WO2015015635A1 - Contactless power transfer device and contactless power transfer system - Google Patents

Contactless power transfer device and contactless power transfer system Download PDF

Info

Publication number
WO2015015635A1
WO2015015635A1 PCT/JP2013/070989 JP2013070989W WO2015015635A1 WO 2015015635 A1 WO2015015635 A1 WO 2015015635A1 JP 2013070989 W JP2013070989 W JP 2013070989W WO 2015015635 A1 WO2015015635 A1 WO 2015015635A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
power transmission
unit
power
coil
Prior art date
Application number
PCT/JP2013/070989
Other languages
French (fr)
Japanese (ja)
Inventor
山田 正明
祐樹 河口
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015529304A priority Critical patent/JPWO2015015635A1/en
Priority to PCT/JP2013/070989 priority patent/WO2015015635A1/en
Publication of WO2015015635A1 publication Critical patent/WO2015015635A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source

Definitions

  • the present invention relates to a noncontact power transmission device and a noncontact power transmission system, and more particularly to a noncontact power transmission device and a noncontact power transmission system suitable for charging a mobile phone, an electric toothbrush, an electric shaver, an electric car or the like. is there.
  • a contactless power transmission method using electromagnetic induction using a coil is known.
  • This non-contact power transmission method is used for charging with, for example, a mobile phone, an electric toothbrush, an electric shaver, etc. because it has a simple structure without the need for metal terminals, etc. Its use is also considered.
  • Patent Document 1 describes that the inductance can be varied by changing the area of the core.
  • Patent Document 2 describes that the efficiency is improved by improving the position accuracy of a thin device with a position sensor and a protrusion.
  • Patent Documents 1 and 2 have a problem that fluctuation of output power and deterioration of efficiency occur due to resonance frequency shift. Therefore, it has been desired to eliminate the fluctuation of the output power and the deterioration of the efficiency due to the resonance frequency shift, and to further improve the convenience, the efficiency and the like of the noncontact power transmission system.
  • the present invention has been made in view of the above-described point, and an object thereof is a contactless power transmission device and contactless power transmission device that enables efficient transmission even if the contactless power transmission method is used. To provide a power transfer system.
  • a contactless power transfer device is a contactless power transfer device using two coils in order to solve the above-mentioned problems, comprising a core around each of the coils, wherein the core comprises It is characterized in that the arrangement is changed by being driven by the core driving means in accordance with the relative distance between the two coils.
  • a power transmission unit having a coil and a core used for power transmission a power reception unit having a coil and a core used for power transmission, and the like.
  • Control means for calculating the relative distance between the coil of the power transmission unit and the coil of the power reception unit, and the core of the power transmission unit according to the relative distance between the coil of the power transmission unit and the coil of the power reception unit calculated by the control means The core of the power transmission unit according to the relative distance between the coil of the power transmission unit and the coil of the power reception unit calculated by the control unit. The arrangement is changed by being driven by the driving means.
  • the present invention it is possible to obtain a contactless power transfer device and a contactless power transfer system that enables efficient transmission even if the contactless power transfer method is used.
  • Example 1 of the contactless energy transfer system of this invention It is a block diagram which shows Example 1 of the contactless energy transfer system of this invention.
  • adopted as Example 1 of the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view.
  • adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view.
  • adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view.
  • adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view.
  • FIG. 1 shows a schematic configuration of a first embodiment of the contactless power transmission system of the present invention.
  • reference numeral 1 denotes a power supply unit, which is a DC power supply, a high frequency power supply, a storage battery, a commercial power supply or the like.
  • a power transmission circuit unit 2 receives power from the power supply unit 1 and includes a rectifier circuit, a power factor correction circuit, a converter, an inverter, and the like.
  • a power transmission unit 3 includes a circularly wound winding, a resonant capacitor, and a core having a magnetization characteristic, and generates an electromagnetic field to transmit power.
  • a power reception unit 4 has the same configuration as the power transmission unit 3 and has the same function, and generates an induced electromotive force by an electromagnetic field to receive power.
  • Reference numeral 5 denotes a power receiving circuit unit, which includes a rectifier circuit, a converter, and the like.
  • a load 6 is a power supply target such as a storage battery, a motor, or a driving device.
  • a power transmission control unit 7 includes a detection circuit capable of detecting the relative position, voltage, and current value of the power transmission unit 3 and the power reception unit 4, a control circuit, a communication circuit, and the like.
  • a power reception control unit 8 has the same function as the power transmission control unit 7 and communicates information with the power transmission control unit 7.
  • a core driving unit 9 has a function of physically moving the position of the core of the power transmission unit 3 in accordance with an instruction from the power transmission control unit 7.
  • the power transmission circuit unit 2 converts the power supplied from the power supply unit 1 according to an instruction of the power transmission control unit 7 and sends the converted power to the power transmission unit 3.
  • the power transmission unit 3 generates an electromagnetic field and transmits power to the power reception unit 4.
  • the power receiving unit 4 receives power by electromagnetic induction
  • the power receiving circuit unit 5 converts the power received by the power receiving unit 4 and supplies the power to the load 6.
  • the power transmission control unit 7 detects parameters such as efficiency, voltage, current, phase difference, resonance frequency, drive frequency and the like of the power transmission circuit unit 2, adjusts output voltage and the like, and communicates with the power reception control unit 8.
  • the power transmission control unit 7 sends a command to move the core to the core drive unit 9 to change the arrangement so that the desired operation is achieved, and the core drive unit 9 moves the movable core of the power transmission unit 3 to change the arrangement
  • the power reception control unit 8 detects parameters such as efficiency, voltage, current, phase difference, resonance frequency, drive frequency, etc. of the power reception circuit unit 5, the state of the load 6, etc., and changes each set value such as load switching, It communicates with the power transmission receiver 7.
  • power is transmitted to the power receiving unit 4, the power receiving circuit unit 5, and the load 6 by transmitting power without contact via the power supply unit 1, the power transmission circuit unit 2, and the power transmission unit 3. It is not limited to this.
  • the load 6 is a storage battery
  • the power supply unit 1 is a load
  • the power transmission circuit unit 2 and the power receiving circuit unit 5 have the functions of each other
  • the load 6, the power receiving circuit unit 5, and the power receiving unit 4 are not contactless
  • FIGS. 2A and 2B illustrate an example of the configuration of the power transmission unit 3 or the power reception unit 4 described above.
  • 10 is a coil for feeding (first coil), and is a coil of litz wire or the like obtained by twisting a plurality of conductive metal wires and wound on a plane. 2 or connected to the power receiving circuit unit 5. Further, the inductance of the coil 10 changes due to the positional relationship between the power transmission unit 3 and the power reception unit 4 or the like.
  • a capacitor 12 is a stray capacitance between the windings of the coil 10 and a capacitor for resonance connected to the coil 10.
  • Reference numeral 20 denotes a core (first core), and 21 and 22 movable cores (second core).
  • the core 20 is a cylindrical core centered on the y axis in the figure, and the central axis of the coil 10 And the central axis of the core 20 coincide with each other, and the coil 10 is disposed on the core 20.
  • the movable cores 21 and 22 are fan-shaped movable cores centered on the y-axis, arranged on the same plane as the core 20, and capable of moving the outer peripheral side of the core 20 by the core driving unit 9 .
  • a support plate 30 supports the coil 10, the core 20, and the movable cores 21 and 22. For example, if it is made of metal, it has the effect of suppressing unnecessary radiation of electromagnetic fields.
  • FIGS. 3A, 3 B, 3 C, and 3 D show the relative positional relationship between the power transmission unit 3 and the power reception unit 4 shown in FIG. 1 in the non-contact power transmission apparatus.
  • the power transmission unit 3 constituting the non-contact power transmission device comprises a coil 10a, a core 20a, movable cores 21a and 22a, a support plate 30a, and the cable 11a is a capacitor It is connected to the power transmission circuit unit 2 via 12a.
  • the power receiving unit 4 constituting the non-contact power transmission device includes a coil 10b, a core 20b, movable cores 21b and 22b, and a support plate 30b. , And the power reception circuit unit 5 via the capacitor 12b.
  • the power transmission unit 3 and the power reception unit 4 are disposed such that the coil 10 a and the coil 10 b face each other.
  • the inner diameters of the movable cores 21a and 22a and 21b and 22b of the power transmission unit 3 and the power reception unit 4 are equal to the outer diameters of the cores 20a and 20b, and the outer diameters of the movable cores 21a and 22a and 21b and 22b are core It is formed larger than the outer diameter of 20a and 20b.
  • the point 40 shown in FIGS. 3A and 3B corresponds to the center of the power transmission unit 3 (the intersection of xy-a and yz) and the central axis of the power reception unit 4 (the intersection of xy-b and yz).
  • 41 is a gap indicated by the distance between the plane of the coil 10a and the plane of the coil 10b.
  • the resonance frequency of the series resonance is generally expressed by Equation 1. Since the amount of power transmission is maximum near the resonance frequency, it is desirable to change the frequency of the power supplied to the coil 10a following the resonance frequency.
  • L is the self-inductance of the coil
  • C is the stray capacitance between the windings of the coil 10
  • FIG. 4 shows the configuration of an electric vehicle 106 and a charger 105 for supplying power.
  • the electric vehicle 106 includes a power receiving unit 4, a power receiving circuit unit 5, a load 6, and a power reception control unit 8 as related to the non-contact power transmission system of the present embodiment.
  • the charger 105 includes a power supply unit 1, a power transmission circuit unit 2, a power transmission unit 3, a power transmission control unit 7, and a core drive unit 9.
  • the load 6 is a motor or a battery.
