WO2015015898A1 - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
WO2015015898A1
WO2015015898A1 PCT/JP2014/065027 JP2014065027W WO2015015898A1 WO 2015015898 A1 WO2015015898 A1 WO 2015015898A1 JP 2014065027 W JP2014065027 W JP 2014065027W WO 2015015898 A1 WO2015015898 A1 WO 2015015898A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
measurement
fitting
measuring device
measurement data
Prior art date
Application number
PCT/JP2014/065027
Other languages
French (fr)
Japanese (ja)
Inventor
野田 英之
雅弘 岡野定
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2015015898A1 publication Critical patent/WO2015015898A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator

Definitions

  • the present invention relates to detection of substances contained in a sample.
  • the present invention relates to a measuring apparatus and a measuring method for detecting an extremely small amount of a substance contained in a sample with high sensitivity and high accuracy.
  • Adenosine triphosphate (ATP) bioluminescence method uses the luminescence reaction of fireflies to measure the intracellular substance ATP into light. To do.
  • the luciferase enzyme incorporates the substrate luciferin and ATP molecules, and measures the amount of luminescence when the oxidized luciferin (oxyluciferin) transitions from the excited state to the ground state along with the consumption of ATP.
  • the number of photons generated is proportional to the number of ATP.
  • the lower limit of detection of the ATP method is not only the performance of the measuring device, but also ATP is included in the ATP sample present in the environment, luciferin / luciferase reagent, so-called luminescent reagent, and other reagents necessary for the ATP method.
  • a dispensing system having a cleaning function for preventing external contamination, and a material type by spectroscopy using an optical filter are used.
  • a bioluminescence detection system in which an identification system and a high-sensitivity photodetector are placed in the same device in a space that is shielded from light and contaminated from outside has been reported, enabling measurement of ATP molecular weight equivalent to 1 amol. It has become to.
  • the random noise component and the number of dark current pulses are reduced, the fluctuation of the signal component is suppressed, and the signal component of the weak light is increased.
  • a means for extracting with accuracy and improving detection sensitivity is adopted.
  • Patent Document 5 discloses that fitting is performed using an evaluation function representing an error, and the calculation is terminated when the parameter is greatly deviated from the target value.
  • ATP is often mixed during production, and these are ATP that cannot be removed in advance, and always exist as a background during luminescence measurement. If the difference between the background and the ATP derived from the microbial cells of the measurement sample is not accurately indicated as a measurement value, there is a risk of determining false positive or false negative in measurement close to a level indicating sterility.
  • a graph is generated by plotting measurement data points of a signal amount measured from a sample against a measurement time, and at least one curve file is generated.
  • a fitting function is used to approximate and fit a reaction curve composed of plots of measurement data points, and a sample is measured based on a variable value of the curve fitting function obtained by the fitting.
  • the present invention provides a sample analyzer that can reliably measure the amount of a substance in a sample. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • FIG. 1A is an example showing a sample analyzer and its peripheral system configuration, and includes a measurement device 1, a control device 2, and a sample analyzer 3.
  • the sample analyzer 3 may include a function including the function of the control device 2, and may further include an integrated system in which all functions of the measurement device 1, the control device 2, and the sample analyzer 3 are integrated as one device. .
  • the control device 2 controls the operation of the driving mechanism of the measuring device 1 by the control signal 6, and the sample analyzer 3 outputs the signal output 4 from the measuring instrument in the measuring device 1.
  • the control device 2 operates in conjunction with the trigger signal 5 for the signal acquisition start / end of the sample analysis device 3 between the control device 2 and the sample analysis device 3, and The operation is controlled by a control signal 6.
  • FIG. 2 is a diagram showing the configuration of the sample analyzer 3.
  • the sample analyzer 3 is mainly composed of a main body 8 and a display 9.
  • manual input means 10 such as a mouse and a keyboard can be connected.
  • FIG. 2 shows the processing program of the sample analyzer 8 from the viewpoint of hardware, and the main body 8 has a measurement data acquisition unit that acquires a signal output 4 indicating the amount of chemiluminescence or bioluminescence optical signals from the measuring instrument. 11 and a graph waveform generation unit 13 that plots the measurement data points acquired by the measurement data acquisition unit 11 over time with respect to the measurement time and graphs it as a temporal change in the amount of optical signal, and a graph waveform graphed
  • a curve fitting function storage unit 15 that stores a plurality of curve fitting functions for approximating a plurality of curve fitting functions, a plurality of variables of the plurality of curve fitting functions, and a plurality of curve fitting functions stored in the curve fitting function storage unit 15.
  • a data processing unit 16 that sequentially changes a plurality of variables and performs data waveform fitting processing including measurement data points
  • a data storage unit 19 that stores the processing result of the data processing unit 16, a data comparison unit 17 that compares the variable value stored in the data storage unit 19, and a variable reference value that can be arbitrarily set, and a measurement data point 12
  • the data determination unit 20 determines a difference between a variable value obtained by the fitting process and a preset variable reference value.
  • variable reference value is a so-called threshold value
  • the magnitude of the deviation is represented by the difference between the variable value stored in the data storage unit 19 and the variable reference value.
  • a calibration curve is created in advance, which is created with the number of target substances or the target substance concentration as shown in FIG. 10 on the horizontal axis and the amount of light corresponding to the concentration on the vertical axis.
  • each functional block constituting the control function of the main body 8 described above with reference to FIG. 2 may be implemented as a software module or may be realized by hardware. That is, each functional block can be realized by software in the main body 8 by the processor interpreting and executing a program stored in a memory that realizes each function. Each functional block may be realized by hardware by designing a part or all of them, for example, by an integrated circuit. Information such as programs, files, databases, function data, variable data, etc. for realizing each function is, for example, a memory, a hard disk, a recording device such as an SSD (Solid State Drive), an IC card, an SD card, a DVD, etc. It can also be placed on other recording media.
  • SSD Solid State Drive
  • the signal output 4 from the measuring instrument of the measuring apparatus 1 is stored in the measurement data acquisition unit 11 as a measurement data point (S301).
  • the graph waveform generation unit 13 creates a graph waveform from the measurement data points 12 stored in the measurement data acquisition unit 11 (S302). Since the created graph waveform is stored in the data storage unit 19 by a method such as a text file, the blank sample graph display unit 35 or the measurement sample graph display unit 36 on the display screen of the display 9 in FIG.
  • the display illustrated in FIG. 4A, FIG. 4B, etc. can be performed.
  • the measurement data to be displayed is selected from the first graph calling down menu 42 and the second graph calling down menu 43.
  • the curve fitting function group 18 determined to be compatible with the data waveform preliminarily estimated from the measurement object and the measurement content is called from the curve fitting function storage unit 15 (S303), and each of the called curve fitting function group 18 is called.
  • the fitting process is performed in order by the data processing unit 16 (S303).
  • the curve fitting function group 18 is set in advance by the user in the function group setting means 25.
  • a fixed variable of the fitting function may be determined by the variable fixed value setting means 26 in order to shorten the fitting processing time.
  • the graph waveform of the obtained measurement data point 12 is matched with the least-squares criterion while sequentially changing the peak position, peak height, etc., which are waveform variables, repeatedly.
  • the nonlinear least squares problem is solved by the Levenberg-Marquardt method for fitting.
  • the results of a plurality of variable values of all the curve fitting functions in the called curve fitting function group 18 are stored in the data storage unit 19 in association with each curve fitting function (S304).
  • variable values are stored in the data storage unit 19 in any of the curve fitting function groups 18 without considering the convergence of each curve fitting function (S304). Further, the determination of the presence or absence of convergence can reduce the processing time by limiting the number of times of fitting processing. These can be determined in advance by the user in the fitting process setting means 27. Further, the curve fitting function group used mainly is based on an exponential decay function, a Lorentz function, and a Gaussian function.
  • variable value group stored in the data storage unit 19 is then compared with at least one comparison variable value group 44 preset by the variable threshold value setting unit 28 in the data comparison unit 17 (S305). ). Since at least one threshold value is set for the variable reference value in the comparison variable value group 24, the data determination unit 20 determines whether the value is within the threshold value range or outside the threshold value range (S306). The determination result in the data determination unit is displayed on the determination result display unit 34 of the display 9 (S307).
  • the measurement data to be displayed is selected from the pull-down menu 42 for calling the first graph and the pull-down menu 43 for calling the second graph.
  • the graph waveform and the curve fitting curve of the measurement data point 12 should be displayed on one graph as shown in FIGS. 5A, 5B, 5C, 6A, 6B, and 6C to be described later. Is also possible.
  • the ATP method uses the light emission reaction of fireflies, and measures the number of ATP in cells and bacteria converted to the amount of light.
  • the principle is that the luciferase enzyme incorporates the substrate luciferin and ATP molecules, and the amount of luminescence when the oxidized luciferin (oxyluciferin) transitions from the excited state to the ground state with the consumption of ATP is measured.
  • the number of photons generated is proportional to the number of ATP, and the living bacteria (viable bacteria) endoss ATP of ATP on average. It is known that the total number of viable bacteria contained in the measurement sample can be estimated by grasping in advance the relationship between the number of ATP and the number of photons generated (amount of optical signal). .
  • a method for creating a database for estimating the number of viable bacteria will be described with reference to FIG. First, an ATP standard solution with a controlled ATP number is prepared using a dedicated diluent. Next, measurement is performed using the measurement system 45 of FIG.
  • an ATP calibration curve 39 is created with the ATP number on the horizontal axis and the amount of light on the vertical axis.
  • a viable standard solution with a controlled viable count is prepared using a dedicated diluent.
  • measurement is performed using the measurement system 45 in FIG. 1 using the viable standard solution controlled by each number, and the optical signal amount is arranged for each viable count.
  • a calibration curve 40 of live bacteria is created with the number of viable bacteria on the horizontal axis and the amount of light on the vertical axis.
  • the number of viable bacteria can be obtained from the amount of light signal. Although the average of 1 amol for live bacteria was previously described, it differs depending on the type of bacteria, so if the target object can be assumed to some extent, the relationship between the number of ATP and the number of live bacteria can be determined using the method of FIG. It is better to keep it clear.
  • These relational expressions are processed by the data comparison unit 17 and the data determination unit 20 in FIG. 2 and displayed on the determination result display unit 34 on the display 9.
  • step (Z) prepare a predetermined amount of ATP extraction sample that has finished the step (Y),
  • step (Z) the luciferin-luciferase luminescent reagent was dispensed into the sample, mixed and reacted with the ATP extracted sample, and the amount of bioluminescent reaction in the ATP eluted sample was measured with a photodetector.
  • a photodetector It is a typical example of the graph waveform which showed the result and the result of the analysis using the sample analyzer 3 of a present Example, ie, a curve fitting.
  • the embodiment of the measuring apparatus 1 and the control apparatus 2 described with reference to FIG. 1 having a mechanism for measuring with a photodetector is an example described in Japanese Patent Application Laid-Open No. 2008-268019 (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-268019
  • the measuring instrument of the measuring device 1 is a photon counting method for measuring weak light emission, and the signal output 4 from the measuring instrument uses a counter substrate.
  • the total number of processed count values per second is output and input to the sample analyzer 3 as measurement data points.
  • the measurement data acquisition unit 11 stores the signal output 4 from the measurement apparatus 1 (S301 in FIG. 3), and the graph waveform generation unit 13 stores the measurement data points stored in the measurement data acquisition unit 11.
  • a typical example of the result of creating a waveform (ATP emission data waveform) 21 from 12 (S302 in FIG. 3) is shown. These are displayed on the blank sample graph display unit 35 and the measurement sample graph display unit 36 on the display of FIG.
  • FIG. 4A shows the result of an ATP extraction sample containing an ATP amount corresponding to one viable cell, and the result of mixing and reacting a blank sample not containing ATP in the sample, that is, a surfactant extraction reagent. Is FIG. 4B.
  • the waveforms are the sample background signal 22 before mixing the sample and the reagent in FIG. 4A and FIG. 4B, and the ATP luminescence signal generated by the reaction after mixing the sample and the luminescent reagent.
  • FIG. 4B even in the blank sample, the signal amount is increased by mixing the luminescent reagent, and a waveform similar to ATP emission appears. This can be considered to indicate that ATP is contained in the luminescent reagent or in other reagents and consumables.
  • the data processing unit 16 calls the curve fitting function group 18 that can correspond to the waveform 21 preliminarily estimated from the measurement object and the measurement content from the curve fitting function storage unit 15, and calls each of the called curve fitting function groups 18.
  • a curve fitting function 26 including one exponential function attenuation term As a function group, a curve fitting function 26 including one exponential function attenuation term, a curve fitting function 27 including two exponential function attenuation terms, and three exponential functions. A case where three types of curve fitting functions 28 including an attenuation term are selected will be described.
  • y0 is the average value of the measurement data points of the sample background 22.
  • the average value y0 is preferably calculated from 30 or more measurement data points 12, in other words, measurement data of 30 seconds or more.
  • x0 is a time indicating the maximum value of the ATP light emission signal 23. Since the maximum value of the ATP light emission signal 23 is generally obtained within 5 seconds from the start of light emission, the detection region of the maximum value can be narrowed in advance. Further, y0 may be calculated by extracting only the measurement data point 12 of the sample background 22 and fitting it. These processes can be arbitrarily set by the user using the fitting process setting unit 27 and performed by the data processing unit 16.
  • the exponential decay terms A1, A2, and A3 are variables related to the signal intensity at x0 seconds obtained by subtracting the average value of the measurement data points of the sample background 22.
  • A1 indicates the ATP emission signal value when x0 seconds
  • A1 + A2 indicates the ATP emission signal value when x0 seconds
  • A1 + A2 + A3 indicates x0 seconds.
  • the ATP emission signal value at the time of is shown.
  • t1, t2, and t3 are variables indicating the attenuation rate of the ATP emission signal 23.
  • T1 in the formula (1) indicates a reaction process of ATP-luciferase luminescence reaction from x0 seconds, that is, a process in which ATP is consumed by luciferase.
  • T2 in the formula (2) also shows a process in which ATP is consumed by luciferase from x0 seconds, and shows another decay rate when it is assumed that the reaction route is different from that of t1.
  • t3 in the equation (3) indicates one more decay rate when it is assumed that another reaction path exists in addition to t1 and t2.
  • y0 is determined from the measurement data point 12 of the sample background 22 in FIGS. 4A and 4B. Specifically, the average value of the measurement data points 12 for 30 seconds from 80 seconds to 110 seconds is calculated by the data processing unit 16 by the fitting process setting unit 27 in FIG. The y0 value is stored in the data storage unit 19.
  • the maximum value is extracted from the ATP emission signal 23, the time x0 at that time is extracted, and stored in the data storage unit 19 as the fixed parameter x0 in the fitting process setting means 27.
  • the fixed values y0 and x0 stored in the data storage unit 19 are called by the fitting process setting unit 27, and the called y0 and x0 are sent to the data processing unit 16, and the fitting process setting unit 27 is used to formula (1) ), (2), and (3) are selected from the three types of curve fitting functions, and each of them is fitted by the data processor 16.
  • the waveform variables A1, A2, A3, t1, t2, and t3 are made to coincide with each other using the least-squares criterion while iteratively changing.
  • the nonlinear least squares problem is solved by the Levenberg-Marquardt method for fitting.
  • the results of the variable values of A1, A2, A3, t1, t2, and t3 of all the curve fitting functions of the called curve fitting function group 18 are stored in the data storage unit 19 in association with the respective curve fitting functions.
  • FIG. 5A, FIG. 5B, and FIG. 5C show graphs of results obtained by fitting the data processing unit 16 with the formula (1), the formula (2), and the formula (3), respectively, in the blank sample.
  • 6A, FIG. 6B, and FIG. 6C show the results of ATP luminescence of a sample containing about 1 viable ATP, and the data processing unit 16 uses the equations (1), (2), and (3) for the fitting results. Is shown.
  • Expression (1) the fitting process is converged (FIG. 5A), but in the case of using Expression (2) and Expression (3), the fitting process is not converged (FIG. 5B, 5C), t2 in the expression (2), and t3 in the expression (3) are close to infinity (FIGS. 5B and 5C).
  • the curve fitting function (equation (1)) including one exponential decay term is suitable as the selection of the fitting function, but includes other two exponential decay terms.
  • the present results show that the curve fitting function including the curve fitting function (equation (2)) and the curve fitting function including the three exponential decay terms (equation (3)) are not suitable as the fitting function selection.
  • the variable values indicating the inappropriateness are t2 in FIG. 5B and t3 in FIG. 5C, which are 9.881 ⁇ 10 83 power and 4.791 ⁇ 10 85 power, respectively, and diverge almost infinitely. ing.
  • This fitting result indicates that the term including t2 and t3 is preferably almost zero, and the term including t2 and t3 is unnecessary for the curve fitting.
  • What is necessary is just to set 8 * 10 to the 4th power or more as a threshold value. That is, from the relationship of An ⁇ EXP ( ⁇ ((x0 + 100) ⁇ x0) / tn) ⁇ 1, it is possible to determine the threshold value of tn used to determine the inappropriateness of the curve fitting function and the necessity of t2 and t3. In the case of the present embodiment, it is sufficient to determine that the curve fitting function is unsuitable and t2 or t3 is unnecessary when the likelihood is higher than 1 ⁇ 10 5 with more likelihood.
  • the variable threshold setting means 28 is responsible for determining these determination thresholds.
  • FIG. 6A, FIG. 6B, and FIG. 6C show that the fitting process converges in any sample containing about 1 viable ATP using any of the curve fitting functions of equations (1), (2), and (3).
  • An example of the results is shown. From this result, the variable value groups A1, A1 + A2, and A1 + A2 + A3 corresponding to the signal strength of the curve fitting function are about one viable cell than the blank sample described above with reference to FIGS. 5A, 5B, and 5C. It can be seen that the sample containing ATP is larger. Moreover, there is a difference in the values of t1, t2, and t3. Regarding t2 and t3, it can be seen that these variable values differ greatly between the blank sample and the sample containing about 1 viable ATP depending on the convergence of the fitting. .
  • the data determination unit 20 determines whether one or more viable bacteria are present in the sample according to the following determination criteria.
  • the determination of S306 is performed as shown in (a) and (b) below, for example, without performing the comparison process of S305 of FIG.
  • the threshold values are provided for t2 and t3 of the variable value group for comparison, and the determination is made as shown in (c) and (d) below.
  • the criteria for determining the values of t2 and t3 are not limited to this, and can be arbitrarily set.
  • threshold values may be provided for A1, A2, and A3, and the determination accuracy of whether or not viable bacteria are present in the sample can be obtained by comparing the threshold values of a plurality of variables. Can be improved.
  • the detection lower limit is 3.3 times the standard deviation (Standard Deviation: SD) of the signal amount of the Planck sample + the signal amount of the blank sample, and 10 times or more of the standard deviation is the lower limit of quantification.
  • SD standard deviation
  • the standard deviation (Standard Deviation: SD) of A2 is calculated from the measurement data of a plurality of blank samples, and the value of A2 + 3.3SD (A2) is stored in the variable reference value of the variable value group 24 for data comparison. Keep it.
  • variable reference value A1 + A2
  • a + 3.3SD (A) A is stored in the variable reference value of the data comparison variable group 24.
  • one variable reference value is set as the average value of the blank sample, and from the amount of difference from the signal value obtained with the measurement sample, the method for calculating the number of viable bacteria from the calibration curve described with reference to FIG.
  • the number of viable bacteria may be displayed as a determination result in addition to the determination of the presence or absence of viable bacteria based on whether or not the lower limit of detection is calculated. These are all displayed on the determination result display unit 34.
  • the sample analyzer 3 detects mismeasurements due to malfunctions of the measurement apparatus 1 or contamination due to consumables or malfunctions due to reagent activity malfunctions in addition to determining the presence or absence of bacteria. An embodiment that also performs detection will be described.
  • FIG. 8 shows a step of determining from the result of the sample analyzer 3 whether the sterility test is microbial or aseptic, and further, erroneous measurement due to a measurement abnormality.
  • the determination is made by a curve fitting function including two exponential function attenuation terms of Expression (2).
  • the measurement target is ATP
  • the time series signal value of ATP bioluminescence is the measurement data point
  • the measurement data point is measured for 200 seconds
  • the sample background signal before mixing the sample and the reagent the sample and the luminescent reagent
  • Two regions of the ATP emission signal generated by the reaction after mixing are measured together.
  • aseptic sample that is, blank sample is measured by the measuring device 1.
  • the curve fitting function group including the exponential function decay term is selected from the function group selection pull-down menu 29 on the display of FIG. 9 (formula (4)).
  • variable values of a plurality of curve fitting processing results are stored (S804).
  • the stored variable value is displayed on the measurement sample variable value display unit 32 on the screen.
  • the value of the variable displayed in the measurement sample variable value display section is saved and can be recalled arbitrarily.
  • threshold values are set for the variable values of A and t2 based on the blank sample result. For example, AA is set to 140 and t2 is set to 1E5.
  • the comparison variable group setting button 38 for saving this as a comparison variable group is clicked, it is stored in the sample analyzer 3.
  • variable group display section 32 When the stored variable group for comparison is called during sample measurement, it is displayed on the variable group display section 32 for comparison in FIG.
  • the comparison variable group display unit 32 symbols of variable values are displayed in the first column, and those variable values are displayed in the second column. Based on these variable values, they are input to the threshold value display unit 37 as variable reference values. These variable reference values are set as threshold values.
  • the stored threshold value can also be called and displayed from the comparison variable group call pull-down menu 31.
  • the variable value of the blank sample result is only a reference value, and the threshold setting value can be freely selected. It ’s fine.
  • comparison 1 when the light signal value of the measurement sample is larger than the threshold value, that is, the average value of the light signal value of the blank sample, or the standard deviation SD of A of the blank sample measurement If the ratio is 3.3 times or more, it is determined that there is a high possibility of being a bacterium, and then the process proceeds to comparison 2 (S806).
  • comparison 2 if it is less than the threshold value, it is determined as being microbial. If it is determined to be microbial, it is possible to count the amount of microorganisms. From the relationship between the number of ATP, the number of viable bacteria, and the amount of each light signal, the estimated amount of the total number of viable bacteria contained in the measurement sample can be calculated. Can be calculated.
  • the attenuation curve corresponding to the concentration of ATP emission is not obtained when the value is equal to or greater than the threshold value in comparison 2 (806), although the value is equal to or greater than the threshold value in comparison 1 (S805). It is determined that the measurement is abnormal. Possible causes of measurement anomalies that produce such results include a loss of the light-shielding performance of the measuring device, or a mixture of stationary light substances other than ATP emission due to contamination. A message 47 is displayed and the measurement is stopped.
  • comparison 1 when it is less than the threshold value, that is, when the light signal value of the measurement sample is equal to or lower than the average value of the light signal value of the blank sample, or the standard deviation SD of A in the blank sample measurement If it is less than 3.3 times, it is determined that there is a high possibility of being sterile, and then the process proceeds to comparison 3 (S807).
  • comparison 3 when it is equal to or greater than the threshold value, it is determined as sterile.
  • it is determined that it is less than the threshold value in comparison 3 (807) it is determined that the measurement is abnormal because a normal ATP emission decay curve is not obtained.
  • the cause of the measurement abnormality may be that the dispensed amount of the reagent is less than the set value, or that the reagent has not been dispensed, etc., a measurement stop message 47 is displayed, and the measurement is stopped.
  • the determination result display unit 34 displays the microbial or aseptic result, the number of viable bacteria or the number of ATP in the case of bacteria, and the measurement abnormality is displayed in the case of a measurement abnormality. Furthermore, a graph composed of measurement data points and a fitting curve of the graph are also displayed so that it can be confirmed visually whether the analysis is proceeding smoothly (35, 36).
  • DESCRIPTION OF SYMBOLS 1 ... Measuring apparatus, 2 ... Control apparatus, 3 ... Sample analyzer, 4 ... Signal output from measuring instrument, 5 ... Trigger signal, 8 ... Main body, 9 ... Display, 10 ... Manual input means 11 ... Measurement data acquisition part, DESCRIPTION OF SYMBOLS 13 ... Graph waveform generation part, 15 ... Curve fitting function storage part, 16 ... Data processing part, 17 ... Data comparison part, 18 ... Curve fitting function group, 19 ... Data storage part, 20 ... Data determination part, 21 ... Waveform ( ATP emission data waveform), 22 ... sample background, 23 ... ATP emission signal, 24 ... variable value group for comparison, 25 ... function group setting means, 26 ...

Abstract

The purpose of the present invention is, in a case where a trace signal amount included in a sample as a result of mixing and reaction between the sample and a reagent is measured, to determine whether a substance under measurement is included in the sample or quantitatively analyze the amount of the substance. In an embodiment of the present invention for addressing at least one of the abovementioned problems, a configuration is provided in which a graph is created through the plotting, over a measurement time, of measurement data points for the signal amounts measured from the sample; at least one curve fitting function is used to approximate and fit a response curve composed of the plotted measurement data points; and the sample is measured on the basis of the variable values of the curve fitting function obtained through the fitting.

Description

計測装置及び計測方法Measuring device and measuring method
 本発明は、試料に含まれる物質についての検出に関する。特に、試料に含まれる極微量な物質量を高い感度と高い精度で検出するための計測装置及び計測方法に関する。 The present invention relates to detection of substances contained in a sample. In particular, the present invention relates to a measuring apparatus and a measuring method for detecting an extremely small amount of a substance contained in a sample with high sensitivity and high accuracy.
 医薬品工場や飲料工場では、近年、アセプティックシステムと呼ばれる無菌環境を実現する製造施設が設けられ、医薬品や飲料水、清涼飲料水の製造が行われる。アセプティックシステムの無菌環境性の保証や、製品の無菌性保証の検査には、培養法が用いられる。しかしながら、培地を恒温機中にて2~3日間、場合によっては10日間以上培養した後の発生コロニー数を目視で数えるため、結果を得るのに時間がかかり、製品の出荷にはその結果を待つ必要がある。このような背景から、無菌判定を可能とする迅速測定法の開発が望まれている。 In recent years, pharmaceutical factories and beverage factories have established manufacturing facilities called aseptic systems that realize an aseptic environment and produce pharmaceuticals, drinking water, and soft drinks. A culture method is used for guaranteeing the sterility environment of the aseptic system and checking the sterility guarantee of the product. However, since the number of colonies generated after culturing the medium in a thermostat for 2 to 3 days, sometimes 10 days or more is visually counted, it takes time to obtain the results. I need to wait. From such a background, it is desired to develop a rapid measurement method that enables sterility determination.
 迅速かつ簡便な菌体検出法の1つであるAdenosine triphosphate(ATP)生物発光法(以下、ATP法)は、ホタルの発光反応を利用して、細胞内の物質ATPを光に変換して測定する。ルシフェラーゼ酵素に基質ルシフェリンとATP分子を取り込ませ、ATPの消費とともに酸化されたルシフェリン(オキシルシフェリン)が励起状態から基底状態に遷移するときの発光量を計測する方法で、このとき、ATP1分子の消費が1フォトン(光子)生成に対応するため、光子発生数がATPの個数に比例する。生菌中1個あたりにはエネルギー源として1アトモル(amol=10-18 mol)相当のATP分子が存在するため、測定試料に含まれていたATP発光量から生菌の総数を推定することができる。さらに、生物発光及び化学発光のうちで最も優れた量子効率(ΦBL:≒0.5)であることから、細胞1個を数10万個相当のフォトンとして検出できることになり、発光反応で細胞1個相当の光を検出することは原理的に可能な方法である。 Adenosine triphosphate (ATP) bioluminescence method (hereinafter referred to as ATP method), one of the quick and simple bacterial cell detection methods, uses the luminescence reaction of fireflies to measure the intracellular substance ATP into light. To do. The luciferase enzyme incorporates the substrate luciferin and ATP molecules, and measures the amount of luminescence when the oxidized luciferin (oxyluciferin) transitions from the excited state to the ground state along with the consumption of ATP. Corresponds to the generation of one photon (photon), the number of photons generated is proportional to the number of ATP. Since there is an ATP molecule equivalent to 1 atmol (amol = 10 -18 mol) as an energy source per viable cell, it is possible to estimate the total number of viable cells from the amount of ATP luminescence contained in the measurement sample. it can. Furthermore, because it has the best quantum efficiency (Φ BL : ≒ 0.5) of bioluminescence and chemiluminescence, one cell can be detected as a photon equivalent to several hundred thousand, and one cell by luminescence reaction It is in principle possible to detect considerable light.
 しかしながら、ATP法の検出下限は計測装置の性能だけでなく、環境中に存在するATPの試料への混入やルシフェリン・ルシフェラーゼ試薬、いわゆる発光試薬やその他ATP法に必要な試薬自体にATPが含まれていることが多く、その影響を受けることによるデータの揺らぎにより、一般的に102 amol(amol=10-18 mol)程度と報告されている。それらのデータの揺らぎを防ぐ方法として、特許文献1、2、及び3に開示されるように、近年、外部汚染を防ぐ洗浄機能を具備した分注システムと、光学フィルターを用いた分光による物質種同定システムと、高感度光検出器を同一装置内の遮光かつ外部からの汚染物質の抑制された空間に配置した生物発光検出システムが報告されており、1 amol相当のATP分子量の計測が可能になってきている。 However, the lower limit of detection of the ATP method is not only the performance of the measuring device, but also ATP is included in the ATP sample present in the environment, luciferin / luciferase reagent, so-called luminescent reagent, and other reagents necessary for the ATP method. In general, it is reported to be about 10 2 amol (amol = 10 -18 mol) due to fluctuations in the data due to the influence. As a method for preventing such fluctuations in data, as disclosed in Patent Documents 1, 2, and 3, in recent years, a dispensing system having a cleaning function for preventing external contamination, and a material type by spectroscopy using an optical filter are used. A bioluminescence detection system in which an identification system and a high-sensitivity photodetector are placed in the same device in a space that is shielded from light and contaminated from outside has been reported, enabling measurement of ATP molecular weight equivalent to 1 amol. It has become to.
 また、計測装置の性能を向上させるには、例えば特許文献4に開示されるように、ランダムノイズ成分や暗電流パルス数の低減を行い、信号成分の揺らぎを抑え、微弱光の信号成分を高い確度で抽出し、検出感度を向上させる手段が採用される。 Moreover, in order to improve the performance of the measuring apparatus, for example, as disclosed in Patent Document 4, the random noise component and the number of dark current pulses are reduced, the fluctuation of the signal component is suppressed, and the signal component of the weak light is increased. A means for extracting with accuracy and improving detection sensitivity is adopted.
 また、特許文献5には、誤差を表す評価関数を用いてフィッティングを行い、パラメータが目標値より大きく乖離した際に計算を打ち切ることが開示されている。 Further, Patent Document 5 discloses that fitting is performed using an evaluation function representing an error, and the calculation is terminated when the parameter is greatly deviated from the target value.
特開2008-268019号公報JP 2008-268019 A 特開2008-249628号公報JP 2008-249628 A 特開2012-211785号公報Japanese Patent Application Laid-Open No. 2012- 211785 特開平11-142242号公報JP-A-11-142242 特開2012-43055号公報JP 2012-43055 A
 特許文献1、2、及び3に記載のとおり、ATP法で高い検出感度と高い検出精度を得るためには、測定試料への環境中に存在するATPや菌体、さらに他の不純物の混入を防ぐこと、発光試薬の活性が維持されているかなどの試薬類の状態把握、試薬類へのATPや菌体、その他不純物の混入による汚染、他付随する消耗品の汚染、さらに、計測装置に不具合が生じてないかの状態管理、等を考慮し、測定装置とその周辺が常に安定していることを確認することが重要である。 As described in Patent Documents 1, 2, and 3, in order to obtain high detection sensitivity and high detection accuracy by the ATP method, ATP, bacterial cells, and other impurities existing in the environment are added to the measurement sample. Prevention, grasping the status of reagents such as whether the activity of the luminescent reagent is maintained, contamination of reagents by contamination with ATP, bacterial cells, and other impurities, contamination of other consumables, and failure of the measuring device It is important to make sure that the measuring device and its surroundings are always stable, taking into account the state management of whether or not this occurs.
 特に、試薬類に関しては、製造時にATPが混入してしまう場合が多く、これらは、事前に除去不可能なATPであり、発光計測時に常にバックグラウンドとして存在する。このバックグラウンドと測定試料の菌体由来のATPの差分を正確に測定値として示さないと無菌性を示すレベルに近い計測では、偽陽性、偽陰性の判定をしてしまう恐れがある。 In particular, regarding reagents, ATP is often mixed during production, and these are ATP that cannot be removed in advance, and always exist as a background during luminescence measurement. If the difference between the background and the ATP derived from the microbial cells of the measurement sample is not accurately indicated as a measurement value, there is a risk of determining false positive or false negative in measurement close to a level indicating sterility.
 上述した課題の少なくとも一の課題を解決するための本発明の一態様として、試料から測定される信号量の測定データ点を測定時間に対してプロットしてグラフを生成し、少なくとも一つのカーブフィティング関数で、測定データ点のプロットから構成される反応曲線を近似してフィッティングし、前記フィッティングにより得られたカーブフィティング関数の変数値に基づいて試料の測定を行う構成とした。 As one aspect of the present invention for solving at least one of the above-described problems, a graph is generated by plotting measurement data points of a signal amount measured from a sample against a measurement time, and at least one curve file is generated. A fitting function is used to approximate and fit a reaction curve composed of plots of measurement data points, and a sample is measured based on a variable value of the curve fitting function obtained by the fitting.
 本発明により、信頼性をもって試料中の物質量を計測することができる試料分析装置が提供される。上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 The present invention provides a sample analyzer that can reliably measure the amount of a substance in a sample. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
試料分析装置とその周辺システム構成を示す図である。It is a figure which shows a sample analyzer and its periphery system structure. 試料分析装置の構成を示す図である。It is a figure which shows the structure of a sample analyzer. 試料分析装置の動作フローチャートの一例を示す図である。It is a figure which shows an example of the operation | movement flowchart of a sample analyzer. 試料分析装置を用いて得られたATP測定結果のデータ波形の典型例を示す図である。It is a figure which shows the typical example of the data waveform of the ATP measurement result obtained using the sample analyzer. 試料分析装置を用いて得られたATP測定結果のデータ波形の典型例を示す図である。It is a figure which shows the typical example of the data waveform of the ATP measurement result obtained using the sample analyzer. 生菌を含まないブランク試料のATP発光の試料分析結果を示す図である。It is a figure which shows the sample-analysis result of ATP light emission of the blank sample which does not contain a living microbe. 生菌を含まないブランク試料のATP発光の試料分析結果を示す図である。It is a figure which shows the sample-analysis result of ATP light emission of the blank sample which does not contain a living microbe. 生菌を含まないブランク試料のATP発光の試料分析結果を示す図である。It is a figure which shows the sample-analysis result of ATP light emission of the blank sample which does not contain a living microbe. 生菌1個程度を含む試料のATP発光の試料分析結果を示す図である。It is a figure which shows the sample-analysis result of ATP light emission of the sample containing about 1 living microbe. 生菌1個程度を含む試料のATP発光の試料分析結果を示す図である。It is a figure which shows the sample-analysis result of ATP light emission of the sample containing about 1 living microbe. 生菌1個程度を含む試料のATP発光の試料分析結果を示す図である。It is a figure which shows the sample-analysis result of ATP light emission of the sample containing about 1 living microbe. ブランク試料とATP抽出試料のフィッティング処理結果の変数値を比較する図である。It is a figure which compares the variable value of the fitting process result of a blank sample and an ATP extraction sample. ブランク試料とATP抽出試料のフィッティング処理結果の変数値を比較する図である。It is a figure which compares the variable value of the fitting process result of a blank sample and an ATP extraction sample. ブランク試料とATP抽出試料のフィッティング処理結果の変数値を比較する図である。It is a figure which compares the variable value of the fitting process result of a blank sample and an ATP extraction sample. ブランク試料とATP抽出試料のフィッティング処理結果の変数値を比較する図である。It is a figure which compares the variable value of the fitting process result of a blank sample and an ATP extraction sample. 実施例2における試料分析装置の結果から測定対象物量の真の信号か、装置異常かを判定するフローを示す図である。It is a figure which shows the flow which determines whether it is a true signal of a measuring object quantity from the result of the sample analyzer in Example 2, or apparatus abnormality. 試料分析装置の表示画面を示す図である。It is a figure which shows the display screen of a sample analyzer. ATPの検量線データから、生菌の総数を推定する方法を示す図である。It is a figure which shows the method of estimating the total number of a living microbe from the calibration curve data of ATP.
 以下、添付図面を参照して本発明の実施形態について説明する。ただし、本実施形態は本発明を実現するための一例に過ぎず、本発明を限定するものではないことに注意すべきである。また、各図において共通の構成については同一の参照番号が付されている。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, it should be noted that this embodiment is merely an example for realizing the present invention and does not limit the present invention. In each drawing, the same reference numerals are assigned to common components.
 <実施例1>
 図1Aは、試料分析装置とその周辺システム構成を示す1例であり、測定装置1、制御装置2、試料分析装置3で構成される。勿論、試料分析装置3は、制御装置2の機能も含む形態でも良く、さらに、測定装置1と制御装置2と試料分析装置3の全機能を一つの装置として集約した一体化システムの形態でも良い。
<Example 1>
FIG. 1A is an example showing a sample analyzer and its peripheral system configuration, and includes a measurement device 1, a control device 2, and a sample analyzer 3. Of course, the sample analyzer 3 may include a function including the function of the control device 2, and may further include an integrated system in which all functions of the measurement device 1, the control device 2, and the sample analyzer 3 are integrated as one device. .
 本実施例では、本発明の試料分析装置3における測定装置1の測定結果の処理機能について詳細に説明する。よって、本実施例の形態の一例として、制御装置2が制御信号6によって測定装置1の駆動機構の運転制御を行い、試料分析装置3は、測定装置1内の計測器からの信号出力4を処理する構成を用いて説明を行う。なお、本実施例では、制御装置2は、制御装置2と試料分析装置3との間の試料分析装置3の信号取得開始/終了についてのトリガ信号5に基づいて連動して、測定装置1の運転を制御信号6によって制御するものである。 In this example, the processing function of the measurement result of the measuring device 1 in the sample analyzer 3 of the present invention will be described in detail. Therefore, as an example of the present embodiment, the control device 2 controls the operation of the driving mechanism of the measuring device 1 by the control signal 6, and the sample analyzer 3 outputs the signal output 4 from the measuring instrument in the measuring device 1. The description will be given using the configuration to be processed. In the present embodiment, the control device 2 operates in conjunction with the trigger signal 5 for the signal acquisition start / end of the sample analysis device 3 between the control device 2 and the sample analysis device 3, and The operation is controlled by a control signal 6.
 図2は試料分析装置3の構成を示す図である。試料分析装置3は、本体8と、ディスプレイ9で主に構成され、その他、場合によっては、マウス、キーボードなどの手動入力手段10が接続できるようになっている。 FIG. 2 is a diagram showing the configuration of the sample analyzer 3. The sample analyzer 3 is mainly composed of a main body 8 and a display 9. In addition, in some cases, manual input means 10 such as a mouse and a keyboard can be connected.
 図2は、試料分析装置8の処理プログラムをハードウェアの観点から表わしており、本体8は、計測器からの化学発光または生物発光の光信号量を示す信号出力4を取得する測定データ取得部11と、測定データ取得部11で取得した測定データ点を測定時間に対して経時的にプロットして、光信号量の時間変化としてグラフ化するグラフ波形生成部13と、グラフ化されたグラフ波形を近似するための複数のカーブフィティング関数と、複数のカーブフィッティング関数の複数の変数とを蓄積するカーブフィッティング関数記憶部15と、カーブフィッティング関数記憶部15に蓄積された複数のカーブフィッティング関数と複数の変数を順次変更して、測定データ点から構成されるデータ波形フィッティング処理するデータ処理部16と、データ処理部16の処理結果を記憶するデータ記憶部19と、データ記憶部19で記憶された変数値と、任意に設定可能な変数参照値と比較するデータ比較部17と、測定データ点12のフィッティング処理で得られた変数値と予め設定しておいた変数参照値とのズレを判定するデータ判定部20で構成される。 FIG. 2 shows the processing program of the sample analyzer 8 from the viewpoint of hardware, and the main body 8 has a measurement data acquisition unit that acquires a signal output 4 indicating the amount of chemiluminescence or bioluminescence optical signals from the measuring instrument. 11 and a graph waveform generation unit 13 that plots the measurement data points acquired by the measurement data acquisition unit 11 over time with respect to the measurement time and graphs it as a temporal change in the amount of optical signal, and a graph waveform graphed A curve fitting function storage unit 15 that stores a plurality of curve fitting functions for approximating a plurality of curve fitting functions, a plurality of variables of the plurality of curve fitting functions, and a plurality of curve fitting functions stored in the curve fitting function storage unit 15. A data processing unit 16 that sequentially changes a plurality of variables and performs data waveform fitting processing including measurement data points A data storage unit 19 that stores the processing result of the data processing unit 16, a data comparison unit 17 that compares the variable value stored in the data storage unit 19, and a variable reference value that can be arbitrarily set, and a measurement data point 12 The data determination unit 20 determines a difference between a variable value obtained by the fitting process and a preset variable reference value.
 ここで、変数参照値とは、いわゆる閾値であり、ズレの大きさはデータ記憶部19で記憶された変数値と変数参照値との差分で表わされる。例えば、ブランク試料、即ち、測定対象物を含まない溶液に、化学発光または生物発光の専用試薬を反応させた時の光信号量の平均値を変数参照値として設定することで、変数値と変数参照値との差分から対象とする物質量を定量化することも可能である。その際には、図10に示すような対象物質数、または対象物質濃度を横軸に、濃度に応じた光の量を縦軸にして作成する検量線を予め作成しておく。 Here, the variable reference value is a so-called threshold value, and the magnitude of the deviation is represented by the difference between the variable value stored in the data storage unit 19 and the variable reference value. For example, by setting the average value of the amount of light signal when a reagent for chemiluminescence or bioluminescence is reacted to a blank sample, that is, a solution that does not contain the measurement object, as a variable reference value, the variable value and the variable It is also possible to quantify the amount of the target substance from the difference from the reference value. In this case, a calibration curve is created in advance, which is created with the number of target substances or the target substance concentration as shown in FIG. 10 on the horizontal axis and the amount of light corresponding to the concentration on the vertical axis.
 なお、図2で上述した本体8の制御機能を構成する各機能ブロックは、ソフトウェアモジュールとして実装しても良いしハードウェアで実現してもよい。つまり、各機能ブロックは、本体8内において、それぞれの機能を実現するメモリに格納されたプログラムをプロセッサが解釈して実行することによりソフトウェアで実現することができる。また、各機能ブロックは、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。各機能を実現するプログラム、ファイル、データベース、関数データ、変数データ、等の情報は、例えば、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くこともできる。 Note that each functional block constituting the control function of the main body 8 described above with reference to FIG. 2 may be implemented as a software module or may be realized by hardware. That is, each functional block can be realized by software in the main body 8 by the processor interpreting and executing a program stored in a memory that realizes each function. Each functional block may be realized by hardware by designing a part or all of them, for example, by an integrated circuit. Information such as programs, files, databases, function data, variable data, etc. for realizing each function is, for example, a memory, a hard disk, a recording device such as an SSD (Solid State Drive), an IC card, an SD card, a DVD, etc. It can also be placed on other recording media.
 以下、図2の試料分析装置3の構成と図3の動作フローチャートを用いて試料分析装置3の動作を説明する。測定装置1の計測器からの信号出力4は、測定データ点として測定データ取得部11で記憶される(S301)。次に、グラフ波形生成部13にて、測定データ取得部11で記憶された測定データ点12からグラフ波形を作成する(S302)。なお、作成されたグラフ波形はデータ記憶部19にテキストファイル等の方法で記憶されるため、図9のディスプレイ9の表示画面のブランク試料のグラフ表示部35,または測定試料のグラフ表示部36に図4A,図4B等で例示するような表示ができる。表示したい測定データは、第1のグラフ呼び出しのプロダウンメニュー42、第2のグラフ呼び出しのプルダウンメニュー43で選択する。 Hereinafter, the operation of the sample analyzer 3 will be described using the configuration of the sample analyzer 3 of FIG. 2 and the operation flowchart of FIG. The signal output 4 from the measuring instrument of the measuring apparatus 1 is stored in the measurement data acquisition unit 11 as a measurement data point (S301). Next, the graph waveform generation unit 13 creates a graph waveform from the measurement data points 12 stored in the measurement data acquisition unit 11 (S302). Since the created graph waveform is stored in the data storage unit 19 by a method such as a text file, the blank sample graph display unit 35 or the measurement sample graph display unit 36 on the display screen of the display 9 in FIG. The display illustrated in FIG. 4A, FIG. 4B, etc. can be performed. The measurement data to be displayed is selected from the first graph calling down menu 42 and the second graph calling down menu 43.
 次に、カーブフィッティング関数記憶部15から、測定対象および測定内容から予め推定されるデータ波形に対応可能と判定されるカーブフィッティング関数群18を呼び出し(S303)、呼び出したカーブフィッティング関数群18の各々の関数を用いて、順番に、フィッティング処理をデータ処理部16で行う(S303)。なお、カーブフィティング関数群18は、関数群設定手段25にて、ユーザーが事前に設定しておく。場合によっては、フィッティング処理時間を短縮するために、フィッティング関数の固定変数を変数固定値設定手段26により決めておいても良い。フィッティング処理は、得られた測定データ点12のグラフ波形に対して、波形の変数であるピーク位置、ピーク高さ、などを逐次反復変化させながら最小自乗規範で一致させていく。例えば、非線形カーブフィットに関しては、Levenberg-Marquardt法で非線形最小二乗問題を解いてフィッティングする。呼び出したカーブフィッティング関数群18全てのカーブフィッティング関数の複数の変数値の結果は、各々のカーブフィッティング関数と関連づけて、データ記憶部19で記憶される(S304)。 Next, the curve fitting function group 18 determined to be compatible with the data waveform preliminarily estimated from the measurement object and the measurement content is called from the curve fitting function storage unit 15 (S303), and each of the called curve fitting function group 18 is called. Using the above functions, the fitting process is performed in order by the data processing unit 16 (S303). The curve fitting function group 18 is set in advance by the user in the function group setting means 25. In some cases, a fixed variable of the fitting function may be determined by the variable fixed value setting means 26 in order to shorten the fitting processing time. In the fitting process, the graph waveform of the obtained measurement data point 12 is matched with the least-squares criterion while sequentially changing the peak position, peak height, etc., which are waveform variables, repeatedly. For example, for nonlinear curve fitting, the nonlinear least squares problem is solved by the Levenberg-Marquardt method for fitting. The results of a plurality of variable values of all the curve fitting functions in the called curve fitting function group 18 are stored in the data storage unit 19 in association with each curve fitting function (S304).
 なお、各々のカーブフィッティング関数の収束の有無は考慮せず、カーブフィッティング関数群18の何れにおいても、それらの変数値は、データ記憶部19に全て記憶される(S304)。また、収束の有無判定は、フィッティング処理の試行回数を限定することで、処理時間を短縮できる。これらは、フィッティング処理設定手段27にユーザーが事前に決定しておくことができる。また、主に用いられるカーブフィッティング関数群は、指数減衰関数、ローレンツ関数、ガウス関数をベースにしたものである。 It should be noted that all the variable values are stored in the data storage unit 19 in any of the curve fitting function groups 18 without considering the convergence of each curve fitting function (S304). Further, the determination of the presence or absence of convergence can reduce the processing time by limiting the number of times of fitting processing. These can be determined in advance by the user in the fitting process setting means 27. Further, the curve fitting function group used mainly is based on an exponential decay function, a Lorentz function, and a Gaussian function.
 データ記憶部19で記憶された変数値群は、次に、データ比較部17にて、変数閾値設定手段28で予め設定しておいた少なくとも一つの比較用変数値群44と比較される(S305)。比較用変数値群24の変数参照値には、少なくとも一つの閾値が設定されているため、閾値の範囲内か、閾値の範囲外かをデータ判定部20にて判定する(S306)。データ判定部での判定結果は、ディスプレイ9の判定結果表示部34に表示される(S307)。 The variable value group stored in the data storage unit 19 is then compared with at least one comparison variable value group 44 preset by the variable threshold value setting unit 28 in the data comparison unit 17 (S305). ). Since at least one threshold value is set for the variable reference value in the comparison variable value group 24, the data determination unit 20 determines whether the value is within the threshold value range or outside the threshold value range (S306). The determination result in the data determination unit is displayed on the determination result display unit 34 of the display 9 (S307).
 作成されたカーブフィッティング曲線は、データ記憶部に19にテキストファイル等の方法で記憶されているため、図9に示されるように、ディスプレイ9の表示画面のブランク試料のグラフ表示部35,または測定試料のグラフ表示部36に表示できる。表示したい測定データは、第1のグラフ呼び出しのプルダウンメニュー42、第2のグラフ呼び出しのプルダウンメニュー43で選択する。また、測定データ点12のグラフ波形とカーブフィッティング曲線は、後述する図5A、図5B、図5C、図6A、図6B、図6Cに示されるように、1つのグラフ上で重ねて表示することも可能である。 Since the created curve fitting curve is stored in the data storage unit 19 by a method such as a text file, the blank sample graph display unit 35 on the display screen of the display 9 or the measurement as shown in FIG. It can be displayed on the graph display section 36 of the sample. The measurement data to be displayed is selected from the pull-down menu 42 for calling the first graph and the pull-down menu 43 for calling the second graph. Further, the graph waveform and the curve fitting curve of the measurement data point 12 should be displayed on one graph as shown in FIGS. 5A, 5B, 5C, 6A, 6B, and 6C to be described later. Is also possible.
 本実施例では、試料分析装置3を用いて測定対象物質の存在有無を判定および存在量を定量分析する1例として、ATP発光測定による無菌検査を例にあげて試料分析装置3の行う処理について詳細に説明する。ただし、試料分析装置3の分析内容については当該検査例に限定されない事はいうまでもない。以下に、ATP発光法を用いた検査方法を簡単に述べる。 In this embodiment, as an example of determining the presence / absence of a measurement target substance using the sample analyzer 3 and quantitatively analyzing the abundance, a process performed by the sample analyzer 3 taking aseptic test by ATP luminescence measurement as an example. This will be described in detail. However, it goes without saying that the analysis content of the sample analyzer 3 is not limited to the inspection example. The inspection method using the ATP emission method is briefly described below.
 ATP法はホタルの発光反応を利用して、細胞、細菌内のATPの数を光の量に変換して測定する。その原理は、ルシフェラーゼ酵素に基質ルシフェリンとATP分子を取り込ませ、ATPの消費とともに酸化されたルシフェリン(オキシルシフェリン)が励起状態から基底状態に遷移するときの発光量を計測する。 The ATP method uses the light emission reaction of fireflies, and measures the number of ATP in cells and bacteria converted to the amount of light. The principle is that the luciferase enzyme incorporates the substrate luciferin and ATP molecules, and the amount of luminescence when the oxidized luciferin (oxyluciferin) transitions from the excited state to the ground state with the consumption of ATP is measured.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 このとき、ATP1分子の消費が1フォトン(光子)生成に対応するため、光子発生数がATPの個数に比例する、生きている細菌(生菌)は平均で1アトモルのATPを内胞していることが知られているため、ATPの個数と光子発生数(光信号量)の関係を、予め把握しておくことで、測定試料に含まれていた生菌の総数を推定することができる。生菌数を推定するためのデータベースの作成方法を図10を用いて説明する。まず、ATP数を制御したATPスタンダード溶液を専用の希釈液を用いて作成する。次に、各々の個数で制御されたATPスタンダード溶液を用いて、図1の計測システム45を用いて測定し、光信号量をATP数ごとに整理する。具体的には、ATP数を横軸に、光の量を縦軸にしてATPの検量線39を作成する。検量線から傾きyが求められ、光信号量から、x1=y/aでATP数が算出できる。 At this time, since the consumption of ATP1 molecule corresponds to the generation of one photon (photon), the number of photons generated is proportional to the number of ATP, and the living bacteria (viable bacteria) endoss ATP of ATP on average. It is known that the total number of viable bacteria contained in the measurement sample can be estimated by grasping in advance the relationship between the number of ATP and the number of photons generated (amount of optical signal). . A method for creating a database for estimating the number of viable bacteria will be described with reference to FIG. First, an ATP standard solution with a controlled ATP number is prepared using a dedicated diluent. Next, measurement is performed using the measurement system 45 of FIG. 1 using the ATP standard solutions controlled by the respective numbers, and the optical signal amount is arranged for each ATP number. Specifically, an ATP calibration curve 39 is created with the ATP number on the horizontal axis and the amount of light on the vertical axis. The slope y is obtained from the calibration curve, and the number of ATPs can be calculated from the optical signal amount by x1 = y / a.
 次に、生菌数を制御した生菌スタンダード溶液を専用の希釈液を用いて作成する。次に、各々の個数で制御された生菌スタンダード溶液を用いて、図1の計測システム45を用いて測定し、光信号量を生菌数ごとに整理する。具体的には、生菌数を横軸に、光の量を縦軸にして生菌の検量線40を作成する。検量線から傾きyが求められ、光信号量から、x2=y/bでA生菌数が算出できる。以上から、生菌数x2=(a/b)×x1の関係で求められる。 Next, a viable standard solution with a controlled viable count is prepared using a dedicated diluent. Next, measurement is performed using the measurement system 45 in FIG. 1 using the viable standard solution controlled by each number, and the optical signal amount is arranged for each viable count. Specifically, a calibration curve 40 of live bacteria is created with the number of viable bacteria on the horizontal axis and the amount of light on the vertical axis. The slope y is obtained from the calibration curve, and the number of live A bacteria can be calculated from the amount of optical signal by x2 = y / b. From the above, the number of viable bacteria x2 = (a / b) × x1 is obtained.
 これにより、光信号量から、生菌数が求められる。先に生菌には平均1amolと述べたが、細菌の種類によって異なるため、目的とする対象物がある程度想定できる場合には、図10の方法を用いて、ATP数と生菌数の関係を明瞭にしておいた方が良い。これらの関係式は、図2のデータ比較部17、データ判定部20にて処理され、ディスプレイ9上の判定結果表示部34に表示される。 Thus, the number of viable bacteria can be obtained from the amount of light signal. Although the average of 1 amol for live bacteria was previously described, it differs depending on the type of bacteria, so if the target object can be assumed to some extent, the relationship between the number of ATP and the number of live bacteria can be determined using the method of FIG. It is better to keep it clear. These relational expressions are processed by the data comparison unit 17 and the data determination unit 20 in FIG. 2 and displayed on the determination result display unit 34 on the display 9.
 次に、標準的な生菌内ATP発光測定の測定手順を説明する:
 (X)ATP分解酵素による生菌以外の外来ATP分子の除去
 (Y)界面活性剤による生菌内ATP分子の抽出
 (Z)生菌から抽出されたATP分子と発光試薬との生物発光反応、
の3ステップからなる。
Next, a measurement procedure for standard live ATP luminescence measurement will be described:
(X) Removal of foreign ATP molecules other than live bacteria by ATP-degrading enzyme (Y) Extraction of ATP molecules in live bacteria by surfactant (Z) Bioluminescence reaction between ATP molecules extracted from live bacteria and a luminescent reagent,
It consists of three steps.
 図4A、図4B、図5A、図5B、図5C、図6A、図6B、図6Cは、ステップ(Y)の工程を終了したATP抽出試料を一定量用意し、測定装置1の計測部所定の位置にセットし、ステップ(Z)で、ルシフェリン-ルシフェラーゼ系発光試薬を試料に分注し、ATP抽出試料と混合反応させ、そのATP溶出試料中の生物発光反応量を光検出器で計測した結果と、本実施例の試料分析装置3を用いて分析、即ちカーブフィッティングの結果を示したグラフ波形の典型例である。 4A, 4B, FIG. 5A, FIG. 5B, FIG. 5C, FIG. 6A, FIG. 6B, and FIG. 6C prepare a predetermined amount of ATP extraction sample that has finished the step (Y), In step (Z), the luciferin-luciferase luminescent reagent was dispensed into the sample, mixed and reacted with the ATP extracted sample, and the amount of bioluminescent reaction in the ATP eluted sample was measured with a photodetector. It is a typical example of the graph waveform which showed the result and the result of the analysis using the sample analyzer 3 of a present Example, ie, a curve fitting.
 光検出器で計測する機構を有する図1で説明した測定装置1および制御装置2の実施形態は、特開2008-268019号公報(特許文献1)に記載されているものが一つの例であり、本発明の明細書にて詳細内容は記載しないが、測定装置1の計測器は、微弱発光を測定するためのフォトンカウンティング方式であり、計測器からの信号出力4は、カウンター基板を用いて処理された1秒間毎のカウント値の合計数が出力され、試料分析装置3に測定データ点として入力される。 The embodiment of the measuring apparatus 1 and the control apparatus 2 described with reference to FIG. 1 having a mechanism for measuring with a photodetector is an example described in Japanese Patent Application Laid-Open No. 2008-268019 (Patent Document 1). Although the detailed contents are not described in the specification of the present invention, the measuring instrument of the measuring device 1 is a photon counting method for measuring weak light emission, and the signal output 4 from the measuring instrument uses a counter substrate. The total number of processed count values per second is output and input to the sample analyzer 3 as measurement data points.
 図4A、図4Bは、測定装置1からの信号出力4を測定データ取得部11が記憶し(図3のS301)、グラフ波形生成部13が、測定データ取得部11で記憶された測定データ点12から波形(ATP発光データ波形)21を作成する(図3のS302)結果の典型例を示している。これらは、図9のディスプレイ上のブランク試料のグラフ表示部35と測定試料のグラフ表示部36にて表示される。生菌1個に相当するATP量が含まれたATP抽出試料の結果が図4Aであり、試料中にATPが含まれていないブランク試料、つまり、界面活性剤抽出試薬を混合、反応させた結果が図4Bである。 4A and 4B, the measurement data acquisition unit 11 stores the signal output 4 from the measurement apparatus 1 (S301 in FIG. 3), and the graph waveform generation unit 13 stores the measurement data points stored in the measurement data acquisition unit 11. A typical example of the result of creating a waveform (ATP emission data waveform) 21 from 12 (S302 in FIG. 3) is shown. These are displayed on the blank sample graph display unit 35 and the measurement sample graph display unit 36 on the display of FIG. FIG. 4A shows the result of an ATP extraction sample containing an ATP amount corresponding to one viable cell, and the result of mixing and reacting a blank sample not containing ATP in the sample, that is, a surfactant extraction reagent. Is FIG. 4B.
 ここで、波形(ATP発光データ波形21)は、図4A、図4Bで、試料と試薬を混合する前の試料バックグラウンド信号22、試料と発光試薬を混合した後の反応により生じたATP発光信号23の2つの領域に区別される。図4Bからわかるように、ブランク試料においても、発光試薬を混合することで、信号量が増加しており、ATP発光と同様な波形が現れている。これは、発光試薬中やその他試薬や消耗品にATPが含まれていることを示していると考察できる。 Here, the waveforms (ATP luminescence data waveform 21) are the sample background signal 22 before mixing the sample and the reagent in FIG. 4A and FIG. 4B, and the ATP luminescence signal generated by the reaction after mixing the sample and the luminescent reagent. A distinction is made between two areas. As can be seen from FIG. 4B, even in the blank sample, the signal amount is increased by mixing the luminescent reagent, and a waveform similar to ATP emission appears. This can be considered to indicate that ATP is contained in the luminescent reagent or in other reagents and consumables.
 次に、データ処理部16が、カーブフィッティング関数記憶部15から、測定対象および測定内容から予め推定される波形21に対応可能なカーブフィッティング関数群18を呼び出し、呼び出したカーブフィッティング関数群18の各々を用いて、順番に、フィッティング処理を行う。ここでは、図3のS303で示したフィッティング処理の一例として、関数群として、1つの指数関数減衰項を含むカーブフィッティング関数26、2つの指数関数減衰項を含むカーブフィッティング関数27、3つの指数関数減衰項を含むを含むカーブフィッティング関数28、の3種類を選択する場合について説明する。
(1つの指数関数減衰項を含むカーブフィッティング関数)
 y=y0+A1・EXP(-(x-x0)/t1)      … 式(1)
(2つの指数関数減衰項を含むカーブフィッティング関数)
 y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)     … 式(2)
(3つの指数関数減衰項を含むカーブフィッティング関数)
 y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)+A3EXP(-(x-x0)/t3)      … 式(3)
ここで、y0は、試料バックグラウンド22の測定データ点の平均値である。平均値y0は30点以上の測定データ点12、言い換えれば、30秒以上の測定データから算出するのが好適である。x0は、ATP発光信号23の最大値を示した時間である。ATP発光信号23の最大値は、発光開始から、5秒間以内で得られるのが一般的であるため、最大値の検出領域は予め狭めておくこともできる。また、y0は、試料バックグラウンド22の測定データ点12のみを抽出し、フィッティングして算出しても良い。これらの処理は、フィッティング処理設定手段27でユーザーが任意に設定し、データ処理部16で行うことができる。
Next, the data processing unit 16 calls the curve fitting function group 18 that can correspond to the waveform 21 preliminarily estimated from the measurement object and the measurement content from the curve fitting function storage unit 15, and calls each of the called curve fitting function groups 18. Are used in order to perform the fitting process. Here, as an example of the fitting process shown in S303 of FIG. 3, as a function group, a curve fitting function 26 including one exponential function attenuation term, a curve fitting function 27 including two exponential function attenuation terms, and three exponential functions. A case where three types of curve fitting functions 28 including an attenuation term are selected will be described.
(Curve fitting function with one exponential decay term)
y = y0 + A1 · EXP (− (x−x0) / t1) (1)
(Curve fitting function including two exponential decay terms)
y = y0 + A1 · EXP (− (x−x0) / t1) + A2 · EXP (− (x−x0) / t2) (2)
(Curve fitting function including three exponential decay terms)
y = y0 + A1 · EXP (− (x−x0) / t1) + A2 · EXP (− (x−x0) / t2) + A3EXP (− (x−x0) / t3) (3)
Here, y0 is the average value of the measurement data points of the sample background 22. The average value y0 is preferably calculated from 30 or more measurement data points 12, in other words, measurement data of 30 seconds or more. x0 is a time indicating the maximum value of the ATP light emission signal 23. Since the maximum value of the ATP light emission signal 23 is generally obtained within 5 seconds from the start of light emission, the detection region of the maximum value can be narrowed in advance. Further, y0 may be calculated by extracting only the measurement data point 12 of the sample background 22 and fitting it. These processes can be arbitrarily set by the user using the fitting process setting unit 27 and performed by the data processing unit 16.
 次に、図3のS304で述べた変数値の記憶について例示して説明する。指数関数減衰項のA1、A2、A3は、試料バックグラウンド22の測定データ点の平均値を差し引いたx0秒の時の信号強度に関係する変数である。式(1)では、A1がx0秒の時のATP発光信号値を示し、式(2)では、A1+A2がx0秒の時のATP発光信号値を示し、式(3)では、A1+A2+A3がx0秒の時のATP発光信号値を示している。t1、t2、t3は、ATP発光信号23の減衰率を示す変数である。式(1)のt1は、x0秒からATP―ルシフェラーゼ発光反応の反応過程、いわゆるATPがルシフェラーゼで消費される過程を示している。式(2)のt2も、x0秒からATPがルシフェラーゼで消費される過程を示すものであるが、t1とは異なる反応経路を有すると仮定した場合のもう一つの減衰率を示している。さらに、式(3)のt3は、t1、t2の他に、もう一つの反応経路が存在する仮定した場合のさらに、さらに一つの減衰率を示している。以下にて、データ処理部16による式(1)、(2)、(3)を用いたフィッティング処理を詳細に説明する。 Next, the storage of variable values described in S304 of FIG. 3 will be described as an example. The exponential decay terms A1, A2, and A3 are variables related to the signal intensity at x0 seconds obtained by subtracting the average value of the measurement data points of the sample background 22. In Expression (1), A1 indicates the ATP emission signal value when x0 seconds, A1 + A2 indicates the ATP emission signal value when x0 seconds, and in Expression (3), A1 + A2 + A3 indicates x0 seconds. The ATP emission signal value at the time of is shown. t1, t2, and t3 are variables indicating the attenuation rate of the ATP emission signal 23. T1 in the formula (1) indicates a reaction process of ATP-luciferase luminescence reaction from x0 seconds, that is, a process in which ATP is consumed by luciferase. T2 in the formula (2) also shows a process in which ATP is consumed by luciferase from x0 seconds, and shows another decay rate when it is assumed that the reaction route is different from that of t1. Furthermore, t3 in the equation (3) indicates one more decay rate when it is assumed that another reaction path exists in addition to t1 and t2. Hereinafter, the fitting process using the equations (1), (2), and (3) by the data processing unit 16 will be described in detail.
 まず、図4A、4Bの試料バックグラウンド22の測定データ点12から、y0を決定する。具体的には、図2のフィッティング処理設定手段27により、80秒から110秒の30秒間の測定データ点12の平均値をデータ処理部16にて計算し、フィッティング処理設定手段27に固定パラメータとしてy0値をデータ記憶部19に記憶させる。 First, y0 is determined from the measurement data point 12 of the sample background 22 in FIGS. 4A and 4B. Specifically, the average value of the measurement data points 12 for 30 seconds from 80 seconds to 110 seconds is calculated by the data processing unit 16 by the fitting process setting unit 27 in FIG. The y0 value is stored in the data storage unit 19.
 次に、ATP発光信号23から、最大値を抽出し、そのときの時間x0を抽出し、フィッティング処理設定手段27に固定パラメータx0として、データ記憶部19に記憶させる。データ記憶部19に記憶された固定値であるy0、x0は、フィッティング処理設定手段27が呼び出し、呼び出したy0、x0をデータ処理部16に送り、フィッティング処理設定手段27を用いて、式(1)、(2)、(3)の三種類のカーブフィッティング関数を選択し、各々について、データ処理部16にてフィッティングする。波形の変数であるA1、A2、A3、t1、t2、t3を逐次反復変化させながら最小自乗規範で一致させていく。例えば、Levenberg-Marquardt法で非線形最小二乗問題を解いてフィッティングする。呼び出したカーブフィッティング関数群18全てのカーブフィッティング関数のA1、A2、A3、t1、t2、t3の変数値の結果は、各々のカーブフィッティング関数と関連づけて、データ記憶部19に記憶される。 Next, the maximum value is extracted from the ATP emission signal 23, the time x0 at that time is extracted, and stored in the data storage unit 19 as the fixed parameter x0 in the fitting process setting means 27. The fixed values y0 and x0 stored in the data storage unit 19 are called by the fitting process setting unit 27, and the called y0 and x0 are sent to the data processing unit 16, and the fitting process setting unit 27 is used to formula (1) ), (2), and (3) are selected from the three types of curve fitting functions, and each of them is fitted by the data processor 16. The waveform variables A1, A2, A3, t1, t2, and t3 are made to coincide with each other using the least-squares criterion while iteratively changing. For example, the nonlinear least squares problem is solved by the Levenberg-Marquardt method for fitting. The results of the variable values of A1, A2, A3, t1, t2, and t3 of all the curve fitting functions of the called curve fitting function group 18 are stored in the data storage unit 19 in association with the respective curve fitting functions.
 図5A、図5B、図5Cに、ブランク試料において、データ処理部16が式(1)、式(2)、式(3)でそれぞれフィッティングした結果のグラフを示す。図6A、図6B、図6Cは、生菌1個程度のATP含む試料のATP発光の結果を、データ処理部16が式(1)、式(2)、式(3)でそれぞれのフィッティング結果を示している。 
 式(1)を用いた場合では、フィッティング処理は収束しているが(図5A)、式(2)、式(3)を用いた場合は、どちらもフィッティング処理は収束せず(図5B、図5C)、式(2)のt2、式(3)のt3が無限大に近い値となっている(図5B、図5C)。つまり、ブランク試料の測定データにおいては、1つの指数関数減衰項を含むカーブフィッティング関数(式(1))は、フィッティング関数の選択として適しているが、その他、2つの指数関数減衰項を含むを含むカーブフィッティング関数(式(2))や3つの指数関数減衰項を含むを含むカーブフィッティング関数(式(3))は、フィッティング関数の選択として、不適であることを本結果は示している。不適であることを示す変数値は、図5Bのt2、図5Cのt3であり、それぞれ、9.8811×10の83乗、4.791×10の85乗であり、ほぼ無限大に発散している。このフィッティング結果は、t2、t3を含む項はほぼ0であることが好ましく、t2、t3を含む項がカーブフィッティングに不要であることを示している。
5A, FIG. 5B, and FIG. 5C show graphs of results obtained by fitting the data processing unit 16 with the formula (1), the formula (2), and the formula (3), respectively, in the blank sample. 6A, FIG. 6B, and FIG. 6C show the results of ATP luminescence of a sample containing about 1 viable ATP, and the data processing unit 16 uses the equations (1), (2), and (3) for the fitting results. Is shown.
In the case of using Expression (1), the fitting process is converged (FIG. 5A), but in the case of using Expression (2) and Expression (3), the fitting process is not converged (FIG. 5B, 5C), t2 in the expression (2), and t3 in the expression (3) are close to infinity (FIGS. 5B and 5C). That is, in the measurement data of the blank sample, the curve fitting function (equation (1)) including one exponential decay term is suitable as the selection of the fitting function, but includes other two exponential decay terms. The present results show that the curve fitting function including the curve fitting function (equation (2)) and the curve fitting function including the three exponential decay terms (equation (3)) are not suitable as the fitting function selection. The variable values indicating the inappropriateness are t2 in FIG. 5B and t3 in FIG. 5C, which are 9.881 × 10 83 power and 4.791 × 10 85 power, respectively, and diverge almost infinitely. ing. This fitting result indicates that the term including t2 and t3 is preferably almost zero, and the term including t2 and t3 is unnecessary for the curve fitting.
 また、無限大ではなくとも、選択されたカーブフィッティング関数の不適さ、t2、t3の不要さの判断について、x0から100秒後に1CPS未満の減衰しか与えない項は不要だと判断しても良い。図5Bを例に挙げると、A2=53.65076をそのまま引用した場合、t2=5400(5.4×10の4乗)で、100秒後に、0.98CPSの変化量しか与えないため、5.4×10の4乗以上を判定閾値として設定しても良い。同様に、図5CでA3=27.56354をそのまま引用した場合、t2=2800(2.8×10の4乗)の場合、100秒後に、0.96CPSの変化量しか与えないため、2.8×10の4乗以上を閾値として設定すれば良い。つまり、An・EXP(-((x0+100)-x0)/tn)<1の関係から、カーブフィッティング関数の不適さ、t2、t3の不要さの判断に用いるtnの閾値を決めることができ、本実施例のケースでは、より尤度を持って、1×10の5乗以上の場合は、カーブフィッティング関数が不適、t2、またはt3は不要と判断するようにすれば良い。これらの判定閾値を決める処理は、変数閾値設定手段28が担う。 Even if the curve fitting function is not infinite, it may be determined that a term that gives less than 1 CPS after 100 seconds from x0 is unnecessary for determining the inappropriateness of the selected curve fitting function and the necessity of t2 and t3. . Taking FIG. 5B as an example, when A2 = 53.65076 is quoted as it is, t2 = 5400 (5.4 × 10 4), and only 1008 seconds later gives a change amount of 0.98 CPS. .4 × 10 4 or more may be set as the determination threshold. Similarly, if A3 = 27.65634 is quoted as it is in FIG. 5C, if t2 = 2800 (2.8 × 10 4), only a change amount of 0.96 CPS is given after 100 seconds. What is necessary is just to set 8 * 10 to the 4th power or more as a threshold value. That is, from the relationship of An · EXP (− ((x0 + 100) −x0) / tn) <1, it is possible to determine the threshold value of tn used to determine the inappropriateness of the curve fitting function and the necessity of t2 and t3. In the case of the present embodiment, it is sufficient to determine that the curve fitting function is unsuitable and t2 or t3 is unnecessary when the likelihood is higher than 1 × 10 5 with more likelihood. The variable threshold setting means 28 is responsible for determining these determination thresholds.
 一方、図6A、図6B、図6Cに、生菌1個程度のATPを含む試料において、式(1)、(2)、(3)の何れのカーブフィッティング関数を用いてもフィッティング処理が収束した結果の一例を示す。本結果から、カーブフィティング関数の信号強度に相当する変数値群A1、A1+A2、さらにA1+A2+A3が、図5A、図5B、図5Cで上述したブランク試料よりも生菌1個程度のATPを含む試料の方が大きいことが分かる。また、t1、t2、t3の値に差があり、t2、t3に関しては、フィッティングの収束有無により、これらの変数値がブランク試料と生菌1個程度のATPを含む試料で大きく異なることがわかる。 On the other hand, FIG. 6A, FIG. 6B, and FIG. 6C show that the fitting process converges in any sample containing about 1 viable ATP using any of the curve fitting functions of equations (1), (2), and (3). An example of the results is shown. From this result, the variable value groups A1, A1 + A2, and A1 + A2 + A3 corresponding to the signal strength of the curve fitting function are about one viable cell than the blank sample described above with reference to FIGS. 5A, 5B, and 5C. It can be seen that the sample containing ATP is larger. Moreover, there is a difference in the values of t1, t2, and t3. Regarding t2 and t3, it can be seen that these variable values differ greatly between the blank sample and the sample containing about 1 viable ATP depending on the convergence of the fitting. .
 この結果に基づき、データ判定部20は、以下のような判定基準で、生菌が試料内に1個以上存在するか否かの判定を行う。なお、この場合は、図3のS305の比較処理を行わずに例えば以下の(a)(b)のとおりS306の判定を行う。 Based on this result, the data determination unit 20 determines whether one or more viable bacteria are present in the sample according to the following determination criteria. In this case, the determination of S306 is performed as shown in (a) and (b) below, for example, without performing the comparison process of S305 of FIG.
 (a)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)のカーブフィッティング曲線で収束しない場合は、無菌である。 (A) When the curve fitting curve of y = y0 + A1 · EXP (− (x−x0) / t1) + A2 · EXP (− (x−x0) / t2) does not converge, it is aseptic.
 (b)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)+A3EXP(-(x-x0)/t3)のカーブフィッティング曲線で収束しない場合は無菌である。 (B) When the curve fitting curve of y = y0 + A1 · EXP (− (x−x0) / t1) + A2 · EXP (− (x−x0) / t2) + A3EXP (− (x−x0) / t3) does not converge Is sterile.
 また、判定処理(S306)の前に変数値と比較変数値との比較(S305)を行って判定を行うことも可能である。つまり、比較用変数値群のt2、t3に閾値を設けて、下記(c)(d)のように判定する構成である。ただし、t2、t3の値の判定基準はこれに限定されず、任意に設定可能である。 It is also possible to perform the determination by comparing the variable value with the comparison variable value (S305) before the determination process (S306). That is, the threshold values are provided for t2 and t3 of the variable value group for comparison, and the determination is made as shown in (c) and (d) below. However, the criteria for determining the values of t2 and t3 are not limited to this, and can be arbitrarily set.
 (c)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)のカーブフィッティング曲線でフィッティングした結果で、t2の値が1×10の5乗以上であれば、無菌である。 (C) As a result of fitting with a curve fitting curve of y = y0 + A1 · EXP (− (x−x0) / t1) + A2 · EXP (− (x−x0) / t2), the value of t2 is 1 × 10 5 If it is more than a power, it is aseptic.
 (d)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)+A3EXP(-(x-x0)/t3)のカーブフィッティング曲線でフィッティングした結果で、t3の値が1×10の5乗以上であれば、無菌である。 (D) Result of fitting with a curve fitting curve of y = y0 + A1 · EXP (− (x−x0) / t1) + A2 • EXP (− (x−x0) / t2) + A3EXP (− (x−x0) / t3) If the value of t3 is 1 × 10 5 or more, it is aseptic.
 反対に、上記(a)~(d)に相当しない場合、即ち、カーブフィッティング曲線が何れも収束した場合や、さらに、t2やt3が1×10の5乗未満であれば、生菌が1個以上存在したという判定が可能となる。 On the other hand, if it does not correspond to the above (a) to (d), that is, if all of the curve fitting curves have converged, or if t2 and t3 are less than 1 × 10 5, the viable bacteria is 1 It is possible to determine that there are more than one.
 また、さらに、A1とA2の合計、または、A1とA2とA3の合計値から、信号強度を算出し、ATP量を算出することも可能である。 Furthermore, it is also possible to calculate the signal intensity from the sum of A1 and A2 or the sum of A1, A2 and A3, and calculate the ATP amount.
 さらに、(a)から(d)に加えて、A1、A2、A3にも閾値を設けても良く、複数の変数の閾値比較により、試料中に生菌が存在するか否かの判定精度を向上させられる。 Furthermore, in addition to (a) to (d), threshold values may be provided for A1, A2, and A3, and the determination accuracy of whether or not viable bacteria are present in the sample can be obtained by comparing the threshold values of a plurality of variables. Can be improved.
 図7A、図7B、図7C、図7Dは、ブランク試料と生菌1個相当量のATP抽出試料の各々を3回ずつ測定し、試料分析装置3にて、式(2)にてフィッティング処理した結果から、A1とA2、A=A1+A2、t2の変数値についてグラフ表示したものである。図7Aに示されるA1の変数値からは、ブランク試料とATP抽出試料の差を区別することができないのに対して、図7Bに示されるA2、図7Cに示されるA2A=A1+A2、さらに、図7Dに示されるt2の変数比較で、ブランク試料と生菌からのATP抽出試料の信号量の差と、有菌か無菌かを明瞭に判定することが可能であることが確認された。 7A, FIG. 7B, FIG. 7C, and FIG. 7D each measure a blank sample and an ATP extraction sample equivalent to one viable cell three times, and the sample analyzer 3 performs a fitting process using equation (2). From the results, the variable values of A1 and A2, A = A1 + A2, and t2 are graphically displayed. Although the difference between the blank sample and the ATP extracted sample cannot be distinguished from the variable value of A1 shown in FIG. 7A, A2 shown in FIG. 7B, A2A = A1 + A2 shown in FIG. 7C, It was confirmed by the variable comparison of t2 shown in 7D that it is possible to clearly determine the difference in signal amount between the blank sample and the ATP-extracted sample from viable bacteria and whether it is bacterial or sterile.
 このように、データ判定部20による生菌の有無判定はt1、t2、t3を用いずにA2またはA=A1+A2でも判定することも可能である。しかし、ブランク試料のA2またはA=A1+A2を用いて判定する場合、偽陽性に注意が必要なため、検出限界や定量限界は踏まえて生菌の有無判定の閾値を決定する必要がある。様々な思想のもとに決められているが、現在最も受け入れられているIUPACとISO(国際標準化機構)で定められた検出下限、定量下限を採用するのが好適である。具体的には、プランク試料の信号量+ブランク試料の信号量の標準偏差(Standard Deviation:SD)の3.3倍の値を検出下限とし、また、標準偏差の10倍以上を定量下限とする。例えば、複数のブランク試料の測定データから、A2の標準偏差(Standard Deviation:SD)を算出し、データ比較用変数値群24の変数参照値にA2+3.3SD(A2)の値を格納しておく。 Thus, the presence / absence determination of viable bacteria by the data determination unit 20 can also be determined by A2 or A = A1 + A2 without using t1, t2, and t3. However, when determining using A2 or A = A1 + A2 of the blank sample, since it is necessary to pay attention to false positives, it is necessary to determine the threshold for determining the presence or absence of viable bacteria based on the detection limit and the quantification limit. Although it is determined based on various ideas, it is preferable to adopt the lower detection limit and the lower limit of quantification determined by the currently accepted IUPAC and ISO (International Organization for Standardization). Specifically, the detection lower limit is 3.3 times the standard deviation (Standard Deviation: SD) of the signal amount of the Planck sample + the signal amount of the blank sample, and 10 times or more of the standard deviation is the lower limit of quantification. . For example, the standard deviation (Standard Deviation: SD) of A2 is calculated from the measurement data of a plurality of blank samples, and the value of A2 + 3.3SD (A2) is stored in the variable reference value of the variable value group 24 for data comparison. Keep it.
 同様に、A=A1+A2のSDを計算し、データ比較用変数群24の変数参照値にA+3.3SD(A)の値を格納しておく。格納したこれらの変数参照値と比較し、閾値以上か否かでATP抽出試料内に生菌が存在したか否かを判定できる。また、さらに1つの変数参照値をブランク試料の平均値として設定し、測定試料で得られた信号値との差分量から、図10を用いて説明した検量線からの生菌数の算出方法で算出し、検出下限か否かによる生菌有無判定に加えて、生菌数を判定結果として表示しても良い。これらは、何れも判定結果表示部34に表示される。 Similarly, SD of A = A1 + A2 is calculated, and the value of A + 3.3SD (A) is stored in the variable reference value of the data comparison variable group 24. By comparing with these stored variable reference values, it can be determined whether or not viable bacteria existed in the ATP extracted sample based on whether or not the threshold value is exceeded. In addition, one variable reference value is set as the average value of the blank sample, and from the amount of difference from the signal value obtained with the measurement sample, the method for calculating the number of viable bacteria from the calibration curve described with reference to FIG. The number of viable bacteria may be displayed as a determination result in addition to the determination of the presence or absence of viable bacteria based on whether or not the lower limit of detection is calculated. These are all displayed on the determination result display unit 34.
 以上、本実施例では、試料分析装置3のデータ比較部17の変数閾値設定手段28が、t2、A2、Aを変数として選択し、各変数参照値、例えばt2=1×10の5乗、A2=70、A=140と設定して、高い確度で生菌の有無を判定できる。また、Aの閾値として、さらに、プランク試料の平均値を加えることで、生菌数の定量が可能となる。 As described above, in this embodiment, the variable threshold value setting unit 28 of the data comparison unit 17 of the sample analyzer 3 selects t2, A2, and A as variables, and each variable reference value, for example, t2 = 1 × 10 5th power, By setting A2 = 70 and A = 140, the presence or absence of viable bacteria can be determined with high accuracy. Further, the number of viable bacteria can be quantified by adding an average value of the plank sample as the threshold value of A.
 なお、本実施例で例示した数値はあくまでも実験結果の典型例から見出した値であり、試薬の状況や、測定装置1の性能により変化することは言うまでもない。 It should be noted that the numerical values exemplified in the present embodiment are values found from typical examples of experimental results, and needless to say, the values vary depending on the condition of the reagent and the performance of the measuring apparatus 1.
 <実施例2>
 本実施例では、試料分析装置3は、菌の存在有無の判定に加え、測定装置1の不具合による誤計測や消耗品関係の汚染や試薬の活性不具合による誤計測を検知する、いわゆる、測定異常検知も行う実施形態について説明する。
<Example 2>
In this embodiment, the sample analyzer 3 detects mismeasurements due to malfunctions of the measurement apparatus 1 or contamination due to consumables or malfunctions due to reagent activity malfunctions in addition to determining the presence or absence of bacteria. An embodiment that also performs detection will be described.
 図8は、試料分析装置3の結果から無菌検査の有菌か無菌か、さらに、測定異常による誤計測かを判定するステップを示している。ここでは、式(2)の2つの指数関数減衰項を含むカーブフィッティング関数で判定される例を示している。測定対象は、ATPであり、ATP生物発光の時系列信号値が測定データ点であり、測定データ点を200秒測定し、試料と試薬を混合する前の試料バックグラウンド信号、試料と発光試薬を混合した後の反応により生じたATP発光信号の2つの領域をまとめて測定する。 FIG. 8 shows a step of determining from the result of the sample analyzer 3 whether the sterility test is microbial or aseptic, and further, erroneous measurement due to a measurement abnormality. Here, an example is shown in which the determination is made by a curve fitting function including two exponential function attenuation terms of Expression (2). The measurement target is ATP, the time series signal value of ATP bioluminescence is the measurement data point, the measurement data point is measured for 200 seconds, the sample background signal before mixing the sample and the reagent, the sample and the luminescent reagent Two regions of the ATP emission signal generated by the reaction after mixing are measured together.
 ここで、本実施例における試料分析装置の表示画面を示す図9を用いて説明する。まず、無菌試料、すなわちブランク試料の測定を測定装置1で行う。測定終了後、試料分析装置3において、指数関数減衰項を含むカーブフィッティング関数群を、図9のディスプレイ上の関数群選択プルダウンメニュー29から選択する(式(4))。 Here, description will be made with reference to FIG. 9 showing a display screen of the sample analyzer in this embodiment. First, aseptic sample, that is, blank sample is measured by the measuring device 1. After the measurement is completed, in the sample analyzer 3, the curve fitting function group including the exponential function decay term is selected from the function group selection pull-down menu 29 on the display of FIG. 9 (formula (4)).
 y=y0+ΣAi・EXP(-(x-x0)/ti)(1≦i≦n)  …(4)
 その後、iの値をカーブフィッティング曲線y=y0+ΣAi・EXP(-(x-x0)/ti)のiの設定ボタン46で選択し,試料分析開始ボタン30をクリックし、分析を開始する。測定装置1の計測器からの信号出力4を受け取り、測定データ点を記憶し(S801)、グラフ波形の作成を行う(S802)。次に、式(4)のiを1から順番に増加させていきグラフ波形のフィッティング処理を行う(S803)。次に、複数のカーブフィッティング処理結果の変数値を記憶する(S804)。記憶された変数値は、画面上の測定試料変数値表示部32に表示される。測定試料変数値表示部に表示された変数の値は、保存され、任意に呼び出せる。ここでは、実施例1で説明したように、ブランク試料結果をもとに、A、t2の変数値に閾値を設定する。例えば、AAを140、t2を1E5と設定する。これを比較変数群として保存する比較用変数群設定ボタン38をクリックすると、試料分析装置3に記憶される。
y = y0 + ΣAi · EXP (− (x−x0) / ti) (1 ≦ i ≦ n) (4)
Thereafter, the value of i is selected by the setting button 46 of the curve fitting curve y = y0 + ΣAi · EXP (− (x−x0) / ti), and the sample analysis start button 30 is clicked to start the analysis. The signal output 4 from the measuring instrument of the measuring apparatus 1 is received, the measurement data points are stored (S801), and a graph waveform is created (S802). Next, the graph waveform fitting process is performed by sequentially increasing i in Expression (4) from 1 (S803). Next, variable values of a plurality of curve fitting processing results are stored (S804). The stored variable value is displayed on the measurement sample variable value display unit 32 on the screen. The value of the variable displayed in the measurement sample variable value display section is saved and can be recalled arbitrarily. Here, as described in Example 1, threshold values are set for the variable values of A and t2 based on the blank sample result. For example, AA is set to 140 and t2 is set to 1E5. When the comparison variable group setting button 38 for saving this as a comparison variable group is clicked, it is stored in the sample analyzer 3.
 記憶された比較用変数群を試料測定の際に呼び出すと、図9の比較用変数群表示部32に表示される。比較用変数群表示部32は、1列目に変数値の記号が表示され、2列目には、それらの変数値が表示される。それらの変数値をもとに、閾値表示部37に変数参照値として入力する。これらの変数参照値は閾値として、設定される。もちろん、記憶済みの閾値を比較用変数群呼び出しプルダウンメニュー31から呼び出して表示することも可能であり、ブランク試料の結果の変数値は、あくまでも参照値であり、閾値の設定値は自由に選択すれば良い。 When the stored variable group for comparison is called during sample measurement, it is displayed on the variable group display section 32 for comparison in FIG. In the comparison variable group display unit 32, symbols of variable values are displayed in the first column, and those variable values are displayed in the second column. Based on these variable values, they are input to the threshold value display unit 37 as variable reference values. These variable reference values are set as threshold values. Of course, the stored threshold value can also be called and displayed from the comparison variable group call pull-down menu 31. The variable value of the blank sample result is only a reference value, and the threshold setting value can be freely selected. It ’s fine.
 この状態にした後に、実測定試料の測定を開始する。測定装置1の計測器からの信号出力4を受け取り、測定データ点を記憶し(S801)、グラフ波形の作成を行い(S802)、次に、式(4)のiを1から順番に増加させていきグラフ波形のフィッティング処理を行う(S803)。次に、複数のカーブフィッティング処理結果の変数値を記憶する(S804)。記憶された変数値群は、画面上の測定試料変数値表示部33に表示される。この表示された測定試料変数値と、比較用変数値との比較が次に実施される。まず、A2が閾値以上か閾値未満かの比較1が実施を実施する(S805)。次に、t2が閾値以上か閾値未満かの比較2が実施する(S806、S807)。以上のステップにより、菌の存在の有無、即ち、有菌か無菌か、もしくは測定異常の判定が下る。 After starting this state, start measuring the actual measurement sample. The signal output 4 from the measuring instrument of the measuring device 1 is received, the measurement data point is stored (S801), a graph waveform is created (S802), and then i in the equation (4) is sequentially increased from 1. Then, graph waveform fitting processing is performed (S803). Next, variable values of a plurality of curve fitting processing results are stored (S804). The stored variable value group is displayed on the measurement sample variable value display unit 33 on the screen. Next, the displayed measurement sample variable value is compared with the comparison variable value. First, comparison 1 is executed to determine whether A2 is greater than or less than a threshold (S805). Next, comparison 2 is performed to determine whether t2 is greater than or less than a threshold (S806, S807). By the above steps, the presence / absence of bacteria, that is, the presence or absence of bacteria or the measurement abnormality is judged.
 具体的な例として、比較1(S805)で閾値以上、つまり、ブランク試料の光信号値の平均値よりも測定試料の光の信号値が大きい場合、または、ブランク試料測定のAの標準偏差SDの3.3倍以上の場合、有菌である可能性が高いと判断し、次に、比較2(S806)に移る。比較2(806)で、閾値未満であった場合、有菌と判定される。有菌と判定された場合、微生物量をカウントすることも可能であり、ATP数、生菌数、各々の光信号量の関係から、測定試料に含まれていた生菌の総数の推定量を算出することができる。 As a specific example, in comparison 1 (S805), when the light signal value of the measurement sample is larger than the threshold value, that is, the average value of the light signal value of the blank sample, or the standard deviation SD of A of the blank sample measurement If the ratio is 3.3 times or more, it is determined that there is a high possibility of being a bacterium, and then the process proceeds to comparison 2 (S806). In comparison 2 (806), if it is less than the threshold value, it is determined as being microbial. If it is determined to be microbial, it is possible to count the amount of microorganisms. From the relationship between the number of ATP, the number of viable bacteria, and the amount of each light signal, the estimated amount of the total number of viable bacteria contained in the measurement sample can be calculated. Can be calculated.
 一方、比較1(S805)で閾値以上であったにも関わらず、比較2(806)で、閾値以上であった場合、ATP発光の濃度に応じた減衰曲線が得られていないことを示すため、測定異常と判定される。このような結果が出てしまう測定異常の原因としては、測定装置の遮光性能が損なわれた、または、コンタミによるATP発光以外の定常的な光物質が混入した、等が考えられ、測定中止のメッセージ47が表示され、測定が中止される。 On the other hand, in order to show that the attenuation curve corresponding to the concentration of ATP emission is not obtained when the value is equal to or greater than the threshold value in comparison 2 (806), although the value is equal to or greater than the threshold value in comparison 1 (S805). It is determined that the measurement is abnormal. Possible causes of measurement anomalies that produce such results include a loss of the light-shielding performance of the measuring device, or a mixture of stationary light substances other than ATP emission due to contamination. A message 47 is displayed and the measurement is stopped.
 また、比較1(S805)で閾値未満の場合、つまり、ブランク試料の光信号値の平均値よりも測定試料の光の信号値が同等か低い場合、または、ブランク試料測定のAの標準偏差SDの3.3倍未満の場合、無菌である可能性が高いと判断し、次に、比較3(S807)に移る。比較3(806)で、閾値以上であった場合、無菌と判定される。一方、比較3(807)で閾値未満と判定された場合、通常のATP発光の減衰曲線が得られていないことから、測定異常と判定される。測定異常の原因としては、試薬の分注量が設定値よりも少なかった、もしくは試薬が分注されなかった、等が考えられ、測定中止のメッセージ47が表示され、測定が中止される。 In comparison 1 (S805), when it is less than the threshold value, that is, when the light signal value of the measurement sample is equal to or lower than the average value of the light signal value of the blank sample, or the standard deviation SD of A in the blank sample measurement If it is less than 3.3 times, it is determined that there is a high possibility of being sterile, and then the process proceeds to comparison 3 (S807). In comparison 3 (806), when it is equal to or greater than the threshold value, it is determined as sterile. On the other hand, when it is determined that it is less than the threshold value in comparison 3 (807), it is determined that the measurement is abnormal because a normal ATP emission decay curve is not obtained. The cause of the measurement abnormality may be that the dispensed amount of the reagent is less than the set value, or that the reagent has not been dispensed, etc., a measurement stop message 47 is displayed, and the measurement is stopped.
 図9の画面上では、判定結果表示部34に有菌、無菌の結果、有菌の場合は生菌数、またはATP数が表示され、測定異常の際には、測定異常と表示される。さらに、測定データ点から構成されるグラフ、グラフのフィッティング曲線も表示され、視覚的に解析が順調に進んでいるかを確かめられるようになっている(35、36)。 On the screen of FIG. 9, the determination result display unit 34 displays the microbial or aseptic result, the number of viable bacteria or the number of ATP in the case of bacteria, and the measurement abnormality is displayed in the case of a measurement abnormality. Furthermore, a graph composed of measurement data points and a fitting curve of the graph are also displayed so that it can be confirmed visually whether the analysis is proceeding smoothly (35, 36).
1…測定装置、2…制御装置、3…試料分析装置、4…計測器からの信号出力、5…トリガ信号、8…本体、9…ディスプレイ、10…手動入力手段11…測定データ取得部、13…グラフ波形生成部、15…カーブフィッティング関数記憶部、16…データ処理部、17…データ比較部、18…カーブフィッティング関数群、19…データ記憶部、20…データ判定部、21…波形(ATP発光データ波形)、22…試料バックグラウンド、23…ATP発光信号、24…比較用変数値群、25…関数群設定手段、26…1つの指数関数減衰項を含むカーブフィッティング関数、27…2つの指数関数減衰項を含むを含むカーブフィッティング関数、28…3つの指数関数減衰項を含むを含むカーブフィッティング関数、29…関数群選択プルダウンメニュー、30…試料分析開始ボタン、31…比較用変数群呼び出しプルダウンメニュー、32…比較用変数群表示部、33…測定試料変数値表示部、34…判定結果表示部、35…ブランク試料のグラフ表示部、36…測定試料のグラフ表示部、37…閾値表示部、38…比較用変数群設定ボタン、47…測定中止のメッセージ、39…ATPの検量線、40…生菌の検量線、41…ATP個数と生菌数の関係、42…第1のグラフ呼び出しのプロダウンメニュー、43…第2のグラフ呼び出しのプロダウンメニュー、44…比較変数値群、45…計測システム、46…カーブフィッティング曲線y=y0+ΣAi・EXP(-(x-x0)/ti)のiの設定ボタン DESCRIPTION OF SYMBOLS 1 ... Measuring apparatus, 2 ... Control apparatus, 3 ... Sample analyzer, 4 ... Signal output from measuring instrument, 5 ... Trigger signal, 8 ... Main body, 9 ... Display, 10 ... Manual input means 11 ... Measurement data acquisition part, DESCRIPTION OF SYMBOLS 13 ... Graph waveform generation part, 15 ... Curve fitting function storage part, 16 ... Data processing part, 17 ... Data comparison part, 18 ... Curve fitting function group, 19 ... Data storage part, 20 ... Data determination part, 21 ... Waveform ( ATP emission data waveform), 22 ... sample background, 23 ... ATP emission signal, 24 ... variable value group for comparison, 25 ... function group setting means, 26 ... curve fitting function including one exponential decay term, 27 ... 2 Curve fitting function including two exponential decay terms, 28... Curve fitting function including three exponential decay terms, 29. Pull-down menu, 30 ... Sample analysis start button, 31 ... Comparison variable group call pull-down menu, 32 ... Comparison variable group display section, 33 ... Measurement sample variable value display section, 34 ... Judgment result display section, 35 ... Blank sample Graph display unit 36 ... Graph display unit of measurement sample, 37 ... Threshold display unit, 38 ... Comparison variable group setting button, 47 ... Measurement stop message, 39 ... ATP calibration curve, 40 ... Live bacteria calibration curve, 41: Relationship between the number of ATP and the number of viable bacteria, 42: Pro-down menu for first graph call, 43 ... Pro-down menu for second graph call, 44 ... Comparison variable value group, 45 ... Measurement system, 46 ... Curve Fitting curve y = y0 + ΣAi · EXP (-(x-x0) / ti) i setting button

