WO2015015852A1 - Oxygen concentration device - Google Patents

Oxygen concentration device Download PDF

Info

Publication number
WO2015015852A1
WO2015015852A1 PCT/JP2014/061943 JP2014061943W WO2015015852A1 WO 2015015852 A1 WO2015015852 A1 WO 2015015852A1 JP 2014061943 W JP2014061943 W JP 2014061943W WO 2015015852 A1 WO2015015852 A1 WO 2015015852A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outside
oxygen
dehumidifying
tubes
Prior art date
Application number
PCT/JP2014/061943
Other languages
French (fr)
Japanese (ja)
Inventor
新田 一福
Original Assignee
ブレステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブレステクノロジー株式会社 filed Critical ブレステクノロジー株式会社
Publication of WO2015015852A1 publication Critical patent/WO2015015852A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M16/101Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/22Membrane contactor

Definitions

  • the present invention relates to an oxygen concentrator.
  • oxygen concentrators that increase the concentration of oxygen by concentrating air taken from outside have been developed as devices for supplying oxygen to patients.
  • the oxygen concentrator generates high-concentration oxygen by bringing compressed air into contact with zeolite and adsorbing nitrogen to the zeolite (see, for example, JP 2010-227517 A).
  • Zeolite adsorbs not only nitrogen but also moisture. When moisture is adsorbed, the amount of nitrogen that can be adsorbed decreases, and the efficiency of concentrating oxygen deteriorates. Such a problem is not limited to zeolite, but is common to catalysts that adsorb nitrogen.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an oxygen concentrator in which the efficiency of concentrating oxygen is prevented from deteriorating.
  • the present invention provides a dehumidifying mechanism that dehumidifies air taken from outside, a compressor that is provided downstream of the dehumidifying mechanism and compresses the air dehumidified by the dehumidifying mechanism, and the air compressed by the compressor
  • a nitrogen adsorption mechanism that adsorbs nitrogen contained in the catalyst to generate high-concentration oxygen
  • a humidification mechanism that humidifies the high-concentration oxygen generated by the nitrogen adsorption mechanism before being sent outside.
  • the dehumidifying mechanism and the humidifying mechanism are integrated by partitioning the air taken in from the outside and the high-concentration oxygen generated by the nitrogen adsorption mechanism with a water-permeable film. And an oxygen concentrator that moves the moisture of the air of the dehumidifying mechanism to the high-concentration oxygen of the humidifying mechanism through the membrane.
  • the air taken in from the outside is dehumidified and then reacted by the catalyst, the amount of moisture that the catalyst adsorbs unnecessarily can be reduced. Thereby, the function of the catalyst is not lowered, and the efficiency of concentrating oxygen can be prevented from deteriorating by maintaining the amount of nitrogen that can be adsorbed by the catalyst.
  • the catalyst that adsorbs nitrogen contained in the air also adsorbs moisture, and examples thereof include zeolite.
  • the high-pressure air will affect the membrane.
  • a failure such as a hole opening due to deterioration of the membrane may occur, and the air taken in from outside and compressed may be sent out through the hole as it is. If a failure occurs during use, high-concentration oxygen that should be sent to the outside cannot be sent to the outside, which may lead to an accident involving human life.
  • the air taken in from the outside is dehumidified before being compressed, and the air taken in from the outside exerts less force on the film. For this reason, it is possible to prevent a failure such as a hole being opened due to deterioration of the film. If no failure occurs, there is no risk of an accident involving human life.
  • the speed of the air flowing through the dehumidifying mechanism is increased to make the air flow turbulent. can do. That is, the air flowing through the dehumidifying mechanism can be sufficiently stirred. Thereby, the volume per hour of the air which contacts a film
  • the present invention is also the oxygen concentrator of the above means, wherein the membrane has a shape in which a plurality of tubes are bundled, the air taken in from the outside, and the high-concentration oxygen generated by the nitrogen adsorption mechanism. One of these passes through the inside of the plurality of tubes, and the other passes through the outside of the plurality of tubes.
  • the area of the film per unit space can be increased.
  • membrane of the air taken in from the outside can be increased.
  • membrane of the high concentration oxygen sent out outside can be increased.
  • the film thickness becomes thin, and the strength may be weaker than when the film is a flat surface.
  • it adopts a structure that dehumidifies before compressing the air taken in from the outside, and the force exerted on the membrane by the air taken in from the outside is small, so even if the strength of the membrane is weak The effect of is less.
  • the air taken in from outside passes through the outside of the plurality of tubes, and the high-concentration oxygen generated by the nitrogen adsorption mechanism passes through the inside of the plurality of tubes. It is characterized by that.
  • the volume of oxygen in the air is about one-fifth of the whole, the volume of air taken in from the outside needs to be about five times the volume of high-concentration oxygen sent out to the outside.
  • the air taken in from the outside with a relatively large volume can pass the outer side of a some tube.
  • high concentration oxygen with a relatively small volume delivered to the outside can be passed through the inside of the plurality of tubes.
  • a tube can be made thin.
  • the number of tubes can be increased.
  • the area of the film per unit space can be increased.
  • the present invention is also characterized in that in the oxygen concentrator of the above means, the membrane is a non-porous membrane.
  • the present invention is also characterized in that in the oxygen concentrator of the above means, the membrane is Nafion (registered trademark) or Flemion (registered trademark).
  • the present invention is also characterized in that the oxygen concentrator of the above means is such that the pressure of the air in the dehumidifying mechanism is lower than the pressure of the high concentration oxygen in the humidifying mechanism.
  • the membrane has a shape in which a plurality of tubes are bundled, and the air (relatively low pressure) taken from the outside passes through the outside of the plurality of tubes, and the high concentration oxygen (relatively generated by the nitrogen adsorption mechanism) By allowing the high pressure to pass through the inside of the plurality of tubes, the tubes can be prevented from being crushed.
  • the present invention is also characterized in that the oxygen concentrator of the above means is used for medical treatment.
  • the present invention is also an oxygen concentrator used in medical treatment, a dehumidifying mechanism for dehumidifying air taken in from the outside, and a compression unit that is provided downstream of the dehumidifying mechanism and compresses the air dehumidified by the dehumidifying mechanism.
  • a humidifying mechanism that humidifies before being sent to the water, and the dehumidifying mechanism and the humidifying mechanism are configured to transmit water between the air taken in from the outside and the high-concentration oxygen generated by the nitrogen adsorption mechanism.
  • the oxygen concentrator is characterized in that oxygen having a concentration passes through the inside of the plurality of tubes.
  • the oxygen concentrator of the present invention it is possible to achieve an excellent effect that the efficiency of concentrating oxygen can be prevented from deteriorating.
  • FIG. 1 is a block diagram showing the configuration of the oxygen concentrator 1.
  • FIG. 2 is a perspective view of the dehumidifying / humidifying unit. In each drawing, a part of the configuration is omitted as appropriate, and the drawings are simplified.
  • a medical oxygen concentrator 1 shown in FIG. 1 is a device that supplies oxygen OXY to a patient, and concentrates the air AIR taken from outside to generate oxygen OXY having a high concentration (for example, about 90%).
  • the oxygen concentrator 1 includes an intake filter 10, a dehumidifying / humidifying unit 11, a compressor 12, a nitrogen adsorption mechanism 13, a tank 14, a valve 15, a control unit (not shown), and the like. I have.
  • the control unit includes a CPU, a RAM, a ROM, and the like, and executes various controls.
  • the CPU is a so-called central processing unit, and various programs are executed to realize various functions.
  • the RAM is used as a work area for the CPU.
  • the ROM stores a program executed by the CPU.
  • the intake filter 10 prevents dust or bacteria contained in the air AIR taken from outside from entering the inside.
  • the dehumidifying / humidifying unit 11 includes a dehumidifying mechanism 11a and a humidifying mechanism 11b.
  • the dehumidifying mechanism 11a and the humidifying mechanism 11b are integrated by being partitioned by a film 11c having water permeability and air permeability.
  • the film 11c is a non-porous film.
  • the membrane 11c is an ion exchange membrane. This membrane 11c employs Nafion (registered trademark) sold by DuPont (USA), DuPont (Chiyoda-ku, Tokyo), or Flemion (registered trademark) sold by Asahi Glass Co., Ltd. (Chiyoda-ku, Tokyo). can do.
  • Nafion (registered trademark) is a fluororesin copolymer based on sulfonated tetrafluoroethylene.
  • Flemion (registered trademark) is produced by hydrolysis after copolymerization of tetrafluoroethylene and a perfluoro vinyl ether containing a carboxylic acid group.
  • the film 11c enables exchange of moisture between the gas existing in the space constituting the dehumidifying mechanism 11a and the gas existing in the space constituting the humidifying mechanism 11b. As a result, moisture is transferred from the gas existing in the space constituting the dehumidifying mechanism 11a to the gas existing in the space constituting the humidifying mechanism 11b.
  • the dehumidifying mechanism 11 a is provided downstream of the intake filter 10.
  • the dehumidifying mechanism 11 a dehumidifies the air AIR taken from outside through the intake filter 10.
  • the dehumidifying mechanism 11a performs dehumidification so that the relative humidity becomes about 20% when the relative humidity of the air AIR taken from the outside is 20% or more and 80% or less.
