WO2015015619A1 - Exhaust gas purification system - Google Patents

Exhaust gas purification system Download PDF

Info

Publication number
WO2015015619A1
WO2015015619A1 PCT/JP2013/070893 JP2013070893W WO2015015619A1 WO 2015015619 A1 WO2015015619 A1 WO 2015015619A1 JP 2013070893 W JP2013070893 W JP 2013070893W WO 2015015619 A1 WO2015015619 A1 WO 2015015619A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
oxidation catalyst
exhaust gas
catalyst
carriers
Prior art date
Application number
PCT/JP2013/070893
Other languages
French (fr)
Japanese (ja)
Inventor
美智子 宮下
広司 深澤
Original Assignee
Miyashita Michiko
Fukazawa Hiroshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyashita Michiko, Fukazawa Hiroshi filed Critical Miyashita Michiko
Priority to CN201380001751.9A priority Critical patent/CN104968911A/en
Priority to PCT/JP2013/070893 priority patent/WO2015015619A1/en
Publication of WO2015015619A1 publication Critical patent/WO2015015619A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/30Removable or rechangeable blocks or cartridges, e.g. for filters

Definitions

  • the present invention relates to an exhaust gas purification system, and more particularly to an exhaust gas purification system that purifies exhaust gas from an engine.
  • Engines such as automobiles are provided with an exhaust gas purification system to purify exhaust gas as a countermeasure against exhaust gas.
  • Some exhaust gas purification systems include an oxidation catalyst, a reduction catalyst, a three-way catalyst, and the like. As such an exhaust gas purification system, there are the following prior art documents.
  • Japanese Patent Laid-Open No. 8-193513 discloses an electric heating catalytic converter and a control method therefor, in which a notch is formed in the radial direction of the catalyst carrier, and a plurality of divided parts are opposite to the notch. In this structure, a continuous portion is formed on the side and electrodes are connected to the divided portions.
  • the present invention efficiently purifies exhaust gas from the engine even if the type and displacement of the engine are different, and makes it possible to easily replace the entire catalyst device or the catalyst carrier in the casing.
  • An object is to provide a gas purification system.
  • the present invention provides an exhaust gas purification system for purifying exhaust gas discharged from an engine into an exhaust pipe, wherein at least two or more catalyst carriers are arranged in parallel and / or in series in the casing, and the casing is disposed in the exhaust pipe. It is characterized in that it is detachably provided.
  • the present invention can efficiently purify the exhaust gas from the engine even if the type of engine and the displacement are different, and can easily replace the entire catalyst device or the catalyst carrier in the casing.
  • FIG. 1 is a schematic configuration diagram of a catalyst device.
  • FIG. 2 is a sectional view of the catalyst device.
  • FIG. 3 is a partially enlarged front view of the catalyst carrier.
  • FIG. 4 is a sectional view of the casing in an opened state.
  • FIG. 5 is a cross-sectional view of the carrier holding member.
  • FIG. 6 is a perspective view of the carrier holding member.
  • FIG. 7 is a cross-sectional view of the first attaching means of the carrier holding member.
  • FIG. 8 is a sectional view of the second attaching means of the carrier holding member.
  • FIG. 1 is a schematic configuration diagram of a catalyst device.
  • FIG. 2 is a sectional view of the catalyst device.
  • FIG. 3 is a partially enlarged front view of the catalyst carrier.
  • FIG. 4 is a sectional view of the casing in an opened state.
  • FIG. 5 is a cross-sectional view of the carrier holding member.
  • FIG. 6 is a perspective view of the
  • FIG. 9 is a cross-sectional view of the exhaust gas guide member of the catalyst device.
  • FIG. 10 is a cross-sectional view of the first connection mechanism of the catalyst device.
  • FIG. 11 is a cross-sectional view of the second connection mechanism of the catalyst device.
  • FIG. 12 is a schematic configuration diagram of the vehicle.
  • FIG. 13 is a schematic configuration diagram of the catalyst device.
  • FIG. 14 is a cross-sectional view of the carrier holding member.
  • FIG. 15 is a schematic configuration diagram of the catalyst device.
  • FIG. 16 is a cross-sectional view of the carrier holding member. (Example 3) FIG.
  • FIG. 17 is a schematic configuration diagram of the catalyst device.
  • Example 4 FIG. 18 is a schematic configuration diagram of the catalyst device.
  • Example 5) is a schematic configuration diagram of the catalyst device.
  • Example 6) is a schematic configuration diagram of the catalyst device.
  • Example 7) is a schematic configuration diagram of the catalyst device.
  • Example 8) is a front view of the catalyst device.
  • Example 9 FIG. 23 is a side view of the catalyst device.
  • Example 9 FIG. 24 is a side view in which a plurality of catalyst carriers whose catalyst component loading density gradually increases are arranged in series.
  • FIG. 25 is a side view of one catalyst carrier configured so that the catalyst component loading density increases stepwise.
  • Example 11 is a side view of one catalyst carrier configured so that the catalyst component loading density increases stepwise.
  • the present invention aims to efficiently purify exhaust gas from the engine even if the type and displacement of the engine are different, and to easily replace the entire catalyst device or the catalyst carrier in the casing.
  • the above catalyst carriers are arranged in parallel and / or in series in the casing, and the casing is detachably provided on the exhaust pipe.
  • Embodiment 1 of the present invention shows Embodiment 1 of the present invention.
  • the vehicle 1 is equipped with an engine 2 and an exhaust gas purification system 3 of the engine 2.
  • the exhaust gas purification system 3 includes an exhaust manifold 5 attached to the engine 2 via a manifold attachment flange 4, and an exhaust pipe 8 connected to a manifold side connection flange 6 of the exhaust manifold 5 via an exhaust pipe side flange 7.
  • a catalyst device (catalytic converter) 9 attached in the middle of the exhaust pipe 8 and a muffler 10 attached to the exhaust pipe 8 on the downstream side of the catalyst device 9.
  • the catalyst device 9 includes a casing 11.
  • the casing 11 includes, for example, a one-side case portion 12 having a semicircular cross section on the upper side and an other case portion 13 having a semicircular cross section on the lower side so as to face the one side case portion 12.
  • the joining surface of the one side case part 12 and the joining surface of the other side case part 13 are joined via a sealing material.
  • the joined one-side case portion 12 and the other-side case portion 13 are connected by the one-side joined portion 14 with the hinge 15 and the other-side joined portion 16 by the coupling means 17.
  • the coupling means 17 includes a hook 19 that is rotatably supported by the one side case portion 12 by a support shaft 18, and the other case portion 13 that is engaged with the hook 19. And a hook stopper 20 fixed to the head. Therefore, as shown in FIG. 4, the casing 11 is opened by removing the hook 19 from the hook stopper 20, thereby facilitating attachment / detachment of a catalyst carrier described later.
  • the casing 11 includes a case cylindrical portion 21 having a diameter larger than that of the exhaust pipe 8 and the case cylindrical shape by connecting the one side case portion 12 and the other side case portion 13.
  • a case upstream end portion 22 at the upstream end of the portion 21 and a case downstream end portion 23 at the downstream end of the case cylindrical portion 21 are formed.
  • the case upstream end 22 can be formed in a divergent shape that extends from the upstream side to the downstream side of the exhaust gas flow.
  • the case downstream end portion 23 can be formed in a constricted shape so as to become narrower from the upstream side to the downstream side of the exhaust gas flow.
  • An upstream connection pipe 24 is connected to the case upstream end 22.
  • a downstream connection pipe 25 is connected to the case downstream end 23.
  • the casing 11 is detachably attached to the exhaust pipe 8 by an upstream first connection mechanism 26 and a downstream second connection mechanism 27.
  • the first connection mechanism 26 includes a first exhaust pipe side connection flange 28 of the exhaust pipe 8 and a first connection pipe 24 attached to the first exhaust pipe side connection flange 28.
  • a first attachment bolt 32 inserted through the case side connection flange 29, the first exhaust pipe side attachment hole 30 of the first exhaust pipe side connection flange 28, and the first case side attachment hole 31 of the first case side connection flange 29.
  • a first mounting nut 33 that is screwed onto the first mounting bolt 32.
  • the first exhaust pipe side mounting hole 30 and the first case side mounting hole 31 are formed not only in a circular shape but also in a long hole or a slanted hole, so that a dimensional error is absorbed at the time of mounting and the mounting work is improved. Can be made.
  • the second connection mechanism 27 includes a second exhaust pipe side connection flange 34 of the exhaust pipe 8 and a second side of the downstream side connection pipe 25 attached to the second exhaust pipe side connection flange 34.
  • Second mounting bolts 38 inserted through the case side connection flange 35, the second exhaust pipe side mounting hole 36 of the second exhaust pipe side connection flange 34, and the second case side mounting hole 37 of the second case side connection flange 35.
  • a second mounting nut 39 that is screwed onto the second mounting bolt 38.
  • the second exhaust pipe side mounting hole 36 and the second case side mounting hole 37 are formed not only in a circular shape but also in a long hole or a slanted hole, thereby absorbing a dimensional error during mounting and improving the mounting work. Can be made.
  • the first connection mechanism 26 and the second connection mechanism 27 can easily attach / remove the casing 11 of the catalyst device 9 to / from the exhaust pipe 8, and can easily replace the catalyst device 9 as a whole.
  • honeycomb-shaped oxidation catalyst carriers (honeycomb oxidation catalyst carriers) 40-1 and 40-2 are used as at least two catalyst carriers in the casing 11. Are arranged in parallel in the vertical direction.
  • the oxidation catalyst carriers 40-1 and 40-2 have the same size (the same diameter and the same length), and, as shown in FIG. 3, for example, a plurality of carriers 40A having a circular cross section such as cordierite or ceramics.
  • An exhaust gas passage hole 40B is formed, and a catalyst component (catalyst metal) 40C is supported on the inner peripheral surface of each exhaust gas passage hole 40B at a predetermined density by a predetermined adhesion amount or a predetermined supporting method.
  • the oxidation catalyst carriers 40-1 and 40-2 are held in the casing 11 by the carrier holding member 41.
  • the oxidation catalyst carriers 40-1 and 40-2 are not limited to a circular cross section, and may be formed in other shapes. Further, the exhaust gas passage hole 40B can have various cross sections.
  • the carrier holding member 41 includes, for example, the oxidation catalyst carriers 40-1 and 40-2 so as to hold the oxidation catalyst carriers 40-1 and 40-2 in parallel in the vertical direction. Holding curved portions 42-1 and 42-2 that hold more than half of the circular shape on one side, a connecting portion 43 between the oxidation catalyst carrier 40-1 and the oxidation catalyst carrier 40-2, and both ends in the longitudinal direction. The mounting end portions 44-1 and 44-2 are formed. More specifically, the carrier holding member 41 is formed by bending a single plate material (for example, made of stainless steel). As shown in FIG. 5, the carrier holding member 41 has an end surface portion of the holding curved portion 42-1 so that the oxidation catalyst carriers 40-1 and 40-2 are not held and removed.
  • 45-1 and 45-1 and end face portions 45-2 and 45-2 of the holding curved portion 42-2 are more predetermined than a center line M passing through the centers C and C of the holding curved portions 42-1 and 42-2. It protrudes to the open side with a length H.
  • the length H can be arbitrarily set.
  • the oxidation catalyst carriers 40-1 and 40-2 are fitted into the holding curved portions 42-1 and 42-2, the oxidation catalyst carriers 40-1 and 40-2 are fitted. -2 is pushed from the opening side of the holding curved portions 42-1 and 42-2 (indicated by the solid arrow P), the end surface portions of the holding curved portions 42-1 and 42-2 are directed in the direction of the center line M. It is possible to insert the oxidation catalyst carriers 40-1 and 40-2 into the holding curved portions 33-1 and 33-2 by elastic deformation so as to spread.
  • the oxidation catalyst carriers 40-1 and 40-2 are held by the holding curved portions 42-. It is firmly held by the urging force in the contraction direction of 1.42-2.
  • the oxidation catalyst carriers 40-1 and 40-2 are held by the holding curved portions 42-1 and 42-2.
  • the end surface portions of the holding curved portions 42-1 and 42-2 are elastically deformed so as to expand in the direction of the center line M, and the oxidation catalyst carriers 40-1 and 40-2 are held by the holding curved portions 42-1 and 42-1.
  • Such a structure of the carrier holding member 41 facilitates the assembly and removal of the oxidation catalyst carriers 40-1 and 40-2, facilitates the replacement of the oxidation catalyst carriers 40-1 and 40-2, and has a structure that is It can be simple and inexpensive.
  • the carrier holding member 41 incorporating the oxidation catalyst carriers 40-1 and 40-2 has the mounting end portions 44-1 and 44-2 as one side mounting means 46-1 and the other side mounting means.
  • the one-side mounting means 46-1 includes a fitting protrusion 46B that protrudes from the inner peripheral surface of the one-side case 12 of the casing 11 and includes an end fitting groove 46A.
  • the end fitting groove 46A fits and firmly holds the mounting end 44-1 of the carrier holding member 41.
  • the other-side mounting means 46-2 includes a fitting protrusion 46D that protrudes from the inner peripheral surface of the other case portion 13 of the casing 11 and includes an end fitting groove 46C.
  • the end fitting groove 46C fits and firmly holds the mounting end 44-2 of the carrier holding member 41.
  • an exhaust gas guide member 47 that leads the exhaust gas to the upper and lower oxidation catalyst carriers 40-1 and 40-2 is disposed in the casing 11 so as to be connected to the upstream connecting pipe 24. Is done.
  • the exhaust gas guide member 47 includes a curved surface portion 48 that is connected to the upstream connecting pipe 24 and contacts the outer peripheral surfaces of the upstream ends of the upper and lower oxidation catalyst carriers 40-1 and 40-2.
  • an end member 50 in the vertical direction provided with openings 49-1 and 49-2 facing the end surfaces of the upper and lower oxidation catalyst carriers 40-1 and 40-2.
  • the downstream ends of the oxidation catalyst carriers 40-1 and 40-2 are opened to a collecting space 51 having a large capacity at the rear portion in the casing 11.
  • the internal spaces 52 and 52 around the oxidation catalyst carriers 40-1 and 40-2 and the exhaust gas guide member 47 are formed so as to communicate with the collective space 51.
  • the parallel oxidation catalyst carriers 40-1 and 40-2 are arranged at the central portion, and upstream of the oxidation catalyst carriers 40-1 and 40-2.
  • the exhaust gas from the engine 2 side is formed by arranging the side connecting pipe 24 and the curved surface portion 48 of the exhaust gas guide member 47 and forming a collective space 51 on the downstream side of the oxidation catalyst carriers 40-1 and 40-2.
  • the resistance to the gas flow is reduced, the exhaust gas can be prevented from flowing backward in the upstream portion of the catalyst device 9, and the exhaust gas flow can be made favorable.
  • the exhaust gas from the engine 2 flows from the exhaust manifold 5 to the catalyst device 9 in the exhaust pipe 8 as shown in FIG.
  • this catalyst device 9 when the exhaust gas smoothly flows from the exhaust gas guide member 47 into the oxidation catalyst carriers 40-1 and 40-2 without flowing back, harmful components in the exhaust gas are parallel to the oxidation catalyst carrier 40. -1 and 40-2, and the exhaust gas is purified. Thereafter, the purified exhaust gas flows out into the collecting space 51 having a large capacity and also flows into the internal spaces 52 and 52. Therefore, the catalyst device 9 can perform a muffler function to mute the exhaust gas.
  • the first connection mechanism 26 and the second connection mechanism 27 Is removed from the exhaust pipe 8, and then a new catalyst device 9 is attached to the exhaust pipe 8 by the first connection mechanism 26 and the second connection mechanism 27. Exchange can be easily performed. Further, when the oxidation catalyst carriers 40-1 and 40-2 are to be exchanged due to deterioration of the oxidation catalyst carriers 40-1 and 40-2 in the casing 11 of the catalyst device 9 or different engine types and displacements. First, the catalyst device 9 is removed from the exhaust pipe 8, and, as shown in FIG.
  • the one side case portion 12 and the other side case portion 13 of the casing 11 are opened, and the one side attachment from the casing 11 is performed.
  • the means 46-1 and the other side attaching means 46-2 are released, and the current oxidation catalyst carrier is removed from the carrier holding member 41.
  • a new oxidation catalyst carrier is attached to the carrier holding member 41, and the carrier holding member 41 is firmly fixed in the casing 11 by the one side attachment means 46-1 and the other side attachment means 46-2.
  • the casing 11 is attached to the exhaust pipe 8 by the first connection mechanism 26 and the second connection mechanism 27.
  • the replacement operation can be performed easily. Furthermore, by making the two oxidation catalyst carriers 40-1 and 40-2 the same size (the same diameter and the same length), the casing 11 and the carrier holding member 41 can be made versatile and the number of parts can be reduced. The structure can be made simple and inexpensive.
  • FIG. 13 and 14 show a second embodiment of the present invention.
  • portions that perform the same functions as those of the first embodiment will be described with the same reference numerals.
  • the features of the second embodiment are as follows. That is, in the catalyst device 9 having the same structure as that of the first embodiment, as shown in FIG. 13, three honeycomb-shaped oxidation catalyst carriers 40-1 are used as at least two catalyst carriers in the casing 11. 40-2 and 40-3 are arranged in parallel in the vertical direction, and the casing 11 is detachably provided on the exhaust pipe 8 by a first connection mechanism 26 and a second connection mechanism 27. In this case, as shown in FIG. 14, the carrier holding member 53 holds the oxidation catalyst carriers 40-1, 40-2, 40-3 in parallel in the vertical direction.
  • the parallel oxidation catalyst carriers 40-1, 40-2, and 40-3 effectively purify the exhaust gas even for a gasoline engine having a large displacement, and The exchange or the exchange of the oxidation catalyst carrier 40-1, 40-2, 40-3 can be easily performed.
  • FIG. 15 and 16 show a third embodiment of the present invention.
  • the features of the third embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in series in the casing 11 as at least two or more catalyst carriers, and the casing 11 is connected to the exhaust pipe 8.
  • the first connection mechanism 26 and the second connection mechanism 27 are detachably provided.
  • an exhaust gas guide cylinder 57 is disposed between the upstream communication pipe 24 and the upstream oxidation catalyst carrier 40-1, and the upstream oxidation catalyst carrier 40-1
  • a connecting cylinder part 58-1 is arranged between the downstream side oxidation catalyst carrier 40-2.
  • the carrier holding member 59 has a holding curved portion 60 that holds more than half of the circular shape on one side of the oxidation catalyst carrier 40-1, and a longitudinal direction so as to hold the oxidation catalyst carrier 40-1. It is provided with mounting end portions 61-1 and 61-2 at both ends in the direction.
  • the carrier holding member that holds the oxidation catalyst carrier 40-2 has the same structure as the carrier holding member 59 described above, and a detailed description thereof will be omitted here. With such a structure, the exhaust gas is effectively purified in two stages by the series oxidation catalyst carriers 40-1 and 40-2, and the entire catalyst device 9 is replaced or the oxidation catalyst carriers 40-1 and 40-2 are replaced. Exchange can be easily performed.
  • FIG. 17 shows Embodiment 4 of the present invention.
  • the features of the fourth embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- Two oxidation catalyst carriers 40-3 and 40-4 are arranged in parallel in the vertical direction on the downstream side of 1 and 40-2, and the casing 11 is connected to the exhaust pipe 8 with the first connection mechanism 26 and the second connection mechanism 27. It was detachably provided.
  • the first connecting cylinder part 58-1 is disposed between the oxidation catalyst carrier 40-1 and the oxidation catalyst carrier 40-3 in series, and the oxidation catalyst carrier 40-2 and the oxidation catalyst carrier 40- in series.
  • the second connecting cylinder part 58-2 is arranged between
  • the carrier holding members 41 shown in FIGS. 5 and 6 are used as the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2 and the oxidation catalyst carriers 40-3 and 40-4. Detailed description thereof will be omitted.
  • the oxidation catalyst carriers 40-1 and 40-2 arranged in parallel in the vertical direction, and the oxidation catalyst carriers 40-3 and 40 downstream of the oxidation catalyst carriers 40-1 and 40-2. -4, the exhaust gas is effectively purified by a two-stage structure in parallel and in series, and the entire catalyst device 9 is replaced or the oxidation catalyst carriers 40-1 and 40-2 and the oxidation catalyst carriers 40-3 and 40 -4 can be exchanged easily.
  • FIG. 18 shows Embodiment 5 of the present invention.
  • the features of the fifth embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- Two selective catalytic reduction carriers (SCR catalyst carriers) 62-1 and 62-2 are arranged in parallel in the vertical direction on the downstream side of 1.40-2, and the casing 11 is connected to the exhaust pipe 8 with the first connection mechanism 26.
  • the second connection mechanism 27 is detachably provided.
  • Selective catalytic reduction carrier 62-1, 62-2 a catalyst carrier of the NO X measures to selective reduction of NO X with NH 3, and used for purifying exhaust gas of diesel engines.
  • the first connecting cylinder portion 58-1 is disposed between the series oxidation catalyst carrier 40-1 and the selective catalyst reduction carrier 62-1, and the series oxidation catalyst carrier 40-2 and the selective catalyst reduction carrier 62-1.
  • the second connecting cylinder part 58-2 is arranged between the terminal 62-1.
  • the carrier holding members 41 shown in FIGS. 5 and 6 are used as the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2 and the selective catalyst reduction carriers 62-1 and 62-2. Therefore, the detailed description is abbreviate
  • the oxidation catalyst carriers 40-1 and 40-2 arranged in parallel in the vertical direction and the selection arranged in parallel in the vertical direction on the downstream side of the oxidation catalyst carriers 40-1 and 40-2.
  • the catalyst reduction carriers 62-1 and 62-2 effectively purify the exhaust gas of the gasoline engine and the diesel engine and replace the entire catalyst device 9 or the oxidation catalyst carriers 40-1 and 40-2 and the selective catalyst reduction.
  • the exchange of the carriers 62-1 and 62-2 can be easily performed. If the exhaust gas of the diesel engine is mainly to be purified, the selective catalyst reduction carriers 62-1 and 62-2 are disposed in the casing 11 upstream of the oxidation catalyst carriers 40-1 and 40-2. Is also possible.
  • FIG. 19 shows Embodiment 6 of the present invention.
  • the features of the sixth embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- Two selective catalytic reduction carriers 62-1 and 62-2 are arranged in parallel in the vertical direction on the downstream side of 1 and 40-2, and further on the downstream side of the selective catalytic reduction carriers 62-1 and 62-2. Two oxidation catalyst carriers 40-3 and 40-4 are arranged in parallel in the vertical direction, and the casing 11 is detachably provided on the exhaust pipe 8 by a first connection mechanism 26 and a second connection mechanism 27.
  • the first connecting cylinder part 58-1 is disposed between the oxidation catalyst carrier 40-1 and the selective catalyst reduction carrier 62-1, and the oxidation catalyst carrier 40-2 and the selective catalyst reduction carrier 62-2 are arranged.
  • the second connecting cylinder part 58-2 is arranged between them, and the third connecting cylinder part 58-3 is arranged between the selective catalyst reduction support 62-1 and the oxidation catalyst support 40-3, and the selective catalyst reduction is performed.
  • a fourth connecting cylinder portion 58-4 is disposed between the carrier 62-2 and the oxidation catalyst carrier 40-4.
  • the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2, the selective catalyst reduction carriers 62-1 and 62-2, and the oxidation catalyst carriers 40-3 and 40-4 are: Since the carrier holding member 41 shown in FIGS.
  • the exhaust gas from the engine 2 is first purified by the upstream oxidation catalyst carriers 40-1 and 40-2, and then purified by the selective catalyst reduction carriers 62-1 and 62-2.
  • the oxidation catalyst carrier 40-3 and 40-4 on the downstream side, large gasoline engines and diesel engines can be dealt with, and exhaust gases from large gasoline engines and diesel engines can be used.
  • the entire catalyst device 9 is replaced, or the oxidation catalyst carriers 40-1 and 40-2, the selective catalyst reduction carriers 62-1 and 62-2, or the oxidation catalyst carriers 40-3 and 40-4 are replaced. Exchange can be easily performed.
  • the selective catalyst reduction carriers 62-1 and 62-2 can be arranged on the most upstream side in the casing 11.
  • FIG. 20 shows Embodiment 7 of the present invention.
  • the features of the seventh embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- One selective catalytic reduction carrier 62-1 is arranged at an intermediate position at a predetermined interval L on the downstream side of 1.40-2, and further, a predetermined interval is provided on the downstream side of the selective catalytic reduction carrier 62-1. L is opened and the two oxidation catalyst carriers 40-3 and 40-4 are arranged in parallel in the vertical direction, and the casing 11 is detachably provided on the exhaust pipe 8 by the first connection mechanism 26 and the second connection mechanism 27. It was.
  • Example 7 the carrier holding members 41 shown in FIGS. 5 and 6 are used as the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2 and the oxidation catalyst carriers 40-3 and 40-4.
  • the carrier holding member 59 shown in FIG. 16 can be used as the carrier holding member of the selective catalyst reduction carrier 62-1, the description thereof is omitted here.
  • the upstream side oxidation catalyst carriers 40-1 and 40-2, the intermediate selective catalyst reduction carrier 62-1 and the downstream side oxidation catalyst carriers 40-3 and 40-4 each have predetermined Since they are separated by an interval L, the exhaust gas from the upstream oxidation catalyst carriers 40-1 and 40-2 flows into the selective catalyst reduction carrier 62-1, or outside the selective catalyst reduction carrier 62-1.
  • the flow further changes direction to the outside of the oxidation catalyst carriers 40-3 and 40-4 and the oxidation catalyst carriers 40-3 and 40-4.
  • the exhaust gas of the gasoline engine or the diesel engine can be further effectively purified, and the exhaust noise can be effectively suppressed.
  • the entire catalyst device 9 can be replaced, or the oxidation catalyst carriers 40-1 and 40-2, the selective catalyst reduction carrier 62-1 or the oxidation catalyst carriers 40-3 and 40-4 can be easily replaced. .
  • FIG. 21 shows Embodiment 8 of the present invention.
  • the features of the eighth embodiment are as follows. That is, in the catalyst device 9, three oxidation catalyst carriers 40-1, 40-2, and 40-3 are arranged in parallel in the vertical direction in the casing 11 as at least two or more catalyst carriers, and The selective catalytic reduction carriers 62-1 62-2, and 62-3 are arranged in parallel in the vertical direction on the downstream side of the catalyst carriers 40-1, 40-2, and 40-3, and the casing 11 is first connected to the exhaust pipe 8.
  • the connection mechanism 26 and the second connection mechanism 27 are detachably provided.
  • the first connecting cylinder portion 58-1 is disposed between the oxidation catalyst carrier 40-1 and the selective catalyst reduction carrier 62-1, and the oxidation catalyst carrier 40-2 and the selective catalyst reduction carrier 62-. 2 is connected to the second connecting cylinder part 58-2, and the third connecting cylinder part 58-3 is arranged between the oxidation catalyst carrier 40-3 and the selective catalyst reduction carrier 62-3.
  • the carrier holding members of the oxidation catalyst carriers 40-1, 40-2, and 40-3 and the selective catalyst reduction carriers 62-1 62-2, and 62-3 are the carriers shown in FIG. Since the holding member 53 can be used, the description thereof is omitted here.
  • a large gasoline engine is composed of the upstream oxidation catalyst carrier 40-1, 40-2, 40-3 and the downstream selective catalyst reduction carrier 62-1, 62-2, 62-3.
  • exhaust gas from diesel engines can be effectively purified.
  • the entire catalyst device 9 can be easily replaced, or the oxidation catalyst carrier 40-1, 40-2, the selective catalyst reduction carrier 62-1, or the selective catalyst reduction carrier 62-1, 62-2, 62-3 can be easily exchanged. Can be done.
  • the selective catalytic reduction carriers 62-1 62-2 and 62-3 are arranged on the upstream side, while the oxidation catalyst carriers 40-1, 40-2 and 40-3 are arranged on the downstream side. It is also possible to arrange.
  • Embodiment 9 of the present invention shows Embodiment 9 of the present invention.
  • the features of the ninth embodiment are as follows. That is, in the catalyst device 9, in the casing 11, at least two or more catalyst carriers are arranged in parallel with the oxidation catalyst carrier 40-1 at the central portion and around the oxidation catalyst carrier 40-1 in front view.
  • Four oxidation catalyst carriers 40-2, 40-3, 40-4, and 40-5 are arranged at equal intervals in the circumferential direction, and these oxidation catalyst carriers 40-1 to 40-4 and 40-5 are arranged as carrier holding members. Hold at 63.
  • the oxidation catalyst carriers 40-1 to 40-5 have the same diameter.
  • the carrier holding member 63 is composed of, for example, a pair of holding disks 64-1 and 64-2 separated by a certain distance. As shown in FIG.
  • the holding disks 64-1 and 64-2 are formed with five mounting holes 65-1 to 65-5 into which the oxidation catalyst carriers 40-1 to 40-5 are inserted. Yes.
  • the exhaust gas from the engine 2 is effectively purified by the five oxidation catalyst carriers 40-1 to 40-5, the casing 11 is made compact, and the exhaust device 9 is downsized. Can do.
  • the casing 11 and the carrier holding member 63 can be made versatile and the number of parts can be reduced.
  • the structure can be made simple and inexpensive. In Example 9, the oxidation catalyst carrier and the selective catalyst reduction carrier can be combined.
  • FIG. 24 shows Embodiment 10 of the present invention.
  • the features of the tenth embodiment are as follows. That is, in the catalyst device 9, for example, the first oxidation catalyst carrier 66 and the second oxidation catalyst carrier 67 are sequentially provided in the casing 11 as at least two or more catalyst carriers sequentially from the upstream side to the downstream side of the exhaust gas flow. And the third oxidation catalyst carrier 68 are arranged in series.
  • the first oxidation catalyst carrier 66 is configured such that the catalyst component (catalyst metal) 40C supported on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A (see FIG. 3) has a relatively low density (coarse). Construction).
  • the second oxidation catalyst carrier 67 can change the density of the catalyst component (catalyst metal) 40C by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method.
  • the first oxidation catalyst carrier 66 is configured to have a predetermined height (medium roughness structure).
  • the third oxidation catalyst carrier 68 has the density of the catalyst component (catalyst metal) 40C changed by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method.
  • the second oxidation catalyst carrier 67 is configured to have a predetermined height (fine structure).
  • the density of the catalyst component can be increased stepwise by the first oxidation catalyst carrier 66, the second oxidation catalyst carrier 67, and the third oxidation catalyst carrier 68.
  • the exhaust gas is finely purified by the second oxidation catalyst carrier 67 and the third oxidation catalyst carrier 68 on the downstream side.
  • the purification function of each oxidation catalyst carrier can be fully exerted, the exhaust gas purification performance can be improved as a whole, and the service life of each oxidation catalyst carrier can be extended.
  • the selective catalyst reduction carrier instead of the oxidation catalyst carrier, can have the same structure.
  • FIG. 25 shows Embodiment 11 of the present invention.
  • the features of the eleventh embodiment are as follows. That is, one oxidation catalyst carrier 69 is configured by, for example, the first carrier portion 70A, the second carrier portion 70B, and the third carrier portion 70C sequentially from the upstream side to the downstream side of the exhaust gas flow.
  • the first carrier portion 70A is configured to have a relatively low density of a catalyst component (catalyst metal) 40C (see FIG. 3) supported on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A. (Coarse structure).
  • the second carrier portion 70B can reduce the density of the catalyst component (catalyst metal) 40C by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method.
  • the first carrier portion 70A is configured to have a predetermined height (medium roughness structure).
  • the third carrier portion 70C reduces the density of the catalyst component (catalyst metal) 40C by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method.
  • the second carrier portion 70B is configured to have a predetermined height (fine structure).
  • the density of the catalyst component can be increased stepwise in one oxidation catalyst carrier 69, so that the exhaust gas can be efficiently purified by the oxidation catalyst carrier 69. It can be optimally used for vehicles and the like.
  • the selective catalyst reduction carrier instead of the oxidation catalyst carrier, can have the same structure.
  • the catalyst carriers in parallel and / or in series, with the catalyst carriers not having the same shape but having a different shape, and having different shapes.
  • the exhaust gas purification system according to the present invention can be applied not only to four-wheeled vehicles but also to other vehicles such as two-wheeled vehicles and heavy machinery and power generation devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

[Solution] An exhaust gas purification system (3) for purifying exhaust gas discharged from an engine (2) into an exhaust pipe (8), wherein a catalytic device (9) has, as catalyst carriers, at least two oxidation catalyst carriers (40-1/40-2) and/or selective catalytic reduction carriers (62-1/62-2) arranged in parallel or in series within a casing (11), with the casing (11) provided in detachable manner on the exhaust pipe (8). Thus, the exhaust gas from the engine (2) is purified efficiently even when the type of engine or the engine displacement differs, and the entire catalytic device (9) or the catalyst carriers (40-1/40-2, 62-1/62-2) inside the casing (11) can easily be replaced.

Description

排気ガス浄化システムExhaust gas purification system
 この発明は、排気ガス浄化システムに係り、特にエンジンからの排気ガスを浄化する排気ガス浄化システムに関する。 The present invention relates to an exhaust gas purification system, and more particularly to an exhaust gas purification system that purifies exhaust gas from an engine.
 自動車等のエンジンは、排気ガス対策として、排気ガスを浄化するために、排気ガス浄化システムを備えている。この排気ガス浄化システムには、酸化触媒、還元触媒、三元触媒等を備えたものがある。
 このような排気ガス浄化システムとしては、以下の先行技術文献がある。
Engines such as automobiles are provided with an exhaust gas purification system to purify exhaust gas as a countermeasure against exhaust gas. Some exhaust gas purification systems include an oxidation catalyst, a reduction catalyst, a three-way catalyst, and the like.
As such an exhaust gas purification system, there are the following prior art documents.
特開平8-193513号公報 特許文献1に記載の電気加熱触媒コンバータおよびその制御方法は、触媒担体の径方向に切欠部を形成し、この切欠部側に複数の分割部を、切欠部と反対側に連続部を形成するとともに、分割部に電極を接続した構造である。Japanese Patent Laid-Open No. 8-193513 discloses an electric heating catalytic converter and a control method therefor, in which a notch is formed in the radial direction of the catalyst carrier, and a plurality of divided parts are opposite to the notch. In this structure, a continuous portion is formed on the side and electrodes are connected to the divided portions.
 ところが、従来、排気ガス浄化システムにおいては、ケーシング内に1個の触媒担体を固定した触媒装置が用いられていることから、エンジンの種類や排気量が異なる場合の排気ガス対策が難かしいとともに、ケーシング内に固定された触媒担体が劣化した場合に、その触媒担体のみを交換することが困難であり、改善が望まれていた。 However, conventionally, in an exhaust gas purification system, since a catalyst device in which one catalyst carrier is fixed in a casing is used, it is difficult to take measures against exhaust gas when the type of engine and the amount of exhaust are different. When the catalyst carrier fixed in the casing deteriorates, it is difficult to replace only the catalyst carrier, and improvement has been desired.
 そこで、この発明は、エンジンの種類や排気量が異なってもエンジンからの排気ガスを効率良く浄化するとともに、触媒装置全体の交換あるいはケーシング内の触媒担体の交換を簡便に行わせることができる排気ガス浄化システムを提供することを目的とする。 Therefore, the present invention efficiently purifies exhaust gas from the engine even if the type and displacement of the engine are different, and makes it possible to easily replace the entire catalyst device or the catalyst carrier in the casing. An object is to provide a gas purification system.
 この発明は、エンジンから排気管内に排出された排気ガスを浄化する排気ガス浄化システムにおいて、少なくとも2個以上の触媒担体をケーシング内で並列及び/又は直列に配置するとともに、前記ケーシングを前記排気管に着脱可能に設けたことを特徴とする。 The present invention provides an exhaust gas purification system for purifying exhaust gas discharged from an engine into an exhaust pipe, wherein at least two or more catalyst carriers are arranged in parallel and / or in series in the casing, and the casing is disposed in the exhaust pipe. It is characterized in that it is detachably provided.
 この発明は、エンジンの種類や排気量が異なってもエンジンからの排気ガスを効率良く浄化するとともに、触媒装置全体の交換あるいはケーシング内の触媒担体の交換を簡便に行わせることができる。 The present invention can efficiently purify the exhaust gas from the engine even if the type of engine and the displacement are different, and can easily replace the entire catalyst device or the catalyst carrier in the casing.
図1は触媒装置の概略構成図である。(実施例1)FIG. 1 is a schematic configuration diagram of a catalyst device. (Example 1) 図2は触媒装置の断面図である。(実施例1)FIG. 2 is a sectional view of the catalyst device. (Example 1) 図3は触媒担体の一部拡大正面図である。(実施例1)FIG. 3 is a partially enlarged front view of the catalyst carrier. (Example 1) 図4はケーシングの開放状態の断面図である。(実施例1)FIG. 4 is a sectional view of the casing in an opened state. (Example 1) 図5は担体保持部材の断面図である。(実施例1)FIG. 5 is a cross-sectional view of the carrier holding member. (Example 1) 図6は担体保持部材の斜視図である。(実施例1)FIG. 6 is a perspective view of the carrier holding member. (Example 1) 図7は担体保持部材の第1取付手段の断面図である。(実施例1)FIG. 7 is a cross-sectional view of the first attaching means of the carrier holding member. (Example 1) 図8は担体保持部材の第2取付手段の断面図である。(実施例1)FIG. 8 is a sectional view of the second attaching means of the carrier holding member. (Example 1) 図9は触媒装置の排気ガス案内部材の断面図である。(実施例1)FIG. 9 is a cross-sectional view of the exhaust gas guide member of the catalyst device. (Example 1) 図10は触媒装置の第1接続機構の断面図である。(実施例1)FIG. 10 is a cross-sectional view of the first connection mechanism of the catalyst device. (Example 1) 図11は触媒装置の第2接続機構の断面図である。(実施例1)FIG. 11 is a cross-sectional view of the second connection mechanism of the catalyst device. (Example 1) 図12は車両の概略構成図である。(実施例1)FIG. 12 is a schematic configuration diagram of the vehicle. (Example 1) 図13は触媒装置の概略構成図である。(実施例2)FIG. 13 is a schematic configuration diagram of the catalyst device. (Example 2) 図14は担体保持部材の断面図である。(実施例2)FIG. 14 is a cross-sectional view of the carrier holding member. (Example 2) 図15は触媒装置の概略構成図である。(実施例3)FIG. 15 is a schematic configuration diagram of the catalyst device. (Example 3) 図16は担体保持部材の断面図である。(実施例3)FIG. 16 is a cross-sectional view of the carrier holding member. (Example 3) 図17は触媒装置の概略構成図である。(実施例4)FIG. 17 is a schematic configuration diagram of the catalyst device. Example 4 図18は触媒装置の概略構成図である。(実施例5)FIG. 18 is a schematic configuration diagram of the catalyst device. (Example 5) 図19は触媒装置の概略構成図である。(実施例6)FIG. 19 is a schematic configuration diagram of the catalyst device. (Example 6) 図20は触媒装置の概略構成図である。(実施例7)FIG. 20 is a schematic configuration diagram of the catalyst device. (Example 7) 図21は触媒装置の概略構成図である。(実施例8)FIG. 21 is a schematic configuration diagram of the catalyst device. (Example 8) 図22は触媒装置の正面図である。(実施例9)FIG. 22 is a front view of the catalyst device. Example 9 図23は触媒装置の側面図である。(実施例9)FIG. 23 is a side view of the catalyst device. Example 9 図24は段階的に触媒成分の担持密度が高くなる複数の触媒担体を直列に配置した側面図である。(実施例10)FIG. 24 is a side view in which a plurality of catalyst carriers whose catalyst component loading density gradually increases are arranged in series. (Example 10) 図25は段階的に触媒成分の担持密度が高くなるように構成した一つの触媒担体の側面図である。(実施例11)FIG. 25 is a side view of one catalyst carrier configured so that the catalyst component loading density increases stepwise. (Example 11)
 この発明は、エンジンの種類や排気量が異なってもエンジンからの排気ガスを効率良く浄化するとともに、触媒装置全体の交換あるいはケーシング内の触媒担体の交換を簡便に行わせる目的を、少なくとも2個以上の触媒担体を並列及び/又は直列にケーシング内に配置するとともに、ケーシングを排気管に着脱可能に設けて実現するものである。 The present invention aims to efficiently purify exhaust gas from the engine even if the type and displacement of the engine are different, and to easily replace the entire catalyst device or the catalyst carrier in the casing. The above catalyst carriers are arranged in parallel and / or in series in the casing, and the casing is detachably provided on the exhaust pipe.
 図1~図12は、この発明の実施例1を示すものである。
 図12に示すように、車両1には、エンジン2と、このエンジン2の排気ガス浄化システム3とが搭載される。
 排気ガス浄化システム3は、エンジン2にマニホルド取付フランジ4を介して取り付けられた排気マニホルド5と、この排気マニホルド5のマニホルド側接続フランジ6に排気管側フランジ7を介して接続された排気管8と、この排気管8の途中に取り付けられた触媒装置(触媒コンバータ)9と、この触媒装置9の下流側の排気管8に取り付けられたマフラ10とを備える。
1 to 12 show Embodiment 1 of the present invention.
As shown in FIG. 12, the vehicle 1 is equipped with an engine 2 and an exhaust gas purification system 3 of the engine 2.
The exhaust gas purification system 3 includes an exhaust manifold 5 attached to the engine 2 via a manifold attachment flange 4, and an exhaust pipe 8 connected to a manifold side connection flange 6 of the exhaust manifold 5 via an exhaust pipe side flange 7. And a catalyst device (catalytic converter) 9 attached in the middle of the exhaust pipe 8 and a muffler 10 attached to the exhaust pipe 8 on the downstream side of the catalyst device 9.
 図1、図2に示すように、触媒装置9は、ケーシング11を備える。
 このケーシング11は、例えば、上側で断面半円形状の一側ケース部12とこの一側ケース部12に対向するように下側で断面半円形状の他側ケース部13とから構成される。一側ケース部12の接合面と他側ケース部13の接合面とは、シール材を介して接合している。
 ケーシング11において、接合した一側ケース部12と他側ケース部13とは、一側接合部14がヒンジ15で連結しているとともに、他側接合部16が結合手段17によって結合されている。
 この結合手段17は、例えば、図2に示すように、一側ケース部12に支持軸18で回動可能に支持されたフック19と、このフック19と係止するように他側ケース部13に固定されたフック止め具20とからなる。
 従って、ケーシング11は、図4に示すように、フック19をフック止め具20から外すことにより、内部を開放状態とし、これにより、後述の触媒担体の取り付け・取り外しを容易とする。
As shown in FIGS. 1 and 2, the catalyst device 9 includes a casing 11.
The casing 11 includes, for example, a one-side case portion 12 having a semicircular cross section on the upper side and an other case portion 13 having a semicircular cross section on the lower side so as to face the one side case portion 12. The joining surface of the one side case part 12 and the joining surface of the other side case part 13 are joined via a sealing material.
In the casing 11, the joined one-side case portion 12 and the other-side case portion 13 are connected by the one-side joined portion 14 with the hinge 15 and the other-side joined portion 16 by the coupling means 17.
For example, as shown in FIG. 2, the coupling means 17 includes a hook 19 that is rotatably supported by the one side case portion 12 by a support shaft 18, and the other case portion 13 that is engaged with the hook 19. And a hook stopper 20 fixed to the head.
Therefore, as shown in FIG. 4, the casing 11 is opened by removing the hook 19 from the hook stopper 20, thereby facilitating attachment / detachment of a catalyst carrier described later.
 また、ケーシング11は、図1に示すように、一側ケース部12と他側ケース部13とを結合することにより、排気管8よりも大径のケース筒状部21と、このケース筒状部21の上流端のケース上流端部22と、ケース筒状部21の下流端のケース下流端部23とを形成する。なお、ケース上流端部22は、排気ガス流の上流側から下流側へ拡がる末広がり形状に形成にすることも可能である。ケース下流端部23は、排気ガス流の上流側から下流側へ狭くなるように窄み形状に形成することも可能である。
 ケース上流端部22には、上流側連結管24が連結している。ケース下流端部23には、下流側連結管25が連結している。
Further, as shown in FIG. 1, the casing 11 includes a case cylindrical portion 21 having a diameter larger than that of the exhaust pipe 8 and the case cylindrical shape by connecting the one side case portion 12 and the other side case portion 13. A case upstream end portion 22 at the upstream end of the portion 21 and a case downstream end portion 23 at the downstream end of the case cylindrical portion 21 are formed. Note that the case upstream end 22 can be formed in a divergent shape that extends from the upstream side to the downstream side of the exhaust gas flow. The case downstream end portion 23 can be formed in a constricted shape so as to become narrower from the upstream side to the downstream side of the exhaust gas flow.
An upstream connection pipe 24 is connected to the case upstream end 22. A downstream connection pipe 25 is connected to the case downstream end 23.
 ケーシング11は、図12に示すように、上流側の第1接続機構26と下流側の第2接続機構27とによって排気管8に着脱可能に取り付けられる。 As shown in FIG. 12, the casing 11 is detachably attached to the exhaust pipe 8 by an upstream first connection mechanism 26 and a downstream second connection mechanism 27.
 第1接続機構26は、例えば、図10に示すように、排気管8の第1排気管側接続フランジ28と、この第1排気管側接続フランジ28に取り付けられる上流側連結管24の第1ケース側接続フランジ29と、第1排気管側接続フランジ28の第1排気管側取付孔30と第1ケース側接続フランジ29の第1ケース側取付孔31とに挿通される第1取付ボルト32と、この第1取付ボルト32に螺着される第1取付ナット33とを備える。
 なお、第1排気管側取付孔30及び第1ケース側取付孔31を、円形状のみならず、長穴や斜め穴に形成することにより、取付時に寸法誤差を吸収させて、取付作業を向上させることができる。
For example, as shown in FIG. 10, the first connection mechanism 26 includes a first exhaust pipe side connection flange 28 of the exhaust pipe 8 and a first connection pipe 24 attached to the first exhaust pipe side connection flange 28. A first attachment bolt 32 inserted through the case side connection flange 29, the first exhaust pipe side attachment hole 30 of the first exhaust pipe side connection flange 28, and the first case side attachment hole 31 of the first case side connection flange 29. And a first mounting nut 33 that is screwed onto the first mounting bolt 32.
In addition, the first exhaust pipe side mounting hole 30 and the first case side mounting hole 31 are formed not only in a circular shape but also in a long hole or a slanted hole, so that a dimensional error is absorbed at the time of mounting and the mounting work is improved. Can be made.
 第2接続機構27は、例えば、図11に示すように、排気管8の第2排気管側接続フランジ34と、この第2排気管側接続フランジ34に取り付けられる下流側連結管25の第2ケース側接続フランジ35と、第2排気管側接続フランジ34の第2排気管側取付孔36と第2ケース側接続フランジ35の第2ケース側取付孔37とに挿通される第2取付ボルト38と、この第2取付ボルト38に螺着される第2取付ナット39とを備える。
 なお、第2排気管側取付孔36及び第2ケース側取付孔37を、円形状のみならず、長穴や斜め穴に形成することにより、取付時に寸法誤差を吸収させて、取付作業を向上させることができる。
For example, as shown in FIG. 11, the second connection mechanism 27 includes a second exhaust pipe side connection flange 34 of the exhaust pipe 8 and a second side of the downstream side connection pipe 25 attached to the second exhaust pipe side connection flange 34. Second mounting bolts 38 inserted through the case side connection flange 35, the second exhaust pipe side mounting hole 36 of the second exhaust pipe side connection flange 34, and the second case side mounting hole 37 of the second case side connection flange 35. And a second mounting nut 39 that is screwed onto the second mounting bolt 38.
The second exhaust pipe side mounting hole 36 and the second case side mounting hole 37 are formed not only in a circular shape but also in a long hole or a slanted hole, thereby absorbing a dimensional error during mounting and improving the mounting work. Can be made.
 第1接続機構26と第2接続機構27とは、触媒装置9のケーシング11を排気管8に対して取り付け・取り外しを容易とし、触媒装置9全体の交換を簡便に行わせることができる。 The first connection mechanism 26 and the second connection mechanism 27 can easily attach / remove the casing 11 of the catalyst device 9 to / from the exhaust pipe 8, and can easily replace the catalyst device 9 as a whole.
 ケーシング11内には、少なくとも2個以上の触媒担体として、この実施例1では、図1に示すように、2個のハニカム状の酸化触媒担体(ハニカム酸化触媒担体)40-1・40-2が上下方向で並列に配設される。
 この酸化触媒担体40-1・40-2は、同じ大きさ(同一直径・同一長さ)で、図3に示すように、例えば、コージライトやセラミックス等の断面円形状の担体40Aに複数の排気ガス通過孔40Bを形成し、これら各排気ガス通過孔40Bの内周面に触媒成分(触媒金属)40Cを所定の付着量や所定の担持方法によって所要の密度で担持させて構成されたものであって、ガソリンエンジンの排気ガスを浄化するために用いられる。
 この酸化触媒担体40-1・40-2は、担体保持部材41によってケーシング11内に保持される。
 なお、酸化触媒担体40-1・40-2は、断面円形状に限らず、他の形状に形成することも可能である。また、排気ガス通過孔40Bは、その断面を種々異ならせることが可能である。
In the casing 11, as shown in FIG. 1, two honeycomb-shaped oxidation catalyst carriers (honeycomb oxidation catalyst carriers) 40-1 and 40-2 are used as at least two catalyst carriers in the casing 11. Are arranged in parallel in the vertical direction.
The oxidation catalyst carriers 40-1 and 40-2 have the same size (the same diameter and the same length), and, as shown in FIG. 3, for example, a plurality of carriers 40A having a circular cross section such as cordierite or ceramics. An exhaust gas passage hole 40B is formed, and a catalyst component (catalyst metal) 40C is supported on the inner peripheral surface of each exhaust gas passage hole 40B at a predetermined density by a predetermined adhesion amount or a predetermined supporting method. Therefore, it is used for purifying the exhaust gas of a gasoline engine.
The oxidation catalyst carriers 40-1 and 40-2 are held in the casing 11 by the carrier holding member 41.
The oxidation catalyst carriers 40-1 and 40-2 are not limited to a circular cross section, and may be formed in other shapes. Further, the exhaust gas passage hole 40B can have various cross sections.
 担体保持部材41は、図5、図6に示すように、例えば、酸化触媒担体40-1・40-2を上下方向で並列に保持するように、酸化触媒担体40-1・40-2の一側の円形状の半分以上を保持する保持湾曲部42-1・42-2と、酸化触媒担体40-1と酸化触媒担体40-2との間の連結部43と、長手方向で両端の取付用端部44-1・44-2とを形成している。
 具体的に説明すると、担体保持部材41は、一枚の板材(例えば、ステンレス製等)を曲げ加工して形成されたものである。そして、担体保持部材41は、図5に示すように、酸化触媒担体40-1・40-2を抱きかかえて外すことのないような構造とするために、保持湾曲部42-1の端面部45-1・45-1及び保持湾曲部42-2の端面部45-2・45-2が、保持湾曲部42-1・42-2の中心C・Cを通る中心線Mよりも所定の長さHで開放側へ突出している。なお、この長さHは、任意に設定可能である。
As shown in FIGS. 5 and 6, the carrier holding member 41 includes, for example, the oxidation catalyst carriers 40-1 and 40-2 so as to hold the oxidation catalyst carriers 40-1 and 40-2 in parallel in the vertical direction. Holding curved portions 42-1 and 42-2 that hold more than half of the circular shape on one side, a connecting portion 43 between the oxidation catalyst carrier 40-1 and the oxidation catalyst carrier 40-2, and both ends in the longitudinal direction. The mounting end portions 44-1 and 44-2 are formed.
More specifically, the carrier holding member 41 is formed by bending a single plate material (for example, made of stainless steel). As shown in FIG. 5, the carrier holding member 41 has an end surface portion of the holding curved portion 42-1 so that the oxidation catalyst carriers 40-1 and 40-2 are not held and removed. 45-1 and 45-1 and end face portions 45-2 and 45-2 of the holding curved portion 42-2 are more predetermined than a center line M passing through the centers C and C of the holding curved portions 42-1 and 42-2. It protrudes to the open side with a length H. The length H can be arbitrarily set.
 この担体保持部材41において、図5に示すように、酸化触媒担体40-1・40-2を保持湾曲部42-1・42-2に嵌め込む際には、酸化触媒担体40-1・40-2を保持湾曲部42-1・42-2の開放側から押し込むことにより(実線の矢印P方向で示す)、保持湾曲部42-1・42-2の各端面部が中心線Mの方向へ拡がるように弾性変形して酸化触媒担体40-1・40-2の保持湾曲部33-1・33-2内への挿入を可能とする。その後、酸化触媒担体40-1・40-2が保持湾曲部42-1・42-2内に完全に収容された際には、酸化触媒担体40-1・40-2が保持湾曲部42-1・42-2の収縮方向への付勢力によって堅固に保持される。
 一方、酸化触媒担体40-1・40-2を保持湾曲部42-1・42-2から取り外す際には、酸化触媒担体40-1・40-2を保持湾曲部42-1・42-2から引き出すと、保持湾曲部42-1・42-2の各端面部が中心線Mの方向へ拡がるように弾性変形し、酸化触媒担体40-1・40-2を保持湾曲部42-1・42-2内から取り外すことができる。
 このような担体保持部材41の構造により、酸化触媒担体40-1・40-2の組み付け・取り外しを容易とし、酸化触媒担体40-1・40-2の交換を簡便とし、また、その構造が簡単で廉価とすることができる。
In the carrier holding member 41, as shown in FIG. 5, when the oxidation catalyst carriers 40-1 and 40-2 are fitted into the holding curved portions 42-1 and 42-2, the oxidation catalyst carriers 40-1 and 40-2 are fitted. -2 is pushed from the opening side of the holding curved portions 42-1 and 42-2 (indicated by the solid arrow P), the end surface portions of the holding curved portions 42-1 and 42-2 are directed in the direction of the center line M. It is possible to insert the oxidation catalyst carriers 40-1 and 40-2 into the holding curved portions 33-1 and 33-2 by elastic deformation so as to spread. Thereafter, when the oxidation catalyst carriers 40-1 and 40-2 are completely accommodated in the holding curved portions 42-1 and 42-2, the oxidation catalyst carriers 40-1 and 40-2 are held by the holding curved portions 42-. It is firmly held by the urging force in the contraction direction of 1.42-2.
On the other hand, when removing the oxidation catalyst carriers 40-1 and 40-2 from the holding curved portions 42-1 and 42-2, the oxidation catalyst carriers 40-1 and 40-2 are held by the holding curved portions 42-1 and 42-2. When pulled out, the end surface portions of the holding curved portions 42-1 and 42-2 are elastically deformed so as to expand in the direction of the center line M, and the oxidation catalyst carriers 40-1 and 40-2 are held by the holding curved portions 42-1 and 42-1. It can be removed from within 42-2.
Such a structure of the carrier holding member 41 facilitates the assembly and removal of the oxidation catalyst carriers 40-1 and 40-2, facilitates the replacement of the oxidation catalyst carriers 40-1 and 40-2, and has a structure that is It can be simple and inexpensive.
 酸化触媒担体40-1・40-2を組み込んだ担体保持部材41は、図2に示すように、取付用端部44-1・44-2を一側取付手段46-1・他側取付手段46-2によってケーシング11の内周面に着脱可能に取り付けることで、ケーシング11内に固定して配置される。
 一側取付手段46-1は、例えば、図7に示すように、ケーシング11の一側ケース部12の内周面に突出して端部嵌合用溝46Aを備える嵌合用突出部46Bからなる。端部嵌合用溝46Aは、担体保持部材41の取付用端部44-1を嵌入させて堅固に保持するものである。
 他側取付手段46-2は、例えば、図8に示すように、ケーシング11の他側ケース部13の内周面に突出して端部嵌合用溝46Cを備える嵌合用突出部46Dからなる。端部嵌合用溝46Cは、担体保持部材41の取付用端部44-2を嵌入させて堅固に保持するものである。
As shown in FIG. 2, the carrier holding member 41 incorporating the oxidation catalyst carriers 40-1 and 40-2 has the mounting end portions 44-1 and 44-2 as one side mounting means 46-1 and the other side mounting means. By being detachably attached to the inner peripheral surface of the casing 11 by 46-2, it is fixedly arranged in the casing 11.
For example, as shown in FIG. 7, the one-side mounting means 46-1 includes a fitting protrusion 46B that protrudes from the inner peripheral surface of the one-side case 12 of the casing 11 and includes an end fitting groove 46A. The end fitting groove 46A fits and firmly holds the mounting end 44-1 of the carrier holding member 41.
For example, as shown in FIG. 8, the other-side mounting means 46-2 includes a fitting protrusion 46D that protrudes from the inner peripheral surface of the other case portion 13 of the casing 11 and includes an end fitting groove 46C. The end fitting groove 46C fits and firmly holds the mounting end 44-2 of the carrier holding member 41.
 また、ケーシング11内には、図1に示すように、上流側連結管24に連設して上下の酸化触媒担体40-1・40-2へ排気ガスを導く排気ガス案内部材47が配設される。
 この排気ガス案内部材47は、図8に示すように、上流側連結管24に連設して上下の酸化触媒担体40-1・40-2の上流端の外周面に接する湾曲面部48と、この湾曲面部48に連設して上下の酸化触媒担体40-1・40-2の端面に対向する開口部49-1・49-2を形成した上下方向の端面部材50とを備える。
 酸化触媒担体40-1・40-2の下流端は、ケーシング11内の後部位の容量が大きな集合空間51に開口している。
 また、ケーシング11内では、酸化触媒担体40-1・40-2及び排気ガス案内部材47周りの内部空間52・52が、集合空間51に連通するようにして形成される。
Further, as shown in FIG. 1, an exhaust gas guide member 47 that leads the exhaust gas to the upper and lower oxidation catalyst carriers 40-1 and 40-2 is disposed in the casing 11 so as to be connected to the upstream connecting pipe 24. Is done.
As shown in FIG. 8, the exhaust gas guide member 47 includes a curved surface portion 48 that is connected to the upstream connecting pipe 24 and contacts the outer peripheral surfaces of the upstream ends of the upper and lower oxidation catalyst carriers 40-1 and 40-2. And an end member 50 in the vertical direction provided with openings 49-1 and 49-2 facing the end surfaces of the upper and lower oxidation catalyst carriers 40-1 and 40-2.
The downstream ends of the oxidation catalyst carriers 40-1 and 40-2 are opened to a collecting space 51 having a large capacity at the rear portion in the casing 11.
In the casing 11, the internal spaces 52 and 52 around the oxidation catalyst carriers 40-1 and 40-2 and the exhaust gas guide member 47 are formed so as to communicate with the collective space 51.
 上記のケーシング11の構造において、図1に示すように、中央部位で並列の酸化触媒担体40-1・40-2を配置するとともに、酸化触媒担体40-1・40-2の上流側で上流側連結管24と排気ガス案内部材47の湾曲面部48とを配置し、また、酸化触媒担体40-1・40-2の下流側では集合空間51を形成することにより、エンジン2側からの排気ガスの流れに対して抵抗が少なくなり、触媒装置9の上流部位で排気ガスが逆流することを回避させ、排気ガスの流れを良好とすることができる。 In the structure of the casing 11 as shown in FIG. 1, the parallel oxidation catalyst carriers 40-1 and 40-2 are arranged at the central portion, and upstream of the oxidation catalyst carriers 40-1 and 40-2. The exhaust gas from the engine 2 side is formed by arranging the side connecting pipe 24 and the curved surface portion 48 of the exhaust gas guide member 47 and forming a collective space 51 on the downstream side of the oxidation catalyst carriers 40-1 and 40-2. The resistance to the gas flow is reduced, the exhaust gas can be prevented from flowing backward in the upstream portion of the catalyst device 9, and the exhaust gas flow can be made favorable.
 次に、この実施例1の作用を説明する。
 エンジン2からの排気ガスは、図1に示すように、排気マニホルド5から排気管8の触媒装置9へ流れる。
 そして、この触媒装置9において、排気ガスが逆流することなく排気ガス案内部材47から酸化触媒担体40-1・40-2へスムーズに流入すると、排気ガス中の有害成分が並列の酸化触媒担体40-1・40-2によって除去され、排気ガスの浄化が行われる。
 その後、浄化された排気ガスが、容量が大きな集合空間51に流去するとともに、内部空間52・52にも流れ込むことから、触媒装置9がマフラ機能を果たして排気ガスの消音を図ることができる。
 そして、触媒装置9の劣化、あるいはエンジンの種類や排気量が異なる等で、触媒装置9全体を交換したい場合には、図12に示すように、第1接続機構26と第2接続機構27とを取り外すことにより、触媒装置9を排気管8から取り外し、その後、第1接続機構26と第2接続機構27とによって新たな触媒装置9を排気管8に取り付け、これにより、触媒装置9全体の交換を簡便に行わせることができる。
 また、触媒装置9のケーシング11内の酸化触媒担体40-1・40-2の劣化、あるいはエンジンの種類や排気量が異なる等で、酸化触媒担体40-1・40-2を交換したい場合には、先ず、触媒装置9を排気管8から取り外し、そして、図4に示すように、ケーシング11の一側ケース部12と他側ケース部13とを開放し、そして、ケーシング11から一側取付手段46-1・他側取付手段46-2を解除操作し、担体保持部材41から現在の酸化触媒担体を取り外す。その後、図5に示すように、新しい酸化触媒担体を担体保持部材41に取り付け、そして、この担体保持部材41を一側取付手段46-1・他側取付手段46-2によってケーシング11内に堅固に保持させ、さらに、ケーシング11を第1接続機構26と第2接続機構27とによって排気管8に取り付ける。
 これにより、ケーシング11内の劣化した酸化触媒担体の交換、あるいはエンジンの種類や排気量が異なる等で酸化触媒担体の交換をしたい場合に、その交換作業を簡便に行わせることができる。
 更に、2個の酸化触媒担体40-1・40-2を同じ大きさ(同一直径・同一長さ)としたことにより、ケーシング11及び担体保持部材41の汎用性を図り、部品点数を削減し、構成を簡単として廉価にすることができる。
Next, the operation of the first embodiment will be described.
The exhaust gas from the engine 2 flows from the exhaust manifold 5 to the catalyst device 9 in the exhaust pipe 8 as shown in FIG.
In this catalyst device 9, when the exhaust gas smoothly flows from the exhaust gas guide member 47 into the oxidation catalyst carriers 40-1 and 40-2 without flowing back, harmful components in the exhaust gas are parallel to the oxidation catalyst carrier 40. -1 and 40-2, and the exhaust gas is purified.
Thereafter, the purified exhaust gas flows out into the collecting space 51 having a large capacity and also flows into the internal spaces 52 and 52. Therefore, the catalyst device 9 can perform a muffler function to mute the exhaust gas.
Then, when it is desired to replace the entire catalyst device 9 due to deterioration of the catalyst device 9 or a difference in engine type or displacement, as shown in FIG. 12, the first connection mechanism 26 and the second connection mechanism 27 Is removed from the exhaust pipe 8, and then a new catalyst device 9 is attached to the exhaust pipe 8 by the first connection mechanism 26 and the second connection mechanism 27. Exchange can be easily performed.
Further, when the oxidation catalyst carriers 40-1 and 40-2 are to be exchanged due to deterioration of the oxidation catalyst carriers 40-1 and 40-2 in the casing 11 of the catalyst device 9 or different engine types and displacements. First, the catalyst device 9 is removed from the exhaust pipe 8, and, as shown in FIG. 4, the one side case portion 12 and the other side case portion 13 of the casing 11 are opened, and the one side attachment from the casing 11 is performed. The means 46-1 and the other side attaching means 46-2 are released, and the current oxidation catalyst carrier is removed from the carrier holding member 41. Thereafter, as shown in FIG. 5, a new oxidation catalyst carrier is attached to the carrier holding member 41, and the carrier holding member 41 is firmly fixed in the casing 11 by the one side attachment means 46-1 and the other side attachment means 46-2. Further, the casing 11 is attached to the exhaust pipe 8 by the first connection mechanism 26 and the second connection mechanism 27.
As a result, when it is desired to replace the deteriorated oxidation catalyst carrier in the casing 11 or to exchange the oxidation catalyst carrier due to a difference in engine type or displacement, the replacement operation can be performed easily.
Furthermore, by making the two oxidation catalyst carriers 40-1 and 40-2 the same size (the same diameter and the same length), the casing 11 and the carrier holding member 41 can be made versatile and the number of parts can be reduced. The structure can be made simple and inexpensive.
 図13、図14は、この発明の実施例2を示すものである。
 以下の実施例においては、上記の実施例1と同一機能を果たす箇所には、同一符号を付して説明する。
 この実施例2の特徴とするところは、以下の点にある。即ち、上記の実施例1と同様の構造の触媒装置9において、図13に示すように、ケーシング11内で、少なくとも2個以上の触媒担体として、3個のハニカム状の酸化触媒担体40-1・40-2・40-3を、上下方向で並列に配設し、そして、ケーシング11を排気管8に第1接続機構26と第2接続機構27とによって着脱可能に設けた。
 この場合、担体保持部材53は、図14に示すように、酸化触媒担体40-1・40-2・40-3を上下方向で並列に保持するように、酸化触媒担体40-1・40-2・40-3の一側の円形状の半分以上を保持する保持湾曲部54-1・54-2・54-3と、酸化触媒担体40-1と酸化触媒担体40-2との間の第1の連結部55-1と、酸化触媒担体40-2と酸化触媒担体40-3との間の第2の連結部55-2と、長手方向で両端の取付用端部56-1・56-2とを備える。
 このような構造により、並列の酸化触媒担体40-1・40-2・40-3によって排気量の大きなガソリン用のエンジンに対しても排気ガスを効果的に浄化するとともに、触媒装置9全体の交換あるいは酸化触媒担体40-1・40-2・40-3の交換を簡便に行わせることができる。
13 and 14 show a second embodiment of the present invention.
In the following embodiments, portions that perform the same functions as those of the first embodiment will be described with the same reference numerals.
The features of the second embodiment are as follows. That is, in the catalyst device 9 having the same structure as that of the first embodiment, as shown in FIG. 13, three honeycomb-shaped oxidation catalyst carriers 40-1 are used as at least two catalyst carriers in the casing 11. 40-2 and 40-3 are arranged in parallel in the vertical direction, and the casing 11 is detachably provided on the exhaust pipe 8 by a first connection mechanism 26 and a second connection mechanism 27.
In this case, as shown in FIG. 14, the carrier holding member 53 holds the oxidation catalyst carriers 40-1, 40-2, 40-3 in parallel in the vertical direction. Between the holding curved portions 54-1, 54-2, 54-3 that hold more than half of the circular shape on one side of 2.40-3, and between the oxidation catalyst carrier 40-1 and the oxidation catalyst carrier 40-2. A first connecting portion 55-1, a second connecting portion 55-2 between the oxidation catalyst carrier 40-2 and the oxidation catalyst carrier 40-3, and attachment end portions 56-1,. 56-2.
With such a structure, the parallel oxidation catalyst carriers 40-1, 40-2, and 40-3 effectively purify the exhaust gas even for a gasoline engine having a large displacement, and The exchange or the exchange of the oxidation catalyst carrier 40-1, 40-2, 40-3 can be easily performed.
 図15、図16は、この発明の実施例3を示すものである。
 この実施例3の特徴とするところは、以下の点にある。即ち、触媒装置9において、少なくとも2個以上の触媒担体として、2個の酸化触媒担体40-1・40-2を、ケーシング11内で直列に配置し、そして、ケーシング11を排気管8に第1接続機構26と第2接続機構27とによって着脱可能に設けた。この場合、図15に示すように、上流側連通管24と上流側の酸化触媒担体40-1との間に排気ガス案内筒部57を配置するとともに、上流側の酸化触媒担体40-1と下流側の酸化触媒担体40-2との間には連結筒部58-1を配置する。
 担体保持部材59は、図16に示すように、酸化触媒担体40-1を保持するように、酸化触媒担体40-1の一側の円形状の半分以上を保持する保持湾曲部60と、長手方向で両端の取付用端部61-1・61-2とを備える。
 なお、酸化触媒担体40-2を保持する担体保持部材は、上記の担体保持部材59と同様の構造なので、ここでは、その詳細な説明を省略する。
 このような構造により、直列の酸化触媒担体40-1・40-2によって二段階に排気ガスを効果的に浄化するとともに、触媒装置9全体の交換あるいは酸化触媒担体40-1・40-2の交換を簡便に行わせることができる。
15 and 16 show a third embodiment of the present invention.
The features of the third embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in series in the casing 11 as at least two or more catalyst carriers, and the casing 11 is connected to the exhaust pipe 8. The first connection mechanism 26 and the second connection mechanism 27 are detachably provided. In this case, as shown in FIG. 15, an exhaust gas guide cylinder 57 is disposed between the upstream communication pipe 24 and the upstream oxidation catalyst carrier 40-1, and the upstream oxidation catalyst carrier 40-1 A connecting cylinder part 58-1 is arranged between the downstream side oxidation catalyst carrier 40-2.
As shown in FIG. 16, the carrier holding member 59 has a holding curved portion 60 that holds more than half of the circular shape on one side of the oxidation catalyst carrier 40-1, and a longitudinal direction so as to hold the oxidation catalyst carrier 40-1. It is provided with mounting end portions 61-1 and 61-2 at both ends in the direction.
Note that the carrier holding member that holds the oxidation catalyst carrier 40-2 has the same structure as the carrier holding member 59 described above, and a detailed description thereof will be omitted here.
With such a structure, the exhaust gas is effectively purified in two stages by the series oxidation catalyst carriers 40-1 and 40-2, and the entire catalyst device 9 is replaced or the oxidation catalyst carriers 40-1 and 40-2 are replaced. Exchange can be easily performed.
 図17は、この発明の実施例4を示すものである。
 この実施例4の特徴とするところは、以下の点にある。即ち、触媒装置9において、少なくとも2個以上の触媒担体として、ケーシング11内では、2個の酸化触媒担体40-1・40-2を上下方向で並列に配置するとともに、この酸化触媒担体40-1・40-2の下流側で2個の酸化触媒担体40-3・40-4を上下方向で並列に配置し、ケーシング11を排気管8に第1接続機構26と第2接続機構27とによって着脱可能に設けた。
 この場合、直列の酸化触媒担体40-1と酸化触媒担体40-3との間に第1の連結筒部58-1を配置するとともに、直列の酸化触媒担体40-2と酸化触媒担体40-4との間に第2の連結筒部58-2を配置する。
 なお、この実施例4においては、酸化触媒担体40-1・40-2及び酸化触媒担体40-3・40-4の担体保持部材は、図5、図6に示す担体保持部材41を用いるので、その詳細な説明を省略する。
 このような構造によれば、上下方向に並列に配置した酸化触媒担体40-1・40-2と、この酸化触媒担体40-1・40-2の下流側の酸化触媒担体40-3・40-4とによって、並列且つ直列の二段階の構造によって排気ガスを効果的に浄化するとともに、触媒装置9全体の交換あるいは酸化触媒担体40-1・40-2及び酸化触媒担体40-3・40-4の交換を簡便に行わせることができる。
FIG. 17 shows Embodiment 4 of the present invention.
The features of the fourth embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- Two oxidation catalyst carriers 40-3 and 40-4 are arranged in parallel in the vertical direction on the downstream side of 1 and 40-2, and the casing 11 is connected to the exhaust pipe 8 with the first connection mechanism 26 and the second connection mechanism 27. It was detachably provided.
In this case, the first connecting cylinder part 58-1 is disposed between the oxidation catalyst carrier 40-1 and the oxidation catalyst carrier 40-3 in series, and the oxidation catalyst carrier 40-2 and the oxidation catalyst carrier 40- in series. The second connecting cylinder part 58-2 is arranged between
In Example 4, the carrier holding members 41 shown in FIGS. 5 and 6 are used as the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2 and the oxidation catalyst carriers 40-3 and 40-4. Detailed description thereof will be omitted.
According to such a structure, the oxidation catalyst carriers 40-1 and 40-2 arranged in parallel in the vertical direction, and the oxidation catalyst carriers 40-3 and 40 downstream of the oxidation catalyst carriers 40-1 and 40-2. -4, the exhaust gas is effectively purified by a two-stage structure in parallel and in series, and the entire catalyst device 9 is replaced or the oxidation catalyst carriers 40-1 and 40-2 and the oxidation catalyst carriers 40-3 and 40 -4 can be exchanged easily.
 図18は、この発明の実施例5を示すものである。
 この実施例5の特徴とするところは、以下の点にある。即ち、触媒装置9において、少なくとも2個以上の触媒担体として、ケーシング11内では、2個の酸化触媒担体40-1・40-2を上下方向で並列に配置するとともに、この酸化触媒担体40-1・40-2の下流側で2個の選択触媒還元担体(SCR触媒担体)62-1・62-2を上下方向で並列に配置し、ケーシング11を排気管8に第1接続機構26と第2接続機構27とによって着脱可能に設けた。
 選択触媒還元担体62-1・62-2は、NH3 を用いてNOX を選択還元するNOX 対策の触媒担体であって、ディーゼルエンジンの排気ガスを浄化するために用いられる。
 この場合、直列の酸化触媒担体40-1と選択触媒還元担体62-1との間に第1の連結筒部58-1を配置するとともに、直列の酸化触媒担体40-2と選択触媒還元担体62-1との間に第2の連結筒部58-2を配置する。
 なお、この実施例5においては、酸化触媒担体40-1・40-2及び選択触媒還元担体62-1・62-2の担体保持部材は、図5、図6に示す担体保持部材41を用いるので、その詳細な説明を省略する。
 このような構造によれば、上下方向で並列に配置した酸化触媒担体40-1・40-2と、この酸化触媒担体40-1・40-2の下流側の上下方向で並列に配置した選択触媒還元担体62-1・62-2とによって、ガソリンエンジン及びディーゼルエンジンの排気ガスを効果的に浄化するとともに、触媒装置9全体の交換あるいは酸化触媒担体40-1・40-2及び選択触媒還元担体62-1・62-2の交換を簡便に行わせることができる。
 なお、主にディーゼルエンジンの排気ガスを浄化したい場合には、ケーシング11内で選択触媒還元担体62-1・62-2を酸化触媒担体40-1・40-2よりも上流側に配置することも可能である。
FIG. 18 shows Embodiment 5 of the present invention.
The features of the fifth embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- Two selective catalytic reduction carriers (SCR catalyst carriers) 62-1 and 62-2 are arranged in parallel in the vertical direction on the downstream side of 1.40-2, and the casing 11 is connected to the exhaust pipe 8 with the first connection mechanism 26. The second connection mechanism 27 is detachably provided.
Selective catalytic reduction carrier 62-1, 62-2, a catalyst carrier of the NO X measures to selective reduction of NO X with NH 3, and used for purifying exhaust gas of diesel engines.
In this case, the first connecting cylinder portion 58-1 is disposed between the series oxidation catalyst carrier 40-1 and the selective catalyst reduction carrier 62-1, and the series oxidation catalyst carrier 40-2 and the selective catalyst reduction carrier 62-1. The second connecting cylinder part 58-2 is arranged between the terminal 62-1.
In Example 5, the carrier holding members 41 shown in FIGS. 5 and 6 are used as the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2 and the selective catalyst reduction carriers 62-1 and 62-2. Therefore, the detailed description is abbreviate | omitted.
According to such a structure, the oxidation catalyst carriers 40-1 and 40-2 arranged in parallel in the vertical direction and the selection arranged in parallel in the vertical direction on the downstream side of the oxidation catalyst carriers 40-1 and 40-2. The catalyst reduction carriers 62-1 and 62-2 effectively purify the exhaust gas of the gasoline engine and the diesel engine and replace the entire catalyst device 9 or the oxidation catalyst carriers 40-1 and 40-2 and the selective catalyst reduction. The exchange of the carriers 62-1 and 62-2 can be easily performed.
If the exhaust gas of the diesel engine is mainly to be purified, the selective catalyst reduction carriers 62-1 and 62-2 are disposed in the casing 11 upstream of the oxidation catalyst carriers 40-1 and 40-2. Is also possible.
 図19は、この発明の実施例6を示すものである。
 この実施例6の特徴とするところは、以下の点にある。即ち、触媒装置9において、少なくとも2個以上の触媒担体として、ケーシング11内では、2個の酸化触媒担体40-1・40-2を上下方向で並列に配置するとともに、この酸化触媒担体40-1・40-2の下流側で2個の選択触媒還元担体62-1・62-2を上下方向で並列に配置し、しかも、この選択触媒還元担体62-1・62-2の下流側で2個の酸化触媒担体40-3・40-4を上下方向で並列に配置し、ケーシング11を排気管8に第1接続機構26と第2接続機構27とによって着脱可能に設けた。
 この場合、酸化触媒担体40-1と選択触媒還元担体62-1との間に第1の連結筒部58-1を配置するとともに、酸化触媒担体40-2と選択触媒還元担体62-2との間に第2の連結筒部58-2を配置し、選択触媒還元担体62-1と酸化触媒担体40-3との間に第3の連結筒部58-3を配置し、選択触媒還元担体62-2と酸化触媒担体40-4との間に第4の連結筒部58-4を配置する。
 なお、この実施例6においては、酸化触媒担体40-1・40-2、選択触媒還元担体62-1・62-2、及び酸化触媒担体40-3・40-4の各担体保持部材は、図5、図6に示す担体保持部材41を用いるので、その詳細な説明を省略する。
 このような構造によれば、エンジン2からの排気ガスは、先ず、上流側の酸化触媒担体40-1・40-2によって浄化され、そして、選択触媒還元担体62-1・62-2によって浄化され、しかも、下流側の酸化触媒担体40-3・40-4によって浄化されることから、大型のガソリンエンジン及びディーゼルエンジンにも対処させることができ、大型のガソリンエンジン及びディーゼルエンジンの排気ガスを効果的に浄化するとともに、触媒装置9全体の交換、あるいは酸化触媒担体40-1・40-2、選択触媒還元担体62-1・62-2、又は酸化触媒担体40-3・40-4の交換を、簡便に行わせることができる。
 なお、この場合、主にディーゼルエンジンの排気ガスを浄化したい場合には、ケーシング11内で選択触媒還元担体62-1・62-2を最も上流側に配置することも可能である。
FIG. 19 shows Embodiment 6 of the present invention.
The features of the sixth embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- Two selective catalytic reduction carriers 62-1 and 62-2 are arranged in parallel in the vertical direction on the downstream side of 1 and 40-2, and further on the downstream side of the selective catalytic reduction carriers 62-1 and 62-2. Two oxidation catalyst carriers 40-3 and 40-4 are arranged in parallel in the vertical direction, and the casing 11 is detachably provided on the exhaust pipe 8 by a first connection mechanism 26 and a second connection mechanism 27.
In this case, the first connecting cylinder part 58-1 is disposed between the oxidation catalyst carrier 40-1 and the selective catalyst reduction carrier 62-1, and the oxidation catalyst carrier 40-2 and the selective catalyst reduction carrier 62-2 are arranged. The second connecting cylinder part 58-2 is arranged between them, and the third connecting cylinder part 58-3 is arranged between the selective catalyst reduction support 62-1 and the oxidation catalyst support 40-3, and the selective catalyst reduction is performed. A fourth connecting cylinder portion 58-4 is disposed between the carrier 62-2 and the oxidation catalyst carrier 40-4.
In Example 6, the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2, the selective catalyst reduction carriers 62-1 and 62-2, and the oxidation catalyst carriers 40-3 and 40-4 are: Since the carrier holding member 41 shown in FIGS. 5 and 6 is used, detailed description thereof is omitted.
According to such a structure, the exhaust gas from the engine 2 is first purified by the upstream oxidation catalyst carriers 40-1 and 40-2, and then purified by the selective catalyst reduction carriers 62-1 and 62-2. In addition, since it is purified by the oxidation catalyst carrier 40-3 and 40-4 on the downstream side, large gasoline engines and diesel engines can be dealt with, and exhaust gases from large gasoline engines and diesel engines can be used. While purifying effectively, the entire catalyst device 9 is replaced, or the oxidation catalyst carriers 40-1 and 40-2, the selective catalyst reduction carriers 62-1 and 62-2, or the oxidation catalyst carriers 40-3 and 40-4 are replaced. Exchange can be easily performed.
In this case, when it is mainly desired to purify the exhaust gas of the diesel engine, the selective catalyst reduction carriers 62-1 and 62-2 can be arranged on the most upstream side in the casing 11.
 図20は、この発明の実施例7を示すものである。
 この実施例7の特徴とするところは、以下の点にある。即ち、触媒装置9において、少なくとも2個以上の触媒担体として、ケーシング11内では、2個の酸化触媒担体40-1・40-2を上下方向で並列に配置するとともに、この酸化触媒担体40-1・40-2の下流側で所定の間隔Lを開けた中間位置で1個の選択触媒還元担体62-1を配置し、さらに、この選択触媒還元担体62-1の下流側で所定の間隔Lを開けて2個の酸化触媒担体40-3・40-4を上下方向で並列に配置し、ケーシング11を排気管8に第1接続機構26と第2接続機構27とによって着脱可能に設けた。
 なお、この実施例7において、酸化触媒担体40-1・40-2及び酸化触媒担体40-3・40-4の各担体保持部材は、図5、図6に示す担体保持部材41を用いることができる一方、選択触媒還元担体62-1の担体保持部材は、図16に示す担体保持部材59を用いることができるので、ここでは、その説明を省略する。
 このような構造によれば、上流側の酸化触媒担体40-1・40-2と中間の選択触媒還元担体62-1と下流側の酸化触媒担体40-3・40-4とがそれぞれ所定の間隔Lで離れているので、上流側の酸化触媒担体40-1・40-2からの排気ガスは、選択触媒還元担体62-1に流入したり、あるいは選択触媒還元担体62-1の外側を流れ、さらに、酸化触媒担体40-3・40-4及び酸化触媒担体40-3・40-4の外側へ方向を変えて流れる。このように、排気ガスの流れを変えることにより、ガソリンエンジンやディーゼルエンジンの排気ガスをさらに効果的に浄化することができるとともに、排気音を効果的に抑制させることができる。
 また、触媒装置9全体の交換、あるいは酸化触媒担体40-1・40-2、選択触媒還元担体62-1、又は酸化触媒担体40-3・40-4の交換を簡便に行わせることができる。
FIG. 20 shows Embodiment 7 of the present invention.
The features of the seventh embodiment are as follows. That is, in the catalyst device 9, two oxidation catalyst carriers 40-1 and 40-2 are arranged in parallel in the vertical direction as at least two catalyst carriers in the casing 11, and the oxidation catalyst carrier 40- One selective catalytic reduction carrier 62-1 is arranged at an intermediate position at a predetermined interval L on the downstream side of 1.40-2, and further, a predetermined interval is provided on the downstream side of the selective catalytic reduction carrier 62-1. L is opened and the two oxidation catalyst carriers 40-3 and 40-4 are arranged in parallel in the vertical direction, and the casing 11 is detachably provided on the exhaust pipe 8 by the first connection mechanism 26 and the second connection mechanism 27. It was.
In Example 7, the carrier holding members 41 shown in FIGS. 5 and 6 are used as the carrier holding members of the oxidation catalyst carriers 40-1 and 40-2 and the oxidation catalyst carriers 40-3 and 40-4. On the other hand, since the carrier holding member 59 shown in FIG. 16 can be used as the carrier holding member of the selective catalyst reduction carrier 62-1, the description thereof is omitted here.
According to such a structure, the upstream side oxidation catalyst carriers 40-1 and 40-2, the intermediate selective catalyst reduction carrier 62-1 and the downstream side oxidation catalyst carriers 40-3 and 40-4 each have predetermined Since they are separated by an interval L, the exhaust gas from the upstream oxidation catalyst carriers 40-1 and 40-2 flows into the selective catalyst reduction carrier 62-1, or outside the selective catalyst reduction carrier 62-1. The flow further changes direction to the outside of the oxidation catalyst carriers 40-3 and 40-4 and the oxidation catalyst carriers 40-3 and 40-4. As described above, by changing the flow of the exhaust gas, the exhaust gas of the gasoline engine or the diesel engine can be further effectively purified, and the exhaust noise can be effectively suppressed.
Further, the entire catalyst device 9 can be replaced, or the oxidation catalyst carriers 40-1 and 40-2, the selective catalyst reduction carrier 62-1 or the oxidation catalyst carriers 40-3 and 40-4 can be easily replaced. .
 図21は、この発明の実施例8を示すものである。
 この実施例8の特徴とするところは、以下の点にある。即ち、触媒装置9において、少なくとも2個以上の触媒担体として、ケーシング11内で、3個の酸化触媒担体40-1・40-2・40-3を上下方向で並列に配置するとともに、この酸化触媒担体40-1・40-2・40-3の下流側で選択触媒還元担体62-1・62-2・62-3を上下方向で並列に配置し、ケーシング11を排気管8に第1接続機構26と第2接続機構27とによって着脱可能に設けた。
 また、この場合、酸化触媒担体40-1と選択触媒還元担体62-1との間に第1の連結筒部58-1を配置するとともに、酸化触媒担体40-2と選択触媒還元担体62-2との間に第2の連結筒部58-2を配置し、さらに、酸化触媒担体40-3と選択触媒還元担体62-3との間に第3の連結筒部58-3を配置する。
 なお、この実施例7において、酸化触媒担体40-1・40-2・40-3、及び選択触媒還元担体62-1・62-2・62-3の担体保持部材は、図14に示す担体保持部材53を用いることができるので、ここでは、その説明を省略する。
 このような構造によれば、上流側の酸化触媒担体40-1・40-2・40-3と下流側の選択触媒還元担体62-1・62-2・62-3とによって大型のガソリンエンジンやディーゼルエンジンの排気ガスを効果的に浄化することができる。
 また、触媒装置9の全体の交換、あるいは酸化触媒担体40-1・40-2、選択触媒還元担体62-1、又は選択触媒還元担体62-1・62-2・62-3の交換を簡便に行わせることができる。
 なお、この実施例8においては、上流側に選択触媒還元担体62-1・62-2・62-3を配置する一方、酸化触媒担体40-1・40-2・40-3を下流側に配置することも可能である。
FIG. 21 shows Embodiment 8 of the present invention.
The features of the eighth embodiment are as follows. That is, in the catalyst device 9, three oxidation catalyst carriers 40-1, 40-2, and 40-3 are arranged in parallel in the vertical direction in the casing 11 as at least two or more catalyst carriers, and The selective catalytic reduction carriers 62-1 62-2, and 62-3 are arranged in parallel in the vertical direction on the downstream side of the catalyst carriers 40-1, 40-2, and 40-3, and the casing 11 is first connected to the exhaust pipe 8. The connection mechanism 26 and the second connection mechanism 27 are detachably provided.
Further, in this case, the first connecting cylinder portion 58-1 is disposed between the oxidation catalyst carrier 40-1 and the selective catalyst reduction carrier 62-1, and the oxidation catalyst carrier 40-2 and the selective catalyst reduction carrier 62-. 2 is connected to the second connecting cylinder part 58-2, and the third connecting cylinder part 58-3 is arranged between the oxidation catalyst carrier 40-3 and the selective catalyst reduction carrier 62-3. .
In Example 7, the carrier holding members of the oxidation catalyst carriers 40-1, 40-2, and 40-3 and the selective catalyst reduction carriers 62-1 62-2, and 62-3 are the carriers shown in FIG. Since the holding member 53 can be used, the description thereof is omitted here.
According to such a structure, a large gasoline engine is composed of the upstream oxidation catalyst carrier 40-1, 40-2, 40-3 and the downstream selective catalyst reduction carrier 62-1, 62-2, 62-3. And exhaust gas from diesel engines can be effectively purified.
In addition, the entire catalyst device 9 can be easily replaced, or the oxidation catalyst carrier 40-1, 40-2, the selective catalyst reduction carrier 62-1, or the selective catalyst reduction carrier 62-1, 62-2, 62-3 can be easily exchanged. Can be done.
In Example 8, the selective catalytic reduction carriers 62-1 62-2 and 62-3 are arranged on the upstream side, while the oxidation catalyst carriers 40-1, 40-2 and 40-3 are arranged on the downstream side. It is also possible to arrange.
 図22、図23は、この発明の実施例9を示すものである。
 この実施例9の特徴とするところは、以下の点にある。即ち、触媒装置9において、ケーシング11内には、少なくとも2個以上の触媒担体として、正面視で、中央部位の酸化触媒担体40-1と、この酸化触媒担体40-1の周りで且つ並列に4個の酸化触媒担体40-2・40-3・40-4・40-5を円周方向等間隔に配置し、これら酸化触媒担体40-1~40-4・40-5を担体保持部材63で保持する。酸化触媒担体40-1~40-5は、同径である。
 担体保持部材63は、例えば、一定の距離で離れた一対の保持円板64-1、64-2から構成されている。この保持円板64-1・64-2には、図22に示すように、酸化触媒担体40-1~40-5を挿着する5つの取付孔65-1~65-5が形成されている。
 このような構造によれば、エンジン2からの排気ガスを5つの酸化触媒担体40-1~40-5で効果的に浄化するとともに、ケーシング11をコンパクトとし、排気装置9の小型化を図ることができる。
 また、5個の酸化触媒担体40-1~40-5を同じ大きさ(同一直径・同一長さ)とすることにより、ケーシング11及び担体保持部材63の汎用性を図り、部品点数を削減し、構成を簡単として廉価にすることができる。
 なお、この実施例9においては、酸化触媒担体と選択触媒還元担体とを組み合わせることも可能である。
22 and 23 show Embodiment 9 of the present invention.
The features of the ninth embodiment are as follows. That is, in the catalyst device 9, in the casing 11, at least two or more catalyst carriers are arranged in parallel with the oxidation catalyst carrier 40-1 at the central portion and around the oxidation catalyst carrier 40-1 in front view. Four oxidation catalyst carriers 40-2, 40-3, 40-4, and 40-5 are arranged at equal intervals in the circumferential direction, and these oxidation catalyst carriers 40-1 to 40-4 and 40-5 are arranged as carrier holding members. Hold at 63. The oxidation catalyst carriers 40-1 to 40-5 have the same diameter.
The carrier holding member 63 is composed of, for example, a pair of holding disks 64-1 and 64-2 separated by a certain distance. As shown in FIG. 22, the holding disks 64-1 and 64-2 are formed with five mounting holes 65-1 to 65-5 into which the oxidation catalyst carriers 40-1 to 40-5 are inserted. Yes.
According to such a structure, the exhaust gas from the engine 2 is effectively purified by the five oxidation catalyst carriers 40-1 to 40-5, the casing 11 is made compact, and the exhaust device 9 is downsized. Can do.
In addition, by making the five oxidation catalyst carriers 40-1 to 40-5 the same size (same diameter and length), the casing 11 and the carrier holding member 63 can be made versatile and the number of parts can be reduced. The structure can be made simple and inexpensive.
In Example 9, the oxidation catalyst carrier and the selective catalyst reduction carrier can be combined.
 図24は、この発明の実施例10を示すものである。
 この実施例10の特徴とするところは、以下の点にある。即ち、触媒装置9において、ケーシング11内には、少なくとも2個以上の触媒担体として、排気ガス流の上流側から下流側へ順次に、例えば、第1酸化触媒担体66と第2酸化触媒担体67と第3酸化触媒担体68とを直列に配置する。
 第1酸化触媒担体66は、担体40Aの排気ガス通過孔40Bの内周面に担持させる触媒成分(触媒金属)40Cを(図3参照)、比較的低い密度として構成されたものである(粗い構造)。
 第2酸化触媒担体67は、担体40Aの排気ガス通過孔40Bの内周面に担持させる触媒成分(触媒金属)40Cの付着量や担持方法の変更により、触媒成分(触媒金属)40Cの密度を前記第1酸化触媒担体66の場合よりも所定に高くして構成されたものである(中程度の粗さの構造)。
 第3酸化触媒担体68は、担体40Aの排気ガス通過孔40Bの内周面に担持させる触媒成分(触媒金属)40Cの付着量や担持方法の変更により、触媒成分(触媒金属)40Cの密度を前記第2酸化触媒担体67の場合よりも所定に高くして構成されたものである(細かい構造)。
 このような構造により、触媒装置9においては、第1酸化触媒担体66と第2酸化触媒担体67と第3酸化触媒担体68とによって段階的に触媒成分の密度を高めることができるので、先ず、最初に、上流側の第1酸化触媒担体66で排気ガスを大まかに浄化させた後、下流側では、第2酸化触媒担体67と第3酸化触媒担体68とによって排気ガスを細かく浄化させ、これにより、各酸化触媒担体が有する浄化機能を十分に発揮させ、全体として排気ガスの浄化性能を向上させることができるとともに、各酸化触媒担体の使用寿命を長くすることができる。
 なお、この実施例10においては、酸化触媒担体の代わりに、選択触媒還元担体を同様な構造とすることも可能である。
FIG. 24 shows Embodiment 10 of the present invention.
The features of the tenth embodiment are as follows. That is, in the catalyst device 9, for example, the first oxidation catalyst carrier 66 and the second oxidation catalyst carrier 67 are sequentially provided in the casing 11 as at least two or more catalyst carriers sequentially from the upstream side to the downstream side of the exhaust gas flow. And the third oxidation catalyst carrier 68 are arranged in series.
The first oxidation catalyst carrier 66 is configured such that the catalyst component (catalyst metal) 40C supported on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A (see FIG. 3) has a relatively low density (coarse). Construction).
The second oxidation catalyst carrier 67 can change the density of the catalyst component (catalyst metal) 40C by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method. The first oxidation catalyst carrier 66 is configured to have a predetermined height (medium roughness structure).
The third oxidation catalyst carrier 68 has the density of the catalyst component (catalyst metal) 40C changed by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method. The second oxidation catalyst carrier 67 is configured to have a predetermined height (fine structure).
With such a structure, in the catalyst device 9, the density of the catalyst component can be increased stepwise by the first oxidation catalyst carrier 66, the second oxidation catalyst carrier 67, and the third oxidation catalyst carrier 68. First, after the exhaust gas is roughly purified by the first oxidation catalyst carrier 66 on the upstream side, the exhaust gas is finely purified by the second oxidation catalyst carrier 67 and the third oxidation catalyst carrier 68 on the downstream side. Thus, the purification function of each oxidation catalyst carrier can be fully exerted, the exhaust gas purification performance can be improved as a whole, and the service life of each oxidation catalyst carrier can be extended.
In Example 10, instead of the oxidation catalyst carrier, the selective catalyst reduction carrier can have the same structure.
 図25は、この発明の実施例11を示すものである。
 この実施例11の特徴とするところは、以下の点にある。即ち、一つの酸化触媒担体69は、排気ガス流の上流側から下流側へ順次に、例えば、第1担体部70Aと第2担体部70Bと第3担体部70Cとによって構成される。
 第1担体部70Aは、図3に示すように、担体40Aの排気ガス通過孔40Bの内周面に担持させる触媒成分(触媒金属)40Cを(図3参照)、比較的低い密度として構成されたものである(粗い構造)。
 第2担体部70Bは、担体40Aの排気ガス通過孔40Bの内周面に担持させる触媒成分(触媒金属)40Cの付着量や担持方法の変更により、触媒成分(触媒金属)40Cの密度を前記第1担体部70Aの場合よりも所定に高くして構成されたものである(中程度の粗さの構造)。
 第3担体部70Cは、担体40Aの排気ガス通過孔40Bの内周面に担持させる触媒成分(触媒金属)40Cの付着量や担持方法の変更により、触媒成分(触媒金属)40Cの密度を前記第2担体部70Bの場合よりも所定に高くして構成されたものである(細かい構造)。
 このような構造により、一つの酸化触媒担体69において段階的に触媒成分の密度を高めることができるので、排気ガスの浄化を酸化触媒担体69で効率良く行わせることができ、これにより、特に小型車両等へ最適に用いることができる。
 なお、この実施例11においては、酸化触媒担体の代わりに、選択触媒還元担体を同様な構造とすることも可能である。
FIG. 25 shows Embodiment 11 of the present invention.
The features of the eleventh embodiment are as follows. That is, one oxidation catalyst carrier 69 is configured by, for example, the first carrier portion 70A, the second carrier portion 70B, and the third carrier portion 70C sequentially from the upstream side to the downstream side of the exhaust gas flow.
As shown in FIG. 3, the first carrier portion 70A is configured to have a relatively low density of a catalyst component (catalyst metal) 40C (see FIG. 3) supported on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A. (Coarse structure).
The second carrier portion 70B can reduce the density of the catalyst component (catalyst metal) 40C by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method. The first carrier portion 70A is configured to have a predetermined height (medium roughness structure).
The third carrier portion 70C reduces the density of the catalyst component (catalyst metal) 40C by changing the amount of the catalyst component (catalyst metal) 40C to be carried on the inner peripheral surface of the exhaust gas passage hole 40B of the carrier 40A and the carrying method. The second carrier portion 70B is configured to have a predetermined height (fine structure).
With such a structure, the density of the catalyst component can be increased stepwise in one oxidation catalyst carrier 69, so that the exhaust gas can be efficiently purified by the oxidation catalyst carrier 69. It can be optimally used for vehicles and the like.
In Example 11, instead of the oxidation catalyst carrier, the selective catalyst reduction carrier can have the same structure.
 なお、この発明においては、触媒担体を、同形でなく、異形とし、且つ、これらの形が異なる触媒担体を並列及び/又は直列に配置することも可能である。 In the present invention, it is also possible to arrange the catalyst carriers in parallel and / or in series, with the catalyst carriers not having the same shape but having a different shape, and having different shapes.
 この発明に係る排気ガス浄化システムを、四輪車のみならず、二輪車、重機等の他の車両や動力発生装置にも適用可能である。 The exhaust gas purification system according to the present invention can be applied not only to four-wheeled vehicles but also to other vehicles such as two-wheeled vehicles and heavy machinery and power generation devices.
 1 車両
 2 エンジン
 3 排気ガス浄化システム
 5 排気マニホルド
 8 排気管
 9 触媒装置(触媒コンバータ)
 11 触媒装置のケーシング
 12 一側ケース部
 13 他側ケース部
 17 結合手段
 24 上流側連結管
 25 下流側連結管
 26 第1接続機構
 27 第2接続機構
 40-1・40-2 酸化触媒担体
 41 担体保持部材
 46-1 一側取付手段
 46-2 他側取付手段
 47 排気ガス案内部材
 51 集合空間
 52 内部空間
 62-1・62-2 選択触媒還元担体
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Engine 3 Exhaust gas purification system 5 Exhaust manifold 8 Exhaust pipe 9 Catalytic device (catalytic converter)
DESCRIPTION OF SYMBOLS 11 Casing of catalyst apparatus 12 One side case part 13 Other side case part 17 Coupling means 24 Upstream side connection pipe 25 Downstream side connection pipe 26 1st connection mechanism 27 2nd connection mechanism 40-1 and 40-2 Oxidation catalyst carrier 41 Carrier Holding member 46-1 One side mounting means 46-2 Other side mounting means 47 Exhaust gas guide member 51 Collecting space 52 Internal space 62-1 and 62-2 Selective catalytic reduction carrier

Claims (4)

  1.  エンジンから排気管内に排出された排気ガスを浄化する排気ガス浄化システムにおいて、少なくとも2個以上の触媒担体をケーシング内で並列に配置するとともに、前記ケーシングを前記排気管に着脱可能に設けたことを特徴とする排気ガス浄化システム。 In an exhaust gas purification system for purifying exhaust gas discharged from an engine into an exhaust pipe, at least two or more catalyst carriers are arranged in parallel in the casing, and the casing is detachably provided on the exhaust pipe. A featured exhaust gas purification system.
  2.  エンジンから排気管内に排出された排気ガスを浄化する排気ガス浄化システムにおいて、少なくとも2個以上の触媒担体をケーシング内で直列に配置するとともに、前記ケーシングを前記排気管に着脱可能に設けたことを特徴とする排気ガス浄化システム。 In an exhaust gas purification system for purifying exhaust gas discharged from an engine into an exhaust pipe, at least two or more catalyst carriers are arranged in series in the casing, and the casing is detachably provided on the exhaust pipe. A featured exhaust gas purification system.
  3.  エンジンから排気管内に排出された排気ガスを浄化する排気ガス浄化システムにおいて、少なくとも2個以上の触媒担体をケーシング内で並列且つ直列に配置するとともに、前記ケーシングを前記排気管に着脱可能に設けたことを特徴とする排気ガス浄化システム。 In an exhaust gas purification system for purifying exhaust gas discharged from an engine into an exhaust pipe, at least two or more catalyst carriers are arranged in parallel and in series in the casing, and the casing is detachably provided on the exhaust pipe. An exhaust gas purification system characterized by that.
  4.  前記ケーシング内には、前記少なくとも2個以上の触媒担体としての酸化触媒担体及び/又は選択触媒還元担体を並列及び/又は直列に配置したことを特徴とする請求項1~3のいずれか1項に記載の排気ガス浄化システム。 The oxidation catalyst carrier and / or the selective catalyst reduction carrier as the at least two or more catalyst carriers are arranged in parallel and / or in series in the casing. The exhaust gas purification system described in 1.
PCT/JP2013/070893 2013-08-01 2013-08-01 Exhaust gas purification system WO2015015619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001751.9A CN104968911A (en) 2013-08-01 2013-08-01 Exhaust gas purification system
PCT/JP2013/070893 WO2015015619A1 (en) 2013-08-01 2013-08-01 Exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070893 WO2015015619A1 (en) 2013-08-01 2013-08-01 Exhaust gas purification system

Publications (1)

Publication Number Publication Date
WO2015015619A1 true WO2015015619A1 (en) 2015-02-05

Family

ID=52431191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070893 WO2015015619A1 (en) 2013-08-01 2013-08-01 Exhaust gas purification system

Country Status (2)

Country Link
CN (1) CN104968911A (en)
WO (1) WO2015015619A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115144A1 (en) * 2014-01-31 2015-08-06 ヤンマー株式会社 Catalyst case, exhaust duct, and engine
JP2017226287A (en) * 2016-06-21 2017-12-28 株式会社クボタ Working machine
US11105237B2 (en) * 2019-02-27 2021-08-31 Hyundai Motor Company Vehicle aftertreatment system enabling the change in the sequence of operating aftertreatment devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107035481A (en) * 2016-02-04 2017-08-11 陈温乐 The high-order processing unit of diesel motor smoke evacuation purification

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134819U (en) * 1978-03-13 1979-09-19
JPS63138113A (en) * 1986-11-28 1988-06-10 Suzuki Kenji Catalyst converter for automobile
JPH02180642A (en) * 1988-12-30 1990-07-13 Aichi Steel Works Ltd Honeycomb structure material for catalyst
JPH05141218A (en) * 1991-06-25 1993-06-08 Nissan Motor Co Ltd Exhaust filter for internal combustion engine
JPH0814033A (en) * 1994-06-24 1996-01-16 Caterpillar Inc Module catalytic converter for internal combustion engine and muffler
JPH08246860A (en) * 1995-03-08 1996-09-24 Suzuki Motor Corp Catalyst installing structure for motorcycle
JPH09504349A (en) * 1994-08-16 1997-04-28 キャタピラー インコーポレイテッド Series combination catalytic converter
JP2004167359A (en) * 2002-11-19 2004-06-17 Cataler Corp Apparatus for cleaning exhaust gas
JP2010156320A (en) * 2008-12-05 2010-07-15 Emitec Ges Fuer Emissionstechnologie Mbh Self-supported holding part for catalyst carrier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8516802B2 (en) * 2010-10-29 2013-08-27 Tenneco Automotive Operating Company Inc. High volume exhaust gas treatment system
US8495867B2 (en) * 2010-10-29 2013-07-30 GM Global Technology Operations LLC Heating module for an exhaust gas treatment system
CN102116187A (en) * 2011-03-22 2011-07-06 杭州银轮科技有限公司 Catalytic converter for tail gas treatment of diesel engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134819U (en) * 1978-03-13 1979-09-19
JPS63138113A (en) * 1986-11-28 1988-06-10 Suzuki Kenji Catalyst converter for automobile
JPH02180642A (en) * 1988-12-30 1990-07-13 Aichi Steel Works Ltd Honeycomb structure material for catalyst
JPH05141218A (en) * 1991-06-25 1993-06-08 Nissan Motor Co Ltd Exhaust filter for internal combustion engine
JPH0814033A (en) * 1994-06-24 1996-01-16 Caterpillar Inc Module catalytic converter for internal combustion engine and muffler
JPH09504349A (en) * 1994-08-16 1997-04-28 キャタピラー インコーポレイテッド Series combination catalytic converter
JPH08246860A (en) * 1995-03-08 1996-09-24 Suzuki Motor Corp Catalyst installing structure for motorcycle
JP2004167359A (en) * 2002-11-19 2004-06-17 Cataler Corp Apparatus for cleaning exhaust gas
JP2010156320A (en) * 2008-12-05 2010-07-15 Emitec Ges Fuer Emissionstechnologie Mbh Self-supported holding part for catalyst carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115144A1 (en) * 2014-01-31 2015-08-06 ヤンマー株式会社 Catalyst case, exhaust duct, and engine
US10113467B2 (en) 2014-01-31 2018-10-30 Yanmar Co., Ltd. Catalyst storage case, exhaust duct, and engine
JP2017226287A (en) * 2016-06-21 2017-12-28 株式会社クボタ Working machine
US11105237B2 (en) * 2019-02-27 2021-08-31 Hyundai Motor Company Vehicle aftertreatment system enabling the change in the sequence of operating aftertreatment devices

Also Published As

Publication number Publication date
CN104968911A (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP4115120B2 (en) Exhaust gas purification device for internal combustion engine
JP5689187B2 (en) POKA-YOKE mounting system for exhaust treatment equipment
US7550024B2 (en) Serviceable exhaust aftertreatment assembly and method
WO2015015619A1 (en) Exhaust gas purification system
JP2009085171A (en) Exhaust emission control device in engine
KR20200081492A (en) Exhaust gas purification device
KR101294061B1 (en) Exhaust gas after-treatment device for vehicle
US20060286013A1 (en) Engine exhaust system component having structure for accessing aftertreatment device
JP2011231672A (en) Exhaust gas purifying apparatus
US20140007563A1 (en) Multiple Skewed Channel Bricks Mounted In Opposing Clocking Directions
KR20120056602A (en) Exhaust gas filtering device
JP2012067635A (en) Exhaust gas flow guide
CN103670604A (en) Automobile exhaust filter tube
JP6642224B2 (en) Exhaust gas purification device
JP2012067697A (en) Exhaust emission control device
JP2016114011A (en) Exhaust emission control device
JP5529510B2 (en) Self-supporting holding part for catalyst carrier
JP2019132145A (en) Exhaust emission control device
JP6801484B2 (en) Sealing device and exhaust system
KR20100064411A (en) Apparatus for assembling and disassembling of doc canning and dpf canning
JP2011043085A (en) Catalyst carrier holding structure
WO2015094199A1 (en) Exhaust catalyst body with non-destructive analysis element
KR200438615Y1 (en) A exhaust gas reducing muffler for natural gas cars
CN215633264U (en) Detachable catalyst packaging device and engine
KR100815015B1 (en) Catalytic converter apparatus for exhaust gas of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP