WO2015015736A1 - 操作位置検出装置 - Google Patents

操作位置検出装置 Download PDF

Info

Publication number
WO2015015736A1
WO2015015736A1 PCT/JP2014/003768 JP2014003768W WO2015015736A1 WO 2015015736 A1 WO2015015736 A1 WO 2015015736A1 JP 2014003768 W JP2014003768 W JP 2014003768W WO 2015015736 A1 WO2015015736 A1 WO 2015015736A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
flat plate
operation position
detection device
plate member
Prior art date
Application number
PCT/JP2014/003768
Other languages
English (en)
French (fr)
Inventor
真二 畑中
整 伊口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201480043199.4A priority Critical patent/CN105453003B/zh
Publication of WO2015015736A1 publication Critical patent/WO2015015736A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks

Definitions

  • the present disclosure relates to an operation position detection device that detects a position of a force acting on an operation surface.
  • Patent Document 1 discloses an operation position detection device that detects a position of a force acting on an operation surface.
  • the operation position detection device includes a strain generating body having a displacement transmission surface that deforms in response to an operation force generated by pressing on the operation surface, and a strain detection unit is provided on the displacement transmission surface of the strain generation body.
  • the displacement transmission surface is arranged on the same surface as the operation surface.
  • the entire upper surface of the device cannot be used as the operation surface. That is, the region where the strain generating body is arranged is always a region where the operation position cannot be detected.
  • the operation surface is arranged to be recessed from the housing.
  • An object of the present invention is to provide an operation position detection device.
  • An operation position detection device includes an operation body having a flat operation surface, a base member that is a member as a base of the operation position detection device, and an even number of plate-like detections of 4 or more A body and an operation position calculation unit.
  • the detection body has a connection portion connected to the operation body at one end, a fixing portion fixed to the base member at the other end, and the operation portion between the connection portion and the fixing portion. It has a detection surface that deforms in response to an operating force generated by pressing against the surface.
  • the detection surface of each detection body is provided with a strain detection unit that detects distortion of the detection surface due to deformation of the detection body.
  • the operation position calculation unit calculates a position where the operation force is applied on the operation surface as an operation position based on the detection result of each of the strain detection units.
  • each of the two detection bodies has an extension plane of the detection surfaces of the two detection bodies intersecting at a position between the detection bodies in the in-plane direction of the operation surface, and Arranged at a predetermined angle with respect to the operation surface such that an intersection line where the extension planes intersect is parallel to the operation surface and the distance between the intersection line and the operation surface is a predetermined value or less.
  • the strain detection unit hardly has sensitivity to an operation force in a direction not perpendicular to the operation surface.
  • the operation position calculation unit accurately calculates the operation position ( In other words, it can be detected).
  • the detection body can be stored in the back side of the operation surface (the side opposite to the pressed side). For this reason, it is not necessary to arrange a detection body on the outer periphery of the operation surface, and downsizing of the apparatus can be realized.
  • the above-described restrictions on designability can be eliminated, and for example, one entire surface of the apparatus can be used as an operation surface.
  • FIG. 1 is a perspective view illustrating an appearance of the operation position detection device according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the operation position detection apparatus according to the first embodiment.
  • FIG. 3 is a perspective view illustrating a state where the operation member of the operation body is removed from the operation position detection device according to the first embodiment.
  • FIG. 4 is a perspective view illustrating a state in which the operation body is removed from the operation position detection device according to the first embodiment.
  • FIG. 5 is a perspective view illustrating a state where the operation body and the pressing member are removed from the operation position detection device according to the first embodiment.
  • FIG. 6 is a schematic plan view showing the configuration of the operation position detection device according to the first embodiment, as viewed from above the operation surface.
  • FIG. 7 is a schematic front view showing the configuration of the operation position detection device according to the first embodiment, as viewed from the direction of arrow VII in FIG. 6.
  • FIG. 8 is an explanatory diagram for explaining an arrangement state of four elements constituting the strain detection element.
  • FIG. 9 is an explanatory diagram for explaining the electrical connection state of the four elements constituting the strain detection element.
  • FIG. 10A and FIG. 10B are a plan view and a front view for explaining the operation when a force in the direction perpendicular to the operation surface (z-axis direction) is applied.
  • FIG. 11 is an explanatory diagram illustrating an example of a force applied to an element of the strain detection element.
  • FIG. 12 is an explanatory diagram for explaining a change in resistance value of an element in the example of FIG.
  • FIG. 13 is an explanatory diagram for explaining another example of the force applied to the element of the strain detection element.
  • FIG. 14 is an explanatory diagram for explaining the operation when a force in the x-axis direction is applied to the operation surface.
  • FIG. 15 is an explanatory diagram illustrating an operation position detection device according to a second modification.
  • FIG. 16 is an explanatory diagram illustrating an operation position detection device according to a third modification.
  • FIG. 17 is an explanatory diagram illustrating an operation position detection device according to a fourth modification.
  • FIG. 15 is an explanatory diagram illustrating an operation position detection device according to a second modification.
  • FIG. 16 is an explanatory diagram illustrating an operation position detection device according to a third modification.
  • FIG. 17 is an explanatory diagram
  • FIG. 18 is an explanatory diagram for explaining an operation position detection device according to a fifth modification.
  • FIG. 19 is a perspective view illustrating an appearance of the operation position detection device according to the second embodiment.
  • FIG. 20 is an exploded perspective view of the operation position detection device of the second embodiment.
  • FIG. 21 is a perspective view illustrating a state where an operation body is removed from the operation position detection device of the second embodiment.
  • FIG. 22 is an explanatory diagram for explaining the effect of the operation position detection device of the second embodiment.
  • FIG. 23 is an explanatory diagram illustrating an operation position detection device according to a sixth modification.
  • FIG. 24 is an explanatory diagram illustrating an operation position detection device according to a seventh modification.
  • the operation position detection apparatus of this embodiment is a load detection type, for example, is used as a touch pad or a touch panel (touch screen).
  • the operation position detection device 1 As shown in FIGS. 1 to 7, the operation position detection device 1 according to the first embodiment includes an operation body 3, a base member 5 that is a base of the device 1, and two plate-like detection bodies 6 and 7. A flat plate member 10 to be formed, a flat plate member 11 for forming two flat detection bodies 8 and 9, and pressing members 12 and 13 for connecting the flat plate members 10 and 11 to the operating body 3 are provided.
  • the operating body 3 includes a plate-like (disc-like in this example) operating member 3a and a substantially cylindrical frame member 3b.
  • the vertical direction of the operation position detection device 1 is such that the operation member 3a side is up and the base member 5 side is down.
  • the operation member 3a is attached to the upper end surface of the frame member 3b through, for example, a screw hole 14 provided in the frame member 3b.
  • a circular upper surface (a surface opposite to the side attached to the frame member 3b) of the operation member 3a is a flat operation surface 3c whose arbitrary position is pressed by the user.
  • the means for connecting the operation member 3a and the frame member 3b may be, for example, an adhesive. Further, the operation member 3a and the frame member 3b may be integrally formed.
  • each surface of the inclined surface portions 15a and 15b is included in the same virtual plane and has a predetermined angle with respect to the operation surface 3c.
  • each surface of the inclined surface portions 16a and 16b is included in the same virtual plane and has a predetermined angle with respect to the operation surface 3c.
  • the inclined surface portions 15a, 15b, 16a, 16b are such that the intersecting line L1 where the virtual plane S1 including the surfaces of the inclined surface portions 15a, 15b and the virtual plane S2 including the surfaces of the inclined surface portions 16a, 16b intersect is the operation surface. It is formed so as to be parallel to 3c and the distance between the intersection line L1 and the operation surface 3c is 0 (see particularly FIG. 7).
  • the intersection line L1 is a line passing through the center of the operation surface 3c in the in-plane direction of the operation surface 3c (see particularly FIG. 6).
  • one end portion 10 a is one end portion 6 a of the detection body 6, and the other end portion 10 b is one end portion 7 a of the detection body 7.
  • the end 6 a of the detection body 6 and the end 7 a of the detection body 7 are also connection portions 18 connected to the operation body 3.
  • the central portion 10 c is a common portion that serves as both the other end portion 6 b of the detection body 6 and the other end portion 7 b of the detection body 7 (common to the two detection bodies 6 and 7).
  • a fixing portion 19 fixed to the base member 5.
  • the surface between the end portion 10a and the central portion 10c (the upper surface in the present embodiment) is the detection surface 20 of the detection body 6, and the end portion 10b and the central portion 10c.
  • the surface between them (the upper surface in the present embodiment) is the detection surface 20 of the detection body 7.
  • one end 11 a is one end 8 a of the detection body 8
  • the other end 11 b is one end 9 a of the detection body 9.
  • the end portion 8 a of the detection body 8 and the end portion 9 a of the detection body 9 are also a connection portion 18 connected to the operation body 3.
  • the central portion 11 c is a common portion that serves as both the other end portion 8 b of the detection body 8 and the other end portion 9 b of the detection body 9 (common to the two detection bodies 8 and 9).
  • a fixing portion 19 fixed to the base member 5.
  • the surface between the end portion 11a and the central portion 11c (the upper surface in the present embodiment) is the detection surface 20 of the detection body 8, and the end portion 11b and the central portion 11c.
  • the surface between them (the upper surface in the present embodiment) is the detection surface 20 of the detection body 9.
  • the detection surface 20 of the detection bodies 6 to 9 is an elastic deformation body that elastically deforms so as to cause bending deformation in accordance with an operation force generated by pressing against the operation surface 3c.
  • a strain detection element 21 is provided as a strain detection unit that detects strain on the detection surface 20 due to deformation of the detection bodies 6 to 9.
  • the strain detection element 21 on the detection surface 20 is sealed with a potting agent 23 made of resin or the like for moisture and dust prevention. The strain detection element 21 will be described later.
  • the base member 5 includes a protrusion 24 having an upper surface with the same inclination as the surfaces of the inclined surface portions 15a and 15b in the frame member 3b, and a protrusion having the upper surface with the same inclination as the surfaces of the inclined surface portions 16a and 16b in the frame member 3b. 25.
  • the flat plate member 10 has the lower surface of the central portion 10c placed on the upper surface of the protrusion 24 of the base member 5 and the substantially rectangular parallelepiped fixing member 26 placed on the upper surface of the central portion 10c.
  • the fixing member 26 is fixed to the protrusion 24 of the base member 5 by a screw (not shown) penetrating the central portion 10c of the flat plate member 10, so that the flat plate member 10 has the central portion 10c.
  • the base member 5 is fixed to the protrusion 24 (see particularly FIG. 5).
  • 2 is a screw hole of the protrusion 24, and 26a in FIG. 5 is a screw hole of the fixing member 26.
  • three screw holes 24a and 26a are provided.
  • screw holes are provided in the central portion 10c of the flat plate member 10 at positions corresponding to the screw holes 24a and 26a.
  • the fixing member 27 is fixed to the protrusion 25 of the base member 5 by a screw (not shown) penetrating the central portion 11c of the flat plate member 11, so that the flat plate member 11 has the central portion 11c.
  • the base member 5 is fixed to the protrusion 25 (see particularly FIG. 5).
  • 2 is a screw hole of the protrusion 25
  • 27a in FIGS. 2 and 5 is a screw hole of the fixing member 27.
  • three screw holes 25a and 27a are provided.
  • a screw hole is also provided at a position corresponding to the screw holes 25 a and 27 a in the central portion 11 c of the flat plate member 11.
  • the holding member 12 is formed with groove portions 12a and 12b in contact with the lower surfaces of the end portions 10a and 10b of the flat plate member 10.
  • the pressing member 13 is formed with groove portions 13 a and 13 b that are in contact with the lower surfaces of the end portions 11 a and 11 b of the flat plate member 11.
  • the groove portions 12 a and 12 b of the pressing member 12 are brought into contact with the end portions 10 a and 10 b of the flat plate member 10, and the groove portions 13 a and 13 b of the pressing member 13 are brought into contact with the end portions 11 a and 11 b of the flat plate member 11. Is brought into contact as shown in FIG. In the state of FIG. 4, the base member 5 does not contact the pressing members 12 and 13.
  • the pressing members 12 and 13 are fixed to the frame member 3b by screws (not shown), for example.
  • the end portions 10a and 10b of the flat plate member 10 are held by the inclined surface portions 15a and 15b of the frame member 3b and the groove portions 12a and 12b of the pressing member 12, and the end portions 11a and 11b of the flat plate member 11 are It is held by the inclined surface portions 16a and 16b of the frame member 3b and the groove portions 13a and 13b of the pressing member 13.
  • the base member 5 contacts only the central portions 10c and 11c of the flat plate members 10 and 11, and does not contact the pressing members 12 and 13 and the frame member 3b.
  • 12 c and 12 d are screw holes of the pressing member 12
  • 13 c and 13 d in FIG. 2 are screw holes of the pressing member 13.
  • the frame member 3b is provided with four screw holes 29 corresponding to the screw holes 12c, 12d, 13c and 13d.
  • the assembly procedure of the operation position detection apparatus 1 is arbitrary, for example, you may implement the attachment of the operation member 3a to the frame member 3b previously.
  • the central portions 10c, 11c of the flat plate members 10, 11 are fixed to the protrusions 24, 25 of the base member 5, and the end portions 10a, 10b, 11a, 11b of the flat plate members 10, 11 are fixed to the operating body 3 ( It will be in the state connected to the frame member 3b).
  • the part from one edge part 10a of the flat plate member 10 to the center part 10c, and the part from the center part 10c to the other edge part 10b are the detection bodies 6 and 7, respectively.
  • the upper surface of each part is the detection surface 20 of the detection bodies 6 and 7.
  • a portion from one end portion 11a to the central portion 11c of the flat plate member 11 and a portion from the central portion 11c to the other end portion 11b are the detection bodies 8 and 9, respectively.
  • the upper surface is the detection surface 20 of the detection bodies 8 and 9.
  • the virtual plane S1 including the surfaces of the inclined surface portions 15a and 15b described above is also an extended plane of the detection surface 20 of each of the detection bodies 6 and 7 formed by the flat plate member 10 (hereinafter, “S1” is also used as the sign of this extended plane).
  • the imaginary plane S2 including the surfaces of the inclined surface portions 16a and 16b described above is also an extension plane of the detection surface 20 of each of the detection bodies 8 and 9 formed by the flat plate member 11 (hereinafter referred to as an extension plane symbol). Also use “S2”).
  • the extension plane S1 of the detection surface 20 of the detection body 6 and the extension plane S2 of the detection surface 20 of the detection body 8 are located between the detection bodies 6 and 8 in the in-plane direction of the operation surface 3c (this In the example, the intersection line intersecting the extended planes S1 and S2 (hereinafter referred to as “L1” as the sign of the intersection line) is parallel to the operation surface 3c and intersects with the operation plane 3c. The distance between the line L1 and the operation surface 3c is zero.
  • the extension plane S1 of the detection surface 20 of the detection body 7 and the extension plane S2 of the detection surface 20 of the detection body 9 are located between the detection bodies 7 and 9 in the in-plane direction of the operation surface 3c (this In the example, the intersection line L1 intersecting the extended planes S1 and S2 at the center position) is parallel to the operation surface 3c, and the distance between the intersection line L1 and the operation surface 3c is zero.
  • the intersection line L1 passes through the center of the operation surface 3c in the in-plane direction of the operation surface 3c.
  • the direction of the intersection line L1 is the y-axis direction
  • the direction perpendicular to the intersection line L1 and parallel to the operation surface 3c is the x-axis direction.
  • a direction perpendicular to the surface 3c is taken as a z-axis direction.
  • the detection body 6 when an operation (pressing operation) is performed on the operation surface 3 c of the operation body 3, the detection body 6 is detected according to the operation position that is the pressed position and the magnitude of the force. 9 to 9 are elastically deformed slightly, and the distortion of the detection surface 20 due to the deformation is detected by the strain detection element 21 provided on the detection surface 20.
  • an operation position calculation unit 31 is provided at a predetermined position of the base member 5.
  • the operation position calculation unit 31 is configured as computer hardware including, for example, a CPU, ROM, RAM, and an A / D conversion circuit.
  • the operation position calculation part 31 implement
  • the operation position calculation unit 31 calculates the position where the pressing operation force is applied (that is, the operation position) and the operation force based on the strain (elastic deformation amount) detected by the strain detection element 21.
  • the strain detection element 21 is, for example, a strain gauge, and four elements 21a to 21d whose resistance values change depending on the amount of elastic deformation are arranged as shown in FIG. 8, and as shown in FIG. 9, a Wheatstone bridge circuit (hereinafter simply referred to as a Wheatstone bridge circuit). , Called a bridge circuit). Then, the operation position calculation unit 31 gives the power supply voltage Vex to the bridge circuit and detects and processes the bridge voltage Vout which is the output voltage of the bridge circuit (also the output voltage of the strain detection element 21). The operation position and operation force are calculated.
  • fz1 to fz4 are shown as forces in the in-plane direction of the operation surface 3c for convenience of illustration, but are actually forces in the z-axis direction.
  • Fz1 is a force applied to the detection body 7
  • fz2 is a force applied to the detection body 9
  • fz3 is a force applied to the detection body 8
  • fz4 is a force applied to the detection body 6.
  • mz1 and mz2 are shown as moment forces around the z axis, but are actually moment forces around the x axis.
  • Mz1 is a moment force acting on the detection bodies 6 and 7
  • mz2 is a moment force acting on the detection bodies 8 and 9.
  • the detection bodies 6 to 9 are end portions 6b, 7b, 8b and 9b on the side opposite to the end portions 6a, 7a, 8a and 9a connected to the operation body 3 (the central portions 10c and 10b of the flat plate members 10 and 11). Since 11c) is fixed to the base member 5, bending deformation is forced. For this reason, tensile stress or compressive stress acts on the detection surface 20 of the detection bodies 6 to 9 in the in-plane direction. Since the strain detection element 21 is provided on the detection surface 20, the strain detection element 21 detects the amount of expansion or contraction in the detection surface 20 according to the tensile stress or compression stress.
  • a force fz as shown in FIG. 11 is applied to any one of the detection bodies 6 to 9, tensile stress is generated in the elements 21a and 21b among the elements 21a to 21d of the strain detection element 21, and the element Compressive stress is generated in 21c and 21d.
  • the resistance value decreases in the elements 21a and 21b where the tensile stress occurs, and the resistance value increases in the elements 21c and 21d where the compressive stress occurs.
  • the operation position calculation unit 31 detects the bridge voltage Vout, which is the output voltage of the strain detection element 21 (elements 21a to 21d) of each of the detection bodies 6 to 9, and based on each bridge voltage Vout, A force fz (fz1, fz2, fx3, fx4) and a moment force mz (mz1, mz2) acting on each of the detection bodies 6 to 9 are calculated.
  • a map for calculating the forces fz1, fz2, fx3, fx4 and the moment forces mz1, mz2 from the bridge voltage Vout of each strain detecting element 21 is prepared in the ROM, and the operation position calculating unit 31 By applying the detected value of each bridge voltage Vout to the map, the force fz1, fz2, fx3, fx4 and the moment force mz1, mz2 can be calculated.
  • the map can be created by theoretical calculation and / or experiment.
  • the operation position calculation unit 31 substitutes the calculated fz1, fz2, fx3, fx4, mz1, and mz2 into the following formulas 4 and 5 to obtain the center of the pressing operation force Fz applied to the operation surface 3c.
  • the position that is, the operation position (x1, y1) is calculated.
  • the coordinates of the operation position are calculated as the coordinate position of the xy coordinate system with the origin of the center of the operation surface 3c (see FIG. 10A).
  • Equations 4 and 5 are derived from Equation 1, which is a force balance equation, Equation 2, which is a moment balance equation around the y axis, and Equation 3, which is a moment balance equation around the x axis.
  • Equation 1 which is a force balance equation
  • Equation 2 which is a moment balance equation around the y axis
  • Equation 3 which is a moment balance equation around the x axis.
  • Each can be derived.
  • “w” in Expression 2 and Expression 4 is an intermediate position between the detection bodies 6 and 7 and the detection bodies 8 and 9 in the x-axis direction (origin position in the x-axis direction) as shown in FIG. To the center position of each detector 6-9 in the x-axis direction (center position of the detection surface 20).
  • Equation 6 Equation 6
  • Equation 9 is the distance between the center position of the detection surface 20 of each detector 6 to 9 and the operation surface 3c in the z-axis direction.
  • in Expressions 7 to 9 is an angle formed by the operation surface 3 c and the detection surface 20.
  • w in Expression 8 and Expression 9 is the same as “w” in Expression 2 and Expression 4.
  • the strain detection element 21 is insensitive to the former component (component perpendicular to the detection surface 20). Therefore, even if a force Fx in the X-axis direction is applied to the operation surface 3c, the strain detection element 21 does not have sensitivity.
  • the strain detection elements 21 of the detection bodies 6 to 9 have no sensitivity to the operation forces in the y-axis direction and the x-axis direction that are not perpendicular to the operation surface 3c. Therefore, even when the operation surface 3c is pressed at a predetermined angle that is not perpendicular to the operation surface 3c and a force in a direction different from the vertical direction is applied to the operation surface 3c, the operation position calculation unit 31 can accurately perform the operation. The position can be calculated (in other words, detected).
  • the detection bodies 6 to 9 can be accommodated in the back side of the operation surface 3c (the side opposite to the pressed side). For this reason, it is not necessary to arrange the detectors 6 to 9 on the outer periphery of the operation surface 3c, and the apparatus 1 can be downsized. In addition, the above-described restrictions on designability can be eliminated. For this reason, in the operation position detection apparatus 1 of this embodiment, the whole one surface is made into the operation surface 3c.
  • the operation position detection device 1 of the present embodiment it is possible to provide a device in which no undetectable area exists around the operation surface 3c.
  • the two detection bodies (6, 7 or 8, 9) are formed by one flat plate member (11 or 12), the number of components of the apparatus 1 In addition, the number of assembly steps can be reduced.
  • the distance between the aforementioned intersection line L1 and the operation surface 3c is most preferably 0, but can be other than 0.
  • the maximum length of the operation surface 3c is the diameter of the operation surface 3c.
  • the operation surface 3c is a rectangle, the operation surface The length of the longer side of 3c is the maximum length of the operation surface 3c.
  • the distance between the intersection line L1 and the operation surface 3c may be set to a predetermined value or less (for example, 2 mm or less) regardless of the length of the operation surface 3c.
  • edge part 10a, 10b, 11a, 11b of the flat plate members 10 and 11 is the connection part 18 connected to the operation body 3, and center part 10c, 11c of the flat plate members 10 and 11 is a base.
  • the fixing portion 19 is fixed to the member 5.
  • the frame member 3b is not provided with four inclined surface portions 15a, 15b, 16a, and 16b.
  • the operation body 3 (the operation member 3a or the frame member 3b) has the center position of the operation surface 3c or the center thereof.
  • a pair of operation body side connection portions having inclined surfaces similar to the inclined surface portions 15a and 16a are provided from the two positions sandwiching the position toward the left and right in the x-axis direction.
  • the base member 5 is not provided with the two protrusions 24 and 25. Instead, in the base member 5, four positions corresponding to the end portions 10a, 10b, 11a and 11b of the flat plate members 10 and 11 are provided. Are provided with protrusions similar to the protrusions 24 and 25.
  • each of center part 10c, 11c of the flat plate members 10 and 11 is connected to each of said pair of operation body side connection part in the operation body 3, and edge part 10a, 10b, 11a, 11b of the flat plate members 10 and 11 is connected. May be fixed to each of the four protrusions of the base member 5.
  • FIG. 15 schematically illustrates the operation position detection device of the second modification example from the operation surface 3c side.
  • the four detection bodies 6 to 9 may be constituted by separate flat plate members, and each of the detection bodies 6 to 9 may be individually connected to the operation body 3.
  • one end 6a to 9a of each of the detection bodies 6 to 9 is a connection section 18 connected to the operating body 3, and the other end 6b to each of the detection bodies 6 to 9 is connected.
  • 9b is a fixing portion 19 fixed to the base member 5 (not shown).
  • the planar shape of the operation surface 3c is a quadrangle. Others are the same as in the first embodiment.
  • the detection bodies 6 to 9 are arranged on the outer periphery of the operation surface 3c, but the detection bodies 6 to 9 are actually the relationship between the detection body 6 and the detection body 8, And it attaches to the operation body 3 so that the relationship between the detection body 7 and the detection body 9 may become the same as 1st Embodiment. Therefore, similarly to the first embodiment, the detection bodies 6 to 9 can be accommodated in the back side (opposite side to be pressed) of the operation surface 3c. This also applies to a third modified example (FIG. 16) and a fourth modified example (FIG. 17) described later.
  • FIG. 16 schematically illustrates the operation position detection device of the third modified example from the operation surface 3c side.
  • a groove in other words, a recess
  • the groove 41 serves to divide the operation surface 3c into a plurality of operation areas. There are no particular restrictions on the number and direction of the grooves 41.
  • the user of the operation position detection device can recognize the operation area from the sense of touch of the finger when operating the operation surface 3c. Since the user can perform a desired operation without staring at the operation surface 3c, the operability is improved, which is particularly preferable when applied to an apparatus mounted on a vehicle. The same effect can be obtained by providing a belt-like convex portion instead of the groove portion 41.
  • the structure described in the 1st modification is taken. That is, the end portions 10a, 10b, 11a, and 11b of the flat plate members 10 and 11 are used as the fixing portions 19 that are fixed to the base member 5 (not shown), and the central portions 10c and 11c of the flat plate members 10 and 11 are used as the operating body. 3 is connected to 18.
  • the operation body 3 is provided with the pair of operation body side connection portions 43 described in the first modification, and the central portions 10c and 11c of the flat plate members 10 and 11 are respectively connected to the operation body side connection portion 43. Are connected to each of them.
  • a fourth modification FIG. 17
  • FIG. 17 schematically illustrates the operation position detection device of the fourth modified example from the operation surface 3c side.
  • the operation surface 3c may be convex.
  • the center position (intersection position of intersecting lines) 45 of the operation surface 3c is set highest. What is necessary is just to set the position and height of the convex part in the operation surface 3c in the range which does not affect the precision of position detection.
  • the user can recognize the operation area from the sense of touch of the finger when operating the operation surface 3c.
  • the detection body 6 and the detection body 8, and the detection body 7 and the detection body 9 do not have to be symmetrical in the x-axis direction. It is sufficient that the conditions described in the first embodiment are satisfied. That is, the distance between the intersecting line between the extension planes of the detection surfaces 20 of the detection bodies 6 and 8 and the operation surface 3c is a predetermined value or less (preferably 0), and the extension planes of the detection surfaces 20 of the detection bodies 7 and 9 are The distance between the intersection line and the operation surface 3c may also be a predetermined value or less (preferably 0).
  • the plate members 10 and 11 are respectively connected to the pair of operation body side connection portions 43 provided on the operation body 3.
  • the central portions 10c and 11c are connected to each other.
  • the operation position detection device 51 of the second embodiment is different from the operation position detection device 1 of the first embodiment in the following points ⁇ 1> to ⁇ 4>. Yes.
  • the operation body 3 does not include the above-described frame member 3 b, and a plate-like (disk shape in this example) operation member 3 a is the operation body 3.
  • the central portions 10c and 11c as the connecting portions 18 of the flat plate members 10 and 11 are connected to the operation body 3 via the connecting member 50 having elasticity.
  • the connecting member 50 is configured by bending a single plate material having elasticity, and has a leaf spring property.
  • the connecting member 50 includes a mounting portion 50c fixed at the center position on the lower surface of the operating body 3 (the operating member 3a) (the surface opposite to the operating surface 3c), and the mounting portion 50c fixed to the operating body 3 2 includes a pair of inclined portions 50a and 50b extending from the mounting portion 50c to the left and right in the x-axis direction at a predetermined inclination angle.
  • the central portion 10c of the flat plate member 10 is attached to the lower surface of the inclined portion 50a
  • the central portion 11c of the flat plate member 11 is attached to the lower surface of the inclined portion 50b.
  • the virtual plane including the lower surface of the inclined portion 50a is the same as the virtual plane S1 shown in FIG. 7, and the virtual plane S1 is an extended plane of the detection surface 20 of each of the detection bodies 6 and 7 formed by the flat plate member 10. But there is.
  • the virtual plane including the lower surface of the inclined portion 50b is the same as the virtual plane S2 illustrated in FIG. 7, and the virtual plane S2 is the detection surface 20 of each of the detection bodies 8 and 9 formed by the flat plate member 11. It is also an extended plane.
  • the attachment part 50c of the connection member 50 is fixed to the operation body 3 with a screw, for example, an adhesive or the like may be used as a fixing means.
  • the central portion 10c of the flat plate member 10 and the inclined portion 50a of the connecting member 50 are such that the lower surface of the central portion 10c and the upper surface of the inclined portion 50a are in a state where the upper surface of the central portion 10c and the lower surface of the inclined portion 50a are combined. And sandwiched between the pair of fixing members 71 and 72 (see particularly FIG. 21). In this state, the pair of fixing members 71 and 72 are fixed to each other by screws (not shown) passing through the inclined portion 50a and the central portion 10c, so that the central portion 10c of the flat plate member 10 is connected. It is fixed to the inclined portion 50a of the member 50.
  • the central portion 11c of the flat plate member 11 and the inclined portion 50b of the connecting member 50 are arranged such that the upper surface of the central portion 11c and the lower surface of the inclined portion 50b are combined with the lower surface of the central portion 11c and the upper surface of the inclined portion 50b.
  • a pair of fixing members 73 and 74 see particularly FIG. 21.
  • the pair of fixing members 73 and 74 are fixed to each other by screws (not shown) passing through the inclined portion 50b and the central portion 11c, so that the central portion 11c of the flat plate member 11 is connected. It is fixed to the inclined portion 50b of the member 50.
  • the base member 5 includes a pair of support columns 5a and 5b to which the end portions 10a, 10b, 11a and 11b of the flat plate members 10 and 11 are fixed.
  • the support column 5a and the support column 5b are fixed so that the relative positions are not changed by a member (not shown).
  • the support column 5a includes a groove 56 having the same inclined surface as the upper surface of the protrusion 24 in the base member 5 of the first embodiment, and a surface having the same inclination as the upper surface of the protrusion 25 in the base member 5 of the first embodiment.
  • the groove part 57 which has is provided.
  • the support portion 5b also has a groove 58 having the same inclined surface as the upper surface of the protrusion 24 in the base member 5 of the first embodiment, and a surface having the same inclination as the upper surface of the protrusion 25 in the base member 5 of the first embodiment.
  • the groove part 59 which has is provided.
  • the edge part 10a of the flat plate member 10 is mounted in the groove part 56 of the support
  • the end portion 10b of the flat plate member 10 is placed on the groove portion 58 of the column portion 5b, and the end portion 11b of the flat plate member 11 is placed on the groove portion 59 of the column portion 5b.
  • a pressing member 52 having plate-like portions 52a and 52b having the same inclination as the surfaces of the grooves 56 and 57 is fixed to the upper portion of the column portion 5a.
  • a pressing member 53 having plate-like portions 53a and 53b having the same inclination as the surfaces of the groove portions 58 and 59 is fixed to the upper portion of the column portion 5b.
  • the end portion 10 a of the flat plate member 10 is pressed by one plate-like portion 52 a of the pressing member 52, and the end portion 11 a of the flat plate member 11 is pressed by the pressing member 52. It is pressed down by the other plate-like part 52b.
  • the end portion 10a of the flat plate member 10 is sandwiched and held by the groove portion 56 of the support column portion 5a and the plate-like portion 52a of the pressing member 52, and the end portion 11a of the flat plate member 11 is held by the groove portion 57 of the support column portion 5a.
  • the plate-like portion 52b of the pressing member 52 is fixed to the upper portion of the column portion 5 a, the end portion 10 a of the flat plate member 10 is pressed by one plate-like portion 52 a of the pressing member 52, and the end portion 11 a of the flat plate member 11 is pressed by the pressing member 52. It is pressed down by the other plate-like part 52b.
  • the end portion 10a of the flat plate member 10 is sandwiched and held
  • the pressing members 52 and 53 are fixed to the column portions 5a and 5b with screws, for example.
  • 20 in FIG. 20 is a screw hole in the pressing members 52 and 53
  • 63 in FIG. 20 is a screw hole in the support columns 5a and 5b.
  • the means for fixing the pressing members 52 and 53 to the support columns 5a and 5b may be, for example, an adhesive.
  • the operation position detection device 51 as described above can achieve the same effect as the operation position detection device 1 of the first embodiment, but in the points described below, the operation position detection device 1 of the first embodiment. It is advantageous.
  • the operation body 3 and the base member 5 are compressed in the horizontal direction in FIG. 22 (that is, the in-plane direction of the operation surface 3c) by the force to deform the flat plate members 10 and 11.
  • the force to be applied acts.
  • the operating body 3 and the base member 5 have high rigidity, the operating body 3 and the base member 5 are hardly compressed. Therefore, when the end portions 10a, 10b, 11a, 11b and the central portions 10c, 11c of the flat plate members 10, 11 are directly fixed to the operating body 3 and the base member 5, the flat plate members 10, 11 are used. (In detail, deformation of the detection bodies 6 to 9) is hindered. For example, even if the flat plate members 10 and 11 want to approach each other, they cannot be moved. As a result, in detecting the operation position, the flat plate members 10 and 11 are not sufficiently deformed, and there is a possibility that a large sensitivity cannot be obtained.
  • a connecting member 50 having a leaf spring property is provided between the operation body 3 and the flat plate members 10 and 11.
  • the relative positions of 10 and 11 are easily changed.
  • the flat plate members 10 and 11 can be freely deformed by the pressing operation force Fz applied to the operation surface 3c.
  • the connecting member 50 is elastically deformed according to the pressing operation force Fz applied to the operation surface 3c, and transmits the pressing operation force Fz to the detection bodies 6 to 9 formed by the flat plate members 10 and 11. It becomes.
  • the operation position detection device 51 of the second embodiment a large sensitivity can be obtained in the detection of the operation position. Further, since the connecting member 50 is formed of a single bent plate material, there are advantages that the number of parts of the device 51 can be reduced and that the connecting member 50 itself is easy to manufacture.
  • connection member 50 a member that has the same shape as the connection member 50 and does not elastically deform is used instead of the connection member 50, the member is a pair of members described in the first modification. This is a member that plays the same role as the operating body side connection portion.
  • connection members 65 a and 65 b similar to the connection member 50 are provided between the column portions 5 a and 5 b of the base member 5 and the flat plate members 10 and 11. good.
  • subject ⁇ looked at the support
  • the code with ⁇ is the code when the column part 5b is viewed from the side opposite to the column part 5a side. That is, as illustrated in FIG.
  • the end portions 10a and 11a as the fixing portions 19 of the flat plate members 10 and 11 are connected to the support column portion 5a of the base member 5 through the connecting member 65a, and the flat plate members 10 and 11 are connected.
  • the other end portions 10b and 11b as the fixing portion 19 of the eleventh member may be connected to the column portion 5b of the base member 5 via the connecting member 65b.
  • the frame member 3b is removed from the operation body 3, and the operation body 3 (that is, the operation member 3a) and the end portion 10a as the connecting portion 18 of the flat plate members 10 and 11 are used.
  • 11a are connected to each other through a connecting member similar to the connecting member 50, and the operating body 3 and the other end portions 10b, 11b as the connecting portions 18 of the flat plate members 10, 11 are also connected to the connecting member 50.
  • You may comprise so that it may connect via the same connection member. And even if comprised in this way, the effect similar to the operation position detection apparatus 51 of 2nd Embodiment is acquired.
  • a part of the base member 5 is elastic according to the acting force (pressing operation force Fz) on the operation surface 3c. It may be configured such that the deformation of the flat plate members 10 and 11 is not hindered by deformation. The same applies to other embodiments and modifications.
  • this indication is not limited to each embodiment and a modification which were mentioned above, and can be carried out in various modes.
  • the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component.
  • at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function.
  • at least a part of the configuration of any embodiment may be added to or replaced with the configuration of another embodiment.
  • the numerical value mentioned above is also an example.
  • a display device such as an LCD may be arranged on the back side of the operation surface 3c, and the operation position detection device may be a touch panel (touch screen).
  • the intersection line of the extension planes of the detection surface 20 of the detection bodies 6 and 8 and the intersection line of the extension planes of the detection surface 20 of the detection bodies 7 and 9 are the operation surface 3c. Although they are parallel to each other, they may be configured to have a predetermined angle with each other (for example, orthogonal to each other).
  • the number of detection bodies may be more than four (6 or 8).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)

Abstract

 操作位置検出装置は、操作面(3c)を有する操作体(3)と、基部部材(5)と、一端に接続部を有し、他端に固定部を有し、前記接続部と前記固定部との間に検出面(20)を有する、4つの平板状の検出体(6~9)と、各検出面20に設けられる歪検出部(21)と、操作位置算出部(31)と、を備える。前記検出体の2つずつは、前記検出面の延長平面(S1,S2)同士が、前記操作面の面内方向における当該両検出体の間の位置で交差すると共に、前記延長平面同士の交差線(L1)と前記操作面との距離が所定値以下となるように、前記操作面に対し所定の角度を有して配置されている。

Description

操作位置検出装置 関連出願の相互参照
 本開示は、2013年7月30日に出願された日本出願番号2013-157591号および2014年2月12日に出願された日本出願番号2014-24404号に基づくもので、ここにその記載内容を援用する。
 本開示は、操作面に作用する力の位置を検出する操作位置検出装置に関する。
 特許文献1は、操作面に作用する力の位置を検出する操作位置検出装置を開示している。この操作位置検出装置では、操作面に対する押圧により発生する操作力に応じて変形する変位伝達面を有した起歪体を備え、その起歪体の変位伝達面に歪検出部を設けると共に、その変位伝達面を、操作面と同一面上に配置している。そして、この構成により、操作面に垂直な方向以外の力に対して歪検出部が感度を持たないようにして、操作面に作用する力の中心位置(即ち操作位置)を正確に検出できるようにしている。
 しかしながら、上記操作位置検出装置では、操作面の外周に、変位伝達面(歪検出部)を有する起歪体を配置する必要があるため、装置が大型化してしまう。また、下記のような意匠性の制約も生じる。
 上記操作位置検出装置では、装置の上面全体を操作面とすることができない。つまり、起歪体を配置する領域は、必ず、操作位置の検出が不可能な領域となる。起歪体を筐体で覆う構造とする場合には、操作面が筐体よりも窪んだ配置になる。
日本特開2012-58967号公報
 そこで、本開示は、操作面に垂直方向とは異なる方向の力が作用した場合でも操作位置を正確に検出できるようにすることと、装置の小形化及び意匠性の制約解消とを、両立させる操作位置検出装置を提供することを目的としている。
 本開示の一態様に係る操作位置検出装置は、平板状の操作面を有する操作体と、当該操作位置検出装置の基部としての部材である基部部材と、4以上で偶数個の平板状の検出体と、操作位置算出部とを備える。
 検出体は、一端に前記操作体に接続される接続部を有し、他の一端に前記基部部材に固定される固定部を有し、前記接続部と前記固定部との間に、前記操作面に対する押圧により発生する操作力に応じて変形する検出面を有する。各検出体の前記検出面には、当該検出体の変形に伴う当該検出面の歪を検出する歪検出部が設けられている。操作位置算出部は、前記各歪検出部の検出結果に基づいて、前記操作面において前記操作力が作用した位置を操作位置として算出する。
 上記操作位置検出装置において、検出体の2つずつは、当該両検出体の検出面の延長平面同士が、前記操作面の面内方向における当該両検出体の間の位置で交差すると共に、その延長平面同士が交差する交差線が前記操作面と平行で、且つ、前記交差線と前記操作面との距離が所定値以下となるように、前記操作面に対し所定の角度を有して配置されている。
上記操作位置検出装置では、歪検出部が、操作面に垂直でない方向の操作力に対して感度をほとんど持たなくなる。よって、操作面が該操作面に対して垂直でない所定の角度で押されて、操作面に垂直方向とは異なる方向の力が作用した場合でも、操作位置算出部により正確に操作位置を算出(換言すれば検出)することができるようになる。
 更に、上記操作位置検出装置によれば、検出体を操作面の背面側(押される側とは反対側)内に収めることが可能となる。このため、操作面の外周に検出体を配置する必要がなくなり、装置の小型化を実現することができる。また、前述した意匠性の制約をなくすことができ、例えば、装置の一つの面全体を操作面にすることが可能になる。
 本開示における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、第1実施形態の操作位置検出装置の外観を表す斜視図である。 図2は、第1実施形態の操作位置検出装置の分解斜視図である。 図3は、第1実施形態の操作位置検出装置について、操作体の操作部材を除いた状態を表す斜視図である。 図4は、第1実施形態の操作位置検出装置について、操作体を除いた状態を表す斜視図である。 図5は、第1実施形態の操作位置検出装置について、操作体及び押さえ部材を除いた状態を表す斜視図である。 図6は、第1実施形態の操作位置検出装置の構成を表す模式的な平面図であって、操作面の上方からみた図である。 図7は、第1実施形態の操作位置検出装置の構成を表す模式的な正面図であって、図6の矢印VII方向からみた図である。 図8は、歪検出素子をなす4つのエレメントの配置状態を説明する説明図である。 図9は、歪検出素子をなす4つのエレメントの電気的接続状態を説明する説明図である。 図10(a)および図10(b)は、操作面に垂直な方向(z軸方向)の力が加えられた場合の作用を説明する平面図および正面図である。 図11は、歪検出素子のエレメントに加わる力の一例を説明する説明図である。 図12は、図11の例におけるエレメントの抵抗値変化を説明する説明図である。 図13は、歪検出素子のエレメントに加わる力の他の例を説明する説明図である。 図14は、操作面にx軸方向の力が加えられた場合の作用を説明する説明図である。 図15は、第2変形例の操作位置検出装置を説明する説明図である。 図16は、第3変形例の操作位置検出装置を説明する説明図である。 図17は、第4変形例の操作位置検出装置を説明する説明図である。 図18は、第5変形例の操作位置検出装置を説明する説明図である。 図19は、第2実施形態の操作位置検出装置の外観を表す斜視図である。 図20は、第2実施形態の操作位置検出装置の分解斜視図である。 図21は、第2実施形態の操作位置検出装置について、操作体を除いた状態を表す斜視図である。 図22は、第2実施形態の操作位置検出装置の効果を説明する説明図である。 図23は、第6変形例の操作位置検出装置を説明する説明図である。 図24は、第7変形例の操作位置検出装置を説明する説明図である。
 以下に、本開示が適用された実施形態の操作位置検出装置について説明する。尚、本実施形態の操作位置検出装置は、荷重検出式であり、例えば、タッチパッドやタッチパネル(タッチスクリーン)として使用される。
 (第1実施形態)
 図1~図7に示すように、第1実施形態の操作位置検出装置1は、操作体3と、当該装置1の基部である基部部材5と、平板状の2つの検出体6,7を形成する平板部材10と、平板状の2つの検出体8,9を形成する平板部材11と、平板部材10,11を操作体3に接続させるための押さえ部材12,13とを備える。
 操作体3は、板状(この例では円盤状)の操作部材3aと、略円筒状の枠部材3bとによって構成される。尚、以下の説明において、操作位置検出装置1の上下の方向は、操作部材3a側が上で、基部部材5側が下である。
 操作部材3aは、例えば枠部材3bに設けられたビス穴14を介して、枠部材3bの上側端面に取り付けられる。操作部材3aの円形の上面(枠部材3bに取り付けられる側とは反対側の面)が、使用者によって任意の位置が押圧される平板状の操作面3cになっている。尚、操作部材3aと枠部材3bとを接続する手段は、例えば接着剤等でも良い。また、操作部材3aと枠部材3bは一体で形成されていても良い。
 枠部材3bの下側端面(操作部材3aが取り付けられる側とは反対側の面)には、平板部材10の端部10a,10bを操作体3に接続させるための傾斜面部15a、15bと、平板部材11端部11a,11bを操作体3に接続させるための傾斜面部16a、16bとが形成されている。
 傾斜面部15a,15bの各面は、同じ仮想平面に含まれると共に、操作面3cに対して所定の角度を持つ。同様に、傾斜面部16a,16bの各面も、同じ仮想平面に含まれると共に、操作面3cに対して所定の角度を持つ。そして、傾斜面部15a,15b,16a,16bは、傾斜面部15a,15bの面を含む仮想平面S1と、傾斜面部16a,16bの面を含む仮想平面S2とが交差する交差線L1が、操作面3cと平行で、且つ、その交差線L1と操作面3cとの距離が0となるように、形成されている(特に図7参照)。実施形態において、その交差線L1は、操作面3cの面内方向において該操作面3cの中心を通る線である(特に図6参照)。
 平板部材10では、一方の端部10aが、検出体6の一方の端部6aになっており、他方の端部10bが、検出体7の一方の端部7aになっている。そして、検出体6の端部6aと検出体7の端部7aは、操作体3に接続される接続部18でもある。また、平板部材10では、中央部10cが、検出体6の他方の端部6bと、検出体7の他方の端部7bとの、両方を兼ねる共通部分(2つの検出体6,7に共通の部分)であると共に、基部部材5に固定される固定部19でもある。更に、平板部材10においては、端部10aと中央部10cとの間の表面(本実施形態では上側の表面)が、検出体6の検出面20になっており、端部10bと中央部10cとの間の表面(本実施形態では上側の表面)が、検出体7の検出面20になっている。
 同様に、平板部材11では、一方の端部11aが、検出体8の一方の端部8aになっており、他方の端部11bが、検出体9の一方の端部9aになっている。そして、検出体8の端部8aと検出体9の端部9aは、操作体3に接続される接続部18でもある。また、平板部材11では、中央部11cが、検出体8の他方の端部8bと、検出体9の他方の端部9bとの、両方を兼ねる共通部分(2つの検出体8,9に共通の部分)であると共に、基部部材5に固定される固定部19でもある。更に、平板部材11においては、端部11aと中央部11cとの間の表面(本実施形態では上側の表面)が、検出体8の検出面20になっており、端部11bと中央部11cとの間の表面(本実施形態では上側の表面)が、検出体9の検出面20になっている。
 検出体6~9の検出面20は、操作面3cに対する押圧によって発生する操作力に応じて、曲げ変形を生じさせるよう弾性変形する弾性変形体である。各検出面20上には、検出体6~9の変形に伴う該検出面20の歪を検出する歪検出部としての歪検出素子21が設けられている。検出面20上の歪検出素子21は、防湿及び防塵のために、樹脂等からなるポッティング剤23によって封止されている。尚、歪検出素子21については後で説明する。
 基部部材5は、枠部材3bにおける傾斜面部15a,15bの面と同じ傾斜の上面を有した突部24と、枠部材3bにおける傾斜面部16a,16bの面と同じ傾斜の上面を有した突部25とを備える。
 平板部材10は、中央部10cの下面が、基部部材5における突部24の上面に載せられると共に、中央部10cの上面に略直方体の固定用部材26が載せられる。そして、その状態で、固定用部材26が当該平板部材10の中央部10cを貫通するビス(図示省略)によって基部部材5の突部24に固定されることにより、平板部材10は、中央部10cにおいて、基部部材5の突部24に固定される(特に図5参照)。尚、図2における24aは、突部24のビス穴であり、図5における26aは、固定用部材26のビス穴である。この例では、ビス穴24a,26aは、3つずつ設けられている。また、平板部材10の中央部10cにも、ビス穴24a,26aと対応する位置にビス穴が設けられている。
 同様に、平板部材11は、中央部11cの下面が、基部部材5における突部25の上面に載せられると共に、中央部11cの上面に略直方体の固定用部材27が載せられる。そして、その状態で、固定用部材27が当該平板部材11の中央部11cを貫通するビス(図示省略)によって基部部材5の突部25に固定されることにより、平板部材11は、中央部11cにおいて、基部部材5の突部25に固定される(特に図5参照)。尚、図2における25aは、突部25のビス穴であり、図2,図5における27aは、固定用部材27のビス穴である。この例では、ビス穴25a,27aは、3つずつ設けられている。また、平板部材11の中央部11cにも、ビス穴25a,27aと対応する位置にビス穴が設けられている。
 平板部材10,11の中央部10c,11cを基部部材5の突部24,25に固定すると、図5の状態になる。図5の状態において、基部部材5は、平板部材10,11の中央部10c,11cにだけ接している。
 一方、押さえ部材12には、平板部材10の端部10a,10bの下面と接する溝部12a,12bが形成されている。同様に、押さえ部材13には、平板部材11の端部11a,11bの下面と接する溝部13a,13bが形成されている。
 そして、図5の状態から、平板部材10の端部10a,10bに押さえ部材12の溝部12a,12bを当接させると共に、平板部材11の端部11a,11bに押さえ部材13の溝部13a,13bを当接させると、図4のようになる。図4の状態において、基部部材5は、押さえ部材12,13には接しない。
 そして、図4の状態から、更に、平板部材10の端部10a,10bの上面を、枠部材3bの傾斜面部15a,15bの面に当接させると共に、平板部材11の端部11a,11bの上面を、枠部材3bの傾斜面部16a,16bの面に当接させると、図3のようになる。
 そして、図3の状態で、押さえ部材12,13が枠部材3bに、例えばビス(図示省略)によって固定される。その結果、平板部材10の端部10a,10bが、枠部材3bの傾斜面部15a,15bと押さえ部材12の溝部12a,12bとで保持されると共に、平板部材11の端部11a,11bが、枠部材3bの傾斜面部16a,16bと押さえ部材13の溝部13a,13bとで保持される。この状態においても、基部部材5は、平板部材10,11の中央部10c,11cにだけ接し、押さえ部材12,13や枠部材3bには接しない。尚、図2における12c,12dは、押さえ部材12のビス穴であり、図2における13c,13dは、押さえ部材13のビス穴である。また、図2に示すように、枠部材3bには、その各ビス穴12c,12d,13c,13dに対応する4つのビス穴29が設けられている。
 そして、枠部材3bに操作部材3aを取り付ければ、操作位置検出装置1は、図1のような完成状態となる。尚、操作位置検出装置1の組み立て手順は任意であり、例えば、枠部材3bへの操作部材3aの取り付けを、先に実施しても良い。
 以上の構成により、平板部材10,11の中央部10c,11cが基部部材5の突部24,25に固定され、平板部材10,11の端部10a,10b,11a,11bが操作体3(枠部材3b)に接続した状態となる。
 そして、図6に示すように、平板部材10の一方の端部10aから中央部10cまでの部分と、中央部10cから他方の端部10bまでの部分とが、検出体6,7の各々であり、その各部分の上面が、検出体6,7における検出面20である。同様に、平板部材11の一方の端部11aから中央部11cまでの部分と、中央部11cから他方の端部11bまでの部分とが、検出体8,9の各々であり、その各部分の上面が、検出体8,9における検出面20である。
 また、図7に示すように、前述した傾斜面部15a,15bの面を含む仮想平面S1は、平板部材10によって形成される各検出体6,7の検出面20の延長平面でもある(以下、この延長平面の符号としても「S1」を用いる)。同様に、前述した傾斜面部16a,16bの面を含む仮想平面S2は、平板部材11によって形成される各検出体8,9の検出面20の延長平面でもある(以下、この延長平面の符号としても「S2」を用いる)。
 このため、検出体6の検出面20の延長平面S1と、検出体8の検出面20の延長平面S2は、操作面3cの面内方向における当該両検出体6,8の間の位置(この例では中央位置)で交差すると共に、その延長平面S1,S2同士が交差する交差線(以下、この交差線の符号としても「L1」を用いる)は操作面3cと平行で、且つ、その交差線L1と操作面3cとの距離は0となる。同様に、検出体7の検出面20の延長平面S1と、検出体9の検出面20の延長平面S2は、操作面3cの面内方向における当該両検出体7,9の間の位置(この例では中央位置)で交差すると共に、その延長平面S1,S2同士が交差する交差線L1は操作面3cと平行で、且つ、その交差線L1と操作面3cとの距離は0となる。本実施形態において、交差線L1は、前述したように、操作面3cの面内方向において該操作面3cの中心を通ることとなる。
 尚、以下の説明においては、図6,図7に示すように、交差線L1の方向をy軸方向とし、交差線L1に垂直で且つ操作面3cに平行な方向をx軸方向とし、操作面3cに垂直な方向をz軸方向とする。
 操作位置検出装置1においては、操作体3の操作面3cに対して押す操作(押圧操作)が行われると、その押された位置である操作位置及び力の大きさに応じて、検出体6~9が微小に弾性変形し、その変形に伴う検出面20の歪みが、検出面20に設けられている歪検出素子21によって検出される。
 また、図7に示すように、例えば基部部材5の所定位置には、操作位置算出部31が設けられている。操作位置算出部31は、例えばCPU,ROM,RAM,およびA/D変換回路等を含むコンピュータハードウェアとして構成されている。そして、操作位置算出部31は、ROMに記憶されたプログラムをCPUが実行することで、操作位置検出装置1としての機能を実現する。例えば、操作位置算出部31は、歪検出素子21が検出した歪(弾性変形量)に基づいて、押圧操作力が行われた位置(すなわち、操作位置)および操作力を算出する。
 歪検出素子21は、例えば歪みゲージであり、弾性変形量によって抵抗値が変化する4つのエレメント21a~21dを、図8のように配置すると共に、図9のように、ホイートストンブリッジ回路(以下単に、ブリッジ回路という)となるように接続することで形成されている。そして、操作位置算出部31は、そのブリッジ回路に電源電圧Vexを与えると共に、該ブリッジ回路の出力電圧である(歪検出素子21の出力電圧でもある)ブリッジ電圧Voutを検出し処理することで、操作位置や操作力を算出する。
 次に、操作面3cに対する操作位置の検出について説明する。まず、操作面3cに垂直な方向(z軸方向)の力が加えられた場合について説明する。図10(a)および図10(b)に示すように、操作体3の操作面3cにz軸方向の押圧操作力Fzが作用すると、基部部材5に対して固定されている検出体6~9には、押圧操作力Fzの分力fz1~fz4やモーメント力mz1,mz2が作用する。尚、図10(a)において、fz1~fz4は、図示の便宜上、操作面3cの面内方向の力のように示されているが、実際には、z軸方向の力である。そして、fz1は、検出体7に加わる力であり、fz2は、検出体9に加わる力であり、fz3は、検出体8に加わる力であり、fz4は、検出体6に加わる力である。また、mz1,mz2は、図示の便宜上、z軸周りのモーメント力のように示されているが、実際は、x軸周りのモーメント力である。そして、mz1は、検出体6,7に作用するモーメント力であり、mz2は、検出体8,9に作用するモーメント力である。
 検出体6~9は、操作体3に接続される側の端部6a,7a,8a,9aとは反対側の端部6b,7b,8b,9b(平板部材10,11の中央部10c,11c)が基部部材5に固定されているため、曲げ変形を強いられる。このため、検出体6~9の検出面20には、面内方向において引張り応力、あるいは圧縮応力が作用する。検出面20上には歪検出素子21が設けられているため、それら引張り応力あるいは圧縮応力に応じた検出面20内の伸び量または縮み量を、歪検出素子21が検出する。
 例えば、検出体6~9の何れかに、図11のような力fzが作用したとすると、歪検出素子21のエレメント21a~21dのうち、エレメント21a,21bには引張り応力が発生し、エレメント21c,21dには圧縮応力が発生する。そして、図12に示すように、引張り応力の発生するエレメント21a,21bでは抵抗値が減少し、圧縮応力の発生するエレメント21c,21dでは抵抗値が増加する。
 このため、操作位置算出部31は、各検出体6~9の歪検出素子21(エレメント21a~21d)の出力電圧である前述のブリッジ電圧Voutを検出し、その各ブリッジ電圧Voutに基づいて、各検出体6~9に作用する力fz(fz1,fz2,fx3,fx4)及びモーメント力mz(mz1,mz2)を算出する。例えば、各歪検出素子21のブリッジ電圧Voutから力fz1,fz2,fx3,fx4及びモーメント力mz1,mz2を算出するためのマップを、ROM内に用意しておき、操作位置算出部31は、そのマップに、各ブリッジ電圧Voutの検出値を当てはめることによって、力fz1,fz2,fx3,fx4及びモーメント力mz1,mz2を算出するように構成することができる。また、マップは、理論計算と実験との両方または一方によって作成することができる。
 そして、操作位置算出部31は、算出したfz1,fz2,fx3,fx4,mz1,mz2を、下記の式4と式5に代入することで、操作面3cに加えられた押圧操作力Fzの中心位置すなわち操作位置(x1,y1)を算出する。