  • the electric car 106 shown in FIG. 4 is, for example, a portable information terminal such as a cellular phone, a PDA or a POS terminal, a portable computer such as a notebook computer, a portable computer, a disaster rescue robot or the like, lighting equipment, communication equipment, monitoring equipment, etc.
  • the device may be a semi-fixed device, or may be provided to clothes, containers, and the like.
  • the charger 105 may be built in the same terminal or device as described above.
  • the power is turned on (step S1).
  • the power transmission control unit 7 performs establishment of communication and movement confirmation of the core as initial setting, and the power reception control unit 8 establishes communication and acquires load information (step S2).
  • the power transmission control unit 7 and the power reception control unit 8 perform communication to authenticate whether each other's devices are normal, and acquire device information (step S3).
  • the device information is information specific to the vehicle such as rated power and output power, shapes of the coil 10 and the movable cores 21 and 22, and battery specifications.
  • the power transmission control unit 7 instructs the core drive unit 9 according to the device information, and the core drive unit 9 moves the movable cores 21 and 22 of the power transmission unit 3 to the initial position (step S4). If the device information does not exist or can not be acquired, move to the default position.
  • test power transmission refers to, for example, low-power transmission or short-term power transmission that can obtain each detected value with high safety, such as low possibility of heat generation.
  • the power transmission control unit 7 determines whether the detected values such as voltage value, current value, frequency, resonance point, efficiency, etc. are within the target value, and if within the target value (Yes in step S6), the power transmission circuit unit 2 The power transmission circuit unit 2 adjusts the transmission power and raises the power stepwise to the desired transmission power (step S7). If the detected value is outside the target value (No in step S6), for example, if the detection means of the power transmission control unit 7 detects an increase in reactive power, a shift in resonance point, a decrease in efficiency, etc. The driver 9 is instructed to move the movable core, and the core driver 9 moves the movable core (step S8).
  • step S9 it is determined whether or not the detected value is within the target value every predetermined time (step S6).
  • step S9 the power transmission circuit unit 2 stops the power transmission (step S10) and turns off the power (step S11).
  • FIG. 6 is a top view of the xz plane, and the coils 10a and 10b, the cores 20a and 20b, and the support plates 30a and 30b are omitted for clear description of the positional relationship of the movable core.
  • the initial positions of the movable cores 21a and 21b will be described as a straight line m-p, and the initial positions of the movable core 22a and the movable core 22b will be described as a linear n-p position.
  • a line connecting the centers of the movable core 21a and the movable core 21b or the movable core 22b, whichever is closer, is connected to the center of the distance 21c between the cores, the movable core 22a and the movable core 21b or the movable core 22b, whichever is closer.
  • An oval line is described as an inter-core distance 22c.
  • the positions of movable core 21 b and movable core 22 b of power reception unit 4 are fixed at initial positions. Further, the core adjustment angle 21 r and the core adjustment angle 22 r are set to be equal to each other.
  • an inter-core distance 21c connecting the centers of the movable core 21a and the movable core 21b changes in accordance with the angle of the core adjustment angle 21r.
  • the inter-core distance 22c connecting the centers of the movable core 22a and the movable core 22b changes in accordance with the angle of the core adjustment angle 22r.
  • FIG. 7 shows the case where the core adjustment angles 21 r and 22 r are 90 degrees, and the inter-core distances 21 c and 22 c are the longest.
  • FIG. 8 shows the case where the core adjustment angles 21r and 22r are 0 degrees, and the movable cores 21a and 22a and the movable cores 21b and 22b completely overlap, and the inter-core distances 21c and 22c become minimum. .
  • FIG. 9 shows the relationship between the core adjustment angle and the inductance in the present example, where the abscissa represents the core adjustment angle (degree) and the ordinate represents the inductance ( ⁇ H).
  • the core adjustment angle is adjusted by the effect of the magnetic material as shown in FIG. It can be seen that the inductance can be increased or decreased. That is, when the relative distance between the power transmission unit 3 and the power reception unit 4 is separated and the inductance is reduced, the inductance can be adjusted by shortening the inter-core distances 21c and 22c by the core adjustment angles 21r and 22r. .
  • FIG. 10 shows a setting example of the core adjustment angle with respect to the gap 41 in the present embodiment.
  • the inductance increases as the gap 41 narrows, and decreases as the gap 41 widens.
  • the core adjustment angle is made 90 degrees to reduce the inductance.
  • the core adjustment angle is set to 0 degrees to increase the inductance.
  • the core adjustment angle can be changed, and the distance between the cores can be minimized to increase the inductance. Also, even when the gap 41 is small and the inductance is large, the core adjustment angle is changed, and the distance between the cores is maximized to reduce the inductance, and iron loss and copper loss in the core and the support plate made of metal. It is possible to reduce.
  • FIG. 11 shows an example where the movable cores 21 b and 22 b are fixed, the movable cores 21 a and 22 a are movable, and there is an installation error 40.
  • the facing areas of the coils become large, and the inductance becomes large.
  • the installation error 40 increases, the facing area of the coils decreases and the inductance decreases.
  • the inductance is increased by approaching the desired inductance by adjusting the core adjustment angles 21r and 22r so that the inter-core distances 21c and 22c become the shortest.
  • FIG. 12 shows an example of moving the movable cores 21a and 22a to minimize the inductance.
  • the inductance is reduced by adjusting the core adjustment angles 21r and 22r so that the inter-core distances 21c and 22c become the longest, so that the inductance approaches the desired inductance. it can.
  • FIG. 13 shows an example where the installation error 40 is in the x direction and the z direction.
  • the inductance can be increased to be close to the desired inductance by adjusting the core adjustment angles 21r and 22r so that the inter-core distances 21c and 22c become shortest, as described above. it can.
  • the core adjustment angles 21r and 22r of the movable cores 21a and 22a can be changed to adjust the inter-core distances 21c and 22c with respect to the fluctuation of the inductance due to the installation error 40. Fluctuation of the resonance frequency is minimized, and more efficient power transfer is possible.
  • the change of each parameter can be achieved by changing the position of the movable core 22a. It is possible to suppress the deterioration of the power transmission efficiency. Furthermore, since it is not necessary to move the winding involved in the power supply, there is also an effect of being able to prevent disconnection due to metal deterioration.
  • the present invention is not limited to this.
  • the core drive unit 9 may be provided on the electric vehicle 106 side to drive the movable core of the power reception unit 4.
  • the movable cores 21a and 22a of the power transmission unit 3 are movable, but not limited thereto, for example, the movable cores 21b and 22b of the power reception unit 4 are also movable.
  • the adjustment broadens the adjustment means and adjustment range and enables more efficient power transfer.
  • FIG. 14 shows Embodiment 2 of the contactless power transmission system of the present invention.
  • the configuration of the non-contact power transmission system according to the present embodiment shown in the figure is substantially the same as that of the first embodiment, but is characterized in that a core drive unit 91 (first drive means) and 92 is provided.
  • the power transmission procedure is the same as that of the first embodiment, so the description thereof is omitted, and the operations of the movable cores 21a and 22a of the power transmission unit 3 and 21b and 22b of the power reception unit 4 are features of the present embodiment. , Described below.
  • FIG. 15 shows an example of increasing the inductance in the second embodiment.
  • the movable cores 21a and 22a of the power transmission unit 3 are moved by the core drive unit 91, and the movable cores 21b and 22b of the power reception unit 4 are moved by the core drive unit 92, respectively.
  • the core adjustment angles 21ar, 22ar, 21br, and 22br are adjusted to shorten the inter-core distances 21c and 22c, thereby increasing the inductance and approaching the desired inductance. it can.
  • FIG. 16 shows an example of minimizing the inductance.
  • the inductance when it is desired to reduce the inductance, the inductance is reduced by adjusting the core adjustment angles 21ar, 22ar, 21br, and 22br so that the inter-core distances 21c and 22c become the longest, thereby reducing the desired inductance. It can be close to the inductance.
  • FIG. 17 shows an example where the installation error 40 has installation errors in the x direction and z direction, that is, in the oblique direction, and the inductance is maximized.
  • the inter-core distances 21c and 22c can be made shortest even for installation errors in the oblique direction, and the inductance can be reduced. It can be increased.
  • the range of adjustment of the inter-core distances 21c and 22c can be expanded more than in the first embodiment.
  • the inductance adjustment range is further expanded by changing the core adjustment angle of the movable cores of the power transmission unit and the power reception unit to adjust the distance between the cores to the fluctuation of the inductance due to the installation error. Fluctuations are also minimized, enabling efficient power transfer.
  • the core driving unit is provided in the present embodiment, the present invention is not limited to this.
  • the movable core may be manually disposed at the time of installation, which enables simplification of the device and cost reduction.
  • movable cores 27 and 28 are provided on the lower side of movable cores 21 and 22 of power transmission unit 3 or power reception unit 4, respectively, and each of movable cores 21 and 27 and movable cores 22 and 28 has The inductance can be adjusted by changing the distance between the two.
  • the core was demonstrated as a magnetic body in a present Example, you may use the material (the thing of a different material) which has another characteristic.
  • the movable core 21 is made to be high in permeability, and the movable core 20 is made to be high in magnetic loss.
  • the movable core 21 may be disposed on the opposite coil side, and the movable core 26 may be used at a location where the leakage electromagnetic field is to be reduced.
  • a dielectric that contributes to an electric field may be used to contribute to an electric field
  • a metal structure may have directivity to a desired electromagnetic wave, or a structure that absorbs unnecessary electromagnetic waves.
  • the core 20 may be integrated and the whole may be rotationally moved, or may be rotationally moved together with the support plate 30.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 1 ... Power supply part, 2 ... Power transmission circuit part, 3 ... Power transmission part, 4 ... Power reception part, 5 ... Power reception circuit part, 6 ... Load, 7 ... Power transmission control part, 8 ... Power reception control part, 9, 91, 92 ... Core Drive part, 10, 10a, 10b ... coil, 11, 11a, 11b ... cable, 12, 12a, 12b ... capacitor, 20, 20a, 20b ...

Abstract

This invention provides a contactless power transfer system that allows efficient transfer despite the use of a contactless power transfer method. This contactless power transfer system is characterized by the provision of the following: a power transmission unit that has a coil and a core used for power transfer; a power reception unit that has a coil and a core used for power transfer; a controlling means for computing the distance between the coil in the power transmission unit and the coil in the power reception unit; and a power-transmission-unit core-driving means for driving the core in the power transmission unit in accordance with the distance between the coil in the power transmission unit and the coil in the power reception unit as computed by the controlling means. This contactless power transfer system is also characterized in that, in accordance with the distance between the coil in the power transmission unit and the coil in the power reception unit as computed by the controlling means, the power-transmission-unit core-driving means drives the core in the power transmission unit so as to change the disposition of said core.

Description

非接触電力伝送装置及び非接触電力伝送システムContactless power transmission device and contactless power transmission system
 本発明は非接触電力伝送装置及び非接触電力伝送システムに係り、例えば、携帯電話や電動歯ブラシ、電気シェーバー或いは電気自動車等の充電に好適な非接触電力伝送装置及び非接触電力伝送システムに関するものである。 The present invention relates to a noncontact power transmission device and a noncontact power transmission system, and more particularly to a noncontact power transmission device and a noncontact power transmission system suitable for charging a mobile phone, an electric toothbrush, an electric shaver, an electric car or the like. is there.
 電力を無線で送受信する方式として、コイルを用いた電磁誘導を利用する非接触電力伝送方式が知られている。この非接触電力伝送方式は、金属端子が不要で簡単な構造である等の理由から、例えば、携帯電話や電動歯ブラシ、電気シェーバー等での充電に利用されており、近年、電気自動車などの充電にも利用が考えられている。 As a method of wirelessly transmitting and receiving power, a contactless power transmission method using electromagnetic induction using a coil is known. This non-contact power transmission method is used for charging with, for example, a mobile phone, an electric toothbrush, an electric shaver, etc. because it has a simple structure without the need for metal terminals, etc. Its use is also considered.
 このような非接触電力伝送方式としては、例えば、特許文献1や特許文献2に記載されたものがある。 As such a non-contact electric power transmission system, there exist some which were described in patent document 1 and patent document 2, for example.
 この特許文献1には、磁心コアの面積を変更することにより、インダクタンスの可変を図ることが記載されている。一方、特許文献2には、薄型の機器に対して位置センサ、突起物により位置精度を高めることで効率の向上を図ることが記載されている。 Patent Document 1 describes that the inductance can be varied by changing the area of the core. On the other hand, Patent Document 2 describes that the efficiency is improved by improving the position accuracy of a thin device with a position sensor and a protrusion.
 また、近年の機器の多様化から、大電力(~100W)で中距離(~10m)の非接触電力伝送の需要が高まってきている。 Further, due to the diversification of devices in recent years, the demand for non-contact power transmission of high power (̃100 W) and medium distance (̃10 m) is increasing.
特開2012-99644号公報JP 2012-99644 A 特開2008-141940号公報JP 2008-141940 A
 しかしながら、特許文献1及び2に記載されている非接触電力伝送方式は、共振周波数ずれによる出力電力の変動や効率の劣化が起こる問題があった。従って、共振周波数ずれによる出力電力の変動や効率の劣化をなくし、更なる非接触電力伝送方式の利便性、効率などを向上させることが望まれていた。 However, the non-contact power transmission methods described in Patent Documents 1 and 2 have a problem that fluctuation of output power and deterioration of efficiency occur due to resonance frequency shift. Therefore, it has been desired to eliminate the fluctuation of the output power and the deterioration of the efficiency due to the resonance frequency shift, and to further improve the convenience, the efficiency and the like of the noncontact power transmission system.
 本発明は上述の点に鑑みなされたもので、その目的とするところは、非接触電力伝送方式を用いたものであっても、効率のよい伝送を可能にする非接触電力伝送装置及び非接触電力伝送システムを提供することにある。 The present invention has been made in view of the above-described point, and an object thereof is a contactless power transmission device and contactless power transmission device that enables efficient transmission even if the contactless power transmission method is used. To provide a power transfer system.
 本発明の非接触電力伝送装置は、上記課題を解決するために、2つのコイルを用いた非接触電力伝送装置であって、前記コイルのそれぞれの周囲にコアを備え、該コアが、前記2つのコイルの相対距離に応じてコア駆動手段により駆動されて配置が変更されることを特徴とする。 A contactless power transfer device according to the present invention is a contactless power transfer device using two coils in order to solve the above-mentioned problems, comprising a core around each of the coils, wherein the core comprises It is characterized in that the arrangement is changed by being driven by the core driving means in accordance with the relative distance between the two coils.
 また、本発明の非接触電力伝送システムは、上記課題を解決するために、電力伝送に使用されるコイル及びコアを有する送電部と、電力伝送に使用されるコイル及びコアを有する受電部と、前記送電部のコイルと前記受電部のコイルの相対距離を算出する制御手段と、該制御手段で算出された前記送電部のコイルと前記受電部のコイルの相対距離に応じて前記送電部のコアを駆動する前記送電部のコア駆動手段とを備え、前記制御手段で算出された前記送電部のコイルと前記受電部のコイルの相対距離に応じ、前記送電部のコアが、前記送電部のコア駆動手段により駆動されて配置が変更されることを特徴とする。 Further, in the contactless power transfer system according to the present invention, a power transmission unit having a coil and a core used for power transmission, a power reception unit having a coil and a core used for power transmission, and the like. Control means for calculating the relative distance between the coil of the power transmission unit and the coil of the power reception unit, and the core of the power transmission unit according to the relative distance between the coil of the power transmission unit and the coil of the power reception unit calculated by the control means The core of the power transmission unit according to the relative distance between the coil of the power transmission unit and the coil of the power reception unit calculated by the control unit. The arrangement is changed by being driven by the driving means.
 本発明によれば、非接触電力伝送方式を用いたものであっても、効率のよい伝送を可能にする非接触電力伝送装置及び非接触電力伝送システムを得ることができる。 According to the present invention, it is possible to obtain a contactless power transfer device and a contactless power transfer system that enables efficient transmission even if the contactless power transfer method is used.
本発明の非接触電力伝送システムの実施例1を示す構成図である。It is a block diagram which shows Example 1 of the contactless energy transfer system of this invention. 本発明の非接触電力伝送システムの実施例1に採用される送電部または受電部の構成の一例を示し、(a)は正面図、(b)は平面図である。The example of a structure of the power transmission part or receiving part employ | adopted as Example 1 of the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view. 本発明の非接触電力伝送装置の一例であり、送電部と受電部の相対位置関係を示し、(a)及び(c)は正面図、(b)及び(d)は平面図である。It is an example of the non-contact electric power transmission apparatus of this invention, and shows the relative positional relationship of a power transmission part and a receiving part, (a) and (c) is a front view, (b) and (d) is a top view. 本発明の非接触電力伝送システムを電気自動車に応用した例を示す構成図である。It is a block diagram which shows the example which applied the contactless energy transfer system of this invention to the electric vehicle. 本発明の非接触電力伝送システムの実施例1における電力伝送手順を示すフローチャートである。It is a flowchart which shows the electric power transmission procedure in Example 1 of the contactless energy transfer system of this invention. 本発明の非接触電力伝送システムの実施例1におけるギャップがある場合の送電部の可動コアの位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the movable core of a power transmission part in case there is a gap in Example 1 of the non-contact electric power transmission system of this invention. 本発明の非接触電力伝送システムの実施例1におけるギャップがある場合の送電部の可動コアの位置関係を説明するための図であり、コア調整角を90度とした場合の例である。It is a figure for demonstrating the positional relationship of the movable core of a power transmission part in case there is a gap in Example 1 of the contactless energy transfer system of this invention, and is an example at the time of making a core adjustment angle 90 degrees. 本発明の非接触電力伝送システムの実施例1におけるギャップがある場合の送電部の可動コアの位置関係を説明するための図であり、コア調整角を0度とした場合の例である。It is a figure for demonstrating the positional relationship of the movable core of a power transmission part in case there is a gap in Example 1 of the non-contact electric power transmission system of this invention, and is an example at the time of making a core adjustment angle 0 degree. 本発明の非接触電力伝送システムの実施例1におけるコア調整角とインダクタンスの関係を示す特性図である。It is a characteristic view which shows the core adjustment angle in Example 1 of the contactless energy transfer system of this invention, and the relationship of an inductance. 本発明の非接触電力伝送システムの実施例1におけるギャップに対するコア調整角の設定例を示す図である。It is a figure which shows the example of a setting of the core adjustment angle with respect to the gap in Example 1 of the contactless energy transfer system of this invention. 本発明の非接触電力伝送システムの実施例1における設置誤差がある場合の送電部の可動コアの位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the movable core of a power transmission part in case there is an installation error in Example 1 of the non-contact electric power transmission system of this invention. 本発明の非接触電力伝送システムの実施例1における設置誤差がある場合の送電部の可動コアの位置関係を説明するための図であり、可動コアを動かしインダクタンスを最小にする場合の例である。It is a figure for demonstrating the positional relationship of the movable core of a power transmission part in case there is an installation error in Example 1 of the non-contact electric power transmission system of this invention, and is an example in the case of moving an movable core and minimizing inductance. . 本発明の非接触電力伝送システムの実施例1における設置誤差がある場合の送電部の可動コアの位置関係を説明するための図であり、斜め方向の設置誤差に対する可動コアの動作例である。It is a figure for demonstrating the positional relationship of the movable core of a power transmission part in case there is an installation error in Example 1 of the non-contact electric power transmission system of this invention, and is an operation example of a movable core with respect to the installation error of a diagonal direction. 本発明の非接触電力伝送システムの実施例2を示す構成図である。It is a block diagram which shows Example 2 of the contactless energy transfer system of this invention. 本発明の非接触電力伝送システムの実施例2におけるインダクタンスを大きくするための送電部の可動コアの位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the movable core of the power transmission part for enlarging the inductance in Example 2 of the contactless energy transfer system of this invention. 本発明の非接触電力伝送システムの実施例2におけるインダクタンスを最小にするための送電部の可動コアの位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the movable core of the power transmission part for minimizing the inductance in Example 2 of the non-contact electric power transmission system of this invention. 本発明の非接触電力伝送システムの実施例2における斜め方向に設置誤差があり、インダクタンスを最大にするための送電部の可動コアの位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the movable core of a power transmission part in order to make an installation error in Example 3 of the non-contact electric power transmission system of this invention in the diagonal direction maximize, and to make an inductance. 本発明の非接触電力伝送システムに採用される送電部または受電部の構成の他の例を示し、(a)は正面図、(b)は平面図である。The other example of a structure of the power transmission part or receiving part employ | adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view. 本発明の非接触電力伝送システムに採用される送電部または受電部の構成の更に他の例を示し、(a)は正面図、(b)は平面図である。The other example of a structure of the power transmission part or receiving part employ | adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view. 本発明の非接触電力伝送システムに採用される送電部または受電部の構成の更に他の例を示し、(a)は正面図、(b)は平面図である。The other example of a structure of the power transmission part or receiving part employ | adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view. 本発明の非接触電力伝送システムに採用される送電部または受電部の構成の更に他の例を示し、(a)は正面図、(b)は平面図である。The other example of a structure of the power transmission part or receiving part employ | adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view. 本発明の非接触電力伝送システムに採用される送電部または受電部の構成の更に他の例を示し、(a)は正面図、(b)は平面図である。The other example of a structure of the power transmission part or receiving part employ | adopted as the contactless energy transfer system of this invention is shown, (a) is a front view, (b) is a top view.
 以下、図示した実施例に基づいて本発明の非接触電力伝送装置及び非接触電力伝送システムを説明する。なお、以下に説明する各実施例において、同一構成部品には、同符号を使用する。 The contactless power transfer apparatus and the contactless power transfer system of the present invention will be described below based on the illustrated embodiments. In each embodiment described below, the same reference numeral is used for the same component.
 図1に、本発明の非接触電力伝送システムの実施例1の概略構成を示す。 FIG. 1 shows a schematic configuration of a first embodiment of the contactless power transmission system of the present invention.
 該図において、1は電源部で、直流電源、高周波電源、蓄電池、商用電源等である。2は電源部1からの電力を入力とする送電回路部で、整流回路、力率改善回路、コンバータ、インバータ等から構成される。3は送電部で、円形に巻かれた巻線と共振コンデンサ、磁化特性を有するコアから構成され、電磁場を発生させて送電するものである。4は受電部で、送電部3と同様の構成で、かつ、同様の機能を持ち、電磁場により誘導起電力を発生して受電するものである。5は受電回路部で、整流回路、コンバータ等から構成される。6は負荷で、蓄電池やモーター、或いは駆動機器等の電力の供給対象である。7は送電制御部で、送電部3と受電部4の相対位置や電圧、電流値を検出可能な検出回路、制御回路、通信回路等から構成される。8は受電制御部で、送電制御部7と同様の機能を有し、送電制御部7と情報の通信を行うものである。9はコア駆動部で、送電制御部7からの命令により、送電部3のコアの位置を物理的に可動させる機能を有する。 In the figure, reference numeral 1 denotes a power supply unit, which is a DC power supply, a high frequency power supply, a storage battery, a commercial power supply or the like. A power transmission circuit unit 2 receives power from the power supply unit 1 and includes a rectifier circuit, a power factor correction circuit, a converter, an inverter, and the like. A power transmission unit 3 includes a circularly wound winding, a resonant capacitor, and a core having a magnetization characteristic, and generates an electromagnetic field to transmit power. A power reception unit 4 has the same configuration as the power transmission unit 3 and has the same function, and generates an induced electromotive force by an electromagnetic field to receive power. Reference numeral 5 denotes a power receiving circuit unit, which includes a rectifier circuit, a converter, and the like. A load 6 is a power supply target such as a storage battery, a motor, or a driving device. A power transmission control unit 7 includes a detection circuit capable of detecting the relative position, voltage, and current value of the power transmission unit 3 and the power reception unit 4, a control circuit, a communication circuit, and the like. A power reception control unit 8 has the same function as the power transmission control unit 7 and communicates information with the power transmission control unit 7. A core driving unit 9 has a function of physically moving the position of the core of the power transmission unit 3 in accordance with an instruction from the power transmission control unit 7.
 まず、初めに本実施例の非接触電力伝送システムにおける電力伝送方法を、図1を用いて説明する。 First, a power transmission method in the contactless power transmission system of the present embodiment will be described with reference to FIG.
 図1において、送電回路部2は、送電制御部7の命令により電源部1から供給された電力を変換し、送電部3へ送る。送電部3は、電磁場を発生させて受電部4に電力を伝送する。受電部4は電磁誘導作用により電力を受電し、受電回路部5は受電部4で受電した電力を変換して負荷6へ供給する。随時、送電制御部7は送電回路部2の効率、電圧、電流、位相差、共振周波数、駆動周波数等のパラメータを検出し、出力電圧等の調整を行い受電制御部8と通信する。 In FIG. 1, the power transmission circuit unit 2 converts the power supplied from the power supply unit 1 according to an instruction of the power transmission control unit 7 and sends the converted power to the power transmission unit 3. The power transmission unit 3 generates an electromagnetic field and transmits power to the power reception unit 4. The power receiving unit 4 receives power by electromagnetic induction, and the power receiving circuit unit 5 converts the power received by the power receiving unit 4 and supplies the power to the load 6. At any time, the power transmission control unit 7 detects parameters such as efficiency, voltage, current, phase difference, resonance frequency, drive frequency and the like of the power transmission circuit unit 2, adjusts output voltage and the like, and communicates with the power reception control unit 8.
 また、送電制御部7から所望の動作となるようにコア駆動部9にコアを移動して配置を変更する命令を送り、コア駆動部9は送電部3の可動コアを移動して配置を変更させる。受電制御部8は、受電回路部5の効率、電圧、電流、位相差、共振周波数、駆動周波数等のパラメータや負荷6の状態等を検出し、負荷切り替え等の各設定値の変更を行い、送電受信部7と通信する。 Also, the power transmission control unit 7 sends a command to move the core to the core drive unit 9 to change the arrangement so that the desired operation is achieved, and the core drive unit 9 moves the movable core of the power transmission unit 3 to change the arrangement Let The power reception control unit 8 detects parameters such as efficiency, voltage, current, phase difference, resonance frequency, drive frequency, etc. of the power reception circuit unit 5, the state of the load 6, etc., and changes each set value such as load switching, It communicates with the power transmission receiver 7.
 なお、本実施例では、電源部1、送電回路部2、送電部3を経て非接触で電力を伝送することで、受電部4、受電回路部5、負荷6への電力伝送としたが、これに限るものではない。例えば、負荷6を蓄電池とし、電源部1を負荷とし、送電回路部2および受電回路部5が互いの機能を併せ持つ構成とすれば、負荷6、受電回路部5、受電部4を経て非接触の電力を伝送することで、送電部3、送電回路部2、電源部1へ電力伝送を行うことができ、双方向の電力伝送が可能となる。 In this embodiment, power is transmitted to the power receiving unit 4, the power receiving circuit unit 5, and the load 6 by transmitting power without contact via the power supply unit 1, the power transmission circuit unit 2, and the power transmission unit 3. It is not limited to this. For example, assuming that the load 6 is a storage battery, the power supply unit 1 is a load, and the power transmission circuit unit 2 and the power receiving circuit unit 5 have the functions of each other, the load 6, the power receiving circuit unit 5, and the power receiving unit 4 are not contactless By transmitting the electric power, power can be transmitted to the power transmission unit 3, the power transmission circuit unit 2, and the power supply unit 1, and bidirectional power transmission can be performed.
 図2(a)及び(b)は、上述した送電部3または受電部4の構成の一例を示すものである。該図において、10は給電用のコイル(第1のコイル)で、導電性の金属線を複数本撚ったリッツ線などを平面上に巻いたものであり、ケーブル11を介して送電回路部2または受電回路部5と接続されている。また、このコイル10は、送電部3と受電部4の位置関係などによりインダクタンスが変動する。12はコンデンサであり、コイル10の巻線間の浮遊容量やコイル10に接続される共振用のコンデンサである。 FIGS. 2A and 2B illustrate an example of the configuration of the power transmission unit 3 or the power reception unit 4 described above. In the figure, 10 is a coil for feeding (first coil), and is a coil of litz wire or the like obtained by twisting a plurality of conductive metal wires and wound on a plane. 2 or connected to the power receiving circuit unit 5. Further, the inductance of the coil 10 changes due to the positional relationship between the power transmission unit 3 and the power reception unit 4 or the like. A capacitor 12 is a stray capacitance between the windings of the coil 10 and a capacitor for resonance connected to the coil 10.
 また、20はコア(第1のコア)、21及び22は可動コア(第2のコア)であり、コア20は、図中y軸を中心とする円柱状のコアで、コイル10の中心軸とコア20の中心軸は一致し、コア20上にコイル10が配置されている。可動コア21及び22は、y軸を中心とする扇形の可動コアであり、コア20と同平面上に配置され、コア駆動部9によりコア20の外周側を移動することが可能となっている。30はコイル10、コア20、可動コア21及び22を支持する支持板であり、例えば、金属で構成すれば、不要な電磁場の放射を抑制する効果がある。 Reference numeral 20 denotes a core (first core), and 21 and 22 movable cores (second core). The core 20 is a cylindrical core centered on the y axis in the figure, and the central axis of the coil 10 And the central axis of the core 20 coincide with each other, and the coil 10 is disposed on the core 20. The movable cores 21 and 22 are fan-shaped movable cores centered on the y-axis, arranged on the same plane as the core 20, and capable of moving the outer peripheral side of the core 20 by the core driving unit 9 . A support plate 30 supports the coil 10, the core 20, and the movable cores 21 and 22. For example, if it is made of metal, it has the effect of suppressing unnecessary radiation of electromagnetic fields.
 図3(a)、(b)、(c)及び(d)は、非接触電力伝送装置における図1に示した送電部3と受電部4の相対位置関係を示したものである。 FIGS. 3A, 3 B, 3 C, and 3 D show the relative positional relationship between the power transmission unit 3 and the power reception unit 4 shown in FIG. 1 in the non-contact power transmission apparatus.
 図3(a)及び(b)に示す如く、非接触電力伝送装置を構成する送電部3は、コイル10a、コア20a、可動コア21a及び22a、支持板30aから構成され、ケーブル11aは、コンデンサ12aを介して送電回路部2に接続されている。一方、図3(c)及び(d)に示す如く、非接触電力伝送装置を構成する受電部4は、コイル10b、コア20b、可動コア21b及び22b、支持板30bから構成され、ケーブル11bは、コンデンサ12bを介して受電回路部5に接続されている。送電部3と受電部4は、コイル10aとコイル10bが対向するように配置される。 As shown in FIGS. 3 (a) and 3 (b), the power transmission unit 3 constituting the non-contact power transmission device comprises a coil 10a, a core 20a, movable cores 21a and 22a, a support plate 30a, and the cable 11a is a capacitor It is connected to the power transmission circuit unit 2 via 12a. On the other hand, as shown in FIGS. 3 (c) and 3 (d), the power receiving unit 4 constituting the non-contact power transmission device includes a coil 10b, a core 20b, movable cores 21b and 22b, and a support plate 30b. , And the power reception circuit unit 5 via the capacitor 12b. The power transmission unit 3 and the power reception unit 4 are disposed such that the coil 10 a and the coil 10 b face each other.
 そして、送電部3と受電部4のそれぞれの可動コア21aと22a及び21bと22bの内径がコア20a及び20bの外径と等しく、かつ、可動コア21aと22a及び21bと22bの外径がコア20a及び20bの外径より大きく形成されている。 The inner diameters of the movable cores 21a and 22a and 21b and 22b of the power transmission unit 3 and the power reception unit 4 are equal to the outer diameters of the cores 20a and 20b, and the outer diameters of the movable cores 21a and 22a and 21b and 22b are core It is formed larger than the outer diameter of 20a and 20b.
 なお、本実施例では、図3(a)及び(b)に示す40を、送電部3の中心(xy-aとyzの交点)と受電部4の中心軸(xy-bとyzの交点)の距離で示される設置誤差とし、41を、コイル10aの平面とコイル10bの平面との距離で示されるギャップとする。 In the present embodiment, the point 40 shown in FIGS. 3A and 3B corresponds to the center of the power transmission unit 3 (the intersection of xy-a and yz) and the central axis of the power reception unit 4 (the intersection of xy-b and yz). 41 is a gap indicated by the distance between the plane of the coil 10a and the plane of the coil 10b.
 次に、共振周波数frについて説明する。 Next, the resonance frequency fr will be described.
 直列共振の共振周波数は一般的に数1で表され、共振周波数近傍では電力伝送量が最大となるため、共振周波数に追従してコイル10aに供給する電力の周波数を変更することが望ましい。 The resonance frequency of the series resonance is generally expressed by Equation 1. Since the amount of power transmission is maximum near the resonance frequency, it is desirable to change the frequency of the power supplied to the coil 10a following the resonance frequency.
 しかしながら、コイル10aとコイル10bの設置誤差40やギャップ41によりインダクタンスが変化するため、コンデンサ12a及び12bを固定とすると、共振周波数が変動し、所望の電力伝送ができなくなる課題がある。 However, since the inductance changes due to the installation error 40 and the gap 41 of the coil 10a and the coil 10b, if the capacitors 12a and 12b are fixed, the resonant frequency fluctuates, and there is a problem that desired power transmission can not be performed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Lはコイル10の自己インダクタンス、Cはコイル10の巻線間の浮遊容量や共振コンデンサ12の容量である。 Here, L is the self-inductance of the coil 10, C is the stray capacitance between the windings of the coil 10, and the capacitance of the resonant capacitor 12.
