WO2015015079A1 - Reacteur thermochimique compact à transferts et maintenance optimisés - Google Patents

Reacteur thermochimique compact à transferts et maintenance optimisés Download PDF

Info

Publication number
WO2015015079A1
WO2015015079A1 PCT/FR2014/051749 FR2014051749W WO2015015079A1 WO 2015015079 A1 WO2015015079 A1 WO 2015015079A1 FR 2014051749 W FR2014051749 W FR 2014051749W WO 2015015079 A1 WO2015015079 A1 WO 2015015079A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
medium
reactive
reactive medium
cap
Prior art date
Application number
PCT/FR2014/051749
Other languages
English (en)
Inventor
Lionel Bataille
Jean-Louis Juillard
Original Assignee
Coldinnov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coldinnov filed Critical Coldinnov
Priority to EP14748243.4A priority Critical patent/EP3027979B8/fr
Priority to US14/908,975 priority patent/US20160178284A1/en
Publication of WO2015015079A1 publication Critical patent/WO2015015079A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0069Distributing arrangements; Fluid deflecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0078Heat exchanger arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention belongs to the field of apparatus for transferring and storing thermal energy and more particularly to that of thermochemical reactors equipping such apparatus.
  • It relates to an apparatus for heating and / or cooling a compartment, taking advantage of the alternating phases of absorption and release of heat from a chemical system contained in a reactor due to its state changes, the reactor having an easily removable structure and promoting heat exchange.
  • thermochemical systems for the production of cold and / or heat. These systems are based on the thermal variations resulting from physico-chemical transformations of a pair of compounds capable of interacting with each other.
  • one of the compounds is a fluid
  • the other compound is reactive salts associating with the fluid when they are contacted at a given temperature, but dissociating when the temperature increases.
  • the fluid may be gaseous or liquid depending on the temperature and pressure conditions to which it is subjected.
  • it is stored in a liquid state in a tank which is separated by a valve from the reactor containing the reactive salts. When the valve opens, the fluid expands during which it vaporizes and chemically reacts with the salts.
  • the change of state of the fluid consumes energy and therefore induces a drop in temperature at the reservoir.
  • the chemical reaction between the gas and the salts is exothermic and causes a release of heat at the reactor.
  • the chemical reaction stops as well as the production of cold and heat.
  • Such a method is known for example from document FR 2 873 793, which describes the coupling of a phase transition process of a fluid such as NH 3 ammonia (by evaporation and condensation), and of a chemical reaction. strongly exothermic absorption of the gaseous fluid by a reactive solid such as salts and especially calcium chloride CaCl 2 or barium chloride BaCl 2 ... essential, this reaction is reversible and allows by heating to regenerate the salts and to recover the initial gas (gas desorption).
  • a reactive solid such as salts and especially calcium chloride CaCl 2 or barium chloride BaCl 2 ...
  • thermochemical process is well adapted to the functions of transformation and storage of intermittent and recurrent energy such as solar energy captured by flat or tube heat sensors.
  • process is conventionally applied according to two main reaction phases carried out under different thermodynamic constraints: a diurnal phase of regeneration of the reactive salts by desorption and storage of the energy produced, followed by a night phase of cold production .
  • the energy delivered by the solar collectors is used to heat the reactor and to decompose the solid reagent which releases the refrigerant gas which then condenses in a condenser maintained at the ambient ambient temperature.
  • the energy delivered by the solar collectors is used to heat the reactor and to decompose the solid reagent which releases the refrigerant gas which then condenses in a condenser maintained at the ambient ambient temperature.
  • it can be stored for example in a phase change material to be used later for example for faster heating of the reactor the next morning, or for another use such as hot water production.
  • the night phase of cold production consists in cooling the reactor at the end of the day so that it chemically reabsorbs the gas coming from the evaporation of the fluid in the tank and thus producing the cold.
  • the cold produced at the reservoir can be used directly to cool the compartment of a given medium, and the heat produced in the reactor by the exothermic reaction can also be used directly to heat a compartment of a given medium.
  • These energies can also be stored in phase change materials for subsequent delivery as required.
  • thermochemical reaction involves high pressures, which requires that the reactors must have a high mechanical strength to meet the constraints of the reaction. They must ensure a perfect seal to gases and liquids and also resist corrosion of the compounds used. Therefore, they are generally made of resistant materials such as steel, particularly stainless steel, or composite materials.
  • the hitherto known reactors are of generally cylindrical shape and are closed at each of their ends by a fixed wall welded to the cylindrical body or formed integrally therewith. They are provided with gas diffusion means communicating the reactive medium with the reservoir containing the fluid and allowing the flow of gas in one direction or the other depending on the reaction phase.
  • the reactors are also equipped with heating means of the reactive medium, which will be operated to desorb the gas and regenerate the reactive salts.
  • the reactors are generally equipped with a ventilation system intended to ensure rapid cooling of the reactive medium at the end of the regeneration phase. Because of the cylindrical shape of the reactors, these different means as well as the Related accessories making it possible to perform the functions of supply and circulation of gases, filtering, cooling and heating are advantageously arranged in a sleeve also cylindrical placed in the center of the reactor along its longitudinal axis (or sometimes in several sleeves arranged around a central sheath).
  • the heating elements may be arranged in collars around the reactor, but in this case, the insulating nature of the structural materials, steels in particular, represents an obstacle to heat transfer.
  • FR 2 966 572 describes a tube-shaped reactor whose ends are closed by hemispherical walls or hemi-ellipsoids (integrated geometry in the case of a composite material reactor or welded bottom bulbs in the case a steel reactor). Heating of the reagents in the regeneration phase is provided by an electrical resistor (of the immersion heater type for example) placed in a sleeve in the heart of the cylindrical body.
  • the passage of the pipes and the various connecting means essential to the performance of related functions is provided by orifices in the end walls, equipped with sealed devices by welding or screwing.
  • a first drawback arises from the difficulty of maintaining these systems, in particular when it is necessary to access the interior of the reactor. Indeed, since the reactor is closed by welding or can only comprise orifices of very small dimensions, as disclosed in FR 2 966 574, access to the internal members of the enclosure and to the reactive medium requires cutting of the reactor, which necessarily constitutes a heavy intervention involving high-tech means. Similarly, the achievement of tight connections and resistant to mechanical stresses, thermal, chemical, ... between the reactors and the various devices for heating, filtering, gas communication, ... are complex and expensive operations, it is desirable to avoid as much as possible.
  • the reactive medium present in the reactor is commonly constituted by an expanded natural graphite matrix (GNE) in which the reactive salt is inserted before compression.
  • GNE expanded natural graphite matrix
  • This composite reactive medium releases particles that can be aspirated during the communication of the reactor with the reservoir.
  • the reactors must be provided with filtering means, but these are in turn subject to clogging.
  • their replacement involves the opening of the sealed body of the reactor, and especially its closure after declogging or parts replacement, which is a delicate and complex operation.
  • thermochemical reaction since the thermochemical reaction is reversible, the successive phases of absorption and desorption of the gas cause an alternation of expansion and retraction of the composite porous matrix which, in the long run, causes clogging and compacting of the reactive medium. .
  • the only solution is then to replace the reactive medium, which also requires the opening of the reactor.
  • thermochemical systems show that there is a direct relationship between the temperature and the equilibrium pressure of the reaction on the one hand, and between the liquid / gas equilibrium states on the other hand. Also, it is particularly desirable to ensure homogeneous and regular heating of the reactive medium and the reactor chamber during the regeneration phase.
  • a mixture of GNE granulate and salts is compressed in a cylindrical mold, which guides the graphite sheets in a plane perpendicular to the direction compression, the reactive salts being interposed in the space left between them.
  • the layers thus formed in the reactive medium are thus oriented in planes perpendicular to the longitudinal axis of the reactor, which will promote the radial thermal conductivity.
  • the increase in the length of the cylindrical reactors meets these criteria, but on the other hand, it has a negative impact on the compactness of the reactor. Although it is possible to combine several shorter reactors in order to limit congestion while maintaining the desired power of the total system, multiplying the reactors also increases equipment costs as well as maintenance operations.
  • an object of the invention is to provide a reactor with its associated components having an architecture such as manufacturing operations, assembly and maintenance are facilitated.
  • Another object of the invention is in particular to allow rapid disassembly and easy accessibility to all internal components.
  • an apparatus has been designed in which the chamber of the reactor containing the reactive medium is formed of two bodies assembled by a peripheral flange, the first of which at least adopts the general shape of a cap of circular cross-section. or almost circular.
  • the subject of the present invention is an apparatus for heating and / or cooling a medium contained in a compartment external to said apparatus, comprising i) a reactor, ii) a reservoir containing a liquid or gaseous fluid capable of changing a state within a given range of temperatures and pressures, and iii) means for circulating the gaseous fluid between the reactor and the reservoir,
  • said reactor comprising:
  • a rigid envelope defining an enclosure which encloses a reactive medium capable of absorbing and desorbing said fluid in the gaseous state by a thermochemical reaction
  • the apparatus being characterized in that the reactor casing is formed of two bodies assembled by a peripheral flange, the first at least adopts the general shape of a cap of circular or almost circular cross section which contains said reactive medium in the form of at least one block conforming to the general shape of said cap.
  • the general structure of the apparatus according to the invention can be that of known apparatus.
  • the reservoir containing a fluid capable of changing state in the range of operating temperatures and pressures of the apparatus may be suitably chosen or designed by those skilled in the art.
  • the fluid is often called refrigerant, inasmuch as it is the expansion phase where it consumes energy which is put to advantage in the first place in the apparatus according to the invention (but also in other devices such as refrigerators).
  • the means for circulating the gaseous fluid between the The reactor and the reservoir can be made, unless otherwise indicated in the context of the invention, by conventional techniques whose description is found if necessary in the specialized literature.
  • the compartment to which the apparatus object of the invention applies is described as exterior in that it is distinct from the device itself, although it can be attached to it or remotely mounted. It may be for example a container for storing and storing products at a certain temperature, or at least in a narrow temperature range, then the temperature of the environment oscillates with a high amplitude. Also referred to as an outer compartment, a room or a building containing an atmospheric medium that is desired to temper (refresh or reheat as appropriate) using an air conditioner device. The apparatus which is the subject of the invention can thus be used to heat or cool a medium contained in an outer compartment, with an immediate or delayed action.
  • At least one of the two bodies associated to form the envelope adopts the general shape of a cap of circular or almost circular cross section.
  • the cross section of the cap is said to be circular when the section passing through the top of said cap and perpendicular to the plane of its base, draws a circular arc. It is said to be almost circular when it draws an oval arch, an ellipse or a basket handle. In both cases, the forms having a symmetry of revolution are favored, for reasons of homogeneous distribution of the forces.
  • the cross section of the cap can advantageously draw a half circle, which then leads to a cap of hemispherical shape, the base defines the so-called "equatorial" plane of the reactor.
  • a reactor having a spherical envelope is produced.
  • the reactor casing thus has an optimized mechanical strength to meet the constraints of the thermochemical reaction which involves high pressures. It is generally made of steel, stainless steel or composite material.
  • the reactor casing thus consists of two assembled bodies, the cap-shaped body or bodies containing the reactive medium in the form of a block conforming to the general shape of said cap.
  • This block can be made in one piece or in several blocks of smaller size, but in any case, it is a solid element, previously modeled to the space reserved for it in the body of the reactor. It conforms to the general shape of said cap without being completely nested, so as to leave room for the expansion phenomena can occur during the operation of the reactor.
  • the two bodies of the envelope are assembled by a flange, the latter being provided with clamping means (such as holes for bolted jointing ...) and sealing, for example an EPDM elastomer seal (ethylene-propylene monomeric diene), graphite, or any other material compatible with the reagents used.
  • the flange can be independent of the two bodies of the envelope. It can for example come and grip the two bodies, which are then advantageously provided with positioning means of said flange.
  • the first and second bodies respectively comprise a first and a second peripheral collar. extending in an equatorial plane to form the jaws of the flange which are assembled by reversible clamping means, such as a bolt and nut assembly.
  • the envelope of the reactor which is imperatively sealed, however, must allow the circulation of the gaseous fluid between the reservoir and the reactor, by a supply conduit opening into the reactor chamber, in the vicinity of the reactive medium block. It must also provide for the passage of a conduit of the heat transfer means to the external environment.
  • the means for circulating the gaseous fluid between the reservoir and the reactor comprise a communication conduit penetrating into the chamber between the first and the second collars, which are maintained. remote by spacer lips cooperating with the clamping means.
  • the heat transfer means between the reactive medium and the external medium comprise a conduit penetrating into the chamber between the first and the second collars, which are maintained at distance by spacer lips cooperating with the clamping means.
  • the spacer lips may be machined at the base of the hemispherical body to ensure a tight junction of the two bodies of the envelope in the equatorial plane (or in the vicinity thereof). They have its orifices provided with seals, necessary for the passage of the communication and heat transfer conduits.
  • the various conduits do not enter the enclosure of the reactor by the equatorial zone of junction of the two bodies, but at different points through the envelope.
  • the various conduits do not enter the enclosure of the reactor by the equatorial zone of junction of the two bodies, but at different points through the envelope.
  • the means for circulating the gaseous fluid between the reservoir and the reactor comprise a communication conduit dividing into a plurality of communication tubes
  • the means of thermal transfer between the reactive medium and the external medium comprises a thermal transfer duct dividing into a plurality of heat transfer tubes, said tubes penetrating into the chamber through the reactor casing at different locations and extending according to different axes within said at least one reactive medium block.
  • the reactive block is pierced with channels arranged to receive said communication tubes and heat transfer. It is recommended that the axes of penetration of these tubes are parallel to each other, so that when the system is assembled or disassembled, they can all be engaged or disengaged by simple translation along the axes of said channels.
  • the communication tubes penetrating into the reactive medium block are advantageously perforated to act as diffusion means for the gaseous fluid in and from the reactive medium. Micrometric perforations are made in order to distribute (and recover) the gas as well as possible, while retaining particles that can separate from the reactive block.
  • the reactor shell is formed of two bodies, the first at least adopts the general shape of a cap of circular or almost circular cross section.
  • the envelope comprises a single body in the form of a cap, the second body is preferably flat.
  • the reactor envelope is formed of two bodies assembled by a peripheral flange, the first body adopting the general shape of a cap of circular or almost circular cross-section. and the second body being in the form of a circular plate fitting to the first body, the reactor containing a reactive medium formed of at least one block conforming to said generally cap-like shape.
  • the plate has a diameter identical to the diameter of the base of the cap, so that it closes the first body.
  • the hemisphere thus constituted contains a block (in one piece or in several pieces) of reactive medium, itself globally hemispherical.
  • the reactor casing is formed of two bodies assembled by a peripheral flange, the first body and the second body each adopting the general shape of a cap of circular or almost circular cross section fitting one to the other and containing a reactive medium formed of at least two blocks each conforming to said generally cap-like shape.
  • the two caps have an identical diameter, so that they close on one another, possibly with an interposed spacer.
  • the sphere thus constituted contains two blocks of reactive medium (in one piece or in several pieces), each globally hemispherical.
  • the gaseous fluid diffusion means are placed in equatorial part at the level of the communication conduit with the fluid reservoir, and at the interface of the two reactive medium blocks.
  • the gaseous fluid diffusion means comprise two perforated plates extending in the equatorial plane of said bodies. shaped cap and separating the reactive blocks of each of said body of the reactor, the perforated plates being fixed at a distance from one another so as to provide between them an intermediate diffusion chamber. The distance separating the two plates may be for example at least equal to the height of the spacer lips.
  • the plates may comprise micro-perforations to achieve the means of diffusion of the gas to the reactive block, and retention of the released particles, which may cause clogging of the system.
  • the perforated plates of the intermediate chamber comprise a plurality of perforated tubes, too, which extend inside said blocks of reactive medium. Preferably, they extend at regular intervals inside said reactive medium blocks and in an orientation perpendicular to the equatorial plane of the reactor. This reduces the chemical exchanges between the gas and the reactive salts, allowing a reactor assembly by simple translation of the organs.
  • the tubes are pierced with micrometric perforations.
  • the perforated plates comprise a curved zone forming a central cavity in the intermediate chamber.
  • This central cavity which increases the volume of the intermediate chamber, is preferably substantially spherical.
  • a concentricity with the cap is then obtained, which makes it possible to house a reactive medium having a constant thickness in the enclosure.
  • the intermediate chamber thus created between the two plates can be advantageously used to pass and also dispose of the heating and cooling means of the reactor (the heat transfer means).
  • the heat transfer means may comprise a conduit penetrating into the chamber between the first and second flange collars. This feature is used to extend this heat transfer conduit into the intermediate chamber. There, it can be divided into several tubules immersed in the reactive block (after passing through one or other of the plates), so as to reduce the exchange surfaces with the reactive medium.
  • the heat transfer means provided with the apparatus according to the invention and preferably comprise a plurality of tubules which extend through orifices in said perforated plates within said reactive medium blocks. As before and for the same reasons, preference is given to an orientation perpendicular to the equatorial plane of the reactor and a distribution at regular intervals in the reactive block.
  • the cooling performance is essential to obtain a good performance of the device.
  • This function which was previously ensured by a limited, punctual and subject to degradation in the environment of a thermochemical reactor, is now provided safely and effectively by the reactor according to the invention.
  • the heat transfer means comprise at least one heat conducting element containing a pure fluid, also called heat pipe.
  • a heat pipe is intended to carry heat through the principle of phase transition thermal transfer of a fluid (latent heat).
  • said pure fluid of said heat pipe is selected from pentane, methanol, ethanol.
  • the reactor contains one or more solid blocks of reactive medium.
  • the block of reactive medium consists of a composite material based on expanded natural graphite (GNE) and a reactive salt chosen, for example, from barium chloride ( BaCl2), calcium chloride (CaCl2), manganese chloride (MnCl2), reacting with a suitable fluid, for example with ammonia.
  • a reactive salt chosen, for example, from barium chloride ( BaCl2), calcium chloride (CaCl2), manganese chloride (MnCl2), reacting with a suitable fluid, for example with ammonia.
  • Other reactive salts may also be used, chosen especially according to their enthalpy of reaction.
  • a composite reactive medium of this type is known to those skilled in the art. It is particularly well suited to the device according to the invention, in particular because it can be provided with channels for receiving diffusion tubes and heat transfer as described above, by machining, or formed by pressing or stamping. ..
  • said composite material has a structure in sheets, which are arranged in concentric surfaces in the form of the cap body in which the block is housed. It is known that a sheet structure can be obtained by mixing GNE and a salt, and then compressing it in a press designed for this purpose.
  • the orientation of the layers corresponds to the preferred direction of heat transfer.
  • the sheets being curved like the cap, the heat transfer will be substantially along spherical paths, to the main conduit meeting the passage of the heat transfer tubes, for further enhanced heat removal.
  • This curved sheet structure can be obtained according to the invention, by performing the cold uniaxial compression of the composite in a hemispherical bottom press whose size corresponds to that of a hemispherical body of the reactor.
  • a hemispherical bottom press whose size corresponds to that of a hemispherical body of the reactor.
  • a hemispherical block having at its base a curved recess corresponding to the head of the punch is obtained, which can advantageously be in the dimension of a central cavity of the intermediate chamber.
  • the thickness of graphite / salt composite is then constant throughout the reactor.
  • thermochemical system according to the invention offers significant improvements thanks to a reactor having an original, simple and efficient architecture, such that manufacturing, assembly and maintenance operations are facilitated. , with easy access to all internal components. In doing so its efficiency is increased, by a choice of size and therefore of power, and improved chemical and thermal exchanges.
  • Fig.1 is a perspective view of a spherical reactor belonging to an apparatus according to the invention.
  • Fig. 2 is a sectional view of the same spherical reactor.
  • Fig.3 is a perspective view of a hemispherical reactor belonging to an apparatus according to the invention.
  • Fig. 4 is a sectional view of the same hemispherical reactor.
  • thermochemical reactor belonging to a heater and / or cooling of a medium outside the device.
  • the apparatus comprises a reactor 1, a reservoir (not shown) containing a fluid able to change state (liquid or gaseous) in a given range of temperatures and pressures, and means for circulating the gaseous fluid between the reactor 1 and the tank.
  • the reactor 1 comprises two hemispherical bodies 1 1 1, 1 12 assembled by the peripheral flange 3 and fitting one to the other to form a rigid envelope defining an enclosure.
  • the first and second bodies 1 1 1, 1 12 respectively comprise the first and the second peripheral flanges 31 extending in an equatorial plane, and constituting the jaws of the flange 3.
  • the peripheral flanges 31 are assembled by means of clamping means 23 reversible, in this case by bolts and nuts.
  • the enclosure contains a reactive medium capable of absorbing and desorbing the fluid in the gaseous state, for example ammonia, by a thermochemical reaction.
  • the reactive medium is made for example in two blocks 12 of composite material based on expanded natural graphite and barium chloride, conforming to the general shape of the two hemispherical bodies.
  • This composite material has a curved and concentric sheet structure in the form of the bodies 1 1 1 1 and 1 12 respectively in which the blocks 12 are housed.
  • Ammonia gas flows between the reservoir and the reactor 1 through the communication conduit 21 which enters the chamber between the first and second collars 31.
  • the flanges 31 are held at a distance by the spacer lips 22 cooperating with the clamping means 23 to seal the reactor 1.
  • the reactor comprises diffusion means 13 of said gaseous fluid in and from the reactive medium, which are constituted as follows.
  • Two perforated plates 16 extend in the equatorial plane of the bodies 11, 11 so that they separate the reactive blocks 12 from each of the bodies of the reactor 1.
  • the perforated plates 16 are fixed at a distance from one another at the collar 31, so that the intermediate diffusion chamber 2 is formed between them. This chamber 2 occupies a "slice" of the reactor located in an equatorial plane.
  • the perforated plates 16 of the intermediate chamber 2 comprise a plurality of perforated tubes 171 (only one of which is visible for each plate in the plane of section of FIG 2), which extend inside the blocks 12 of medium reagent. They further comprise a curved zone forming the central cavity 18 in the intermediate chamber 2.
  • the walls of the entire chamber with its tubes and its cavity, are pierced with micro-perforations, with a diameter ranging from 10 ⁇ to 100 ⁇ .
  • the reactor also comprises heat transfer means 14 between the reactive medium and the external medium. They comprise a duct 15 penetrating into the chamber between the first and second collars 31. As a result, it enters the intermediate chamber 2 between the two plates 16.
  • This duct has a plurality of tubules 172 which extend inside the blocks 12 of reactive medium after having passed through orifices in the plates 16.
  • the assembly is a heat conducting element containing a pure fluid, in this case pentane which is well suited to the desired temperature ranges for refrigeration or air conditioning, which is low corrosive and cheap.
  • thermochemical reactor belonging to an apparatus for heating and / or cooling a medium outside the apparatus.
  • the apparatus comprises a reactor 1, a reservoir (not shown) containing a fluid able to change state (liquid or gaseous) in a given range of temperatures and pressures, and means for circulating the gaseous fluid between the reactor 1 and the tank.
  • the reactor 1 comprises a hemispherical body 1 12 and a flat body, namely the plate 1 13, assembled by the peripheral flange 3.
  • the bodies 1 12 and 1 13 fit together to form a rigid envelope defining the enclosure of the reactor.
  • the peripheral flanges 31 comprise respectively the first and the second peripheral flanges 31 extending in an equatorial plane (defined with respect to the hemispherical body 1 12), and constituting the jaws of the flange 3.
  • the peripheral flanges 31 are joined together by clamping means 23 reversible, in this case by bolts and nuts.
  • the enclosure contains a reactive medium capable of absorbing and desorbing the fluid in the gaseous state, for example ammonia, by a thermochemical reaction.
  • the reactive medium is made of a block 12 of composite material based on expanded natural graphite and barium chloride, conforming to the general shape of the hemispherical body 1 12 and platinum 1 13. This composite material has a curved leaf structure and concentric in the shape of the body 1 12 in which the block 12 is housed.
  • Ammonia gas circulates between the reservoir and the reactor 1 through the communication conduit 21 which is divided into two tubes 171, which penetrate into the chamber through the hemispherical body 1 12 in two different locations and extending to the interior of the block 12 of reactive medium.
  • the walls of the tubes are pierced with micro-perforations, with a diameter ranging from 10 ⁇ to 100 ⁇ .
  • the heat transfer means 14 between the reactive medium and the external medium comprise a conduit 15 dividing into two tubes 172 which penetrate into the chamber through the plate 1 13 in two different places and extending according to different axes inside the block 12 of reactive medium.
  • the assembly constitutes a heat conducting element containing a pure fluid, in this case pentane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L'invention a pour objet un appareil de chauffage et/ou de refroidissement d'un milieu contenu dans un compartiment, comprenant un réacteur (1), un réservoir contenant un fluide apte à changer d'état dans une gamme déterminée de températures et de pressions, et des moyens de circulation du fluide gazeux entre le réacteur (1) et le réservoir, ainsi que - une enveloppe rigide qui renferme un milieu réactif apte à absorber et désorber ledit fluide à l'état gazeux par une réaction thermochimique, - des moyens de diffusion (13) dudit fluide gazeux dans et depuis ledit milieu réactif, - des moyens de transfert thermique (14) entre ledit milieu réactif et ledit milieu extérieur. L'enveloppe du réacteur (1) est formée de deux corps (11) assemblés par une bride périphérique (3), dont le premier au moins adopte la forme générale d'une calotte de section droite circulaire ou quasiment circulaire qui contient ledit milieu réactif sous la forme d'au moins un bloc (12) épousant la forme générale de ladite calotte.

Description

REACTEUR THERMOCHIMIQUE COMPACT
À TRANSFERTS ET MAINTENANCE OPTIMISÉS
La présente invention appartient au domaine des appareils de transfert et de stockage de l'énergie thermique et plus particulièrement à celui des réacteurs thermochimiques équipant de tels appareils.
Elle a pour objet un appareil de chauffage et/ou de refroidissement d'un compartiment, mettant à profit les phases alternées d'absorption et de dégagement de chaleur d'un système chimique contenu dans un réacteur du fait de ses changements d'état, le réacteur ayant une structure aisément démontable et favorisant les échanges thermiques.
Il est connu d'utiliser des systèmes thermochimiques pour la production de froid et/ou de chaleur. Ces systèmes sont fondés sur les variations thermiques résultant de transformations physico-chimiques d'un couple de composés aptes à interagir l'un avec l'autre. Typiquement l'un des composés est un fluide, et l'autre composé est formé de sels réactifs s'associant avec le fluide quand ils sont mis en contact à une température donnée, mais se dissociant lorsque la température augmente. Le fluide peut être gazeux ou liquide selon les conditions de température et de pression auxquelles il est soumis. Dans les systèmes qui nous intéressent, il est conservé à l'état liquide dans un réservoir qui est séparé par une vanne du réacteur contenant les sels réactifs. A l'ouverture de la vanne, le fluide subit une expansion au cours de laquelle il se vaporise et va réagir chimiquement avec les sels. Le changement d'état du fluide (de liquide à gazeux) consomme de l'énergie et induit par conséquent une baisse de température au niveau du réservoir. Au contraire, la réaction chimique entre le gaz et les sels est exothermique et provoque un dégagement de chaleur au niveau du réacteur. A l'équilibre, après vaporisation totale du fluide ou lorsque les sels sont saturés, la réaction chimique s'arrête ainsi que la production de froid et de chaleur.
Il est ensuite possible de régénérer le système en chauffant les sels réactifs, ce qui provoque la séparation des sels et du gaz. De ce fait, on observe une montée de la pression dans le système et une condensation du gaz qui se retrouve à l'état liquide dans le réservoir. Les sels ainsi régénérés sont aptes à réagir dans un nouveau cycle de réfrigération - chauffage. On sait mettre à profit les phases alternées de production et d'absorption de chaleur d'un tel système, selon les besoins pour chauffer ou refroidir un compartiment auquel on l'associe par l'intermédiaire d'un dispositif thermiquement conducteur (caloduc).
Un tel procédé est connu par exemple par le document FR 2 873 793, qui décrit le couplage d'un processus de transition de phase d'un fluide tel que l'ammoniac NH3 (par évaporation et condensation), et d'une réaction chimique fortement exothermique d'absorption du fluide gazeux par un solide réactif tel que des sels et notamment du chlorure de calcium CaCI2 ou du chlorure de baryum BaCI2 ... Point essentiel, cette réaction est réversible et permet par chauffage de régénérer les sels et de récupérer le gaz initial (désorption du gaz).
Le fonctionnement intrinsèquement discontinu et cyclique du procédé thermochimique est bien adapté aux fonctions de transformation et de stockage d'une énergie intermittente et récurrente telle que l'énergie solaire captée par des capteurs thermiques plans ou à tubes. Dans ce cas, le procédé est appliqué classiquement selon deux phases réactionnelles principales réalisées sous des contraintes thermodynamiques différentes : une phase diurne de régénération des sels réactifs par désorption et de stockage de l'énergie produite, suivie d'une phase nocturne de production de froid.
Au cours de la phase diurne, l'énergie délivrée par les capteurs solaires est utilisée pour chauffer le réacteur et décomposer le réactif solide qui libère le gaz réfrigérant lequel se condense alors dans un condenseur maintenu à la température ambiante extérieure. Lorsque qu'il y a un surplus d'énergie solaire, celle-ci peut être stockée par exemple dans un matériau à changement de phase pour être utilisée ultérieurement par exemple pour un chauffage plus rapide du réacteur le matin suivant, ou pour un autre usage tel qu'une production d'eau chaude. La phase nocturne de production de froid consiste à refroidir en fin de journée le réacteur pour qu'il réabsorbe chimiquement le gaz provenant de l'évaporation du fluide dans le réservoir et produisant ainsi le froid. Le froid produit au niveau du réservoir peut être utilisé directement pour refroidir le compartiment d'un milieu donné, et la chaleur produite dans le réacteur par la réaction exothermique peut être aussi utilisée directement pour chauffer un compartiment d'un milieu donné. Ces énergies (froides ou chaudes) peuvent également être stockées dans des matériaux à changement de phase pour être délivrées ultérieurement selon la demande.
Différentes expérimentations ont permis d'évaluer le rendement de captation solaire à environ 50% et un coefficient de performance du procédé (COP selon l'acronyme anglo- saxon) de 40%, signifiant qu'environ 20% de l'énergie solaire incidente peut être directement transformée en froid par un tel dispositif thermochimique. A noter qu'on peut utiliser d'autres sources de chaleur que l'énergie solaire pour la phase de régénération, par exemple la géothermie profonde ou la chaleur fatale issue de processus industriels, de centrales électriques ou de gaz d'échappement de moteurs thermiques. Dans ce cas, les études conduisent à estimer un rendement global de l'ordre de 35 à 40%.
On comprend donc l'intérêt pratique et économique que peut revêtir un tel système pour l'approvisionnement en énergie de zones isolées ou mal reliées aux réseaux de distribution d'électricité, mais aussi pour l'optimisation des consommations énergétiques.
La mise en œuvre du système ainsi défini nécessite cependant un équipement adapté. En effet, la réaction thermochimique met en jeu de fortes pressions, ce qui impose que les réacteurs doivent posséder une résistance mécanique élevée pour répondre aux contraintes de la réaction. Ils doivent assurer une étanchéité parfaite aux gaz comme aux liquides et résister en outre à la corrosion des composés mis en œuvre. C'est pourquoi, ils sont généralement réalisés dans des matériaux résistants tels que l'acier, et particulièrement l'acier inoxydable, ou en matériaux composites. Pour les mêmes raisons, les réacteurs connus jusqu'à présent sont de forme générale cylindrique et sont fermés à chacune de leurs extrémités par une paroi fixe soudée au corps cylindrique ou formée d'un seul tenant avec celui-ci. Ils sont munis de moyens de diffusion des gaz mettant en communication le milieu réactif avec le réservoir contenant le fluide et permettant la circulation du gaz dans un sens ou dans l'autre selon la phase réactionnelle. Ils sont également dotés de moyens de chauffage du milieu réactif, qui seront mis en fonctionnement pour désorber le gaz et régénérer les sels réactifs. Par ailleurs, les réacteurs sont généralement munis d'un système de ventilation destiné à assurer le refroidissement rapide du milieu réactif en fin de phase de régénération. Du fait de la forme cylindrique des réacteurs, ces différents moyens ainsi que les accessoires connexes permettant de réaliser les fonctions d'alimentation et de circulation des gaz, de filtrage, de refroidissement et de chauffage sont avantageusement disposés dans un fourreau lui aussi cylindrique placé au centre du réacteur suivant son axe longitudinal (ou parfois dans plusieurs fourreaux disposés autour d'un fourreau central). De manière alternative, les éléments chauffants peuvent être disposés en colliers autour du réacteur, mais dans ce cas, le caractère isolant des matériaux de structure, des aciers en particulier, représente un obstacle au transfert thermique.
Le document FR 2 966 572 par exemple, décrit un réacteur en forme de tube dont les extrémités sont fermées par des parois hémisphériques ou hémi-ellipsoïdes (géométrie intégrée dans le cas d'un réacteur en matériau composite ou à fonds bombés soudés dans le cas d'un réacteur en acier). Le chauffage des réactifs dans la phase de régénération est assuré par une résistance électrique (de type thermoplongeur par exemple) placée dans un fourreau au cœur du corps cylindrique. Le passage des tubulures et des divers moyens de liaison indispensables à la réalisation des fonctions connexes est assuré par des orifices pratiqués dans les parois d'extrémité, équipés de dispositifs étanches par soudure ou par vissage.
Un agencement de ce type est bien adapté lorsque l'on recourt à des moyens de chauffage électriques du réacteur, que ce soit par résistance de type thermoplongeur ou par collier chauffant. Il présente cependant de nombreux inconvénients.
Un premier inconvénient découle de la difficulté de maintenance de ces systèmes, en particulier lorsqu'il est nécessaire d'accéder à l'intérieur du réacteur. En effet, le réacteur étant obturé par soudure ou ne pouvant comporter que des orifices de dimensions très réduites, comme exposé dans FR 2 966 574, l'accès aux organes intérieurs de l'enceinte et au milieu réactif nécessite une découpe du réacteur, ce qui constitue forcément une intervention lourde impliquant des moyens de haute technicité. De même, la réalisation des liaisons étanches et résistantes aux contraintes mécaniques, thermiques, chimiques,... entre les réacteurs et les divers dispositifs de chauffage, filtrage, communication en gaz,... sont des opérations complexes et onéreuses, qu'il est souhaitable d'éviter autant que possible.
Cependant, il n'est guère réaliste d'espérer pouvoir s'exonérer d'une maintenance régulière, du fait d'une part de la nature du milieu réactif et d'autre part des contraintes fortes que subissent les organes du réacteur et le réacteur lui-même, entraînant forcément une dégradation régulière.
En effet, le milieu réactif présent dans le réacteur est communément constitué d'une matrice en graphite naturel expansé (GNE) dans laquelle le sel réactif est inséré avant compression. Ce milieu réactif composite libère des particules qui peuvent être aspirées lors de la mise en communication du réacteur avec le réservoir. Pour éviter l'obturation du circuit de transfert, les réacteurs doivent être dotés de moyens de filtrage, mais ceux-ci sont à leur tour sujets à colmatage. Or, leur remplacement implique l'ouverture du corps étanche du réacteur, et surtout sa fermeture après décolmatage ou remplacement des pièces, ce qui est une opération délicate et complexe.
Par ailleurs, la réaction thermochimique étant réversible, les phases successives d'absorption et de désorption du gaz provoquent une alternance d'expansion et rétraction de la matrice poreuse composite qui, à la longue, entraîne des phénomènes de colmatage et de compactage du milieu réactif. Le seule solution est alors de remplacer le milieu réactif, ce qui impose aussi l'ouverture du réacteur.
Un autre inconvénient des systèmes connus provient de l'architecture cylindrique des réacteurs dans lesquels le ratio longueur / diamètre est de l'ordre de 4 à 5, limitant de ce fait les surfaces de contact et d'échange thermique avec le milieu réactif. Ceci n'est évidemment pas optimum du point de vue de la maîtrise des processus d'absorption et de désorption du fluide. L'analyse des systèmes thermochimiques montre en effet qu'il existe une relation directe entre la température et la pression d'équilibre de la réaction d'une part, et entre les états d'équilibre liquide / gaz d'autre part. Aussi, est-il particulièrement souhaitable d'assurer un chauffage homogène et régulier du milieu réactif et de l'enceinte du réacteur lors de la phase de régénération. Il est également important qu'un refroidissement homogène, régulier et néanmoins rapide, du milieu réactif et de l'enceinte du réacteur puisse être obtenu en fin de phase de régénération, car à la fin de cette phase à température élevée, doit démarrer la phase de production de froid, laquelle sera d'autant plus efficace qu'elle est réalisée à faible température. A ce besoin de refroidissement à la fin de la régénération, s'ajoute un besoin de refroidissement pendant la phase d'absorption, ceci pour déplacer le point d'équilibre de la réaction. Dans les systèmes conventionnels, la fonction de refroidissement est généralement assurée par un système de ventilation électrique qui ne permet qu'un rafraîchissement limité et ponctuel, et introduit en outre une pièce tournante dans le dispositif, pièce sensible qui peut poser des problèmes, à plus forte raison en environnement difficile. Cette solution n'est donc pas satisfaisante.
Pour répondre à ce problème, il a été proposé d'augmenter le ratio longueur / diamètre du réacteur. Ceci permet une meilleure diffusion du gaz dans la matrice réactive, d'autant que pour un milieu réactif composite à base de GNE et de sels, les transferts massiques (en gaz) et thermiques (refroidissement du milieu réactif en phase d'absorption et de chauffage en phase de régénération) s'effectuent de manière privilégiée selon une orientation radiale et non longitudinale. Ce phénomène bien connu s'explique par la structure en feuillets du graphite qui est responsable de l'anisotropie de toutes les propriétés physiques du graphite. En particulier sa conductivité thermique est très différente dans le plan des feuillets et dans la direction perpendiculaire. Suivant le procédé industriel le plus couramment utilisé, lors de la fabrication de la matrice composite graphite / sels, un mélange de granulat de GNE et de sels est comprimé dans un moule cylindrique, ce qui oriente les feuillets de graphite selon un plan perpendiculaire au sens de la compression, les sels réactifs venant s'intercaler dans l'espace laissé entre eux. Les couches ainsi formées dans le milieu réactif se retrouvent ainsi orientées selon des plans perpendiculaires à l'axe longitudinal du réacteur, ce qui va favoriser la conductivité thermique radiale. L'augmentation de la longueur des réacteurs cylindriques répond à ces critères, mais en revanche, elle entraîne un impact négatif sur la compacité du réacteur. On peut certes associer plusieurs réacteurs plus courts pour limiter l'encombrement tout en conservant la puissance voulue du système total, mais multiplier les réacteurs multiplie aussi les coût d'équipement ainsi que les opérations d'entretien.
La présente invention a pour but de remédier à ces inconvénients en proposant un système thermochimique dont la fabrication et le fonctionnement soient facilités tout en offrant des performances égales, sinon supérieures aux systèmes connus à ce jour. En particulier, un objectif de l'invention est d'offrir un réacteur avec ses composants connexes ayant une architecture telle que les opérations de fabrication, de montage et de maintenance soient facilitées. Un autre objectif de l'invention est en particulier de permettre un démontage rapide et une accessibilité aisée à l'ensemble des composants internes. Pour répondre à ces objectifs a été conçu un appareil dans lequel l'enceinte du réacteur qui renferme le milieu réactif est formée de deux corps assemblés par une bride périphérique, dont le premier au moins adopte la forme générale d'une calotte de section droite circulaire ou quasiment circulaire. On a donc un réacteur sphérique (ou hémisphérique) dont l'enceinte est formée par l'assemblage de deux corps grâce à une bride périphérique. Il est de ce fait aisé à démonter et à remonter. Il peut en outre être dimensionné pour de grandes puissances d'échange thermique, compte tenu de sa géométrie favorisant une répartition homogène des contraintes.
Plus précisément, la présente invention a pour objet un appareil de chauffage et/ou refroidissement d'un milieu contenu dans un compartiment extérieur audit appareil, comprenant i) un réacteur, ii) un réservoir contenant un fluide liquide ou gazeux apte à changer d'état dans une gamme déterminée de températures et de pressions, et iii) des moyens de circulation du fluide gazeux entre le réacteur et le réservoir,
ledit réacteur comprenant :
- une enveloppe rigide définissant une enceinte qui renferme un milieu réactif apte à absorber et désorber ledit fluide à l'état gazeux par une réaction thermochimique,
- des moyens de diffusion dudit fluide gazeux dans et depuis ledit milieu réactif,
- des moyens de transfert thermique entre ledit milieu réactif et ledit milieu extérieur, l'appareil étant caractérisé en ce que l'enveloppe du réacteur est formée de deux corps assemblés par une bride périphérique, dont le premier au moins adopte la forme générale d'une calotte de section droite circulaire ou quasiment circulaire qui contient ledit milieu réactif sous la forme d'au moins un bloc épousant la forme générale de ladite calotte.
La structure générale de l'appareil selon l'invention peut être celle des appareils connus. En particulier, le réservoir contenant un fluide apte à changer d'état dans la gamme de températures et de pressions de fonctionnement de l'appareil peut être judicieusement choisi ou conçu par l'homme du métier. Le fluide est souvent appelé fluide réfrigérant, dans la mesure où c'est la phase d'expansion où il consomme de l'énergie qui est mise à profit en premier lieu dans l'appareil selon l'invention (mais aussi dans d'autres dispositifs tels que les réfrigérateurs). De même les moyens de circulations du fluide gazeux entre le réacteur et le réservoir peuvent être réalisés, sauf indication différente dans le cadre de l'invention, par des techniques conventionnelles dont la description se trouve si besoin dans la littérature spécialisée. Le compartiment auquel s'applique l'appareil objet de l'invention est qualifié d'extérieur en ce qu'il est distinct de l'appareil lui-même, bien que pouvant y être accolé ou bien être monté à distance. Il peut s'agir par exemple d'un conteneur ayant pour vocation de stocker et de conserver des produits à une température déterminée, ou au moins dans un intervalle de températures étroit, alors la température de l'environnement oscille avec une forte amplitude. On désigne aussi sous le vocable de compartiment extérieur, une pièce ou un bâtiment contenant un milieu atmosphérique que l'on souhaite tempérer (rafraîchir ou réchauffer selon les cas) à l'aide d'un dispositif climatiseur. L'appareil objet de l'invention peut ainsi être utilisé pour chauffer ou pour refroidir un milieu contenu dans un compartiment extérieur, avec une action immédiate ou différée.
Dans le réacteur selon l'invention, au moins un des deux corps associés pour en constituer l'enveloppe adopte la forme générale d'une calotte de section droite circulaire ou quasiment circulaire. La section droite de la calotte est dite circulaire lorsque la section passant par le sommet de ladite calotte et perpendiculaire au plan de sa base, dessine un arc de cercle. Elle est dite quasiment circulaire lorsqu'elle dessine un arc d'ovale, une ellipse ou une anse de panier. Dans les deux cas, on privilégie les formes présentant une symétrie de révolution, pour des raisons de répartition homogène des efforts. On note par ailleurs que la section droite de la calotte peut avantageusement dessiner un demi cercle, ce qui conduit alors à une calotte de forme hémisphérique, dont la base définit le plan dit "équatorial" du réacteur.
Par soucis de clarté et de simplicité, on se référera dans la suite de la présente description à des calottes hémisphériques, bien qu'il soit entendu que les formes voisines ci-dessus définies sont expressément incluses dans la présente invention.
Dans le cas de l'assemblage de deux corps adoptant la forme de calottes, on réalise un réacteur ayant une enveloppe sphérique. Lorsque l'on utilise un seul corps adoptant la forme d'une calotte, on l'associera de préférence avec un second corps plan, pour réaliser une enveloppe hémisphérique. L'enveloppe du réacteur présente de ce fait une résistance mécanique optimisée pour répondre aux contraintes de la réaction thermochimique qui met en jeu des pressions élevées. Elle est généralement réalisées en acier, en acier inoxydable ou en matériau composite.
L'enveloppe du réacteur est ainsi constituée de deux corps assemblés, le ou les corps en forme de calotte contenant le milieu réactif sous la forme d'un bloc épousant la forme générale de ladite calotte. Ce bloc peut être fait d'un seul tenant ou en plusieurs blocs de plus petite taille, mais quoi qu'il en soit, c'est un élément solide, préalablement modelé à l'espace qui lui est réservé dans le corps du réacteur. Il épouse la forme générale de ladite calotte sans y être totalement imbriqué, de façon à laisser la place pour que les phénomènes de dilatation puissent se produire au cours du fonctionnement du réacteur.
Il est ainsi aisé de placer un ou plusieurs blocs à l'intérieur de la calotte avant d'assembler l'enveloppe du réacteur. Il est également aisé de les retirer lorsque l'on sépare les deux corps de l'enveloppe, pour les remplacer ou pour procéder à l'entretien du réacteur.
Les deux corps de l'enveloppe sont assemblés par une bride, celle-ci étant munie de moyens de serrage (tels que des orifices pour assemblage boulonné...) et d'étanchéité, par exemple un joint en élastomère EPDM (éthylène-propylène-diène monomère), en graphite, ou en tout autre matériau compatible avec les réactifs mis en oeuvre. La bride peut être indépendante des deux corps de l'enveloppe. Elle peut par exemple venir enserrer les deux corps, lesquels sont alors avantageusement munis de moyens de positionnement de ladite bride.
Elle peut au contraire être partie intégrante des corps de l'enveloppe du réacteur, auquel cas, selon une caractéristique avantageuse de l'appareil objet de l'invention, le premier et le second corps comportent respectivement un premier et un second collets périphériques s'étendant selon un plan équatorial pour constituer les mâchoires de la bride qui sont assemblées par des moyens de serrage réversibles, tels qu'un ensemble boulon et écrou. L'enveloppe du réacteur qui est impérativement étanche, doit cependant permettre la circulation du fluide gazeux entre le réservoir et le réacteur, par un conduit d'amenée débouchant dans l'enceinte du réacteur, au voisinage du bloc de milieu réactif. Elle doit également prévoir le passage d'un conduit des moyens de transfert thermique vers le milieu extérieur. Selon un mode de réalisation intéressant de l'appareil objet de l'invention, les moyens de circulation du fluide gazeux entre le réservoir et le réacteur comprennent un conduit de communication pénétrant dans l'enceinte entre le premier et le second collets, lesquels sont maintenus à distance par des lèvres d'entretoise coopérant avec les moyens de serrage.
Dans un mode de réalisation également intéressant de l'appareil selon l'invention, les moyens de transfert thermique entre le milieu réactif et le milieu extérieur, comprennent un conduit pénétrant dans l'enceinte entre le premier et le second collets, lesquels sont maintenus à distance par des lèvres d'entretoises coopérant avec les moyens de serrage.
Les lèvres d'entretoise peuvent être usinées à la base du corps hémisphérique pour assurer une jonction étanche des deux corps de l'enveloppe dans le plan équatorial (ou au voisinage de celui-ci). Elles présentent ses orifices dotés de joints étanches, nécessaires au passage des conduits de communication et de transfert thermique.
Dans un mode de réalisation différent de l'invention, les divers conduits ne pénètrent pas dans l'enceinte du réacteur par la zone équatoriale de jonction des deux corps, mais en différents points à travers l'enveloppe. Dans ce cas, dans la mesure où il est avantageux d'accroître les surfaces d'échange (chimique et thermique) au sein du réacteur, il est envisagé que plusieurs conduits pénètrent dans le réacteur.
Ainsi, selon un mode particulier de réalisation de l'appareil objet de l'invention, les moyens de circulation du fluide gazeux entre le réservoir et le réacteur comprennent un conduit de communication se divisant en une pluralité de tubes de communication, et les moyens de transfert thermique entre le milieu réactif et le milieu extérieur comprennent un conduit de transfert thermique se divisant en une pluralité de tubes de transfert thermique, lesdits tubes pénétrant dans l'enceinte à travers l'enveloppe du réacteur en différents endroits et s'étendant selon différents axes à l'intérieur dudit au moins un bloc de milieu réactif. Le bloc réactif est percé de canaux agencés pour recevoir lesdits tubes de communication et de transfert thermique. Il est recommandé que les axes de pénétration de ces tubes soient parallèles entre eux, de sorte que lorsqu'on assemble ou qu'on démonte le système, ils puissent tous être engagés ou dégagés par simple translation selon les axes desdits canaux. Les tubes de communication pénétrant dans le bloc de milieu réactif sont avantageusement perforés pour jouer le rôle de moyens de diffusion du fluide gazeux dans et depuis le milieu réactif. On réalise des perforations micrométriques, de manière à répartir (et à récupérer) au mieux le gaz, tout en retenant les particules qui peuvent se détacher du bloc réactif.
Comme expliqué précédemment, l'enveloppe du réacteur est formée de deux corps dont le premier au moins adopte la forme générale d'une calotte de section droite circulaire ou quasiment circulaire. Lorsque l'enveloppe comporte un seul corps en forme de calotte, le second corps est de préférence plan. Ainsi, selon une caractéristique optionnelle de l'appareil objet de l'invention, l'enveloppe du réacteur est formée de deux corps assemblés par une bride périphérique, le premier corps adoptant la forme générale d'une calotte de section droite circulaire ou quasiment circulaire, et le second corps étant sous la forme d'une platine circulaire s'ajustant au premier corps, le réacteur contenant un milieu réactif formé d'au moins un bloc épousant ladite forme générale en calotte. Avantageusement, la platine a un diamètre identique au diamètre de la base de la calotte, de sorte qu'elle ferme le premier corps. L'hémisphère ainsi constitué contient un bloc (d'un seul tenant ou en plusieurs pièces) de milieu réactif, lui-même globalement hémisphérique.
Selon une variante d'exécution préférée de l'appareil objet de l'invention, l'enveloppe du réacteur est formée de deux corps assemblés par une bride périphérique, le premier corps et le second corps adoptant chacun la forme générale d'une calotte de section droite circulaire ou quasiment circulaire s'ajustant l'une à l'autre et contenant un milieu réactif formé d'au moins deux blocs épousant chacun ladite forme générale en calotte. Avantageusement, les deux calottes ont un diamètre identique, de sorte qu'elles se ferment l'une sur l'autre, éventuellement avec une entretoise intercalée. La sphère ainsi constituée contient deux blocs de milieu réactif (d'un seul tenant ou en plusieurs pièces), chacun globalement hémisphérique.
Dans ce mode de réalisation, il est avantageux que des moyens de diffusion du fluide gazeux soient placés en partie équatoriale au niveau du conduit de communication avec le réservoir de fluide, et à l'interface des deux blocs de milieu réactif. C'est pourquoi, selon une caractéristique préférée de l'invention, les moyens de diffusion du fluide gazeux comprennent deux plaques perforées s'étendant dans le plan équatorial desdits corps en forme de calotte et séparant les blocs réactifs de chacun desdits corps du réacteur, les plaques perforées étant fixées à distance l'une de l'autre de manière à ménager entre elles une chambre intermédiaire de diffusion. La distance séparant les deux plaques peut être par exemple au moins égale à la hauteur des lèvres d'entretoise. Les plaques peuvent comporter des micro-perforations pour réaliser les moyens de diffusion du gaz vers le bloc réactif, et de rétention des particules libérées, risquant de provoquer le colmatage du système. Selon une caractéristique avantageuse de l'invention, les plaques perforées de la chambre intermédiaire comportent une pluralité de tubes perforés eux aussi, qui s'étendant à l'intérieur desdits blocs de milieu réactif. De préférence, ils s'étendent à intervalles réguliers à l'intérieur desdits blocs de milieu réactif et selon une orientation perpendiculaire au plan équatorial du réacteur. On démultiplie ainsi les échanges chimiques entre le gaz et les sels réactifs, en permettant un montage du réacteur par simple translation des organes. Pour les raisons déjà indiquées, les tubes sont percés de perforations micrométriques.
Selon une autre caractéristique avantageuse de l'invention, les plaques perforées comportent une zone incurvée formant une cavité centrale dans la chambre intermédiaire. Cette cavité centrale, qui accroît le volume de la chambre intermédiaire, est de préférence sensiblement sphérique. On obtient alors une concentricité avec la calotte, ce qui permet de loger un milieu réactif ayant une épaisseur constante dans l'enceinte. Ceci représente un avantage pour l'optimisation de l'homogénéité du transfert thermique, mais aussi pour la mise en œuvre du milieu réactif sous forme de blocs amovibles.
La chambre intermédiaire ainsi créée entre les deux plaques peut être avantageusement utilisée pour y faire passer et disposer aussi les moyens de chauffage et de refroidissement du réacteur (les moyens de transfert thermique). On a vu que les moyens de transfert thermique peuvent comprendre un conduit pénétrant dans l'enceinte entre le premier et le second collets de la bride. On tire partie de cette caractéristique pour prolonger ce conduit de transfert thermique dans la chambre intermédiaire. Là, il peut se diviser en plusieurs tubules plongeant dans le bloc réactif (après avoir traversé l'une ou l'autre des plaques), de manière à démultiplier les surfaces d'échange avec le milieu réactif. Les moyens de transfert thermique dont est doté l'appareil selon l'invention comportent ainsi de préférence une pluralité de tubules qui s'étendant par des orifices pratiqués dans lesdites plaques perforées à l'intérieur desdits blocs de milieu réactif. Comme précédemment et pour les mêmes raisons, on privilégie une orientation perpendiculaire au plan équatorial du réacteur et une répartition à intervalles réguliers dans le bloc réactif.
On réalise ainsi un système qui, outre qu'il est aisément démontable, est aussi très efficace pour évacuer la chaleur produite par la réaction thermochimique. Or, on a vu que les performances de refroidissement sont essentielles pour obtenir un bon rendement de l'appareil. Cette fonction qui était antérieurement assurée par une ventilation électrique limitée, ponctuelle et sujette à dégradation dans l'environnement d'un réacteur thermochimique, est désormais assurée de manière sûre et efficace par le réacteur selon l'invention. Dans ce cadre, il reste bien sûr possible d'utiliser un échangeur de chaleur classique par circulation de fluide, gaz ou liquide. Cependant, de manière préférée, les moyens de transfert thermique comprennent au moins un élément conducteur de chaleur contenant un fluide pur, aussi appelé caloduc. Un caloduc est destiné à transporter la chaleur grâce au principe du transfert thermique par transition de phase d'un fluide (chaleur latente). Son intérêt découle de sa faculté d'amplifier le refroidissement ou le chauffage en jouant sur l'équilibre permanent entre les phases liquide et vapeur, la création d'un mouvement de thermosiphon et des coefficients de transfert thermique très élevés pour transférer très rapidement la chaleur d'un point à un autre avec des surfaces d'échange thermique pouvant être réduites. De préférence, ledit fluide pur dudit caloduc est choisi parmi le pentane, le méthanol, l'éthanol.
Le réacteur contient un ou plusieurs blocs solides de milieu réactif. Selon une caractéristique avantageuse de l'appareil objet de la présente invention, le bloc de milieu réactif est constitué d'un matériau composite à base de graphite naturel expansé (GNE) et d'un sel réactif choisi par exemple parmi le chlorure de baryum (BaCl2), le chlorure de calcium (CaCl2), le chlorure de manganèse (MnCl2), réagissant avec un fluide adéquat, par exemple avec l'ammoniac. D'autres sels réactifs peuvent également être utilisés, choisis notamment en fonction de leur enthalpie de réaction. L'homme du métier fera un choix judicieux d'un couple fluide - sels réactifs, réagissant avec un fluide changeant d'état à une température et une pression de travail désirées. Un milieu réactif composite de ce type est connu de l'homme du métier. Il est particulièrement bien adapté au dispositif selon l'invention, notamment du fait qu'il peut être doté des canaux destinés à recevoir des tubes de diffusion et de transfert thermique tels que décrits plus haut, par usinage, ou formé par pressage ou estampage ...
Également, selon une caractéristique avantageuse de l'appareil objet de la présente invention, ledit matériau composite a une structure en feuillets, lesquels sont disposés selon des surfaces concentriques suivant la forme du corps en calotte dans lequel le bloc est logé. On sait qu'on peut obtenir une structure en feuillets en mélangeant du GNE et un sel, puis en comprimant le tout dans une presse conçue à cet effet.
Comme expliqué précédemment, l'orientation des couches correspond à la direction privilégiée des transferts thermiques. Dans le mode de réalisation préféré, les feuillets étant incurvés comme la calotte, les transferts thermiques vont se faire essentiellement selon des parcours sphériques, vers le conduit principal rencontrant au passage les tubes de transfert thermique, pour une évacuation de la chaleur encore améliorée.
Cette structure en feuillets incurvés peut être obtenue selon l'invention, en réalisant la compression uniaxiale à froid du composite dans une presse à fond hémisphérique dont la taille correspondant à celle d'un corps hémisphérique du réacteur. Lorsque l'on utilise en outre un poinçon arrondi, on obtient un bloc hémisphérique présentant à sa base, un évidemment incurvé correspondant à la tête du poinçon, celui-ci pouvant avantageusement être à la dimension d'un cavité centrale de la chambre intermédiaire. L'épaisseur de composite graphite/sel est alors constante dans la totalité du réacteur.
Comme on le comprend à la lecture de ce qui précède, le système thermochimique selon l'invention offre des perfectionnements significatifs grâce à un réacteur ayant une architecture originale, simple et efficace, telle que les opérations de fabrication, de montage et de maintenance sont facilitées, avec une accessibilité aisée à l'ensemble des composants internes. Ce faisant son efficacité est accrue, par un choix de taille et donc de puissance, et des échanges chimiques et thermiques améliorés.
La présente invention sera mieux comprise, et des détails en relevant apparaîtront, grâce à la description qui va être faite de variantes de réalisation, en relation avec les figures annexées, dans lesquelles :
La fig.1 est une vue en perspective d'un réacteur sphérique appartenant à un appareil selon l'invention.
La fig. 2 est une vue en coupe du même réacteur sphérique.
La fig.3 est une vue en perspective d'un réacteur hémisphérique appartenant à un appareil selon l'invention.
La fig. 4 est une vue en coupe du même réacteur hémisphérique.
EXEMPLE 1
Sur les fig.1 et 2, on a représenté un réacteur thermochimique, appartenant à un appareil de chauffage et/ou de refroidissement d'un milieu extérieur à l'appareil. L'appareil comprend un réacteur 1 , un réservoir (non représenté) contenant un fluide apte à changer d'état (liquide ou gazeux) dans une gamme déterminée de températures et de pressions, et des moyens de circulation du fluide gazeux entre le réacteur 1 et le réservoir.
Le réacteur 1 comprend deux corps hémisphériques 1 1 1 , 1 12 assemblés par la bride périphérique 3 et s'ajustant l'un à l'autre pour former une enveloppe rigide définissant une enceinte. Le premier et le second corps 1 1 1 , 1 12 comportent respectivement le premier et le second collets périphériques 31 s'étendant selon un plan équatorial, et constituant les mâchoires de la bride 3. Les collets périphériques 31 sont assemblées par des moyens de serrage 23 réversibles, en l'occurrence par des boulons et écrous.
L'enceinte renferme un milieu réactif apte à absorber et désorber le fluide à l'état gazeux, par exemple de l'ammoniac, par une réaction thermochimique. Le milieu réactif est fait par exemple en deux blocs 12 de matériau composite à base de graphite naturel expansé et de chlorure de baryum, épousant la forme générale des deux corps hémisphériques. Ce matériau composite a une structure en feuillets incurvés et concentriques suivant la forme respectivement des corps 1 1 1 et 1 12 dans lesquels les blocs 12 sont logés.
L'ammoniac gazeux circule entre le réservoir et le réacteur 1 grâce au conduit de communication 21 qui pénètre dans l'enceinte entre le premier et le second collets 31 . Les collets 31 sont maintenus à distance par les lèvres d'entretoise 22 coopérant avec les moyens de serrage 23 pour assurer l'étanchéité du réacteur 1 . Le réacteur comporte des moyens de diffusion 13 dudit fluide gazeux dans et depuis le milieu réactif, qui sont constitués comme suit. Deux plaques perforées 16 s'étendent dans le plan équatorial des corps 1 1 1 , 1 12 de sorte qu'elles séparent les blocs réactifs 12 de chacun des corps du réacteur 1 . Les plaques perforées 16 sont fixées à distance l'une de l'autre au niveau du collet 31 , de manière à ce que la chambre intermédiaire de diffusion 2 soit ménagée entre elles. Cette chambre 2 occupe une "tranche" du réacteur située dans un plan équatorial.
Les plaques perforées 16 de la chambre intermédiaire 2 comportent une pluralité de tubes perforés 171 (dont un seul est visible pour chaque plaque dans le plan de coupe de la fig. 2), qui s'étendent à l'intérieur des blocs 12 de milieu réactif. Elles comportent en outre une zone incurvée formant la cavité centrale 18 dans la chambre intermédiaire 2.
Les parois de l'ensemble de la chambre avec ses tubes et sa cavité, sont percées de micro-perforations, d'un diamètre pouvant aller de 10 μηι à 100 μηι.
Le réacteur comporte aussi des moyens de transfert thermique 14 entre le milieu réactif et le milieu extérieur. Ils comprennent un conduit 15 pénétrant dans l'enceinte entre le premier et le second collets 31 . De ce fait, il pénètre dans la chambre intermédiaire 2, entre les deux plaques 16. Ce conduit comporte une pluralité de tubules 172 qui s'étendent à l'intérieur des blocs 12 de milieu réactif, après avoir traversé des orifices pratiqués dans les plaques perforées 16. L'ensemble constitue un élément conducteur de chaleur contenant un fluide pur, en l'occurrence du pentane qui est bien adapté aux gammes de températures souhaitées pour la réfrigération ou la climatisation, qui est peu corrosif et bon marché.
EXEMPLE 2 Sur les fig.3 et 4, on a représenté un autre réacteur thermochimique, appartenant à un appareil de chauffage et/ou de refroidissement d'un milieu extérieur à l'appareil. L'appareil comprend un réacteur 1 , un réservoir (non représenté) contenant un fluide apte à changer d'état (liquide ou gazeux) dans une gamme déterminée de températures et de pressions, et des moyens de circulation du fluide gazeux entre le réacteur 1 et le réservoir. Le réacteur 1 comprend un corps hémisphérique 1 12 et un corps plan, à savoir la platine 1 13, assemblés par la bride périphérique 3. Les corps 1 12 et 1 13 s'ajustent l'un à l'autre pour former une enveloppe rigide définissant l'enceinte du réacteur. Ils comportent respectivement le premier et le second collets périphériques 31 s'étendant selon un plan équatorial (définit par rapport au corps hémisphérique 1 12), et constituant les mâchoires de la bride 3. Les collets périphériques 31 sont assemblées jointivement par des moyens de serrage 23 réversibles, en l'occurrence par des boulons et des écrous.
L'enceinte renferme un milieu réactif apte à absorber et désorber le fluide à l'état gazeux, par exemple de l'ammoniac, par une réaction thermochimique. Le milieu réactif est fait d'un bloc 12 de matériau composite à base de graphite naturel expansé et de chlorure de baryum, épousant la forme générale du corps hémisphérique 1 12 et de la platine 1 13. Ce matériau composite a une structure en feuillets incurvés et concentriques suivant la forme du corps 1 12 dans lequel le bloc 12 est logé.
L'ammoniac gazeux circule entre le réservoir et le réacteur 1 grâce au conduit de communication 21 qui se divise en deux tubes 171 , qui pénètrent dans l'enceinte à travers le corps hémisphérique 1 12 en deux endroits différents et s'étendant à l'intérieur du bloc 12 de milieu réactif. Les parois des tubes sont percées de micro-perforations, d'un diamètre pouvant aller de 10 μηι à 100 μηι.
Selon le même principe, les moyens de transfert thermique 14 entre le milieu réactif et le milieu extérieur comprennent un conduit 15 se divisant en deux tubes 172 qui pénètrent dans l'enceinte à travers la platine 1 13 en deux endroits différents et s'étendant selon différents axes à l'intérieur du bloc 12 de milieu réactif. L'ensemble constitue un élément conducteur de chaleur contenant un fluide pur, en l'occurrence du pentane.

Claims

REVENDICATIONS
1 . - Appareil de chauffage et/ou refroidissement d'un milieu contenu dans un compartiment extérieur audit appareil, comprenant i) un réacteur (1 ), ii) un réservoir contenant un fluide liquide ou gazeux apte à changer d'état dans une gamme déterminée de températures et de pressions, et iii) des moyens de circulation du fluide gazeux entre le réacteur (1 ) et le réservoir,
ledit réacteur comprenant :
- une enveloppe rigide définissant une enceinte qui renferme un milieu réactif apte à absorber et désorber ledit fluide à l'état gazeux par une réaction thermochimique,
- des moyens de diffusion (13) dudit fluide gazeux dans et depuis ledit milieu réactif,
- des moyens de transfert thermique (14) entre ledit milieu réactif et ledit milieu extérieur, l'appareil étant caractérisé en ce que l'enveloppe du réacteur (1 ) est formée de deux corps (1 1 ) assemblés par une bride périphérique (3), dont le premier au moins adopte la forme générale d'une calotte de section droite circulaire ou quasiment circulaire qui contient ledit milieu réactif sous la forme d'au moins un bloc (12) épousant la forme générale de ladite calotte.
2. - Appareil selon la revendication 1 , caractérisé en ce que le premier et le second corps (1 1 ) comportent respectivement un premier et un second collets périphériques (31 ) s'étendant selon un plan équatorial pour constituer les mâchoires de la bride (3) qui sont assemblées par des moyens de serrage (23) réversibles.
3. - Appareil selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens de circulation du fluide gazeux entre le réservoir et le réacteur (1 ) comprennent un conduit de communication (21 ) pénétrant dans l'enceinte entre le premier et le second collets (31 ), lesquels sont maintenus à distance par des lèvres d'entretoise (22) coopérant avec les moyens de serrage (23).
4.- Appareil selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens de transfert thermique (14) entre le milieu réactif et le milieu extérieur, comprennent un conduit (15) pénétrant dans l'enceinte entre le premier et le second collets (31 ), lesquels sont maintenus à distance par des lèvres d'entretoise (22) coopérant avec les moyens de serrage (23).
5. - Appareil selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens de circulation du fluide gazeux entre le réservoir et le réacteur (1 ) comprennent un conduit de communication (21 ) se divisant en une pluralité de tubes (171 ), et les moyens de transfert thermique (14) entre le milieu réactif et le milieu extérieur comprennent un conduit de transfert thermique (15) se divisant en une pluralité de tubes (172), lesdits tubes (171 , 172) pénétrant dans l'enceinte à travers l'enveloppe en différents endroits et s'étendant selon différents axes à l'intérieur dudit au moins un bloc (12) de milieu réactif.
6. - Appareil selon l'une des revendications 1 à 5, caractérisé en ce que l'enveloppe du réacteur (1 ) est formée de deux corps (1 1 ) assemblés par une bride périphérique (3), le premier corps (1 12) adoptant la forme générale d'une calotte de section droite circulaire ou quasiment circulaire, et le second corps (1 13) étant sous la forme d'une platine circulaire s'ajustant au premier corps, le réacteur contenant un milieu réactif formé d'au moins un bloc (12) épousant ladite forme générale en calotte.
7. - Appareil selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'enveloppe du réacteur (1 ) est formée de deux corps (1 1 ) assemblés par une bride périphérique (3), le premier corps (1 1 1 ) et le second corps (1 12) adoptant chacun la forme générale d'une calotte de section droite circulaire ou quasiment circulaire s'ajustant l'une à l'autre et contenant un milieu réactif formé d'au moins deux blocs (12) épousant chacun ladite forme générale en calotte.
8. - Appareil selon la revendication précédente, caractérisé en ce que les moyens de diffusion (13) du fluide gazeux comprennent deux plaques perforées (16) s'étendant dans le plan équatorial desdits corps (1 1 1 , 1 12) en forme de calotte et séparant les blocs réactifs (12) de chacun desdits corps du réacteur (1 ), les plaques perforées (16) étant fixées à distance l'une de l'autre de manière à ménager entre elles une chambre intermédiaire de diffusion (2).
9.- Appareil selon la revendication précédente, caractérisé en ce que les plaques perforées (16) de la chambre intermédiaire (2) comportent une pluralité de tubes perforés (171 ) qui s'étendent à l'intérieur desdits blocs (12) de milieu réactif.
10.- Appareil selon l'une des revendications 8 ou 9, caractérisé en ce que les plaques perforées (16) comportent une zone incurvée formant une cavité centrale (18) dans la chambre intermédiaire (2).
1 1 . - Appareil selon l'une des revendications 8 à 10, caractérisé en ce que les moyens de transfert thermique comportent une pluralité de tubules (172) qui s'étendent par des orifices pratiqués dans lesdites plaques perforées (16) à l'intérieur desdits blocs (12) de milieu réactif.
12. - Appareil selon la revendication précédente, caractérisé en ce que les moyens de transfert thermique consistent en au moins un élément conducteur de chaleur contenant un fluide pur, ou caloduc.
13. - Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que le bloc (12) de milieu réactif est constitué d'un matériau composite à base de graphite naturel expansé et d'un sel réactif, ledit matériau composite ayant une structure en feuillets qui sont disposés selon des surfaces concentriques suivant la forme du corps (1 1 ) en calotte dans lequel le bloc (12) est logé.
PCT/FR2014/051749 2013-08-01 2014-07-08 Reacteur thermochimique compact à transferts et maintenance optimisés WO2015015079A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14748243.4A EP3027979B8 (fr) 2013-08-01 2014-07-08 Reacteur thermochimique compact à transferts et maintenance optimisés
US14/908,975 US20160178284A1 (en) 2013-08-01 2014-07-08 Compact thermochemical reactor with optimised transfers and maintenance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1357626A FR3009372B1 (fr) 2013-08-01 2013-08-01 Reacteur thermochimique compact a transferts et maintenance optimises
FR1357626 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015015079A1 true WO2015015079A1 (fr) 2015-02-05

Family

ID=49546562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051749 WO2015015079A1 (fr) 2013-08-01 2014-07-08 Reacteur thermochimique compact à transferts et maintenance optimisés

Country Status (4)

Country Link
US (1) US20160178284A1 (fr)
EP (1) EP3027979B8 (fr)
FR (1) FR3009372B1 (fr)
WO (1) WO2015015079A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527919A1 (fr) * 2018-02-16 2019-08-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Régénération de sel endothermique de refroidissement et de climatisation
EP3942240A4 (fr) * 2019-03-18 2022-12-28 Maddali, Venkata Vijay Kumar Dispositif et procédé de conversion, de stockage et de récupération d'énergie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041801A1 (fr) * 1997-03-20 1998-09-24 Sun Microsystems, Inc. Systeme de refrigeration par sorption active par ondes electromagnetiques
EP1621828A1 (fr) * 2004-07-30 2006-02-01 ALCALI INDUSTRIES, Société Anonyme Réacteur thermochimique pour appareil de réfrigération et/ou de chauffage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291942A (en) * 1993-05-24 1994-03-08 Gas Research Institute Multiple stage sorption and desorption process and apparatus
US6093504A (en) * 1996-12-03 2000-07-25 Bliesner; Wayne Thomas Electro-chemical-thermal rechargeable energy storage cell (ECT cell)
DE19963322B4 (de) * 1999-12-21 2005-09-29 Bernd Füsting Sorptionswärmespeicher hoher Energiedichte
US7003979B1 (en) * 2000-03-13 2006-02-28 Sun Microsystems, Inc. Method and apparatus for making a sorber
AU2001257038A1 (en) * 2000-04-13 2001-10-30 Sun Microsystems, Inc. Electro-desorption compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041801A1 (fr) * 1997-03-20 1998-09-24 Sun Microsystems, Inc. Systeme de refrigeration par sorption active par ondes electromagnetiques
EP1621828A1 (fr) * 2004-07-30 2006-02-01 ALCALI INDUSTRIES, Société Anonyme Réacteur thermochimique pour appareil de réfrigération et/ou de chauffage

Also Published As

Publication number Publication date
EP3027979A1 (fr) 2016-06-08
EP3027979B8 (fr) 2020-11-04
FR3009372B1 (fr) 2015-09-25
US20160178284A1 (en) 2016-06-23
EP3027979B1 (fr) 2020-09-09
FR3009372A1 (fr) 2015-02-06

Similar Documents

Publication Publication Date Title
WO2014057411A2 (fr) Procede de realisation d'un echangeur de chaleur contenant un materiau a changement de phase, echangeur obtenu et utilisations aux hautes temperatures
EP2477940A1 (fr) Réservoir de stockage et de déstockage d'hydrogène et/ou de chaleur
EP1621828B1 (fr) Réacteur thermochimique pour appareil de réfrigération et/ou de chauffage
TW202035931A (zh) 熱利用系統及發熱裝置
EP3027979B1 (fr) Reacteur thermochimique compact à transferts et maintenance optimisés
FR2984453A1 (fr) Reservoir de stockage d'hydrogene sous la forme d'hydrures metalliques
EP3405736A2 (fr) Echangeur thermique à fluide caloporteur à assemblage optimisé et un dispositif de stockage d'énergie thermique par matériau à changement de phase comprenant ledit échangeur
FR2953820A1 (fr) Dispositif de stockage d'hydrogene a hydrures metalliques
WO2020021039A1 (fr) Cellule photovoltaïque à thermomanagement
WO2007026056A1 (fr) Reacteur thermochimique pour appareil de refrigeration et/ou de chauffage
FR2922001A1 (fr) Installation de chauffage pour la production d'eau chaude sanitaire et d'eau chaude de chauffage,et dispositif utilise dans une telle installation de chauffage.
EP1608920B1 (fr) Procede et dispositif pour la production de froid rapide et de forte puissance
EP3885672A1 (fr) Générateur comprenant une fonction de rectification, une machine à absorption comprenant ledit générateur et un procédé de production de vapeur de fluide frigorigène par ledit générateur
EP1523643B1 (fr) Procede pour la production de froid, et installation pour la mise en oeuvre du procede.
TW201307716A (zh) 儲氫加熱冷卻系統
FR3034029B1 (fr) Systeme de protection d'un milieu reactif solide pour reacteur thermochimique
FR2748093A1 (fr) Dispositif thermochimique pour produire du froid et/ou de la chaleur
EP3867589A1 (fr) Réacteur thermochimique et procédé de production d'énergie thermique associé
FR2877426A1 (fr) Production de froid a tres basse temperature dans un dispositif thermochimique.
EP3885673A1 (fr) Dispositif de rectification comprenant un rectifieur et un dispositif de distribution, et machine à absorption comprenant ledit dispositif de rectification
EP3101084B1 (fr) Produit pour réacteur thermochimique
FR2558578A1 (fr) Evaporateur pour installation solaire de refrigeration et procede de refrigeration utilisant cet evaporateur
CA2168944A1 (fr) Echangeur de chaleur diphasique a temperature controlee
BE334883A (fr)
FR2748094A1 (fr) Dispositif thermochimique pour produire du froid et/ou de la chaleur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014748243

Country of ref document: EP