 尚、この例において、操作位置の座標は、操作面3cの中心を原点とするx-y座標系の座標位置として算出される(図10(a)参照)。そして、式4,式5は、力の釣り合いの式である式1と、y軸周りのモーメントの釣り合いの式である式2と、x軸周りのモーメントの釣り合いの式である式3とから、それぞれ導き出せる。また、式2,式4における「w」は、図10(b)に示すように、x軸方向における検出体6,7と検出体8,9との中間位置(x軸方向の原点位置)から、x軸方向における各検出体6~9の中心位置(検出面20の中心位置)までの距離である。
Figure JPOXMLDOC01-appb-M000001
 一方、操作面3cにy軸方向の力が加えられた場合には、図13に示すように、各検出体6~9にy軸方向の力fyが加わる。そして、その力fyは、歪検出素子21の各エレメント21a~21dに対する圧縮応力となる。しかし、y軸方向の力fyは、検出体6~9の面内方向の力であり、検出体6~9の剛性が高い方向の力であるため、各検出体6~9において、検出面20は歪まず、よって歪検出素子21は感度を有しない。
 また、図14に示すように、操作面3cにx軸方向の力Fxが加えられた場合には、各検出体6~9における検出面20の位置では、力Fxによりx軸方向に作用する力と、力Fxによりy軸周りに作用するモーメント力Mとが作用する。そして、その作用する各力は、検出面20に垂直な成分と、検出面20の面内方向の成分とに分解できる。
 ここで、前述したように検出体6~9は面内方向に剛性が高いため、検出面20の歪検出素子21は、後者の成分(検出面20の面内方向の成分)に対して感度を持たない。また、前者の成分(検出面20に垂直な成分)については、前述の交差線L1と操作面3cとの距離が0であることから、x軸方向に作用する力による力F1と、上記モーメント力Mによる力F2とが、釣り合うこととなる。このことは、下記の式6~式10によって示される。つまり、式6~式9から、式10が成立する。尚、図14に示すように、式6,式8,式9における「h」は、z軸方向における各検出体6~9の検出面20の中心位置と操作面3cとの距離であり、式7~式9における「θ」は、操作面3cと検出面20とのなす角である。また、式8,式9における「w」は、式2,式4における「w」と同じである。そして、式9が成立する条件(延いては、式10が成立する条件)が、「交差線L1と操作面3cとの距離=0」である。
Figure JPOXMLDOC01-appb-M000002
 このため、歪検出素子21は、前者の成分(検出面20に垂直な成分)についても感度がなくなる。よって、操作面3cにX軸方向の力Fxを加えても、歪検出素子21は感度を有しない。
 従って、本実施形態の操作位置検出装置1では、操作面3cに垂直でないy軸方向とx軸方向の操作力に対して、検出体6~9の歪検出素子21が感度を持たなくなる。よって、操作面3cが該操作面3cに対して垂直でない所定の角度で押されて、操作面3cに垂直方向とは異なる方向の力が作用した場合でも、操作位置算出部31により正確に操作位置を算出(換言すれば検出)することができるようになる。
 更に、この操作位置検出装置1によれば、検出体6~9を操作面3cの背面側(押される側とは反対側)内に収めることが可能となる。このため、操作面3cの外周に検出体6~9を配置する必要がなくなり、装置1の小型化を実現することができる。また、前述した意匠性の制約をなくすことができる。このため、本実施形態の操作位置検出装置1では、一つの面全体を操作面3cにしている。
 尚、抵抗膜式や静電容量式の一般的なパッチパッドやタッチパネルであっても、配線の取り回しの都合上、操作面の周囲には検出できない領域が必ず存在してしまう。これに対し、本実施形態の操作位置検出装置1によれば、操作面3cの周囲に検出できない領域が全く存在しない装置を提供できる。
 また、本実施形態の操作位置検出装置1では、1つの平板部材(11または12)によって2つの検出体(6,7または8,9)を形成しているため、当該装置1の構成部品数及び組み立て工数を少なくすることができる。
 一方、前述の交差線L1と操作面3cとの距離は、0であることが最も好ましいが、0以外にすることも可能である。例えば、交差線L1と操作面3cとの距離が、操作面3cの最大長さの20分の1以下(つまり5パーセント以下)であれば、操作位置の検出精度に大きな影響は生じないと考えられる。尚、本第1実施形態では、操作面3cが円形であるため、操作面3cの最大長さは、操作面3cの直径となるが、例えば、操作面3cが長方形であれば、その操作面3cの長い方の辺の長さが、操作面3cの最大長さとなる。また、交差線L1と操作面3cとの距離は、操作面3cの長さに拘わらす、所定値以下(例えば2mm以下)に設定しても良い。
 (第1実施形態に対する変形例)
 以下に、第1実施形態に対する変形例を説明する。尚、第1実施形態と同様の構成要素については、第1実施形態と同じ符号を用いる。
 〈第1変形例〉
 第1実施形態では、平板部材10,11の端部10a,10b,11a,11bが、操作体3に接続される接続部18であり、平板部材10,11の中央部10c,11cが、基部部材5に固定される固定部19であった。
 その構成とは逆に、平板部材10,11の端部10a,10b,11a,11bを、基部部材5に固定される固定部19とし、平板部材10,11の中央部10c,11cを、操作体3に接続される接続部18とするように構成しても良い。
 例えば、枠部材3bには、4つの傾斜面部15a,15b,16a,16bを設けず、その代わり、操作体3(操作部材3aまたは枠部材3b)には、操作面3cの中央位置あるいは該中央位置を挟む2つの各位置からx軸方向の左右それぞれへ向けて、傾斜面部15a,16aと同様の傾斜面を有する一対の操作体側接続部を設ける。また、基部部材5には、2つの突部24,25を設けず、その代わりに、基部部材5において、平板部材10,11の端部10a,10b,11a,11bに対応する4つの各位置に、突部24,25と同様の突部を設ける。そして、平板部材10,11の中央部10c,11cのそれぞれを、操作体3における上記一対の操作体側接続部のそれぞれに接続させると共に、平板部材10,11の端部10a,10b,11a,11bのそれぞれを、基部部材5における上記4つの突部のそれぞれに固定すれば良い。
 〈第2変形例〉
 図15は、第2変形例の操作位置検出装置を操作面3cの側から模式的に表している。図15に示すように、4つの検出体6~9を、別々の平板部材によって構成し、その各検出体6~9を、個別に操作体3に接続しても良い。図15の例では、各検出体6~9の一方の端部6a~9aが、操作体3に接続される接続部18となっており、各検出体6~9の他方の端部6b~9bが、基部部材5(図示省略)に固定される固定部19になっている。また、操作面3cの平面形状は四角形である。その他は、第1実施形態と同様である。
 尚、図15では、操作面3cの外周に検出体6~9を配置したように図示しているが、検出体6~9は、実際には、検出体6と検出体8との関係、及び、検出体7と検出体9との関係が、第1実施形態と同じになるように、操作体3に取り付けられている。このため、第1実施形態と同様に、検出体6~9を操作面3cの背面側(押される側とは反対側)内に収めることができる。そして、このことは、後述する第3変形例(図16)及び第4変形例(図17)についても同様である。
 〈第3変形例〉
 図16は、第3変形例の操作位置検出装置を操作面3cの側から模式的に表している。図16に示すように、操作面3cに、溝部(換言すれば凹部)41を設けても良い。その溝部41は、操作面3cを複数の操作領域に分割する役割を果たす。溝部41の数や方向については、特に制約はない。
 溝部41を設けることにより、当該操作位置検出装置の使用者は、操作面3cを操作する際の指の触覚から操作領域を認識することができる。使用者は、操作面3cを凝視することなく所望の操作を行うことができるので、操作性が向上し、特に車両に搭載する装置に適用する場合に好ましい。また、溝部41の代わりに、帯状の凸部を設けても、同様の効果が得られる。
 尚、図16の例では、第1変形例で述べた構成を採っている。即ち、平板部材10,11の端部10a,10b,11a,11bを、基部部材5(図示省略)に固定される固定部19とし、平板部材10,11の中央部10c,11cを、操作体3に接続される接続部18としている。このため、操作体3には、第1変形例で説明した一対の操作体側接続部43が設けられており、平板部材10,11の中央部10c,11cのそれぞれを、その操作体側接続部43のそれぞれに接続させている。そして、このことは、後述する第4変形例(図17)についても同様である。
 〈第4変形例〉
 図17は、第4変形例の操作位置検出装置を操作面3cの側から模式的に表している。図17に示すように、操作面3cを凸形状としても良い。図17の例では、操作面3cの中心位置(交差した線の交差位置)45が最も高くなるようにしている。操作面3cにおける凸部の位置および高さは、位置検出の精度に影響を与えない範囲で設定すれば良い。
 この構成によっても、使用者は、操作面3cを操作する際の指の触覚から操作領域を認識することができる。
 〈第5変形例〉
 図18に示すように、検出体6と検出体8、及び、検出体7と検出体9は、x軸方向において左右対称でなくても良い。第1実施形態で述べた条件が成立していれば良い。つまり、検出体6,8の検出面20の延長平面同士の交差線と操作面3cとの距離が所定値以下(好ましくは0)であり、検出体7,9の検出面20の延長平面同士の交差線と操作面3cとの距離も所定値以下(好ましくは0)であれば良い。
 尚、図18の例では、第3,第4変形例(図16,図17)と同様に、操作体3に設けられた一対の操作体側接続部43のそれぞれに、平板部材10,11の中央部10c,11cのそれぞれを接続させている。
 (第2実施形態)
 次に、第2実施形態の操作位置検出装置について説明する。尚、第1実施形態と同様の構成要素については、第1実施形態と同じ符号を用いることで説明を省略する。そして、第1実施形態との相違点について説明する。
 図19~図21に示すように、第2実施形態の操作位置検出装置51は、第1実施形態
の操作位置検出装置1と比較して、下記《1》~《4》の点が異なっている。
 《1》操作体3は、前述の枠部材3bを備えず、板状(この例でも円盤状)の操作部材3aが操作体3になっている。
 《2》前述の第1変形例と同様に(つまり、第1実施形態とは逆に)、平板部材10,11の中央部10c,11cが、操作体3に接続される接続部18になっており、平板部材10,11の両端部10a,10b,11a,11bのそれぞれが、基部部材5に固定される固定部19になっている。
 《3》平板部材10,11の接続部18としての中央部10c,11cは、弾性を有する連結部材50を介して操作体3に接続される。連結部材50は、弾性を有する単一の板材を曲げ加工することで構成されており、板バネの性質を持つ。連結部材50は、操作体3(操作部材3a)の下面(操作面3cとは反対側の面)における中心位置に固定される取り付け部50cと、取り付け部50cが操作体3に固定された状態において、取り付け部50cから前述のx軸方向の左右それぞれへ所定の傾斜角度で伸びる一対の傾斜部50a,50bとを備える。
 そして、本実施形態では、傾斜部50aの下面に、平板部材10の中央部10cが取り付けられ、傾斜部50bの下面に、平板部材11の中央部11cが取り付けられる。傾斜部50aの下面を含む仮想平面は、図7に示した仮想平面S1と同じであり、その仮想平面S1は、平板部材10によって形成される各検出体6,7の検出面20の延長平面でもある。同様に、傾斜部50bの下面を含む仮想平面は、図7に示した仮想平面S2と同じであり、その仮想平面S2は、平板部材11によって形成される各検出体8,9の検出面20の延長平面でもある。
 尚、連結部材50の取り付け部50cは、例えばビスによって操作体3に固定されるが、固定の手段は例えば接着剤等でも良い。また、平板部材10の中央部10cと連結部材50の傾斜部50aは、中央部10cの上面と傾斜部50aの下面とが合わされた状態で、中央部10cの下面と傾斜部50aの上面とが、一対の固定用部材71,72によって挟まれる(特に図21参照)。そして、その状態で、一対の固定用部材71,72が、傾斜部50aと中央部10cとを貫通するビス(図示省略)によって相互に固定されることにより、平板部材10の中央部10cが連結部材50の傾斜部50aに固定される。
 同様に、平板部材11の中央部11cと連結部材50の傾斜部50bは、中央部11cの上面と傾斜部50bの下面とが合わされた状態で、中央部11cの下面と傾斜部50bの上面とが、一対の固定用部材73,74によって挟まれる(特に図21参照)。そして、その状態で、一対の固定用部材73,74が、傾斜部50bと中央部11cとを貫通するビス(図示省略)によって相互に固定されることにより、平板部材11の中央部11cが連結部材50の傾斜部50bに固定される。
 《4》基部部材5は、平板部材10,11の端部10a,10b,11a,11bが固定される一対の支柱部5a,5bを備える。支柱部5aと支柱部5bは、図示しない部材によって相対位置が変わらないように固定されている。
 支柱部5aには、第1実施形態の基部部材5における突部24の上面と同じ傾斜の面を有する溝部56と、第1実施形態の基部部材5における突部25の上面と同じ傾斜の面を有する溝部57とが、設けられている。
 支柱部5bにも、第1実施形態の基部部材5における突部24の上面と同じ傾斜の面を有する溝部58と、第1実施形態の基部部材5における突部25の上面と同じ傾斜の面を有する溝部59とが、設けられている。
 そして、図20における一点鎖線で示すように、平板部材10の端部10aが、支柱部5aの溝部56に載せられ、平板部材11の端部11aが、支柱部5aの溝部57に載せられ、平板部材10の端部10bが、支柱部5bの溝部58に載せられ、平板部材11の端部11bが、支柱部5bの溝部59に載せられる。
 更にその状態で、図20における二点鎖線で示すように、上記溝部56,57の面と同じ傾斜の板状部52a,52bを有した押さえ部材52が、支柱部5aの上部に固定され、上記溝部58,59の面と同じ傾斜の板状部53a,53bを有した押さえ部材53が、支柱部5bの上部に固定される。
 押さえ部材52が支柱部5aの上部に固定されることで、平板部材10の端部10aが押さえ部材52の一方の板状部52aによって押さえられ、平板部材11の端部11aが押さえ部材52の他方の板状部52bによって押さえられる。その結果、平板部材10の端部10aは、支柱部5aの溝部56と押さえ部材52の板状部52aとで挟まれて保持され、平板部材11の端部11aは、支柱部5aの溝部57と押さえ部材52の板状部52bとで挟まれて保持される。
 同様に、押さえ部材53が支柱部5bの上部に固定されることで、平板部材10の端部10bが押さえ部材53の一方の板状部53aによって押さえられ、平板部材11の端部11bが押さえ部材53の他方の板状部53bによって押さえられる。その結果、平板部材10の端部10bは、支柱部5bの溝部58と押さえ部材53の板状部53aとで挟まれて保持され、平板部材11の端部11bは、支柱部5bの溝部59と押さえ部材53の板状部53bとで挟まれて保持される。
 尚、押さえ部材52,53は、例えばビスによって支柱部5a,5bに固定される。図20における61は、押さえ部材52,53におけるビス穴であり、図20における63は、支柱部5a,5bにおけるビス穴である。また、押さえ部材52,53を支柱部5a,5bに固定するための手段は、例えば接着剤等でも良い。
 以上のような操作位置検出装置51によっても、第1実施形態の操作位置検出装置1と同様の効果が得られるが、以下に説明する点において、第1実施形態の操作位置検出装置1よりも有利である。
 図22に示すように、操作体3の操作面3cにz軸方向の押圧操作力Fzが作用した場合、その押圧操作力Fzにより、平板部材10,11は変形しようとする。図22における点線の矢印は、平板部材10,11が変形しようとする方向である。
 そして、平板部材10,11が変形しようとする力により、操作体3及び基部部材5(支柱部5a,5b)には、図22における水平方向(即ち、操作面3cの面内方向)に圧縮されようとする力が作用する。
 但し、操作体3及び基部部材5の剛性は高いため、操作体3及び基部部材5は、ほとんど圧縮されない。このため、平板部材10,11の端部10a,10b,11a,11bと中央部10c,11cとの各々を、操作体3と基部部材5とに直接固定した場合には、平板部材10、11の変形(詳しくは、検出体6~9の変形)が阻害される。例えば平板部材10,11同士が内側に寄りたくても寄ることができない、という状態になる。その結果、操作位置を検出することにおいて、平板部材10,11が十分に変形せず、延いては、大きな感度が得られなくなる可能性がある。
 これに対して、第2実施形態の操作位置検出装置51では、板バネの性質を持つ連結部材50が操作体3と平板部材10,11と間に設けられており、操作体3に対する平板部材10,11の相対位置が変わりやすくなっている。このため、操作面3cへの押圧操作力Fzによって平板部材10,11が自由に変形できるようになり、要するに、平板部材10,11の変形が阻害されない。換言すると、連結部材50は、操作面3cへの押圧操作力Fzに応じて弾性変形しつつ、その押圧操作力Fzを、平板部材10,11によって形成される検出体6~9に伝達することとなる。
 よって、このような第2実施形態の操作位置検出装置51によれば、操作位置の検出において大きな感度が得られるようになる。また、連結部材50は、曲げ加工された単一の板材によって構成されているため、装置51の部品点数が抑えられると共に、連結部材50自体の製造も簡単であるという利点がある。
 (第2実施形態に対する変形例)
 以下に、第6~第8変形例を説明する。尚、第1及び第2実施形態と同様の構成要素については、第1及び第2実施形態と同じ符号を用いる。
 〈第6変形例〉
 第2実施形態の操作位置検出装置51において、連結部材50の代わりに、その連結部材50と同形状で弾性変形しない部材を用いたならば、その部材は、第1変形例で説明した一対の操作体側接続部と同じ役割を果たす部材となる。
 そして、その場合には、図23に例示するように、基部部材5の支柱部5a,5bと平板部材10,11との間に、連結部材50と同様の連結部材65a,65bを設ければ良い。尚、図23において、{}を付けた符号と{}を付けていない符号とのうち、{}を付けていない方の符号は、支柱部5aを、支柱部5b側とは反対側からみた場合の符号であり、{}を付けた方の符号は、支柱部5bを、支柱部5a側とは反対側からみた場合の符号である。つまり、図23に例示するように、平板部材10,11の固定部19としての端部10a,11aを、連結部材65aを介して基部部材5の支柱部5aに接続すると共に、平板部材10,11の固定部19としての他方の端部10b,11bを、連結部材65bを介して基部部材5の支柱部5bに接続すれば良い。
 そして、このように構成しても、第2実施形態の操作位置検出装置51と同様の効果が得られる。
 〈第7変形例〉
 第1実施形態の操作位置検出装置1において、図24に例示するように、平板部材10,11の固定部19としての中央部10c,11cと基部部材5とを、連結部材50と同様の連結部材67を介して接続するように構成しても良い。そして、このように構成しても、第2実施形態の操作位置検出装置51と同様の効果が得られる。
 〈第8変形例〉
 第1実施形態の操作位置検出装置1において、例えば操作体3から枠部材3bを除き、その操作体3(つまり、操作部材3a)と、平板部材10,11の接続部18としての端部10a,11aとを、連結部材50と同様の連結部材を介して接続すると共に、その操作体3と、平板部材10,11の接続部18としての他方の端部10b,11bも、連結部材50と同様の連結部材を介して接続するように構成しても良い。そして、このように構成しても、第2実施形態の操作位置検出装置51と同様の効果が得られる。
 〈他の変形例〉
 例えば、第2実施形態や第6変形例において、連結部材50,65a,65bを配置する代わりに、基部部材5の一部が操作面3cへの作用力(押圧操作力Fz)に応じて弾性変形して、平板部材10,11の変形が阻害されないような構成であってもよい。このことは他の実施形態及び変形例についても同様である。
 以上、本開示の実施形態について説明したが、本開示は、前述した各実施形態および変形例に限定されず、種々の態様で実施することができる。
 例えば、上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしても良い。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えても良い。また、上記実施形態の構成の一部を、課題を解決できる限りにおいて省略しても良い。また、何れかの実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加または置換しても良い。また、前述した数値も一例である。
 また具体例として、例えば、上記各実施形態において、操作面3cの背面側にLCD等の表示器を配置して、操作位置検出装置をタッチパネル(タッチスクリーン)としても良い。
 また、上記各実施形態において、検出体6,8の検出面20の延長平面同士の交差線と、検出体7,9の検出面20の延長平面同士の交差線とが、操作面3cとは平行であるが、互いには所定の角度を有するように(例えば直交するように)構成しても良い。
 また、検出体は、4つより多い複数個(6個や8個等)でも良い。

Claims (7)

  1.  平板状の操作面(3c)を有する操作体(3)と、
     基部としての部材である基部部材(5)と、
     一端に前記操作体に接続される接続部(18)を有し、他の一端に前記基部部材に固定される固定部(19)を有し、前記接続部と前記固定部との間に、前記操作面に対する押圧により発生する操作力に応じて変形する検出面(20)を有する、4以上で偶数個の平板状の検出体(6~9)と、
     前記各検出体の前記検出面に設けられ、前記検出体の変形に伴う前記検出面の歪を検出する歪検出部(21)と、
     前記各歪検出部の検出結果に基づいて、前記操作面において前記操作力が作用した位置を操作位置として算出する操作位置算出部(31)と、
     を備える操作位置検出装置において、
     前記検出体の2つずつは、当該両検出体の前記検出面の延長平面(S1,S2)同士が、前記操作面の面内方向における当該両検出体の間の位置で交差すると共に、その延長平面同士が交差する交差線(L1)が前記操作面と平行で、且つ、前記交差線と前記操作面との距離が所定値以下となるように、前記操作面に対し所定の角度を有して配置されている操作位置検出装置。
  2.  請求項1に記載の操作位置検出装置において、
     前記2つずつの検出体の組として、少なくとも第1組(6,8)と第2組(7,9)があり、
     前記第1組の一方の前記検出体(6)と前記第2組の一方の前記検出体(7)との2つの検出体と、前記第1組の他方の前記検出体(8)と前記第2組の他方の前記検出体(9)との2つの検出体とが、それぞれ1つの平板部材(10,11)により形成され、
     前記平板部材の両端部(10a,10b,11a,11b)のそれぞれが、当該平板部材により形成される前記2つの検出体のそれぞれの部分であって、前記接続部と前記固定部とのうちの一方であり、前記平板部材の中央部(10c,11c)が、当該平板部材により形成される前記2つの検出体に共通の部分であって、前記接続部と前記固定部とのうちの他方であり、前記平板部材における両端部のそれぞれと中央部との間の各面が、当該平板部材により形成される前記2つの検出体のそれぞれの前記検出面になっている操作位置検出装置。
  3.  請求項2に記載の操作位置検出装置において、
     前記平板部材の前記接続部は、弾性を有する連結部材(50)を介して前記操作体に接続されている操作位置検出装置。
  4.  請求項2に記載の操作位置検出装置において、
     前記平板部材の前記固定部は、弾性を有する連結部材(65a,65b,67)を介して前記基部部材に接続されている操作位置検出装置。
  5.  請求項3又は請求項4に記載の操作位置検出装置において、
     前記連結部材は、前記操作力に応じて弾性変形しつつ、該操作力を前記検出体に伝達する操作位置検出装置。
  6.  請求項3ないし請求項5の何れか1項に記載の操作位置検出装置において、
     前記連結部材は、曲げ加工された単一の板材によって構成されている操作位置検出装置。
  7.  請求項1ないし請求項6の何れか1項に記載の操作位置検出装置において、
     前記所定値は、前記操作面の最大長さの20分の1である操作位置検出装置。
PCT/JP2014/003768 2013-07-30 2014-07-16 操作位置検出装置 WO2015015736A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480043199.4A CN105453003B (zh) 2013-07-30 2014-07-16 操作位置检测装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013157591 2013-07-30
JP2013-157591 2013-07-30
JP2014-024404 2014-02-12
JP2014024404A JP6034318B2 (ja) 2013-07-30 2014-02-12 操作位置検出装置

Publications (1)

Publication Number Publication Date
WO2015015736A1 true WO2015015736A1 (ja) 2015-02-05

Family

ID=52431299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003768 WO2015015736A1 (ja) 2013-07-30 2014-07-16 操作位置検出装置

Country Status (3)

Country Link
JP (1) JP6034318B2 (ja)
CN (1) CN105453003B (ja)
WO (1) WO2015015736A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276514A1 (en) * 2014-03-28 2015-10-01 Denso Corporation Operation input device
EP3270267A4 (en) * 2015-03-09 2018-08-08 Alps Electric Co., Ltd. Operation input device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003196026A (ja) * 2001-12-25 2003-07-11 Japan Aviation Electronics Industry Ltd 画面入力装置
JP2011253439A (ja) * 2010-06-03 2011-12-15 Nissha Printing Co Ltd 圧力検出部及び圧力検出部を備えた情報入力装置
JP2012058967A (ja) * 2010-09-08 2012-03-22 Nippon Soken Inc 操作位置検出装置
JP2013012005A (ja) * 2011-06-29 2013-01-17 Tokai Rika Co Ltd スイッチ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682357B2 (ja) * 2005-03-10 2011-05-11 独立行政法人産業技術総合研究所 力覚式タッチパネルを具備したインターフェイス装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003196026A (ja) * 2001-12-25 2003-07-11 Japan Aviation Electronics Industry Ltd 画面入力装置
JP2011253439A (ja) * 2010-06-03 2011-12-15 Nissha Printing Co Ltd 圧力検出部及び圧力検出部を備えた情報入力装置
JP2012058967A (ja) * 2010-09-08 2012-03-22 Nippon Soken Inc 操作位置検出装置
JP2013012005A (ja) * 2011-06-29 2013-01-17 Tokai Rika Co Ltd スイッチ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276514A1 (en) * 2014-03-28 2015-10-01 Denso Corporation Operation input device
EP3270267A4 (en) * 2015-03-09 2018-08-08 Alps Electric Co., Ltd. Operation input device

Also Published As

Publication number Publication date
CN105453003A (zh) 2016-03-30
JP2015046146A (ja) 2015-03-12
CN105453003B (zh) 2018-06-05
JP6034318B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
US9200969B2 (en) Force sensor
US9128540B2 (en) Force sensor for use in an input device and methods for constructing and using the sensor
US8707802B2 (en) Detection device, electronic apparatus, and robot
US20200348757A1 (en) Force sensors for haptic surfaces
JP5840980B2 (ja) 操作位置検出装置、及び車載装置
KR102241350B1 (ko) 스트레인 게이지 및 다축력 센서
JP2012163333A (ja) 検出装置、電子機器及びロボット
JP2014142193A (ja) 荷重分布検出装置
EP2049978A2 (en) Force-based input device having an elevated contacting surface
JP6034318B2 (ja) 操作位置検出装置
JP5318831B2 (ja) 操作位置検出装置
US20150276515A1 (en) Operation input device
CN104943549A (zh) 操作输入装置
JP3039286B2 (ja) 荷重センサ
CN105843418A (zh) 指示器、键盘组件以及便携式电脑
KR101475487B1 (ko) 3축 힘 측정이 가능한 필름형 센서
JP2010112864A (ja) 力センサー
JP5578941B2 (ja) 3軸力センサパネル
CN112823330B (zh) 输入装置
Castaño-Cano et al. Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments
JP5663375B2 (ja) 操作検出装置
KR101924545B1 (ko) 압력 계측 장치
JPH09280982A (ja) 3次元用荷重センサ
JPH10260097A (ja) 荷重センサ
JP2003044218A (ja) ポインティングデバイス及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043199.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832060

Country of ref document: EP

Kind code of ref document: A1