 本実施例の非接触電力伝送システムを電気自動車に応用した例を挙げ、以下に詳細に説明する。 An example in which the contactless power transmission system of this embodiment is applied to an electric vehicle will be described in detail below.
 図4は、電気自動車106及び電力を供給する充電器105の構成を示している。該図に示す如く、電気自動車106は、本実施例の非接触電力伝送システムに関わるものとして、受電部4、受電回路部5、負荷6、受電制御部8から構成される。充電器105は電源部1、送電回路部2、送電部3、送電制御部7、コア駆動部9で構成される。ここで、負荷6は、モーターやバッテリーである。 FIG. 4 shows the configuration of an electric vehicle 106 and a charger 105 for supplying power. As shown in the figure, the electric vehicle 106 includes a power receiving unit 4, a power receiving circuit unit 5, a load 6, and a power reception control unit 8 as related to the non-contact power transmission system of the present embodiment. The charger 105 includes a power supply unit 1, a power transmission circuit unit 2, a power transmission unit 3, a power transmission control unit 7, and a core drive unit 9. Here, the load 6 is a motor or a battery.
 なお、図4の電気自動車106は、例えば、携帯電話、PDAやPOS端末などの携帯情報端末やノートパソコンなどの可搬、携帯できるコンピュータ、災害救助ロボット等や照明機器、通信設備、監視機器等の半固定設置される機器であってもよく、衣服や容器等に備えられるものでもよい。また、充電器105は、前記と同様な端末、機器等に内蔵されるものでもよい。 The electric car 106 shown in FIG. 4 is, for example, a portable information terminal such as a cellular phone, a PDA or a POS terminal, a portable computer such as a notebook computer, a portable computer, a disaster rescue robot or the like, lighting equipment, communication equipment, monitoring equipment, etc. The device may be a semi-fixed device, or may be provided to clothes, containers, and the like. In addition, the charger 105 may be built in the same terminal or device as described above.
 次に、本実施例の電力伝送手順について、図5のフローチャートを用いて説明する。 Next, the power transmission procedure of the present embodiment will be described using the flowchart of FIG.
 該図に示す如く、先ず、電源オンする(ステップS1)。送電制御部7は、初期設定として通信の確立やコアの可動確認等を行い、受電制御部8は、通信の確立や負荷情報の取得を行う(ステップS2)。次に、送電制御部7及び受電制御部8は、お互いの機器が正常であるかの認証を通信にて行い、機器情報を取得する(ステップS3)。機器情報とは、定格電力や出力電力、コイル10や可動コア21及び22の形状、電池仕様等の車両固有の情報である。機器情報により、送電制御部7はコア駆動部9に命令し、コア駆動部9は、送電部3の可動コア21及び22を初期位置へ移動する(ステップS4)。機器情報が存在しない又は取得できない場合は、デフォルトの位置へ移動する。 As shown in the figure, first, the power is turned on (step S1). The power transmission control unit 7 performs establishment of communication and movement confirmation of the core as initial setting, and the power reception control unit 8 establishes communication and acquires load information (step S2). Next, the power transmission control unit 7 and the power reception control unit 8 perform communication to authenticate whether each other's devices are normal, and acquire device information (step S3). The device information is information specific to the vehicle such as rated power and output power, shapes of the coil 10 and the movable cores 21 and 22, and battery specifications. The power transmission control unit 7 instructs the core drive unit 9 according to the device information, and the core drive unit 9 moves the movable cores 21 and 22 of the power transmission unit 3 to the initial position (step S4). If the device information does not exist or can not be acquired, move to the default position.
 送電制御部7は、電気自動車106が所望の配置になると、送電回路部2及び送電部3が試験送電を開始する(ステップS5)。試験送電とは、例えば、発熱等の可能性が低いなど安全性の高い、各検出値を取得可能な小出力の送電や短期間の送電のことをいう。 When the electric vehicle 106 is placed in a desired arrangement, the power transmission control unit 7 and the power transmission unit 3 start test power transmission (step S5). The test power transmission refers to, for example, low-power transmission or short-term power transmission that can obtain each detected value with high safety, such as low possibility of heat generation.
 送電制御部7は、電圧値や電流値、周波数、共振点、効率等の検出値が目標値内であるかを判断し、目標値内の場合(ステップS6でYes)、送電回路部2に命令し、送電回路部2は送電電力を調整し、所望の送電電力まで段階的に電力を上げていく(ステップS7)。検出値が目標値外の場合(ステップS6でNo)、例えば、無効電力の増加や共振点のずれ、効率の低下等が送電制御部7の検出手段で検出されたら、送電制御部7はコア駆動部9に可動コアを移動するよう命令し、コア駆動部9は可動コアを移動する(ステップS8)。送電終了しない場合(ステップS9でNo)、ある一定時間ごとに検出値が目標値内か判断する(ステップS6)。送電終了の場合(ステップS9でYes)、送電回路部2は送電を停止し(ステップS10)、電源をオフする(ステップS11)。 The power transmission control unit 7 determines whether the detected values such as voltage value, current value, frequency, resonance point, efficiency, etc. are within the target value, and if within the target value (Yes in step S6), the power transmission circuit unit 2 The power transmission circuit unit 2 adjusts the transmission power and raises the power stepwise to the desired transmission power (step S7). If the detected value is outside the target value (No in step S6), for example, if the detection means of the power transmission control unit 7 detects an increase in reactive power, a shift in resonance point, a decrease in efficiency, etc. The driver 9 is instructed to move the movable core, and the core driver 9 moves the movable core (step S8). When the power transmission is not completed (No in step S9), it is determined whether or not the detected value is within the target value every predetermined time (step S6). When the power transmission is completed (Yes in step S9), the power transmission circuit unit 2 stops the power transmission (step S10) and turns off the power (step S11).
 次に、送電部3の可動コア21aと可動コア22aの位置関係について、図6を用いて説明する。 Next, the positional relationship between the movable core 21a of the power transmission unit 3 and the movable core 22a will be described with reference to FIG.
 図6は、xz平面を上から見た図であり、可動コアの位置関係を明確に説明するため、コイル10a及び10b、コア20a及び20b、支持板30a及び30bを省略し記載している。以下、可動コア21a及び21bの初期位置を直線m-p、可動コア22a及び可動コア22bの初期位置を直線n-pの位置として説明する。また、可動コア21aと可動コア21bまたは可動コア22bのいずれか近い方の中心を結んだ線をコア間距離21c、可動コア22aと可動コア21bまたは可動コア22bのいずれか近い方の中心を結んだ線をコア間距離22cとして説明する。 FIG. 6 is a top view of the xz plane, and the coils 10a and 10b, the cores 20a and 20b, and the support plates 30a and 30b are omitted for clear description of the positional relationship of the movable core. Hereinafter, the initial positions of the movable cores 21a and 21b will be described as a straight line m-p, and the initial positions of the movable core 22a and the movable core 22b will be described as a linear n-p position. A line connecting the centers of the movable core 21a and the movable core 21b or the movable core 22b, whichever is closer, is connected to the center of the distance 21c between the cores, the movable core 22a and the movable core 21b or the movable core 22b, whichever is closer. An oval line is described as an inter-core distance 22c.
 なお、受電部4の可動コア21bと可動コア22bの位置は、初期位置を固定としている。また、コア調整角21rとコア調整角22rが等しい条件としている。 The positions of movable core 21 b and movable core 22 b of power reception unit 4 are fixed at initial positions. Further, the core adjustment angle 21 r and the core adjustment angle 22 r are set to be equal to each other.
 図6は、可動コア21aを直線m-nの基準位置からコア調整角21r=35度、可動コア22aを直線m-nの基準位置からコア調整角22r=35度とし、各可動コア21a及び22aを動かした際の図である。 In FIG. 6, the movable core 21a is set at a core adjustment angle 21r = 35 degrees from the reference position of the straight line m-n, and the movable core 22a is set at a core adjustment angle 22r = 35 degrees from the reference position of the straight line m-n. It is a figure at the time of moving 22a.
 該図において、コア調整角21rの角度に応じて、可動コア21aと可動コア21bの中心を結んだコア間距離21cが変化する。同様にコア調整角22rの角度に応じて、可動コア22aと可動コア22bの中心を結んだコア間距離22cが変化する。 In the figure, an inter-core distance 21c connecting the centers of the movable core 21a and the movable core 21b changes in accordance with the angle of the core adjustment angle 21r. Similarly, the inter-core distance 22c connecting the centers of the movable core 22a and the movable core 22b changes in accordance with the angle of the core adjustment angle 22r.
 図7は、コア調整角21r及び22rを90度とした場合を示すもので、コア間距離21c及び22cは最長となる。 FIG. 7 shows the case where the core adjustment angles 21 r and 22 r are 90 degrees, and the inter-core distances 21 c and 22 c are the longest.
 また、図8は、コア調整角21r及び22rを0度とした場合を示すもので、完全に可動コア21a及び22aと可動コア21b及び22bがそれぞれ重なり、コア間距離21c及び22cが最小となる。 Further, FIG. 8 shows the case where the core adjustment angles 21r and 22r are 0 degrees, and the movable cores 21a and 22a and the movable cores 21b and 22b completely overlap, and the inter-core distances 21c and 22c become minimum. .
 図9に、本実施例におけるコア調整角とインダクタンスの関係を示し、横軸にコア調整角(度)、縦軸にインダクタンス(μH)を表示する。 FIG. 9 shows the relationship between the core adjustment angle and the inductance in the present example, where the abscissa represents the core adjustment angle (degree) and the ordinate represents the inductance (μH).
 上述した如く、コア調整角21r及び22rを変えることによって、コア間距離21c及び22cを変更することが可能なため、磁性体の効果により、図9に示す如く、コア調整角を調整することにより、インダクタンスの増減が可能になることが分かる。即ち、送電部3と受電部4の相対距離が離れてインダクタンスが低下した際に、コア調整角21r及び22rによってコア間距離21c及び22cを短くすることで、インダクタンスを調整することが可能になる。 As described above, since the inter-core distances 21c and 22c can be changed by changing the core adjustment angles 21r and 22r, the core adjustment angle is adjusted by the effect of the magnetic material as shown in FIG. It can be seen that the inductance can be increased or decreased. That is, when the relative distance between the power transmission unit 3 and the power reception unit 4 is separated and the inductance is reduced, the inductance can be adjusted by shortening the inter-core distances 21c and 22c by the core adjustment angles 21r and 22r. .
 図10に、本実施例におけるギャップ41に対するコア調整角の設定例を示す。 FIG. 10 shows a setting example of the core adjustment angle with respect to the gap 41 in the present embodiment.
 一般的に、ギャップ41が狭くなるとインダクタンスが大きくなり、ギャップ41が広がるとインダクタンスは小さくなることが知られている。 Generally, it is known that the inductance increases as the gap 41 narrows, and decreases as the gap 41 widens.
 ギャップ41が5cmと狭い場合には、インダクタンスが大きくなるため、コア調整角を90度とし、インダクタンスを小さくする。一方、ギャップ41が25cmと広い場合には、インダクタンスが小さくなるため、コア調整角を0度とし、インダクタンスを大きくする。 When the gap 41 is as narrow as 5 cm, the inductance is increased, so the core adjustment angle is made 90 degrees to reduce the inductance. On the other hand, when the gap 41 is as wide as 25 cm, the inductance decreases, so the core adjustment angle is set to 0 degrees to increase the inductance.
 以上の構成により、ギャップ41が大きくインダクタンスが小さい場合にコア調整角を変更し、コア間距離を最短にすることでインダクタンスを大きくすることができる。また、ギャップ41が小さくインダクタンスが大きい場合にもコア調整角を変更し、コア間距離を最大とすることでインダクタンスを小さくし、かつ、コアや金属製の支持板での鉄損や銅損を低減することが可能となる。 With the above configuration, when the gap 41 is large and the inductance is small, the core adjustment angle can be changed, and the distance between the cores can be minimized to increase the inductance. Also, even when the gap 41 is small and the inductance is large, the core adjustment angle is changed, and the distance between the cores is maximized to reduce the inductance, and iron loss and copper loss in the core and the support plate made of metal. It is possible to reduce.
 次に、本実施例における設置誤差がある場合の動作について説明する。 Next, the operation in the case where there is an installation error in the present embodiment will be described.
 図11は、可動コア21b及び22bが固定で、可動コア21a及び22aが可動であり、設置誤差40がある場合の一例を示している。 FIG. 11 shows an example where the movable cores 21 b and 22 b are fixed, the movable cores 21 a and 22 a are movable, and there is an installation error 40.
 一般的に、設置誤差40が小さいとコイルの対向面積が大きくなり、インダクタンスが大きくなる。一方で、設置誤差40が大きくなるとコイルの対向面積は小さくなり、インダクタンスは小さくなる。 Generally, when the installation error 40 is small, the facing areas of the coils become large, and the inductance becomes large. On the other hand, when the installation error 40 increases, the facing area of the coils decreases and the inductance decreases.
 設置誤差40が大きい場合では、コア間距離21c及び22cが最短となるようコア調整角21r及び22rを調整することで、インダクタンスを増加させ、所望のインダクタンスに近づける。 When the installation error 40 is large, the inductance is increased by approaching the desired inductance by adjusting the core adjustment angles 21r and 22r so that the inter-core distances 21c and 22c become the shortest.
 図12は、可動コア21a及び22aを動かし、インダクタンスを最小にする場合の一例を示している。 FIG. 12 shows an example of moving the movable cores 21a and 22a to minimize the inductance.
 該図に示す如く、設置誤差40が小さい場合には、コア間距離21c及び22cが最長となるようコア調整角21r及び22rを調整することで、インダクタンスを減少させ、所望のインダクタンスに近づけることができる。 As shown in the figure, when the installation error 40 is small, the inductance is reduced by adjusting the core adjustment angles 21r and 22r so that the inter-core distances 21c and 22c become the longest, so that the inductance approaches the desired inductance. it can.
 図13は、設置誤差40がx方向とz方向である場合の一例を示している。 FIG. 13 shows an example where the installation error 40 is in the x direction and the z direction.
 図13に示す場合も、前記と同様に、コア間距離21c及び22cが、それぞれ最短となるようにコア調整角21r及び22rを調整することで、インダクタンスを増加させ、所望のインダクタンスに近づけることができる。 In the case shown in FIG. 13 as well, the inductance can be increased to be close to the desired inductance by adjusting the core adjustment angles 21r and 22r so that the inter-core distances 21c and 22c become shortest, as described above. it can.
 以上説明した本実施例によれば、設置誤差40によるインダクタンスの変動に対し、可動コア21a及び22aのコア調整角21r及び22rを変更し、コア間距離21c及び22cを調整することができ、インダクタンスの変動による共振周波数の変動を最小限に抑え、より効率のよい電力伝送が可能になる。 According to the embodiment described above, the core adjustment angles 21r and 22r of the movable cores 21a and 22a can be changed to adjust the inter-core distances 21c and 22c with respect to the fluctuation of the inductance due to the installation error 40. Fluctuation of the resonance frequency is minimized, and more efficient power transfer is possible.
 即ち、給電コイルを含む送電部3及び受電部4の相対位置関係や温度変化等の外乱により給電にかかわるパラメータが変化しても、可動コア22aの位置を変更することで、各パラメータの変動を抑え、電力伝送効率の悪化を防ぐことができる。更には、給電にかかわる巻線を動かす必要がないので、金属劣化による断線等を防ぐことができる効果もある。 That is, even if the parameters related to power supply change due to the relative positional relationship of the power transmission unit 3 and the power reception unit 4 including the feeding coil or disturbance such as temperature change, the change of each parameter can be achieved by changing the position of the movable core 22a. It is possible to suppress the deterioration of the power transmission efficiency. Furthermore, since it is not necessary to move the winding involved in the power supply, there is also an effect of being able to prevent disconnection due to metal deterioration.
 なお、本実施例では、コア駆動部9により送電部3の可動コアを駆動するようにしたが、これに限らない。例えば、コア駆動部9を電気自動車106側に設け、受電部4の可動コアを駆動してもよい。 Although the movable core of the power transmission unit 3 is driven by the core driving unit 9 in the present embodiment, the present invention is not limited to this. For example, the core drive unit 9 may be provided on the electric vehicle 106 side to drive the movable core of the power reception unit 4.
 上述した実施例1の非接触電力伝送システムは、送電部3の可動コア21a及び22aのみを可動としていたが、これに限らず、例えば、受電部4の可動コア21b及び22bも可動とし、同時に調整することによって、調整手段および調整範囲が広くなり、より効率の高い電力伝送が可能になる。 In the non-contact power transmission system of the first embodiment described above, only the movable cores 21a and 22a of the power transmission unit 3 are movable, but not limited thereto, for example, the movable cores 21b and 22b of the power reception unit 4 are also movable. The adjustment broadens the adjustment means and adjustment range and enables more efficient power transfer.
 上述した実施例1の一変形例として、受電部4の可動コア21b及び22bを移動させるコア駆動部92(第2の駆動手段)を用いた例を挙げ説明する。 An example using a core drive unit 92 (second drive means) for moving the movable cores 21b and 22b of the power reception unit 4 will be described as a modification of the first embodiment described above.
 図14は、本発明の非接触電力伝送システムの実施例2を示す。 FIG. 14 shows Embodiment 2 of the contactless power transmission system of the present invention.
 該図に示す本実施例の非接触電力伝送システムは、その構成は実施例1と略同様であるが、コア駆動部91(第1の駆動手段)及び92を設けた点が特徴である。本実施例では、電力伝送手順において、実施例1と同様となるため説明は省略し、本実施例の特徴である送電部3の可動コア21a及び22a、受電部4の21b及び22bの動作について、以下に説明する。 The configuration of the non-contact power transmission system according to the present embodiment shown in the figure is substantially the same as that of the first embodiment, but is characterized in that a core drive unit 91 (first drive means) and 92 is provided. In the present embodiment, the power transmission procedure is the same as that of the first embodiment, so the description thereof is omitted, and the operations of the movable cores 21a and 22a of the power transmission unit 3 and 21b and 22b of the power reception unit 4 are features of the present embodiment. , Described below.
 図15は、実施例2におけるインダクタンスを大きくする場合の一例を示している。 FIG. 15 shows an example of increasing the inductance in the second embodiment.
 該図に示す如く、送電部3の可動コア21a及び22aがコア駆動部91により、受電部4の可動コア21b及び22bがコア駆動部92により、それぞれ可動される。また、インダクタンスを大きくしたい場合には、コア調整角21ar、22ar、21br、22brを、コア間距離21c及び22cが短くなるように調整することで、インダクタンスを増加させ、所望のインダクタンスに近づけることができる。 As shown in the figure, the movable cores 21a and 22a of the power transmission unit 3 are moved by the core drive unit 91, and the movable cores 21b and 22b of the power reception unit 4 are moved by the core drive unit 92, respectively. When the inductance is desired to be increased, the core adjustment angles 21ar, 22ar, 21br, and 22br are adjusted to shorten the inter-core distances 21c and 22c, thereby increasing the inductance and approaching the desired inductance. it can.
 図16は、インダクタンスを最小にする場合の一例を示している。 FIG. 16 shows an example of minimizing the inductance.
 該図に示す如く、インダクタンスを小さくしたい場合には、コア調整角21ar、22ar、21br、22brを、コア間距離21c及び22cが最長となるように調整することで、インダクタンスを減少させ、所望のインダクタンスに近づけることができる。 As shown in the figure, when it is desired to reduce the inductance, the inductance is reduced by adjusting the core adjustment angles 21ar, 22ar, 21br, and 22br so that the inter-core distances 21c and 22c become the longest, thereby reducing the desired inductance. It can be close to the inductance.
 図17は、設置誤差40がx方向とz方向、即ち、斜め方向の設置誤差があり、インダクタンスを最大にする場合の一例を示している。 FIG. 17 shows an example where the installation error 40 has installation errors in the x direction and z direction, that is, in the oblique direction, and the inductance is maximized.
 該図に示す如く、コア調整角21ar、22arとコア調整角21br、22brが変更可能なため、斜め方向の設置誤差に対してもコア間距離21c及び22cを最短とすることができ、インダクタンスを増加させることができる。 As shown in the figure, since the core adjustment angles 21ar and 22ar and the core adjustment angles 21br and 22br can be changed, the inter-core distances 21c and 22c can be made shortest even for installation errors in the oblique direction, and the inductance can be reduced. It can be increased.
 このような本実施例によれば、実施例1よりもコア間距離21c及び22cの調整の範囲が広がる効果がある。 According to this embodiment, the range of adjustment of the inter-core distances 21c and 22c can be expanded more than in the first embodiment.
 以上のように、設置誤差によるインダクタンスの変動に対し、送電部及び受電部の可動コアのコア調整角を変更し、コア間距離を調整することで、よりインダクタンスの調整範囲が広がるため、共振周波数の変動もより最小限に抑えられ、効率のよい電力伝送が可能になる。 As described above, the inductance adjustment range is further expanded by changing the core adjustment angle of the movable cores of the power transmission unit and the power reception unit to adjust the distance between the cores to the fluctuation of the inductance due to the installation error. Fluctuations are also minimized, enabling efficient power transfer.
 なお、本実施例では、コア駆動部を有するとしたが、これに限らない。例えば、非接触電力伝送システムが設置位置の固定で使用される場合、設置時に可動コアを手動で配置してもよく、装置の簡易化、低コスト化が可能になる。 Although the core driving unit is provided in the present embodiment, the present invention is not limited to this. For example, when the contactless power transmission system is used to fix the installation position, the movable core may be manually disposed at the time of installation, which enables simplification of the device and cost reduction.
 また、本実施例では、可動コアを2つ有するものとして説明したが、これに限らない。例えば、図18に示すよう、可動コア21のみとしてもよいし、図19に示すように、複数(図19では5個)の可動コア21、22、23、24、25としてもよい。 Moreover, although the present Example demonstrated as what has two movable cores, it does not restrict to this. For example, as shown in FIG. 18, only the movable core 21 may be used, or as shown in FIG. 19, a plurality of (five in FIG. 19) movable cores 21, 22, 23, 24, 25 may be used.
 また、本実施例では、可動コアを支持板とコイル間の1層としたが、これに限らない。例えば、図20に示すよう、送電部3或いは受電部4の可動コア21及び22の下段に可動コア27及び28を備える2層構造とし、可動コア21と27及び可動コア22と28の各コア間距離を変更することで、インダクタンスを調整することができる。 Moreover, although the movable core was made into one layer between a support plate and a coil in a present Example, it does not restrict to this. For example, as shown in FIG. 20, movable cores 27 and 28 are provided on the lower side of movable cores 21 and 22 of power transmission unit 3 or power reception unit 4, respectively, and each of movable cores 21 and 27 and movable cores 22 and 28 has The inductance can be adjusted by changing the distance between the two.
 また、本実施例では、コアを磁性体として説明したが、別の特性を有する材料(異なる材質のもの)を使用してもよい。例えば、図21に示すように、可動コア21を透磁率の高いものにし、可動コア20を磁気損失の高いものを使用する。インダクタンスを増加させたい場合には、可動コア21を対向コイル側に配置し、漏洩電磁界を低減させたい箇所に可動コア26を用いるようにするとよい。また、電界に寄与する誘電体とすることで電界に寄与するようにしたり、金属構造体として所望の電磁波に指向性を持たせたり、不要な電磁波を吸収する構造としてもよい。 Moreover, although the core was demonstrated as a magnetic body in a present Example, you may use the material (the thing of a different material) which has another characteristic. For example, as shown in FIG. 21, the movable core 21 is made to be high in permeability, and the movable core 20 is made to be high in magnetic loss. When it is desired to increase the inductance, the movable core 21 may be disposed on the opposite coil side, and the movable core 26 may be used at a location where the leakage electromagnetic field is to be reduced. In addition, a dielectric that contributes to an electric field may be used to contribute to an electric field, a metal structure may have directivity to a desired electromagnetic wave, or a structure that absorbs unnecessary electromagnetic waves.
 また、本実施例では、コアと可動コアを別々に扱ったが、これに限らない。例えば、図21に示すように、コア20を一体にし、全体を回転移動させてもよく、支持板30ごと回転移動させる構造としてもよい。 Moreover, although the core and the movable core were handled separately in the present embodiment, the present invention is not limited to this. For example, as shown in FIG. 21, the core 20 may be integrated and the whole may be rotationally moved, or may be rotationally moved together with the support plate 30.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 1…電源部、2…送電回路部、3…送電部、4…受電部、5…受電回路部、6…負荷、7…送電制御部、8…受電制御部、9、91、92…コア駆動部、10、10a、10b…コイル、11、11a、11b…ケーブル、12、12a、12b…コンデンサ、20、20a、20b…コア、21、22、23、24、25、26、27、28、21a、22a、21b、22b…可動コア、21c、22c…コア間距離、21r、22r、21ar、22ar、21br、22br…コア調整角、30、30a、30b…支持板、40…設置誤差、41…ギャップ、105…受電器、106…電気自動車。 DESCRIPTION OF SYMBOLS 1 ... Power supply part, 2 ... Power transmission circuit part, 3 ... Power transmission part, 4 ... Power reception part, 5 ... Power reception circuit part, 6 ... Load, 7 ... Power transmission control part, 8 ... Power reception control part, 9, 91, 92 ... Core Drive part, 10, 10a, 10b ... coil, 11, 11a, 11b ... cable, 12, 12a, 12b ... capacitor, 20, 20a, 20b ... core, 21, 22, 23, 24, 25, 26, 27, 28 , 21a, 22a, 21b, 22b, movable core, 21c, 22c, inter-core distance, 21r, 22r, 21ar, 22ar, 21br, 22br, core adjustment angle, 30, 30a, 30b, ... support plate, 40, installation error, 41 ... gap, 105 ... power receiver, 106 ... electric car.

Claims (11)

  1.  2つのコイルを用いた非接触電力伝送装置であって、
     前記コイルのそれぞれの周囲にコアを備え、該コアが、前記2つのコイルの相対距離に応じてコア駆動手段により駆動されて配置が変更されることを特徴とする非接触電力伝送装置。
    A contactless power transfer device using two coils, wherein
    A non-contact power transmission device comprising a core around each of the coils, wherein the core is driven by a core driving means according to the relative distance between the two coils to change the arrangement.
  2.  電力伝送に使用されるコイル及びコアを有する送電部と、電力伝送に使用されるコイル及びコアを有する受電部と、前記送電部のコイルと前記受電部のコイルの相対距離を算出する制御手段と、該制御手段で算出された前記送電部のコイルと前記受電部のコイルの相対距離に応じて前記送電部のコアを駆動する前記送電部のコア駆動手段とを備え、
     前記制御手段で算出された前記送電部のコイルと前記受電部のコイルの相対距離に応じ、前記送電部のコアが、前記送電部のコア駆動手段により駆動されて配置が変更されることを特徴とする非接触電力伝送システム。
    A power transmission unit having a coil and a core used for power transmission, a power reception unit having a coil and a core used for power transmission, and control means for calculating a relative distance between a coil of the power transmission unit and a coil of the power reception unit And core driving means of the power transmission unit for driving the core of the power transmission unit according to the relative distance between the coil of the power transmission unit and the coil of the power reception unit calculated by the control unit;
    The core of the power transmission unit is driven by the core drive unit of the power transmission unit according to the relative distance between the coil of the power transmission unit and the coil of the power reception unit calculated by the control unit, and the arrangement is changed. Contactless power transmission system.
  3.  請求項2に記載の非接触電力伝送システムにおいて、
     前記送電部のコイルと前記受電部のコイルの相対距離は、前記送電部のコアの中心を通る軸線と前記受電部のコアの中心を通る軸線との距離で示される設置誤差または前記送電部のコイル平面と前記受電部のコイル平面との距離で示されるギャップであることを特徴とする非接触電力伝送システム。
    In the contactless power transmission system according to claim 2,
    The relative distance between the coil of the power transmission unit and the coil of the power reception unit is an installation error indicated by the distance between the axis passing through the center of the core of the power transmission unit and the axis passing through the center of the core of the power reception unit It is a gap shown by the distance of a coil plane and the coil plane of the receiving part, The non-contact electric power transmission system characterized by the above-mentioned.
  4.  請求項2又は3に記載の非接触電力伝送システムにおいて、
     前記送電部と受電部は、金属製の支持板と、該支持板上に配置された第1のコアと、該第1のコアの平面上に配置された第1のコイルと、前記第1のコアの中心軸を軸とした中心角を持つ第2のコアとをそれぞれ備え、前記送電部の第2のコアを、前記送電部の第1のコアの中心軸を中心に回転移動させて配置を変更する第1のコア駆動手段を有すると共に、前記送電部のコイルと前記受電部のコイルの相対距離に応じて、前記第1のコア駆動手段によって、前記送電部の第2のコアを回転移動させて前記送電部の第1のコアに対する前記送電部の第2のコアの位置を変更することを特徴とする非接触電力伝送システム。
    In the contactless power transmission system according to claim 2 or 3,
    The power transmission unit and the power reception unit include a metal support plate, a first core disposed on the support plate, a first coil disposed on a plane of the first core, and the first coil. And a second core having a central angle about the central axis of the core, and rotationally moving the second core of the power transmission unit around the central axis of the first core of the power transmission unit. According to the relative distance between the coil of the power transmission unit and the coil of the power reception unit, the second core drive unit of the power transmission unit has a first core drive unit that changes the arrangement. A contactless power transfer system comprising: rotating and moving to change a position of a second core of the power transmission unit with respect to a first core of the power transmission unit.
  5.  請求項4に記載の非接触電力伝送システムにおいて、
     前記受電部の第2のコアを、前記受電部の第1のコアの中心軸を中心に回転移動させて配置を変更する第2のコア駆動手段を有し、前記送電部のコイルと前記受電部のコイルの相対距離に応じて、前記第2のコア駆動手段によって、前記受電部の第2のコアを回転移動させて前記受電部の第1のコアに対する前記受電部の第2のコアの位置を変更すると共に、前記第1のコア駆動手段によって、前記送電部の第2のコアを回転移動させて前記送電部の第1のコアに対する前記送電部の第2のコアの位置を変更することを特徴とする非接触電力伝送システム。
    In the contactless power transmission system according to claim 4,
    A coil of the power transmission unit and the power reception unit, having a second core drive unit that rotates and moves the second core of the power reception unit around a central axis of the first core of the power reception unit; The second core driving means rotates the second core of the power receiving unit according to the relative distance of the coils of the unit, and the second core of the power receiving unit with respect to the first core of the power receiving unit While changing the position, the first core driving means rotationally moves the second core of the power transmission unit to change the position of the second core of the power transmission unit with respect to the first core of the power transmission unit. Contactless power transmission system characterized by
  6.  請求項4又は5に記載の非接触電力伝送システムにおいて、
     前記送電部と受電部のそれぞれの前記第2のコアの内径が前記第1のコアの外径と等しく、かつ、前記第2のコアの外径が前記第1のコアの外径より大きいことを特徴とする非接触電力伝送システム。
    In the contactless power transmission system according to claim 4 or 5,
    The inner diameter of the second core of each of the power transmission unit and the power reception unit is equal to the outer diameter of the first core, and the outer diameter of the second core is larger than the outer diameter of the first core Contactless power transmission system characterized by
  7.  請求項4乃至6いずれか1項に記載の非接触電力伝送システムにおいて、
     前記送電部のコイルと前記受電部のコイルの相対距離が拡がる際には、前記送電部の第2のコアと前記受電部の第2のコアとの相対距離を最短にする制御部を有することを特徴とする非接触電力伝送システム。
    In the non-contact power transmission system according to any one of claims 4 to 6,
    When the relative distance between the coil of the power transmission unit and the coil of the power reception unit is extended, the control unit is provided to minimize the relative distance between the second core of the power transmission unit and the second core of the power reception unit. Contactless power transmission system characterized by
  8.  請求項4乃至6のいずれか1項に記載の非接触電力伝送システムにおいて、
     前記送電部のコイルと前記受電部のコイルの相対距離が狭まる際には、前記送電部の第2のコアと前記受電部の第2のコアとの相対距離を最長にする制御部を有することを特徴とする非接触電力伝送システム。
    The contactless power transfer system according to any one of claims 4 to 6,
    When the relative distance between the coil of the power transmission unit and the coil of the power reception unit is narrowed, the control unit is provided to maximize the relative distance between the second core of the power transmission unit and the second core of the power reception unit. Contactless power transmission system characterized by
  9.  請求項4乃至8のいずれか1項に記載の非接触電力伝送システムにおいて、
     前記送電部と受電部のそれぞれの前記第1のコアの材質と、前記第2のコアの材質が異なることを特徴とする非接触電力伝送システム。
    The contactless power transmission system according to any one of claims 4 to 8,
    The contactless energy transfer system, wherein the material of the first core of each of the power transmission unit and the power reception unit is different from the material of the second core.
  10.  請求項9に記載の非接触電力伝送システムにおいて、
     前記第2のコアの材質を透磁率の高いものとし、前記第1のコアの材質を磁気損失の高いものとしたことを特徴とする非接触電力伝送システム。
    In the contactless power transmission system according to claim 9,
    The contactless power transfer system according to claim 1, wherein the material of the second core is high in permeability, and the material of the first core is high in magnetic loss.
  11.  請求項4乃至8のいずれか1項に記載の非接触電力伝送システムにおいて、
     前記送電部と受電部のそれぞれの前記第2のコアを2層構造とし、該2層構造の前記第2のコア間の距離が変更可能であることを特徴とする非接触電力伝送システム。
    The contactless power transmission system according to any one of claims 4 to 8,
    The contactless power transfer system, wherein the second core of each of the power transmission unit and the power reception unit has a two-layer structure, and a distance between the second cores of the two-layer structure can be changed.
PCT/JP2013/070989 2013-08-02 2013-08-02 Contactless power transfer device and contactless power transfer system WO2015015635A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015529304A JPWO2015015635A1 (en) 2013-08-02 2013-08-02 Non-contact power transmission device and non-contact power transmission system
PCT/JP2013/070989 WO2015015635A1 (en) 2013-08-02 2013-08-02 Contactless power transfer device and contactless power transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070989 WO2015015635A1 (en) 2013-08-02 2013-08-02 Contactless power transfer device and contactless power transfer system

Publications (1)

Publication Number Publication Date
WO2015015635A1 true WO2015015635A1 (en) 2015-02-05

Family

ID=52431207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070989 WO2015015635A1 (en) 2013-08-02 2013-08-02 Contactless power transfer device and contactless power transfer system

Country Status (2)

Country Link
JP (1) JPWO2015015635A1 (en)
WO (1) WO2015015635A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203579A1 (en) * 2016-05-23 2017-11-30 日産自動車株式会社 Coil position detecting method for non-contact power supply system, and non-contact power supply system
JP2018126018A (en) * 2017-02-03 2018-08-09 トヨタ自動車株式会社 Power reception device and power transmission device
CN111727133A (en) * 2018-03-08 2020-09-29 马勒国际有限公司 Induction charging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246248A (en) * 2001-02-14 2002-08-30 Fdk Corp Non-contact coupler
JP2005020850A (en) * 2003-06-25 2005-01-20 Aichi Electric Co Ltd Non-contact power supply device
JP2012099644A (en) * 2010-11-02 2012-05-24 Showa Aircraft Ind Co Ltd Variable inductance type non-contact power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246248A (en) * 2001-02-14 2002-08-30 Fdk Corp Non-contact coupler
JP2005020850A (en) * 2003-06-25 2005-01-20 Aichi Electric Co Ltd Non-contact power supply device
JP2012099644A (en) * 2010-11-02 2012-05-24 Showa Aircraft Ind Co Ltd Variable inductance type non-contact power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203579A1 (en) * 2016-05-23 2017-11-30 日産自動車株式会社 Coil position detecting method for non-contact power supply system, and non-contact power supply system
JPWO2017203579A1 (en) * 2016-05-23 2019-04-11 日産自動車株式会社 Method for detecting coil position of non-contact power feeding system and non-contact power feeding system
US11254226B2 (en) 2016-05-23 2022-02-22 Nissan Motor Co., Ltd. Coil position detecting method for non-contact power supply system, and non-contact power supply system
JP2018126018A (en) * 2017-02-03 2018-08-09 トヨタ自動車株式会社 Power reception device and power transmission device
CN111727133A (en) * 2018-03-08 2020-09-29 马勒国际有限公司 Induction charging device

Also Published As

Publication number Publication date
JPWO2015015635A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
EP3347968B1 (en) Wireless charging platforms via three-dimensional phased coil arrays
CN107848434B (en) System, apparatus, and method for optimizing wireless charging alignment
EP2937719B1 (en) Foreign-object detecting device, wireless electric-power transmitting device, and wireless electric-power transmission system
KR101760750B1 (en) Wireless power transmitter, wireless power receiver and wireless power charging system
EP2730007B1 (en) Energy receiver, detection method and power transmission system
US9831681B2 (en) Power reception apparatus and power receiving method
US20160254705A1 (en) Hybrid wireless power transmitting system and method therefor
JP5915667B2 (en) Power transmission device, power transmission system, and power transmission method
US20150061579A1 (en) Power supply side equipment and resonance-type non-contact power supply system
KR20140139348A (en) Wireless power transmitter and method of wireless power transmittion
EP3038232B1 (en) Control method and device for wireless power transfer system of motor device
EP3032701B1 (en) Wireless power transmission device
JP2012143091A (en) Remotely and wirelessly driven charger
JP5751327B2 (en) Resonant contactless power supply system
KR20140121200A (en) Wireless power receiving apparatus and wireless power transmitting/receiving apparatus
JP2013188016A (en) Non-contact power transmission device and non-contact power transmission method
KR20150050076A (en) Wireless power transmitter and method for controlling the same
KR20140060186A (en) Wireless power transfer apparatus having a plurality of power transmitter
JP2015019022A (en) Power transmission device and coil device
KR20140061131A (en) A receiving coil of wireless power receiver including a coil unit for nfc and a coil unit for wireless power charging
KR20160028537A (en) The Wireless Charger
KR20140095348A (en) Wireless power transfer apparatus adjusting gain of lc resonant generator using fixed frequency and method for adjusting gain of lc resonant generator
US9979232B2 (en) Wireless power device having a first coil and a second coil
US10476320B2 (en) Power transmission device
WO2015015635A1 (en) Contactless power transfer device and contactless power transfer system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890506

Country of ref document: EP

Kind code of ref document: A1