WO2015016427A1 - Secondary battery charging circuit using linear regulator - Google Patents

Secondary battery charging circuit using linear regulator Download PDF

Info

Publication number
WO2015016427A1
WO2015016427A1 PCT/KR2013/009893 KR2013009893W WO2015016427A1 WO 2015016427 A1 WO2015016427 A1 WO 2015016427A1 KR 2013009893 W KR2013009893 W KR 2013009893W WO 2015016427 A1 WO2015016427 A1 WO 2015016427A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
mode
transistor
linear regulator
Prior art date
Application number
PCT/KR2013/009893
Other languages
French (fr)
Korean (ko)
Inventor
박시홍
김준식
진기웅
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Publication of WO2015016427A1 publication Critical patent/WO2015016427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present invention relates to a secondary battery charging circuit, and more particularly, to a secondary battery charging circuit using a switching method and a linear regulator method and a charging method for driving the same.
  • the secondary battery has a positive electrode and a negative electrode, and lithium ions are reversibly transferred between the two electrodes.
  • Secondary batteries have many advantages, such as high energy density, high operating voltage and excellent retention and life characteristics.
  • the charging operation of the secondary battery is to apply electrons to the negative electrode, and is usually performed by applying a DC component controlled by a constant voltage to the electrode and supplying electrons due to the current caused by the difference between the applied voltage and the battery internal voltage.
  • Applied voltage is defined per cell (denoted C), which is the nominal unit of the battery.
  • C the nominal unit of the battery.
  • the lithium ion battery and lithium polymer battery for mobile phones should be applied with a strictly limited constant voltage of 4.2V per cell (rated 3.6V). When 4.5 V or more is applied per unit cell, the electrolyte is decomposed to generate gas, leakage occurs, and there is a risk of explosion.
  • the secondary battery is provided with a protection circuit in order to set a voltage range for stable charging and discharging.
  • the protection circuit has a function to stop charging current above 4.35V, discharge current stop below 2.3V, and discharge current stop at output terminal short circuit.
  • the charging circuit should be configured for stable charging and discharging operation as soon as possible without adversely affecting the life and performance of the secondary battery.
  • a constant current method is used at the start of charging of the secondary battery, and the charging current is applied at a constant size.
  • the constant voltage circuit is driven to apply a constant voltage to the electrodes of the secondary battery.
  • a charging circuit In order to perform the charging operation of the secondary battery, a charging circuit, a regulator, and a switch are provided.
  • the charging circuit receives power from the outside to charge the cell, and the regulator forms a power supply voltage applied from the outside to a constant DC level or sets the output voltage of the charging circuit to a specific voltage level.
  • the switch is used to select a constant current method or a constant voltage method.
  • a pulse-frequency modulation control method is mainly used during low current driving, which is a constant voltage method.
  • low current driving which is a constant voltage method.
  • a large current is supplied through the inductor during the turn-on period of switching, and the charging is repeated while the turn-off operation is repeated.
  • the low current configuration a large amount of current ripple occurs, and an output voltage also appears ripple.
  • the ripple component at the output voltage of a secondary battery is strongly related to the life of the battery.
  • the present invention has been made to solve the above-described problems, and provides a charging circuit having a simple structure including a linear regulator and minimizing current and voltage ripple when charging at low current.
  • the present invention for solving the above problems, the linear regulator unit for operating in a constant voltage mode; PWM operation unit for operating in the constant current mode; And a mode selection unit for selectively receiving output signals of the linear regulator unit and the PWM operation unit to perform a charging operation in the constant voltage mode or the constant current mode.
  • the linear regulator unit for operating in the constant voltage mode is supplied with a low current at the time of the charging operation;
  • a PWM operation unit for operating in the constant current mode through PWM control according to the increase in the terminal voltage of the cell in the constant voltage mode;
  • a mode selection unit for selectively receiving output signals of the linear regulator unit and the PWM operation unit to perform a charging operation in the constant voltage mode or the constant current mode;
  • a sensing unit for sensing an output of the mode selection unit and controlling an operation of the PWM operation unit.
  • the low current charging method of the secondary battery charging circuit is a constant voltage mode using a linear regulator.
  • the use of the linear regulator makes the structure simpler than the conventional PFM control method, and can reduce the ripple of the output voltage in the low current charging method, thereby extending system stability and battery life.
  • FIG. 1 is a circuit diagram of a rechargeable battery charging circuit according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a rechargeable battery charging circuit according to a second embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a rechargeable battery charging circuit according to a third embodiment of the present invention.
  • FIG. 4 is a circuit diagram illustrating an example of a voltage sensing unit of a sensing unit.
  • FIG 5 is an image showing a comparison of the waveform of the charging current and voltage of the conventional PFM method and the method using the linear regulator of the present invention.
  • FIG. 1 is a circuit diagram of a rechargeable battery charging circuit according to a first embodiment of the present invention.
  • the charging circuit of the present embodiment includes a linear regulator unit 100, a PWM operation unit 200, a first mode selector 300, and a sensing unit 400.
  • the linear regulator 100 receives an input charging voltage VCHG and performs a linear regulation operation on the charging voltage VCHG.
  • the linearly regulated voltage is applied to the first mode selector 300.
  • the linear regulator unit 100 includes a current source 102, an error amplifier 101, a power transistor QP and a feedback unit 103.
  • the PWM operation unit 200 receives the voltage sensed by the feedback unit 103 of the linear regulator, and is activated when a voltage equal to or higher than a predetermined reference level is applied.
  • the output signal of the PWM operation unit 200 is applied to the first mode selection unit 300.
  • the first mode selector 300 receives an output signal of the linear regulator unit 100 and an output signal of the PWM operation unit 200.
  • Transistors QNM and QNS operate complementarily by the reception of signals.
  • the output signal of the first mode selector 300 is applied to the sensing unit 400.
  • the sensing unit 400 has a sensing resistor Rs and a voltage sensing unit 401.
  • the current flowing through the sensing resistor Rs is represented by the voltage difference Vs, and the voltage difference Vs displayed at both ends of the sensing resistor Rs is sensed by the voltage sensing unit 401.
  • the voltage difference Vs sensed by the sensing unit 400 may be output at a voltage level of a specific type, and the output voltage level may be used for the activation operation of the PWM operation unit 200.
  • the sensing voltage sensed by the feedback unit 103 or the output of the sensing unit 400 may be applied to the PWM operation unit 200.
  • the charging circuit operates in the constant voltage mode. That is, the terminal voltage of the secondary battery C is kept very low.
  • the feedback unit 103 of the linear regulator has two resistors R1 and R2 and senses the voltage applied to the secondary battery C according to the distribution ratio of the resistor.
  • the feedback voltage which is the sensed voltage, is applied to the error amplifier 101.
  • the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is low and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101.
  • the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Therefore, the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNS of the first mode selector 300.
  • the transistor QNS is turned on by the charging voltage applied to the gate terminal of the transistor QNS. Therefore, the input voltage VIN having a constant level is applied to the sensing unit 400 by the turned-on transistor QNS.
  • the input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
  • the PWM operation unit 200 is stopped or inactivated.
  • the transistor QNM remains off.
  • the voltage difference Vs of the sensing resistor Rs sensed by the sensing unit 400 maintains a low value. If the element that determines the operation of the PWM operation unit 200 is an output signal of the sensing unit 400, the PWM operation unit 200 is deactivated due to the voltage difference Vs of the sensing resistor Rs having a low level.
  • the linear regulator unit 100 increases. In particular, when the feedback voltage sensed by the feedback unit 103 is greater than or equal to the reference voltage VREF, the error amplifier 101 outputs a low level, and the power transistor QP is turned on. Accordingly, the linear regulator applies a low level signal to the gate terminal of the transistor QNS of the first mode selector 300, and the transistor QNS is turned off.
  • the feedback voltage sensed by the feedback unit 103 activates the PWM operation unit 200.
  • a specific reference level is preset, and when a voltage exceeding the set reference level is generated in the feedback unit 103, the PWM operation unit 200 is activated to form a PWM signal. Therefore, the transistor QNM of the first mode selector 300 repeats the on / off operation. Thus, driving in the constant current mode is started.
  • the current supplied decreases. Accordingly, the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is lowered, and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Therefore, the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNS of the first mode selector 300.
  • the transistor QNS is turned on by the charging voltage applied to the gate terminal of the transistor QNS. Therefore, the input voltage VIN having a constant level is applied to the sensing unit 400 by the turned-on transistor QNS.
  • the input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
  • the PWM operation unit 200 again stops or deactivates the operation.
  • the transistor QNM remains off.
  • FIG. 2 is a circuit diagram of a rechargeable battery charging circuit according to a second embodiment of the present invention.
  • the charging circuit of the present embodiment includes a linear regulator unit 100, a PWM operation unit 200, a second mode selection unit 310, and a sensing unit 400.
  • the linear regulator unit 100 has the same configuration as that of FIG. 1. Accordingly, the linear regulator unit 100 includes a current source 102, an error amplifier 101, a power transistor QP and a feedback unit 103.
  • the PWM operation unit 200 receives the feedback voltage sensed by the feedback unit 103 of the linear regulator, and is activated when a voltage equal to or higher than a predetermined reference level is applied.
  • the output signal of the PWM operation unit 200 is applied to the second mode selection unit 310.
  • the second mode selector 310 receives an output signal of the linear regulator unit 100 and an output signal of the PWM operation unit 200.
  • the first switch 301 may select the output of the linear regulator or the output of the PWM operation unit 200.
  • the second switch 302 may bypass the inductor L and the sensing resistor Rs through an on / off operation.
  • the output signal of the second mode selector 310 is selectively applied to the sensing unit 400.
  • the sensing unit 400 has a sensing resistor Rs and a voltage sensing unit 401.
  • the current flowing through the sensing resistor Rs is represented by the voltage difference Vs, and the voltage difference Vs displayed at both ends of the sensing resistor Rs is sensed by the voltage sensing unit 401.
  • the voltage difference Vs sensed by the sensing unit 400 may be output at a voltage level of a specific type, and the output voltage level may be used for the activation operation of the PWM operation unit 200.
  • the feedback voltage sensed by the feedback unit 103 or the output of the sensing unit 400 may be applied to the PWM operation unit 200.
  • the charging circuit operates in the constant voltage mode.
  • the first switch 301 is connected to the linear regulator unit 100 and the second switch 302 is turned on.
  • the terminal voltage of the secondary battery C is kept very low.
  • the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is low and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Accordingly, the linear regulator applies the charging voltage VCHG to the gate of the transistor QNM through the first switch 301 of the second mode selector 310.
  • the transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of the transistor QNM, and the input voltage VIN having a constant level does not pass through the inductor L and the sensing unit 400 by the turned-on transistor QNM, Is applied to the switch 302.
  • the input voltage VIN applied to the second switch 302 is applied to the secondary battery C, and the charging operation in the constant voltage mode is performed in the secondary battery C.
  • the PWM operation unit 200 is stopped or inactivated.
  • the amount of current flowing into the secondary battery C increases.
  • the voltage appearing at the electrodes of the secondary battery C also increases. Therefore, the feedback voltage sensed by the feedback unit 103 of the linear regulator unit 100 also increases.
  • the error amplifier 101 outputs a low level, the power transistor QP is turned on, and the first switch 301 selects the second mode. An electrical connection between the unit 310 and the PWM signal generator is achieved.
  • the feedback voltage sensed by the feedback unit 103 activates the PWM operation unit 200.
  • a specific reference level is preset, and when a voltage exceeding the set reference level is generated in the feedback unit 103, the PWM operation unit 200 is activated to form a PWM signal. Therefore, the transistor QNM of the second mode selector 310 repeats the on / off operation. Thus, driving in the constant current mode is started, and the second switch 302 is opened.
  • the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNM of the second mode selector 310.
  • the transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of the transistor QNM, and the input voltage VIN having a constant level does not pass through the inductor L and the sensing unit 400 by the turned-on transistor QNM, Is applied to the switch 302. Since the current also has a constant level due to the input voltage VIN having a constant level, no induced electromotive force is generated by the inductor L.
  • the input voltage VIN applied to the second switch 302 is applied to the secondary battery C, and the charging operation in the constant voltage mode is performed in the secondary battery C.
  • the PWM operation unit 200 is stopped or inactivated.
  • FIG. 3 is a circuit diagram of a rechargeable battery charging circuit according to a third embodiment of the present invention.
  • the charging circuit of the present embodiment includes a linear regulator unit 100, a PWM operation unit 200, a third mode selection unit 320, and a sensing unit 400.
  • the configuration and operation of the linear regulator unit 100 is the same as described with reference to FIGS. 1 and 2.
  • the configuration of the third mode selector 320 is different from those of FIGS. 1 and 2. Therefore, the charging circuit of the present embodiment will be described centering on the third mode selector 320 having a different configuration.
  • the third mode selector 320 of the present embodiment has a third switch 303.
  • the third switch 303 may select the output of the linear regulator or the output of the PWM operation unit 200. Accordingly, the third mode selector 320 may selectively receive the output of the linear regulator and the output of the PWM operation unit 200.
  • the charging circuit operates in the constant voltage mode.
  • the third switch 303 is turned on.
  • the terminal voltage of the secondary battery C is kept very low.
  • the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is low and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Accordingly, the linear regulator applies the charging voltage VCHG to the gate of the transistor QNM through the third switch 303 of the third mode selector 320.
  • the transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of the transistor QNM, and the input voltage VIN having a constant level is applied to the inductor L by the turned-on transistor QNM.
  • the current since the current also has a constant level due to the input voltage VIN having a constant level, no induced electromotive force is generated by the inductor L.
  • the input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
  • the PWM operation unit 200 is stopped or inactivated.
  • the feedback voltage sensed by the feedback unit 103 of the linear regulator unit 100 also increases.
  • the error amplifier 101 outputs a low level
  • the power transistor QP is turned on
  • the third switch 303 selects the third mode. It is turned on between the unit 320 and the PWM signal generator.
  • the feedback voltage sensed by the feedback unit 103 activates the PWM operation unit 200.
  • a specific reference level is preset, and when a voltage exceeding the set reference level is generated in the feedback unit 103, the PWM operation unit 200 is activated to form a PWM signal. Therefore, the transistor QNM of the third mode selector 320 repeats the on / off operation. Thus, driving in the constant current mode is started.
  • the charging circuit When the charging operation for the secondary battery C is completed, the charging circuit operates again in the constant voltage mode. That is, while the terminal voltage of the secondary battery C is maintained at a very high value, the current supplied to the secondary battery C decreases. Accordingly, the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is lowered, and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Accordingly, the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNM of the third mode selector 320.
  • Transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of QNM, and input voltage VIN having a constant level is applied to inductor L by turned-on transistor QNM.
  • the current since the current also has a constant level due to the input voltage VIN having a constant level, no induced electromotive force is generated by the inductor L.
  • the input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
  • the PWM operation unit 200 is stopped or inactivated due to the sensed voltage of the feedback unit 103 at a low level.
  • FIG. 4 is a circuit diagram illustrating an example of a voltage sensing unit of a sensing unit.
  • the voltage detector 401 of FIG. 4 operates as the voltage detector 401 disclosed in the first to third embodiments.
  • the voltage detector 401 has a configuration of a subtractor using the OP amplifier 402.
  • the first input voltage VIN1 and the second input voltage VIN2 represent voltages at both ends of the sensing resistor Rs. Therefore, the voltage difference Vs across the sensing resistor Rs is VIN1-VIN2.
  • the signal input to the feedback unit 103 of the linear regulator also has a low level value, so that the charging method is in the constant voltage mode.
  • the charging method is a constant current mode.
  • the reference voltage VREF2 is a specific reference voltage applied to the positive input terminal of the OP amplifier 402.
  • the output voltage output from the sensing unit 400 through the operation of the OP amplifier 402. Has a high level value.
  • the output voltage has a low level. Accordingly, signal control applied to the PWM operation unit 200 and the switch may be performed through the value of the output voltage of the voltage sensing unit 401.
  • Equation 1 the output Vout of the voltage detector 401 may be represented by Equation 1 below.
  • FIG 5 is an image showing a comparison of the waveform of the charging current and voltage of the conventional PFM method and the method using the linear regulator of the present invention.
  • the ripple of the voltage since it operates in the constant voltage mode while being charged with low current, the ripple of the voltage may be blocked at source.
  • the ripple of the charging voltage due to the change of the charging current amount is significantly reduced.
  • the voltage charged in the secondary battery C may be kept constant to prevent overcharging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A method for charging a secondary battery is disclosed. A constant voltage mode is used when charging with low current and a constant current mode using a switching-operation is used when charging with high current. A linear regulator is used for the low current charging operation in the constant voltage mode, and switching is repeatedly performed according to a PWM operation for the high current charging operation in the constant current mode. Therefore, a voltage ripple applied to a cell when charging is reduced.