  • the humidification mechanism 11 b is provided downstream of the valve 15. This humidifying mechanism 11b humidifies the high concentration oxygen OXY stored in the tank 14 before sending it out and supplying it to the patient.
  • the humidification mechanism 11b humidifies the high-concentration oxygen OXY to a relative humidity of about 60% to about 80%, for example.
  • the compressor 12 is provided downstream of the dehumidifying mechanism 11a.
  • the compressor 12 compresses the air AIR dehumidified by the dehumidifying mechanism 11a. That is, the compressor 12 generates a pressure difference between the upstream side and the downstream side.
  • the compressor 12 sets the air AIR of the dehumidifying mechanism 11a to a pressure lower than the atmospheric pressure, while setting the air AIR or oxygen OXY of the adsorption towers 13a and 13b to a pressure higher than the atmospheric pressure.
  • the pressure of the air AIR in the dehumidifying mechanism 11a is lower than the pressure of the high concentration oxygen OXY in the humidifying mechanism 11b.
  • the nitrogen adsorption mechanism 13 is provided downstream of the compressor 12.
  • the nitrogen adsorption mechanism 13 adsorbs nitrogen contained in the air AIR compressed by the compressor 12 to a catalyst (not shown) to generate high concentration oxygen OXY.
  • the nitrogen adsorption mechanism 13 includes a pair of adsorption towers 13a and 13b.
  • the pair of adsorption towers 13a and 13b are provided in parallel.
  • the pair of adsorption towers 13a and 13b is filled with a catalyst.
  • the catalyst also adsorbs moisture, and examples thereof include zeolite. For this reason, the high concentration oxygen OXY produced
  • the nitrogen adsorption mechanism 13 pressurizes one adsorption tower 13a or 13b, adsorbs nitrogen to the catalyst, and generates high concentration oxygen OXY. At this time, the nitrogen adsorption mechanism 13 depressurizes the other adsorption tower 13a or 13b to release nitrogen adsorbed on the catalyst, and prepares for the next pressurization. As described above, the nitrogen adsorption mechanism 13 alternately pressurizes and depressurizes the pair of adsorption towers 13a and 13b to generate high-concentration oxygen OXY.
  • the nitrogen adsorption mechanism 13 refer to Japanese Unexamined Patent Application Publication No. 2010-227517.
  • the tank 14 is provided downstream of the nitrogen adsorption mechanism 13.
  • the tank 14 stores high-concentration oxygen OXY generated by the nitrogen adsorption mechanism 13.
  • the valve 15 is provided downstream of the humidification mechanism 11b.
  • the valve 15 is opened and closed to turn on / off the supply of the high concentration oxygen OXY from the tank 14 to the dehumidifying mechanism 11b and to adjust the supply amount of the high concentration oxygen OXY.
  • the dehumidifying / humidifying unit 11 bundles a cylindrical chamber 20, an air inlet pipe 21, an air outlet pipe 22, an oxygen inlet pipe 23, an oxygen outlet pipe 24, and a plurality of tubes. And a pair of packings 25 and 26.
  • the chamber 20 is hermetically partitioned into three spaces 20a, 20b, and 20c by a pair of packings 25 and 26. These three spaces are arranged in the order of 20a, 20b, and 20c.
  • An oxygen inlet pipe 23 is connected to the space 20a.
  • One end of a plurality of tubes made of the film 11c is connected to the space 20a.
  • An air inlet pipe 21 and an air outlet pipe 22 are connected to the space 20b.
  • a plurality of tubes made of the film 11c are bridged between the pair of packings 25 and 26 in the space 20b.
  • the other end of the plurality of tubes made of the film 11c is connected to the space 20c.
  • An oxygen outlet pipe 24 is connected to the space 20c.
  • the air inlet pipe 21 guides the air AIR taken from outside through the intake filter 10 (see FIG. 1) to the space 20b.
  • the air outlet pipe 22 guides the air AIR dehumidified by the dehumidifying / humidifying unit 11 from the space 20b to the compressor 12 (see FIG. 1).
  • the oxygen inlet pipe 23 guides the high concentration oxygen OXY stored in the tank 14 (see FIG. 1) to the space 20a.
  • the oxygen outlet pipe 24 guides the high-concentration oxygen OXY humidified by the dehumidifying / humidifying unit 11 from the space 20c to an external patient.
  • a plurality of tubes made of the membrane 11c are so-called bundles of hollow fibers, and are spanned between a pair of packings 25 and 26, thereby connecting the spaces 20a and 20c on both sides of the space 20b to each other.
  • the film 11c having a shape in which a plurality of tubes are bundled guides the high concentration oxygen OXY guided to the space 20a by the oxygen inlet tube 23 to the space 20c.
  • membrane 11c which has the shape which bundled the some tube moves a water
  • membrane 11c is arrange
  • the oxygen concentrator 1 since the air AIR taken in from the outside is dehumidified and reacted with the catalyst, the amount of moisture that the catalyst adsorbs unnecessarily can be reduced. Thereby, the function of the catalyst is not deteriorated, and the efficiency of concentrating the oxygen OXY can be prevented from deteriorating by maintaining the amount of nitrogen that can be adsorbed by the catalyst.
  • the high-pressure air AIR affects the film 11c.
  • a failure such as a hole opening due to deterioration of the film 11c may occur, and the air taken in and compressed from the outside may be sent out through the hole as it is. If a failure occurs during use, high-concentration oxygen OXY that should be sent to the outside cannot be sent to the outside, which may lead to an accident involving human life.
  • the air AIR taken in from the outside is dehumidified before being compressed, and the force exerted on the film 11c by the air taken in from the outside is small. For this reason, it is possible to prevent a failure such as a hole opening due to deterioration of the film 11c. If no failure occurs, there is no risk of an accident involving human life.
  • the structure which moves moisture between the air AIR taken in from the outside and the high concentration oxygen OXY sent out to the outside is adopted, dehumidification and humidification can be performed by a series of flows. Thereby, the structure which discharges
  • the compressor 12 is arranged downstream of the dehumidifying mechanism 11a and the compressor 12 pulls the air AIR from the outside, the speed of the air AIR flowing through the dehumidifying mechanism 11a is increased, and the air The AIR flow can be made turbulent. That is, the air AIR flowing through the dehumidifying mechanism 11a can be sufficiently stirred. Thereby, the volume per hour of the air AIR contacting the film 11c can be increased, and humidification of the high concentration oxygen OXY on the opposite side of the film 11c can be promoted. That is, it is possible to increase the amount of moisture that moves from the air AIR taken from the outside to the high-concentration oxygen OXY on the opposite side of the membrane 11c. As a result, dehumidification of the air AIR taken from the outside can be promoted.
  • the film 11c has a shape in which a plurality of tubes are bundled, the area of the film 11c per unit space can be increased. Thereby, the volume amount which contacts the film
  • the film thickness becomes thin, and the strength may be weaker than when the film 11c is a flat surface.
  • the structure in which the air AIR taken in from the outside is dehumidified before being compressed, and the force exerted on the film 11c by the air AIR taken in from the outside is small, so that the strength of the film 11c is weak.
  • the effect of this is small.
  • the volume of oxygen in the air AIR is about one-fifth of the entire volume
  • the volume of the air AIR taken from outside requires about five times the volume of the high-concentration oxygen OXY sent out to the outside.
  • the air AIR taken in from the outside having a relatively large volume can be passed outside the plurality of tubes.
  • oxygen OXY of high concentration sent out to the outside with a relatively small volume can be passed through the inside of a plurality of tubes.
  • a tube can be made thin.
  • the number of tubes can be increased.
  • the area of the film 11c per unit space can be increased.
  • the pressure of the air AIR in the dehumidifying mechanism 11a is lower than the pressure of the high-concentration oxygen OXY in the humidifying mechanism 11b, the humidifying mechanism 11b even if a hole is opened in the film 11c.
  • the oxygen OXY in the high concentration leaks into the dehumidifying mechanism 11a, but the air AIR in the dehumidifying mechanism 11a does not leak into the humidifying mechanism 11b (short circuit) and is supplied to the patient.
  • the membrane 11c has a shape in which a plurality of tubes are bundled, and the air AIR (relatively low pressure) taken from the outside passes through the outside of the plurality of tubes, and high-concentration oxygen (relative) generated by the nitrogen adsorption mechanism. Therefore, it is possible to prevent the tubes from being crushed.
  • the position, size (dimension), shape, material, orientation, and quantity of each component can be changed as appropriate.
  • the nitrogen adsorption mechanism 13 includes a pair of adsorption towers 13a and 13b has been described as an example.
  • the number of adsorption towers of the present invention is not limited, and even if there is only one It may be.
  • suction mechanism 13 is not limited, Any systems, such as a PSVA system, a PVA system, and a SVA system, may be sufficient.
  • membrane 11c had the shape which bundled the several tube was demonstrated to the example
  • membrane of this invention is not limited to this.
  • the film of the present invention only needs to be able to partition between air taken in from the outside and high-concentration oxygen generated by the nitrogen adsorption mechanism 13, and may have a planar shape or other shapes.
  • the film 11c may be a single sheet or a stack of a plurality of sheets. That is, the film 11c may be wound concentrically.
  • membrane 11c has water permeability and air permeability
  • membrane of this invention should just have water permeability at least, and has air permeability. There is no need to be.
  • the high-concentration oxygen OXY in the humidification mechanism 11b leaks to the dehumidification mechanism 11a, it is necessary to generate the high-concentration oxygen OXY so that the amount supplied to the outside and supplied to the patient is not insufficient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

An oxygen concentration device (1) comprises: a dehumidifying mechanism (11a) which dehumidifies air (AIR) which is taken in from outside; a compressor (12) which is disposed downstream of the dehumidifying mechanism (11a) and compresses the air (AIR) which is dehumidified with the dehumidifying mechanism (11a); a nitrogen adsorption mechanism (13) which adsorbs nitrogen included in the air (AIR) which is compressed with the compressor (12) into a catalyst, and generates high-concentration oxygen (OXY); and a humidifying mechanism (11b) which humidifies the high-concentration oxygen (OXY) which is generated with the nitrogen adsorption mechanism (13) before discharging said high-concentration oxygen (OXY) outside. The dehumidifying mechanism (11a) and the humidifying mechanism (11b) are formed integrally with a water-permeable membrane (11c) separating the air (AIR) which is taken in from outside and the high-concentration oxygen (OXY) which is generated with the nitrogen adsorption mechanism (13), and the moisture content of the air (AIR) of the dehumidifying mechanism (11a) is moved to the high-concentration oxygen (OXY) of the humidifying mechanism (11b) via the membrane (11c).

Description

酸素濃縮装置Oxygen concentrator
 本発明は、酸素濃縮装置に関する。 The present invention relates to an oxygen concentrator.
 呼吸不全の患者に代表される、在宅で酸素を補給しなければならない患者の数は少なくない。このため、患者に酸素を供給する装置として、外部から取り込んだ空気を濃縮して酸素の濃度を高める酸素濃縮装置が開発されている。酸素濃縮装置は、圧縮した空気をゼオライトに接触させて当該ゼオライトに窒素を吸着させることで、高濃度の酸素を生成する(例えば、特開2010-227517号公報参照)。 な い There are not a few patients who have to replenish oxygen at home, as represented by patients with respiratory failure. For this reason, oxygen concentrators that increase the concentration of oxygen by concentrating air taken from outside have been developed as devices for supplying oxygen to patients. The oxygen concentrator generates high-concentration oxygen by bringing compressed air into contact with zeolite and adsorbing nitrogen to the zeolite (see, for example, JP 2010-227517 A).
 ゼオライトは、窒素だけでなく水分も吸着するものであり、水分を吸着した場合、窒素を吸着可能な量が少なくなり、酸素を濃縮する効率が悪化する。なお、このような問題は、ゼオライトに限られず、窒素を吸着する触媒に共通して存在する。 Zeolite adsorbs not only nitrogen but also moisture. When moisture is adsorbed, the amount of nitrogen that can be adsorbed decreases, and the efficiency of concentrating oxygen deteriorates. Such a problem is not limited to zeolite, but is common to catalysts that adsorb nitrogen.
 本発明は、上記課題を鑑みてなされたものであり、酸素を濃縮する効率が悪化することを防止した酸素濃縮器を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an oxygen concentrator in which the efficiency of concentrating oxygen is prevented from deteriorating.
 本発明は、外部から取り込んだ空気を除湿する除湿機構と、前記除湿機構の下流に設けられ、該除湿機構で除湿された前記空気を圧縮する圧縮機と、前記圧縮機で圧縮された前記空気に含まれる窒素を触媒に吸着させて、高濃度の酸素を生成する窒素吸着機構と、前記窒素吸着機構で生成された前記高濃度の酸素を外部で送り出す前に加湿する加湿機構と、を備え、前記除湿機構及び前記加湿機構は、外部から取り込んだ前記空気と、前記窒素吸着機構で生成された前記高濃度の酸素と、の間を、透水性を有する膜で仕切ることで一体となっており、前記除湿機構の前記空気の水分を、前記膜を介して、前記加湿機構の前記高濃度の酸素に移動させることを特徴とする、酸素濃縮装置である。 The present invention provides a dehumidifying mechanism that dehumidifies air taken from outside, a compressor that is provided downstream of the dehumidifying mechanism and compresses the air dehumidified by the dehumidifying mechanism, and the air compressed by the compressor A nitrogen adsorption mechanism that adsorbs nitrogen contained in the catalyst to generate high-concentration oxygen, and a humidification mechanism that humidifies the high-concentration oxygen generated by the nitrogen adsorption mechanism before being sent outside. The dehumidifying mechanism and the humidifying mechanism are integrated by partitioning the air taken in from the outside and the high-concentration oxygen generated by the nitrogen adsorption mechanism with a water-permeable film. And an oxygen concentrator that moves the moisture of the air of the dehumidifying mechanism to the high-concentration oxygen of the humidifying mechanism through the membrane.
 本発明によれば、外部から取り込んだ空気を除湿してから触媒によって反応させるので、触媒が無用に吸着してしまう水分の量を低減できる。これにより、触媒の機能は低下せず、当該触媒が吸着できる窒素の量を維持することで、酸素を濃縮する効率が悪化することを防止できる。なお、空気に含まれる窒素を吸着する触媒は、水分も吸着するものであり、例えば、ゼオライトなどが挙げられる。 According to the present invention, since the air taken in from the outside is dehumidified and then reacted by the catalyst, the amount of moisture that the catalyst adsorbs unnecessarily can be reduced. Thereby, the function of the catalyst is not lowered, and the efficiency of concentrating oxygen can be prevented from deteriorating by maintaining the amount of nitrogen that can be adsorbed by the catalyst. The catalyst that adsorbs nitrogen contained in the air also adsorbs moisture, and examples thereof include zeolite.
 ところで、外部から取り込んだ空気を圧縮してから除湿する構造の場合には、高圧の空気が膜に影響を及ぼすことになる。結果、膜が劣化して孔が開くなどの故障が発生し、外部から取り込んで圧縮した空気が孔を介してそのまま外部に送り出される恐れがある。使用中に故障が発生した場合には、外部へ送り出されるべき高濃度の酸素を外部へ送り出すことができなくなり、人命にも関わる事故につながる危険性がある。 By the way, in the case of a structure that dehumidifies after compressing the air taken from outside, the high-pressure air will affect the membrane. As a result, a failure such as a hole opening due to deterioration of the membrane may occur, and the air taken in from outside and compressed may be sent out through the hole as it is. If a failure occurs during use, high-concentration oxygen that should be sent to the outside cannot be sent to the outside, which may lead to an accident involving human life.
 一方、本発明によれば、外部から取り込んだ空気を圧縮する前に除湿する構造であり、外部から取り込んだ空気が膜に及ぼす力は少なくて済む。このため、膜が劣化して孔が開くなどの故障を防止できる。故障が発生しなければ、人命に関わる事故につながる危険性もない。 On the other hand, according to the present invention, the air taken in from the outside is dehumidified before being compressed, and the air taken in from the outside exerts less force on the film. For this reason, it is possible to prevent a failure such as a hole being opened due to deterioration of the film. If no failure occurs, there is no risk of an accident involving human life.
 そして、外部から取り込んだ空気と、外部へ送り出す高濃度の酸素と、の間で水分を移動させる構造を採用しているので、一連の流れで除湿と加湿を行うことができる。これにより、空気の除湿により得られる水分を排出する構造を省略できる。また、高濃度の酸素を加湿する水分を蓄えておいたり供給したりする構造を省略できる。結果、酸素濃縮装置の小型化や簡素化を実現できる。 And, since a structure is adopted in which moisture is moved between the air taken in from the outside and the high-concentration oxygen delivered to the outside, dehumidification and humidification can be performed in a series of flows. Thereby, the structure which discharges | emits the water | moisture content obtained by dehumidification of air can be omitted. Further, it is possible to omit a structure for storing or supplying moisture for humidifying high concentration oxygen. As a result, the oxygen concentrator can be reduced in size and simplified.
 また、除湿機構の下流に圧縮機を配置し、当該圧縮機が外部からの空気を引っ張る構造を採用しているので、除湿機構を流れる空気の速度を高めて、当該空気の流れを乱流にすることができる。すなわち、除湿機構を流れる空気を十分に撹拌することができる。これにより、膜に接触する空気の時間当たりの体積量を増やすことができ、膜の反対側の高濃度の酸素の加湿を促進することができる。すなわち、外部から取り込んだ空気から、膜の反対側の高濃度の酸素へ移動する水分の量を増やすことができる。結果、外部から取り込んだ空気の除湿を促進することができる。 In addition, since the compressor is arranged downstream of the dehumidifying mechanism and the compressor pulls air from the outside, the speed of the air flowing through the dehumidifying mechanism is increased to make the air flow turbulent. can do. That is, the air flowing through the dehumidifying mechanism can be sufficiently stirred. Thereby, the volume per hour of the air which contacts a film | membrane can be increased, and the humidification of the high concentration oxygen of the other side of a film | membrane can be accelerated | stimulated. That is, the amount of moisture transferred from the air taken in from the outside to the high concentration oxygen on the opposite side of the membrane can be increased. As a result, dehumidification of the air taken in from the outside can be promoted.
 本発明はまた、上記手段の酸素濃縮装置において、前記膜は、複数のチューブを束ねた形状を有し、外部から取り込んだ前記空気と、前記窒素吸着機構で生成された前記高濃度の酸素と、の一方が前記複数のチューブの内側を通り、他方が前記複数のチューブの外側を通ることを特徴とする。 The present invention is also the oxygen concentrator of the above means, wherein the membrane has a shape in which a plurality of tubes are bundled, the air taken in from the outside, and the high-concentration oxygen generated by the nitrogen adsorption mechanism. One of these passes through the inside of the plurality of tubes, and the other passes through the outside of the plurality of tubes.
 上記発明によれば、単位空間当たりの膜の面積を広げることができる。これにより、外部から取り込んだ空気の膜に接触する体積量を増やすことができる。また、外部へ送り出される高濃度の酸素の膜に接触する体積量を増やすことができる。 According to the above invention, the area of the film per unit space can be increased. Thereby, the volume amount which contacts the film | membrane of the air taken in from the outside can be increased. Moreover, the volume amount which contacts the film | membrane of the high concentration oxygen sent out outside can be increased.
 そして、膜によって形成される複数のチューブが細い場合、膜厚が薄くなり、膜を平面とする場合と比較して強度が弱いことがあり得る。しかしながら、外部から取り込んだ空気を圧縮する前に除湿する構造を採用しており、外部から取り込んだ空気が膜に及ぼす力は小さいので、仮に、膜の強度が弱い場合であっても、そのことによる影響は少なくて済む。 When the plurality of tubes formed by the film are thin, the film thickness becomes thin, and the strength may be weaker than when the film is a flat surface. However, it adopts a structure that dehumidifies before compressing the air taken in from the outside, and the force exerted on the membrane by the air taken in from the outside is small, so even if the strength of the membrane is weak The effect of is less.
 本発明はまた、上記手段の酸素濃縮装置は、外部から取り込んだ前記空気が前記複数のチューブの外側を通り、窒素吸着機構で生成された前記高濃度の酸素が前記複数のチューブの内側を通ることを特徴とする。 In the oxygen concentrator of the above means, the air taken in from outside passes through the outside of the plurality of tubes, and the high-concentration oxygen generated by the nitrogen adsorption mechanism passes through the inside of the plurality of tubes. It is characterized by that.
 空気中の酸素の体積量が全体の5分の1程度であることから、外部から取り込む空気の体積量は、外部へ送り出す高濃度の酸素の体積量の5倍程度を必要とする。このため、上記発明によれば、相対的に体積量の多い、外部から取り込む空気を、複数のチューブの外側を通すことができる。また、相対的に体積量の少ない、外部へ送り出す高濃度の酸素を、複数のチューブの内側を通すことができる。このため、チューブを細くすることができる。ひいては、チューブの本数を増やすことができる。結果、単位空間当たりの膜の面積を広げることができる。 Since the volume of oxygen in the air is about one-fifth of the whole, the volume of air taken in from the outside needs to be about five times the volume of high-concentration oxygen sent out to the outside. For this reason, according to the said invention, the air taken in from the outside with a relatively large volume can pass the outer side of a some tube. In addition, high concentration oxygen with a relatively small volume delivered to the outside can be passed through the inside of the plurality of tubes. For this reason, a tube can be made thin. As a result, the number of tubes can be increased. As a result, the area of the film per unit space can be increased.
 本発明はまた、上記手段の酸素濃縮装置において、前記膜は、非多孔膜であることを特徴とする。 The present invention is also characterized in that in the oxygen concentrator of the above means, the membrane is a non-porous membrane.
 本発明はまた、上記手段の酸素濃縮装置において、前記膜は、ナフィオン(登録商標)又はフレミオン(登録商標)であることを特徴とする。 The present invention is also characterized in that in the oxygen concentrator of the above means, the membrane is Nafion (registered trademark) or Flemion (registered trademark).
 本発明はまた、上記手段の酸素濃縮装置は、前記加湿機構内の前記高濃度の酸素の圧力に対して、前記除湿機構内の前記空気の圧力が低いことを特徴とする。 The present invention is also characterized in that the oxygen concentrator of the above means is such that the pressure of the air in the dehumidifying mechanism is lower than the pressure of the high concentration oxygen in the humidifying mechanism.
 上記発明によれば、膜に孔が開いてしまった場合であっても、加湿機構内の高濃度の酸素が除湿機構に漏れるが、除湿機構内の空気が加湿機構に漏れて(短絡して)患者に供給されることはない。 According to the above invention, even when a hole has opened in the membrane, high-concentration oxygen in the humidifying mechanism leaks into the dehumidifying mechanism, but air in the dehumidifying mechanism leaks into the humidifying mechanism (short-circuited). ) It is not supplied to the patient.
 そして、膜が複数のチューブを束ねた形状を有し、外部から取り込んだ空気(相対的に低圧)が複数のチューブの外側を通り、窒素吸着機構で生成された高濃度の酸素(相対的に高圧)が複数のチューブの内側を通るようにすることで、チューブが潰れてしまうことを防止できる。 The membrane has a shape in which a plurality of tubes are bundled, and the air (relatively low pressure) taken from the outside passes through the outside of the plurality of tubes, and the high concentration oxygen (relatively generated by the nitrogen adsorption mechanism) By allowing the high pressure to pass through the inside of the plurality of tubes, the tubes can be prevented from being crushed.
 本発明はまた、上記手段の酸素濃縮装置は、医療に用いられることを特徴とする。 The present invention is also characterized in that the oxygen concentrator of the above means is used for medical treatment.
 本発明はまた、医療に用いられる酸素濃縮装置であって、外部から取り込んだ空気を除湿する除湿機構と、前記除湿機構の下流に設けられ、該除湿機構で除湿された前記空気を圧縮する圧縮機と、前記圧縮機で圧縮された前記空気に含まれる窒素を触媒に吸着させて、高濃度の酸素を生成する窒素吸着機構と、前記窒素吸着機構で生成された前記高濃度の酸素を外部へ送り出す前に加湿する加湿機構と、を備え、前記除湿機構及び前記加湿機構は、外部から取り込んだ前記空気と、前記窒素吸着機構で生成された前記高濃度の酸素と、の間を、透水性を有し複数のチューブを束ねた形状を呈する膜で仕切ることで一体となっており、前記除湿機構の前記空気の水分を、前記膜を介して、前記加湿機構の前記高濃度の酸素に移動させ、前記複数のチューブの内側の圧力に対して、前記複数のチューブの外側の圧力が低くなるように、外部から取り込んだ前記空気を前記複数のチューブの外側を通し、前記窒素吸着機構で生成された前記高濃度の酸素を前記複数のチューブの内側を通すことを特徴とする、酸素濃縮装置である。 The present invention is also an oxygen concentrator used in medical treatment, a dehumidifying mechanism for dehumidifying air taken in from the outside, and a compression unit that is provided downstream of the dehumidifying mechanism and compresses the air dehumidified by the dehumidifying mechanism. A nitrogen adsorption mechanism for adsorbing nitrogen contained in the air compressed by the compressor to the catalyst to produce high concentration oxygen, and the high concentration oxygen produced by the nitrogen adsorption mechanism to the outside A humidifying mechanism that humidifies before being sent to the water, and the dehumidifying mechanism and the humidifying mechanism are configured to transmit water between the air taken in from the outside and the high-concentration oxygen generated by the nitrogen adsorption mechanism. It is integrated by partitioning with a membrane having a shape that bundles a plurality of tubes, and the moisture of the air of the dehumidifying mechanism is converted to the high concentration oxygen of the humidifying mechanism through the membrane. Move the The air taken in from the outside passes through the outside of the plurality of tubes so that the pressure outside the plurality of tubes is lower than the pressure inside the tubes, and the high pressure generated by the nitrogen adsorption mechanism The oxygen concentrator is characterized in that oxygen having a concentration passes through the inside of the plurality of tubes.
 本発明の酸素濃縮器によれば、酸素を濃縮する効率が悪化することを防止できるという優れた効果を奏し得る。 According to the oxygen concentrator of the present invention, it is possible to achieve an excellent effect that the efficiency of concentrating oxygen can be prevented from deteriorating.
本発明に係る酸素濃縮装置の構成を示すブロック図である。It is a block diagram which shows the structure of the oxygen concentration apparatus which concerns on this invention. 除加湿ユニットの斜視図である。It is a perspective view of a dehumidification / humidification unit.
 以下、図面を参照して、本発明に係る酸素濃縮装置について詳細に説明する。 Hereinafter, the oxygen concentrator according to the present invention will be described in detail with reference to the drawings.
 まず、図1及び図2を用いて、本発明の実施形態に係る酸素濃縮装置1の構成について説明する。図1は、酸素濃縮装置1の構成を示すブロック図である。図2は、除加湿ユニットの斜視図である。なお、各図において、一部の構成などを適宜省略して、図面を簡略化する。 First, the configuration of the oxygen concentrator 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a block diagram showing the configuration of the oxygen concentrator 1. FIG. 2 is a perspective view of the dehumidifying / humidifying unit. In each drawing, a part of the configuration is omitted as appropriate, and the drawings are simplified.
 図1に示される医療用の酸素濃縮装置1は、患者に酸素OXYを供給する装置であり、外部から取り込んだ空気AIRを濃縮し、高濃度(例えば、90%程度)の酸素OXYを生成する。具体的に、酸素濃縮装置1は、吸気フィルター10と、除加湿ユニット11と、圧縮機12と、窒素吸着機構13と、タンク14と、バルブ15と、制御ユニット(図示省略)と、などを備えている。 A medical oxygen concentrator 1 shown in FIG. 1 is a device that supplies oxygen OXY to a patient, and concentrates the air AIR taken from outside to generate oxygen OXY having a high concentration (for example, about 90%). . Specifically, the oxygen concentrator 1 includes an intake filter 10, a dehumidifying / humidifying unit 11, a compressor 12, a nitrogen adsorption mechanism 13, a tank 14, a valve 15, a control unit (not shown), and the like. I have.
 これら酸素濃縮装置1の各部は、制御ユニットによって統括的に制御される。制御ユニットは、CPU、RAM及びROMなどから構成され、各種制御を実行する。CPUは、いわゆる中央演算処理装置であり、各種プログラムが実行されて各種機能を実現する。RAMは、CPUの作業領域として使用される。ROMは、CPUで実行されるプログラムを記憶する。 These parts of the oxygen concentrator 1 are controlled centrally by a control unit. The control unit includes a CPU, a RAM, a ROM, and the like, and executes various controls. The CPU is a so-called central processing unit, and various programs are executed to realize various functions. The RAM is used as a work area for the CPU. The ROM stores a program executed by the CPU.
 吸気フィルター10は、外部から取り込まれる空気AIRに含まれる塵埃や細菌などが内部に進入することを防止する。 The intake filter 10 prevents dust or bacteria contained in the air AIR taken from outside from entering the inside.
 除加湿ユニット11は、除湿機構11aと、加湿機構11bと、を備えている。これら除湿機構11a及び加湿機構11bは、透水性及び非通気性を有する膜11cで仕切られることで一体となっている。膜11cは、非多孔膜である。そして、膜11cは、イオン交換膜である。この膜11cには、デュポン社(米国)、デュポン株式会社(東京都千代田区)が販売するナフィオン(登録商標)、又は旭硝子株式会社(東京都千代田区)が販売するフレミオン(登録商標)を採用することができる。ナフィオン(登録商標)は、スルホ化されたテトラフルオロエチレンを基にしたフッ素樹脂の共重合体である。フレミオン(登録商標)は、テトラフルオロエチレンとカルボン酸基を含有するパーフルオロ型ビニルエーテルの共重合後、加水分解することにより製造されるものである。 The dehumidifying / humidifying unit 11 includes a dehumidifying mechanism 11a and a humidifying mechanism 11b. The dehumidifying mechanism 11a and the humidifying mechanism 11b are integrated by being partitioned by a film 11c having water permeability and air permeability. The film 11c is a non-porous film. The membrane 11c is an ion exchange membrane. This membrane 11c employs Nafion (registered trademark) sold by DuPont (USA), DuPont (Chiyoda-ku, Tokyo), or Flemion (registered trademark) sold by Asahi Glass Co., Ltd. (Chiyoda-ku, Tokyo). can do. Nafion (registered trademark) is a fluororesin copolymer based on sulfonated tetrafluoroethylene. Flemion (registered trademark) is produced by hydrolysis after copolymerization of tetrafluoroethylene and a perfluoro vinyl ether containing a carboxylic acid group.
 膜11cは、除湿機構11aを構成する空間に存する気体と、加湿機構11bを構成する空間に存する気体と、の間で水分の遣り取りを可能にする。結果、除湿機構11aを構成する空間に存する気体から、加湿機構11bを構成する空間に存する気体へ水分が移動される。 The film 11c enables exchange of moisture between the gas existing in the space constituting the dehumidifying mechanism 11a and the gas existing in the space constituting the humidifying mechanism 11b. As a result, moisture is transferred from the gas existing in the space constituting the dehumidifying mechanism 11a to the gas existing in the space constituting the humidifying mechanism 11b.
 除湿機構11aは、吸気フィルター10の下流に設けられている。この除湿機構11aは、吸気フィルター10を介して外部から取り込まれた空気AIRを除湿する。例えば、除湿機構11aは、外部から取り込まれた空気AIRの相対湿度が20%以上80%以下の場合に、相対湿度が20%程度となるように除湿する。 The dehumidifying mechanism 11 a is provided downstream of the intake filter 10. The dehumidifying mechanism 11 a dehumidifies the air AIR taken from outside through the intake filter 10. For example, the dehumidifying mechanism 11a performs dehumidification so that the relative humidity becomes about 20% when the relative humidity of the air AIR taken from the outside is 20% or more and 80% or less.
 加湿機構11bは、バルブ15の下流に設けられている。この加湿機構11bは、タンク14に蓄えられている高濃度の酸素OXYを、外部へ送り出して患者に供給する前に加湿する。例えば、加湿機構11bは、高濃度の酸素OXYを、例えば、相対湿度が60%以上80%以下程度に加湿する。 The humidification mechanism 11 b is provided downstream of the valve 15. This humidifying mechanism 11b humidifies the high concentration oxygen OXY stored in the tank 14 before sending it out and supplying it to the patient. For example, the humidification mechanism 11b humidifies the high-concentration oxygen OXY to a relative humidity of about 60% to about 80%, for example.
 圧縮機12は、除湿機構11aの下流に設けられている。この圧縮機12は、除湿機構11aで除湿された空気AIRを圧縮する。すなわち、圧縮機12は、その上流と下流との圧力差を生じさせる。具体的に、圧縮機12は、除湿機構11aの空気AIRを大気圧よりも低圧にする一方、吸着塔13a,13bの空気AIR又は酸素OXYを大気圧よりも高圧にする。結果、加湿機構11b内の高濃度の酸素OXYの圧力に対して、除湿機構11a内の空気AIRの圧力が低くなる。 The compressor 12 is provided downstream of the dehumidifying mechanism 11a. The compressor 12 compresses the air AIR dehumidified by the dehumidifying mechanism 11a. That is, the compressor 12 generates a pressure difference between the upstream side and the downstream side. Specifically, the compressor 12 sets the air AIR of the dehumidifying mechanism 11a to a pressure lower than the atmospheric pressure, while setting the air AIR or oxygen OXY of the adsorption towers 13a and 13b to a pressure higher than the atmospheric pressure. As a result, the pressure of the air AIR in the dehumidifying mechanism 11a is lower than the pressure of the high concentration oxygen OXY in the humidifying mechanism 11b.
 窒素吸着機構13は、圧縮機12の下流に設けられている。この窒素吸着機構13は、圧縮機12で圧縮された空気AIRに含まれる窒素を触媒(図示省略)に吸着させて、高濃度の酸素OXYを生成する。具体的に、窒素吸着機構13は、一対の吸着塔13a,13bを備えている。一対の吸着塔13a,13bは、並列に設けられている。これら一対の吸着塔13a,13bの中には、触媒が充填されている。触媒は、水分も吸着するものであり、例えば、ゼオライトなどが挙げられる。このため、窒素吸着機構13で生成された高濃度の酸素OXYは、相対湿度が0%以上20%以下に除湿されている。 The nitrogen adsorption mechanism 13 is provided downstream of the compressor 12. The nitrogen adsorption mechanism 13 adsorbs nitrogen contained in the air AIR compressed by the compressor 12 to a catalyst (not shown) to generate high concentration oxygen OXY. Specifically, the nitrogen adsorption mechanism 13 includes a pair of adsorption towers 13a and 13b. The pair of adsorption towers 13a and 13b are provided in parallel. The pair of adsorption towers 13a and 13b is filled with a catalyst. The catalyst also adsorbs moisture, and examples thereof include zeolite. For this reason, the high concentration oxygen OXY produced | generated by the nitrogen adsorption | suction mechanism 13 is dehumidified by 0% or more and 20% or less of relative humidity.
 窒素吸着機構13は、一方の吸着塔13a又は13bを加圧して、触媒に窒素を吸着させ、高濃度の酸素OXYを生成する。この時、窒素吸着機構13は、他方の吸着塔13a又は13bを減圧して、触媒に吸着されている窒素を放出し、次の加圧に備える。このように、窒素吸着機構13は、一対の吸着塔13a,13bを交互に加圧と減圧を繰り返し、高濃度の酸素OXYを生成する。なお、窒素吸着機構13の詳細は、特開2010-227517号公報を参照されたい。 The nitrogen adsorption mechanism 13 pressurizes one adsorption tower 13a or 13b, adsorbs nitrogen to the catalyst, and generates high concentration oxygen OXY. At this time, the nitrogen adsorption mechanism 13 depressurizes the other adsorption tower 13a or 13b to release nitrogen adsorbed on the catalyst, and prepares for the next pressurization. As described above, the nitrogen adsorption mechanism 13 alternately pressurizes and depressurizes the pair of adsorption towers 13a and 13b to generate high-concentration oxygen OXY. For details of the nitrogen adsorption mechanism 13, refer to Japanese Unexamined Patent Application Publication No. 2010-227517.
 タンク14は、窒素吸着機構13の下流に設けられている。このタンク14は、窒素吸着機構13で生成された高濃度の酸素OXYを蓄える。 The tank 14 is provided downstream of the nitrogen adsorption mechanism 13. The tank 14 stores high-concentration oxygen OXY generated by the nitrogen adsorption mechanism 13.
 バルブ15は、加湿機構11bの下流に設けられている。このバルブ15は、開閉することで、タンク14から除湿機構11bへの高濃度の酸素OXYの供給をオンオフしたり、その高濃度の酸素OXYの供給量を調整したりする。 The valve 15 is provided downstream of the humidification mechanism 11b. The valve 15 is opened and closed to turn on / off the supply of the high concentration oxygen OXY from the tank 14 to the dehumidifying mechanism 11b and to adjust the supply amount of the high concentration oxygen OXY.
 図2に示されるように、除加湿ユニット11は、筒状のチャンバー20と、空気入口管21と、空気出口管22と、酸素入口管23と、酸素出口管24と、複数のチューブを束ねた形状を有する膜11cと、一対のパッキン25,26と、を備えている。 As shown in FIG. 2, the dehumidifying / humidifying unit 11 bundles a cylindrical chamber 20, an air inlet pipe 21, an air outlet pipe 22, an oxygen inlet pipe 23, an oxygen outlet pipe 24, and a plurality of tubes. And a pair of packings 25 and 26.
 チャンバー20は、一対のパッキン25,26によって、3つの空間20a,20b,20cに気密に仕切られている。これら3つの空間は、20a、20b、20cの順番に配置されている。空間20aには、酸素入口管23が接続されている。そして、空間20aには、膜11cからなる複数のチューブの一端が接続されている。空間20bには、空気入口管21及び空気出口管22が接続されている。そして、空間20bには、膜11cからなる複数のチューブが一対のパッキン25,26の間を架け渡されている。空間20cには、膜11cからなる複数のチューブの他端が接続されている。空間20cには、酸素出口管24が接続されている。 The chamber 20 is hermetically partitioned into three spaces 20a, 20b, and 20c by a pair of packings 25 and 26. These three spaces are arranged in the order of 20a, 20b, and 20c. An oxygen inlet pipe 23 is connected to the space 20a. One end of a plurality of tubes made of the film 11c is connected to the space 20a. An air inlet pipe 21 and an air outlet pipe 22 are connected to the space 20b. A plurality of tubes made of the film 11c are bridged between the pair of packings 25 and 26 in the space 20b. The other end of the plurality of tubes made of the film 11c is connected to the space 20c. An oxygen outlet pipe 24 is connected to the space 20c.
 空気入口管21は、吸気フィルター10(図1参照)を介して外部から取り込まれた空気AIRを空間20bに導く。空気出口管22は、除加湿ユニット11で除湿された空気AIRを、空間20bから圧縮機12(図1参照)に導く。 The air inlet pipe 21 guides the air AIR taken from outside through the intake filter 10 (see FIG. 1) to the space 20b. The air outlet pipe 22 guides the air AIR dehumidified by the dehumidifying / humidifying unit 11 from the space 20b to the compressor 12 (see FIG. 1).
 酸素入口管23は、タンク14(図1参照)に蓄えられた高濃度の酸素OXYを空間20aに導く。酸素出口管24は、除加湿ユニット11で加湿された高濃度の酸素OXYを、空間20cから外部の患者へ導く。 The oxygen inlet pipe 23 guides the high concentration oxygen OXY stored in the tank 14 (see FIG. 1) to the space 20a. The oxygen outlet pipe 24 guides the high-concentration oxygen OXY humidified by the dehumidifying / humidifying unit 11 from the space 20c to an external patient.
 膜11cからなる複数のチューブは、いわゆる中空糸の束であり、一対のパッキン25,26の間を架け渡されることで、空間20bの両脇の空間20a,20cを互いにつなげる。結果、複数のチューブを束ねた形状を有する膜11cは、酸素入口管23によって空間20aに導かれた高濃度の酸素OXYを空間20cに導く。そして、複数のチューブを束ねた形状を有する膜11cは、当該チューブの外側に存する空間20b内の空気AIRから、当該チューブの内側に存する高濃度の酸素OXYへ水分を移動させる。なお、膜11cからなる複数のチューブは、互いに間隔を空けて配置されていることが好ましい。 A plurality of tubes made of the membrane 11c are so-called bundles of hollow fibers, and are spanned between a pair of packings 25 and 26, thereby connecting the spaces 20a and 20c on both sides of the space 20b to each other. As a result, the film 11c having a shape in which a plurality of tubes are bundled guides the high concentration oxygen OXY guided to the space 20a by the oxygen inlet tube 23 to the space 20c. And the film | membrane 11c which has the shape which bundled the some tube moves a water | moisture content from the air AIR in the space 20b which exists in the outer side of the said tube to the high concentration oxygen OXY which exists in the inside of the said tube. In addition, it is preferable that the several tube which consists of the film | membrane 11c is arrange | positioned at intervals.
 以上説明したように、酸素濃縮器1によれば、外部から取り込んだ空気AIRを除湿してから触媒によって反応させるので、触媒が無用に吸着してしまう水分の量を低減できる。これにより、触媒の機能は低下せず、当該触媒が吸着できる窒素の量を維持することで、酸素OXYを濃縮する効率が悪化することを防止できる。 As described above, according to the oxygen concentrator 1, since the air AIR taken in from the outside is dehumidified and reacted with the catalyst, the amount of moisture that the catalyst adsorbs unnecessarily can be reduced. Thereby, the function of the catalyst is not deteriorated, and the efficiency of concentrating the oxygen OXY can be prevented from deteriorating by maintaining the amount of nitrogen that can be adsorbed by the catalyst.
 ところで、外部から取り込んだ空気AIRを圧縮してから除湿する構造の場合には、高圧の空気AIRが膜11cに影響を及ぼすことになる。結果、膜11cが劣化して孔が開くなどの故障が発生し、外部から取り込んで圧縮した空気が孔を介してそのまま外部に送り出される恐れがある。使用中に故障が発生した場合には、外部へ送り出されるべき高濃度の酸素OXYを外部へ送り出すことができなくなり、人命にも関わる事故につながる危険性がある。 Incidentally, in the case of a structure in which the air AIR taken from the outside is compressed and then dehumidified, the high-pressure air AIR affects the film 11c. As a result, a failure such as a hole opening due to deterioration of the film 11c may occur, and the air taken in and compressed from the outside may be sent out through the hole as it is. If a failure occurs during use, high-concentration oxygen OXY that should be sent to the outside cannot be sent to the outside, which may lead to an accident involving human life.
 一方、本発明によれば、外部から取り込んだ空気AIRを圧縮する前に除湿する構造であり、外部から取り込んだ空気が膜11cに及ぼす力は少なくて済む。このため、膜11cが劣化して孔が開くなどの故障を防止できる。故障が発生しなければ、人命に関わる事故につながる危険性もない。 On the other hand, according to the present invention, the air AIR taken in from the outside is dehumidified before being compressed, and the force exerted on the film 11c by the air taken in from the outside is small. For this reason, it is possible to prevent a failure such as a hole opening due to deterioration of the film 11c. If no failure occurs, there is no risk of an accident involving human life.
 そして、外部から取り込んだ空気AIRと、外部へ送り出す高濃度の酸素OXYと、の間で水分を移動させる構造を採用しているので、一連の流れで除湿と加湿を行うことができる。これにより、空気AIRの除湿により得られる水分を排出する構造を省略できる。また、高濃度の酸素OXYを加湿する水分を蓄えておいたり供給したりする構造を省略できる。結果、酸素濃縮装置1の小型化や簡素化を実現できる。 And since the structure which moves moisture between the air AIR taken in from the outside and the high concentration oxygen OXY sent out to the outside is adopted, dehumidification and humidification can be performed by a series of flows. Thereby, the structure which discharges | emits the water | moisture content obtained by dehumidification of air AIR is omissible. Further, it is possible to omit a structure for storing or supplying moisture for humidifying the high concentration oxygen OXY. As a result, the oxygen concentrator 1 can be reduced in size and simplified.
 また、除湿機構11aの下流に圧縮機12を配置し、当該圧縮機12が外部からの空気AIRを引っ張る構造を採用しているので、除湿機構11aを流れる空気AIRの速度を高めて、当該空気AIRの流れを乱流にすることができる。すなわち、除湿機構11aを流れる空気AIRを十分に撹拌することができる。これにより、膜11cに接触する空気AIRの時間当たりの体積量を増やすことができ、膜11cの反対側の高濃度の酸素OXYの加湿を促進することができる。すなわち、外部から取り込んだ空気AIRから、膜11cの反対側の高濃度の酸素OXYへ移動する水分の量を増やすことができる。結果、外部から取り込んだ空気AIRの除湿を促進することができる。 Further, since the compressor 12 is arranged downstream of the dehumidifying mechanism 11a and the compressor 12 pulls the air AIR from the outside, the speed of the air AIR flowing through the dehumidifying mechanism 11a is increased, and the air The AIR flow can be made turbulent. That is, the air AIR flowing through the dehumidifying mechanism 11a can be sufficiently stirred. Thereby, the volume per hour of the air AIR contacting the film 11c can be increased, and humidification of the high concentration oxygen OXY on the opposite side of the film 11c can be promoted. That is, it is possible to increase the amount of moisture that moves from the air AIR taken from the outside to the high-concentration oxygen OXY on the opposite side of the membrane 11c. As a result, dehumidification of the air AIR taken from the outside can be promoted.
 さらに、膜11cが、複数のチューブを束ねた形状を有するので、単位空間当たりの膜11cの面積を広げることができる。これにより、外部から取り込んだ空気AIRの膜11cに接触する体積量を増やすことができる。また、外部へ送り出される高濃度の酸素OXYの膜11cに接触する体積量を増やすことができる。 Furthermore, since the film 11c has a shape in which a plurality of tubes are bundled, the area of the film 11c per unit space can be increased. Thereby, the volume amount which contacts the film | membrane 11c of the air AIR taken in from the outside can be increased. Further, the volume of the high concentration oxygen OXY film 11c sent out to the outside can be increased.
 そして、膜11cによって形成される複数のチューブが細い場合、膜厚が薄くなり、膜11cを平面とする場合と比較して強度が弱いことがあり得る。しかしながら、外部から取り込んだ空気AIRを圧縮する前に除湿する構造を採用しており、外部から取り込んだ空気AIRが膜11cに及ぼす力は小さいので、仮に、膜11cの強度が弱い場合であっても、そのことによる影響は少なくて済む。 Further, when the plurality of tubes formed by the film 11c are thin, the film thickness becomes thin, and the strength may be weaker than when the film 11c is a flat surface. However, the structure in which the air AIR taken in from the outside is dehumidified before being compressed, and the force exerted on the film 11c by the air AIR taken in from the outside is small, so that the strength of the film 11c is weak. However, the effect of this is small.
 空気AIR中の酸素の体積量が全体の5分の1程度であることから、外部から取り込む空気AIRの体積量は、外部へ送り出す高濃度の酸素OXYの体積量の5倍程度を必要とする。このため、酸素濃縮装置1によれば、相対的に体積量の多い、外部から取り込む空気AIRを、複数のチューブの外側を通すことができる。また、相対的に体積量の少ない、外部へ送り出す高濃度の酸素OXYを、複数のチューブの内側を通すことができる。このため、チューブを細くすることができる。ひいては、チューブの本数を増やすことができる。結果、単位空間当たりの膜11cの面積を広げることができる。 Since the volume of oxygen in the air AIR is about one-fifth of the entire volume, the volume of the air AIR taken from outside requires about five times the volume of the high-concentration oxygen OXY sent out to the outside. . For this reason, according to the oxygen concentrator 1, the air AIR taken in from the outside having a relatively large volume can be passed outside the plurality of tubes. Moreover, oxygen OXY of high concentration sent out to the outside with a relatively small volume can be passed through the inside of a plurality of tubes. For this reason, a tube can be made thin. As a result, the number of tubes can be increased. As a result, the area of the film 11c per unit space can be increased.
 さらに、加湿機構11b内の高濃度の酸素OXYの圧力に対して、前記除湿機構11a内の空気AIRの圧力が低いので、膜11cに孔が開いてしまった場合であっても、加湿機構11b内の高濃度の酸素OXYが除湿機構11aに漏れるが、除湿機構11a内の空気AIRが加湿機構11bに漏れて(短絡して)患者に供給されることはない。 Furthermore, since the pressure of the air AIR in the dehumidifying mechanism 11a is lower than the pressure of the high-concentration oxygen OXY in the humidifying mechanism 11b, the humidifying mechanism 11b even if a hole is opened in the film 11c. The oxygen OXY in the high concentration leaks into the dehumidifying mechanism 11a, but the air AIR in the dehumidifying mechanism 11a does not leak into the humidifying mechanism 11b (short circuit) and is supplied to the patient.
 そして、膜11cが複数のチューブを束ねた形状を有し、外部から取り込んだ空気AIR(相対的に低圧)が複数のチューブの外側を通り、窒素吸着機構で生成された高濃度の酸素(相対的に高圧)が複数のチューブの内側を通るように構成されているので、チューブが潰れてしまうことを防止できる。 The membrane 11c has a shape in which a plurality of tubes are bundled, and the air AIR (relatively low pressure) taken from the outside passes through the outside of the plurality of tubes, and high-concentration oxygen (relative) generated by the nitrogen adsorption mechanism. Therefore, it is possible to prevent the tubes from being crushed.
 本発明は、上記実施形態に限られるものではなく、その趣旨及び技術思想を逸脱しない範囲で種々の変形が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit and technical idea thereof.
 すなわち、上記実施形態において、各構成の位置、大きさ(寸法)、形状、材質、向き、数量は適宜変更できる。 That is, in the above embodiment, the position, size (dimension), shape, material, orientation, and quantity of each component can be changed as appropriate.
 例えば、上記実施形態において、窒素吸着機構13が一対の吸着塔13a,13bを備えている場合を例に説明したが、本発明の吸着塔の数は限定されず、1つであっても複数であってもよい。 For example, in the above embodiment, the case where the nitrogen adsorption mechanism 13 includes a pair of adsorption towers 13a and 13b has been described as an example. However, the number of adsorption towers of the present invention is not limited, and even if there is only one It may be.
 そして、上記実施形態において、窒素吸着機構13の方式は限定されるものではなく、PSVA方式、PVA方式、SVA方式など、いずれの方式であってもよい。 And in the said embodiment, the system of the nitrogen adsorption | suction mechanism 13 is not limited, Any systems, such as a PSVA system, a PVA system, and a SVA system, may be sufficient.
 あるいは、上記実施形態において、膜11cが、複数のチューブを束ねた形状を有する場合を例に説明したが、本発明の膜はこれに限定されるものではない。本発明の膜は、外部から取り込んだ空気と、窒素吸着機構13で生成された高濃度の酸素と、の間を仕切ることができればよく、平面その他の形状であってもよい。また、膜11cは、一枚ものであってもよいし、複数枚を積層したものであってもよい。すなわち、膜11cは、同心円状に巻回したものであってもよい。 Or in the said embodiment, although the case where the film | membrane 11c had the shape which bundled the several tube was demonstrated to the example, the film | membrane of this invention is not limited to this. The film of the present invention only needs to be able to partition between air taken in from the outside and high-concentration oxygen generated by the nitrogen adsorption mechanism 13, and may have a planar shape or other shapes. Further, the film 11c may be a single sheet or a stack of a plurality of sheets. That is, the film 11c may be wound concentrically.
 あるいは、上記実施形態において、膜11cが透水性及び非通気性を有する場合を好例として説明したが、本発明の膜は、少なくとも透水性を有していればよく、非通気性を有している必要はない。この場合、加湿機構11b内の高濃度の酸素OXYが除湿機構11aに漏れるので、外部に送り出して患者に供給する量が不足しないように高濃度の酸素OXYを生成する必要がある。 Or although the case where the film | membrane 11c has water permeability and air permeability was demonstrated as a favorable example in the said embodiment, the film | membrane of this invention should just have water permeability at least, and has air permeability. There is no need to be. In this case, since the high-concentration oxygen OXY in the humidification mechanism 11b leaks to the dehumidification mechanism 11a, it is necessary to generate the high-concentration oxygen OXY so that the amount supplied to the outside and supplied to the patient is not insufficient.
 1 酸素濃縮装置
 11a 除湿機構
 11b 加湿機構
 11c 膜(多孔膜、ナフィオン(登録商標)、フレミオン(登録商標))
 12 圧縮機
 13 窒素吸着機構
 13a,13b 吸着塔
 14 タンク
 15 バルブ
 20 チャンバー
 20a,20b,20c 空間
 21 空気入口管
 22 空気出口管
 23 酸素入口管
 24 酸素出口管
 25,26 パッキン
 AIR 空気
 OXY 高濃度の酸素
DESCRIPTION OF SYMBOLS 1 Oxygen concentrator 11a Dehumidification mechanism 11b Humidification mechanism 11c Membrane (Porous membrane, Nafion (registered trademark), Flemion (registered trademark))
12 Compressor 13 Nitrogen adsorption mechanism 13a, 13b Adsorption tower 14 Tank 15 Valve 20 Chamber 20a, 20b, 20c Space 21 Air inlet pipe 22 Air outlet pipe 23 Oxygen inlet pipe 24 Oxygen outlet pipe 25, 26 Packing AIR Air OXY High concentration oxygen

Claims (8)

  1.  外部から取り込んだ空気を除湿する除湿機構と、
     前記除湿機構の下流に設けられ、該除湿機構で除湿された前記空気を圧縮する圧縮機と、
     前記圧縮機で圧縮された前記空気に含まれる窒素を触媒に吸着させて、高濃度の酸素を生成する窒素吸着機構と、
     前記窒素吸着機構で生成された前記高濃度の酸素を外部へ送り出す前に加湿する加湿機構と、を備え、
     前記除湿機構及び前記加湿機構は、外部から取り込んだ前記空気と、前記窒素吸着機構で生成された前記高濃度の酸素と、の間を、透水性を有する膜で仕切ることで一体となっており、前記除湿機構の前記空気の水分を、前記膜を介して、前記加湿機構の前記高濃度の酸素に移動させることを特徴とする、
     酸素濃縮装置。
    A dehumidifying mechanism for dehumidifying the air taken in from the outside,
    A compressor that is provided downstream of the dehumidifying mechanism and compresses the air dehumidified by the dehumidifying mechanism;
    A nitrogen adsorption mechanism for adsorbing nitrogen contained in the air compressed by the compressor to a catalyst to generate high-concentration oxygen;
    A humidifying mechanism for humidifying before sending out the high-concentration oxygen generated by the nitrogen adsorption mechanism to the outside,
    The dehumidifying mechanism and the humidifying mechanism are integrated by partitioning the air taken in from the outside and the high-concentration oxygen generated by the nitrogen adsorption mechanism with a water-permeable film. The moisture of the air of the dehumidifying mechanism is moved to the high concentration oxygen of the humidifying mechanism through the membrane.
    Oxygen concentrator.
  2.  前記膜は、複数のチューブを束ねた形状を有し、
     外部から取り込んだ前記空気と、前記窒素吸着機構で生成された前記高濃度の酸素と、の一方が前記複数のチューブの内側を通り、他方が前記複数のチューブの外側を通ることを特徴とする、
     請求の範囲1に記載の酸素濃縮装置。
    The membrane has a shape in which a plurality of tubes are bundled,
    One of the air taken in from the outside and the high concentration oxygen generated by the nitrogen adsorption mechanism passes through the inside of the plurality of tubes, and the other passes through the outside of the plurality of tubes. ,
    The oxygen concentrator according to claim 1.
  3.  外部から取り込んだ前記空気が前記複数のチューブの外側を通り、
     窒素吸着機構で生成された前記高濃度の酸素が前記複数のチューブの内側を通ることを特徴とする、
     請求の範囲2に記載の酸素濃縮装置。
    The air taken in from outside passes outside the plurality of tubes,
    The high concentration oxygen generated by a nitrogen adsorption mechanism passes through the inside of the plurality of tubes,
    The oxygen concentrator according to claim 2.
  4.  前記膜は、非多孔膜であることを特徴とする、
     請求の範囲1~3のいずれかに記載の酸素濃縮装置。
    The membrane is a non-porous membrane,
    The oxygen concentrator according to any one of claims 1 to 3.
  5.  前記膜は、ナフィオン(登録商標)又はフレミオン(登録商標)であることを特徴とする、
     請求の範囲1~4のいずれかに記載の酸素濃縮装置。
    The membrane is Nafion (registered trademark) or Flemion (registered trademark),
    The oxygen concentrator according to any one of claims 1 to 4.
  6.  前記加湿機構内の前記高濃度の酸素の圧力に対して、前記除湿機構内の前記空気の圧力が低いことを特徴とする、
     請求の範囲1~5のいずれかに記載の酸素濃縮装置。
    The pressure of the air in the dehumidifying mechanism is lower than the pressure of the high concentration oxygen in the humidifying mechanism,
    The oxygen concentrator according to any one of claims 1 to 5.
  7.  医療に用いられることを特徴とする、
     請求の範囲1~6のいずれかに記載の酸素濃縮装置。
    It is used for medical treatment,
    The oxygen concentrator according to any one of claims 1 to 6.
  8.  医療に用いられる酸素濃縮装置であって、
     外部から取り込んだ空気を除湿する除湿機構と、
     前記除湿機構の下流に設けられ、該除湿機構で除湿された前記空気を圧縮する圧縮機と、
     前記圧縮機で圧縮された前記空気に含まれる窒素を触媒に吸着させて、高濃度の酸素を生成する窒素吸着機構と、
     前記窒素吸着機構で生成された前記高濃度の酸素を外部へ送り出す前に加湿する加湿機構と、を備え、
     前記除湿機構及び前記加湿機構は、外部から取り込んだ前記空気と、前記窒素吸着機構で生成された前記高濃度の酸素と、の間を、透水性を有し複数のチューブを束ねた形状を呈する膜で仕切ることで一体となっており、前記除湿機構の前記空気の水分を、前記膜を介して、前記加湿機構の前記高濃度の酸素に移動させ、
     前記複数のチューブの内側の圧力に対して、前記複数のチューブの外側の圧力が低くなるように、外部から取り込んだ前記空気を前記複数のチューブの外側を通し、前記窒素吸着機構で生成された前記高濃度の酸素を前記複数のチューブの内側を通すことを特徴とする、
     酸素濃縮装置。
    An oxygen concentrator used in medicine,
    A dehumidifying mechanism for dehumidifying the air taken in from the outside,
    A compressor that is provided downstream of the dehumidifying mechanism and compresses the air dehumidified by the dehumidifying mechanism;
    A nitrogen adsorption mechanism for adsorbing nitrogen contained in the air compressed by the compressor to a catalyst to generate high-concentration oxygen;
    A humidifying mechanism for humidifying before sending out the high-concentration oxygen generated by the nitrogen adsorption mechanism to the outside,
    The dehumidifying mechanism and the humidifying mechanism have a water permeability and a shape in which a plurality of tubes are bundled between the air taken in from the outside and the high-concentration oxygen generated by the nitrogen adsorption mechanism. It is integrated by partitioning with a membrane, the moisture of the air of the dehumidifying mechanism is moved to the high concentration oxygen of the humidifying mechanism through the membrane,
    The air taken in from the outside passes through the outside of the plurality of tubes so that the pressure outside the plurality of tubes is lower than the pressure inside the plurality of tubes, and is generated by the nitrogen adsorption mechanism. Passing the high concentration oxygen through the inside of the plurality of tubes,
    Oxygen concentrator.
PCT/JP2014/061943 2013-08-01 2014-04-30 Oxygen concentration device WO2015015852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013160534A JP5499265B1 (en) 2013-08-01 2013-08-01 Oxygen concentrator
JP2013-160534 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015015852A1 true WO2015015852A1 (en) 2015-02-05

Family

ID=50941729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061943 WO2015015852A1 (en) 2013-08-01 2014-04-30 Oxygen concentration device

Country Status (3)

Country Link
JP (1) JP5499265B1 (en)
MY (1) MY176945A (en)
WO (1) WO2015015852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206628A1 (en) * 2020-04-06 2021-10-14 ResMed Asia Pte. Ltd. Oxygen concentrator with moisture management
US11951260B2 (en) 2020-01-21 2024-04-09 Wearair Ventures, Inc. Efficient enriched oxygen airflow systems and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106535971B (en) * 2014-06-03 2020-12-04 费雪派克医疗保健有限公司 Flow mixer for respiratory therapy system
RU188323U1 (en) * 2018-11-26 2019-04-08 Публичное акционерное общество "Аквасервис" Indoor respiratory atmosphere control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078820A1 (en) * 2000-04-18 2001-10-25 Teijin Limited Oxygen concentrating apparatus
JP2004209418A (en) * 2003-01-07 2004-07-29 Nok Corp Hollow fiber membrane module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078820A1 (en) * 2000-04-18 2001-10-25 Teijin Limited Oxygen concentrating apparatus
JP2004209418A (en) * 2003-01-07 2004-07-29 Nok Corp Hollow fiber membrane module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951260B2 (en) 2020-01-21 2024-04-09 Wearair Ventures, Inc. Efficient enriched oxygen airflow systems and methods
WO2021206628A1 (en) * 2020-04-06 2021-10-14 ResMed Asia Pte. Ltd. Oxygen concentrator with moisture management
EP4132621A4 (en) * 2020-04-06 2024-04-24 ResMed Asia Pte Ltd Oxygen concentrator with moisture management

Also Published As

Publication number Publication date
MY176945A (en) 2020-08-27
JP5499265B1 (en) 2014-05-21
JP2015043787A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
CN102695540B (en) Oxygen concentrator
WO2015015852A1 (en) Oxygen concentration device
JP2007044116A (en) Pressure-fluctuation adsorption type oxygen concentrator
JP5281468B2 (en) Oxygen concentrator
JP2671436B2 (en) Method for producing medical oxygen-enriched air
KR102087455B1 (en) Sound damper and oxygen concentration device comprising same
JP5922784B2 (en) Oxygen concentrator
AU2004296144B2 (en) Humidifying device and oxygen concentrating system
CN107921357B (en) Oxygen separator with improved efficiency
TW201134509A (en) Oxygen enrichment device and humidifier
JP4435557B2 (en) Humidifier
JP3445093B2 (en) Oxygen concentrator
JP4594581B2 (en) Humidifier
JP5413881B2 (en) Oxygen concentrator
CN112638501A (en) Hybrid oxygen concentrator with oxygen side equalization
US20120234173A1 (en) Oxygen concentrator
JP2007282652A (en) Oxygen thickener and its oxygen concentration method
JP3790380B2 (en) Medical oxygen concentrator
CN103182133A (en) Method and structural component for realizing continuous positive airway pressure mode on anaesthesia machine or respirator
JP2008061734A (en) Oxygen concentrator and medical oxygen concentrator
JP5413880B2 (en) Oxygen concentrator
JP4647988B2 (en) Gas humidifier and oxygen concentrator using the same
JP2004020121A (en) Humidifier
JP6555771B2 (en) Air supply device and oxygen concentrator
JP2001000553A (en) Oxygen thickening device for oxygen therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601308

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14832580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP