intensity compensation current of the order of 70% to 130% of the intensity of the electrolysis current. and preferably of the order of 80% to 120% of the intensity of the electrolysis current.
  • the intensity of the compensation current flowing through this compensation circuit can be of the order of 70% at 130% of the intensity of the electrolysis current.
  • the intensity of the compensation current flowing through the electrical conductor may be of the order of one third from 70% to 130% of the intensity of the current electrolysis.
  • the compensation electric circuit is formed by three secondary electric compensation sub-circuits each making twenty turns in series and each made with electrical conductors of superconducting material, then the intensity of the compensation current traveling each of these three secondary electrical compensation sub-circuits can be of the order of one sixtieth of 70% to 130% of the intensity of the electrolysis current.
  • each cathodic output leaves the box only in a vertical plane perpendicular to the longitudinal direction of the electrolytic cell.
  • the cathode outlets pass through the bottom of the chamber of the electrolytic cell. Having outlets at the bottom instead of at the sides of the electrolytic cell decreases the length of the feed conductors, as well as the horizontal currents in the liquids, resulting in better MHD stability.
  • the electrical conductors for routing may extend in a straight line, substantially parallel to a transverse direction of the electrolytic cell to the electrical conductors for mounting and connecting the next electrolytic cell.
  • a electrolysis tank of the state of the art comprises a superstructure longitudinally crossing the electrolytic cell, above the box and anodes.
  • the superstructure includes a beam resting on feet at each of its longitudinal ends. It supports an anode frame, also extending longitudinally over the box and anodes, which supports the anode assemblies and to which the anode assemblies are connected.
  • the support of the anode assembly comprises a cross member extending transversely to the electrolytic cell being supported and electrically connected at each of the two longitudinal edges of the and other of the electrolysis cell.
  • the electrolysis tank It is at the longitudinal edges of the electrolysis tank that the electrical connection between the rising and connecting conductors and the anode assembly is thus performed and that the mechanical support of the anode assembly is carried out.
  • the anode assembly is no longer supported and electrically connected by means of a superstructure longitudinally crossing the electrolytic cell, above the box and anodes so that the electrolysis cells can be elongated to take full advantage of the possibilities offered by the principle of compensation or magnetic balancing of the method of use of the aluminum smelter according to the invention.
  • the rising and connecting conductors extend on either side of the box without extending to the right of the or anodes.
  • the right of the anode or means in a volume formed by vertical translation of the surface obtained by projection of the anode or in a horizontal plane XY.
  • Such an embodiment makes it possible to advantageously replace the anode by pulling it vertically upwards, since the anode towed upward does not encounter any elements having served at its connection. From this simplification of the placement and the anode removal there also arise savings in the management and operation of the aluminum plant according to the invention.
  • the length of the rising and connecting conductors is reduced with respect to the use of conventional type rise and connection conductors which typically extend above the vessel into the longitudinal central portion of the vessel. This helps to reduce manufacturing costs.
  • the rising and connecting conductors are more particularly connected to the anode assemblies at the edges of the box.
  • edges of the box By the right of the edges of the box is meant in a volume formed by vertical translation of the surface obtained by projecting the edges of the box in a plane horizontal XY.
  • the rising and connecting electrical conductors extend at a height h between 0 and 1.5 meters above a substantially horizontal plane including the surface of the liquids contained in the electrolytic cell.
  • the length of these rising and connecting conductors is thus greatly reduced with respect to conventional type rise and connection conductors which extend to heights greater than two meters.
  • the invention also relates to a method for stirring the alumina contained in the electrolysis cells of an aluminum smelter having the aforementioned characteristics, the method comprising: analyzing at least one characteristic of alumina, determining a value of intensity of the compensation current to be circulated in the compensation electric circuit according to said at least one analyzed characteristic, - modification of the intensity of the compensation current I 2 up to the intensity value determined in the previous step if the intensity of the compensation current I 2 differs from said value.
  • the method according to the invention makes it possible to modify the magnetic compensation, by increasing or decreasing the intensity of the compensation current I 2 , to induce controlled MHD instabilities, these instabilities contributing to stir the alumina for a better yield.
  • Such a method is particularly interesting with the configuration of the electrical conductors described above which makes the tanks magnetically very stable.
  • the characteristics of the alumina analyzed can notably be the ability of the alumina to dissolve in the bath, the fluidity of the alumina, its solubility, its fluorine content, its humidity, etc.
  • the determination of a value of intensity of the compensation current required according to the characteristics of the analyzed alumina can be carried out in particular by use of an abacus, for example made by a person skilled in the art by experimentation and recording of the optimal correspondences intensity. of the current l 2 compensation / characteristics of alumina. This is to quantify the desired MHD instabilities.
  • the alumina available for continuous operation of the smelter is of different quality, more or less pasty, and therefore having different abilities to dissolve in the electrolysis bath.
  • the movements of liquids in the electrolysis tanks are an asset, because they allow to stir this alumina to promote its dissolution.
  • the magnetic field at the origin of the movements of the liquids is directly compensated via the electrolysis current itself, with a distribution of the magnetic field imposed and frozen by the course of the routing conductors.
  • FIG. 1 is a schematic view of an aluminum smelter according to the state of the art
  • FIG. 2 is a schematic side view of two successive electrolysis cells of the state of the art
  • FIG. 3 is a diagrammatic wired view of the electrical circuit traversed by the electrolysis current in the two tanks of FIG. 2,
  • FIG. 4 is a diagrammatic sectional view along a vertical longitudinal plane of an electrolysis cell of the state of the art
  • FIG. 5 is a schematic view of an aluminum plant according to one embodiment of the invention.
  • FIG. 6 is a wired representation of the electric circuit traversed by the electrolysis current in two successive tanks of an aluminum plant according to the invention
  • FIG. 7 is a sectional view along a vertical longitudinal plane of an electrolysis cell in an aluminum plant according to one embodiment of the invention.
  • Figure 8 is a schematic side view of three successive electrolysis cells in a row of electrolysis cells of an aluminum plant according to one embodiment of the invention.
  • FIG. 9 is a wired representation of the electric circuit traversed by the electrolysis current in two successive tanks of an aluminum plant according to the invention,
  • FIG. 1 shows an aluminum smelter 100 of the state of the art.
  • the aluminum smelter 100 comprises electrolytic cells arranged transversely with respect to the length of the line that they form.
  • the tanks are here aligned in two rows 101, 102 parallel and traversed by an electrolysis current li 00 .
  • Two secondary electrical circuits 104, 106 extend on the sides of the queues 101, 102 to compensate for the magnetic field generated by the flow of the electrolysis current l 100 from one tank to another and in the neighboring line.
  • the secondary electric circuits 104, 106 are respectively traversed by currents 104 , 106 flowing in the same direction as the electrolysis current 100 .
  • Power supply stations 108 supply the series of electrolysis cells and the secondary electrical circuits 104, 106.
  • the distance D 100 between the electrolysis cells closest to the power stations 108 and the stations The power supply is of the order of 45 m
  • the distance D 30 o on which the secondary electrical circuits 104, 106 extend beyond the ends of the line is of the order of 45 m
  • the distance D 200 between the two rows 101, 102 is of the order of 85m to limit the magnetic disturbances from one line to the other.
  • the electrolysis tank 200 comprises a box 201 internally lined with refractory materials 202, a cathode 204 and anodes 206 immersed in an electrolytic bath 208 at the bottom of which a sheet 210 is formed. 'aluminum.
  • the cathode 204 is electrically connected to cathode conductors 205 which pass through the sides of the box 201 at cathode outlets 212.
  • the cathode outputs 212 are connected to routing conductors 214 which convey the electrolysis current to the conductors 213. mounting and connecting a next electrolysis cell. As can be seen in FIG. 2, these rising and connecting conductors 213 extend on one side only, the upstream side, of the electrolytic tank 200 and extend above the anodes 206, up to to the party longitudinal center of the tank.
  • FIG. 3 schematically illustrates the path traveled by the electrolysis current 100 in each of the tanks 200 and between two adjacent tanks such as those represented in FIG. 2. It is notably noted that the rise of the electrolysis current l 100 up to the anode assembly of a tank is asymmetrical since this rise is carried out only upstream of the tanks in the direction of global circulation of the electrolysis current l 100 in the line (to the left of the tanks in FIGS. 2 and 3) .
  • FIG. 4 shows a sectional view of a traditional tank 200, in which the arrangement on the sides of the tank 200 of the electrical conductors forming the secondary electrical circuits 104, 106 is found to compensate for the magnetic field generated by the circulation of the Electrolysis current l 100 from one tank 200 to another and in the neighboring queue.
  • FIG. 5 shows an aluminum smelter 1 according to one embodiment of the invention.
  • the aluminum smelter 1 comprises a plurality of substantially rectangular electrolysis tanks 50 intended for the production of aluminum by electrolysis, which can be aligned along one or more queues, in this case two queues, substantially parallel, connected in series. and supplied with electrolysis current.
  • electrolysis tanks 50 are arranged transversely with respect to the line they form.
  • per electrolysis tank 50 arranged transversely means electrolysis tank 50 whose largest dimension, the length, is substantially perpendicular to the overall direction in which the electrolysis current flows, that is to say to the flow direction of the electrolysis current at the scale of the rows of electrolysis tanks 50.
  • the aluminum smelter 1 also comprises an electric compensation circuit 6, traversed by a compensation current l 2 . Unlike the circuits 104, 106 illustrated in FIG. 1, it is important to note that the electric compensation circuit 6 extends under the electrolysis tanks 50. It will also be noted that the compensation current I 2 flows in the opposite direction of the electrolysis current.
  • the electrical compensation circuit 6 of FIG. 5 forms more particularly a loop under the rows of electrolysis cells 50.
  • a set of supply stations 8 independently feeds the electrolysis tanks 50 and the electric compensation circuit 6.
  • the electric compensation circuit 6 is a secondary electrical compensation circuit distinct from the main electric circuit 7 traversed by the electrolysis current.
  • the intensity of the compensation current I 2 is variable, independently of the electrolysis current.
  • the intensity of the compensation current I 2 can be modified without the intensity of the electrolysis current necessarily being so.
  • FIG. 8 shows three consecutive electrolysis tanks 50 of the aluminum plant 1.
  • the electrolysis tanks 50 may conventionally comprise a box 60, provided with reinforcing cradles 61, which may be metallic, for example made of steel, and a coating 62 interior made of refractory materials.
  • the electrolytic cells 50 comprise a plurality of anode assemblies consisting of a support 53 (here a transverse horizontal bar) and at least one anode 52, in particular of carbon material and more particularly of precooked type, conductors 54 of mounted and connected which, unlike the electrolysis tank 200, extend on either side of each of the electrolysis tanks 50 to conduct the electrolysis current to the anodes 52, and a cathode 56 possibly formed of several cathodic blocks made of carbonaceous material, crossed by cathodic conductors 55 intended to collect the current I ⁇ , of electrolysis to lead it to cathode outlets 58 leaving the bottom of the box 60 and connected to conductors 57 d routing in turn driving the electrolysis current to the conductors 54 for mounting and connecting the next electrolysis cell 50.
  • the anode assemblies are intended to be removed and replaced periodically when the anodes are worn.
  • the cathode conductors, the cathode outputs and the routing conductors 57 may correspond to metal bars, for example aluminum, copper and / or steel.
  • FIG. 6 diagrammatically represents the path of the electrolysis current in two successive electrolysis tanks 50 of the aluminum plant 1 according to the invention.
  • the rise of the electrolysis current is here advantageously carried out on both longitudinal sides of the electrolytic cell 50.
  • FIG. 9 schematically represents the path of the electrolysis current in two successive electrolysis tanks 50 of the aluminum plant 1 according to the invention and differs from FIG. 6 in that the cathode outputs 58 leave the box 60 in a more conventional manner. at the sides of the box 60.
  • FIG. 7 shows a sectional view of an electrolysis tank 50 of the aluminum plant 1. Note also the presence of the compensation circuit 6, under the electrolysis tanks 50, and traversed by the compensation current l 2. circulating in the opposite direction of the overall flow direction of the electrolysis current from one tank 50 to the next.
  • the compensation circuit 6 forms, according to the example of FIG. 7, a layer of three conductors substantially equidistant and arranged in the same substantially horizontal plane XY; in addition, the conductors of this layer may extend substantially symmetrically with respect to a transverse median plane XZ.
  • FIG. 7 shows in particular a tank formed of three identical modules M.
  • each module comprises the routing conductors 57 disposed between three adjacent cradles 61 of the box and a conductor of the compensation circuit 6 disposed substantially under the central cradle 61 of the module.
  • the conductor of the module compensation circuit 6 is traversed by a current of the order of 50% to 150% of the intensity of the electrolysis current corresponding to this module.
  • the stability of the tank does not depend on the number of modules forming the circuit of electrical conductors of the tank and the smelter.
  • the length and intensity of the tanks can be adjusted simply by adding modules to meet the desired conditions of realization of the smelter.
  • the rising and connecting conductors 54 extend upwards, for example substantially vertically, along each longitudinal edge of the electrolysis tanks 50.
  • the longitudinal edges of the electrolysis tanks 50 correspond to the edges of larger dimension, substantially perpendicular to the transverse X direction.
  • the rising and connecting conductors 54 upstream and downstream may also be arranged equidistant from a median YZ plane of the electrolysis tank 50.
  • the rising and upstream connection conductors 54 may be substantially symmetrical to the downstream electrical conductors 54 relative to the median YZ plane of the electrolysis cells 50.
  • the conductors 54 upstream and connecting upstream of one of the electrolysis tanks 50 may be arranged in staggered relation to the conductors 54 of upstream and downstream connection of the electrolysis tank 50 preceding it in the line.
  • FIG. 8 also shows that the rising and connecting conductors 54 extend on either side of the box 60 without extending to the right of the anodes 52, that is to say without extending in a volume projected vertically from the surface of the anodes in a horizontal plane.
  • the electrical conductors 54 of rise and connection extend above the liquids 63 at a height h between 0 and 1.5 meters.
  • the support 53 of the anode assembly comprises a cross member extending transversely with respect to the electrolytic cell 50 being supported and electrically connected at each of the two longitudinal edges on either side of the vessel. 50 electrolysis.
  • the distribution of electrolysis current between the upstream and upstream connection conductors 54 of the electrolysis tanks 50 and the upstream and downstream connection conductors 54 of the electrolysis tanks 50 may be for example of the order from 30% to 70% upstream and respectively 70% to 30% downstream.
  • this current distribution is 40% to 60% upstream and 60% to 40% downstream, and preferably 45% to 55% upstream and 55% to 45% respectively. 'downstream.
  • it is of the order of 50% plus or minus 20% upstream and the remainder downstream, and preferably of the order of 50% plus or minus 10%, and more preferably of the order of 50% plus or minus 5%.
  • the cathode outputs 58 and the routing conductors 57 may extend only in a vertical plane XZ perpendicular to the longitudinal direction Y of the electrolysis vessels 50.
  • the cathode outputs 58 may extend substantially vertically only.
  • the cathode outlets 58 may pass through the bottom of the box 60 of the electrolysis tanks 50, and the routing conductors 57 may extend under the electrolysis tanks 50, advantageously in a straight line, substantially parallel to a transverse direction.
  • electrolysis tanks 50 makes it possible to stabilize the liquids contained in the electrolysis tanks 50 and to limit the disturbances of the electrolysis tanks 50 at the end of the line, since the magnetic fields generated by the electrolytic cells 50 electrolysis current passing under the tanks and the conductors of the compensation electric circuit are canceled.
  • the intensity of the compensation current flowing through the compensation circuit is advantageously of the order of 50% to 150% of the intensity of the electrolysis current, preferably of the order of 70% to 130% of the intensity. electrolysis current, and more preferably of the order of 80% to 120% of the intensity of the electrolysis current, to ensure appropriate cancellation of the magnetic fields and the stability of the tanks.
  • the distances between the queues, and the lengths of the electrolysis electric circuit and the electric compensation circuit 6, can be reduced.
  • the distance Di between the electrolysis tanks 50 closest to the supply stations 8 and / or the distance D 3 on which the electrical compensation circuit 6 extends to the beyond the end of the queue is less than or equal to 30m, for example less than or equal to 20m, and preferably less than or equal to 10m; the distance D 2 between the two rows is less than or equal to 40m, for example less than or equal to 30m, and preferably less than or equal to 25m.
  • the two rows of the aluminum plant 1 according to the invention can be arranged in the same building 12, which allows very significant structural gains.
  • the electric compensation circuit 6 extends under the tanks 50 forming a sheet of two to twelve, preferably three to ten, substantially equidistant parallel electrical conductors distributed substantially symmetrically with respect to a transverse median axis X of the tanks 50.
  • the compensation current I 2 for example crossing the conductors of this layer of parallel conductors, for example, is distributed more evenly over the entire length of the tank 50.
  • the electrical conductor or conductors forming the electrical compensation circuit 6 extend under the rows of tanks 50 substantially parallel to a transverse axis X of the electrolysis tanks 50.
  • the compensation circuit 6 may be formed by electrical conductors forming a plurality of independent secondary electrical compensation sub-circuits, each traversed by a compensation current flowing in the opposite direction of the electrolysis current.
  • the secondary electrical compensation sub-circuits can form parallel loops under the electrolysis tanks 50, for example two in the case of FIG. 5. Thus, in the case of piercing an electrolytic tank 50, if one of the subcircuits is reached, the other secondary electrical compensation sub-circuit (s) may continue to compensate for the magnetic field.
  • the electrical conductors of the compensation circuit 6, or if appropriate of one of the secondary electrical compensation sub-circuits may perform several turns in parallel and / or in series under the electrolysis cells, in particular when these Electrical conductors are made of superconducting material.
  • the electrical conductors forming the compensation circuit 6 may correspond to metal bars, for example aluminum, copper or steel, or, advantageously, to electrical conductors made of superconducting material, the latter making it possible to reduce the power consumption and because of their smaller mass than the equivalent metal conductors, to reduce structural costs to support them or to protect them from possible metal pouring by means of metal baffles.
  • these electrical conductors made of superconducting material can be arranged to perform several turns in series under the row or rows of tanks.
  • the sum of the intensities traversing all the conductors of the compensation electric circuit passing under the tank is advantageously of the order of 50% to 150% of the intensity of the electrolysis current, preferably of the order of 70% to 130%. % of the intensity of the electrolysis current, and more preferably of the order of 80% to 120% of the intensity of the electrolysis current.
  • the intensity of the compensation current flowing through this compensation electric circuit 6 may be of the order of 50%. at 150% of the intensity of the electrolysis current. If this secondary electric compensation circuit 6 forms N turns under the electrolysis tanks 50, then the sum of the N intensities crossing each of these turns is of the order of 50% to 150% of the intensity of the electrolysis current. Also, according to the example of FIG. 5, the intensity of the current I 2 corresponding to the sum of the intensities l 2 o and l 2 i crossing each of the two turns can be of the order of 50% to 150% of the current. intensity of the electrolysis current.
  • the invention also relates to a method for stirring alumina in the electrolysis tanks 50 of the aluminum plant 1.
  • This method comprises a step of modulating the intensity of the compensation current flowing through the electric compensation circuit 6, or, if appropriate, compensating currents flowing through the forming subcircuits.
  • This modulation may more particularly be a function of the characteristics of alumina, varying the intensity of the electrolysis current or structural modifications of the smelter.
  • the method for stirring alumina comprises the steps of: analyzing at least one characteristic of alumina (for example the ability of alumina to dissolve in the bath, the fluidity of alumina, its solubility, its fluorine content, its humidity, etc.), for determining an intensity value of the compensation current to be circulated in the compensation circuit as a function of said at least one analyzed characteristic (this determining step can be carried out by means of an abacus obtained by experimentation having a relationship between the intensity value and the analyzed characteristic), with the aim of generating a flow threshold of the MHD flows adapted to effectively stir the alumina with the least possible impact the efficiency of modifying the intensity of the compensation current I 2 according to the intensity value determined in the previous step.
  • at least one characteristic of alumina for example the ability of alumina to dissolve in the bath, the fluidity of alumina, its solubility, its fluorine content, its humidity, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

28 ABREGE ALUMINERIE COMPRENANT UN CIRCUIT ÉLECTRIQUE DE COMPENSATION Cette aluminerie comprend une file de cuves (50) agencées transversalement par rapport à la longueur de la file, l'une des cuves (50) comprenant une anode (52), des conducteurs (54) électriques de montée et de connexion s'étendant vers le haut le long de deux bords longitudinaux opposés de la cuve (50) pour conduire le courant d'électrolyse vers l'anode (52), et une cathode (56) traversée par des conducteurs (55) cathodiques reliés à des sorties cathodiques reliées à des conducteurs d'acheminement pour acheminer le courant d'électrolyse vers des conducteurs électriques de montée et de connexion de la cuve (50) suivante. De plus, l'aluminerie comprend un circuit électrique de compensation, distinct du circuit électrique parcouru par le courant d'électrolyse, s'étendant sous les cuves (50) et pouvant être parcouru par un courant de compensation circulant sous les cuves (50), en sens inverse du sens de circulation global du courant d'électrolyse.

Description

ALUMINERIE COMPRENANT UN CIRCUIT ÉLECTRIQUE DE COMPENSATION
La présente invention concerne une aluminerie, une méthode d'utilisation de cette aluminerie et un procédé de brassage de l'alumine dans les cuves d'électrolyse de cette aluminerie. II est connu de produire l'aluminium industriellement à partir d'alumine par électrolyse selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse comprenant un caisson en acier à l'intérieur duquel est agencé un revêtement en matériaux réfractaires, une cathode en matériau carboné, traversée par des conducteurs cathodiques destinés à collecter le courant d'électrolyse à la cathode pour le conduire jusqu'à des sorties cathodiques traversant le fond ou les côtés du caisson, des conducteurs d'acheminement s'étendant sensiblement horizontalement jusqu'à la cuve suivante depuis les sorties cathodiques, un bain électrolytique dans lequel est dissout l'alumine, au moins un ensemble anodique comportant au moins une anode plongée dans ce bain électrolytique, un cadre anodique auquel est suspendu l'ensemble anodique, et des conducteurs de montée du courant d'électrolyse, s'étendant de bas en haut, reliés aux conducteurs d'acheminement de la cuve d'électrolyse précédente pour acheminer le courant d'électrolyse depuis les sorties cathodiques jusqu'au cadre anodique et à l'ensemble anodique et l'anode de la cuve suivante. Les anodes sont plus particulièrement de type anodes précuites avec des blocs carbonés précuits, c'est-à-dire cuits avant introduction dans la cuve d'électrolyse.
Les usines de production d'aluminium, ou alumineries, comprennent traditionnellement plusieurs centaines de cuves d'électrolyse, alignées transversalement en files parallèles et connectées en série.
Ces cuves d'électrolyse sont parcourues par un courant d'électrolyse de l'ordre de plusieurs centaines de milliers d'Ampères, ce qui crée un champ magnétique important. La composante verticale de ce champ magnétique, générée principalement par les conducteurs d'acheminement conduisant le courant d'une cuve d'électrolyse à la suivante, est connue pour provoquer des instabilités appelées instabilités magnétohydrodynamiques (MHD). Ces instabilités MHD sont connues pour dégrader le rendement du procédé. Plus une cuve est instable, plus la distance interpolaire entre l'anode et la nappe de métal doit être élevée. Or, plus la distance interpolaire est importante, plus la consommation énergétique du procédé est élevée car dissipée par effet Joule dans l'espace interpolaire.
D'autre part, la composante horizontale du champ magnétique, générée par l'ensemble du parcours du courant électrique, aussi bien dans les conducteurs situés à l'intérieur de la cuve que ceux situés à l'extérieur, interagit avec le courant électrique traversant les liquides, ce qui engendre une déformation stationnaire de la nappe de métal. La dénivellation de la nappe de métal occasionnée doit rester suffisamment faible pour que les anodes soient consommées de façon uniforme avec peu de déchet. Pour obtenir une faible dénivellation, il est nécessaire que les composantes horizontales du champ magnétique soient le plus antisymétrique possible dans les liquides (bain électrolytique et nappe de métal). Pour la composante longitudinale ou transversale du champ magnétique qui constituent les composantes horizontales, par antisymétrique on entend que lorsque l'on se déplace perpendiculairement à l'axe central de la cuve, parallèle à la composante considérée du champ, et lorsque l'on se situe à égale distance de part et d'autre de cet axe central, la valeur de la composante considérée est opposée. L'antisymétrie des composantes horizontales du champ magnétique est la configuration fournissant la déformée d'interface la plus symétrique et la plus plate possible dans la cuve. II est connu, notamment des documents de brevet FR1079131 et FR2469475, de lutter contre les instabilités MHD en compensant le champ magnétique créé par la circulation du courant d'électrolyse, grâce à une disposition particulière des conducteurs conduisant le courant d'électrolyse. Par exemple, selon le document de brevet FR2469475, les conducteurs d'acheminement contournent latéralement les extrémités ou têtes de chaque cuve d'électrolyse. On parle d'auto-compensation. Ce principe repose sur un équilibrage local du champ magnétique, à l'échelle d'une cuve d'électrolyse.
L'avantage principal de l'auto-compensation réside dans l'utilisation du courant d'électrolyse lui-même pour compenser les instabilités MHD.
Cependant, l'auto-compensation peut créer un encombrement latéral important puisque les conducteurs électriques contournent les têtes de cuves d'électrolyse.
Surtout, la longueur importante des conducteurs d'acheminement pour la mise en œuvre de cette solution génère de la perte électrique en ligne par effet résistif des conducteurs, donc une augmentation des coûts de fonctionnement, et nécessite beaucoup de matière première, donc des coûts de fabrication élevés. Ces inconvénients sont d'autant plus marqués que les cuves d'électrolyse ont des dimensions importantes et fonctionnent avec des intensités importantes.
Aussi, la conception d'une aluminerie avec un circuit électrique auto-compensé est figée. Or, en cours de vie, il peut devenir nécessaire d'augmenter l'intensité du courant d'électrolyse, au-delà de l'intensité prévue lors de la conception. Cela modifie aussi de fait la répartition du champ magnétique du circuit électrique auto-compensé, non conçu pour cette répartition nouvelle, qui ne permet plus de compenser de façon optimale ce champ magnétique. Il existe des solutions pour pallier ce manque d'évolutivité et retrouver une compensation magnétique proche de l'optimum, mais ces solutions sont particulièrement complexes et coûteuses à mettre en œuvre.
Une autre solution pour diminuer les instabilités MHD, connue notamment du document de brevet FR2425482, consiste à utiliser un circuit électrique secondaire, ou boucle externe, longeant les files de cuves d'électrolyse, sur les côtés. Ce circuit électrique secondaire est parcouru par un courant dont l'intensité égale un pourcentage prédéterminé de l'intensité du courant d'électrolyse. Ainsi, la boucle externe génère un champ magnétique compensant les effets du champ magnétique créé par le courant d'électrolyse de la file voisine de cuves d'électrolyse.
Il est également connu du document de brevet EP0204647 l'utilisation d'un circuit secondaire longeant les files de cuves d'électrolyse sur les côtés pour réduire l'effet du champ magnétique généré par les conducteurs d'acheminement, l'intensité du courant parcourant les conducteurs électriques de ce circuit secondaire étant de l'ordre de 5 à 80% de l'intensité du courant d'électrolyse, et ce courant circulant dans le même sens que le courant d'électrolyse.
La solution de compensation par boucle externe présente l'avantage de disposer d'un circuit secondaire indépendant du circuit principal parcouru par le courant d'électrolyse.
L'agencement du circuit secondaire, situé sur les côtés des files de cuve à proximité des petits côtés des caissons, à la hauteur de l'interface bain-métal, permet une compensation de la composante verticale sans impacter la composante horizontale du champ magnétique. La solution de compensation par boucle externe diminue de manière importante la longueur, la masse et les pertes électriques des conducteurs d'acheminement, mais nécessite une station d'alimentation électrique supplémentaire et un circuit électrique secondaire indépendant supplémentaire,
On notera également que la solution de compensation par boucle externe implique un cumul de champs magnétiques, avec le courant de la série, créant un champ ambiant total très fort, si bien que cela implique des contraintes sur les opérations et le matériel (par exemple blindage nécessaire des véhicules), et si bien que le champ magnétique d'une file impacte la stabilité des cuves de la file voisine. Pour limiter l'influence d'une file sur la file voisine, il est nécessaire de les éloigner l'une de l'autre, ce qui constitue une contrainte spatiale importante et implique par conséquent d'abriter chaque file de cuves d'électrolyse dans un hangar distinct.
Par ailleurs, la portion de jonction du circuit d'électrolyse et du circuit secondaire joignant les extrémités de deux files adjacentes de cuves d'électrolyse tend à déstabiliser les cuves de fin de file. Pour éviter d'avoir des cuves de fin de file instables, il est possible de configurer cette portion du circuit secondaire selon un parcours prédéterminé, comme cela est connu du brevet FR2868436, afin de corriger le champ magnétique pour que l'impact sur les cuves de bout de file devienne acceptable. Cependant, ce parcours rallonge notamment la longueur du circuit secondaire, donc le coût matière. Il est à noter que la solution usuelle consiste à éloigner la portion de jonction du circuit secondaire et du circuit d'électrolyse des cuves situées en extrémité de file, mais cela augmente l'encombrement en plus d'augmenter la longueur des conducteurs électriques donc le coût matière et énergétique.
On retiendra donc que les solutions connues de compensation par boucle externe génèrent des coûts structurels relativement importants.
Aussi, la présente invention vise à pallier tout ou partie de ces inconvénients en proposant une aluminerie avec une configuration magnétique permettant un rendement amélioré et un faible encombrement.
A cet effet, la présente invention a pour objet une aluminerie, comprenant au moins une file de cuves d'électrolyse agencées transversalement par rapport à la longueur de la file, l'une des cuves d'électrolyse comprenant un caisson, des ensembles anodiques comportant un support et au moins une anode, et une cathode traversée par des conducteurs cathodiques destinés à collecter le courant d'électrolyse à la cathode pour le conduire jusqu'à des sorties cathodiques hors du caisson, caractérisée en ce que la cuve d'électrolyse comprend des conducteurs électriques de montée et de connexion aux ensembles anodiques s'étendant vers le haut le long de deux bords longitudinaux opposés de la cuve d'électrolyse pour conduire le courant d'électrolyse vers les ensembles anodiques, et des conducteurs d'acheminement connectés aux sorties cathodiques et destinés à conduire le courant d'électrolyse depuis les sorties cathodiques jusqu'aux conducteurs électriques de montée et de connexion de la cuve d'électrolyse suivante, et en ce que l'aluminerie comprend au moins un circuit électrique de compensation s'étendant sous les cuves d'électrolyse, ledit circuit de compensation pouvant être parcouru par un courant l2 de compensation circulant sous les cuves d'électrolyse en sens inverse du sens de circulation global du courant d'électrolyse parcourant les cuves d'électrolyse situées au-dessus. Ainsi, l'aluminerie selon l'invention présente un encombrement réduit et offre l'avantage de pouvoir disposer de cuves très stables magnétiquement, si bien que le rendement global est amélioré.
Selon une méthode d'utilisation de cette aluminerie, le circuit de compensation est parcouru par un courant l2 de compensation circulant sous les cuves d'électrolyse en sens inverse du sens de circulation global du courant d'électrolyse parcourant les cuves d'électrolyse situées au-dessus.
Avantageusement, l'intensité du courant l2 de compensation est de l'ordre de 50% à 150% de l'intensité du courant d'électrolyse. Les conducteurs électriques de montée et de connexion sont disposés dans les espaces inter-cuves, au niveau des deux côtés longitudinaux de la cuve d'électrolyse, de part et d'autre de la cuve pour se compenser mutuellement et obtenir une répartition sensiblement antisymétrique des composantes horizontales du champ magnétique de la cuve assurant une faible dénivellation de la nappe d'aluminium sans impacter la composante verticale du champ magnétique, de sorte que les conducteurs électriques de cuve à cuve, parmi les conducteurs d'acheminement, de montée et de connexion, causant un champ magnétique vertical et horizontal défavorable devant être compensé sont en pratique uniquement les conducteurs de cuve à cuve circulant à l'horizontale en- dessous du caisson, c'est-à-dire plus spécifiquement les conducteurs d'acheminement. La compensation de ce champ magnétique défavorable s'obtient alors au moyen du circuit électrique de compensation, qui peut être avantageusement parcouru par un courant l2 de compensation d'intensité de l'ordre de 50% à 150% de l'intensité du courant l-i d'électrolyse, et circulant sous les cuves d'électrolyse en sens inverse du sens de circulation global du courant l-ι d'électrolyse dans les cuves d'électrolyse situées au- dessus.
Ainsi, il est possible de diminuer, voire d'annuler quasiment la composante verticale du champ magnétique dans la cuve et de conserver une distribution du champ magnétique horizontal sensiblement antisymétrique dans les liquides. La solution proposée permet donc d'obtenir une cuve avec très peu d'instabilités, donc un rendement amélioré, tout en conservant une faible dénivellation de l'interface bain/métal également nécessaire au bon fonctionnement du procédé.
Le champ magnétique est faible voire quasiment annulé à proximité des cuves et files de cuves et de l'aluminerie selon l'invention, de sorte que les contraintes liées aux forts champs magnétiques sur les opérations et le matériel utilisé dans l'aluminerie sont supprimées. Aussi, le champ magnétique d'une file n'impacte plus la stabilité des cuves de la file voisine de sorte que des files de cuve voisines peuvent être rapprochées et deux files de cuves voisines peuvent notamment être placées dans un même bâtiment de largeur réduite, si bien que des économies importantes en coûts structurels peuvent être réalisées alors même qu'un circuit de compensation est utilisé.
En dépit des enseignements dissuasifs de l'état de la technique, le circuit de compensation passe sous les cuves d'électrolyse, et non sur les côtés de la ou des files de cuves d'électrolyse. Ainsi, un espace est dégagé de part et d'autre de la ou des files de cuves d'électrolyse. Cela permet d'envisager un dégagement latéral de chaque cuve d'électrolyse, et plus particulièrement du caisson, ce qui est moins coûteux que de les soulever. L'absence de solution de levage lourde et coûteuse offre des économies de structure importantes.
Selon un mode de réalisation préféré, le circuit électrique de compensation est un circuit électrique secondaire de compensation distinct du circuit électrique parcouru par le courant l-ι d'électrolyse. Par distinct, on entend que les deux circuits ne sont pas connectés électriquement.
Si, en cas de perçage d'une des cuves d'électrolyse par les liquides contenus dans l'une des cuves d'électrolyse, dont la température est proche de 1 000°C, le circuit de compensation est endommagé et coupé ou ne peut plus fonctionner normalement, cela affecte le rendement, car le circuit de compensation ne peut plus compenser le champ magnétique généré par la circulation du courant d'électrolyse, mais l'aluminerie peut continuer à fonctionner en mode dégradé avec un rendement moindre sans subir d'arrêt préjudiciable, puisque le courant circulant dans le circuit de compensation est destiné à la compensation de champ magnétique uniquement et non à la production d'aluminium. L'utilisation d'un circuit électrique secondaire de compensation distinct offre aussi la possibilité de modifier dans le temps le champ magnétique de compensation créé par ce circuit de compensation. Il convient pour cela de faire varier l'intensité du courant circulant dans le circuit électrique secondaire de compensation. Cela est d'une importance primordiale en termes d'évolutivité et d'adaptabilité. D'une part parce que cela permet, en cas d'augmentation de l'intensité du courant d'électrolyse en cours de vie de l'aluminerie, d'adapter la compensation magnétique à cette évolution, par variation de l'intensité du courant de compensation en fonction des besoins. D'autre part parce que cela permet d'adapter l'ampérage du courant de compensation aux caractéristiques et à la qualité de l'alumine disponible. Cela permet de contrôler la vitesse des écoulements MHD pour favoriser ou limiter le brassage des liquides et la dissolution de l'alumine dans le bain en fonction des caractéristiques de l'alumine disponible, ce qui in fine contribue à un rendement le meilleur possible compte-tenu des approvisionnements en alumine.
Le circuit électrique secondaire de compensation peut être plus particulièrement alimenté par une station d'alimentation électrique propre, différente de la station alimentant les cuves d'électrolyse en courant d'électrolyse.
Selon un mode de réalisation préféré, l'aluminerie comporte deux files de cuves agencées parallèlement l'une par rapport à l'autre, alimentées par une même station, et reliées électriquement en série de sorte que le courant d'électrolyse circulant dans la première des deux files de cuves circule ensuite dans la deuxième des deux files de cuves selon un sens globalement opposé à celui dans lequel il circulait dans la première des deux files, et en ce que le circuit électrique de compensation forme une boucle sous ces deux files de cuves parallèles.
Cela permet de rapprocher deux files adjacentes de cuves d'électrolyse pour les placer dans un même bâtiment, compte-tenu de la compensation magnétique obtenue simultanément par le circuit de compensation et les conducteurs d'acheminement traversés par des courants électriques opposés. Au final, ce qui est gagné en termes de place et de coûts structurels l'emporte sur ce qui est perdu en coûts de réalisation et de fonctionnement du circuit de compensation.
Comme le circuit électrique secondaire de compensation forme une boucle sous les cuves, il devient avantageux d'utiliser pour le réaliser un conducteur électrique en un matériau supraconducteur et il est surtout possible de réaliser plusieurs tours en série, comme cela est décrit dans la demande de brevet WO2013007893 au nom de la demanderesse.
De façon avantageuse, la cuve d'électrolyse comprend pour chacun de ses deux bords longitudinaux une pluralité de conducteurs électriques de montée et de connexion répartis à intervalles prédéterminés sur sensiblement toute la longueur du bord longitudinal correspondant.
Pour chaque bord longitudinal, les conducteurs de montée et de connexion peuvent être agencés à intervalles réguliers dans la direction longitudinale de la cuve d'électrolyse. Cela permet d'améliorer l'équilibre de la composante horizontale longitudinale (c'est-à- dire parallèlement à la longueur de la cuve) du champ magnétique.
Une cuve fonctionnant avec une intensité de 400 à 1000k Ampères peut par exemple comprendre de préférence de 4 à 40 conducteurs de montée et de connexion répartis régulièrement sur toute la longueur de chacun de ses deux bords longitudinaux.
Les conducteurs électriques de montée et de connexion amont et les conducteurs électriques de montée et de connexion aval peuvent être agencés à équidistance d'un plan médian longitudinal de la cuve d'électrolyse, c'est-à-dire un plan sensiblement perpendiculaire à une direction transversale de la cuve et séparant celle-ci en deux parties sensiblement égales.
Par conducteur électrique de montée et de connexion amont et conducteur électrique de montée et de connexion aval on entend conducteurs électriques de montée et de connexion agencés respectivement à côté du bord longitudinal amont ou aval de la cuve d'électrolyse, le bord longitudinal amont correspondant à celui qui est le plus proche du début de la file de cuves d'électrolyse et le bord longitudinal aval correspondant au bord longitudinal de la cuve d'électrolyse le plus éloigné du début de la file de cuves d'électrolyse, compte-tenu du sens global de circulation du courant d'électrolyse à l'échelle de la file de cuves d'électrolyse. Selon un mode de réalisation préféré, les conducteurs électriques de montée et de connexion sont disposés de façon sensiblement symétrique par rapport à un plan médian longitudinal de la cuve d'électrolyse.
En d'autres termes, les conducteurs électriques de montée et de connexion s'étendant le long de l'un des deux bords longitudinaux de la cuve d'électrolyse sont disposés de façon sensiblement symétrique par rapport aux conducteurs électriques de montée et de connexion s'étendant le long du bord longitudinal opposé de la cuve d'électrolyse, par rapport à un plan médian longitudinal de la cuve d'électrolyse c'est-à-dire un plan sensiblement perpendiculaire à une direction transversale de la cuve et séparant celle-ci en deux parties sensiblement égales. On améliore ainsi encore la caractéristique sensiblement antisymétrique avantageuse de la distribution du champ magnétique horizontale dans les liquides.
Selon une méthode d'utilisation préférée, la distribution de courant entre les conducteurs électriques de montée et de connexion disposés à l'amont de la cuve d'électrolyse et les conducteurs électriques de montée et de connexion disposés à l'aval de la cuve d'électrolyse est de l'ordre 30 - 70% à l'amont et respectivement 30 - 70% à l'aval, et de préférence de 40 - 60% à l'amont et respectivement 40-60% à l'aval.
Cette méthode d'utilisation permet d'améliorer la caractéristique sensiblement antisymétrique avantageuse de la distribution du champ magnétique horizontale dans les liquides. De préférence, la distribution de courant entre les conducteurs électriques de montée et de connexion disposés à l'amont de la cuve d'électrolyse et les conducteurs électriques de montée et de connexion disposés à l'aval de la cuve d'électrolyse est de l'ordre de 45 - 55% à l'amont et respectivement 45-55% à l'aval. On améliore ainsi encore la caractéristique sensiblement antisymétrique avantageuse de la distribution du champ magnétique horizontale dans les liquides.
Selon un mode de réalisation préféré, les conducteurs d'acheminement s'étendent sous la cuve d'électrolyse sensiblement droits, et uniquement dans une direction transversale par rapport à la cuve d'électrolyse. On limite ainsi la longueur et le coût des conducteurs électriques en minimisant la longueur des conducteurs s'étendant dans la direction longitudinale de la cuve. On limite également les champs magnétiques générés par de tels conducteurs électriques longitudinaux dans des modes de réalisation de l'art antérieur, notamment en ce qui concerne les cuves auto-compensées. Aussi, l'espace est dégagé de part et d'autre de la ou des files de cuves d'électrolyse, ce qui limite à tout le moins l'encombrement longitudinal de l'ensemble cuves/conducteurs électriques et permet d'envisager un dégagement latéral de chaque cuve d'électrolyse, et plus particulièrement du caisson, ce qui est moins coûteux que de le soulever.
Le circuit électrique de compensation peut comprendre des conducteurs électriques s'étendant de façon sensiblement parallèle à un axe transversal des cuves d'électrolyse.
Selon un mode de réalisation, le circuit électrique de compensation comprend des conducteurs électriques formant une pluralité de sous-circuits électriques secondaires de compensation indépendants les uns des autres.
Chacun de ces sous-circuits électriques secondaires de compensation est parcouru par un courant de compensation d'intensité pouvant être variable indépendamment de l'intensité du courant d'électrolyse.
Par sous-circuit électrique secondaire de compensation indépendants on entend sous- circuit non électriquement relié aux autres sous-circuits électriques secondaires de compensation, et pouvant être alimenté par une station d'alimentation distincte de celle des autres sous-circuits électriques secondaires de compensation.
Ainsi, en cas de problématique, par exemple de perçage d'une cuve, occasionnant des dommages et/ou la coupure d'un ou des sous-circuits électriques secondaires de compensation, cela offre la possibilité de continuer à produire selon un mode de fonctionnement « dégradé », dans lequel l'intensité du courant de compensation circulant dans chacun des autres sous-circuits électriques secondaires de compensation non endommagés est ajustée pour compenser le champ magnétique créé par la circulation du courant d'électrolyse. Ainsi, le rendement peut rester élevé en dépit d'un éventuel disfonctionnement d'un des sous-circuits électriques secondaires de compensation.
Le circuit électrique de compensation peut comprendre des conducteurs électriques formant plusieurs tours en parallèle et/ou en série sous les cuves d'électrolyse.
Selon une possibilité, le circuit électrique de compensation comprend des conducteurs électriques s'étendant parallèlement sous les cuves d'électrolyse. Les conducteurs électriques du circuit électrique de compensation peuvent être agencés de façon sensiblement symétrique par rapport à un plan médian transversal des cuves d'électrolyse, c'est-à-dire un plan sensiblement perpendiculaire à une direction longitudinale des cuves d'électrolyse et séparant la cuve en deux parties sensiblement égales. Selon une possibilité, les conducteurs électriques formant le circuit électrique de compensation ou le cas échéant les sous-circuits électriques secondaires de compensation s'étendent sous les cuves d'électrolyse en formant ensemble une nappe de deux à douze, de préférence de trois à dix, conducteurs électriques parallèles.
Avantageusement, lesdits conducteurs électriques sont sensiblement équidistants et répartis sensiblement symétriquement par rapport à un axe médian transversal des cuves d'électrolyse.
On améliore encore ainsi la compensation du champ magnétique défavorable.
Le principe de compensation ou équilibrage magnétique de l'aluminerie et de la méthode d'utilisation de l'aluminerie selon l'invention permet d'obtenir pour l'aluminerie un circuit de conducteurs pouvant être réalisé de façon parfaitement modulaire. Chaque module peut comporter par exemple un conducteur électrique du circuit électrique de compensation et un certain nombre de conducteurs d'acheminement et de conducteurs de montée et de connexion associés pour chaque cuve d'électrolyse. Le circuit de conducteurs, et donc chaque cuve, peut être composé d'un certain nombre de modules, déterminant la longueur des cuves et l'intensité du courant traversant les cuves. Le choix du nombre de module par cuve lors de la conception ou une extension de la longueur des cuves par addition de tels modules ne perturbent pas l'équilibre magnétique des cuves, contrairement à l'allongement de cuves de type auto-compensée ou compensée par des circuits magnétiques de compensation disposés sur les côtés des cuves connues de l'art antérieur pour lesquels les circuits de conducteurs doivent être complètement redessinés. Aussi, le rapport de la quantité de matériau formant le circuit de conducteurs ramené à la surface de production des cuves ne se dégrade pas lorsque l'on allonge les cuves, il augmente proportionnellement au nombre de modules et à l'intensité traversant les cuves. Ainsi, les cuves peuvent être allongées simplement en fonction des besoins et l'intensité du courant les traversant n'est pas limitée. Il devient alors possible d'augmenter l'intensité du courant traversant les cuves au-delà de 1 000 k Ampère, voire de 2 000 k Ampère.
Selon un mode de réalisation, les conducteurs électriques de montée et de connexion s'étendant le long de l'un des deux bords longitudinaux de la cuve d'électrolyse sont agencés en quinconce par rapport à des conducteurs électriques de montée et de connexion agencés sur le bord longitudinal adjacent d'une cuve d'électrolyse distincte précédente ou suivante.
Autrement dit, les conducteurs électriques de montée et de connexion amont d'une cuve d'électrolyse N sont agencés en quinconce par rapport aux conducteurs électriques de montée et de connexion aval de la cuve d'électrolyse N-1 , c'est-à-dire de la cuve d'électrolyse la précédant.
Ainsi, cela permet de rapprocher au maximum les cuves d'électrolyse les unes des autres, soit pour placer davantage de cuves d'électrolyse en série sur une même distance, ce qui augmente le rendement, soit pour réduire la longueur d'une file de cuves d'électrolyse, donc gagner de l'espace et réaliser davantage encore des économies de structure.
Selon une méthode d'utilisation préférée de l'aluminerie selon l'invention, le circuit électrique de compensation est parcouru par un courant de compensation d'intensité de l'ordre de 70% à 130% de l'intensité du courant d'électrolyse, et de préférence de l'ordre de 80% à 120% de l'intensité du courant d'électrolyse.
Ainsi, si l'aluminerie comprend un circuit électrique de compensation formé par un conducteur électrique faisant un seul tour sous les cuves d'électrolyse, alors l'intensité du courant de compensation parcourant ce circuit de compensation peut être de l'ordre de 70% à 130% de l'intensité du courant d'électrolyse.
Aussi, si l'aluminerie comprend un circuit électrique de compensation formé par un conducteur électrique en matériau supraconducteur faisant trois tours en série sous les cuves d'électrolyse, l'intensité du courant de compensation parcourant le conducteur électrique peut être de l'ordre de un tiers de 70% à 130% de l'intensité du courant d'électrolyse.
Selon un autre exemple, si le circuit électrique de compensation est formé par trois sous- circuits électriques secondaires de compensation faisant chacun vingt tours en série et réalisés chacun avec des conducteurs électriques en matériau supraconducteur, alors l'intensité du courant de compensation parcourant chacun de ces trois sous-circuits électriques secondaires de compensation peut être de l'ordre d'un soixantième de 70% à 130% de l'intensité du courant d'électrolyse.
Selon une forme d'exécution, chaque sortie cathodique sort du caisson uniquement dans un plan vertical perpendiculaire à la direction longitudinale de la cuve d'électrolyse. Les sorties cathodiques traversent le fond du caisson de la cuve d'électrolyse. Le fait de disposer de sorties par le fond, au lieu de sortie sur les côtés de la cuve d'électrolyse, diminue la longueur des conducteurs d'acheminement, ainsi que les courants horizontaux dans les liquides avec pour effet une meilleure stabilité MHD.
Les conducteurs électriques d'acheminement peuvent s'étendre en ligne droite, de façon sensiblement parallèle à une direction transversale de la cuve d'électrolyse vers les conducteurs électriques de montée et de connexion de la cuve d'électrolyse suivante.
Comme indiqué ci-dessus, le principe de compensation ou équilibrage magnétique de l'aluminerie et la méthode d'utilisation de l'aluminerie selon l'invention permet d'augmenter l'intensité du courant traversant les cuves d'électrolyse en fonction des besoins sans problématique magnétohydrodynamiques, en allongeant les cuves d'électrolyse. Or, une cuve d'électrolyse de l'état de l'art comporte une superstructure traversant longitudinalement la cuve d'électrolyse, au-dessus du caisson et des anodes. La superstructure comporte notamment une poutre reposant sur des pieds à chacune de ses extrémités longitudinales. Elle supporte un cadre anodique, s'étendant également longitudinalement au-dessus du caisson et des anodes, qui supporte les ensembles anodiques et auquel sont connectés les ensembles anodiques. Un allongement d'une cuve d'électrolyse de l'état de l'art entraîne donc un allongement de la superstructure, donc de la portée de la poutre entre les pieds soutenant la poutre et du poids à soutenir par cette superstructure. L'allongement limité de la superstructure d'une cuve d'électrolyse de l'état de l'art limite donc les possibilités offertes par le principe de compensation ou équilibrage magnétique de l'aluminerie et de la méthode d'utilisation de l'aluminerie selon l'invention. Il existe des superstructures comportant une ou plusieurs arches intermédiaires de soutènement de la poutre, mais de telles arches intermédiaires, s'étendant transversalement au-dessus du caisson et des anodes, sont encombrantes et complexifient les opérations sur cuves, notamment les changements d'anodes.
Selon un mode de réalisation particulièrement avantageux de l'invention, le support de l'ensemble anodique comporte une traverse s'étendant transversalement par rapport à la cuve d'électrolyse en étant supportée et connectée électriquement au niveau de chacun des deux bords longitudinaux de part et d'autre de la cuve d'électrolyse.
C'est au niveau des bords longitudinaux de la cuve d'électrolyse que s'effectue ainsi la connexion électrique entre les conducteurs de montée et de connexion et l'ensemble anodique et que s'effectue le support mécanique de l'ensemble anodique. L'ensemble anodique n'est plus supporté et connecté électriquement au moyen d'une superstructure traversant longitudinalement la cuve d'électrolyse, au-dessus du caisson et des anodes de sorte que les cuves d'électrolyse peuvent être allongées pour profiter pleinement des possibilités offertes par le principe de compensation ou équilibrage magnétique de la méthode d'utilisation de l'aluminerie selon l'invention. Selon un autre mode de réalisation, les conducteurs de montée et de connexion s'étendent de part et d'autre du caisson sans s'étendre au droit de la ou des anodes.
Par « au droit de la ou des anodes » on entend dans un volume formé par translation verticale de la surface obtenue par projection de la ou des anodes dans un plan horizontal XY. Un tel mode de réalisation permet de remplacer avantageusement l'anode en la tractant verticalement vers le haut, puisque l'anode tractée vers le haut ne rencontre pas d'éléments ayant servis à sa connexion. De cette simplification du placement et du retrait d'anode découlent là aussi des économies dans la gestion et le fonctionnement de l'aluminerie selon l'invention. Ainsi la longueur des conducteurs de montée et de connexion est diminuée par rapport à une utilisation de conducteurs de montée et de connexion de type classique qui s'étendent typiquement au-dessus de la cuve jusque dans la partie centrale longitudinale de la cuve. Cela contribue à réduire les coûts de fabrication.
Les conducteurs de montée et de connexion sont plus particulièrement connectés aux ensembles anodiques au droit des bords du caisson.
Par au droit des bords du caisson on entend dans un volume formé par translation verticale de la surface obtenue par projection des bords du caisson dans un plan horizontal XY.
Avantageusement, les conducteurs électriques de montée et de connexion s'étendent à une hauteur h comprise entre 0 et 1 ,5 mètre au-dessus d'un plan sensiblement horizontal incluant la surface des liquides contenus dans la cuve d'électrolyse. La longueur de ces conducteurs de montée et de connexion est ainsi fortement diminuée par rapport à des conducteurs de montée et de connexion de type classique qui s'étendent à des hauteurs supérieures à deux mètres.
L'invention concerne également un procédé de brassage de l'alumine contenue dans les cuves d'électrolyse d'une aluminerie ayant les caractéristiques précitées, le procédé comprenant : l'analyse d'au moins une caractéristique de l'alumine, la détermination d'une valeur d'intensité du courant de compensation à faire circuler dans le circuit électrique de compensation en fonction de ladite au moins une caractéristique analysée, - la modification de l'intensité du courant l2 de compensation jusqu'à la valeur d'intensité déterminée à l'étape précédente si l'intensité du courant l2 de compensation diffère de ladite valeur.
Ainsi, le procédé selon l'invention permet de modifier la compensation magnétique, en augmentant ou diminuant l'intensité du courant l2 de compensation, pour induire des instabilités MHD contrôlées, ces instabilités contribuant à brasser l'alumine pour un meilleur rendement. Un tel procédé est particulièrement intéressant avec la configuration des conducteurs électriques décrite ci-dessus qui rend les cuves magnétiquement très stables.
Les caractéristiques de l'alumine analysées peuvent notamment être l'habilité de l'alumine à se dissoudre dans le bain, la fluidité de l'alumine, sa solubilité, sa teneur en fluor, son humidité...
La détermination d'une valeur d'intensité du courant de compensation souhaitée fonction des caractéristiques de l'alumine analysée peut être notamment effectuée par utilisation d'un abaque, par exemple réalisé par l'homme du métier par expérimentation et consignation des correspondances optimales intensité du courant l2 de compensation / caractéristiques de l'alumine. Il s'agit ici de quantitfier les instabilités MHD souhaitées.
Il peut arriver que l'alumine disponible pour un fonctionnement continu de l'aluminerie soit de qualité différente, notamment plus ou moins pâteuse, et donc ayant des habilités différentes à se dissoudre dans le bain d'électrolyse. Dans ce cas, les mouvements des liquides dans les cuves d'électrolyse constituent un atout, car ils permettent de brasser cette alumine pour favoriser sa dissolution. Or, dans le cas de l'auto-compensation notamment, le champ magnétique à l'origine des mouvements des liquides est directement compensé via le courant d'électrolyse lui-même, avec une distribution du champ magnétique imposée et figée par le parcours des conducteurs d'acheminement. Il n'est donc pas possible dans les alumineries avec auto-compensation d'introduire volontairement et temporairement un déséquilibre dans la compensation du champ magnétique afin d'augmenter l'intensité du brassage de l'alumine dans les cuves, et ce afin d'augmenter l'efficacité de la dissolution. Ainsi, lorsque l'alumine disponible est uniquement de l'alumine plus difficile à dissoudre que d'ordinaire, le rendement d'alumineries avec auto-compensation peut être sensiblement affecté.
D'autres caractéristiques et avantages de la présente invention ressortiront clairement de la description ci-après d'un mode particulier de réalisation, donné à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels :
La figure 1 est une vue schématique d'une aluminerie selon l'état de la technique,
La figure 2 est une vue schématique de côté de deux cuves d'électrolyse successives de l'état de la technique,
La figure 3 est une vue schématique en filaire du circuit électrique parcouru par le courant d'électrolyse dans les deux cuves de la figure 2,
La figure 4 est une vue schématique en coupe selon un plan longitudinal vertical d'une cuve d'électrolyse de l'état de la technique,
La figure 5 est une vue schématique d'une aluminerie selon un mode de réalisation de l'invention,
La figure 6 est une représentation filaire du circuit électrique parcouru par le courant d'électrolyse dans deux cuves successives d'une aluminerie selon l'invention,
La figure 7 est une vue en coupe selon un plan longitudinal vertical d'une cuve d'électrolyse dans une aluminerie selon un mode de réalisation de l'invention,
La figure 8 est une vue schématique de côté de trois cuves d'électrolyse successives dans une file de cuves d'électrolyse d'une aluminerie selon un mode de réalisation de l'invention. La figure 9 est une représentation filaire du circuit électrique parcouru par le courant d'électrolyse dans deux cuves successives d'une aluminerie selon l'invention,
La figure 1 montre une aluminerie 100 de l'état de la technique. L'aluminerie 100 comprend des cuves d'électrolyses disposées transversalement par rapport à la longueur de la file qu'elles forment. Les cuves sont ici alignées selon deux files 101 , 102 parallèles et parcourues par un courant d'électrolyse li00. Deux circuits 104, 106 électriques secondaires s'étendent sur les côtés des files 101 , 102 pour compenser le champ magnétique généré par la circulation du courant l100 d'électrolyse d'une cuve à une autre et dans la file voisine. Les circuits 104, 106 électriques secondaires sont parcourus respectivement par des courants l104, l106 circulant dans le même sens que le courant d'électrolyse l100. Des stations 108 d'alimentation alimentent la série de cuves d'électrolyse et les circuits 104, 106 électriques secondaires. Selon cet exemple, pour un courant d'électrolyse d'intensité 500kA, compte-tenu des perturbations magnétiques de « fin de file », la distance D100 entre les cuves d'électrolyse les plus proches des stations 108 d'alimentation et les stations 108 d'alimentation est de l'ordre de 45m, et la distance D30o sur laquelle s'étendent les circuits 104, 106 électriques secondaires au-delà des fins de file est de l'ordre de 45m, tandis que la distance D200 entre les deux files 101 , 102 est de l'ordre de 85m pour limiter les perturbations magnétiques d'une file sur l'autre.
On précise que la description est réalisée par rapport à un référentiel cartésien lié à une cuve d'électrolyse, l'axe X étant orienté dans une direction transversale de la cuve d'électrolyse, l'axe Y étant orienté dans une direction longitudinale de la cuve d'électrolyse, et l'axe Z étant orienté dans une direction verticale de la cuve d'électrolyse. Les orientations, directions, plans et déplacements longitudinaux, transversaux, verticaux sont ainsi définis par rapport à ce référentiel. La figure 2 montre deux cuves 200 d'électrolyse traditionnelles consécutives d'une même file de cuves. Comme on peut le voir sur la figure 2, la cuve 200 d'électrolyse comprend un caisson 201 garni intérieurement par des matériaux 202 réfractaires, une cathode 204 et des anodes 206 plongées dans un bain 208 électrolytique au fond duquel est formée une nappe 210 d'aluminium. La cathode 204 est reliée électriquement à des conducteurs cathodiques 205 qui traversent les côtés du caisson 201 au niveau de sorties cathodiques 212. Les sorties 212 cathodiques sont reliées à des conducteurs 214 d'acheminement qui acheminent le courant d'électrolyse jusqu'aux conducteurs 213 de montée et de connexion d'une cuve d'électrolyse suivante. Comme on peut le voir sur la figure 2, ces conducteurs 213 de montée et de connexion s'étendent sur un seul côté, le côté amont, de la cuve 200 d'électrolyse et s'étendent au-dessus des anodes 206, jusqu'à la partie centrale longitudinale de la cuve.
La figure 3 illustre schématiquement le chemin parcouru par le courant d'électrolyse l100 dans chacune des cuves 200 et entre deux cuves adjacentes comme celles représentées sur la figure 2. On remarque notamment que la montée du courant d'électrolyse l100 jusqu'à l'ensemble anodique d'une cuve est asymétrique puisque cette montée est effectuée uniquement à l'amont des cuves dans le sens de circulation globale du courant d'électrolyse l100 dans la file (à gauche des cuves sur les figures 2 et 3).
La figure 4 montre une vue en coupe d'une cuve 200 traditionnelle, dans laquelle on constate l'agencement sur les côtés de la cuve 200 des conducteurs électriques formant les circuits 104, 106 électriques secondaires pour compenser le champ magnétique généré par la circulation du courant l100 d'électrolyse d'une cuve 200 à une autre et dans la file voisine.
La figure 5 montre une aluminerie 1 selon un mode de réalisation de l'invention. L'aluminerie 1 comprend une pluralité de cuves 50 d'électrolyse, sensiblement rectangulaires, destinées à la production d'aluminium par électrolyse, qui peuvent être alignées selon une ou plusieurs files, en l'occurrence deux files, sensiblement parallèles, reliées en série et alimentées en courant d'électrolyse.
Il est important de noter que les cuves 50 d'électrolyse sont agencées transversalement par rapport à la file qu'elles forment. On notera que par cuve 50 d'électrolyse agencée transversalement on entend cuve 50 d'électrolyse dont la plus grande dimension, la longueur, est sensiblement perpendiculaire à la direction globale dans laquelle circule le courant d'électrolyse, c'est-à-dire à la direction de circulation du courant d'électrolyse à l'échelle des files de cuves 50 d'électrolyse.
L'aluminerie 1 comprend également un circuit 6 électrique de compensation, parcouru par un courant l2 de compensation. A la différence des circuits 104, 106 illustrés sur la figure 1 , il est important de noter que le circuit 6 électrique de compensation s'étend sous les cuves 50 d'électrolyse. On remarquera également que le courant l2 de compensation circule en sens inverse du courant d'électrolyse. Le circuit 6 électrique de compensation de la figure 5 forme plus particulièrement une boucle sous les files de cuves 50 d'électrolyse.
Avantageusement, un ensemble de stations 8 d'alimentation alimente indépendamment les cuves 50 d'électrolyse et le circuit 6 électrique de compensation. Autrement dit, le circuit 6 électrique de compensation est un circuit électrique secondaire de compensation distinct du circuit électrique 7 principal parcouru par le courant d'électrolyse. L'intensité du courant l2 de compensation est variable, indépendamment du courant d'électrolyse. Ainsi, l'intensité du courant l2 de compensation peut être modifiée sans que l'intensité du courant d'électrolyse le soit nécessairement.
La figure 8 montre trois cuves 50 d'électrolyse consécutives de l'aluminerie 1. Les cuves 50 d'électrolyse peuvent classiquement comprendre un caisson 60, muni de berceaux de renforts 61 , qui peut être métallique, par exemple en acier, et un revêtement 62 intérieur en matériaux réfractaires.
Les cuves 50 d'électrolyse comprennent une pluralité d'ensembles anodiques constitués d'un support 53 (ici une barre horizontale transversale) et d'au moins une anode 52, notamment en matériau carboné et plus particulièrement de type précuite, des conducteurs 54 de montée et de connexion qui, à la différence de la cuve 200 d'électrolyse, s'étendent de part et d'autre de chacune des cuves 50 d'électrolyse pour conduire le courant d'électrolyse vers les anodes 52, et une cathode 56, éventuellement formée de plusieurs blocs cathodiques en matériau carboné, traversée par des conducteurs 55 cathodiques destinés à collecter le courant I·, d'électrolyse pour le conduire vers des sorties 58 cathodiques sortant par le fond du caisson 60 et reliées à des conducteurs 57 d'acheminement conduisant à leur tour le courant d'électrolyse jusqu'aux conducteurs 54 de montée et de connexion de la cuve 50 d'électrolyse suivante. Les ensembles anodiques sont destinés à être enlevés et remplacés périodiquement lorsque les anodes sont usées.
Les conducteurs 55 cathodiques, les sorties 58 cathodiques et les conducteurs 57 d'acheminement peuvent correspondre à des barres métalliques, par exemple en aluminium, cuivre et/ou acier.
La figure 6 représente schématiquement le parcours du courant d'électrolyse dans deux cuves 50 d'électrolyse successives de l'aluminerie 1 selon l'invention. Par comparaison avec la figure 3, on constatera aisément que la montée du courant d'électrolyse est ici avantageusement réalisée des deux côtés longitudinaux de la cuve 50 d'électrolyse. On remarque aussi la présence du circuit 6 de compensation, sous les cuves 50 d'électrolyse, et parcouru par le courant l2 de compensation circulant en sens inverse du sens de circulation global du courant d'électrolyse d'une cuve 50 à la suivante.
La figure 9 représente schématiquement le parcours du courant d'électrolyse dans deux cuves 50 d'électrolyse successives de l'aluminerie 1 selon l'invention et diffère de la figure 6 en ce que les sorties 58 cathodiques sortent du caisson 60 de façon plus conventionnelle au niveau des côtés du caisson 60. La figure 7 montre une vue en coupe d'une cuve 50 d'électrolyse de l'aluminerie 1. On remarque également la présence du circuit 6 de compensation, sous les cuves 50 d'électrolyse, et parcouru par le courant l2 de compensation circulant en sens inverse du sens de circulation global du courant d'électrolyse d'une cuve 50 à la suivante. On notera aussi que le circuit 6 de compensation forme selon l'exemple de la figure 7 une nappe de trois conducteurs sensiblement équidistants et agencés dans un même plan XY sensiblement horizontal ; de plus, les conducteurs de cette nappe peuvent s'étendre sensiblement symétriquement par rapport à un plan médian transversal XZ.
Le circuit de conducteurs électriques de la cuve, et de l'aluminerie, peut avantageusement être réalisé de façon modulaire. La figure 7 montre notamment une cuve formée de trois modules M identiques. Chaque module comporte dans cet exemple les conducteurs d'acheminement 57 disposés entre trois berceaux 61 adjacents du caisson et un conducteur du circuit 6 de compensation disposé sensiblement sous le berceau 61 central du module. Le conducteur du circuit 6 de compensation du module est traversé par un courant de l'ordre de 50% à 150% de l'intensité du courant d'électrolyse correspondant à ce module. Comme la stabilité magnétique de la cuve est réalisée par module, la stabilité de la cuve ne dépend pas du nombre de modules formant le circuit de conducteurs électriques de la cuve et de l'aluminerie. Ainsi, la longueur et l'intensité des cuves peut être ajustée de façon simple par addition de modules pour satisfaire aux conditions de réalisation souhaitée de l'aluminerie.
Comme cela est visible sur la figure 8, les conducteurs 54 de montée et de connexion s'étendent vers le haut, par exemple de façon sensiblement verticale, le long de chaque bord longitudinal des cuves 50 d'électrolyse. Les bords longitudinaux des cuves 50 d'électrolyse correspondent aux bords de plus grande dimension, sensiblement perpendiculaires à la direction X transversale.
Les conducteurs 54 de montée et de connexion à l'amont et ceux à l'aval peuvent par ailleurs être agencés à équidistance d'un plan YZ médian de la cuve 50 d'électrolyse.
Les conducteurs 54 de montée et de connexion amont peuvent être sensiblement symétriques aux conducteurs 54 électriques d'acheminement aval, par rapport au plan YZ médian des cuves 50 d'électrolyse.
Bien que cela ne soit pas représenté, les conducteurs 54 de montée et de connexion amont de l'une des cuves 50 d'électrolyse peuvent être agencés en quinconce par rapport aux conducteurs 54 de montée et de connexion aval de la cuve 50 d'électrolyse la précédant dans la file. La figure 8 montre également que les conducteurs 54 de montée et de connexion s'étendent de part et d'autre du caisson 60 sans s'étendre au droit des anodes 52, c'est- à-dire sans s'étendre dans un volume projeté verticalement de la superficie des anodes dans un plan horizontal. On remarque également que les conducteurs électriques 54 de montée et de connexion s'étendent au-dessus des liquides 63 à une hauteur h comprise entre 0 et 1 ,5 mètre.
Par ailleurs, le support 53 de l'ensemble anodique comporte une traverse s'étendant transversalement par rapport à la cuve 50 d'électrolyse en étant supporté et connectée électriquement au niveau de chacun des deux bords longitudinaux de part et d'autre de la cuve 50 d'électrolyse.
On notera que la distribution de courant d'électrolyse entre les conducteurs 54 de montée et de connexion amont des cuves 50 d'électrolyse et les conducteurs 54 de montée et de connexion aval des cuves 50 d'électrolyse peut être par exemple de l'ordre de 30% à 70% à l'amont et respectivement 70% à 30% à l'aval. Avantageusement cette distribution de courant est de 40% à 60% à l'amont et respectivement 60% à 40% à l'aval, et de préférence de 45% à 55% à l'amont et respectivement 55% à 45% à l'aval. Autrement dit, elle est de l'ordre de 50% plus ou moins 20% à l'amont et le reste à l'aval, et de préférence de l'ordre de 50% plus ou moins 10%, et de préférence encore de l'ordre de 50% plus ou moins 5%. Comme on peut le voir sur la figure 8, les sorties 58 cathodiques et les conducteurs 57 d'acheminement peuvent s'étendre uniquement dans un plan XZ vertical perpendiculaire à la direction longitudinale Y des cuves 50 d'électrolyse. En particulier, les sorties 58 cathodiques peuvent s'étendre de façon sensiblement verticale uniquement.
Les sorties 58 cathodiques peuvent traverser le fond du caisson 60 des cuves 50 d'électrolyse, et les conducteurs 57 d'acheminement peuvent s'étendre sous les cuves 50 d'électrolyse, avantageusement en ligne droite, de façon sensiblement parallèle à une direction transversale X des cuves 50 d'électrolyse, vers les conducteurs 54 de montée et de connexion de la cuve 50 d'électrolyse suivante.
L'association du circuit 6 électrique de compensation passant sous les cuves 50 d'électrolyse dont le courant l2 de compensation circule en sens contraire du courant d'électrolyse et des conducteurs 54 de montée et de connexion s'étendant sur deux bords longitudinaux opposés des cuves 50 d'électrolyse permet de stabiliser les liquides contenus dans les cuves 50 d'électrolyse et de limiter les perturbations des cuves 50 d'électrolyse en bout de file, car les champs magnétiques générés par les conducteurs du courant d'électrolyse passant sous les cuves et les conducteurs du circuit électrique de compensation s'annulent.
L'intensité du courant de compensation parcourant le circuit de compensation est avantageusement de l'ordre de 50% à 150% de l'intensité du courant d'électrolyse, de préférence de l'ordre de 70% à 130% de l'intensité du courant d'électrolyse, et de préférence encore de l'ordre de 80% à 120% de l'intensité du courant d'électrolyse, afin d'assurer une annulation appropriée des champs magnétiques et la stabilité des cuves.
Par conséquent, les distances entre les files, et les longueurs du circuit électrique d'électrolyse et du circuit 6 électrique de compensation, peuvent être réduites. Aussi, en se référant de nouveau à la figure 5, la distance Di entre les cuves 50 d'électrolyse les plus proches des stations 8 d'alimentation et/ou la distance D3 sur laquelle s'étend le circuit 6 électrique de compensation au-delà des fins de file est inférieure ou égale à 30m, par exemple inférieure ou égale à 20m, et de préférence inférieure ou égale à 10m ; la distance D2 entre les deux files est inférieure ou égale à 40m, par exemple inférieure ou égale à 30m, et de préférence inférieure ou égale à 25m. Ainsi, comme on peut le voir sur la figure 5, les deux files de l'aluminerie 1 selon l'invention peuvent être agencées dans un même bâtiment 12, ce qui permet des gains structurels très importants.
De préférence, le circuit 6 électrique de compensation s'étend sous les cuves 50 en formant une nappe de deux à douze, de préférence de trois à dix, conducteurs électriques parallèles sensiblement équidistants répartis sensiblement symétriquement par rapport à un axe X médian transversal des cuves 50. Le courant l2 de compensation traversant par exemple de façon équirépartie les conducteurs de cette nappe de conducteurs parallèles est ainsi mieux réparti sous toute la longueur de la cuve 50. Les champs magnétiques générés par les conducteurs 57 d'acheminement traversés par le courant I·, d'électrolyse, eux-mêmes répartis sous la cuve 50 sur toute sa longueur, sont ainsi mieux compensés.
Le ou les conducteurs électriques formant le circuit 6 électrique de compensation s'étendent sous les files de cuves 50 de façon sensiblement parallèle à un axe transversal X des cuves 50 d'électrolyse.
On notera que le circuit 6 de compensation peut être formé par des conducteurs électriques formant une pluralité de sous-circuits électriques secondaires de compensation, indépendants les uns des autres, et chacun parcouru par un courant de compensation circulant en sens contraire du courant d'électrolyse. Les sous-circuits électriques secondaires de compensation peuvent former des boucles parallèles sous les cuves 50 d'électrolyse, par exemple deux dans le cas de la figure 5. Ainsi, en cas de perçage d'une cuve 50 d'électrolyse, si l'un des sous-circuits est atteint, le ou les autres sous-circuits électriques secondaires de compensation peuvent continuer de compenser le champ magnétique.
Par ailleurs, les conducteurs électriques du circuit 6 de compensation, ou le cas échéant de l'un des sous-circuits électriques secondaires de compensation, peuvent réaliser plusieurs tours en parallèle et/ou en série sous les cuves d'électrolyse, notamment lorsque ces conducteurs électriques sont en matériau supraconducteur.
Les conducteurs électriques formant le circuit 6 de compensation peuvent correspondre à des barres métalliques, par exemple en aluminium, cuivre ou acier, ou, de manière avantageuse, à des conducteurs électriques en matériau supraconducteur, ces derniers permettant de réduire la consommation d'énergie et, du fait de leur masse plus faible que celle des conducteurs équivalents en métal, de réduire les frais de structure pour les supporter ou pour les protéger d'éventuelles coulées de métal au moyen de déflecteurs métalliques. Avantageusement, ces conducteurs électriques en matériau supraconducteur peuvent être agencés pour réaliser plusieurs tours en série sous la ou les files de cuves.
La somme des intensités parcourant tous les conducteurs du circuit électrique de compensation passant sous la cuve est avantageusement de l'ordre de 50% à 150% de l'intensité du courant d'électrolyse, de préférence de l'ordre de 70% à 130% de l'intensité du courant d'électrolyse, et de préférence encore de l'ordre de 80% à 120% de l'intensité du courant d'électrolyse.
Ainsi, si l'aluminerie 1 comprend un circuit 6 électrique secondaire de compensation formant un unique tour sous les cuves 50 d'électrolyse, l'intensité du courant de compensation parcourant ce circuit 6 électrique de compensation peut être de l'ordre de 50% à 150% de l'intensité du courant d'électrolyse. Si ce circuit 6 électrique secondaire de compensation forme N tours sous les cuves 50 d'électrolyse, alors la somme des N intensités traversant chacun ces tours est de l'ordre de 50% à 150% de l'intensité du courant d'électrolyse. Aussi, selon l'exemple de la figure 5, l'intensité du courant l2 correspondant à la somme des intensités l2o et l2i traversant chacun des deux tours peut être de l'ordre de 50% à 150% de l'intensité du courant d'électrolyse. L'invention concerne également un procédé de brassage de l'alumine dans les cuves 50 d'électrolyse de l'aluminerie 1 . Ce procédé comprend une étape de modulation de l'intensité du courant de compensation parcourant le circuit 6 électrique de compensation, ou le cas échéant des courants de compensation parcourant les sous-circuits le formant. Cette modulation peut plus particulièrement être fonction des caractéristiques de l'alumine, de variation de l'intensité du courant d'électrolyse ou de modifications structurelles de l'aluminerie.
Le procédé de brassage de l'alumine comprend les étapes : d'analyse d'au moins une caractéristique de l'alumine (par exemple l'habilité de l'alumine à se dissoudre dans le bain, la fluidité de l'alumine, sa solubilité, sa teneur en fluor, son humidité...), de détermination d'une valeur d'intensité du courant de compensation à faire circuler dans le circuit de compensation en fonction de ladite au moins une caractéristique analysée (cette étape de détermination pouvant être réalisée au moyen d'un abaque obtenue par expérimentation présentant une relation entre la valeur d'intensité et la caractéristique analysée), dans le but de générer un seuil de vitesse des écoulements MHD adapté pour brasser efficacement l'alumine en impactant le moins possible le rendement, de modification de l'intensité du courant l2 de compensation conformément à la valeur d'intensité déterminée à l'étape précédente.
Bien entendu, l'invention n'est nullement limitée au mode de réalisation décrit ci-dessus, ce mode de réalisation n'ayant été donné qu'à titre d'exemple. Des modifications sont possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans sortir pour autant du champ de protection de l'invention. Cette invention est compatible par exemple avec l'utilisation d'anodes de type « inerte » au niveau desquelles se forme de l'oxygène au cours de la réaction d'électrolyse.

Claims

REVENDICATIONS
1. Aluminerie (1), comprenant au moins une file de cuves (50) d'électrolyse agencées transversalement par rapport à la longueur de la file, l'une des cuves (50) d'électrolyse comprenant un caisson (60), des ensembles anodiques comportant un support (53) et au moins une anode (52), et une cathode (56) traversée par des conducteurs (58) cathodiques destinés à collecter le courant (h) d'électrolyse à la cathode pour le conduire jusqu'à des sorties cathodiques hors du caisson, caractérisée en ce que la cuve (50) d'électrolyse comprend des conducteurs (54) électriques de montée et de connexion aux ensembles anodiques s'étendant vers le haut le long de deux bords longitudinaux opposés de la cuve (50) d'électrolyse pour conduire le courant (h) d'électrolyse vers les ensembles anodiques, et des conducteurs (57) d'acheminement connectés aux sorties cathodiques et destinés à conduire le courant d'électrolyse depuis les sorties cathodiques jusqu'aux conducteurs (54) électriques de montée et de connexion de la cuve (50) d'électrolyse suivante, et en ce que l'aluminerie (1) comprend au moins un circuit (6) électrique de compensation s'étendant sous les cuves (50) d'électrolyse, ledit circuit (6) de compensation pouvant être parcouru par un courant (l2) de compensation circulant sous les cuves (50) d'électrolyse en sens inverse du sens de circulation global du courant (h) d'électrolyse parcourant les cuves (50) d'électrolyse situées au-dessus.
2. Aluminerie (1) selon la revendication 1 , dans laquelle le circuit (6) électrique de compensation est un circuit électrique secondaire de compensation distinct du circuit électrique parcouru par le courant (h) d'électrolyse.
3. Aluminerie (1) selon la revendication 1 ou 2, caractérisée en ce que l'aluminerie (1) comporte deux files de cuves agencées parallèlement l'une par rapport à l'autre, alimentées par une même station, et reliées électriquement en série de sorte que le courant d'électrolyse circulant dans la première des deux files de cuves circule ensuite dans la deuxième des deux files de cuves selon un sens globalement opposé à celui dans lequel il circulait dans la première des deux files, et en ce que le circuit (6) électrique de compensation forme une boucle sous ces deux files de cuves parallèles.
4. Aluminerie (1) selon l'une des revendications 1 à 3, caractérisée en ce que la cuve (50) d'électrolyse comprend pour chacun de ses deux bords longitudinaux une pluralité de conducteurs (54) électriques de montée et de connexion répartis à intervalles prédéterminés sur sensiblement toute la longueur du bord longitudinal correspondant.
5. Aluminerie (1) selon l'une des revendications 1 à 4, caractérisée en ce que les conducteurs (54) électriques de montée et de connexion sont disposés de façon sensiblement symétrique par rapport à un plan médian longitudinal de la cuve (50) d'électrolyse.
6. Aluminerie (1) selon l'une des revendications 1 à 5, caractérisée en ce que les conducteurs (57) d'acheminement s'étendent sous la cuve (50) d'électrolyse sensiblement droits dans une direction transversale par rapport à la cuve (50) d'électrolyse.
7. Aluminerie (1) selon l'une des revendications 1 à 6, caractérisée en ce que le circuit (6) électrique de compensation comprend des conducteurs électriques formant une pluralité de sous-circuits électriques secondaires de compensation indépendants les uns des autres.
8. Aluminerie (1) selon l'une des revendications 1 à 7, caractérisée en ce que le circuit (6) électrique de compensation comprend des conducteurs électriques s'étendant parallèlement sous les cuves (50) d'électrolyse.
9. Aluminerie (1) selon l'une des revendications 1 à 8, caractérisée en ce que les conducteurs électriques formant le circuit électrique de compensation ou le cas échéant les sous-circuits électriques secondaires de compensation s'étendent sous les cuves (50) d'électrolyse en formant ensemble une nappe de deux à douze, de préférence de trois à dix, conducteurs électriques parallèles.
10. Aluminerie (1) selon l'une des revendications 7 à 9, dans laquelle lesdits conducteurs électriques sont sensiblement équidistants et répartis sensiblement symétriquement par rapport à un axe médian transversal des cuves (50) d'électrolyse.
1 1. Aluminerie (1) selon l'une des revendications 1 à 10, caractérisée en ce que les conducteurs (54) électriques de montée et de connexion s'étendant le long de l'un des deux bords longitudinaux de la cuve (50) d'électrolyse sont agencés en quinconce par rapport à des conducteurs (54) électriques de montée et de connexion agencés sur le bord longitudinal adjacent d'une cuve (50) d'électrolyse distincte précédente ou suivante.
12. Aluminerie (1) selon l'une des revendications 1 à 1 1 , caractérisée en ce que chaque sortie (58) cathodique sort du caisson (60) uniquement dans un plan vertical perpendiculaire à la direction longitudinale de la cuve (50) d'électrolyse.
13. Aluminerie (1) selon l'une des revendications 1 à 12, caractérisée en ce que le support (53) de l'ensemble anodique comporte une traverse s'étendant transversalement par rapport à la cuve (50) d'électrolyse en étant supportée et connectée électriquement au niveau de chacun des deux bords longitudinaux de part et d'autre de la cuve (50) d'électrolyse.
14. Aluminerie (1) selon l'une des revendications 1 à 13, caractérisée en ce que les conducteurs (54) de montée et de connexion s'étendent de part et d'autre du caisson (60) sans s'étendre au droit de la ou des anodes (52).
15. Aluminerie (1) selon l'une des revendications 1 à 14, caractérisée en ce que les conducteurs électriques (54) de montée et de connexion s'étendent à une hauteur (h) comprise entre 0 et 1 ,5 mètre au-dessus d'un plan sensiblement horizontal incluant la surface des liquides (63) contenus dans la cuve (50) d'électrolyse.
16. Méthode d'utilisation d'une aluminerie (1) selon l'une des revendications 1 à 15, caractérisée en ce que le circuit (6) de compensation est parcouru par un courant (l2) de compensation circulant sous les cuves (50) d'électrolyse en sens inverse du sens de circulation global du courant (h) d'électrolyse parcourant les cuves (50) d'électrolyse situées au-dessus.
17. Méthode selon la revendication 16, caractérisée en ce que l'intensité du courant (l2) de compensation est de l'ordre de 50% à 150% de l'intensité du courant (h) d'électrolyse.
18. Méthode selon la revendication 17, caractérisée en ce que l'intensité du courant (l2) de compensation est de l'ordre de 70% à 130% de l'intensité du courant (h) d'électrolyse et de préférence de l'ordre de 80% à 120% de l'intensité du courant (h) d'électrolyse.
19. Méthode selon l'une des revendications 16 à 18, caractérisée en ce que la distribution de courant entre les conducteurs (54) électriques de montée et de connexion disposés à l'amont de la cuve (50) d'électrolyse et les conducteurs (54) électriques de montée et de connexion disposés à l'aval de la cuve (50) d'électrolyse est de l'ordre de 30 - 70% à l'amont et respectivement 30-70% à l'aval.
20. Méthode selon la revendication 19, caractérisée en ce que la distribution de courant entre les conducteurs (54) électriques de montée et de connexion disposés à l'amont de la cuve (50) d'électrolyse et les conducteurs (54) électriques de montée et de connexion disposés à l'aval de la cuve (50) d'électrolyse est de l'ordre de 40 - 60% à l'amont et respectivement 40-60% à l'aval.
21. Méthode selon la revendication 20, caractérisée en ce que la distribution de courant entre les conducteurs (54) électriques de montée et de connexion disposés à l'amont de la cuve (50) d'électrolyse et les conducteurs (54) électriques de montée et de connexion disposés à l'aval de la cuve (50) d'électrolyse est de l'ordre de 45 - 55% à l'amont et respectivement 45-55% à l'aval.
22. Procédé de brassage de l'alumine contenue dans les cuves (50) d'électrolyse d'une aluminerie (1) selon l'une des revendications 1 à 15, le procédé comprenant : l'analyse d'au moins une caractéristique de l'alumine,
la détermination d'une valeur d'intensité du courant de compensation à faire circuler dans le circuit (6) électrique de compensation en fonction de ladite au moins une caractéristique analysée,
la modification de l'intensité du courant (l2) de compensation jusqu'à la valeur d'intensité déterminée à l'étape précédente si l'intensité du courant (l2) de compensation diffère de ladite valeur.
PCT/CA2014/050722 2013-08-09 2014-07-30 Aluminerie comprenant un circuit électrique de compensation WO2015017924A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2014305613A AU2014305613B2 (en) 2013-08-09 2014-07-30 Aluminium smelter comprising a compensating electric circuit
CN201480044967.8A CN105452536B (zh) 2013-08-09 2014-07-30 包括补偿电路的铝厂
SI201431028T SI3030695T1 (sl) 2013-08-09 2014-07-30 Talilnica aluminija s kompenzacijskim električnim vezjem
US14/911,099 US10344390B2 (en) 2013-08-09 2014-07-30 Aluminium smelter comprising a compensating electric circuit
EP14834860.0A EP3030695B1 (fr) 2013-08-09 2014-07-30 Aluminerie comprenant un circuit électrique de compensation
BR112016001961A BR112016001961A2 (pt) 2013-08-09 2014-07-30 usina de produção de alumínio, compreendendo um circuito elétrico de compensação
CA2919050A CA2919050C (fr) 2013-08-09 2014-07-30 Aluminerie comprenant un circuit electrique de compensation
EA201690339A EA030271B1 (ru) 2013-08-09 2014-07-30 Установка получения алюминия, содержащая компенсирующую электрическую цепь
DKPA201670126A DK179170B1 (en) 2013-08-09 2016-03-03 ALUMINUM MELTING SYSTEMS INCLUDING AN ELECTRIC EQUALITY CIRCUIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1301910A FR3009564A1 (fr) 2013-08-09 2013-08-09 Aluminerie comprenant un circuit electrique de compensation
FR13/01910 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015017924A1 true WO2015017924A1 (fr) 2015-02-12

Family

ID=49667213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2014/050722 WO2015017924A1 (fr) 2013-08-09 2014-07-30 Aluminerie comprenant un circuit électrique de compensation

Country Status (14)

Country Link
US (1) US10344390B2 (fr)
EP (1) EP3030695B1 (fr)
CN (1) CN105452536B (fr)
AR (3) AR097248A1 (fr)
AU (1) AU2014305613B2 (fr)
BR (1) BR112016001961A2 (fr)
CA (1) CA2919050C (fr)
DK (1) DK179170B1 (fr)
EA (1) EA030271B1 (fr)
FR (1) FR3009564A1 (fr)
MY (1) MY178282A (fr)
SI (1) SI3030695T1 (fr)
TR (1) TR201821117T4 (fr)
WO (1) WO2015017924A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016128824A1 (fr) * 2015-02-09 2016-08-18 Rio Tinto Alcan International Limited Aluminerie et procédé de compensation d'un champ magnétique créé par la circulation du courant d'électrolyse de cette aluminerie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020123A1 (fr) * 2015-08-06 2017-02-09 9320-0145 Québec Inc. Système connecteur électrique pour cellule électrolytique d'une installation de production d'aluminium et procédé d'utilisation
US20170073829A1 (en) * 2015-09-14 2017-03-16 Siemens Aktiengesellschaft Method for reducing the formation of fluorocarbons in molten salt electrolysis
RU2678624C1 (ru) * 2017-12-29 2019-01-30 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Ошиновка модульная для серий алюминиевых электролизеров

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1148115A (fr) * 1979-12-21 1983-06-14 Jean-Marc Blanc Dispositif conducteur de courant d'une pile electrolytique a une autre
CA2607479A1 (fr) * 2005-05-04 2007-01-11 Russian Engineering Company, L.L.C. Ensemble barre omnibus de module pour cellules electrolytiques d'aluminium haute puissance
CA2585218A1 (fr) * 2006-04-18 2007-10-18 Russian Engineering Company, L.L.C. Dispositif de compensation du champ magnetique induit par une rangee voisine de cuves d'electrolyse de forte puissance raccordees en serie

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104954C (fr) * 1954-02-09 1900-01-01
DE1010744B (de) * 1955-06-03 1957-06-19 Vaw Ver Aluminium Werke Ag Schienenfuehrung fuer grosse Elektrolysezellen fuer die Aluminiumelektrolyse
JPS5216843B2 (fr) * 1973-10-26 1977-05-12
NO139829C (no) * 1977-10-19 1979-05-16 Ardal Og Sunndal Verk Anordning for kompensering av skadelig magnetisk paavirkning mellom to eller flere rekker av tverrstilte elektrolyseovner for smelteelektrolytisk fremstilling av aluminium
FR2425482A1 (fr) 1978-05-11 1979-12-07 Pechiney Aluminium Procede de compensation du champ magnetique induit par la file voisine dans les series de cuves d'electrolyse a haute intensite
FR2469475A1 (fr) 1979-11-07 1981-05-22 Pechiney Aluminium Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse a tres haute intensite placees en travers
AU536947B2 (en) * 1979-12-03 1984-05-31 Swiss Aluminium Ltd. Anode support system for molten salt electrolytic cell
FR2576920B1 (fr) * 1985-02-07 1987-05-15 Pechiney Aluminium Cuve d'electrolyse hall-heroult a barres cathodiques et a calorifugeage dissymetriques
FR2583069B1 (fr) * 1985-06-05 1987-07-31 Pechiney Aluminium Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
FR2868436B1 (fr) 2004-04-02 2006-05-26 Aluminium Pechiney Soc Par Act Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
NO322258B1 (no) * 2004-09-23 2006-09-04 Norsk Hydro As En fremgangsmate for elektrisk kobling og magnetisk kompensasjon av reduksjonsceller for aluminium, og et system for dette
FR2964984B1 (fr) * 2010-09-17 2012-08-31 Alcan Int Ltd Dispositif de connexion electrique entre deux cellules successives d'aluminium
EP2732076A2 (fr) 2011-07-12 2014-05-21 Rio Tinto Alcan International Limited Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
FR2977898A1 (fr) * 2011-07-12 2013-01-18 Rio Tinto Alcan Int Ltd Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1148115A (fr) * 1979-12-21 1983-06-14 Jean-Marc Blanc Dispositif conducteur de courant d'une pile electrolytique a une autre
CA2607479A1 (fr) * 2005-05-04 2007-01-11 Russian Engineering Company, L.L.C. Ensemble barre omnibus de module pour cellules electrolytiques d'aluminium haute puissance
CA2585218A1 (fr) * 2006-04-18 2007-10-18 Russian Engineering Company, L.L.C. Dispositif de compensation du champ magnetique induit par une rangee voisine de cuves d'electrolyse de forte puissance raccordees en serie

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016128824A1 (fr) * 2015-02-09 2016-08-18 Rio Tinto Alcan International Limited Aluminerie et procédé de compensation d'un champ magnétique créé par la circulation du courant d'électrolyse de cette aluminerie
US10358733B2 (en) 2015-02-09 2019-07-23 Rio Tinto Alcan International Limited Aluminum smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminum smelter
EA035575B1 (ru) * 2015-02-09 2020-07-09 Рио Тинто Алкан Интернэшнл Лимитед Установка получения алюминия электролизом и способ компенсации магнитного поля, создаваемого при протекании тока электролиза в этой установке

Also Published As

Publication number Publication date
FR3009564A1 (fr) 2015-02-13
CN105452536B (zh) 2017-09-19
DK201670126A1 (en) 2016-03-14
BR112016001961A2 (pt) 2017-08-01
EA030271B1 (ru) 2018-07-31
DK179170B1 (en) 2018-01-02
US10344390B2 (en) 2019-07-09
EA201690339A1 (ru) 2016-06-30
CA2919050A1 (fr) 2015-02-12
AR097247A1 (es) 2016-03-02
TR201821117T4 (tr) 2019-02-21
EP3030695A1 (fr) 2016-06-15
CA2919050C (fr) 2021-03-30
AR097246A1 (es) 2016-03-02
AU2014305613B2 (en) 2017-08-31
EP3030695B1 (fr) 2018-10-17
AR097248A1 (es) 2016-03-02
CN105452536A (zh) 2016-03-30
MY178282A (en) 2020-10-07
SI3030695T1 (sl) 2019-02-28
US20160201208A1 (en) 2016-07-14
EP3030695A4 (fr) 2017-03-29
AU2014305613A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
EP2732074B1 (fr) Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
EP3030695B1 (fr) Aluminerie comprenant un circuit électrique de compensation
FR2583069A1 (fr) Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
CH619006A5 (fr)
EP3256623B1 (fr) Aluminerie et procédé de compensation d'un champ magnétique créé par la circulation du courant d'électrolyse de cette aluminerie
CA1232869A (fr) Cuve d'electrolyse a intensite superieure a 250 000 amperes pour la production d'aluminium par le procede hall-heroult
CA1143695A (fr) Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse a tres haute intensite placees en travers
CA1100906A (fr) Procede pour ameliorer l'alimentation en courant de cuves d'electrolyse alignees en long
CA2841847A1 (fr) Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
WO2009066025A2 (fr) Anode rainuree de cuve d'εlectrolyse
OA17793A (fr) Aluminerie comprenant un circuit électrique de compensation
EP3362590B1 (fr) Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
EP3030694B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve
EP2616571B1 (fr) Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium
OA18402A (fr) Aluminerie et procédé de compensation d'un champ magnétique crée par la circulation du courant d'électrolyse de cette aluminerie.
FR2583068A1 (fr) Circuit de connexion electrique de series de cuves d'electrolyse pour la production d'aluminium sous tres haute intensite
OA16842A (fr) Aluminerie comprenant des cuves à sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
FR2789407A1 (fr) Arrangement de cuves d'electrolyse pour la production d'aluminium
WO2016128826A1 (fr) Cuve d'electrolyse

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044967.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2919050

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14911099

Country of ref document: US

Ref document number: 139450140003012973

Country of ref document: IR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016001961

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014305613

Country of ref document: AU

Date of ref document: 20140730

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014834860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201690339

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112016001961

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160128