Description

선형 레귤레이터를 이용한 2차 전지 충전회로Secondary Battery Charging Circuit Using Linear Regulator
본 발명은 2차 전지 충전 회로에 관한 것으로, 더욱 상세하게는 스위칭 방식과 선형 레귤레이터 방식을 선택적으로 이용하는 2차 전지 충전 회로와 이를 구동하는 충전 방법에 관한 것이다.The present invention relates to a secondary battery charging circuit, and more particularly, to a secondary battery charging circuit using a switching method and a linear regulator method and a charging method for driving the same.
2차 전지는 양극과 음극을 가지고, 두 전극 사이에서 리튬 이온은 가역적으로 전달된다. 2차 전지는 에너지 밀도가 높고, 작동 전압이 높을 뿐 아니라 우수한 보존 및 수명 특성을 보이는 등의 많은 장점을 갖는다.The secondary battery has a positive electrode and a negative electrode, and lithium ions are reversibly transferred between the two electrodes. Secondary batteries have many advantages, such as high energy density, high operating voltage and excellent retention and life characteristics.
2차 전지의 충전 동작은 음극에 전자를 가하는 것이며, 통상 정전압으로 제어된 DC 성분을 전극에 인가하여 인가 전압과 전지내부전압 차이에 의한 전류에 기인하여, 전자가 공급됨으로써 수행된다. 전지의 공칭단위인 셀(C로 표기됨)당 인가전압이 정해져 있으며, 통상 휴대폰용 리튬이온전지 및 리튬폴리머전지에는 1셀당(정격3.6V) 4.2V로 엄격히 제한된 정전압이 인가되어야 한다. 단위 셀당 4.5V 이상이 인가되면, 전해액이 분해되어 가스가 발생하고, 누액이 발생되며, 폭발의 위험성이 상존한다. 또한, 단위 셀당 1.5V 이하의 과방전 상태에서는 음극의 집전체가 전해액에 용해되어, 전지성능이 저하된다. 따라서, 안정한 충방전을 위한 전압범위를 설정하기 위해 2차 전지에는 보호회로가 구비되고 있다.The charging operation of the secondary battery is to apply electrons to the negative electrode, and is usually performed by applying a DC component controlled by a constant voltage to the electrode and supplying electrons due to the current caused by the difference between the applied voltage and the battery internal voltage. Applied voltage is defined per cell (denoted C), which is the nominal unit of the battery. Normally, the lithium ion battery and lithium polymer battery for mobile phones should be applied with a strictly limited constant voltage of 4.2V per cell (rated 3.6V). When 4.5 V or more is applied per unit cell, the electrolyte is decomposed to generate gas, leakage occurs, and there is a risk of explosion. In addition, in an over-discharge state of 1.5 V or less per unit cell, the current collector of the negative electrode is dissolved in the electrolyte, and the battery performance is lowered. Therefore, the secondary battery is provided with a protection circuit in order to set a voltage range for stable charging and discharging.
보호회로는 약 4.35V 이상에서 충전전류 정지, 2.3V이하에서는 방전전류 정지, 출력단자 단락시 방전전류 정지 기능이 있다. 충전전류는 0.1C에서 1.5C까지의 범위에서 수행되며, 550mAh의 리튬 이온 전지의 경우(1C=550mAh) 600mA 내지 700mA의 전류로 충전이 수행되며, 급속 충전을 위해 충전 전류가 증가 되면, 온도상승에 의해 충방전 사이클(통상300회)에 영향을 주어 전지 수명에 감소 되는 문제가 발생한다. 충전회로는 2차 전지의 수명 및 성능에 악영향을 미치지 않는 범위에서 최대한 빠른 시간에 안정적인 충방전 동작을 위해 구성되어야 한다.The protection circuit has a function to stop charging current above 4.35V, discharge current stop below 2.3V, and discharge current stop at output terminal short circuit. The charging current is performed in the range of 0.1C to 1.5C. In the case of a lithium ion battery of 550mAh (1C = 550mAh), charging is performed at a current of 600 mA to 700 mA. When the charging current is increased for rapid charging, the temperature rises. This affects the charge / discharge cycles (usually 300 times), resulting in a problem of reduced battery life. The charging circuit should be configured for stable charging and discharging operation as soon as possible without adversely affecting the life and performance of the secondary battery.
또한, 2차 전지의 충전 개시 시점에서 정전류 방식이 사용되고, 충전 전류는 일정 크기로 인가된다. 또한, 단자 전압이 특정 레벨까지 상승하면, 정전압 회로가 구동되어 2차 전지의 전극들에는 일정한 전압이 인가된다. 충전 동작이 진행되어 전극들 사이의 전압 레벨이 정전압 회로가 인가되는 전압의 레벨을 상회하면, 2차 전지는 과충전이 되고, 결함이 야기되거나, 수명 및 안정성이 손상된다.In addition, a constant current method is used at the start of charging of the secondary battery, and the charging current is applied at a constant size. In addition, when the terminal voltage rises to a certain level, the constant voltage circuit is driven to apply a constant voltage to the electrodes of the secondary battery. When the charging operation proceeds and the voltage level between the electrodes exceeds the level of the voltage to which the constant voltage circuit is applied, the secondary battery becomes overcharged, causes defects, or degrades life and stability.
2차 전지의 충전 동작이 수행되기 위해서는 충전 회로, 레귤레이터 및 스위치가 구비된다. 충전 회로는 외부로부터 전원을 인가받아 셀을 충전하고, 레귤레이터는 외부로부터 인가되는 전원전압을 일정한 DC 레벨로 형성하거나 충전 회로의 출력전압을 특정의 전압 레벨로 셋팅한다. 스위치는 정전류 방식 또는 정전압 방식을 선택하기 위해 사용된다.In order to perform the charging operation of the secondary battery, a charging circuit, a regulator, and a switch are provided. The charging circuit receives power from the outside to charge the cell, and the regulator forms a power supply voltage applied from the outside to a constant DC level or sets the output voltage of the charging circuit to a specific voltage level. The switch is used to select a constant current method or a constant voltage method.
특히 상기 2차 전지의 충전 회로는 정전압 방식인 저전류 구동시, 펄스 주파수 변조(Pulse-Frequency Modulation) 제어 방식이 주로 사용된다. 상기 방식은 스위칭의 Turn-on 구간동안 큰 전류를 인덕터를 통해 공급하고, Turn-off 되는 동작이 반복되면서 충전이 된다. 상기 저전류 구성시, 전류 리플이 크게 발생되며, 출력 전압 또한 리플이 나타난다. 대부분 2차 전지의 출력 전압에서 나타나는 리플 성분은 전지의 수명과 크게 연관되어 있다.In particular, in the charging circuit of the secondary battery, a pulse-frequency modulation control method is mainly used during low current driving, which is a constant voltage method. In this method, a large current is supplied through the inductor during the turn-on period of switching, and the charging is repeated while the turn-off operation is repeated. In the low current configuration, a large amount of current ripple occurs, and an output voltage also appears ripple. In most cases, the ripple component at the output voltage of a secondary battery is strongly related to the life of the battery.
본 발명은 상기한 종래의 문제점을 해결하기 위하여 안출된 것으로, 선형 레귤레이터를 포함하여 구조적으로 간단하고, 저전류로 충전시 전류 및 전압 리플이 최소화된 충전 회로를 제공하는데 있다.Disclosure of Invention The present invention has been made to solve the above-described problems, and provides a charging circuit having a simple structure including a linear regulator and minimizing current and voltage ripple when charging at low current.
상기 과제를 해결하기 위한 본 발명은, 정전압 모드로 동작하기 위한 선형 레귤레이터부; 정전류 모드로 동작하기 위한 PWM 동작부; 및 상기 선형 레귤레이터부 및 상기 PWM 동작부의 출력신호를 선택적으로 수신하여 상기 정전압 모드 또는 상기 정전류 모드로 충전 동작을 수행하기 위한 모드 선택부를 포함하는 2차 전지 충전회로를 제공한다.The present invention for solving the above problems, the linear regulator unit for operating in a constant voltage mode; PWM operation unit for operating in the constant current mode; And a mode selection unit for selectively receiving output signals of the linear regulator unit and the PWM operation unit to perform a charging operation in the constant voltage mode or the constant current mode.
본 발명의 상기 과제는, 충전 동작의 시점에서 낮은 전류가 공급되는 정전압 모드로 동작하기 위한 선형 레귤레이터부; 상기 정전압 모드에 따른 셀의 단자전압의 상승에 따라 PWM 제어를 통한 정전류 모드로 동작하기 위한 PWM 동작부; 상기 선형 레귤레이터부 및 상기 PWM 동작부의 출력신호를 선택적으로 수신하여 상기 정전압 모드 또는 상기 정전류 모드로 충전 동작을 수행하기 위한 모드 선택부; 및 상기 모드 선택부의 출력을 감지하고 상기 PWM 동작부의 동작을 제어하기 위한 센싱부를 포함하는 2차 전지 충전회로의 제공을 통해서도 달성된다.The object of the present invention, the linear regulator unit for operating in the constant voltage mode is supplied with a low current at the time of the charging operation; A PWM operation unit for operating in the constant current mode through PWM control according to the increase in the terminal voltage of the cell in the constant voltage mode; A mode selection unit for selectively receiving output signals of the linear regulator unit and the PWM operation unit to perform a charging operation in the constant voltage mode or the constant current mode; And a sensing unit for sensing an output of the mode selection unit and controlling an operation of the PWM operation unit.
본 발명에 따르면, 2차 전지 충전 회로의 저전류 충전 방식은 선형 레귤레이터를 이용한 정전압 모드로 한다. 상기 선형 레귤레이터의 이용은 종래의 PFM 제어 방식보다 구조가 간단해지고, 저전류 충전 방식에서 출력전압의 리플을 줄일 수 있어 시스템의 안정 및 전지의 수명을 연장시킬 수 있다.According to the present invention, the low current charging method of the secondary battery charging circuit is a constant voltage mode using a linear regulator. The use of the linear regulator makes the structure simpler than the conventional PFM control method, and can reduce the ripple of the output voltage in the low current charging method, thereby extending system stability and battery life.
도 1은 본 발명의 제1 실시예에 따른 2차 전지 충전회로의 회로도이다.1 is a circuit diagram of a rechargeable battery charging circuit according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 2차 전지 충전회로의 회로도이다.2 is a circuit diagram of a rechargeable battery charging circuit according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예에 따른 2차 전지 충전회로의 회로도이다.3 is a circuit diagram of a rechargeable battery charging circuit according to a third embodiment of the present invention.
도 4는 센싱부의 전압 감지부의 일예를 도시한 회로도이다.4 is a circuit diagram illustrating an example of a voltage sensing unit of a sensing unit.
도 5는 기존의 PFM방식과 본 발명의 선형 레귤레이터를 이용한 방식의 충전 전류 및 전압의 파형을 비교하여 도시한 이미지이다.5 is an image showing a comparison of the waveform of the charging current and voltage of the conventional PFM method and the method using the linear regulator of the present invention.
이하 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 본 발명의 실시예를 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the embodiments of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
<제1 실시예><First Embodiment>
도 1은 본 발명의 제1 실시예에 따른 2차 전지 충전회로의 회로도이다.1 is a circuit diagram of a rechargeable battery charging circuit according to a first embodiment of the present invention.
도 1을 참조하면, 본 실시예의 충전 회로는 선형 레귤레이터부(100), PWM 동작부(200), 제1 모드 선택부(300) 및 센싱부(400)를 가진다.Referring to FIG. 1, the charging circuit of the present embodiment includes a linear regulator unit 100, a PWM operation unit 200, a first mode selector 300, and a sensing unit 400.
선형 레귤레이터부(100)는 입력되는 충전전압 VCHG를 수신하고, 충전 전압 VCHG에 대한 선형 레귤레이션 동작을 수행한다. 선형 레귤레이션된 전압은 제1 모드 선택부(300)로 인가된다. 상기 선형 레귤레이터부(100)는 전류원(102), 에러 엠프(101), 파워 트랜지스터 QP 및 궤환부(103)를 가진다.The linear regulator 100 receives an input charging voltage VCHG and performs a linear regulation operation on the charging voltage VCHG. The linearly regulated voltage is applied to the first mode selector 300. The linear regulator unit 100 includes a current source 102, an error amplifier 101, a power transistor QP and a feedback unit 103.
PWM 동작부(200)는 상기 선형 레귤레이터의 궤환부(103)에 의해 감지된 전압을 수신하고, 기 설정된 기준 레벨 이상의 전압이 인가되는 경우, 활성화된다. 상기 PWM 동작부(200)의 출력신호는 제1 모드 선택부(300)로 인가된다.The PWM operation unit 200 receives the voltage sensed by the feedback unit 103 of the linear regulator, and is activated when a voltage equal to or higher than a predetermined reference level is applied. The output signal of the PWM operation unit 200 is applied to the first mode selection unit 300.
제1 모드 선택부(300)는 상기 선형 레귤레이터부(100)의 출력신호 및 상기 PWM 동작부(200)의 출력신호를 수신한다. 신호들의 수신에 의해 트랜지스터들 QNM 및 QNS는 상보적으로 동작된다. 상기 제1 모드 선택부(300)의 출력신호는 센싱부(400)로 인가된다.The first mode selector 300 receives an output signal of the linear regulator unit 100 and an output signal of the PWM operation unit 200. Transistors QNM and QNS operate complementarily by the reception of signals. The output signal of the first mode selector 300 is applied to the sensing unit 400.
센싱부(400)는 센싱 저항 Rs 및 전압 감지부(401)를 가진다. 센싱 저항 Rs를 흐르는 전류는 전압차 Vs로 나타나며, 센싱 저항 Rs의 양단에 나타난 전압차 Vs는 전압 감지부(401)에 의해 감지된다. 실시의 형태에 따라서, 상기 센싱부(400)에 의해 감지된 전압차 Vs는 특정 형태의 전압 레벨로 출력되고, 출력된 전압 레벨은 상기 PWM 동작부(200)의 활성화 동작에 사용될 수 있다.The sensing unit 400 has a sensing resistor Rs and a voltage sensing unit 401. The current flowing through the sensing resistor Rs is represented by the voltage difference Vs, and the voltage difference Vs displayed at both ends of the sensing resistor Rs is sensed by the voltage sensing unit 401. According to the exemplary embodiment, the voltage difference Vs sensed by the sensing unit 400 may be output at a voltage level of a specific type, and the output voltage level may be used for the activation operation of the PWM operation unit 200.
따라서, 상기 PWM 동작부(200)에는 궤환부(103)에서 감지된 감지 전압 또는 센싱부(400)의 출력이 인가될 수 있다.Therefore, the sensing voltage sensed by the feedback unit 103 or the output of the sensing unit 400 may be applied to the PWM operation unit 200.
먼저, 2차 전지 C에 대한 충전 동작이 개시되는 경우, 충전 회로는 정전압 모드에서 동작한다. 즉, 2차 전지 C의 단자 전압은 매우 낮은 상태를 유지한다. 선형 레귤레이터의 궤환부(103)는 2개의 저항들 R1 및 R2를 가지고, 2차 전지 C에 인가되는 전압을 저항의 분배비에 따라 감지한다. 감지된 전압인 궤환 전압은 에러 엠프(101)에 인가된다. 이는 선형 레귤레이터부(100)의 궤환부(103)의 궤환 전압이 낮으며, 에러 엠프(101)의 양의 입력단자에 인가되는 기준전압 VREF 미만이 된다.First, when the charging operation for the secondary battery C is started, the charging circuit operates in the constant voltage mode. That is, the terminal voltage of the secondary battery C is kept very low. The feedback unit 103 of the linear regulator has two resistors R1 and R2 and senses the voltage applied to the secondary battery C according to the distribution ratio of the resistor. The feedback voltage, which is the sensed voltage, is applied to the error amplifier 101. The feedback voltage of the feedback unit 103 of the linear regulator unit 100 is low and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101.
따라서, 에러 엠프(101)는 하이 레벨의 신호를 출력하고, 파워 트랜지스터 QP는 오프된다. 따라서, 선형 레귤레이터는 충전전압 VCHG를 제1 모드 선택부(300)의 트랜지스터 QNS의 게이트 단자에 인가한다. 트랜지스터 QNS의 게이트 단자에 인가되는 충전전압에 의해 트랜지스터 QNS는 턴온된다. 따라서, 일정한 레벨을 가지는 입력전압 VIN은 턴온된 트랜지스터 QNS에 의해 센싱부(400)로 인가된다. 센싱부(400)에 인가된 입력전압 VIN은 2차 전지 C에 인가되고, 2차 전지 C에서는 정전압 모드의 충전동작이 수행된다.Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Therefore, the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNS of the first mode selector 300. The transistor QNS is turned on by the charging voltage applied to the gate terminal of the transistor QNS. Therefore, the input voltage VIN having a constant level is applied to the sensing unit 400 by the turned-on transistor QNS. The input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
또한, 낮은 레벨의 궤환부(103)의 궤환 전압으로 인해 PWM 동작부(200)는 동작을 중지하거나 비활성화된다. 따라서, 정전압 모드에서는 트랜지스터 QNM은 오프 상태를 유지한다. 또한, 충전 동작의 초기에 2차 전지 C에 충전되는 전류량은 작은 값을 가지므로 센싱부(400)에서 감지되는 센싱 저항 Rs의 전압차 Vs는 낮은 값을 유지한다. 만일, PWM 동작부(200)의 동작을 결정하는 요소가 센싱부(400)의 출력신호인 경우에도 낮은 레벨의 센싱 저항 Rs의 전압차 Vs로 인해 PWM 동작부(200)는 비활성화된다.In addition, due to the feedback voltage of the feedback unit 103 of the low level, the PWM operation unit 200 is stopped or inactivated. Thus, in the constant voltage mode, the transistor QNM remains off. In addition, since the amount of current charged in the secondary battery C at the beginning of the charging operation has a small value, the voltage difference Vs of the sensing resistor Rs sensed by the sensing unit 400 maintains a low value. If the element that determines the operation of the PWM operation unit 200 is an output signal of the sensing unit 400, the PWM operation unit 200 is deactivated due to the voltage difference Vs of the sensing resistor Rs having a low level.
정전압 모드에서의 충전동작이 진행됨에 따라 2차 전지 C로 흐르는 전류량은 증가한다. 또한, 2차 전지 C의 전극에서 나타나는 전압도 증가한다. 따라서, 선형 레귤레이터부(100)의 궤환부(103)에서 감지된 궤환 전압도 증가한다. 특히, 궤환부(103)에 의해 감지된 궤환 전압이 기준전압 VREF 이상인 경우, 에러 엠프(101)는 로우 레벨을 출력하고, 파워 트랜지스터 QP는 턴온된다. 따라서, 선형 레귤레이터는 로우 레벨의 신호를 제1 모드 선택부(300)의 트랜지스터 QNS의 게이트 단자에 인가하고, 트랜지스터 QNS는 턴오프된다.As the charging operation in the constant voltage mode proceeds, the amount of current flowing into the secondary battery C increases. In addition, the voltage appearing at the electrodes of the secondary battery C also increases. Therefore, the feedback voltage sensed by the feedback unit 103 of the linear regulator unit 100 also increases. In particular, when the feedback voltage sensed by the feedback unit 103 is greater than or equal to the reference voltage VREF, the error amplifier 101 outputs a low level, and the power transistor QP is turned on. Accordingly, the linear regulator applies a low level signal to the gate terminal of the transistor QNS of the first mode selector 300, and the transistor QNS is turned off.
동시에, 궤환부(103)에서 감지된 궤환 전압은 PWM 동작부(200)를 활성화시킨다. 상기 PWM 동작부(200)에는 특정의 기준 레벨이 기 설정된 상태이며, 설정된 기준 레벨을 상회하는 전압이 궤환부(103)에서 발생되면 활성화되어 PWM 신호를 형성한다. 따라서, 제1 모드 선택부(300)의 트랜지스터 QNM은 온/오프 동작을 반복한다. 따라서, 정전류 모드의 구동이 개시된다.At the same time, the feedback voltage sensed by the feedback unit 103 activates the PWM operation unit 200. In the PWM operation unit 200, a specific reference level is preset, and when a voltage exceeding the set reference level is generated in the feedback unit 103, the PWM operation unit 200 is activated to form a PWM signal. Therefore, the transistor QNM of the first mode selector 300 repeats the on / off operation. Thus, driving in the constant current mode is started.
정전류 모드에서의 충전동작이 진행됨에 따라 상기 트랜지스터 QNM의 주기적 신호가 인덕터 L에 유도기전력을 발생시키고, 센싱 저항 Rs에 높은 레벨의 전류가 인가된다. 따라서, 센싱 저항 Rs의 전압차 Vs는 높은 값을 유지하며, 상기 높은 레벨의 전류로 인해 2차 전지 C는 충전이 된다. 동시에, 2차 전지 C의 전압은 상승한다.As the charging operation in the constant current mode proceeds, a periodic signal of the transistor QNM generates an induced electromotive force in the inductor L, and a high level current is applied to the sensing resistor Rs. Therefore, the voltage difference Vs of the sensing resistor Rs maintains a high value, and the secondary battery C is charged due to the high level current. At the same time, the voltage of the secondary battery C rises.
2차 전지 C에 대한 충전 동작이 진행되어 특정 레벨 이상의 전압이 2차 전지 C의 전극에 나타나는 경우, 정전류 모드의 충전은 종료되고, 다시 정전압 모드의 충전동작이 수행된다.When the charging operation for the secondary battery C is performed so that a voltage of a certain level or more appears on the electrode of the secondary battery C, charging in the constant current mode is terminated, and charging operation in the constant voltage mode is performed again.
즉, 2차 전지 C의 단자 전압은 매우 높은 값으로 유지되면서, 2차 전지 C에That is, while the terminal voltage of the secondary battery C is maintained at a very high value, the secondary battery C
공급되는 전류는 감소한다. 따라서, 선형 레귤레이터부(100)의 궤환부(103)의 궤환 전압은 낮아지며, 에러 엠프(101)의 양의 입력단자에 인가되는 기준전압 VREF 미만이 된다. 따라서, 에러 엠프(101)는 하이 레벨의 신호를 출력하고, 파워 트랜지스터 QP는 오프된다. 따라서, 선형 레귤레이터는 충전전압 VCHG를 제1 모드 선택부(300)의 트랜지스터 QNS의 게이트 단자에 인가한다. 트랜지스터 QNS의 게이트 단자에 인가되는 충전전압에 의해 트랜지스터 QNS는 턴온된다. 따라서, 일정한 레벨을 가지는 입력전압 VIN은 턴온된 트랜지스터 QNS에 의해 센싱부(400)로 인가된다. 센싱부(400)에 인가된 입력전압 VIN은 2차 전지 C에 인가되고, 2차 전지 C에서는 정전압 모드의 충전동작이 수행된다.The current supplied decreases. Accordingly, the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is lowered, and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Therefore, the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNS of the first mode selector 300. The transistor QNS is turned on by the charging voltage applied to the gate terminal of the transistor QNS. Therefore, the input voltage VIN having a constant level is applied to the sensing unit 400 by the turned-on transistor QNS. The input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
또한, 낮은 레벨의 궤환부(103)의 감지 전압으로 인해 PWM 동작부(200)는 다시 동작을 중지하거나 비활성화된다. 따라서, 정전압 모드에서는 트랜지스터 QNM은 오프 상태를 유지한다.In addition, due to the sensed voltage of the low-level feedback unit 103, the PWM operation unit 200 again stops or deactivates the operation. Thus, in the constant voltage mode, the transistor QNM remains off.
<제2 실시예>Second Embodiment
도 2는 본 발명의 제2 실시예에 따른 2차 전지 충전회로의 회로도이다.2 is a circuit diagram of a rechargeable battery charging circuit according to a second embodiment of the present invention.
도 2을 참조하면, 본 실시예의 충전 회로는 선형 레귤레이터부(100), PWM 동작부(200), 제2 모드 선택부(310) 및 센싱부(400)를 가진다.Referring to FIG. 2, the charging circuit of the present embodiment includes a linear regulator unit 100, a PWM operation unit 200, a second mode selection unit 310, and a sensing unit 400.
선형 레귤레이터부(100)는 상기 도 1과 동일한 구성을 가진다. 따라서, 상기 선형 레귤레이터부(100)는 전류원(102), 에러 엠프(101), 파워 트랜지스터 QP 및 궤환부(103)를 가진다.The linear regulator unit 100 has the same configuration as that of FIG. 1. Accordingly, the linear regulator unit 100 includes a current source 102, an error amplifier 101, a power transistor QP and a feedback unit 103.
PWM 동작부(200)는 상기 선형 레귤레이터의 궤환부(103)에 의해 감지된 궤환 전압을 수신하고, 기 설정된 기준 레벨 이상의 전압이 인가되는 경우, 활성화된다. 상기 PWM 동작부(200)의 출력신호는 제2 모드 선택부(310)로 인가된다.The PWM operation unit 200 receives the feedback voltage sensed by the feedback unit 103 of the linear regulator, and is activated when a voltage equal to or higher than a predetermined reference level is applied. The output signal of the PWM operation unit 200 is applied to the second mode selection unit 310.
제2 모드 선택부(310)는 상기 선형 레귤레이터부(100)의 출력신호 및 상기 PWM 동작부(200)의 출력신호를 수신한다. 제1 스위치(301)는 선형 레귤레이터의 출력 또는 PWM 동작부(200)의 출력을 선택할 수 있다. 또한, 제2 스위치(302)는 온/오프 동작을 통해 인턱터 L 및 감지저항 Rs를 바이패스 할 수 있다. 상기 제2 모드 선택부(310)의 출력신호는 선택적으로 센싱부(400)로 인가된다.The second mode selector 310 receives an output signal of the linear regulator unit 100 and an output signal of the PWM operation unit 200. The first switch 301 may select the output of the linear regulator or the output of the PWM operation unit 200. In addition, the second switch 302 may bypass the inductor L and the sensing resistor Rs through an on / off operation. The output signal of the second mode selector 310 is selectively applied to the sensing unit 400.
센싱부(400)는 센싱 저항 Rs 및 전압 감지부(401)를 가진다. 센싱 저항 Rs를 흐르는 전류는 전압차 Vs로 나타나며, 센싱 저항 Rs의 양단에 나타난 전압차 Vs는 전압 감지부(401)에 의해 감지된다. 실시의 형태에 따라서, 상기 센싱부(400)에 의해 감지된 전압차 Vs는 특정 형태의 전압 레벨로 출력되고, 출력된 전압 레벨은 상기 PWM 동작부(200)의 활성화 동작에 사용될 수 있다.The sensing unit 400 has a sensing resistor Rs and a voltage sensing unit 401. The current flowing through the sensing resistor Rs is represented by the voltage difference Vs, and the voltage difference Vs displayed at both ends of the sensing resistor Rs is sensed by the voltage sensing unit 401. According to the exemplary embodiment, the voltage difference Vs sensed by the sensing unit 400 may be output at a voltage level of a specific type, and the output voltage level may be used for the activation operation of the PWM operation unit 200.
따라서, 상기 PWM 동작부(200)에는 궤환부(103)에서 감지된 궤환 전압 또는 센싱부(400)의 출력이 인가될 수 있다.Therefore, the feedback voltage sensed by the feedback unit 103 or the output of the sensing unit 400 may be applied to the PWM operation unit 200.
먼저, 2차 전지 C에 대한 충전 동작이 개시되는 경우, 충전 회로는 정전압 모드에서 동작한다. 정전압 모드에서는 제1 스위치(301)는 선형 레귤레이터부(100)에 연결되고, 제2 스위치(302)가 턴온된다. 또한, 2차 전지 C의 단자 전압은 매우 낮은 상태를 유지한다. 이는 선형 레귤레이터부(100)의 궤환부(103)의 궤환 전압이 낮으며, 에러 엠프(101)의 양의 입력단자에 인가되는 기준전압 VREF 미만이 된다. 따라서, 에러 엠프(101)는 하이 레벨의 신호를 출력하고, 파워 트랜지스터 QP는 오프된다. 따라서, 선형 레귤레이터는 충전전압 VCHG를 제2 모드 선택부(310)의 제1 스위치(301)를 통해 트랜지스터 QNM의 게이트에 인가한다. 트랜지스터 QNM의 게이트 단자에 인가되는 특정 레벨의 충전전압에 의해 트랜지스터 QNM는 턴온되고, 일정한 레벨을 가지는 입력전압 VIN은 턴온된 트랜지스터 QNM에 의해 인덕터 L와 센싱부(400)를 통과하지 않고, 제2 스위치(302)로 인가된다. 제2 스위치(302)에 인가된 입력전압 VIN은 2차 전지 C에 인가되고, 2차 전지 C에서는 정전압 모드의 충전동작이 수행된다.First, when the charging operation for the secondary battery C is started, the charging circuit operates in the constant voltage mode. In the constant voltage mode, the first switch 301 is connected to the linear regulator unit 100 and the second switch 302 is turned on. In addition, the terminal voltage of the secondary battery C is kept very low. The feedback voltage of the feedback unit 103 of the linear regulator unit 100 is low and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Accordingly, the linear regulator applies the charging voltage VCHG to the gate of the transistor QNM through the first switch 301 of the second mode selector 310. The transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of the transistor QNM, and the input voltage VIN having a constant level does not pass through the inductor L and the sensing unit 400 by the turned-on transistor QNM, Is applied to the switch 302. The input voltage VIN applied to the second switch 302 is applied to the secondary battery C, and the charging operation in the constant voltage mode is performed in the secondary battery C.
또한, 낮은 레벨의 궤환부(103)의 궤환 전압으로 인해 PWM 동작부(200)는 동작을 중지하거나 비활성화된다.In addition, due to the feedback voltage of the feedback unit 103 of the low level, the PWM operation unit 200 is stopped or inactivated.
정전압 모드에서의 충전동작이 진행됨에 따라 2차 전지 C로 흐르는 전류량은 증가한다. 또한, 2차 전지 C의 전극에서 나타나는 전압도 증가한다. 따라서, 선형 레귤레이터부(100)의 궤환부(103)에서 감지된 궤환 전압도 증가한다. 특히, 궤환부(103)에 의해 감지된 궤환 전압이 기준전압 VREF 이상인 경우, 에러 엠프(101)는 로우 레벨을 출력하고, 파워 트랜지스터 QP는 턴온되며, 제1 스위치(301)는 제2 모드 선택부(310)와 PWM 신호발생기 사이의 전기적 연결을 달성한다.As the charging operation in the constant voltage mode proceeds, the amount of current flowing into the secondary battery C increases. In addition, the voltage appearing at the electrodes of the secondary battery C also increases. Therefore, the feedback voltage sensed by the feedback unit 103 of the linear regulator unit 100 also increases. In particular, when the feedback voltage sensed by the feedback unit 103 is greater than or equal to the reference voltage VREF, the error amplifier 101 outputs a low level, the power transistor QP is turned on, and the first switch 301 selects the second mode. An electrical connection between the unit 310 and the PWM signal generator is achieved.
동시에, 궤환부(103)에서 감지된 궤환 전압은 PWM 동작부(200)를 활성화시킨다. 상기 PWM 동작부(200)에는 특정의 기준 레벨이 기 설정된 상태이며, 설정된 기준 레벨을 상회하는 전압이 궤환부(103)에서 발생되면 활성화되어 PWM 신호를 형성한다. 따라서, 제2 모드 선택부(310)의 트랜지스터 QNM은 온/오프 동작을 반복한다. 따라서, 정전류 모드의 구동이 개시되고, 제2 스위치(302)는 개방된다.At the same time, the feedback voltage sensed by the feedback unit 103 activates the PWM operation unit 200. In the PWM operation unit 200, a specific reference level is preset, and when a voltage exceeding the set reference level is generated in the feedback unit 103, the PWM operation unit 200 is activated to form a PWM signal. Therefore, the transistor QNM of the second mode selector 310 repeats the on / off operation. Thus, driving in the constant current mode is started, and the second switch 302 is opened.
정전류 모드에서의 충전동작이 진행됨에 따라 상기 트랜지스터 QNM의 주기적 신호가 인덕터 L에 유도기전력을 발생시키고, 센싱 저항 Rs에 높은 레벨의 전류가 인가된다. 따라서, 센싱 저항 Rs의 전압차 Vs는 높은 값을 유지하며, 상기 높은 레벨의 전류로 인해 2차 전지 C는 충전이 된다. 동시에, 2차 전지 C의 전압은 상승한다.As the charging operation in the constant current mode proceeds, a periodic signal of the transistor QNM generates an induced electromotive force in the inductor L, and a high level current is applied to the sensing resistor Rs. Therefore, the voltage difference Vs of the sensing resistor Rs maintains a high value, and the secondary battery C is charged due to the high level current. At the same time, the voltage of the secondary battery C rises.
2차 전지 C에 대한 충전 동작이 진행되어 특정 레벨 이상의 전압이 2차 전지 C의 전극에 나타나는 경우, 정전류 모드의 충전은 종료되고, 다시 정전압 모드의 충전동작이 수행된다.When the charging operation for the secondary battery C is performed so that a voltage of a certain level or more appears on the electrode of the secondary battery C, charging in the constant current mode is terminated, and charging operation in the constant voltage mode is performed again.
즉, 2차 전지 C의 단자 전압은 매우 높은 값으로 유지되면서, 2차 전지 C에 공급되는 전류는 감소한다. 따라서, 선형 레귤레이터부(100)의 궤환부(103)의 궤환 전압은 낮아지며, 에러 엠프(101)의 양의 입력단자에 인가되는 기준전압 VREF 미만이 된다. 따라서, 에러 엠프(101)는 하이 레벨의 신호를 출력하고, 파워 트랜지스터 QP는 오프된다. 따라서, 선형 레귤레이터는 충전전압 VCHG를 제2 모드 선택부(310)의 트랜지스터 QNM의 게이트 단자에 인가한다.That is, while the terminal voltage of the secondary battery C is maintained at a very high value, the current supplied to the secondary battery C decreases. Accordingly, the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is lowered, and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Accordingly, the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNM of the second mode selector 310.
트랜지스터 QNM의 게이트 단자에 인가되는 특정 레벨의 충전전압에 의해 트랜지스터 QNM는 턴온되고, 일정한 레벨을 가지는 입력전압 VIN은 턴온된 트랜지스터 QNM에 의해 인덕터 L와 센싱부(400)를 통과하지 않고, 제2 스위치(302)로 인가된다. 일정한 레벨을 가지는 입력전압 VIN에 의해 전류 또한 일정한 레벨을 가지므로, 인덕터 L에 의해 유도기전력이 발생하지 않는다. 제2 스위치(302)에 인가된 입력전압 VIN은 2차 전지 C에 인가되고, 2차 전지 C에서는 정전압 모드의 충전동작이 수행된다.The transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of the transistor QNM, and the input voltage VIN having a constant level does not pass through the inductor L and the sensing unit 400 by the turned-on transistor QNM, Is applied to the switch 302. Since the current also has a constant level due to the input voltage VIN having a constant level, no induced electromotive force is generated by the inductor L. The input voltage VIN applied to the second switch 302 is applied to the secondary battery C, and the charging operation in the constant voltage mode is performed in the secondary battery C.
또한, 낮은 레벨의 궤환부(103)의 궤환 전압으로 인해 PWM 동작부(200)는 동작을 중지하거나 비활성화된다.In addition, due to the feedback voltage of the feedback unit 103 of the low level, the PWM operation unit 200 is stopped or inactivated.
<제3 실시예>Third Embodiment
도 3은 본 발명의 제3 실시예에 따른 2차 전지 충전회로의 회로도이다.3 is a circuit diagram of a rechargeable battery charging circuit according to a third embodiment of the present invention.
도 3을 참조하면, 본 실시예의 충전 회로는 선형 레귤레이터부(100), PWM 동작부(200), 제3 모드 선택부(320) 및 센싱부(400)를 가진다.Referring to FIG. 3, the charging circuit of the present embodiment includes a linear regulator unit 100, a PWM operation unit 200, a third mode selection unit 320, and a sensing unit 400.
선형 레귤레이터부(100)의 구성 및 동작은 상기 도 1 및 도 2에 설명된 바와 동일하다.The configuration and operation of the linear regulator unit 100 is the same as described with reference to FIGS. 1 and 2.
다만, 본 실시예에서는 제3 모드 선택부(320)의 구성이 상기 도 1 및 도 2와 상이하다. 따라서, 상이한 구성을 가지는 제3 모드 선택부(320)를 중심으로 본 실시예의 충전 회로를 설명한다.However, in the present embodiment, the configuration of the third mode selector 320 is different from those of FIGS. 1 and 2. Therefore, the charging circuit of the present embodiment will be described centering on the third mode selector 320 having a different configuration.
본 실시예의 제3 모드 선택부(320)는 제3 스위치(303)를 가진다. 상기 제3 스위치(303)는 선형 레귤레이터의 출력 또는 PWM 동작부(200)의 출력을 선택할 수 있다. 따라서, 제3 모드 선택부(320)에는 선형 레귤레이터의 출력 및 PWM 동작부(200)의 출력이 선택적으로 수신될 수 있다.The third mode selector 320 of the present embodiment has a third switch 303. The third switch 303 may select the output of the linear regulator or the output of the PWM operation unit 200. Accordingly, the third mode selector 320 may selectively receive the output of the linear regulator and the output of the PWM operation unit 200.
먼저, 2차 전지 C에 대한 충전 동작이 개시되는 경우, 충전 회로는 정전압 모드에서 동작한다. 정전압 모드에서는 제3 스위치(303)가 턴온된다. 또한, 2차 전지 C의 단자 전압은 매우 낮은 상태를 유지한다. 이는 선형 레귤레이터부(100)의 궤환부(103)의 궤환 전압이 낮으며, 에러 엠프(101)의 양의 입력단자에 인가되는 기준전압 VREF 미만이 된다. 따라서, 에러 엠프(101)는 하이 레벨의 신호를 출력하고, 파워 트랜지스터 QP는 오프된다. 따라서, 선형 레귤레이터는 충전전압 VCHG를 제3 모드 선택부(320)의 제3 스위치(303)를 통해 트랜지스터 QNM의 게이트에 인가한다.First, when the charging operation for the secondary battery C is started, the charging circuit operates in the constant voltage mode. In the constant voltage mode, the third switch 303 is turned on. In addition, the terminal voltage of the secondary battery C is kept very low. The feedback voltage of the feedback unit 103 of the linear regulator unit 100 is low and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Accordingly, the linear regulator applies the charging voltage VCHG to the gate of the transistor QNM through the third switch 303 of the third mode selector 320.
트랜지스터 QNM의 게이트 단자에 인가되는 특정 레벨의 충전전압에 의해 트랜지스터 QNM는 턴온되고, 일정한 레벨을 가지는 입력전압 VIN은 턴온된 트랜지스터 QNM에 의해 인덕터 L에 인가된다. 또한, 일정한 레벨을 가지는 입력전압 VIN에 의해 전류 또한 일정한 레벨을 가지므로, 인덕터 L에 의해 유도기전력이 발생하지 않는다. 센싱부(400)에 인가된 입력전압 VIN은 2차 전지 C에 인가되고, 2차 전지 C에서는 정전압 모드의 충전동작이 수행된다.The transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of the transistor QNM, and the input voltage VIN having a constant level is applied to the inductor L by the turned-on transistor QNM. In addition, since the current also has a constant level due to the input voltage VIN having a constant level, no induced electromotive force is generated by the inductor L. The input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
또한, 낮은 레벨의 궤환부(103)의 궤환 전압으로 인해 PWM 동작부(200)는 동작을 중지하거나 비활성화된다.In addition, due to the feedback voltage of the feedback unit 103 of the low level, the PWM operation unit 200 is stopped or inactivated.
정전압 모드에서의 충전동작이 진행됨에 따라 2차 전지 C로 흐르는 전류량은 증가한다. 또한, 2차 전지 C의 전극에서 나타나는 전압도 증가한다. 따라서, 선형 레귤레이터부(100)의 궤환부(103)에서 감지된 궤환 전압도 증가한다. 특히, 궤환부(103)에 의해 감지된 궤환 전압이 기준전압 VREF 이상인 경우, 에러 엠프(101)는 로우 레벨을 출력하고, 파워 트랜지스터 QP는 턴온되며, 제3 스위치(303)는 제3 모드 선택부(320)와 PWM 신호발생기 사이에서 턴온된다.As the charging operation in the constant voltage mode proceeds, the amount of current flowing into the secondary battery C increases. In addition, the voltage appearing at the electrodes of the secondary battery C also increases. Therefore, the feedback voltage sensed by the feedback unit 103 of the linear regulator unit 100 also increases. In particular, when the feedback voltage sensed by the feedback unit 103 is greater than or equal to the reference voltage VREF, the error amplifier 101 outputs a low level, the power transistor QP is turned on, and the third switch 303 selects the third mode. It is turned on between the unit 320 and the PWM signal generator.
동시에, 궤환부(103)에서 감지된 궤환 전압은 PWM 동작부(200)를 활성화시킨다. 상기 PWM 동작부(200)에는 특정의 기준 레벨이 기 설정된 상태이며, 설정된 기준 레벨을 상회하는 전압이 궤환부(103)에서 발생되면 활성화되어 PWM 신호를 형성한다. 따라서, 제3 모드 선택부(320)의 트랜지스터 QNM은 온/오프 동작을 반복한다. 따라서, 정전류 모드의 구동이 개시된다.At the same time, the feedback voltage sensed by the feedback unit 103 activates the PWM operation unit 200. In the PWM operation unit 200, a specific reference level is preset, and when a voltage exceeding the set reference level is generated in the feedback unit 103, the PWM operation unit 200 is activated to form a PWM signal. Therefore, the transistor QNM of the third mode selector 320 repeats the on / off operation. Thus, driving in the constant current mode is started.
정전류 모드에서의 충전동작이 진행됨에 따라 상기 트랜지스터 QNM의 주기적 신호가 인덕터 L에 유도기전력을 발생시키고, 센싱 저항 Rs에 높은 레벨의 전류가 인가된다. 따라서, 센싱 저항 Rs의 전압차 Vs는 높은 값을 유지하며, 상기 높은 레벨의 전류로 인해 2차 전지 C는 충전이 된다. 동시에, 2차 전지 C의 단자 전압은 상승한다.As the charging operation in the constant current mode proceeds, a periodic signal of the transistor QNM generates an induced electromotive force in the inductor L, and a high level current is applied to the sensing resistor Rs. Therefore, the voltage difference Vs of the sensing resistor Rs maintains a high value, and the secondary battery C is charged due to the high level current. At the same time, the terminal voltage of the secondary battery C rises.
2차 전지 C에 대한 충전 동작이 완료되는 경우, 충전 회로는 다시 정전압 모드에서 동작한다. 즉, 2차 전지 C의 단자 전압은 매우 높은 값으로 유지되면서, 2차전지 C에 공급되는 전류는 감소한다. 따라서, 선형 레귤레이터부(100)의 궤환부(103)의 궤환 전압은 낮아지며, 에러 엠프(101)의 양의 입력단자에 인가되는 기준전압 VREF 미만이 된다. 따라서, 에러 엠프(101)는 하이 레벨의 신호를 출력하고, 파워 트랜지스터 QP는 오프된다. 따라서, 선형 레귤레이터는 충전전압 VCHG를 제3 모드 선택부(320)의 트랜지스터 QNM의 게이트 단자에 인가한다.When the charging operation for the secondary battery C is completed, the charging circuit operates again in the constant voltage mode. That is, while the terminal voltage of the secondary battery C is maintained at a very high value, the current supplied to the secondary battery C decreases. Accordingly, the feedback voltage of the feedback unit 103 of the linear regulator unit 100 is lowered, and becomes less than the reference voltage VREF applied to the positive input terminal of the error amplifier 101. Therefore, the error amplifier 101 outputs a high level signal, and the power transistor QP is turned off. Accordingly, the linear regulator applies the charging voltage VCHG to the gate terminal of the transistor QNM of the third mode selector 320.
QNM의 게이트 단자에 인가되는 특정 레벨의 충전전압에 의해 트랜지스터 QNM는 턴온되고, 일정한 레벨을 가지는 입력전압 VIN은 턴온된 트랜지스터 QNM에 의해 인덕터 L에 인가된다. 또한, 일정한 레벨을 가지는 입력전압 VIN에 의해 전류 또한 일정한 레벨을 가지므로, 인덕터 L에 의해 유도기전력이 발생하지 않는다.Transistor QNM is turned on by a specific level of charging voltage applied to the gate terminal of QNM, and input voltage VIN having a constant level is applied to inductor L by turned-on transistor QNM. In addition, since the current also has a constant level due to the input voltage VIN having a constant level, no induced electromotive force is generated by the inductor L.
센싱부(400)에 인가된 입력전압 VIN은 2차 전지 C에 인가되고, 2차 전지 C에서는 정전압 모드의 충전동작이 수행된다.The input voltage VIN applied to the sensing unit 400 is applied to the secondary battery C, and the charging operation of the constant voltage mode is performed in the secondary battery C.
또한, 낮은 레벨의 궤환부(103)의 감지 전압으로 인해 PWM 동작부(200)는 동작을 중지하거나 비활성화된다.In addition, the PWM operation unit 200 is stopped or inactivated due to the sensed voltage of the feedback unit 103 at a low level.
도 4는 센싱부의 전압 감지부의 일예를 도시한 회로도이다.4 is a circuit diagram illustrating an example of a voltage sensing unit of a sensing unit.
상기 도 4의 전압 감지부(401)는 제1 실시예 내지 제3 실시예에 개시된 전압 감지부(401)로서 동작한다.The voltage detector 401 of FIG. 4 operates as the voltage detector 401 disclosed in the first to third embodiments.
도 4를 참조하면, 전압 감지부(401)는 OP 엠프(402)를 이용한 감산기의 구성을 가진다.Referring to FIG. 4, the voltage detector 401 has a configuration of a subtractor using the OP amplifier 402.
제1 입력전압 VIN1 및 제2 입력전압 VIN2는 센싱 저항 Rs의 양단의 전압을 나타낸다. 따라서, 센싱 저항 Rs 양단의 전압차 Vs는 VIN1-VIN2가 된다. 입력전압이 낮은 레벨의 값인 경우, 선형 레귤레이터의 궤환부(103)에 입력되는 신호 또한 낮은 레벨의 값을 가지므로, 충전 방식은 정전압 모드가 된다. 반면, 입력전압이 높은 레벨의 값인 경우, 선형 레귤레이터의 궤환부(103)에 입력되는 신호 또한 높은 레벨의 값을 가지므로, 충전 방식은 정전류 모드가 된다.The first input voltage VIN1 and the second input voltage VIN2 represent voltages at both ends of the sensing resistor Rs. Therefore, the voltage difference Vs across the sensing resistor Rs is VIN1-VIN2. When the input voltage is a low level value, the signal input to the feedback unit 103 of the linear regulator also has a low level value, so that the charging method is in the constant voltage mode. On the other hand, when the input voltage is a high level value, since the signal input to the feedback unit 103 of the linear regulator also has a high level value, the charging method is a constant current mode.
참조전압 VREF2는 OP 엠프(402)의 양의 입력단자에 인가되는 특정 기준전압이다, 상기 입력전압이 참조전압 VREF2 미만인 경우, OP 엠프(402) 연산을 통해 센싱부(400)에서 출력되는 출력전압은 높은 레벨의 값을 가진다. 반면, 상기 입력전압이 참조전압 VREF2 이상인 경우, 출력전압은 낮은 레벨의 값을 가진다. 따라서, 전압 감지부(401)의 출력전압의 값을 통해 PWM 동작부(200) 및 스위치에 인가되는 신호제어를 할 수 있다.The reference voltage VREF2 is a specific reference voltage applied to the positive input terminal of the OP amplifier 402. When the input voltage is less than the reference voltage VREF2, the output voltage output from the sensing unit 400 through the operation of the OP amplifier 402. Has a high level value. On the other hand, when the input voltage is greater than or equal to the reference voltage VREF2, the output voltage has a low level. Accordingly, signal control applied to the PWM operation unit 200 and the switch may be performed through the value of the output voltage of the voltage sensing unit 401.
따라서, 상기 전압 감지부(401)의 출력 Vout은 하기의 수학식 1로 표시될 수 있다.Therefore, the output Vout of the voltage detector 401 may be represented by Equation 1 below.
수학식 1
Figure PCTKR2013009893-appb-M000001
Equation 1
Figure PCTKR2013009893-appb-M000001
도 5는 기존의 PFM방식과 본 발명의 선형 레귤레이터를 이용한 방식의 충전 전류 및 전압의 파형을 비교하여 도시한 이미지이다.5 is an image showing a comparison of the waveform of the charging current and voltage of the conventional PFM method and the method using the linear regulator of the present invention.
도 5를 참조하면, PFM방식에서는 충전 전류의 레벨이 가변될 때, 출력 전압에 리플이 발생하지만, 본 발명에서는 충전 전류의 레벨이 가변되어도, 출력 전압의 리플이 대폭 감소한다. 이는 PFM 방식에서의 저전류 상태에서 고전류 상태의 전환시, 모드의 변환이 수행되지 않으므로 충전 회로에서의 급준한 전류량의 변동은 충전 전압의 리플을 야기하기 때문이다.Referring to FIG. 5, in the PFM method, when the level of the charging current is varied, ripple occurs in the output voltage. However, in the present invention, even when the level of the charging current is varied, the ripple of the output voltage is greatly reduced. This is because a mode change is not performed when switching from a low current state to a high current state in the PFM method, so that a sudden change in the amount of current in the charging circuit causes a ripple in the charging voltage.
반면, 본 발명에서는 저전류로 충전되는 상태에서는 정전압 모드로 동작하므로 전압의 리플이 원천적으로 차단될 수 있다.On the other hand, in the present invention, since it operates in the constant voltage mode while being charged with low current, the ripple of the voltage may be blocked at source.
따라서, 본 발명에 따르면, 충전전류량의 변화에 기인한 충전전압의 리플이 현저히 감소된다. 또한, 선형 레귤레이터부(100)의 구동시 2차 전지 C에 충전되는 전압을 일정하게 유지하여 과충전이 되는 것을 방지할 수 있다.Therefore, according to the present invention, the ripple of the charging voltage due to the change of the charging current amount is significantly reduced. In addition, when the linear regulator unit 100 is driven, the voltage charged in the secondary battery C may be kept constant to prevent overcharging.
이상, 본 발명의 상세한 설명에서는 구체적인 실시예에 관해서 설명하였으나,본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 당해In the foregoing detailed description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention.
분야에서 통상의 지식을 가진 자에게 있어서 자명하다 할 것이다.It will be obvious to those with ordinary knowledge in the field.

Claims (14)

  1. 정전압 모드로 동작하기 위한 선형 레귤레이터부;A linear regulator unit for operating in a constant voltage mode;
    정전류 모드로 동작하기 위한 PWM 동작부; 및PWM operation unit for operating in the constant current mode; And
    상기 선형 레귤레이터부 및 상기 PWM 동작부의 출력신호를 선택적으로 수신하여 상기 정전압 모드 또는 상기 정전류 모드로 충전 동작을 수행하기 위한 모드 선택부를 포함하는 2차 전지 충전회로.And a mode selection unit for selectively receiving output signals of the linear regulator unit and the PWM operation unit to perform a charging operation in the constant voltage mode or the constant current mode.
  2. 제1항에 있어서, 상기 선형 레귤레이터부는,The linear regulator unit of claim 1,
    셀을 충전하는 전압을 감지하고, 저항 분배 비율에 따른 궤환전압을 형성하기 위한 궤환부; A feedback unit for sensing a voltage charging the cell and forming a feedback voltage according to a resistance distribution ratio;
    상기 궤환부의 궤환전압과 기준전압을 수신하고, 상기 궤환전압과 상기 기준전압의 차이를 증폭하기 위한 에러 엠프; 및An error amplifier for receiving a feedback voltage and a reference voltage of the feedback unit and amplifying a difference between the feedback voltage and the reference voltage; And
    상기 에러 엠프의 출력을 수신하고, 온/오프 동작을 수행하기 위한 파워 트랜지스터를 포함하는 것을 특징으로 하는 2차 전지 충전회로.And a power transistor for receiving the output of the error amplifier and performing an on / off operation.
  3. 제2항에 있어서, 상기 정전압 모드에서 상기 파워 트랜지스터는 오프되어, 상기 선형 레귤레이터부는 충전전압을 출력하고, 상기 정전류 모드에서 상기 파워 트랜지스터는 온되어, 상기 선형레귤에이터는 로우 레벨을 출력하는 것을 특징으로 하는 2차 전지 충전회로.The power regulator of claim 2, wherein the power transistor is turned off in the constant voltage mode, the linear regulator part outputs a charging voltage, and the power transistor is turned on in the constant current mode, and the linear regulator outputs a low level. Secondary battery charging circuit.
  4. 제3항에 있어서, 상기 모드 선택부는,The method of claim 3, wherein the mode selection unit,
    상기 PWM 동작부의 출력신호를 수신하기 위한 제1 트랜지스터; 및A first transistor for receiving an output signal of the PWM operation unit; And
    상기 선형 레귤레이터부의 출력을 수신하기 위한 제2 트랜지스터를 포함하는 것을 특징으로 하는 2차 전지 충전회로.And a second transistor for receiving the output of the linear regulator unit.
  5. 제4항에 있어서, 상기 정전압 모드에서 상기 제2 트랜지스터는 턴온되어, 입력전압을 셀에 전달하는 것을 특징으로 하는 2차 전지 충전회로.The secondary battery charging circuit of claim 4, wherein the second transistor is turned on in the constant voltage mode to transmit an input voltage to a cell.
  6. 제4항에 있어서, 상기 정전류 모드에서 상기 제1 트랜지스터는 반복적으로 턴온되어 입력전압을 셀에 전달하는 것을 특징으로 하는 2차 전지 충전회로.The secondary battery charging circuit of claim 4, wherein in the constant current mode, the first transistor is repeatedly turned on to transmit an input voltage to a cell.
  7. 제3항에 있어서, 상기 모드 선택부는,The method of claim 3, wherein the mode selection unit,
    상기 선형 레귤레이터부의 출력 또는 상기 PWM 동작부의 출력을 선택하기 위한 제1 스위치; 및A first switch for selecting an output of the linear regulator unit or an output of the PWM operation unit; And
    상기 제1 스위치를 통해 전달되는 신호에 따른 온/오프 동작을 수행하기 위한 제3 트랜지스터를 포함하는 것을 특징으로 하는 2차 전지 충전회로.And a third transistor for performing an on / off operation according to a signal transmitted through the first switch.
  8. 제7항에 있어서, 상기 제1 스위치는 상기 정전압 모드에서는 상기 선형 레귤레이터부의 출력을 상기 제3 트랜지스터에 전달하고, 상기 정전류 모드에서는 상기 PWM 동작부의 출력을 상기 제3 트랜지스터에 전달하는 것을 특징으로 하는 2차전지 충전회로.The method of claim 7, wherein the first switch transmits the output of the linear regulator part to the third transistor in the constant voltage mode, and transmits the output of the PWM operation part to the third transistor in the constant current mode. Secondary battery charging circuit.
  9. 제7항에 있어서, 상기 모드 선택부는 상기 제3 트랜지스터를 통해 전달되는 입력전압을 선택적으로 수신하고, 상기 제3 트랜지스터에 연결된 인덕터를 바이패스하기 위한 제2 스위치를 더 포함하는 것을 특징으로 하는 2차 전지 충전회로.10. The method of claim 7, wherein the mode selector further comprises a second switch for selectively receiving an input voltage transmitted through the third transistor and bypassing an inductor connected to the third transistor. Primary battery charging circuit.
  10. 제1항에 있어서, 상기 2차 전지 충전회로는 상기 모드 선택부에 의해 셀을 충전하는 전류를 감지하기 위한 센싱부를 더 포함하는 것을 특징으로 하는 2차 전지 충전회로.The secondary battery charging circuit of claim 1, wherein the secondary battery charging circuit further comprises a sensing unit configured to sense a current for charging the cell by the mode selection unit.
  11. 충전 동작의 시점에서 낮은 전류가 공급되는 정전압 모드로 동작하기 위한 선형 레귤레이터부;A linear regulator unit for operating in a constant voltage mode to which a low current is supplied at the time of the charging operation;
    상기 정전압 모드에 따른 셀의 단자전압의 상승에 따라 PWM 제어를 통한 정전류 모드로 동작하기 위한 PWM 동작부;A PWM operation unit for operating in the constant current mode through PWM control according to the increase in the terminal voltage of the cell according to the constant voltage mode;
    상기 선형 레귤레이터부 및 상기 PWM 동작부의 출력신호를 선택적으로 수신하여 상기 정전압 모드 또는 상기 정전류 모드로 충전 동작을 수행하기 위한 모드 선택부; 및A mode selection unit for selectively receiving output signals of the linear regulator unit and the PWM operation unit to perform a charging operation in the constant voltage mode or the constant current mode; And
    상기 모드 선택부의 출력을 감지하고 상기 PWM 동작부의 동작을 제어하기 위한 센싱부를 포함하는 2차 전지 충전회로.And a sensing unit for sensing an output of the mode selection unit and controlling an operation of the PWM operation unit.
  12. 제11항에 있어서, 상기 모드 선택부는,The method of claim 11, wherein the mode selection unit,
    상기 PWM 동작부의 출력신호를 수신하기 위한 제1 트랜지스터; 및A first transistor for receiving an output signal of the PWM operation unit; And
    상기 선형 레귤레이터부의 출력을 수신하기 위한 제2 트랜지스터를 포함하는 것을 특징으로 하는 2차 전지 충전회로.And a second transistor for receiving the output of the linear regulator unit.
  13. 제11항에 있어서, 상기 모드 선택부는,The method of claim 11, wherein the mode selection unit,
    상기 선형 레귤레이터부의 출력 또는 상기 PWM 동작부의 출력을 선택하기 위한 제1 스위치; 및A first switch for selecting an output of the linear regulator unit or an output of the PWM operation unit; And
    상기 제1 스위치를 통해 전달되는 신호에 따른 온/오프 동작을 수행하기 위한 제3 트랜지스터를 포함하는 것을 특징으로 하는 2차 전지 충전회로.And a third transistor for performing an on / off operation according to a signal transmitted through the first switch.
  14. 제13항에 있어서, 상기 제1 스위치는 상기 정전압 모드에서는 상기 선형 레귤레이터부의 출력을 상기 제3 트랜지스터에 전달하고, 상기 정전류 모드에서는 상기 PWM 동작부의 출력을 상기 제3 트랜지스터에 전달하는 것을 특징으로 하는 2차 전지 충전회로.The method of claim 13, wherein the first switch transmits the output of the linear regulator part to the third transistor in the constant voltage mode, and delivers the output of the PWM operation part to the third transistor in the constant current mode. Secondary battery charging circuit.
PCT/KR2013/009893 2013-08-01 2013-11-04 Secondary battery charging circuit using linear regulator WO2015016427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0091716 2013-08-01
KR1020130091716A KR101509323B1 (en) 2013-08-01 2013-08-01 Second battery charging circuit using linear regulator

Publications (1)

Publication Number Publication Date
WO2015016427A1 true WO2015016427A1 (en) 2015-02-05

Family

ID=52431934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009893 WO2015016427A1 (en) 2013-08-01 2013-11-04 Secondary battery charging circuit using linear regulator

Country Status (2)

Country Link
KR (1) KR101509323B1 (en)
WO (1) WO2015016427A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10298030B2 (en) 2015-07-20 2019-05-21 Samsung Sdi Co., Ltd. Battery pack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654087B1 (en) 2015-04-30 2016-09-05 현대엘리베이터 주식회사 Secondary battery charging circuit using asymmetric pulse width modulation synchronous driving

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173961B1 (en) * 1996-06-24 1999-05-01 김광호 Mode conversion type battery charging apparatus
KR20000007575A (en) * 1998-07-04 2000-02-07 한용남 Constant current constant voltage charging circuit
KR100518007B1 (en) * 2003-10-09 2005-09-30 엘지전자 주식회사 A method and a apparatus of charging for rechargeable battery
JP2009065772A (en) * 2007-09-06 2009-03-26 Ricoh Co Ltd Charging control circuit
JP2012146122A (en) * 2011-01-12 2012-08-02 Fujitsu Telecom Networks Ltd Power supply device, charging and discharging control device, and control method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229289B1 (en) * 2000-02-25 2001-05-08 Cadence Design Systems, Inc. Power converter mode transitioning method and apparatus
KR101315115B1 (en) * 2011-01-31 2013-10-07 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Battery charger digital control circuit and method and battery charger system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173961B1 (en) * 1996-06-24 1999-05-01 김광호 Mode conversion type battery charging apparatus
KR20000007575A (en) * 1998-07-04 2000-02-07 한용남 Constant current constant voltage charging circuit
KR100518007B1 (en) * 2003-10-09 2005-09-30 엘지전자 주식회사 A method and a apparatus of charging for rechargeable battery
JP2009065772A (en) * 2007-09-06 2009-03-26 Ricoh Co Ltd Charging control circuit
JP2012146122A (en) * 2011-01-12 2012-08-02 Fujitsu Telecom Networks Ltd Power supply device, charging and discharging control device, and control method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10298030B2 (en) 2015-07-20 2019-05-21 Samsung Sdi Co., Ltd. Battery pack

Also Published As

Publication number Publication date
KR20150016442A (en) 2015-02-12
KR101509323B1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2014054874A2 (en) Device for activating multi-bms
WO2019216532A1 (en) Battery control device and energy storage system comprising same
WO2018143562A1 (en) Battery pack and method for controlling charging of battery pack
WO2013119070A1 (en) Cell balancing circuit apparatus of battery management system using two-way dc-dc converter
WO2018021664A1 (en) Battery balancing device and method
WO2020085819A1 (en) Balancing device, battery management system comprising same, and battery pack
WO2018139740A1 (en) Battery pack, method for managing battery pack, and vehicle comprising battery pack
CN101277023B (en) Charging device
WO2019078589A1 (en) Battery pack and power system comprising same
WO2019221368A1 (en) Device, battery system, and method for controlling main battery and sub battery
WO2019088558A1 (en) Battery pack
WO2022092612A1 (en) Charging management device, charging management method, and electric vehicle
WO2022149958A1 (en) Battery control device, battery system, power supply system, and battery control method
WO2020149537A1 (en) Battery charging system and battery charging method
WO2022213767A1 (en) Charging apparatus, electronic device, and charging method
WO2016064224A1 (en) Apparatus and method for controlling electric currents
WO2014123350A1 (en) Low-heat wireless power receiving apparatus and method therefor
WO2015016427A1 (en) Secondary battery charging circuit using linear regulator
WO2015156648A1 (en) Active cell balancing circuit using cell voltage measurement circuit of capacitor charging method
WO2018079918A1 (en) Battery cell balancing device
WO2013047973A1 (en) Power supply device for cell balancing using outer battery cells and cell balancing method thereof
WO2020067777A1 (en) Device and method for preventing overcharge of rechargeable battery
WO2015080517A1 (en) Low-heat wireless power reception device
WO2016182092A1 (en) Battery pack pouch device for portable terminal having charging/discharging function
JP2003217675A (en) Charging method and device for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890696

Country of ref document: EP

Kind code of ref document: A1