Claims (10)

  1.  試料と試薬の反応による信号量の時間変化をもとに、試料に含まれる物質量を計測する計測装置であって、
     試料から測定される信号量の測定データ点を取得する測定データ取得部と、
     前記測定データ点を測定時間に対してプロットしてグラフを生成するグラフ生成部と、
     少なくとも一つのカーブフィティング関数で、前記グラフの前記測定データ点のプロットから構成される反応曲線を近似してフィッティングするデータ処理部と、
     前記フィッティングにより得られた前記カーブフィティング関数の変数値に基づいて、前記試料の測定を行う計測部と、を備える、
     ことを特徴とする計測装置。
    A measuring device that measures the amount of a substance contained in a sample based on a change in signal amount due to a reaction between the sample and a reagent,
    A measurement data acquisition unit for acquiring measurement data points of the signal amount measured from the sample;
    A graph generator for generating a graph by plotting the measurement data points against the measurement time;
    A data processor for approximating and fitting a response curve composed of plots of the measured data points of the graph with at least one curve fitting function;
    A measurement unit that measures the sample based on a variable value of the curve fitting function obtained by the fitting, and
    A measuring device characterized by that.
  2.  請求項1に記載の計測装置であって、
     前記計測部は、
     前記フィッティングにより得られた変数値を、前記フィッティングに用いたカーブフィティング関数について予め設定された変数の閾値と比較して、前記比較結果に基づいて前記物質量の計測を行う、
     ことを特徴とする計測装置。
    The measuring device according to claim 1,
    The measuring unit is
    The variable value obtained by the fitting is compared with a threshold value of a variable set in advance for the curve fitting function used for the fitting, and the amount of the substance is measured based on the comparison result.
    A measuring device characterized by that.
  3.  請求項1に記載の計測装置であって、
     前記計測部は、
     前記カーブフィティング関数の変数値に基づいて、
     前記試料に含まれる測定対象物の量を計測する、
     ことを特徴とする計測装置。
    The measuring device according to claim 1,
    The measuring unit is
    Based on the variable value of the curve fitting function,
    Measure the amount of the measurement object contained in the sample,
    A measuring device characterized by that.
  4.  請求項1に記載の計測装置であって、
     前記計測部は、
     前記カーブフィティング関数の変数値に基づいて、
     前記測定の異常の有無を判定する、
     ことを特徴とする計測装置。
    The measuring device according to claim 1,
    The measuring unit is
    Based on the variable value of the curve fitting function,
    Determining whether there is an abnormality in the measurement;
    A measuring device characterized by that.
  5.  請求項1に記載の計測装置であって、
     前記測定データ取得部は、
     試薬混合前の試料から測定される信号量及び試薬を混合した後の試料から測定される信号量の測定データ点を取得し、
     前記データ処理部は、
     前記フィッティングによって、前記試薬を混合した後の反応で生じる信号量の最大値を含む時間からその後の減少する変化曲線を近似する、
     ことを特徴とする計測装置。
    The measuring device according to claim 1,
    The measurement data acquisition unit
    Acquire the measurement data points of the signal amount measured from the sample before reagent mixing and the signal amount measured from the sample after mixing the reagent,
    The data processing unit
    The fitting approximates a change curve that subsequently decreases from the time including the maximum value of the signal amount generated in the reaction after mixing the reagents.
    A measuring device characterized by that.
  6.  請求項1に記載の計測装置であって、
     前記測定データ取得部は、
     試薬混合前の試料から測定される信号量及び試薬を混合した後の試料から測定される信号量の測定データ点を取得し、
     前記測定データ点は、前記試薬混合前後における化学発光、又は生物発光の光信号量の時間変化である、
     ことを特徴とする計測装置。
    The measuring device according to claim 1,
    The measurement data acquisition unit
    Acquire the measurement data points of the signal amount measured from the sample before reagent mixing and the signal amount measured from the sample after mixing the reagent,
    The measurement data point is the time change of chemiluminescence or bioluminescence optical signal amount before and after the reagent mixing.
    A measuring device characterized by that.
  7.  請求項1に記載の計測装置であって、
     前記データ処理部は、
     前記変数の少なくとも一つに指数関数的減衰項を含むカーブフィティング関数を用いて前記フィッティングを行う、
     ことを特徴とする計測装置。
    The measuring device according to claim 1,
    The data processing unit
    Performing the fitting using a curve fitting function including an exponential decay term in at least one of the variables;
    A measuring device characterized by that.
  8.  請求項7に記載の計測装置であって、
     前記測定データ取得部は、
     試薬混合前の試料から測定される信号量及び試薬を混合した後の試料から測定される信号量の測定データ点を取得し、
     前記データ処理部は、
     前記カーブフィティング関数として、y=y0+ΣAi・EXP(-(x-x0)/ti)(1≦i≦n)を用いて前記フィッティングを行い、
     前記カーブフィティング関数において、y0は試料と試薬を混合する前のバックグラウンド信号量の平均値であり、x0は試料と試薬を混合した後の信号量の最大値である、
     ことを特徴とする計測装置。
    It is a measuring device of Claim 7, Comprising:
    The measurement data acquisition unit
    Acquire the measurement data points of the signal amount measured from the sample before reagent mixing and the signal amount measured from the sample after mixing the reagent,
    The data processing unit
    The fitting is performed using y = y0 + ΣAi · EXP (− (x−x0) / ti) (1 ≦ i ≦ n) as the curve fitting function,
    In the curve fitting function, y0 is an average value of the background signal amount before mixing the sample and the reagent, and x0 is a maximum value of the signal amount after mixing the sample and the reagent.
    A measuring device characterized by that.
  9.  請求項8に記載の計測装置であって、
     前記データ処理部は、
     変数t1からtnのうちの少なくとも一つの変数ti、または変数A1からAnのうちの少なくとも一つの変数Ai、または変数A1からAnのうちの少なくとも2つ以上の変数Aiを合計した値、の少なくとも何れかについて前記閾値に設定し、
     前記フィッティングにより得られた変数値を、前記閾値と比較して、前記比較結果に基づいて前記物質量の計測を行う、
     ことを特徴とする計測装置。
    It is a measuring device of Claim 8, Comprising:
    The data processing unit
    At least one of variables t1 to tn, at least one variable Ai of variables A1 to An, or a sum of at least two variables Ai of variables A1 to An Set the threshold to
    The variable value obtained by the fitting is compared with the threshold value, and the amount of the substance is measured based on the comparison result.
    A measuring device characterized by that.
  10.  試料と試薬の反応による信号量の時間変化をもとに、試料に含まれる物質量を計測する方法において、
     ブランク試料を用意し、試薬を混合し、反応させ、信号量の時間的変化である第1の測定データ点を測定データ取得部に取得するステップと、
     第1の測定データ点を少なくとも一つのカーブフィッティング曲線でフィッティングするステップと、
     フィッティングで得られた第1のカーブフィッティング曲線の第1の変数群を、記憶するステップと、
     測定試料を用意し、試薬を混合し、反応させ、信号量の時間的変化である第2の測定データ点を測定データ取得部に取得するステップと、
     第2の測定データ点を少なくとも一つのカーブフィッティング曲線でフィッティングするステップと、
     フィッティングで得られた第2のカーブフィッティング曲線の第2の変数群を、記憶するステップと、
     記憶部に保存された第1の変数群と第2の変数群を比較部にて比較するステップと、を含む計測方法。
    In a method for measuring the amount of a substance contained in a sample based on the time change of the signal amount due to the reaction between the sample and the reagent,
    Preparing a blank sample, mixing and reacting reagents, obtaining a first measurement data point, which is a temporal change in signal amount, in a measurement data obtaining unit;
    Fitting the first measurement data point with at least one curve fitting curve;
    Storing a first variable group of a first curve fitting curve obtained by fitting;
    Preparing a measurement sample, mixing and reacting reagents, and obtaining a second measurement data point, which is a temporal change in signal amount, in the measurement data acquisition unit;
    Fitting a second measurement data point with at least one curve fitting curve;
    Storing a second variable group of the second curve fitting curve obtained by the fitting;
    A comparison unit that compares the first variable group and the second variable group stored in the storage unit with a comparison unit.
PCT/JP2014/065027 2013-07-29 2014-06-06 Measurement device and measurement method WO2015015898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-156252 2013-07-29
JP2013156252A JP2016183860A (en) 2013-07-29 2013-07-29 Measurement system and measurement method

Publications (1)

Publication Number Publication Date
WO2015015898A1 true WO2015015898A1 (en) 2015-02-05

Family

ID=52431443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065027 WO2015015898A1 (en) 2013-07-29 2014-06-06 Measurement device and measurement method

Country Status (2)

Country Link
JP (1) JP2016183860A (en)
WO (1) WO2015015898A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105607A1 (en) * 2016-12-09 2018-06-14 コニカミノルタ株式会社 Measuring device, measurement abnormality detecting method, and program
JP2018114437A (en) * 2017-01-16 2018-07-26 三菱日立パワーシステムズ株式会社 Cooling tower facility, and method of controlling water quality thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323816B2 (en) 2021-06-21 2023-08-09 東亜ディーケーケー株式会社 Endotoxin measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212120A (en) * 2002-12-27 2004-07-29 Wako Pure Chem Ind Ltd Measuring instrument having measured value estimating function and measuring method using the same
JP2006071300A (en) * 2004-08-31 2006-03-16 Hitachi Ltd Biochemical substance detector
JP2008510161A (en) * 2004-08-16 2008-04-03 バクテリオスキャン Detection of bacteria in liquid
JP2008532526A (en) * 2005-03-10 2008-08-21 ジェン−プロウブ インコーポレイテッド System and method for performing an assay for detecting or quantifying an analyte in a sample
JP2009540299A (en) * 2006-06-05 2009-11-19 カリフォルニア インスティテュート オブ テクノロジー Real-time microarray
JP2012043055A (en) * 2010-08-16 2012-03-01 Dainippon Printing Co Ltd Parameter fitting method
JP2012211785A (en) * 2011-03-30 2012-11-01 Hitachi Plant Technologies Ltd Luminescence measuring device and microbe counter
WO2014017277A1 (en) * 2012-07-24 2014-01-30 株式会社 日立ハイテクノロジーズ Automatic analysis device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212120A (en) * 2002-12-27 2004-07-29 Wako Pure Chem Ind Ltd Measuring instrument having measured value estimating function and measuring method using the same
JP2008510161A (en) * 2004-08-16 2008-04-03 バクテリオスキャン Detection of bacteria in liquid
JP2006071300A (en) * 2004-08-31 2006-03-16 Hitachi Ltd Biochemical substance detector
JP2008532526A (en) * 2005-03-10 2008-08-21 ジェン−プロウブ インコーポレイテッド System and method for performing an assay for detecting or quantifying an analyte in a sample
JP2009540299A (en) * 2006-06-05 2009-11-19 カリフォルニア インスティテュート オブ テクノロジー Real-time microarray
JP2012043055A (en) * 2010-08-16 2012-03-01 Dainippon Printing Co Ltd Parameter fitting method
JP2012211785A (en) * 2011-03-30 2012-11-01 Hitachi Plant Technologies Ltd Luminescence measuring device and microbe counter
WO2014017277A1 (en) * 2012-07-24 2014-01-30 株式会社 日立ハイテクノロジーズ Automatic analysis device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105607A1 (en) * 2016-12-09 2018-06-14 コニカミノルタ株式会社 Measuring device, measurement abnormality detecting method, and program
JPWO2018105607A1 (en) * 2016-12-09 2019-10-24 コニカミノルタ株式会社 Measurement apparatus, measurement abnormality detection method, and program
JP7034087B2 (en) 2016-12-09 2022-03-11 大塚製薬株式会社 Measuring equipment, measurement anomaly detection method, and program
US11397150B2 (en) 2016-12-09 2022-07-26 Otsuka Pharmaceutical Co., Ltd. Measuring device, measurement abnormality detecting method, and program
JP2018114437A (en) * 2017-01-16 2018-07-26 三菱日立パワーシステムズ株式会社 Cooling tower facility, and method of controlling water quality thereof

Also Published As

Publication number Publication date
JP2016183860A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
CN101473230B (en) Dispensing device and automatic analysis device
JP5331669B2 (en) Electrolyte analyzer
JP4276894B2 (en) Anomaly detection system and anomaly detection method
US20090222213A1 (en) Automatic analyzer
JP5965248B2 (en) Electrolyte analyzer
WO2015015898A1 (en) Measurement device and measurement method
JP2007285708A (en) Quality control method for liquid for supporting analysis in autoanalyzer, and the autoanalyzer
JP2012007921A (en) Automatic analyzer and automatic analysis method
JP2016188872A (en) Electrolyte analysis device and electrolytic analysis method
US20160077014A1 (en) Automatic titrator
WO2017115775A1 (en) Analysis device, analysis method, and analysis system
JP5686710B2 (en) Automatic analyzer
JP7330785B2 (en) automatic analyzer
Bivins et al. Inherent bias of SARS-CoV-2 RNA quantification for wastewater surveillance due to variable RT-qPCR assay parameters
JP2009222610A (en) Automatic analyzer
JP2008309661A (en) Analyzer
WO2019123956A1 (en) Signal processing device and signal processing method
JP2006292698A (en) Precision management method of autoanalyzer for clinical inspection, and the autoanalyzer
JP5860643B2 (en) Automatic analyzer
JP2009047638A (en) Automatic analyzer
JP4287753B2 (en) Analysis equipment
JP2014016218A (en) Automatic analyzer
JP2008203008A (en) Autoanalyzer
JP2000321281A (en) Automatic analyzer
Petiti et al. Standard operating procedure to optimize resazurin-based viability assays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP