WO2015015042A1 - Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation - Google Patents

Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation Download PDF

Info

Publication number
WO2015015042A1
WO2015015042A1 PCT/ES2014/070633 ES2014070633W WO2015015042A1 WO 2015015042 A1 WO2015015042 A1 WO 2015015042A1 ES 2014070633 W ES2014070633 W ES 2014070633W WO 2015015042 A1 WO2015015042 A1 WO 2015015042A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
gas
reactor
temperature
solids
Prior art date
Application number
PCT/ES2014/070633
Other languages
Spanish (es)
French (fr)
Inventor
Juan Carlos ABANADES GARCÍA
Jose Ramón FERNÁNDEZ GARCÍA
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2015015042A1 publication Critical patent/WO2015015042A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0442Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00371Non-cryogenic fluids gaseous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Definitions

  • the present invention falls within the field of obtaining energy from combustible gases incorporating capture of carbon dioxide for use or permanent storage.
  • the present invention relates to cyclic processes of combustion of gases with oxidized solids (processes of "chemical looping") in fixed bed to solve the problem of temperature control in the combustion of gaseous fuels in fixed beds of metallic oxides operating at high pressures and temperatures.
  • CO2 is the main gas responsible for climate change and the increase in its concentration in the atmosphere is mainly due to the use of fossil fuels for the generation of energy.
  • the main objective of the CO2 capture and storage technologies is to obtain a gaseous current with high CO2 purity and this entails an energy penalty on the energy generation processes without CO2 capture already existing.
  • the interest in developing new technologies of capture of CO2 that can reduce the energy penalty and the cost of the necessary equipment with respect to the known processes is increasing.
  • This oxidation step is highly exothermic, yielding a metal (or CaS0 4) oxide and a stream of oxygen - depleted air at high temperature (and in many cases high pressure) that can be used for power generation or other energy applications quality.
  • the solid oxidizes the fuel in the reduction reactor or "fuel reactor", generating a mixture rich in CO2 and water vapor.
  • the oxide reduction is usually endothermic (except in some particular cases such as CuO reduction or when H 2 and / or CO are used as fuels), so it is necessary to provide external heat to carry it out.
  • the concept of "chemical looping" for the generation of energy from a hydrocarbon is described for example in patents US5447024A and US5509362. A recent review of the state of the art of this family of processes can be found in Adanez et al. (Progress in Energy and Combustion, 38, 215-282, 2012).
  • the solid bed contains a metal that is oxidized with air (21% O2), so that the front of the oxidation reaction proceeds faster than the gas / solid exchange front.
  • the combustible gas reaches the reaction front heated by the already oxidized solids, which have also been heated before the oxidation reaction front passes.
  • the bed material must contain only a small amount of active phase of the metal that is oxidized (normally less than 15% by mass), dispersed in an inert support ( alumina, silica, zirconia, etc.). In this way, the high heat flux evolved by the oxidation of the metal with air is used to raise the temperature of a large mass of inert solids present in the reactor.
  • patent EP2514516A1 describes a way to fill a fixed bed with particles of inert material (silica, glass, ceramic material) mixed with the oxygen carrier to carry out a process of "chemical looping" and avoid excessive peaks of temperature that lead to the sintering of the material.
  • the inert solids have a larger particle diameter than the oxygen carrier solid so that their inclusion in the bed does not excessively increase the pressure drop during the oxidation and reduction operation.
  • Patent EP2305366B1 discloses a power generation method that also makes use of fixed beds, where the heat evolved in the reduction of CuO with a combustible gas (exothermic reaction) is used for the calcination of CaCÜ3 (endothermic reaction) formed in a previous stage of absorption of a combustion gas or of reforming a carbonaceous fuel. This procedure makes it possible to carry out the regeneration of the CO2 sorbent efficiently, since both reactions occur in the same bed.
  • the control of the temperature in the reaction front during the necessary oxidation of the Cu to CuO (highly exothermic) is solved by recirculating part of the nitrogen obtained at the exit of the stage and cooling it before re-feeding it to the reactor.
  • a state-of-the-art technique relevant to the object of this invention is the known way of extracting or supplying large quantities of heat to fixed beds of solids through the use of gaseous streams that pass through the bed in a cyclic manner (heating-cooling), in systems commonly known as “regenerative beds” (see for example Zarrinehkafsh and Sadrameli, “Simulation of fixed bed regenerative heat exchangers for flue gas heat recovery, Applied Thermal Engineering", 24, 373-382, 2004).
  • the efficiency in the heat transfer between gaseous streams and these fixed beds of solids can be very high depending on the operating conditions and characteristics of the gases and the bed, forming clear fronts of heat exchange in a cross section of the bed perpendicular to the gas flow, where there is a jump of gas and solids temperatures in a very short space of bed.
  • These clear heat exchange fronts advance along the bed until all bed solids reach the gas inlet temperature, while the gas leaves the bed at the initial temperature of the solids until the heat exchange front it reaches the exit point of the reactor.
  • the present invention relates to a process for the combustion of a gas in a fixed bed with an oxidized solid, which takes place in several stages, with the aim of obtaining a separate stream of CO 2 during the combustion of a gaseous carbonaceous fuel in a of the stages and continuously supply a gas free of CO 2 at high pressure and at high temperature to a gas turbine to generate power.
  • the process requires several identical fixed-bed adiabatic reactors, but operated simultaneously and synchronously in different ways in the different stages.
  • the method of invention comprises:
  • the solids at high temperature allow rapid kinetics of the reaction of reduction of the solid with the fuel. Also, in the event that the reaction of reduction is endothermic, the sensible heat contained initially in the oxidized solids at high temperature of the bed is used to maintain a high temperature in the front of reduction reaction, which allows the advance of said reduction reaction front along the bed .
  • the first stage further comprises feeding a recycle of the gas product of the first stage together with the fuel gas fed during the first stage.
  • the feeding of this recycle of a part of the gases rich in CO 2 and H 2 0 (steam) generated in the first stage, once cooled and conditioned, allows to moderate the temperature jump in the reduction reaction front and to do more fast the advance of the heat exchange front.
  • the recycle flow is designed so that in no case the exchange front reaches the reaction front before the complete reduction of the bed of initially oxidized solids. When the solid reduction reaction is endothermic, this prevents the reaction from being quenched by lack of sensible heat in the bed solids.
  • control and instrumentation techniques necessary for the sequential and synchronized operation of the different stages are also considered part of the state of the art, through the controlled opening and closing of valves (which can be cooled and / or constructed of materials that withstand high temperatures). and pressures) to alternate the entry and exit of reactants to the reactors in their different stages. It may also be necessary to purge gas stages in the reactors ("rinse”) known in the state of the art.
  • Figure 1 Shows a schematic of the preferred configuration of the method of the invention, with a snapshot of the reduction reaction front (oxidized solids in the scratched area and reduced solids in white) and of the different temperature zones expected in the reactors, indicating with jumps of temperature the different fronts of gas-solid heat exchange.
  • Figure 2 Shows a schematic of another preferred configuration of the inventive method following the same notation as in Figure 1.
  • Figure 3. Shows a flowchart of the preferred configuration of the inventive method, using NiO / Ni as an oxygen transporter, according to Example 1.
  • Figure 4 Shows an example of conceptual design of a system with the preferred configuration of the invention method, using NiO / Ni as an oxygen transporter, according to Example 1, where on the abscissa the number of reactors is indicated .
  • Figure 5 Shows an example of a conceptual design of a system with the preferred configuration of the invention method, using ilmenite as an oxygen transporter, according to Example 2, where on the abscissa axis the number of reactors is indicated.
  • the first stage of the cycle (100) shown in Figure 1 comprises the oxidation of a gaseous fuel stream (10) in a fixed-bed adiabatic reactor (101) containing initially oxidized solids, with a part of them at high temperature (T1) and with another part of them at low temperature (T4) as a result of a previous oxidation stage of said solids (to be described later).
  • the high temperature solids (T1) are initially located near the fuel gas inlet to the reactor.
  • the reduction of the solid is usually endothermic, so to sustain the advance of the reaction front of solid reduction and gas combustion, it is necessary that the bed initially contains sufficient sensible heat, which is provided by the solids at high temperature ( T1).
  • a compressor (102) compresses and heats the fuel gas (10).
  • Said already compressed and heated gas (11) is passed through a heat exchanger (103) to adjust the temperature to that required to start the first stage (100), obtaining a current (12) at the outlet of the heat exchanger (103).
  • the first stage contains a gas recycle (16) of the gas stream to the outlet (14) of the reactor (101), where a blower or fan (104) pumps said gas recycle ( 16), rich in CO2 and H 2 0, to join it to the fuel stream (12) at the outlet of the exchanger (103).
  • the rate of advance of the reduction front depends on the composition of the fuel gas and the oxidized solid, the stoichiometry of the reaction, the flow of recycle gas (17) after the blower or fan (104), the fraction of metal oxide in the bed and the difference between the molecular weights of the gas and the solid.
  • This reduction front can be advanced at a higher speed than the two gas / solid exchange fronts (the first one marked by the transition between a gas temperature at the reactor inlet (T3) and a gas temperature after the exchange of heat with the solid bed (T2), which will be described next, and the second one marked by the transition between the temperature of the solids at high temperature (T1) and the temperature of the solids at low temperature (T4) in Figure 1).
  • the inlet stream (13) of the fuel gas enters the reactor at temperature T3 and exchanges heat with the solid bed to settle at the temperature of the gas after heat exchange with the solid bed (T2) resulting from the front. of reduction, which is at a higher temperature.
  • T1, T2, T3 and T4 Upon the exchange of heat between the gas and the solid bed in the fixed-bed adiabatic reactor (101), a first heat exchange front (marked as transition between T3 and T2 in Figure 1) is established which advances to the right as the first stage (100) proceeds. As the reaction front was faster (inferred scratched area / non-scratched area in Figure 1) said front moves at all times downstream of the first exchange front (transition between T3 and T2). In the reaction front there is also a temperature jump (between T1 and T2), whose magnitude is a function, among other factors, of the enthalpy of the reduction reaction.
  • the reduction reaction can be endothermic, where T1> T2 (as in Figure 1) or can be exothermic, where T2> T1, as it would be in the case of CuO reduction with methane or in some cases where the gaseous fuel is H 2 and / or CO.
  • the gas recycle stream (16) can be designed so that the arrival of the exchange front T1 -T4 at the end of the reactor (101) coincides with the arrival at the end of the reactor (101) of the reaction front. In this way, the gas stream at the outlet (14) of the reactor (101) leaves the reactor (101) at all times at T4.
  • the progressive approach between the reaction and exchange front T1 -T4 increases the temperature jump that occurs in the reduction front, that is, the difference between T1 and T2, which makes the initial temperature of the hot part of the bed or temperature of the solids at high temperature (T1) have to be high enough not to leave the bed already reacted too cold, at temperature T2 to start a second oxidation step which will be described below ().
  • the proper design of the inert gas recycle allows to separate the advance of the reaction and heat exchange fronts during the operation, achieving a better dissipation of the generated heat of reaction and avoiding the appearance of unwanted hot spots in the reduction front.
  • the process comprises a second stage (200) where the oxidation of part of the solids contained in a reactor (201), which have been previously reduced in the first stage (100), is carried out.
  • the reactor (201) is fed with a mixed stream of air and recycled nitrogen (23) so that it was the outlet of the first stage (100), so that the second stage (200) starts rusting solids at temperature T2.
  • the nitrogen resulting from the exothermic oxidation reaction progressively heats the solids downstream of the reaction front at temperatures above T2, leaving solids at temperature T4 above the reaction front, which is equal to that of the air mixture stream and of recycled nitrogen (23).
  • the oxidation of the bed solids (200) is a highly exothermic reaction and carried out with air could cause the appearance of very hot spots in the reaction front that entail unwanted reactions and the irreversible loss of solid activity. Therefore, the recirculation of part of the nitrogen obtained as a reaction product makes it possible to regulate the maximum temperature in said oxidation front.
  • the air (20) necessary for the second stage (200) once compressed in a compressor (202), is passed through a heat exchanger (203) to adapt its temperature to that required to carry out the second one. stage (200).
  • part of the output stream (24) of the reactor (201), composed mainly of nitrogen, is recirculated, as will be seen below, which it allows decreasing the oxygen content of the stream (23) to the reactor inlet (201).
  • the gas / solid exchange front marked as transition between T5 (will be described below) and T2 in Figure 1
  • advances ahead and more quickly than the reaction front marked as inferred striped area / white zone in the second stage (200).
  • the recycled stream of air and nitrogen (23) comes at the reaction front at the inlet temperature T4 at all times and is suddenly heated up to a maximum temperature (T5) that reaches the mixed stream of air and nitrogen recycled at the front of the reactor. reaction due to the exothermic oxidation reaction.
  • the heat generated in said reaction front is transported by the product gas (mainly nitrogen) from the reaction front and ends by heating the solids downstream of the bed (exchange fronts marked by the temperature jump T5-T2 and T2-T3).
  • product gas mainly nitrogen
  • T5-T2 and T2-T3 the product gas
  • the fraction of the recirculation stream of cold nitrogen (28) must have a low temperature, preferably T4, whereby the excess sensible heat of the output stream (24) of the reactor
  • the cold pressure nitrogen (25) at the outlet of the heat exchanger (204) is fed to a fan or blower (205).
  • the fraction of the nitrogen stream (26) not recirculated to the reactor (201) is fed to a reactor (301) operating in a third stage (300) described below.
  • the third stage (300) of the preferred embodiment of the method of invention is also shown in Figure 1.
  • the further oxidation of a part of the reduced solids in the first stage (100) is carried out with a mixture of air and recycled nitrogen (33), where the nitrogen stream produced (34) at high pressure and at the temperature T5 is fed to the gas turbine (303) of a combined cycle for power generation.
  • This stage starts with a reactor (301) partially oxidized (coming from the second stage 200) and without exchange fronts apart from the temperature jump from T4 to T5, which exists in the oxidation reaction front.
  • the air (30) required for the third stage (300) is compressed in a compressor (202), and passed through a heat exchanger (302) to adjust its temperature to T4.
  • the produced nitrogen stream (34) leaving the bed (301) at temperature T5 and under pressure is expanded and cooled in a combined cycle with a gas turbine (303) and a heat recuperator (304). It is interesting, in order to maximize the electricity generation efficiency in the combined cycle, to increase the temperature of the gas entering the turbine to typical input values of said turbine (1400-1450 ° C). The nature of the solids used in the state of the art as oxygen transporters does not allow such high operating temperatures. In this case a small additional amount of fuel (60) is burned with a fraction of the compressed air (64) for the product obtained (65) to raise the temperature of the gases fed to the turbine (35). This option means that a small part of the carbon contained in the additional fuel is not captured and is emitted as CO2 into the atmosphere in the exhaust gases (38) of the gas turbine (303).
  • the concentration of oxygen in the mixture of air and nitrogen must be reduced recycled (33) entering the reactor (301).
  • part of the output gas stream (37) of the combined cycle is recycled (61) and recompressed in a compressor (307).
  • An additional heat exchanger (308) is required so that the gas recycle stream after the compressor (307) is fed at temperature T4 to the reactor (301).
  • a system of valves (305, 306) allows to regulate at the output of the combined cycle the part of the gas stream of the combined cycle that is recycled (61) to maintain constant the mixture of air and recycled nitrogen (33) that enters the reactor (301), modifying the flow rate of the recycle nitrogen stream (63) after the exchanger (308) as a function of the flows of cold nitrogen streams under pressure (27, 53).
  • the oxidation is carried out in a reactor (401) of the final part of the solids reduced in the first stage (100) and not yet oxidized in the second and third stages (200, 300).
  • a mixture of a stream of compressed and cooled air (42) to T4 and a stream of recycled cold nitrogen (54) is fed to the reactor (401) and a stream (44) of nitrogen is generated at the outlet of the reactor.
  • reactor at temperature T5.
  • the reactor (401) is completely oxidized and is at the temperature of the inlet gas T4.
  • the fifth and final stage of the cycle (500) has the purpose of heating the bed of completely oxidized and cold solids, initially to T4, resulting from the end of the fourth stage (400), in order to restart a new cycle with the first stage (100 ).
  • the nitrogen stream (44) leaving the reactor (401) in the fourth stage (400) is cooled slightly in a heat exchanger (502) to the temperature T1 and fed to the reactor (501), which has totally oxidized solids and initially at temperature T4. These solids are heated progressively at temperature T1 as the exchange front advances, marked as transition between T1 and T4.
  • the cold nitrogen stream (51) leaving the reactor (501) at the initial temperature of the bed T4 is fed to a fan or blower (503) to compensate for the pressure drop suffered by the gas as it passes through the reactor (501).
  • Part of the stream (52) at the outlet of the fan or blower (503) is recirculated to the inlet of the reactor (401) as recycled cold nitrogen stream (54), reactor (401) which is operating at that time in the fourth step (400), where the rest of the non-recycled nitrogen (53) to the fourth stage (400), is fed to the reactor (301), which is operating at that time in the third stage (300).
  • the device described in the process steps of the present invention allows adjusting through the degree of recycling of recycled gases (CO2 and steam in the case of the first stage (100), and nitrogen in the second, third, fourth and fifth stages). (200), (300), (400) and (500) oxidation,), the speed of displacement of the reaction fronts and heat exchange inside the reactors in each of the stages.
  • the practical implementation of this procedure when using solids with high oxygen transport capacity requires an installation where at least eight are used adiabatic fixed-bed reactors operated simultaneously but in different phases of the five stages described above.
  • Example 1 Preferred embodiment of the method of the invention using a solid with a high oxygen transport capacity: NiO / Ni.
  • the conceptual design of the cyclic procedure represented in Figure 1 is carried out, which has as its object the combustion of a combustible gas (CH 4 in this example) with an oxide with a high oxygen transport capacity (NiO in this example) .
  • the example has been proposed for the continuous combustion of 10 kg / s (0.63 kmol / s) of pure CH 4 (10) in a first stage (100), carried out in a fixed-bed adiabatic reactor (101) to 20 pressure bar, in which is found a solid whose composition in percentage by weight is in this example: 60% NiO and 40% AI2O3.
  • gas piston flow and average thermal properties of the solid materials that make up the bed and of the inlet gases and the reaction products have been assumed for all stages.
  • the heat capacity of the gas varies between 2.20 kJ / kg K at the reactor inlet (101) and 1.75 kJ / kg K at the outlet, due to the change in temperature and composition experienced by the gas during the first stage (100)
  • the average heat capacity of the solids is initially 0.98 kJ / kg K and once the first stage (100) is 0.91 kJ / kg K.
  • the increase of gaseous moles in the NiO reduction reaction with CH 4 causes the gas / solid exchange front marked as transition between T1 and T4 to advance 1.46 times faster than that marked as T3-T2 transition and 0.9 times faster than in front of reduction.
  • the compressor (102) supplies the inlet stream (13) of the fuel gas at 20 bar and 150 ° C (T3 in Figure 1).
  • the recirculation of part of the reactor outlet stream (101) allows to decrease the concentration of CH 4 in the inlet stream (13) of the fuel gas and increase the mass flow of gas through the bed. In this way, the velocities of the reaction fronts and the gas / solid heat exchange are approximated.
  • the gas recycle (16) is designed so that the first stage (100) can be started with a part of the bed at low temperature (150 ° C, T4 in Figure 1) and that the arrival of the reaction front at the end of the reactor coincides with the arrival of the T1-T4 exchange front and not before.
  • Nickel is a thermally stable material with a high melting temperature (1453 ° C), which makes it possible to operate with it at very high temperatures without any loss of solid activity or agglomeration. This assumes a bed temperature of oxidized solids at T1 (see Figure 1) of
  • the recirculation of 52% of the product gas from the reactor (101), gas recycle (16), allows to carry out the complete reduction of the NiO starting from a bed with 45% of it at 1200 ° C (T1). in Figure 1) and 55% at 150 ° C (T4 in Figure 1).
  • the inlet stream (13) of the fuel gas, fed to the reactor (101) at 150 ° C (T3) and 20 bar, contains 2.72 kmol / s with a volume content of: 23% CH 4 , 26% CO2 and 51% of H 2 0.
  • the temperature jump resulting from the reduction of NiO with CH 4 is 550 ° C, so that the temperature T 2 is 650 ° C.
  • FIG. 3 the flow diagram of the process of the invention is represented when NiO / Ni is used as an oxygen carrier.
  • a first reactor (1) operates as a first stage (100).
  • a valve (615) at the entrance of the first reactor (1) remains open, while another valve (616) at the entrance of the first reactor (1) is closed, allowing to feed continuously the methane required for the first stage (100), avoiding the entry of air.
  • other valves (617, 623, 624, 625) remain closed, while another valve (618) remains open, as well as other valves (621, 626) that regulate the outlet of steam and CO2 from the system and recycle, respectively.
  • a compressor (202) feeds a flow of 1.86 kmol / s of air (20) through the exit point of the first stage (100), where there is higher temperature (650 ° C, T2 in Figure 1), which allows a clear oxidation front to be achieved from the start where the oxygen fed is completely converted and NiO is produced.
  • the oxidation enthalpy of Ni is ⁇ -452 kJ / mol O2
  • the composition of the air in the calculations of this example is considered 21% of O2 and 79% of N 2 (composition by volume)
  • the molecular weight of the air is 29 g / mol
  • the initial average molecular weight of the solids in the reactor (201) is 73 g / mol.
  • the heat capacity of the gas is maintained at around 1 .13 kJ / kg K and that of the solids is initially 0.91 kJ / kg K and once the second stage (200) is 0.98 kJ / kg K. Due to the high exothermicity of Ni oxidation with air, the temperature on the reaction front would quickly reach values well above 1200 ° C, which would cause the irreversible loss of activity of the nickel material.
  • reaction front (inferred gray / white), which advances from behind.
  • the exchange front marked as transition T3-T2 advances 1 .05 times faster than the front marked as transition T2-T5.
  • the output stream (24) of the reactor (201) corresponds to a flow of 7.27 kmol / s, of which 57% (by volume) does so at a temperature of 150 ° C (T3), corresponding to the time in that the first exchange front (T3 to T2) has not yet reached the exit, while the remaining 43% (in volume) does so at 650 ° C (T2), corresponding to the time in which the second exchange front (T2 to T5) is still inside the reactor (201).
  • T3 150 ° C
  • T2 the recirculation current of cold nitrogen
  • a second and a third reactor (2, 3) operate as two second stages (200).
  • the valves (628) and (639) at the entrance of the second and third reactors (2, 3) remain open, while other valves (627, 638) at the entrance of the second and third reactors ( 2, 3) are closed, which allows feeding the required air to the second and third reactor (2, 3), preventing the entry of methane to them.
  • valves (630, 641) remain open and other valves (629, 640) are closed, since in the second stages (200) no product gas is sent to the combined cycle.
  • valves (633) and (644) remain closed because during the second stages (200) no CO2 and water vapor are generated.
  • Another valve (634) is open to send the nitrogen product from the second reactor (2) not recirculated to a fourth reactor (4), which at that time operates as a third stage (300), while another valve (636) remains closed because it is not required to send nitrogen not recirculated to the third reactor (3), since this reactor (3) also operates as a second stage (200).
  • Other valves (635, 645, 646) are closed because no external nitrogen is needed for the second and third reactors (2, 3), while other valves (637, 648) remain open to pass the recycled N 2 taken to the output of the second and third reactors (2, 3), respectively.
  • Another valve (647) is open to send to the fourth reactor (4), which operates as a third stage (300), the nitrogen produced in the third reactor (3) and not recirculated.
  • the additional oxidation of a part of the solids reduced in the first stage (100) is carried out with air and with recycled N 2 , where the nitrogen produced in the reactor (301), goes out to high pressure and maximum oxidation temperature of 1200 ° C (T5 in Figure 1) and is fed to a gas turbine (303) of a combined cycle where it expands and cools producing power. For this, a flow of 2.98 kmol / s of compressor air (202) is fed.
  • the concentration of oxygen at the entrance of the reactor (300), must be 5% to not exceed 1200 ° C on the oxidation front (T5 in Figure 1)
  • part of the exhaust gases of the heat recovery (304) of the combined cycle are recirculated (61) and recompressed up to 20 bar in the compressor (307) and adjust its temperature to 150 ° C in the heat exchanger (308) before being mixed with the compressed air stream (32).
  • the total inflow in the third stage (300) is 12.26 kmol / s and that of the produced nitrogen stream (34) of 1 1.64 kmol / s.
  • the cold nitrogen streams at excess pressure of the rest of the steps that make up the present process (27, 53) are also fed back to the reactor inlet (301).
  • the excess gas stream (27) from the second stage (200) assumes a flow of 1.47 kmol / s, while the excess gas stream (53) from the fifth stage (500) is from 0.87 kmol / s.
  • a system of valves (305, 306) collected in the state of the art allows to regulate at the outlet of the combined cycle the gas recycle stream (61) to maintain the mixture of air and recycled nitrogen at all times. (33) a constant flow of 12.26 kmol / s with 5% O2.
  • a fourth, a fifth and a sixth reactor (4, 5, 6) operate as third stages (300).
  • some valves (650, 660, 672) remain open, while other valves (649, 660, 671) are closed, which allows to supply the required air to the fourth, fifth and sixth reactor (4, 5, 6), avoiding the entry of methane to them.
  • other valves (651, 661, 673) remain open and other valves (652, 662, 674) are closed, since in the third stages (300) all the product gas is sent to the combined cycle.
  • other valves 650, 660, 672
  • valves (655, 665, 677) remain closed because during the third stages (300) CO2 and water vapor are not generated.
  • Other valves (657, 669, 680) are open to allow the passage of the N 2 recompressed and fed back to the third stages (300), taken from the output of the combined cycle.
  • Other valves (658, 670, 681) are open to allow the passage of recirculated N 2 , while other valves (656, 666, 667, 668, 678, 679) remain closed.
  • valves (613, 614), represented in Figure 3 and corresponding to a methane and air line, respectively, remain open at all times.
  • the impacts of this addition of fuel gas on the recycle compositions and the inert gases accompanying the oxygen entering the reactor (301) during the third stage (300) are not discussed in this example, as evident.
  • the third stage (300) is where more useful energy is obtained from the system, because it is the only stage where the hot high pressure nitrogen generated in the reactor (301) expands and cools in a combined cycle.
  • the third stage must be interrupted before completing the oxidation of the bed and thus leave sufficient sensible heat to restart a new cycle with the first stage (100). Otherwise, the bed of solids would be completely oxidized and all the solids in the bed at the feed temperature of the air mixture and recycled nitrogen (33) (150 ° C), which would make it impossible to restart a new cycle with the first stage (100) endothermic.
  • the reactor (401) starts from an initial state with 80% of the oxidized solids.
  • the oxidation of 100% of the solids in the reactor (401) is completed using a mixture of air (1.1 kmol / s, stream 40) and recirculated nitrogen (54) (3.45 kmol / s), obtaining as a product a nitrogen stream (44) of 4.32 kmol / s at 1200 ° C (T5) and leaving a completely oxidized bed at 150 ° C (T4) upstream of the reaction front.
  • a seventh reactor (7) operates as a fourth stage (400).
  • one valve (683) remains open, while another valve (684) is closed, which allows to feed the seventh reactor (7) air and not methane.
  • Another valve (685) remains open, but other valves (684, 688) are closed because N 2 is not sent to the combined cycle nor is generated in the fourth stage (400) CO2 and water vapor.
  • Another valve (700) remains open to drive all the N 2 produced in the seventh reactor (7) to the eighth reactor (8), which operates as a fifth stage (500). Therefore, another valve (689) is closed.
  • Other valves (690, 691) remain open to allow the passage of part of the N 2 obtained in an eighth reactor (8), which is recirculated to the seventh reactor (7) to meet the balance of matter at the entrance of said reactor.
  • the reactor starts a fifth and final stage (500) destined to heat with the nitrogen coming from from the fourth stage (400) a part of the oxidized solids of the reactor (501) up to the temperature of 1200 ° C (T1 in Figure 1). Therefore, the heat exchanger (502) is not necessary for this example, with (44) and (50) being the same gas stream.
  • the temperature T5 has been matched to the temperature T1 set in the first stage (100). Therefore, the stream (50) is introduced into the oxidized reactor (501) and its sensible heat allows 45% of the fixed bed to be heated up to 1200 ° C, a fraction required to carry out a new first reduction stage (100) .
  • valves (692, 693) are closed.
  • a valve (695) remains open, but the other valves (694, 698) are closed because N 2 is not sent to the combined cycle nor is CO2 and water vapor generated in the fifth stage (500).
  • Another valve (699) remains open to allow passage of the N 2 leaving the eighth reactor (8) and being sent to other reactors that are operating in the third or fourth stage (300, 400).
  • Another valve (701) is closed and another valve (702) open, which allows to feed the N 2 obtained in the seventh reactor (7) to the eighth reactor (8).
  • Another valve (701) is closed and another valve (702) open, which allows to feed the N 2 obtained in the seventh reactor (7) to the eighth reactor (8).
  • the material balance indicates that a mass of solids (N ⁇ O + AI 2 O3) is required for the first stage (100). Approximately 100000 kg. Assuming that these solids are in the form of pellets with an average density of 1700 kg / m 3 and an equivalent diameter of 0.01 m, and considering a bed porosity of 0.5, a bed volume of solids of 58 m 3 is obtained. example, by similarity with the commercial reforming reactors, a length of 5 m is adopted for each reactor, which implies a reactor cross-sectional area of approximately 10 m 2. For this example, this area is compatible with the existence of a single reactor of reduction.
  • the second and third reactors (2, 3) are used in this example operating simultaneously and under identical conditions as reactor (201) in the second stage (200 ). Under these conditions, the gas passes at a maximum surface velocity of 2.3 m / s, causing a pressure drop of 0.85 bar. In the same way, to the third stage (300) 12.26 kmol / s are fed (5% in volume of O2) during 5 minutes until completing the same one. To limit the pressure drop of the gas to less than 1 bar during this stage, three reactors (4, 5, 6) which operate simultaneously under identical conditions as reactor (301) are considered.
  • the gas circulates at a maximum surface velocity of 2.4 m / s, causing a pressure drop at the outlet of each reactor of 0.95 bar.
  • 4.55 kmol / s (5% by volume of O2) are fed for 5 minutes.
  • a single reactor, in this case the seventh (7) is sufficient under the conditions of this example.
  • the gas circulates at a maximum surface velocity of 2.6 m / s, causing a head loss of 1 .10 bar.
  • the 4.32 kmol / s leaving the fourth stage (400) are fed to a single reactor, in this case the eighth reactor (8), which operates as a reactor (501) in the fifth stage (500).
  • Example 2 Preferred embodiment of the method of the invention using a solid with low oxygen transport capacity: Fe 2 Ti05 / FeT03 (ilmenite).
  • the conceptual design of the cyclic process represented in Figure 2 is carried out, which has as its object the combustion of a combustible gas (pure CH 4 in this example) with an oxide with low oxygen transport capacity (ilmenite in this example). ).
  • the illustrative example has been proposed for the combustion of 10 kg / s (0.63 kmol / s) of CH 4 (10) in a first stage (100), carried out in a fixed bed adiabatic reactor (101) at 20 bar of pressure, in which a solid is found whose composition as a percentage by weight is: 60% Fe 2 TiOs and 40% AI 2 O 3. It has been assumed for all stages that the gas flows in piston flow.
  • the reduction enthalpy of Fe 2 TiOs to FeT03 with CH 4 is 106.5 kJ / mol CH 4 and the oxidation of FeT03 to Fe 2 TiOs with oxygen is -454.4 kJ / mol O2.
  • Ilmenite is a thermally stable material with a high melting temperature (1365 ° C), which allows it to be operated at very high temperatures without any loss of solid activity or agglomeration.
  • the increase of gaseous moles in the reduction reaction of Fe 2 TiOs with CH 4 makes the gas / solid exchange front marked as transition between T1 and T4 advance 1.3 times faster than the marked as transition T3-T2 and 0.7 times with respect to the reduction front.
  • the Fe 2 T05 is a material moderately reactive with CH 4 , which makes the initial temperature of the hot part of the bed (T1 in Figure 2) have to be at least 750 ° C to guarantee a high reaction rate and a clear reduction front.
  • the inlet stream (13) of the fuel gas is fed at 20 bar and 400 ° C (T3 in Figure 2) after passing through the compressor (102) and the heat exchanger (103).
  • the recirculation of 67% of the output stream of the reactor (101) allows to approximate the speeds of the fronts of reduction and heat exchange gas / solid so that the complete reduction of the Fe 2 TiOs can be carried out starting from a bed with 30% of it at 755 ° C (T1 in Figure 2) and 70% at 400 ° C (T4 in Figure 2).
  • the input stream (13) of the fuel gas contains 4.46 kmol / s with a volume content of: 14% CH, 29% C0 2 and 57% H 2 0.
  • the Temperature jump resulting from the reduction of Fe 2 T ⁇ Os with CH 4 is 55 ° C, so the temperature T2 is 700 ° C.
  • 51% of the bed remains cold at the temperature T3 of the inlet gas (400 ° C), and the rest remains at a temperature T2 of 700 ° C (T1 -55 ° C).
  • a compressor (202) feeds an air flow of 5.95 kmol / s (21) at 20 bar and 400 ° C (T4 in Figure 2) through the exit point of the first stage (100). ), which is 700 ° C (T2), allowing achieved from the outset a front crisp oxidation FeT ⁇ 0 3 Fe2 T ⁇ Os where all oxygen fed reaches complete conversion.
  • the moderate exothermicity of the oxidation reaction of ilmenite with air causes the maximum temperature increase in the reaction front with a solid with the composition indicated in this example 2 (60% active phase) to be close to 400 ° C.
  • the recirculation (28) of around 25% of the output stream of the reactor (201), makes it possible to accelerate the advance of the exchange front T5-T4 and bring it closer to the oxidation front, which is ahead moving 5.3 times more fast (see Figure 2).
  • T5-T2 temperature increase in the reaction front
  • T5-T5 specifically 500 ° C, which means that for the initial conditions of the second stage (200) is reached a maximum temperature (T5) of 1200 ° C (limit value assumed in this example to ensure that the ilmenite does not suffer loss of activity or agglomeration phenomena).
  • the current air mixture recycle nitrogen (23) reactor inlet (201) resulting is 7.39 kmol / s, with a composition by volume of 17% O2 and 83% N2.
  • a swap front T3-T2 moves ahead of the oxidation front (201) and another swap front T5-T4, indicated above, moves behind it.
  • the number of moles in the gas phase decreases when the O2 fed is consumed, so that the T3-T2 exchange front advances slower, specifically for the conditions of this example 0.83 times the speed of the T5-T4 exchange front.
  • the output current (24) of the reactor (201) corresponds to a flow of 6.14 kmol / s, of which 12% (by volume) do so at a temperature of 400 ° C (T3 in Figure 2), which correspond at the time in which the first exchange front T3-T2 has not yet reached the exit, while the remaining 88% does so at 700 ° C (T2), corresponding to the time on the oxidation front still inside the reactor (201).
  • the excess sensible heat is extracted in an exchanger (204) and the resulting current (25) is introduced into a blower (205) to compensate for the pressure drop in the reactor (201).
  • the second stage (200) ends when the oxidation front reaches the end of the reactor (201), which implies that all the ilmenite present has been oxidized to Fe 2 T05.
  • the exchange front T5-T4 is still inside the reactor (201), which makes 53% of the bed remain at 1200 ° C
  • a flow of 10.05 kmol / s of nitrogen (33) is fed, which is a mixture of 4.70 kmol / s of the non recirculated gas stream (27) in the second stage (200) and of 5.35 kmol / s (stream 63), which is a part of the exhaust gases of the heat recovery unit (304) of the combined cycle, which have been recirculated and recompressed in a compressor (307) up to 20 bar.
  • stream 63 which is a part of the exhaust gases of the heat recovery unit (304) of the combined cycle, which have been recirculated and recompressed in a compressor (307) up to 20 bar.
  • the sensible heat excess of the output stream (44) of the fourth stage (400) is extracted in the heat exchanger (502) prior to being fed to the reactor (501) of the fifth stage (500).
  • the fifth stage (500) ends when 30% of the solids that make up the bed have been heated up to 755 ° C, a prerequisite for starting a new first stage (100) of reduction.
  • the reactor (201) is fed 7.39 kmol / s (17% by volume of O2) also for 5 minutes. Under these conditions, two reactors are used operating simultaneously and in identical conditions as reactor (201). The gas passes at a maximum surface velocity of 0.9 m / s, causing a pressure drop of 0.15 bar. In the same way, to the third stage (300) 10.05 kmol / s of nitrogen are fed during 5 minutes until completing it. A single reactor operates in this stage (300). Under the conditions of this example the gas circulates at a maximum surface velocity of 2.4 m / s, causing a pressure drop at the output of the reactor of 0.95 bar.
  • 13 kmol / s of nitrogen are fed to the reactor (401) for 5 minutes.
  • a single reactor operating as reactor (401) is sufficient under the conditions of this example.
  • the gas circulates at a maximum surface velocity of 3.1 m / s, causing a pressure drop of 1.6 bar.
  • the 13 kmol / s of nitrogen leaving the fourth stage (400) are fed to a single reactor that operates as a reactor (501) in the fifth stage (500). After 5 minutes, 30% of the solids in the bed are heated to 755 ° C, thus achieving the conditions required to restart a new cycle in the first stage (100).
  • the gas circulates at a maximum superficial velocity of 2.1 m / s, causing a loss of load at the outlet of 0.75 bar.
  • a number of 7 adiabatic reactors of 25 m 2 of cross-sectional area and 5 m of length operating in parallel is required (Figure 5): 2 in the first stage (100 ), 2 in the second oxidation stage (200), 1 in the third stage (300) of gas / solid heat exchange, which continuously produces hot gas under pressure for the combined cycle, 1 in the fourth stage (400 ) of heat exchange gas / solid and 1 in the fifth stage (500) conditioning its temperature to restart the cycle in the first stage (100).
  • the duration of a complete cycle is 35 minutes.
  • the number of reactors is lower (seven) than in Example 1 (eight), the total volume of solids required for the process using ilmenite as an oxygen carrier is almost double that in the case of using nickel oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention pertains to the field of the generation of energy from combustible gases, incorporating the capture of carbon dioxide for use or permanent storage and, specifically relates to cyclical methods of gas combustion with oxidized solids (chemical looping processes), in fixed bed, for solving the problem of controlling temperature in the combustion of gaseous fuels in fixed beds of metal oxides operating at high pressures, and also the associated installation.

Description

PROCEDIMIENTO PARA LA COMBUSTION DE UN GAS EN LECHO FIJO CON UN SOLIDO OXIDADO E INSTALACIÓN ASOCIADA  PROCEDURE FOR THE COMBUSTION OF A GAS IN FIXED BED WITH A SOLID OXIDIZED AND ASSOCIATED INSTALLATION
D E S C R I P C I Ó N D E S C R I P C I O N
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se encuadra dentro del campo de la obtención de energía a partir de gases combustibles incorporando captura de dióxido de carbono para su uso o almacenamiento permanente. En concreto, la presente invención se refiere a procedimientos cíclicos de combustión de gases con sólidos oxidados (procesos de "chemical looping") en lecho fijo para resolver el problema del control de temperatura en la combustión de combustibles gaseosos en lechos fijos de óxidos metálicos operando a altas presiones y temperaturas. The present invention falls within the field of obtaining energy from combustible gases incorporating capture of carbon dioxide for use or permanent storage. In particular, the present invention relates to cyclic processes of combustion of gases with oxidized solids (processes of "chemical looping") in fixed bed to solve the problem of temperature control in the combustion of gaseous fuels in fixed beds of metallic oxides operating at high pressures and temperatures.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El CO2 es el principal gas responsable del cambio climático y el aumento de su concentración en la atmósfera se debe principalmente al uso de combustibles fósiles para la generación de energía. La captura de CO2 en procesos industriales y de generación eléctrica, y su posterior transporte y almacenamiento geológico permanente, se presenta como una alternativa válida para mitigar el efecto invernadero a medio plazo. El objetivo principal de las tecnologías de captura y almacenamiento de CO2 es obtener una corriente gaseosa con alta pureza de CO2 y eso conlleva una penalizacion energética sobre los procesos de generación de energía sin captura de CO2 ya existentes. El interés en desarrollar nuevas tecnologías de captura de CO2 que puedan reducir la penalizacion energética y el coste de los equipos necesarios respecto a los procesos conocidos es cada vez mayor. Existe una familia de procesos, que suelen llamarse de "chemical looping", o combustión con transportadores de oxígeno, que hacen uso de reacciones de oxidación/reducción de un metal de transición (Fe, Ni, Cu, Mn, Co, etc) o de otros equilibrios redox (CaS/CaS04, etc) para llevar a cabo la combustión de un combustible sin que éste tenga contacto directo con el aire. Se trata de reacciones gas/sólido a alta temperatura donde el metal (o el CaS) se oxida con aire en el reactor de oxidación o "reactor de aire". Esta etapa de oxidación es altamente exotérmica, obteniéndose un óxido metálico (o CaS04) y una corriente de aire empobrecido en oxígeno a alta temperatura (y en muchos casos alta presión) que puede ser utilizada para la generación de potencia u otros usos energéticos de calidad. A continuación, el sólido oxida al combustible en el reactor de reducción o "reactor de combustible", generando una mezcla rica en CO2 y vapor de agua. La reducción del óxido suele ser endotérmica (excepto en algunos casos particulares como en la reducción de CuO o cuando se emplea H2 y/o CO como combustibles), por lo que es necesario el aporte de calor externo para llevarla cabo. El concepto de "chemical looping" para la generación de energía a partir de un hidrocarburo está descrito por ejemplo en las patentes US5447024A y US5509362. Una reciente revisión del estado del arte de esta familia de procesos se pueden encontrar en Adanez y cois (Progress in Energy and Combustión, 38, 215-282, 2012). CO2 is the main gas responsible for climate change and the increase in its concentration in the atmosphere is mainly due to the use of fossil fuels for the generation of energy. The capture of CO2 in industrial processes and power generation, and its subsequent transport and permanent geological storage, is presented as a valid alternative to mitigate the greenhouse effect in the medium term. The main objective of the CO2 capture and storage technologies is to obtain a gaseous current with high CO2 purity and this entails an energy penalty on the energy generation processes without CO2 capture already existing. The interest in developing new technologies of capture of CO2 that can reduce the energy penalty and the cost of the necessary equipment with respect to the known processes is increasing. There is a family of processes, usually called "chemical looping", or combustion with oxygen transporters, which make use of oxidation / reduction reactions of a transition metal (Fe, Ni, Cu, Mn, Co, etc.) or of other redox equilibria (CaS / CaS0 4 , etc) to carry out the combustion of a fuel without it having direct contact with the air. These are gas / solid reactions at high temperature where the metal (or CaS) is oxidized with air in the oxidation reactor or "air reactor". This oxidation step is highly exothermic, yielding a metal (or CaS0 4) oxide and a stream of oxygen - depleted air at high temperature (and in many cases high pressure) that can be used for power generation or other energy applications quality. Next, the solid oxidizes the fuel in the reduction reactor or "fuel reactor", generating a mixture rich in CO2 and water vapor. The oxide reduction is usually endothermic (except in some particular cases such as CuO reduction or when H 2 and / or CO are used as fuels), so it is necessary to provide external heat to carry it out. The concept of "chemical looping" for the generation of energy from a hydrocarbon is described for example in patents US5447024A and US5509362. A recent review of the state of the art of this family of processes can be found in Adanez et al. (Progress in Energy and Combustion, 38, 215-282, 2012).
Los procesos de "chemical looping" se han desarrollado hasta la actualidad principalmente en configuraciones compuestas por dos o más lechos fluidizados interconectados. Esta disposición favorece el transporte del sólido oxidado hacia el reactor de combustible y su posterior regeneración en el reactor de aire. El tamaño pequeño de las partículas hace que se consiga un buen contacto gas/sólido, favoreciendo las cinéticas de las reacciones redox implicadas. Además, la hidrodinámica propia de los lechos fluidizados permite lograr un buen control de la temperatura en los reactores, aspecto que es fundamental en procesos de chemical looping, donde hay reacciones con carácter altamente exotérmico o endotérmico. Pero el uso de lechos fluidizados para procesos de "chemical looping" está asociado también a inconvenientes bien conocidos. Uno de los más importantes es la necesidad de operar a alta presión cuando el combustible es un gas combustible de calidad (como gas natural), de modo que puedan aprovecharse las altas eficiencias energéticas de los ciclos combinados de gas natural (NGCC). Existen estudios teóricos (ver por ejemplo: Brandvoll y Bolland en Inherent CO2 capture using chemical looping combustión in a natural gas fired power cycle; Journal of Engineering for Gas Turbines and Power, 126, 316-321 , 2004) demostrando las ventajas de sistemas de "chemical looping" con lechos fluidizados interconectados operados a altas presiones, aguas arriba de una turbina de gas. Pero en la actualidad estos sistemas pueden considerarse altamente exóticos y de desarrollo incierto, ya que no existen experiencias demostrando su viabilidad práctica. The processes of "chemical looping" have been developed to date mainly in configurations composed of two or more interconnected fluidized beds. This arrangement favors the transport of the oxidized solid towards the fuel reactor and its subsequent regeneration in the air reactor. The small size of the particles results in a good gas / solid contact, favoring the kinetics of the redox reactions involved. In addition, the hydrodynamics characteristic of fluidized beds allows good control of temperature in the reactors, an aspect that is fundamental in chemical looping processes, where there are highly exothermic or endothermic reactions. But the use of fluidized beds for chemical looping processes is also associated with well-known drawbacks. One of the most important is the need to operate at high pressure when the fuel is a quality gas fuel (such as natural gas), so that the high energy efficiencies of natural gas combined cycles (NGCC) can be exploited. There are theoretical studies (see for example: Brandvoll and Bolland in Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle; Journal of Engineering for Gas Turbines and Power, 126, 316-321, 2004) demonstrating the advantages of "chemical looping" systems with interconnected fluidised beds operated at high pressures, upstream of a gas turbine. But at present these systems can be considered highly exotic and of uncertain development, since there are no experiences demonstrating their practical feasibility.
Por todo ello, para llevar a cabo la combustión a presión de un gas mediante "chemical looping" también se ha descrito la posibilidad de hacer uso de reactores de lechos fijos, donde el sólido en forma de pellets (para evitar atrición y reducir la caída de presión de los gases en el lecho) permanece estático dentro del reactor. Kumar, Colé y Lyon en "Unmixed reforming: an advanced steam reforming process, Preprints of Symposia, 218th ACS National Meeting, New Orleans, 44, 894-898, 1999" combinan la reacción exotérmica de oxidación de materiales de Fe, Cu, Ni o Co en un lecho fijo con una reacción endotérmica de calcinación del CaCÜ3 en el mismo lecho. En sus trabajos demuestran experimentalmente que las reacciones tienen lugar en estrechos frentes de reacción perpendiculares al flujo de gas, permitiendo el diseño de operaciones cíclicas en un mismo lecho de sólidos, alternando la alimentación de reactantes gaseosos y las condiciones de presión y temperatura. Pero es necesario destacar que este proceso no resuelve el problema de las emisiones de CO2 asociadas a la combustión de un combustible, ya que el CO2 generado en la descomposición del CaCÜ3 sale del reactor de oxidación muy diluido en nitrógeno. For all this, to carry out the combustion under pressure of a gas by means of "chemical looping" has also been described the possibility of using fixed bed reactors, where the solid in the form of pellets (to avoid attrition and reduce the fall of gas pressure in the bed) remains static inside the reactor. Kumar, Cole and Lyon in "Unmixed reforming: an advanced steam reforming process, Preprints of Symposia, 218 th ACS National Meeting, New Orleans, 44, 894-898, 1999" combine the exothermic oxidation reaction of Fe, Cu materials, Ni or Co in a fixed bed with an endothermic reaction of calcination of CaCÜ3 in the same bed. In their work they demonstrate experimentally that the reactions take place in narrow reaction fronts perpendicular to the gas flow, allowing the design of cyclic operations in the same bed of solids, alternating the supply of gaseous reactants and the conditions of pressure and temperature. But it is necessary to emphasize that this process does not solve the problem of CO2 emissions associated with the combustion of a fuel, since the CO2 generated in the decomposition of CaCÜ3 leaves the oxidation reactor very diluted in nitrogen.
La solicitud internacional WO2006123925A1 describe un dispositivo de combustión por "chemical looping" en lechos fijos a pequeña escala (para su aplicación en invernaderos) donde el tamaño pequeño de los lechos favorece el intercambio de calor al exterior del reactor y la moderación de temperaturas en la etapa de oxidación. Pero este proceso no sería aplicable en sistemas de generación de potencia a gran escala.  The international application WO2006123925A1 describes a combustion device by "chemical looping" in fixed beds on a small scale (for application in greenhouses) where the small size of the beds favors the exchange of heat outside the reactor and the moderation of temperatures in the oxidation stage. But this process would not be applicable in large-scale power generation systems.
Noorman, van Sint Annaland y Kuipers (Packed bed reactor technology for Chemical looping combustión; Ind. Eng. Chem. Res. 46, 4212-4220, 2007), demuestran la viabilidad de un concepto de combustión por "chemical looping" a gran escala llevado a cabo en un sistema de lechos fijos paralelos para la generación de potencia , con alta eficacia de captura de CO2. Las cinéticas rápidas de oxidación y de reducción en las condiciones empleadas en el proceso hacen posible que las reacciones tengan lugar en estrechos frentes de reacción, lo que permite poder agotar de forma efectiva los lechos en cada etapa y poder a su vez generar de forma continua una corriente caliente de gas producto susceptible de ser alimentada a una turbina de gas para la generación de potencia. En este proceso, el lecho sólido contiene un metal que se oxida con aire (21 % de O2), de modo que el frente de la reacción de oxidación avanza más rápido que el frente de intercambio gas/sólido. De este modo, el gas combustible llega al frente de reacción calentado por los sólidos ya oxidados, que se han calentado también previamente al paso del frente de reacción de oxidación. Estos autores muestran que para moderar la temperatura máxima alcanzada en el frente de oxidación, el material del lecho debe contener solo una pequeña cantidad de fase activa del metal que se oxida (normalmente menor al 15% en masa), dispersa en un soporte inerte (alúmina, sílice, zirconia, etc). De este modo, el elevado flujo de calor desprendido por la oxidación del metal con aire se emplea en elevar la temperatura de una gran masa de sólidos inertes presente en el reactor. Noorman, van Sint Annaland and Kuipers (Packed bed reactor technology for Chemical looping combustion; Ind. Eng. Chem. Res. 46, 4212-4220, 2007), demonstrate the viability of a combustion concept by "chemical looping" on a large scale carried out in a system of parallel fixed beds for the generation of power, with High efficiency of CO2 capture. The rapid kinetics of oxidation and reduction in the conditions used in the process make it possible for the reactions to take place in narrow reaction fronts, which allows to effectively deplete the beds in each stage and in turn generate continuously a hot product gas stream capable of being fed to a gas turbine for power generation. In this process, the solid bed contains a metal that is oxidized with air (21% O2), so that the front of the oxidation reaction proceeds faster than the gas / solid exchange front. In this way, the combustible gas reaches the reaction front heated by the already oxidized solids, which have also been heated before the oxidation reaction front passes. These authors show that to moderate the maximum temperature reached at the oxidation front, the bed material must contain only a small amount of active phase of the metal that is oxidized (normally less than 15% by mass), dispersed in an inert support ( alumina, silica, zirconia, etc.). In this way, the high heat flux evolved by the oxidation of the metal with air is used to raise the temperature of a large mass of inert solids present in the reactor.
Relacionado con la anterior, la patente EP2514516A1 describe una forma de rellenar un lecho fijo con partículas de material inerte (sílice, vidrio, material cerámico) mezcladas con el transportador de oxígeno para llevar a cabo un proceso de "chemical looping" y evitar picos excesivos de temperatura que conduzcan a la sinterización del material. Los sólidos inertes tienen un diámetro de partícula mayor que el sólido transportador de oxígeno para que su inclusión en el lecho no aumente excesivamente la pérdida de carga durante la operación de oxidación y reducción.  Related to the previous one, patent EP2514516A1 describes a way to fill a fixed bed with particles of inert material (silica, glass, ceramic material) mixed with the oxygen carrier to carry out a process of "chemical looping" and avoid excessive peaks of temperature that lead to the sintering of the material. The inert solids have a larger particle diameter than the oxygen carrier solid so that their inclusion in the bed does not excessively increase the pressure drop during the oxidation and reduction operation.
Sin embargo, el uso de lechos fijos con alto contenido de inerte implica un volumen de reactor mucho mayor para convertir un mismo flujo de gas combustible alimentado al sistema. Grandes reactores a presión conllevan mayores inversiones en equipamiento, mayores espesores de pared y mayores requerimientos de segundad. Además, el exceso de sólidos inertes como lastre térmico hace necesaria la presencia de etapas adicionales de intercambio de calor entre lechos para acondicionar las temperaturas de los gases y sólidos presentes en el proceso. However, the use of fixed beds with high inert content implies a much higher reactor volume to convert the same fuel gas flow fed into the system. Large pressure reactors entail greater investments in equipment, greater wall thicknesses and greater security requirements. In addition, the excess of inert solids as thermal ballast requires the presence of additional stages of heat exchange between beds to condition the temperatures of the gases and solids present in the process.
El documento US201092898 describe una tercera configuración para llevar a cabo un proceso de combustión por chemical looping en lechos fijos que consiste en un lecho de sólidos rotatorio con forma de corona circular al que se alimentan en sectores diferentes dos corrientes gaseosas, una de aire y otra de combustible, que fluyen radialmente desde el eje hacia el exterior del lecho. Esta configuración presenta serias dudas de cara a su desarrollo a escala industrial y requiere solucionar importantes desafíos técnicos, principalmente el relacionado al sellado entre sus partes móviles.  Document US201092898 describes a third configuration for carrying out a combustion process by chemical looping in fixed beds consisting of a bed of rotating solids in the shape of a circular corona to which two gas streams, one air and another, are fed in different sectors. of fuel, which flow radially from the shaft to the outside of the bed. This configuration presents serious doubts regarding its development on an industrial scale and requires solving important technical challenges, mainly the one related to sealing between its moving parts.
En la patente EP2305366B1 se describe un procedimiento de generación de potencia que también hace uso de lechos fijos, donde se emplea el calor desprendido en la reducción de CuO con un gas combustible (reacción exotérmica) para la calcinación del CaCÜ3 (reacción endotérmica) formado en una etapa previa de absorción de un gas de combustión o de reformado de un combustible carbonoso. Este procedimiento permite llevar a cabo la regeneración del sorbente de CO2 de forma eficiente, puesto que ambas reacciones ocurren en un mismo lecho. El control de la temperatura en el frente de reacción durante la necesaria oxidación del Cu a CuO (altamente exotérmica) se resuelve recirculando parte del nitrógeno obtenido a la salida de la etapa y refrigerándolo antes de volver a realimentarlo al reactor.  Patent EP2305366B1 discloses a power generation method that also makes use of fixed beds, where the heat evolved in the reduction of CuO with a combustible gas (exothermic reaction) is used for the calcination of CaCÜ3 (endothermic reaction) formed in a previous stage of absorption of a combustion gas or of reforming a carbonaceous fuel. This procedure makes it possible to carry out the regeneration of the CO2 sorbent efficiently, since both reactions occur in the same bed. The control of the temperature in the reaction front during the necessary oxidation of the Cu to CuO (highly exothermic) is solved by recirculating part of the nitrogen obtained at the exit of the stage and cooling it before re-feeding it to the reactor.
Por tanto, los procesos de combustión por "chemical looping" utilizando lechos fijos a altas presiones y temperaturas presentan un doble inconveniente no resuelto definitivamente en el estado del arte: el difícil control de temperatura en los frentes de reacción cuando tienen lugar reacciones rápidas y altamente exotérmicas y la necesidad de intercambio de calor al lecho de sólidos cuando el estado inicial del lecho es de sólidos a baja temperatura y/o la reacción que tiene lugar en el lecho es endotérmica. En concreto, la alta exotermicidad de la reacción de oxidación hace que el control de la temperatura durante la operación en un lecho fijo sea un aspecto crítico en su diseño. Los materiales transportadores de oxígeno pierden actividad cuando están sometidos a altas temperaturas y su resistencia térmica está relacionada con su temperatura de fusión. La mayor parte de los materiales empleados en procesos de "chemical looping" no deben someterse a temperaturas superiores a 1200°C. Therefore, the combustion processes by "chemical looping" using fixed beds at high pressures and temperatures present a double disadvantage that is not definitively resolved in the state of the art: the difficult temperature control in the reaction fronts when fast and highly effective reactions take place. exothermic and the need for heat exchange to the bed of solids when the initial state of the bed is of solids at low temperature and / or the reaction that takes place in the bed is endothermic. In particular, the high exothermicity of the oxidation reaction makes the control of the temperature during the Operation in a fixed bed is a critical aspect in its design. Oxygen transporting materials lose activity when subjected to high temperatures and their thermal resistance is related to their melting temperature. Most of the materials used in chemical looping processes should not be subjected to temperatures higher than 1200 ° C.
Una técnica del estado del arte relevante para el objeto de esta invención es la forma conocida de extraer o aportar grandes cantidades de calor a lechos fijos de sólidos mediante el uso de corrientes gaseosas que atraviesen el lecho de forma cíclica (calentamiento-enfriamiento), en sistemas comúnmente conocidos como "lechos regenerativos" (ver por ejemplo Zarrinehkafsh y Sadrameli, "Simulation of fixed bed regenerative heat exchangers for flue gas heat recovery, Applied Thermal Engineering", 24, 373-382, 2004). La eficacia en la transferencia de calor entre corrientes gaseosas y estos lechos fijos de sólidos puede ser muy alta dependiendo de las condiciones de operación y características de los gases y del lecho, formándo frentes nítidos de intercambio de calor en una sección transversal del lecho perpendicular al flujo de gas, donde se existe un salto de temperaturas de gas y sólidos en un espacio muy corto de lecho. Estos frentes nítidos de intercambio de calor avanzan a lo largo del lecho hasta que todos los sólidos del lecho alcanzan la temperatura de entrada del gas, mientras que el gas abandona el lecho a la temperatura inicial de los sólidos hasta que el frente de intercambio de calor llega al punto de salida del reactor.  A state-of-the-art technique relevant to the object of this invention is the known way of extracting or supplying large quantities of heat to fixed beds of solids through the use of gaseous streams that pass through the bed in a cyclic manner (heating-cooling), in systems commonly known as "regenerative beds" (see for example Zarrinehkafsh and Sadrameli, "Simulation of fixed bed regenerative heat exchangers for flue gas heat recovery, Applied Thermal Engineering", 24, 373-382, 2004). The efficiency in the heat transfer between gaseous streams and these fixed beds of solids can be very high depending on the operating conditions and characteristics of the gases and the bed, forming clear fronts of heat exchange in a cross section of the bed perpendicular to the gas flow, where there is a jump of gas and solids temperatures in a very short space of bed. These clear heat exchange fronts advance along the bed until all bed solids reach the gas inlet temperature, while the gas leaves the bed at the initial temperature of the solids until the heat exchange front it reaches the exit point of the reactor.
Otras técnicas del estado del arte relevantes para el objeto de esta invención son comunes a otros sistemas de reactores de lecho fijo con presiones o temperatura alternantes (PSA y TSA en sus siglas en inglés). En concreto, los sistemas de válvulas para alternar las corrientes de aire y de combustible de forma sincronizada a distintos reactores en diversos estados de operación son similares a los de otros procesos del estado del arte (ver por ejemplo US2010/0196259A1 ). La gestión de etapas intermedias de "enjuague" entre oxidación y reducción, inyectando algún gas inerte como vapor de agua, puede considerarse también parte del estado del arte.  Other techniques of the state of the art relevant to the object of this invention are common to other systems of fixed-bed reactors with alternating pressures or temperatures (PSA and TSA in its acronym in English). In particular, the valve systems for alternating the air and fuel streams in a synchronized manner to different reactors in various operating states are similar to those of other state-of-the-art processes (see for example US2010 / 0196259A1). The management of intermediate stages of "rinsing" between oxidation and reduction, injecting some inert gas as water vapor, can also be considered part of the state of the art.
De la descripción del estado actual de la técnica se desprende que los procesos que hasta hoy se han planteado para llevar a cabo el concepto de combustión de un gas con "chemical looping" para la generación potencia son en la práctica poco realizables en las condiciones de alto rendimiento energético (altas presiones y temperaturas) requeridas para la combustión eficiente de gases. El procedimiento descrito en esta invención trata de solventar este problema, revelando un método de operación y una secuencia concreta de etapas de reacción e intercambio de calor con reciclo de gases que permite llevar a cabo procesos continuos de combustión de un gas a alta presión y temperatura con separación integrada de CO2 y generación de potencia en un ciclo combinado de gas. Dicho procedimiento puede aportar sustanciales reducciones de costes y menores penalizaciones de rendimiento energético respecto a otros procesos de combustión de gas natural con captura de C02. DESCRIPCIÓN DE LA INVENCIÓN It is clear from the description of the current state of the art that the processes that until today have been raised to carry out the concept of combustion of a gas with "chemical looping" for power generation are in practice not feasible in the conditions of high energy efficiency (high pressures and temperatures) required for combustion efficient gas The procedure described in this invention tries to solve this problem, revealing a method of operation and a specific sequence of reaction and heat exchange stages with gas recycling that allows to carry out continuous processes of combustion of a gas at high pressure and temperature with integrated CO 2 separation and power generation in a combined gas cycle. This procedure can provide substantial cost reductions and lower energy efficiency penalties compared to other natural gas combustion processes with C0 2 capture. DESCRIPTION OF THE INVENTION
La presente invención se refiere a un procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado, que tiene lugar en varias etapas, con el objetivo de obtener una corriente separada de CO2 durante la combustión de un combustible carbonoso gaseoso en una de las etapas y suministrar de forma continua un gas libre de CO2 a alta presión y a alta temperatura a una turbina de gas para generar potencia. El procedimiento requiere de varios reactores adiabáticos de lecho fijo idénticos, pero operados simultánea y sincronizadamente de forma distinta en las distintas etapas. The present invention relates to a process for the combustion of a gas in a fixed bed with an oxidized solid, which takes place in several stages, with the aim of obtaining a separate stream of CO 2 during the combustion of a gaseous carbonaceous fuel in a of the stages and continuously supply a gas free of CO 2 at high pressure and at high temperature to a gas turbine to generate power. The process requires several identical fixed-bed adiabatic reactors, but operated simultaneously and synchronously in different ways in the different stages.
El procedimiento de invención comprende: The method of invention comprises:
i) una primera etapa en la que se alimenta el gas combustible a un reactor de lecho fijo conteniendo sólidos inicialmente oxidados y con una parte de ellos calientes localizada a la entrada de gas combustible a una primera temperatura T1 , donde esta primera etapa finaliza con los sólidos completamente reducidos.i) a first stage in which the fuel gas is fed to a fixed bed reactor containing initially oxidized solids and with a part of them hot located at the fuel gas inlet at a first temperature T1, where this first stage ends with the completely reduced solids.
Los sólidos a alta temperatura permiten cinéticas rápidas de la reacción de reducción del sólido con el combustible. Además, en el caso de que la reacción de reducción sea endotérmica, el calor sensible contenido inicialmente en los sólidos oxidados a alta temperatura del lecho se utiliza para mantener una temperatura alta en el frente de reacción de reducción, que permite el avance de dicho frente de reacción de reducción a lo largo del lecho. The solids at high temperature allow rapid kinetics of the reaction of reduction of the solid with the fuel. Also, in the event that the reaction of reduction is endothermic, the sensible heat contained initially in the oxidized solids at high temperature of the bed is used to maintain a high temperature in the front of reduction reaction, which allows the advance of said reduction reaction front along the bed .
La primera etapa comprende además la alimentación de un reciclo del gas producto de la primera etapa junto con el gas combustible alimentado durante la primera etapa. La alimentación de este reciclo de una parte de los gases ricos en CO2 y H20 (vapor) generados en la primera etapa, una vez enfriados y acondicionados, permite moderar el salto de temperatura en el frente de reacción de reducción y hacer más rápido el avance del frente de intercambio de calor. El caudal de reciclo se diseña para que en ningún caso el frente de intercambio alcance al frente de reacción antes de la reducción completa del lecho de sólidos inicialmente oxidados. Cuando la reacción de reducción de sólidos es endotérmica esto evita que la reacción se apague por falta de calor sensible en los sólidos del lecho. Cuando la reacción de reducción de sólidos es exotérmica (por ejemplo cuando se reduce el óxido de cobre con metano o se emplea gas de síntesis como combustible), este reciclo de CO2 y H20 permite además el control de temperatura en el frente de reacción de reducción. En ambos casos, la presencia de H20 en el reciclo tiene como ventaja añadida el evitar la formación de coque sobre los sólidos reducidos. El procedimiento comprende además: The first stage further comprises feeding a recycle of the gas product of the first stage together with the fuel gas fed during the first stage. The feeding of this recycle of a part of the gases rich in CO 2 and H 2 0 (steam) generated in the first stage, once cooled and conditioned, allows to moderate the temperature jump in the reduction reaction front and to do more fast the advance of the heat exchange front. The recycle flow is designed so that in no case the exchange front reaches the reaction front before the complete reduction of the bed of initially oxidized solids. When the solid reduction reaction is endothermic, this prevents the reaction from being quenched by lack of sensible heat in the bed solids. When the solids reduction reaction is exothermic (for example, when copper oxide is reduced with methane or synthetic gas is used as a fuel), this recycling of CO 2 and H 2 0 also allows temperature control on the front of the plant. reduction reaction. In both cases, the presence of H 2 0 in the recycle has as an added advantage to avoid the formation of coke on the reduced solids. The procedure also comprises:
¡i) una segunda etapa de oxidación de los sólidos con una mezcla de aire y nitrógeno reciclado que entra por la salida de gases de la primera etapa y dura hasta que el nitrógeno que sale del reactor lo hace a una temperatura máxima; i¡¡) una tercera etapa en la que se continúa alimentando al reactor nitrógeno reciclado o una mezcla de aire y de nitrógeno reciclado si la oxidación de los sólidos no ha finalizado y en la que la corriente de nitrógeno que sale del reactor a una temperatura máxima se alimenta a la turbina de un ciclo combinado de gas; I) a second stage of oxidation of the solids with a mixture of air and recycled nitrogen that enters through the gas outlet of the first stage and lasts until the nitrogen leaving the reactor does it at a maximum temperature; i¡¡) a third stage in which the reactor continues to feed recycled nitrogen or a mixture of air and recycled nitrogen if the oxidation of the solids has not ended and in which the nitrogen stream leaving the reactor at a temperature maximum is fed to the turbine of a combined cycle of gas;
iv) una cuarta etapa en la que se continúa alimentando al reactor nitrógeno reciclado o una mezcla de aire y de nitrógeno reciclado si la oxidación de los sólidos no ha finalizado y en la que la corriente de nitrógeno que sale de dicho reactor a una temperatura máxima se enfría ligeramente hasta la temperatura requerida para los sólidos a alta temperatura en la primera etapa i); iv) a fourth stage in which recycled nitrogen or a mixture of air and recycled nitrogen continues to be fed to the reactor if the oxidation of the solids has not ended and in which the nitrogen stream leaving said reactor at a maximum temperature cooled slightly to the temperature required for the high temperature solids in the first stage i);
v) una quinta etapa en la que se alimenta la corriente de nitrógeno a alta temperatura que sale de la cuarta etapa iv) al reactor que contiene sólidos fríos y completamente oxidados resultantes en la cuarta etapa iv). v) a fifth stage in which the high temperature nitrogen stream leaving the fourth stage iv) is fed to the reactor containing cold and completely oxidized solids resulting in the fourth stage iv).
La elección tanto de los materiales a utilizar en el lecho, tanto el transportador de oxígeno como su soporte, así como de su grado de agregación, normalmente en forma de pellets para reducir la caída de presión de los gases en su paso por los lechos fijos, se considera parte del estado del arte de la tecnología de combustión de gases en lecho fijo haciendo uso de transportadores de oxigeno ("chemical looping"). Además, todos los componentes y equipos individuales utilizados en el procedimiento de invención pueden considerarse parte del estado del arte (compresores de las corriente de combustible y de aire, ventiladores o soplantes de gases fríos de reciclo, intercambiadores de calor, reactores adiabáticos de lecho fijo). También se consideran parte del estado del arte las técnicas de control e instrumentación necesarias para la operación secuencial y sincronizada de las distintas etapas, mediante la apertura y cierre controlado de válvulas (que pueden estar refrigeradas y/o estar construidas de materiales que soporten altas temperaturas y presiones) para alternar la entrada y salida de reactivos a los reactores en sus distintas etapas. Pueden ser necesarias también etapas de purga de gas en los reactores ("rinse") conocidas en el estado del arte. The choice of both the materials to be used in the bed, both the oxygen carrier and its support, as well as its degree of aggregation, usually in the form of pellets to reduce the pressure drop of the gases in their passage through the fixed beds , is considered part of the state of the art of fixed-bed gas combustion technology using oxygen transporters ("chemical looping"). In addition, all the individual components and equipment used in the inventive method can be considered part of the state of the art (compressors of the fuel and air stream, fans or cold recycle gas blowers, heat exchangers, adiabatic reactors of fixed bed ). The control and instrumentation techniques necessary for the sequential and synchronized operation of the different stages are also considered part of the state of the art, through the controlled opening and closing of valves (which can be cooled and / or constructed of materials that withstand high temperatures). and pressures) to alternate the entry and exit of reactants to the reactors in their different stages. It may also be necessary to purge gas stages in the reactors ("rinse") known in the state of the art.
En general existirán numerosas vanantes del procedimiento de invención que serán evidentes para una persona entrenada en el estado del arte de la combustión de gases por "chemical looping" en lecho fijos y de otros procesos industriales que hace uso de presiones y/o temperaturas alternantes en reactores de lecho fijo (procesos PSA o TSA). DESCRIPCIÓN DE LOS DIBUJOS In general there will be many vanantes of the invention procedure that will be evident to a person trained in the state of the art of the combustion of gases by "chemical looping" in fixed bed and other industrial processes that makes use of alternating pressures and / or temperatures in fixed bed reactors (PSA or TSA processes). DESCRIPTION OF THE DRAWINGS
Se acompaña como parte integrante de esta invención un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: An assembly of drawings is included as an integral part of this invention, in which the following has been represented with an illustrative and non-limiting character:
Figura 1 : Muestra un esquema de la configuración preferente del procedimiento de la invención, con una instantánea del frente de reacción de reducción (sólidos oxidados en zona rayada y sólidos reducidos en blanco) y de las distintas zonas de temperatura esperadas en los reactores, indicando con saltos de temperatura los diferentes frentes de intercambio de calor gas-sólido. Figure 1: Shows a schematic of the preferred configuration of the method of the invention, with a snapshot of the reduction reaction front (oxidized solids in the scratched area and reduced solids in white) and of the different temperature zones expected in the reactors, indicating with jumps of temperature the different fronts of gas-solid heat exchange.
Figura 2: Muestra un esquema de otra configuración preferente del procedimiento de invención siguiendo la misma notación que en la Figura 1 . Figura 3. Muestra un diagrama de flujo de la configuración preferente del procedimiento de invención, utilizando NiO/Ni como transportador de oxígeno, de acuerdo con el Ejemplo 1.  Figure 2: Shows a schematic of another preferred configuration of the inventive method following the same notation as in Figure 1. Figure 3. Shows a flowchart of the preferred configuration of the inventive method, using NiO / Ni as an oxygen transporter, according to Example 1.
Figura 4. Muestra un ejemplo de diseño conceptual de un sistema con la configuración preferente del procedimiento de invención, utilizando NiO/Ni como transportador de oxígeno, de acuerdo con el Ejemplo 1 , donde en el eje de abscisas se indica el n° de reactores.  Figure 4. Shows an example of conceptual design of a system with the preferred configuration of the invention method, using NiO / Ni as an oxygen transporter, according to Example 1, where on the abscissa the number of reactors is indicated .
Figura 5. Muestra un ejemplo de diseño conceptual de un sistema con la configuración preferente del procedimiento de invención, utilizando ilmenita como transportador de oxígeno, de acuerdo con el Ejemplo 2, donde en el eje de abscisas se indica el n° de reactores. REALIZACIÓN PREFERENTE DE LA INVENCIÓN Figure 5. Shows an example of a conceptual design of a system with the preferred configuration of the invention method, using ilmenite as an oxygen transporter, according to Example 2, where on the abscissa axis the number of reactors is indicated. PREFERRED EMBODIMENT OF THE INVENTION
A modo ilustrativo pero no restrictivo, se describe a continuación en más detalle las principales etapas del procedimiento de invención. Por sencillez, se ha considerado que los gases se mueven en flujo pistón y que tanto las reacciones gas-sólido como el proceso de intercambio de calor gas-sólido se producen en frentes nítidos de reacción, según lo observado en reacciones y operaciones similares descritas en el estado del arte. En la realización preferente del procedimiento de invención, la primera etapa del ciclo (100) mostrada en la Figura 1 comprende la oxidación de una corriente de combustible gaseoso (10) en un reactor adiabático de lecho fijo (101 ) conteniendo sólidos inicialmente oxidados, con una parte de ellos a alta temperatura (T1 ) y con otra parte de ellos a baja temperatura (T4) como resultado de una etapa de oxidación previa de dichos sólidos (que se describirá más adelante). Los sólidos a alta temperatura (T1 ) se encuentran localizados inicialmente cerca de la entrada de gas combustible al reactor. La reducción del sólido suele ser endotérmica, por lo que para sostener el avance del frente de reacción de reducción del sólido y de combustión del gas, es necesario que el lecho contenga inicialmente suficiente calor sensible, que es proporcionado por los sólidos a alta temperatura (T1 ). Un compresor (102) comprime y calienta el gas combustible (10). Dicho gas ya comprimido y calentado (1 1 ) se hace pasar por un intercambiador de calor (103) para adecuar la temperatura a la requerida para comenzar la primera etapa (100), obteniéndose una corriente (12) a la salida del intercambiador de calor (103). En esta realización preferente de la invención, la primera etapa contiene un reciclo de gas (16) de la corriente de gases a la salida (14) del reactor (101 ), donde una soplante o ventilador (104) bombea dicho reciclo de gas (16), rico en CO2 y H20, para unirlo a la corriente de combustible (12) a la salida del intercambiador (103). By way of illustration but not limitation, the main steps of the inventive method are described in more detail below. For simplicity, it has been considered that the gases move in piston flow and that both the gas-solid reactions and the gas-solid heat exchange process occur in clear reaction fronts, as observed in similar reactions and operations described in the state of art. In the preferred embodiment of the method of invention, the first stage of the cycle (100) shown in Figure 1 comprises the oxidation of a gaseous fuel stream (10) in a fixed-bed adiabatic reactor (101) containing initially oxidized solids, with a part of them at high temperature (T1) and with another part of them at low temperature (T4) as a result of a previous oxidation stage of said solids (to be described later). The high temperature solids (T1) are initially located near the fuel gas inlet to the reactor. The reduction of the solid is usually endothermic, so to sustain the advance of the reaction front of solid reduction and gas combustion, it is necessary that the bed initially contains sufficient sensible heat, which is provided by the solids at high temperature ( T1). A compressor (102) compresses and heats the fuel gas (10). Said already compressed and heated gas (11) is passed through a heat exchanger (103) to adjust the temperature to that required to start the first stage (100), obtaining a current (12) at the outlet of the heat exchanger (103). In this preferred embodiment of the invention, the first stage contains a gas recycle (16) of the gas stream to the outlet (14) of the reactor (101), where a blower or fan (104) pumps said gas recycle ( 16), rich in CO2 and H 2 0, to join it to the fuel stream (12) at the outlet of the exchanger (103).
La velocidad de avance del frente de reducción (inferíase zona rayada/zona no rayada en la Figura 1 ) depende de la composición del gas combustible y del sólido oxidado, de la estequiometria de la reacción, del flujo de gas de reciclo (17) tras la soplante o ventilador (104), de la fracción de oxido metálico en el lecho y de la diferencia entre los pesos moleculares del gas y del sólido. Se puede hacer que dicho frente de reducción avance a mayor velocidad que los dos frentes de intercambio gas/sólido (el primero marcado por la transición entre una temperatura del gas a la entrada del reactor (T3) y una temperatura del gas tras el intercambio de calor con el lecho sólido (T2), que se describirán a continuación, y el segundo marcado por la transición entre la temperatura de los sólidos a alta temperatura (T1 ) y la temperatura de los sólidos a baja temperatura (T4) en la Figura 1 ). En estas condiciones, la corriente de entrada (13) del gas combustible entra al reactor a la temperatura T3 e intercambia calor con el lecho sólido para colocarse a la temperatura del gas tras el intercambio de calor con el lecho sólido (T2) resultante del frente de reducción, que está a mayor temperatura. The rate of advance of the reduction front (inferred scratched area / non-scratched area in Figure 1) depends on the composition of the fuel gas and the oxidized solid, the stoichiometry of the reaction, the flow of recycle gas (17) after the blower or fan (104), the fraction of metal oxide in the bed and the difference between the molecular weights of the gas and the solid. This reduction front can be advanced at a higher speed than the two gas / solid exchange fronts (the first one marked by the transition between a gas temperature at the reactor inlet (T3) and a gas temperature after the exchange of heat with the solid bed (T2), which will be described next, and the second one marked by the transition between the temperature of the solids at high temperature (T1) and the temperature of the solids at low temperature (T4) in Figure 1). Under these conditions, the inlet stream (13) of the fuel gas enters the reactor at temperature T3 and exchanges heat with the solid bed to settle at the temperature of the gas after heat exchange with the solid bed (T2) resulting from the front. of reduction, which is at a higher temperature.
A continuación, y por simplificación se hará uso de T1 , T2, T3 y T4 para describir los ejemplos de realización de manera más clara y sencilla. Al producirse el intercambio de calor entre el gas y el lecho sólido en el reactor adiabático de lecho fijo (101 ) se establece un primer frente de intercambio de calor (marcado como transición entre T3 y T2 en la Figura 1 ) que avanza hacia la derecha a medida que transcurre la primera etapa (100). Al ser más rápido el frente de reacción (inferíase zona rayada/zona no rayada en la Figura 1 ) dicho frente se mueve en todo momento aguas abajo del primer frente de intercambio (transición entre T3 y T2). En el frente de reacción se produce también un salto de temperatura (entre T1 y T2), cuya magnitud es función entre otros factores de la entalpia de la reacción de reducción. La reacción de reducción puede ser endotérmica, donde T1 >T2 (como en la Figura 1 ) o bien puede ser exotérmica, donde T2>T1 , como sería en el caso de la reducción de CuO con metano o en algunos casos donde el combustible gaseoso es H2 y/o CO. Then, and for simplification, use will be made of T1, T2, T3 and T4 to describe the embodiment examples more clearly and simply. Upon the exchange of heat between the gas and the solid bed in the fixed-bed adiabatic reactor (101), a first heat exchange front (marked as transition between T3 and T2 in Figure 1) is established which advances to the right as the first stage (100) proceeds. As the reaction front was faster (inferred scratched area / non-scratched area in Figure 1) said front moves at all times downstream of the first exchange front (transition between T3 and T2). In the reaction front there is also a temperature jump (between T1 and T2), whose magnitude is a function, among other factors, of the enthalpy of the reduction reaction. The reduction reaction can be endothermic, where T1> T2 (as in Figure 1) or can be exothermic, where T2> T1, as it would be in the case of CuO reduction with methane or in some cases where the gaseous fuel is H 2 and / or CO.
Las condiciones favorables de intercambio de calor gas-sólido en lechos fijos permiten que la corriente de gases a la salida (14) del reactor (101 ) lo haga siempre a la temperatura de los sólidos cercanos a la salida de dicho reactor, es decir, a T4, hasta que llega al final del reactor el frente de intercambio marcado como transición entre T1 y T4. The favorable gas-solid heat exchange conditions in fixed beds allow the gas stream at the outlet (14) of the reactor (101) to always do so at the temperature of the solids near the outlet of said reactor, i.e. to T4, until the exchange front marked as transition between T1 and T4 reaches the end of the reactor.
La corriente de reciclo de gas (16) se puede diseñar para que la llegada del frente de intercambio T1 -T4 al final del reactor (101 ) coincida con la llegada al final del reactor (101 ) del frente de reacción. De este modo, la corriente de gases a la salida (14) del reactor (101 ), abandona el reactor (101 ) en todo momento a T4. Por otro lado, el acercamiento progresivo entre el frente de reacción y de intercambio T1 -T4 incrementa el salto de temperatura que se produce en el frente de reducción, es decir, la diferencia entre T1 y T2, lo que hace que la temperatura inicial de la parte caliente del lecho o temperatura de los sólidos a alta temperatura (T1 ) tenga que ser lo suficientemente alta como para no dejar el lecho ya reaccionado demasiado frío, a temperatura T2 para arrancar una segunda etapa de oxidación que se describirá a continuación(). En los casos donde la reacción de reducción de sólidos es exotérmica (por ejemplo cuando se reduce el óxido de cobre con metano o se emplea gas de síntesis como gas combustible), el diseño adecuado del reciclo de gas inerte, principalmente CO2 y H20, permite separar el avance de los frentes de reacción y de intercambio de calor durante la operación, logrando una mejor disipación del calor de reacción generado y evitando la aparición de puntos calientes no deseados en el frente de reducción. The gas recycle stream (16) can be designed so that the arrival of the exchange front T1 -T4 at the end of the reactor (101) coincides with the arrival at the end of the reactor (101) of the reaction front. In this way, the gas stream at the outlet (14) of the reactor (101) leaves the reactor (101) at all times at T4. On the other hand, the progressive approach between the reaction and exchange front T1 -T4 increases the temperature jump that occurs in the reduction front, that is, the difference between T1 and T2, which makes the initial temperature of the hot part of the bed or temperature of the solids at high temperature (T1) have to be high enough not to leave the bed already reacted too cold, at temperature T2 to start a second oxidation step which will be described below (). In cases where the solid reduction reaction is exothermic (for example when copper oxide is reduced with methane or synthesis gas is used as fuel gas), the proper design of the inert gas recycle, mainly CO2 and H 2 0 , allows to separate the advance of the reaction and heat exchange fronts during the operation, achieving a better dissipation of the generated heat of reaction and avoiding the appearance of unwanted hot spots in the reduction front.
El procedimiento comprende una segunda etapa (200) donde se lleva a cabo la oxidación de parte de los sólidos contenidos en un reactor (201 ), que han sido reducidos previamente en la primera etapa (100). . Para conseguir dicha oxidación, se alimenta al reactor (201 ) con una corriente mezcla de aire y de nitrógeno reciclado (23) por lo que era la salida de la primera etapa (100), de modo que la segunda etapa (200) arranca oxidando sólidos a temperatura T2. El nitrógeno resultante de la reacción exotérmica de oxidación calienta progresivamente los sólidos aguas abajo del frente de reacción a temperaturas superiores a T2, dejando aguas arriba del frente de reacción unos sólidos a temperatura T4, que es igual a la de la corriente mezcla de aire y de nitrógeno reciclado (23). La oxidación de los sólidos del lecho (200) es una reacción altamente exotérmica y llevada a cabo con aire podría causar la aparición de puntos muy calientes en el frente de reacción que conlleven reacciones no deseadas y la pérdida irreversible de actividad del sólido. Por tanto, la recirculación de parte del nitrógeno obtenido como producto de reacción permite regular la temperatura máxima en dicho frente de oxidación. Así, el aire (20) necesario para la segunda etapa (200), una vez comprimido en un compresor (202), se hace pasar por un intercambiador de calor (203) para adecuar su temperatura a la requerida para llevar a cabo la segunda etapa (200).The process comprises a second stage (200) where the oxidation of part of the solids contained in a reactor (201), which have been previously reduced in the first stage (100), is carried out. . To achieve said oxidation, the reactor (201) is fed with a mixed stream of air and recycled nitrogen (23) so that it was the outlet of the first stage (100), so that the second stage (200) starts rusting solids at temperature T2. The nitrogen resulting from the exothermic oxidation reaction progressively heats the solids downstream of the reaction front at temperatures above T2, leaving solids at temperature T4 above the reaction front, which is equal to that of the air mixture stream and of recycled nitrogen (23). The oxidation of the bed solids (200) is a highly exothermic reaction and carried out with air could cause the appearance of very hot spots in the reaction front that entail unwanted reactions and the irreversible loss of solid activity. Therefore, the recirculation of part of the nitrogen obtained as a reaction product makes it possible to regulate the maximum temperature in said oxidation front. Thus, the air (20) necessary for the second stage (200), once compressed in a compressor (202), is passed through a heat exchanger (203) to adapt its temperature to that required to carry out the second one. stage (200).
Además, parte de la corriente de salida (24) del reactor (201 ), compuesta principalmente por nitrógeno, se recircula, como se verá más adelante, lo que permite disminuir el contenido de oxígeno de la corriente (23) a la entrada del reactor (201 ). En estas condiciones el frente de intercambio gas/sólido, marcado como transición entre T5 (se describirá a continuación) y T2 en la Figura 1 , avanza por delante y más rápidamente que el frente de reacción, marcado como inferíase zona rayada/zona blanca en la segunda etapa (200). La corriente mezcla de aire y de nitrógeno reciclado (23) llega en todo momento al frente de reacción a la temperatura de entradaT4 y se calienta súbitamente hasta una temperatura máxima (T5) que alcanza la corriente mezcla de aire y nitrógeno reciclado en el frente de reacción debido a la reacción exotérmica de oxidación. El calor generado en dicho frente de reacción es transportado por el gas producto (principalmente nitrógeno) del frente de reacción y acaba calentando los sólidos aguas abajo del lecho (frentes de intercambio marcado por el salto de temperatura T5-T2 y T2-T3). Mediante una corriente de recirculación de nitrógeno frío (28) y la elección adecuada de la temperatura T4 de la corriente mezcla de aire y de nitrógeno reciclado (23) se consigue que la temperatura máxima (T5) que se alcanza en el frente de reacción no sobrepase los límites admisibles de operación. Por otra parte, al comienzo de la segunda etapa (200), la corriente de salida (24) del reactor se encuentra a la temperatura inferior del gas en el reactor (T3), que corresponde en este caso con la temperatura inicial de los sólidos situados a la salida del reactor (201 ) al comienzo de dicha segunda etapa (200). Cuando el frente de intercambio de calor gas/sólido, marcado como transición entre T3 y T2 llega al final del reactor, la corriente de salida (24) del reactor (201 ) sale a temperatura T2. Esta temperatura de salida se mantendrá hasta que el segundo frente de intercambio gas/sólido (marcado como transición entre T2 a T5) alcance el final del lecho (201 ). En este momento, se considera finalizada la segunda etapaIn addition, part of the output stream (24) of the reactor (201), composed mainly of nitrogen, is recirculated, as will be seen below, which it allows decreasing the oxygen content of the stream (23) to the reactor inlet (201). Under these conditions the gas / solid exchange front, marked as transition between T5 (will be described below) and T2 in Figure 1, advances ahead and more quickly than the reaction front, marked as inferred striped area / white zone in the second stage (200). The recycled stream of air and nitrogen (23) comes at the reaction front at the inlet temperature T4 at all times and is suddenly heated up to a maximum temperature (T5) that reaches the mixed stream of air and nitrogen recycled at the front of the reactor. reaction due to the exothermic oxidation reaction. The heat generated in said reaction front is transported by the product gas (mainly nitrogen) from the reaction front and ends by heating the solids downstream of the bed (exchange fronts marked by the temperature jump T5-T2 and T2-T3). By means of a recirculation flow of cold nitrogen (28) and the appropriate choice of temperature T4 of the air mixture stream and recycled nitrogen (23) it is achieved that the maximum temperature (T5) reached in the reaction front is not exceeds the permissible operating limits. On the other hand, at the beginning of the second stage (200), the outlet current (24) of the reactor is at the lower temperature of the gas in the reactor (T3), which corresponds in this case to the initial temperature of the solids located at the exit of the reactor (201) at the beginning of said second stage (200). When the gas / solid heat exchange front, marked as transition between T3 and T2 reaches the end of the reactor, the output stream (24) of the reactor (201) comes out at temperature T2. This outlet temperature will be maintained until the second gas / solid exchange front (marked as transition between T2 to T5) reaches the end of the bed (201). At this time, the second stage is considered finished
(200) . (200) .
Durante toda la segunda etapa (200), la fracción de la corriente de recirculación de nitrógeno frío (28) ha de tener una temperatura baja, preferentemente T4, por lo que el exceso de calor sensible de la corriente de salida (24) del reactor During the entire second stage (200), the fraction of the recirculation stream of cold nitrogen (28) must have a low temperature, preferably T4, whereby the excess sensible heat of the output stream (24) of the reactor
(201 ) se debe extraer en un intercambiador de calor (204). Dicho calor puede emplearse en un ciclo de vapor, para la producción de potencia (no mostrado en la Figura 1 por simplicidad). Para compensar la pérdida de carga a través del reactor (201 ) el nitrógeno a presión frío (25) a la salida del intercambiador de calor (204) se alimenta a un ventilador o soplante (205). La fracción de la corriente de nitrógeno (26) no recirculada al reactor (201 ), se alimenta a un reactor (301 ) operando en una tercera etapa (300) que se describe a continuación. (201) must be extracted in a heat exchanger (204). This heat can be used in a steam cycle, for the production of power (not shown) in Figure 1 for simplicity). To compensate for the pressure loss through the reactor (201) the cold pressure nitrogen (25) at the outlet of the heat exchanger (204) is fed to a fan or blower (205). The fraction of the nitrogen stream (26) not recirculated to the reactor (201) is fed to a reactor (301) operating in a third stage (300) described below.
La tercera etapa (300) de la realización preferente del procedimiento de invención, está también representada la Figura 1 . En ella se lleva a cabo la oxidación adicional de una parte de los sólidos reducidos en la primera etapa (100) con una mezcla de aire y de nitrógeno reciclado (33), donde la corriente de nitrógeno producido (34) a alta presión y a la temperatura T5, se alimenta a la turbina de gas (303) de un ciclo combinado para la generación de potencia. Esta etapa se inicia con un reactor (301 ) parcialmente oxidado (proveniente de la segunda etapa 200) y sin frentes de intercambio aparte del salto de temperatura de T4 a T5, que existe en el frente de reacción de oxidación. El aire (30) necesario para la tercera etapa (300) se comprime en un compresor (202), y se hace pasar por un intercambiador de calor (302) para adecuar su temperatura a T4. La corriente de nitrógeno producido (34) que sale del lecho (301 ) a la temperatura T5 y a presión se expande y enfría en un ciclo combinado con una turbina de gas (303) y un recuperador de calor (304). Resulta interesante, a efectos de maximizar el rendimiento de generación de electricidad en el ciclo combinado, aumentar la temperatura del gas que entra a la turbina a valores típicos de entrada de dicha turbina (1400-1450 °C). La naturaleza de los sólidos utilizados en el estado del arte como transportadores de oxígeno no permite temperaturas tan altas de operación. En este caso se quema una pequeña cantidad adicional de combustible (60) con una fracción del aire comprimido (64) para mediante el producto obtenido (65) elevar la temperatura de los gases alimentados a la turbina (35). Esta opción conlleva que una pequeña parte del carbono contenido en el combustible adicional no se capture y se emita como CO2 a la atmósfera en los gases de escape (38) de la turbina de gas (303). The third stage (300) of the preferred embodiment of the method of invention is also shown in Figure 1. In it the further oxidation of a part of the reduced solids in the first stage (100) is carried out with a mixture of air and recycled nitrogen (33), where the nitrogen stream produced (34) at high pressure and at the temperature T5 is fed to the gas turbine (303) of a combined cycle for power generation. This stage starts with a reactor (301) partially oxidized (coming from the second stage 200) and without exchange fronts apart from the temperature jump from T4 to T5, which exists in the oxidation reaction front. The air (30) required for the third stage (300) is compressed in a compressor (202), and passed through a heat exchanger (302) to adjust its temperature to T4. The produced nitrogen stream (34) leaving the bed (301) at temperature T5 and under pressure is expanded and cooled in a combined cycle with a gas turbine (303) and a heat recuperator (304). It is interesting, in order to maximize the electricity generation efficiency in the combined cycle, to increase the temperature of the gas entering the turbine to typical input values of said turbine (1400-1450 ° C). The nature of the solids used in the state of the art as oxygen transporters does not allow such high operating temperatures. In this case a small additional amount of fuel (60) is burned with a fraction of the compressed air (64) for the product obtained (65) to raise the temperature of the gases fed to the turbine (35). This option means that a small part of the carbon contained in the additional fuel is not captured and is emitted as CO2 into the atmosphere in the exhaust gases (38) of the gas turbine (303).
Como en el caso de la segunda etapa (200), para moderar la temperatura T5, debe reducirse la concentración de oxígeno en la mezcla de aire y de nitrógeno reciclado (33) que entra al reactor (301 ). Para ello, de la corriente de gas de salida (37) del ciclo combinado, parte se recicla (61 ) y se recomprime en un compresor (307). Es necesario un intercambiador de calor adicional (308) para que la corriente de reciclo de gas tras el compresor (307) se alimente a temperatura T4 al reactor (301 ). As in the case of the second stage (200), to moderate the temperature T5, the concentration of oxygen in the mixture of air and nitrogen must be reduced recycled (33) entering the reactor (301). To do this, part of the output gas stream (37) of the combined cycle is recycled (61) and recompressed in a compressor (307). An additional heat exchanger (308) is required so that the gas recycle stream after the compressor (307) is fed at temperature T4 to the reactor (301).
Con el fin de minimizar la parte de la corriente de gas de salida del ciclo combinado que se recicla (61 ), se realimentan a la entrada del reactor (301 ) sendas corrientes de nitrógeno frío a presión (27,53) excedentes del resto de las etapas que conforman el presente procedimiento. Un sistema de válvulas (305, 306) permite regular a la salida del ciclo combinado la parte de la corriente de gas de salida del ciclo combinado que se recicla (61 ) para mantener constante la mezcla de aire y de nitrógeno reciclado (33) que entra al reactor (301 ), modificando el caudal de la corriente de nitrógeno de reciclo (63) tras el intercambiador (308) en función de los caudales de las corrientes de nitrógeno frío a presión (27, 53).  In order to minimize the part of the output gas stream of the combined cycle that is recycled (61), there are fed back to the reactor inlet (301) two streams of cold nitrogen under pressure (27.53) surpluses of the rest of the stages that make up the present procedure. A system of valves (305, 306) allows to regulate at the output of the combined cycle the part of the gas stream of the combined cycle that is recycled (61) to maintain constant the mixture of air and recycled nitrogen (33) that enters the reactor (301), modifying the flow rate of the recycle nitrogen stream (63) after the exchanger (308) as a function of the flows of cold nitrogen streams under pressure (27, 53).
En la cuarta etapa del ciclo (400), se lleva a cabo la oxidación en un reactor (401 ) de la parte final de los sólidos reducidos en la primera etapa (100) y no oxidados todavía en la segunda y tercera etapas (200, 300). Para ello, se alimenta una mezcla de una corriente de aire comprimido y enfriado (42) a T4 y de una corriente de nitrógeno frió reciclado (54) al reactor (401 ) y se genera una corriente (44) de nitrógeno a la salida del reactor a temperatura T5. Al finalizar la cuarta etapa (400) el reactor (401 ) queda completamente oxidado y se encuentra a la temperatura del gas de entradaT4. In the fourth stage of the cycle (400), the oxidation is carried out in a reactor (401) of the final part of the solids reduced in the first stage (100) and not yet oxidized in the second and third stages (200, 300). For this, a mixture of a stream of compressed and cooled air (42) to T4 and a stream of recycled cold nitrogen (54) is fed to the reactor (401) and a stream (44) of nitrogen is generated at the outlet of the reactor. reactor at temperature T5. At the end of the fourth stage (400) the reactor (401) is completely oxidized and is at the temperature of the inlet gas T4.
La quinta y última etapa del ciclo (500) tiene como objeto calentar el lecho de sólidos completamente oxidados y fríos, inicialmente a T4, resultante del final de la cuarta etapa (400), para poder reiniciar un nuevo ciclo con la primera etapa (100). Para ello, la corriente de nitrógeno (44) que sale del reactor (401 ) en la cuarta etapa (400), se enfría ligeramente en un intercambiador de calor (502) hasta la temperatura T1 y se alimenta al reactor (501 ), que tiene sólidos totalmente oxidados e inicialmente a temperatura T4. Estos sólidos se calientan progresivamente a la temperatura T1 a medida que avanza el frente de intercambio, marcado como transición entre T1 y T4. La corriente de nitrógeno frío (51 ) que sale del reactor (501 ) a la temperatura inicial del lecho T4 se alimenta a un ventilador o soplante (503) para compensar la pérdida de carga sufrida por el gas al atravesar el reactor (501 ). Parte de la corriente (52) a la salida del ventilador o soplante (503) se recircula hacia la entrada del reactor (401 ) como corriente de nitrógeno frió reciclado (54), reactor (401 ) que está operando en ese momento en la cuarta etapa (400), donde el resto del nitrógeno no reciclado (53) a la cuarta etapa (400), se alimenta al reactor (301 ), que está operando en ese momento en la tercera etapa (300). The fifth and final stage of the cycle (500) has the purpose of heating the bed of completely oxidized and cold solids, initially to T4, resulting from the end of the fourth stage (400), in order to restart a new cycle with the first stage (100 ). For this, the nitrogen stream (44) leaving the reactor (401) in the fourth stage (400), is cooled slightly in a heat exchanger (502) to the temperature T1 and fed to the reactor (501), which has totally oxidized solids and initially at temperature T4. These solids are heated progressively at temperature T1 as the exchange front advances, marked as transition between T1 and T4. The cold nitrogen stream (51) leaving the reactor (501) at the initial temperature of the bed T4 is fed to a fan or blower (503) to compensate for the pressure drop suffered by the gas as it passes through the reactor (501). Part of the stream (52) at the outlet of the fan or blower (503) is recirculated to the inlet of the reactor (401) as recycled cold nitrogen stream (54), reactor (401) which is operating at that time in the fourth step (400), where the rest of the non-recycled nitrogen (53) to the fourth stage (400), is fed to the reactor (301), which is operating at that time in the third stage (300).
El dispositivo descrito en las etapas de procedimiento de la presente invención permite ajustar a través del grado de reciclo de gases reciclados (CO2 y vapor en el caso de la primera etapa (100), y nitrógeno en las etapas segunda, tercera, cuarta y quinta (200), (300), (400) y (500) de oxidación,), la velocidad de desplazamiento de los frentes de reacción e intercambio de calor en el interior de los reactores en cada una de las etapas. Como se mostrará en los ejemplos de realización de la invención, la realización práctica de este procedimiento cuando se usan sólidos con alta capacidad de transporte de oxígeno (como por ejemplo el sistema NiO/Ni) requiere una instalación donde se haga uso de al menos ocho reactores adiabáticos de lecho fijo operados simultáneamente pero en distintas fases de las cinco etapas descritas anteriormente.  The device described in the process steps of the present invention allows adjusting through the degree of recycling of recycled gases (CO2 and steam in the case of the first stage (100), and nitrogen in the second, third, fourth and fifth stages). (200), (300), (400) and (500) oxidation,), the speed of displacement of the reaction fronts and heat exchange inside the reactors in each of the stages. As will be shown in the embodiments of the invention, the practical implementation of this procedure when using solids with high oxygen transport capacity (such as the NiO / Ni system) requires an installation where at least eight are used adiabatic fixed-bed reactors operated simultaneously but in different phases of the five stages described above.
Como se mostrará en los ejemplos de realización de la invención, la realización práctica de este procedimiento cuando se usan sólidos con baja capacidad de transporte de oxígeno, como el sistema Fe2T¡05/FeT¡03 (ilmenita), requiere de una instalación donde se haga uso de al menos siete reactores adiabáticos de lecho fijo operados simultáneamente en las distintas etapas del procedimiento de invención. Cuando se usan este tipo de sólidos de baja capacidad de transporte de oxígeno (o lechos con alta proporción de sólido inerte y baja proporción de sólidos transportadores de oxígeno) se consigue la oxidación completa de los sólidos durante la segunda etapa (200), dejando la tercera, cuarta y quinta etapas (300, 400, 500) como etapas donde solo existen frentes de intercambio de calor gas-sólido avanzando en un lecho de sólidos completamente oxidado (ver Figura 2 y Ejemplo 2). As will be shown in the embodiments of the invention, the practical realization of this procedure when using solids with low oxygen transport capacity, such as the Fe 2 T 5 0 / FeT 0 3 (ilmenite) system, requires an installation where use is made of at least seven adiabatic fixed-bed reactors operated simultaneously in the various stages of the invention process. When this type of solids with low oxygen transport capacity (or beds with a high proportion of inert solid and a low proportion of oxygen transporting solids) is used, complete oxidation of the solids is achieved during the second stage (200), leaving the third, fourth and fifth stages (300, 400, 500) as stages where only fronts exist of gas-solid heat exchange advancing in a bed of completely oxidized solids (see Figure 2 and Example 2).
EJEMPLOS EXAMPLES
Ejemplo 1 : Realización preferente del procedimiento de invención utilizando un sólido con alta capacidad de transporte de oxígeno: NiO/Ni.Example 1: Preferred embodiment of the method of the invention using a solid with a high oxygen transport capacity: NiO / Ni.
En este ejemplo se realiza el diseño conceptual del procedimiento cíclico representado en la Figura 1 , que tiene como objeto la combustión de un gas combustible (CH4 en este ejemplo) con un óxido con alta capacidad de transporte de oxígeno (NiO en este ejemplo). El ejemplo se ha planteado para la combustión continua de 10 kg/s (0.63 kmol/s) de CH4 puro (10) en una primera etapa (100), llevada a cabo en un reactor adiabático de lecho fijo (101 ) a 20 bar de presión, en el que se encuentra un sólido cuya composición en tanto por ciento en peso es en este ejemplo: 60% de NiO y 40% de AI2O3. Para realizar los cálculos se ha supuesto para todas las etapas flujo pistón de gas y propiedades térmicas medias de los materiales sólidos que componen el lecho y de los gases de entrada y de los productos de reacción. La entalpia de reducción de NiO con CH4 es de ΔΗ=134 kJ/mol CH4. La capacidad calorífica del gas varía entre 2.20 kJ/kg K a la entrada del reactor (101 ) y 1 .75 kJ/kg K a la salida del mismo, debido al cambio de temperatura y de composición que experimenta el gas durante la primera etapa (100). Del mismo modo, la capacidad calorífica media de los sólidos es inicialmente 0.98 kJ/kg K y una vez finalizada la primera etapa (100) es 0.91 kJ/kg K. La composición del gas combustible y del sólido oxidado, la estequiometria de la reacción (1 mol de CH4 reduce 4 moles de NiO), la fracción de óxido metálico en el lecho y la diferencia entre los pesos moleculares del gas y del sólido, hacen que el frente de reducción del NiO con CH4 (inferíase gris/blanco en Figura 1 ) avance hacia la derecha 1 .6 veces más rápido que el frente de intercambio gas/sólido marcado como transición entre T3 y T2 en la Figura 1 . El aumento de moles gaseosos en la reacción de reducción de NiO con CH4 hace que el frente de intercambio gas/sólido marcado como transición entre T1 y T4 avance 1.46 veces más rápido que el marcado como transición T3-T2 y 0.9 veces respecto al frente de reducción. In this example, the conceptual design of the cyclic procedure represented in Figure 1 is carried out, which has as its object the combustion of a combustible gas (CH 4 in this example) with an oxide with a high oxygen transport capacity (NiO in this example) . The example has been proposed for the continuous combustion of 10 kg / s (0.63 kmol / s) of pure CH 4 (10) in a first stage (100), carried out in a fixed-bed adiabatic reactor (101) to 20 pressure bar, in which is found a solid whose composition in percentage by weight is in this example: 60% NiO and 40% AI2O3. To perform the calculations, gas piston flow and average thermal properties of the solid materials that make up the bed and of the inlet gases and the reaction products have been assumed for all stages. The enthalpy of reduction of NiO with CH 4 is ΔΗ = 134 kJ / mol CH 4 . The heat capacity of the gas varies between 2.20 kJ / kg K at the reactor inlet (101) and 1.75 kJ / kg K at the outlet, due to the change in temperature and composition experienced by the gas during the first stage (100) In the same way, the average heat capacity of the solids is initially 0.98 kJ / kg K and once the first stage (100) is 0.91 kJ / kg K. The composition of the fuel gas and the oxidized solid, the stoichiometry of the reaction (1 mole of CH 4 reduces 4 moles of NiO), the metal oxide fraction in the bed and the difference between the molecular weights of the gas and the solid, make the NiO reduction front with CH 4 (inferred gray / white in Figure 1) advance to the right 1 .6 times faster than the gas / solid exchange front marked as transition between T3 and T2 in Figure 1. The increase of gaseous moles in the NiO reduction reaction with CH 4 causes the gas / solid exchange front marked as transition between T1 and T4 to advance 1.46 times faster than that marked as T3-T2 transition and 0.9 times faster than in front of reduction.
El compresor (102) alimenta la corriente de entrada (13) del gas combustible a 20 bar y 150 °C (T3 en Figura 1 ). La recirculación de parte de la corriente de salida del reactor (101 ) permite disminuir la concentración de CH4 en la corriente de entrada (13) del gas combustible y aumentar el flujo másico de gas a través del lecho. De esta forma se consigue que las velocidades de los frentes de reacción e intercambio de calor gas/sólido se aproximen. El reciclo de gas (16) se diseña para que la primera etapa (100) pueda iniciarse con una parte del lecho a baja temperatura (150 °C, T4 en Figura 1 ) y que la llegada del frente de reacción al final del reactor coincida con la llegada del frente de intercambio T1 -T4 y no antes. De esta forma se evita el apagado del frente de reacción y puede llevarse a cabo la reducción completa del lecho. Puesto que la oxidación de CH4 con NiO es altamente endotérmica, es necesario que el lecho de sólidos contenga suficiente cantidad de calor sensible que permita sostener el avance del frente de oxidación de CH4 (y de reducción del sólido) hasta agotar el lecho. El acercamiento entre el frente de intercambio T1 -T4 y el frente de reducción incrementa el salto de temperatura (diferencia entre T1 y T2) en el frente de reducción, por lo que la temperatura inicial de la parte caliente del lecho (T1 ) ha de ser suficientemente alta para que el frente de reducción permanezca en todo momento a temperaturas superiores a 650°C y así garantizar una alta velocidad de reacción y un frente nítido de reducción. El níquel es un material térmicamente estable, con una temperatura de fusión alta (1453 °C), lo que permite operar con él a muy altas temperaturas sin que se aprecien pérdidas de actividad del sólido o aglomeración. Se asume en este ejemplo una temperatura del lecho de sólidos oxidados a T1 (ver Figura 1 ) deThe compressor (102) supplies the inlet stream (13) of the fuel gas at 20 bar and 150 ° C (T3 in Figure 1). The recirculation of part of the reactor outlet stream (101) allows to decrease the concentration of CH 4 in the inlet stream (13) of the fuel gas and increase the mass flow of gas through the bed. In this way, the velocities of the reaction fronts and the gas / solid heat exchange are approximated. The gas recycle (16) is designed so that the first stage (100) can be started with a part of the bed at low temperature (150 ° C, T4 in Figure 1) and that the arrival of the reaction front at the end of the reactor coincides with the arrival of the T1-T4 exchange front and not before. In this way the quenching of the reaction front is prevented and complete reduction of the bed can be carried out. Since the oxidation of CH 4 with NiO is highly endothermic, it is necessary that the bed of solids contain sufficient amount of sensible heat to sustain the advance of the oxidation front of CH 4 (and reduction of the solid) until the bed is exhausted. The approach between the T1-T4 exchange front and the reduction front increases the temperature jump (difference between T1 and T2) in the reduction front, so that the initial temperature of the hot part of the bed (T1) has to be high enough so that the reduction front remains at temperatures above 650 ° C at all times and thus guarantee a high reaction speed and a clear reduction front. Nickel is a thermally stable material with a high melting temperature (1453 ° C), which makes it possible to operate with it at very high temperatures without any loss of solid activity or agglomeration. This assumes a bed temperature of oxidized solids at T1 (see Figure 1) of
1200°C. 1200 ° C.
En este ejemplo, la recirculación del 52% del gas producto del reactor (101 ), reciclo de gas (16), permite llevar a cabo la reducción completa del NiO partiendo de un lecho con un 45% del mismo a 1200°C (T1 en Figura 1 ) y un 55% a 150°C (T4 en Figura 1 ). La corriente de entrada (13) del gas combustible, alimentada al reactor (101 ) a 150°C (T3) y 20 bar, contiene 2.72 kmol/s con un contenido en volumen de: 23% de CH4, 26% de CO2 y 51 % de H20. Para las condiciones de operación de este ejemplo, el salto de temperatura resultante de la reducción de NiO con CH4 es de 550°C, por lo que la temperatura T2 es de 650°C. Una vez completada la reducción del óxido de níquel con el gas combustible, el 55% del lecho queda frío a la temperatura T3 del gas de entrada (150°C), y el resto queda a una temperatura T2 de 650°C (T1 -550°C). In this example, the recirculation of 52% of the product gas from the reactor (101), gas recycle (16), allows to carry out the complete reduction of the NiO starting from a bed with 45% of it at 1200 ° C (T1). in Figure 1) and 55% at 150 ° C (T4 in Figure 1). The inlet stream (13) of the fuel gas, fed to the reactor (101) at 150 ° C (T3) and 20 bar, contains 2.72 kmol / s with a volume content of: 23% CH 4 , 26% CO2 and 51% of H 2 0. For the operating conditions of this example, the temperature jump resulting from the reduction of NiO with CH 4 is 550 ° C, so that the temperature T 2 is 650 ° C. Once the reduction of the nickel oxide with the fuel gas has been completed, 55% of the bed remains cold at the temperature T3 of the inlet gas (150 ° C), and the rest remains at a temperature T2 of 650 ° C (T1 - 550 ° C).
En la Figura 3 se representa el diagrama de flujo del procedimiento de la invención cuando se emplea NiO/Ni como transportador de oxígeno. Como se explicará posteriormente, del total de reactores que constituyen dicho procedimiento, únicamente un primer reactor (1 ) opera como pnmera etapa (100). Durante la duración de la misma, una válvula (615) a la entrada del primer reactor (1 ) permanece abierta, mientras que otra válvula (616) a la entrada del primer reactor (1 ) está cerrada, lo que permite alimentar de forma continua el metano requerido para la pnmera etapa (100), evitando la entrada de aire. Aguas abajo del primer reactor (1 ), se encuentran dispuestas otras válvulas (617, 623, 624, 625) que permanecen cerradas, mientras que otra válvula (618) permanece abierta, así como otras válvulas (621 , 626) que regulan la salida de vapor y CO2 del sistema y el reciclo, respectivamente. En la segunda etapa (200) un compresor (202) alimenta un flujo de 1 .86 kmol/s de aire (20) por el punto de salida de la primera etapa (100), donde hay mayor temperatura (650° C, T2 en Figura 1 ), lo que permite conseguir desde un primer momento un frente de oxidación nítido donde se convierte completamente el oxígeno alimentado y se produce NiO. La entalpia de oxidación de Ni es de ΔΗ—452 kJ/mol O2, la composición del aire en los cálculos de este ejemplo se considera 21 % de O2 y 79 % de N2 (composición en volumen), el peso molecular del aire es 29 g/mol y el peso molecular medio inicial de los sólidos en el reactor (201 ) es 73 g/mol. La capacidad calorífica del gas se mantiene en torno a 1 .13 kJ/kg K y la de los sólidos es inicialmente 0.91 kJ/kg K y una vez finalizada la segunda etapa (200) es 0.98 kJ/kg K. Debido a la alta exotermicidad de la oxidación de Ni con aire, la temperatura en el frente de reacción alcanzaría rápidamente valores muy superiores a 1200 °C, lo que causaría la pérdida irreversible de actividad del material de níquel. Con el objetivo de regular la temperatura máxima en el frente de oxidación y no sobrepasar el valor límite de 1200 °C fijado en este ejemplo (T5 en Figura 1 ), se recircula el 80% del gas producto del reactor (201 ), que es una corriente de recirculación de nitrógeno frío (28) (5.80 kmol/s), que se mezcla con el aire a presión (22), alcanzando la corriente mezcla de aire y de nitrógeno recicladoIn Figure 3 the flow diagram of the process of the invention is represented when NiO / Ni is used as an oxygen carrier. As will be explained later, of the total of reactors constituting said procedure, only a first reactor (1) operates as a first stage (100). During the duration of the same, a valve (615) at the entrance of the first reactor (1) remains open, while another valve (616) at the entrance of the first reactor (1) is closed, allowing to feed continuously the methane required for the first stage (100), avoiding the entry of air. Downstream of the first reactor (1), other valves (617, 623, 624, 625) remain closed, while another valve (618) remains open, as well as other valves (621, 626) that regulate the outlet of steam and CO2 from the system and recycle, respectively. In the second stage (200) a compressor (202) feeds a flow of 1.86 kmol / s of air (20) through the exit point of the first stage (100), where there is higher temperature (650 ° C, T2 in Figure 1), which allows a clear oxidation front to be achieved from the start where the oxygen fed is completely converted and NiO is produced. The oxidation enthalpy of Ni is ΔΗ-452 kJ / mol O2, the composition of the air in the calculations of this example is considered 21% of O2 and 79% of N 2 (composition by volume), the molecular weight of the air is 29 g / mol and the initial average molecular weight of the solids in the reactor (201) is 73 g / mol. The heat capacity of the gas is maintained at around 1 .13 kJ / kg K and that of the solids is initially 0.91 kJ / kg K and once the second stage (200) is 0.98 kJ / kg K. Due to the high exothermicity of Ni oxidation with air, the temperature on the reaction front would quickly reach values well above 1200 ° C, which would cause the irreversible loss of activity of the nickel material. In order to regulate the maximum temperature on the oxidation front and not to exceed the limit value of 1200 ° C fixed in this example (T5 in Figure 1), 80% of the product gas from the reactor (201) is recirculated, which is a recirculation current of cold nitrogen (28) (5.80 kmol / s), which is mixed with the pressurized air (22), reaching the stream of air and recycled nitrogen
(23) un flujo total de 7.67 kmol/s, con una composición en volumen de: 5% de O2 y 95% de N2. En estas condiciones, debido a la baja concentración de oxígeno en la fase gas y alto flujo másico de gas inerte, el frente de intercambio gas/sólido T5-T2 avanza 3.2 veces más rápido que el de reacción. Por tanto el gas llega al frente de reacción a la temperatura de entrada (T4=150°C) y experimenta un incremento de temperatura de 1050 °C debido a la reacción exotérmica de oxidación. El calor generado se transmite aguas abajo transportado por el gas caliente que abandona el frente de reacción. Por tanto, durante el transcurso de esta etapa a lo largo del reactor (201 ) se mueven de derecha a izquierda dos frentes de intercambio de calor gas-sólido (marcados como transición entre T3 a T2, y entre T2 a T5 en la Figura 1 ) y un frente de reacción (inferíase gris/blanco), que avanza por detrás. Durante la reacción de oxidación del Ni disminuye el número de moles en la fase gaseosa, pero como la concentración de oxígeno es muy baja (5% en volumen), las velocidades de avance de los frentes de intercambio de calor gas/sólido son muy similares. En el caso concreto del presente ejemplo, el frente de intercambio marcado como transición T3-T2 avanza 1 .05 veces más rápido que el frente marcado como transición T2-T5. La corriente de salida (24) del reactor (201 ), corresponde a un flujo de 7.27 kmol/s, del cual un 57% (en volumen) lo hace a una temperatura de 150 °C (T3), que corresponde al tiempo en el que el primer frente de intercambio (T3 a T2) aún no ha alcanzado la salida, mientras que el 43% (en volumen) restante lo hace a 650°C (T2), correspondiente al tiempo en el que el segundo frente de intercambio (T2 a T5) aún está en el interior del reactor (201 ). Como la corriente de recirculación de nitrógeno frío (28) ha de tener una temperatura de 150 °C, el exceso de calor sensible en la corriente de salida(23) a total flow of 7.67 kmol / s, with a composition by volume of 5% O2 and 95% N2. Under these conditions, due to the low concentration of oxygen in the gas phase and high mass flow of inert gas, the gas / solid exchange front T5-T2 advances 3.2 times faster than the reaction one. Therefore the gas reaches the reaction front at the inlet temperature (T4 = 150 ° C) and experiences a temperature increase of 1050 ° C due to the exothermic oxidation reaction. The heat generated is transmitted downstream transported by the hot gas leaving the reaction front. Therefore, during the course of this step along the reactor (201) two fronts of gas-solid heat exchange (marked as transition between T3 to T2, and between T2 to T5 in Figure 1) are moved from right to left. ) and a reaction front (inferred gray / white), which advances from behind. During the Ni oxidation reaction the number of moles in the gas phase decreases, but since the concentration of oxygen is very low (5% by volume), the advance speeds of the gas / solid heat exchange fronts are very similar . In the specific case of the present example, the exchange front marked as transition T3-T2 advances 1 .05 times faster than the front marked as transition T2-T5. The output stream (24) of the reactor (201) corresponds to a flow of 7.27 kmol / s, of which 57% (by volume) does so at a temperature of 150 ° C (T3), corresponding to the time in that the first exchange front (T3 to T2) has not yet reached the exit, while the remaining 43% (in volume) does so at 650 ° C (T2), corresponding to the time in which the second exchange front (T2 to T5) is still inside the reactor (201). As the recirculation current of cold nitrogen (28) has to have a temperature of 150 ° C, the excess of sensible heat in the output current
(24) del reactor se extrae en un intercambiador de calor (204). Para compensar la pérdida de carga producida en el reactor (201 ) se introduce una soplante (205) para recomprimir hasta 20 bar la corriente de recirculación de nitrógeno frío (28). Finalmente la corriente de gas no recirculada (27), que corresponde a un flujo de 1 .47 kmol/s de nitrógeno a presión, se alimenta a la entrada de otro reactor operando en ese momento en una tercera etapa (300) de oxidación que se describe a continuación. (24) of the reactor is extracted in a heat exchanger (204). To compensate the pressure drop produced in the reactor (201) a blower (205) is introduced to recompress up to 20 bar the recirculation current of cold nitrogen (28). Finally, the non-recirculated gas stream (27), corresponding to a flow of 1.47 kmol / s of nitrogen under pressure, is fed to the inlet of another reactor operating at that moment in a third stage (300) of oxidation that outlined below.
Del total de reactores que constituyen el procedimiento de la invención (ver Figura 3), un segundo y un tercer reactor (2, 3) operan como dos segundas etapa (200). Durante la duración de las mismas, las válvulas (628) y (639) a la entrada del segundo y tercer reactores (2, 3) permanecen abiertas, mientras que otras válvulas (627, 638) a la entrada del segundo y tercer reactores (2, 3) están cerradas, lo que permite alimentar el aire requerido al segundo y tercer reactor (2, 3), evitando la entrada de metano a los mismos. A la salida de ambos reactores (2, 3), unas válvulas (630, 641 ) permanecen abiertas y otras válvulas (629, 640) están cerradas, ya que en las segundas etapas (200) no se envía gas producto al ciclo combinado. Asimismo, otras válvulas (633) y (644) permanecen cerradas porque durante las segundas etapas (200) no se genera CO2 y vapor de agua. Otra válvula (634) está abierta para enviar el nitrógeno producto del segundo reactor (2) no recirculado a un cuarto reactor (4), que en ese momento opera como tercera etapa (300), mientras que otra válvula (636) permanece cerrada porque no se requiere el envío de nitrógeno no recirculado al tercer reactor (3), puesto que este reactor (3) opera a su vez también como segunda etapa (200). Otras válvulas (635, 645, 646) están cerradas porque no es necesario nitrógeno externo para el segundo y tercer reactores (2, 3), mientras que otras válvulas (637, 648) permanecen abiertas para hacer pasar los reciclos de N2 tomados a la salida del segundo y tercer reactores (2, 3), respectivamente. Otra válvula (647) está abierta para enviar al cuarto reactor (4), que opera como tercera etapa (300), el nitrógeno producido en el tercer reactor (3) y no recirculado. Of the total of reactors constituting the process of the invention (see Figure 3), a second and a third reactor (2, 3) operate as two second stages (200). During the duration of the same, the valves (628) and (639) at the entrance of the second and third reactors (2, 3) remain open, while other valves (627, 638) at the entrance of the second and third reactors ( 2, 3) are closed, which allows feeding the required air to the second and third reactor (2, 3), preventing the entry of methane to them. At the output of both reactors (2, 3), valves (630, 641) remain open and other valves (629, 640) are closed, since in the second stages (200) no product gas is sent to the combined cycle. Likewise, other valves (633) and (644) remain closed because during the second stages (200) no CO2 and water vapor are generated. Another valve (634) is open to send the nitrogen product from the second reactor (2) not recirculated to a fourth reactor (4), which at that time operates as a third stage (300), while another valve (636) remains closed because it is not required to send nitrogen not recirculated to the third reactor (3), since this reactor (3) also operates as a second stage (200). Other valves (635, 645, 646) are closed because no external nitrogen is needed for the second and third reactors (2, 3), while other valves (637, 648) remain open to pass the recycled N 2 taken to the output of the second and third reactors (2, 3), respectively. Another valve (647) is open to send to the fourth reactor (4), which operates as a third stage (300), the nitrogen produced in the third reactor (3) and not recirculated.
En la tercera etapa (300) se lleva a cabo la oxidación adicional de una parte de los sólidos reducidos en la primera etapa (100) con aire y con N2 reciclado, donde el nitrógeno producido en el reactor (301 ), sale a alta presión y a la máxima temperatura de oxidación de 1200 °C (T5 en Figura 1 ) y se alimenta a una turbina de gas (303) de un ciclo combinado donde se expande y enfría produciendo potencia. Para ello, se alimenta un flujo de 2.98 kmol/s de aire del compresor (202). Puesto que la concentración de oxígeno a la entrada del reactor (300), , ha de ser del 5% para no superar 1200 °C en el frente de oxidación (T5 en Figura 1 ), parte de los gases de salida del recuperador de calor (304) del ciclo combinado, se recirculan (61 ) y se recomprimen hasta 20 bar en el compresor (307) y adecúan su temperatura hasta 150 °C en el intercambiador de calor (308) antes de ser mezclados con la corriente de aire comprimido (32). El flujo total de entrada en la tercera etapa (300) es de 12.26 kmol/s y el de la corriente de nitrógeno producido (34) de 1 1.64 kmol/s. Con el fin de minimizar la corriente de reciclo de gas (61 ), se realimentan también a la entrada del reactor (301 ) las corrientes de nitrógeno frió a presión excedentes del resto de las etapas que conforman el presente procedimiento (27, 53). En este ejemplo, la corriente de gas excedente (27) proveniente de la segunda etapa (200) supone un flujo de 1 .47 kmol/s, mientras que la corriente de gas excedente (53) proveniente de la quinta etapa (500) es de 0.87 kmol/s. En este ejemplo, un sistema de válvulas (305, 306) recogido en el estado del arte permite regular a la salida del ciclo combinado la corriente de reciclo de gas (61 ) para mantener en todo momento en la mezcla de aire y de nitrógeno reciclado (33) un flujo constante de 12.26 kmol/s con un 5% de O2. In the third stage (300) the additional oxidation of a part of the solids reduced in the first stage (100) is carried out with air and with recycled N 2 , where the nitrogen produced in the reactor (301), goes out to high pressure and maximum oxidation temperature of 1200 ° C (T5 in Figure 1) and is fed to a gas turbine (303) of a combined cycle where it expands and cools producing power. For this, a flow of 2.98 kmol / s of compressor air (202) is fed. Since the concentration of oxygen at the entrance of the reactor (300),, must be 5% to not exceed 1200 ° C on the oxidation front (T5 in Figure 1), part of the exhaust gases of the heat recovery (304) of the combined cycle, are recirculated (61) and recompressed up to 20 bar in the compressor (307) and adjust its temperature to 150 ° C in the heat exchanger (308) before being mixed with the compressed air stream (32). The total inflow in the third stage (300) is 12.26 kmol / s and that of the produced nitrogen stream (34) of 1 1.64 kmol / s. In order to minimize the gas recycle stream (61), the cold nitrogen streams at excess pressure of the rest of the steps that make up the present process (27, 53) are also fed back to the reactor inlet (301). In this example, the excess gas stream (27) from the second stage (200) assumes a flow of 1.47 kmol / s, while the excess gas stream (53) from the fifth stage (500) is from 0.87 kmol / s. In this example, a system of valves (305, 306) collected in the state of the art allows to regulate at the outlet of the combined cycle the gas recycle stream (61) to maintain the mixture of air and recycled nitrogen at all times. (33) a constant flow of 12.26 kmol / s with 5% O2.
Del total de reactores que constituyen el procedimiento de la invención (ver Figura 3), un cuarto, un quinto y un sexto reactor (4, 5, 6) operan como tercera etapas (300). Durante la duración de las mismas, unas válvulas (650, 660, 672) permanecen abiertas, mientras que otras válvulas (649, 660, 671 ) están cerradas, lo que permite alimentar el aire requerido al cuarto, quinto y sexto reactor (4, 5, 6), evitando la entrada de metano a los mismos. A la salida de dichos reactores, otras válvulas (651 , 661 , 673) permanecen abiertas y otras válvulas (652, 662, 674) están cerradas, ya que en las terceras etapas (300) todo el gas producto es enviado al ciclo combinado. Asimismo, otras válvulasOf the total of reactors constituting the process of the invention (see Figure 3), a fourth, a fifth and a sixth reactor (4, 5, 6) operate as third stages (300). During the duration of the same, some valves (650, 660, 672) remain open, while other valves (649, 660, 671) are closed, which allows to supply the required air to the fourth, fifth and sixth reactor (4, 5, 6), avoiding the entry of methane to them. At the output of said reactors, other valves (651, 661, 673) remain open and other valves (652, 662, 674) are closed, since in the third stages (300) all the product gas is sent to the combined cycle. Likewise, other valves
(655, 665, 677) permanecen cerradas porque durante las terceras etapas (300) no se genera CO2 y vapor de agua. Otras válvulas (657, 669, 680) están abiertas para permitir el paso del N2 recomprimido y realimentado a las terceras etapas (300), tomado de la salida del ciclo combinado. Otras válvulas (658, 670, 681 ) están abiertas para permitir el paso del N2 recirculado, mientras que otras válvulas (656, 666, 667, 668, 678, 679) permanecen cerradas. (655, 665, 677) remain closed because during the third stages (300) CO2 and water vapor are not generated. Other valves (657, 669, 680) are open to allow the passage of the N 2 recompressed and fed back to the third stages (300), taken from the output of the combined cycle. Other valves (658, 670, 681) are open to allow the passage of recirculated N 2 , while other valves (656, 666, 667, 668, 678, 679) remain closed.
Puede resultar interesante, a efectos de maximizar el rendimiento de generación de electricidad en el ciclo combinado, aumentar la temperatura del gas producto (34) de la tercera etapa (300), para adecuarla a las temperaturas típicas de entrada de las turbinas de gas (1450 °C). La entalpia de combustión de CH4 con oxígeno es 800 kJ/mol CH4. En este caso sería necesario añadir al sistema una cantidad adicional de metano a presión (60) de 0.1 1 kmol/s que se quemaría a la entrada de la turbina con un flujo de aire también a presión de 1.07 kmol/s, tomado de la salida del compresor (202), con el contenido de oxígeno estequiométrico para elevar la corriente resultante (35) que alimenta a la turbina (303) a 1450 °C. Para llevar a cabo esta operación, unas válvulas (613, 614), representadas en la Figura 3 y que corresponden a una línea de metano y de aire, respectivamente, permanecen en todo momento abiertas. No se discute en este ejemplo, por evidentes, los impactos de esta adición de gas combustible en las composiciones del reciclo y de los gases inertes que acompañan al oxígeno que entra al reactor (301 ) durante la tercera etapa (300). It may be interesting, in order to maximize the efficiency of electricity generation in the combined cycle, to increase the temperature of the product gas (34) of the third stage (300), to adapt it to the typical inlet temperatures of the gas turbines ( 1450 ° C). The enthalpy of combustion of CH 4 with oxygen is 800 kJ / mol CH 4 . In this case it would be necessary to add to the system an additional quantity of methane under pressure (60) of 0.1 1 kmol / s that would be burned at the entrance of the turbine with an air flow also under pressure of 1.07 kmol / s, taken from the output of the compressor (202), with the stoichiometric oxygen content to raise the resulting current (35) feeding the turbine (303) to 1450 ° C. To carry out this operation, valves (613, 614), represented in Figure 3 and corresponding to a methane and air line, respectively, remain open at all times. The impacts of this addition of fuel gas on the recycle compositions and the inert gases accompanying the oxygen entering the reactor (301) during the third stage (300) are not discussed in this example, as evident.
Es evidente que en la tercera etapa (300) es donde más energía útil se obtiene del sistema, porque es la única etapa donde el nitrógeno caliente a alta presión generado en el reactor (301 ) se expande y enfría en un ciclo combinado. Sin embargo, en este ejemplo, la tercera etapa debe interrumpirse antes de completar la oxidación del lecho y así dejar suficiente calor sensible para reiniciar un nuevo ciclo con la primera etapa (100). En caso contrario, el lecho de sólidos quedaría completamente oxidado y todos los sólidos del lecho a la temperatura de alimentación de la mezcla de aire y de nitrógeno reciclado (33) (150°C), lo que haría imposible reiniciar un nuevo ciclo con la primera etapa (100) endotérmica. It is evident that in the third stage (300) is where more useful energy is obtained from the system, because it is the only stage where the hot high pressure nitrogen generated in the reactor (301) expands and cools in a combined cycle. However, in this example, the third stage must be interrupted before completing the oxidation of the bed and thus leave sufficient sensible heat to restart a new cycle with the first stage (100). Otherwise, the bed of solids would be completely oxidized and all the solids in the bed at the feed temperature of the air mixture and recycled nitrogen (33) (150 ° C), which would make it impossible to restart a new cycle with the first stage (100) endothermic.
Por tanto, un balance de calor para definir los requerimientos de calor en la primera etapa (100), permite calcular el punto de transición entre la tercera etapa (300) y la cuarta etapa (400). En la cuarta etapa (400) de este ejemplo, el reactor (401 ) parte de un estado inicial con el 80% de los sólidos oxidados. Se completa la oxidación del 100% de los sólidos en el reactor (401 ) usando una mezcla de aire (1 .1 1 kmol/s, corriente 40) y nitrógeno recirculado (54) (3.45 kmol/s,), obteniendo como producto una corriente de nitrógeno (44) de 4.32 kmol/s a 1200 °C (T5) y dejando aguas arriba del frente de reacción un lecho completamente oxidado a 150°C (T4). Therefore, a heat balance to define the heat requirements in the first stage (100), allows to calculate the transition point between the third stage (300) and the fourth stage (400). In the fourth stage (400) of this example, the reactor (401) starts from an initial state with 80% of the oxidized solids. The oxidation of 100% of the solids in the reactor (401) is completed using a mixture of air (1.1 kmol / s, stream 40) and recirculated nitrogen (54) (3.45 kmol / s), obtaining as a product a nitrogen stream (44) of 4.32 kmol / s at 1200 ° C (T5) and leaving a completely oxidized bed at 150 ° C (T4) upstream of the reaction front.
Del total de reactores representados en la Figura 3, únicamente un séptimo reactor (7) opera como cuarta etapa (400). Durante la duración de la misma, una válvula (683) permanece abierta, mientras que otra válvula (684) está cerrada, lo que permite alimentar al séptimo reactor (7) aire y no metano. Otra válvula (685) permanece abierta, pero otras válvulas (684, 688) están cerradas porque no se envía N2 al ciclo combinado ni se genera en la cuarta etapa (400) CO2 y vapor de agua. Otra válvula (700) permanece abierta para conducir todo el N2 producido en el séptimo reactor (7) al octavo reactor (8), que opera como quinta etapa (500). Por tanto, otra válvula (689) está cerrada. Otras válvulas (690, 691 ) permanecen abiertas para permitir el paso de parte del N2 obtenido en un octavo reactor (8), que se recircula al séptimo reactor (7) para cumplir el balance de materia a la entrada de dicho reactor. Of the total of reactors represented in Figure 3, only a seventh reactor (7) operates as a fourth stage (400). During the duration of the same, one valve (683) remains open, while another valve (684) is closed, which allows to feed the seventh reactor (7) air and not methane. Another valve (685) remains open, but other valves (684, 688) are closed because N 2 is not sent to the combined cycle nor is generated in the fourth stage (400) CO2 and water vapor. Another valve (700) remains open to drive all the N 2 produced in the seventh reactor (7) to the eighth reactor (8), which operates as a fifth stage (500). Therefore, another valve (689) is closed. Other valves (690, 691) remain open to allow the passage of part of the N 2 obtained in an eighth reactor (8), which is recirculated to the seventh reactor (7) to meet the balance of matter at the entrance of said reactor.
Una vez oxidado completamente el lecho en la cuarta etapa (400), que ha dejado los sólidos a una temperatura T4 (150° C en este ejemplo), el reactor inicia una quinta y última etapa (500) destinada a calentar con el nitrógeno proveniente de la cuarta etapa (400) una parte de los sólidos oxidados del reactor (501 ) hasta la temperatura de 1200 °C (T1 en Figura 1 ). Por tanto, el intercambiador de calor (502) no es necesario para este ejemplo, siendo (44) y (50) la misma corriente de gas. En este ejemplo particular, la temperatura T5 se ha hecho coincidir con la temperatura T1 fijada en la primera etapa (100). Por tanto, la corriente (50)) se introduce en el reactor oxidado (501 ) y su calor sensible permite calentar hasta 1200 °C el 45 % del lecho fijo, fracción requerida para llevar a cabo una nueva primera etapa de reducción (100).  Once the bed has been completely oxidized in the fourth stage (400), which has left the solids at a temperature T4 (150 ° C in this example), the reactor starts a fifth and final stage (500) destined to heat with the nitrogen coming from from the fourth stage (400) a part of the oxidized solids of the reactor (501) up to the temperature of 1200 ° C (T1 in Figure 1). Therefore, the heat exchanger (502) is not necessary for this example, with (44) and (50) being the same gas stream. In this particular example, the temperature T5 has been matched to the temperature T1 set in the first stage (100). Therefore, the stream (50) is introduced into the oxidized reactor (501) and its sensible heat allows 45% of the fixed bed to be heated up to 1200 ° C, a fraction required to carry out a new first reduction stage (100) .
Del total de reactores representados en la Figura 3, únicamente el octavo reactor (8) opera como quinta etapa (500). Al ser una etapa dedicada a la transmisión de calor de un gas caliente a un lecho de sólidos, el aporte de metano y aire no es necesario y por tanto, unas válvulas (692, 693) están cerradas. Una válvula (695) permanece abierta, pero las otras válvulas (694, 698) están cerradas porque no se envía N2 al ciclo combinado ni se genera CO2 y vapor de agua en la quinta etapa (500). Otra válvula (699) permanece abierta para permitir el paso del N2 que sale del octavo reactor (8) y que es enviado a otros reactores que están operando en la tercera o cuarta etapa (300, 400). Otra válvula (701 ) está cerrada y otra válvula (702) abierta, lo que permite alimentar el N2 obtenido en el séptimo reactor (7) al octavo reactor (8). Para sincronizar las cinco etapas anteriores, posibilitando un cambio entre las mismas a un mismo tiempo es necesario utilizar un cierto número de reactores idénticos que operan en las distintas fases o etapas del proceso. Cada uno de estos reactores opera en cada etapa un cierto tiempo antes de pasar a la siguiente. En este ejemplo, se ha elegido un tiempo de referencia 5 minutos para llevar a cabo la primera etapa (100) de reducción. La elección de tiempos menores de ciclo lleva a menores volúmenes de reactor, pero también a mayor frecuencia de cambio de cada etapa y a la necesidad de materiales de mayor reactividad para garantizar la existencia de frentes nítidos de reacción. Considerando una alimentación al proceso de 0.63 kmol/s de CH4 puro y dado el tiempo de ciclo establecido, el balance de materia indica que se requiere para la primera etapa (100) una masa de sólidos (N¡O+AI2O3) aproximada de 100000 kg. Suponiendo que estos sólidos están en forma de pellets con una densidad media de 1700 kg/m3 y un diámetro equivalente de 0.01 m, y considerando una porosidad de lecho de 0.5, se obtiene un volumen de lecho de sólidos de 58 m3 En este ejemplo, por similitud con los reactores de reformado comerciales, se adopta para cada reactor una longitud de 5 m, lo que implica un área transversal de reactor de aproximadamente 10 m2 Para este ejemplo, esta área es compatible con la existencia de un único reactor de reducción. Además, puesto que durante la primera etapa (100), a la entrada del reactor (101 ) se alimentan 2.717 kmol/s (23% en volumen de CH4), se considera que el gas circula a una velocidad superficial máxima de 1 .4 m/s, dando lugar a una caída de presión de solo 0.32 bar a la salida del reactor. . Fijadas las dimensiones del reactor de la primera etapa (100), falta por definir el número adicional de reactores de las mismas dimensiones que operan en las etapas restantes. En la segunda etapa (200), al reactor (201 ) se alimentan 7.66 kmol/s (5% en volumen de O2) también durante 5 minutos. Para limitar la caída de presión de este gas a menos de 1 bar durante esta etapa, se utilizan en este ejemplo el segundo y tercer reactores (2, 3) operando simultáneamente y en condiciones idénticas como reactor (201 ) en la segunda etapa (200). En estas condiciones el gas pasa a una velocidad superficial máxima de 2.3 m/s, causando una pérdida de carga de 0.85 bar. Del mismo modo, a la tercera etapa (300) se alimentan 12.26 kmol/s (5% en volumen de O2) durante 5 minutos hasta completar la misma. Para limitar la caída de presión del gas a menos de 1 bar durante esta etapa se consideran tres reactores (4, 5, 6) que operan simultáneamente en condiciones idénticas como reactor (301 ). En estas condiciones el gas circula a una velocidad superficial máxima de 2.4 m/s, causando una pérdida de carga a la salida de cada reactor de 0.95 bar. Para completar la oxidación de los sólidos en la cuarta etapa (400) se alimentan 4.55 kmol/s (5% en volumen de O2) durante 5 minutos. Un único reactor, en este caso el séptimo (7) es suficiente en las condiciones de este ejemplo. El gas circula a una velocidad superficial máxima de 2.6 m/s, causando una pérdida de carga de 1 .10 bar. Finalmente, los 4.32 kmol/s que salen de la cuarta etapa (400) se alimentan a un único reactor, en este caso el octavo reactor (8), que opera como reactor (501 ) en la quinta etapa (500). Tras 5 minutos se consigue calentar el 45% de los sólidos del lecho a temperatura máxima (1200 °C), con lo que se alcanzan las condiciones requeridas para iniciar un nuevo ciclo en la primera etapa (100). En la quinta etapa (500) el gas circula a una velocidad superficial máxima de 2.5 m/s, provocando una pérdida de carga a la salida deOf the total of reactors represented in Figure 3, only the eighth reactor (8) operates as a fifth stage (500). Being a stage dedicated to the transmission of heat from a hot gas to a bed of solids, the contribution of methane and air is not necessary and therefore, valves (692, 693) are closed. A valve (695) remains open, but the other valves (694, 698) are closed because N 2 is not sent to the combined cycle nor is CO2 and water vapor generated in the fifth stage (500). Another valve (699) remains open to allow passage of the N 2 leaving the eighth reactor (8) and being sent to other reactors that are operating in the third or fourth stage (300, 400). Another valve (701) is closed and another valve (702) open, which allows to feed the N 2 obtained in the seventh reactor (7) to the eighth reactor (8). To synchronize the five previous stages, allowing a change between them at the same time, it is necessary to use a certain number of identical reactors that operate in the different phases or stages of the process. Each of these reactors operates at each stage a certain time before moving on to the next. In this example, a reference time of 5 minutes has been chosen to carry out the first reduction step (100). The choice of lower cycle times leads to lower reactor volumes, but also to a greater frequency of change of each stage and to the need for more reactive materials to guarantee the existence of clear reaction fronts. Considering a feed to the process of 0.63 kmol / s of pure CH 4 and given the established cycle time, the material balance indicates that a mass of solids (N¡O + AI 2 O3) is required for the first stage (100). Approximately 100000 kg. Assuming that these solids are in the form of pellets with an average density of 1700 kg / m 3 and an equivalent diameter of 0.01 m, and considering a bed porosity of 0.5, a bed volume of solids of 58 m 3 is obtained. example, by similarity with the commercial reforming reactors, a length of 5 m is adopted for each reactor, which implies a reactor cross-sectional area of approximately 10 m 2. For this example, this area is compatible with the existence of a single reactor of reduction. In addition, since during the first stage (100), at the entrance of the reactor (101) 2,717 kmol / s are fed (23% by volume of CH 4 ), the gas is considered to circulate at a maximum surface velocity of 1. 4 m / s, resulting in a pressure drop of only 0.32 bar at the reactor outlet. . Fixed the dimensions of the reactor of the first stage (100), it remains to define the additional number of reactors of the same dimensions that operate in the remaining stages. In the second stage (200), 7.66 kmol / s (5% by volume of O2) are fed to the reactor (201) also for 5 minutes. To limit the pressure drop of this gas to less than 1 bar during this stage, the second and third reactors (2, 3) are used in this example operating simultaneously and under identical conditions as reactor (201) in the second stage (200 ). Under these conditions, the gas passes at a maximum surface velocity of 2.3 m / s, causing a pressure drop of 0.85 bar. In the same way, to the third stage (300) 12.26 kmol / s are fed (5% in volume of O2) during 5 minutes until completing the same one. To limit the pressure drop of the gas to less than 1 bar during this stage, three reactors (4, 5, 6) which operate simultaneously under identical conditions as reactor (301) are considered. Under these conditions, the gas circulates at a maximum surface velocity of 2.4 m / s, causing a pressure drop at the outlet of each reactor of 0.95 bar. To complete the oxidation of the solids in the fourth stage (400), 4.55 kmol / s (5% by volume of O2) are fed for 5 minutes. A single reactor, in this case the seventh (7) is sufficient under the conditions of this example. The gas circulates at a maximum surface velocity of 2.6 m / s, causing a head loss of 1 .10 bar. Finally, the 4.32 kmol / s leaving the fourth stage (400) are fed to a single reactor, in this case the eighth reactor (8), which operates as a reactor (501) in the fifth stage (500). After 5 minutes, 45% of the solids in the bed are heated to maximum temperature (1200 ° C), thus achieving the conditions required to start a new cycle in the first stage (100). In the fifth stage (500) the gas circulates at a maximum superficial velocity of 2.5 m / s, causing a loss of load at the exit of
1 bar. A la vista de estos resultados, con las suposiciones concretas para este ejemplo, se requiere un número de 8 reactores adiabáticos de 10 m2 de área transversal y 5 m de longitud operando en paralelo (Figura 4): 1 en la primera etapa de reducción (100), 2 en la segunda etapa de oxidación parcial (200), 3 en la tercera etapa de oxidación parcial (300), que producen de forma continua gas caliente a presión para el ciclo combinado, 1 en la cuarta etapa (400) culminando su oxidación y 1 en la quinta etapa (500) acondicionando su temperatura para reiniciar el ciclo en la primera etapa (100). La duración de un ciclo completo es de 40 minutos. Evidentemente, este ejemplo es solo una de las muchos posibles formas de ejecutar el procedimiento de invención aplicado a este sistema de reacción Ni/NiO. 1 bar In view of these results, with the concrete assumptions for this example, a number of 8 adiabatic reactors of 10 m 2 of cross-sectional area and 5 m of length operating in parallel is required (Figure 4): 1 in the first stage of reduction (100), 2 in the second stage of partial oxidation (200), 3 in the third stage of partial oxidation (300), which continuously produce hot gas under pressure for the combined cycle, 1 in the fourth stage (400) finishing its oxidation and 1 in the fifth stage (500) conditioning its temperature to restart the cycle in the first stage (100). The duration of a complete cycle is 40 minutes. Obviously, this example is only one of the many possible ways of executing the inventive method applied to this Ni / NiO reaction system.
Ejemplo 2: Realización preferente del procedimiento de invención utilizando un sólido con baja capacidad de transporte de oxígeno: Fe2Ti05/FeT¡03 (ilmenita). En este ejemplo se realiza el diseño conceptual del procedimiento cíclico representado en la Figura 2, que tiene como objeto la combustión de un gas combustible (CH4 puro en este ejemplo) con un óxido con baja capacidad de transporte de oxígeno (ilmenita en este ejemplo). Example 2: Preferred embodiment of the method of the invention using a solid with low oxygen transport capacity: Fe 2 Ti05 / FeT03 (ilmenite). In this example, the conceptual design of the cyclic process represented in Figure 2 is carried out, which has as its object the combustion of a combustible gas (pure CH 4 in this example) with an oxide with low oxygen transport capacity (ilmenite in this example). ).
El ejemplo ilustrativo se ha planteado para la combustión de 10 kg/s (0.63 kmol/s) de CH4 (10) en una primera etapa (100), llevada a cabo en un reactor adiabático de lecho fijo (101 ) a 20 bar de presión, en el que se encuentra un sólido cuya composición en tanto por ciento en peso es: 60% de Fe2TiOs y 40% de AI2O3. Se ha supuesto para todas las etapas que el gas fluye en flujo de pistón. La entalpia de reducción de Fe2TiOs a FeT¡03 con CH4 es de 106.5 kJ/mol CH4 y la de oxidación de FeT¡03 a Fe2TiOs con oxígeno es de -454.4 kJ/mol O2. La ilmenita es un material térmicamente estable, con una temperatura de fusión alta (1365 °C), lo que permite operar con él a muy altas temperaturas sin que se aprecien pérdidas de actividad del sólido o aglomeración. La composición del gas combustible y del sólido oxidado, la estequiometria de la reacción (1 mol de CH4 reduce 4 moles de Fe2T¡05), la fracción de óxido metálico en el lecho y la diferencia entre los pesos moleculares del gas y del sólido, hacen que el frente de reducción (inferíase zona rayada/zona blanca en Figura 2) avance hacia la derecha 1 .8 veces más rápido que el frente de intercambio gas/sólido (marcado como transición entre T3 y T2 en la Figura 2). El aumento de moles gaseosos en la reacción de reducción de Fe2TiOs con CH4 hace que el frente de intercambio gas/sólido marcado como transición entre T1 y T4 avance 1 .3 veces más rápido que el marcado como transición T3-T2 y 0.7 veces respecto al frente de reducción. El valor de la entalpia de reducción de Fe2T¡05 con metano es moderada (ΔΗ=106.5 kJ/mol CH4) y la capacidad de transporte de oxígeno de la ilmenita es baja, por lo que el descenso de temperatura en el frente de reducción es apenas de 55 °C. Además, el Fe2T¡05 es un material moderadamente reactivo con CH4, que hace que la temperatura inicial de la parte caliente del lecho (T1 en Figura 2) tenga que ser al menos 750 °C para garantizar una alta velocidad de reacción y un frente nítido de reducción. La corriente de entrada (13) del gas combustible se alimenta a 20 bar y 400°C (T3 en Figura 2) tras pasar por el compresor (102) y el intercambiador de calor (103). La recirculación del 67% de la corriente de salida del reactor (101 ) permite aproximar las velocidades de los frentes de reducción e intercambio de calor gas/sólido de forma que se puede llevar a cabo la reducción completa del Fe2TiOs partiendo de un lecho con un 30% del mismo a 755 °C (T1 en Figura 2) y un 70% a 400°C (T4 en Figura 2). La corriente de entrada (13) del gas combustible contiene 4.46 kmol/s con un contenido en volumen de: 14% de CH , 29% de C02 y 57% de H20. Para las condiciones de operación de este ejemplo, el salto de temperatura resultante de la reducción de Fe2T¡Os con CH4 es de 55°C, por lo que la temperatura T2 es de 700°C. Una vez completada la reducción del óxido con el gas combustible, el 51 % del lecho queda frío a la temperatura T3 del gas de entrada (400°C), y el resto queda a una temperatura T2 de 700°C (T1 -55°C). En la segunda etapa (200), un compresor (202) alimenta un flujo de aire de 5.95 kmol/s (21 ) a 20 bar y 400 °C (T4 en Figura 2) por el punto de salida de la primera etapa (100), que está a 700 °C (T2), lo que permite conseguir desde un primer momento un frente de oxidación nítido de FeT¡03 a Fe2T¡Os, donde todo el oxígeno alimentado alcanza conversión completa. La moderada exotermicidad de la reacción de oxidación de ilmenita con aire hace que el incremento máximo de temperatura en el frente de reacción con un sólido con la composición indicada en este ejemplo 2 (60% de fase activa) sea próximo a 400 °C. La recirculación (28) de alrededor del 25% de la corriente de salida del reactor (201 ), permite acelerar el avance del frente de intercambio T5-T4 y acercarlo al frente de oxidación, que va por delante moviéndose 5.3 veces más rápido (ver Figura 2). Al haber menos sólidos entre ambos frentes para disipar el calor generado en la reacción de oxidación, se produce un mayor incremento de temperatura en el frente de reacción (T5-T2), concretamente de 500°C, que hace que para las condiciones iniciales de la segunda etapa (200) se llegue a una temperatura máxima (T5) de 1200 °C (valor límite supuesto en este ejemplo para garantizar que la ilmenita no sufra pérdida de actividad o fenómenos de aglomeración). La corriente mezcla de aire y de nitrógeno reciclado (23) de entrada al reactor (201 ) resultante es de 7.39 kmol/s, con una composición en volumen de: 17% de O2 y 83% de N2. Durante el transcurso de la segunda etapa (200), a lo largo del reactor (201 ) se mueve por delante del frente de oxidación un frente de intercambio T3-T2 y por detrás otro frente de intercambio T5-T4, indicado anteriormente. Durante la reacción de oxidación del FeT¡03 disminuye el número de moles en la fase gaseosa, al consumirse el O2 alimentado, por lo que el frente de intercambio T3-T2 avanza más lento, concretamente para las condiciones de este ejemplo 0.83 veces la velocidad del frente de intercambio T5-T4. La corriente de salida (24) del reactor (201 ) corresponde a un flujo de 6.14 kmol/s, de los que un 12% (en volumen) lo hacen a una temperatura de 400°C (T3 en Figura 2), que corresponden al tiempo en el que el primer frente de intercambio T3-T2 aún no ha alcanzado la salida, mientras que el 88% restante lo hace a 700°C (T2), correspondiente al tiempo en el frente de oxidación aún está en el interior del reactor (201 ). El exceso de calor sensible se extrae en un intercambiador (204) y la corriente resultante (25) se introduce en una soplante (205) para compensar la pérdida de carga en el reactor (201 ). La corriente de gas no recirculada (27), que corresponde a un flujo de 4.71 kmol/s de nitrógeno a presión, se alimenta a la entrada de otro reactor que opera en ese momento en otra tercera etapa (300). La segunda etapa (200) finaliza cuando el frente de oxidación llega al final del reactor (201 ), lo que implica que toda la ilmenita presente se ha oxidado a Fe2T¡05. En ese momento el frente de intercambio T5-T4 aún está en el interior del reactor (201 ), lo que hace que el 53% del lecho quede a 1200 °CThe illustrative example has been proposed for the combustion of 10 kg / s (0.63 kmol / s) of CH 4 (10) in a first stage (100), carried out in a fixed bed adiabatic reactor (101) at 20 bar of pressure, in which a solid is found whose composition as a percentage by weight is: 60% Fe 2 TiOs and 40% AI 2 O 3. It has been assumed for all stages that the gas flows in piston flow. The reduction enthalpy of Fe 2 TiOs to FeT03 with CH 4 is 106.5 kJ / mol CH 4 and the oxidation of FeT03 to Fe 2 TiOs with oxygen is -454.4 kJ / mol O2. Ilmenite is a thermally stable material with a high melting temperature (1365 ° C), which allows it to be operated at very high temperatures without any loss of solid activity or agglomeration. The composition of the fuel gas and the oxidized solid, the stoichiometry of the reaction (1 mole of CH 4 reduces 4 moles of Fe 2 T05), the fraction of metal oxide in the bed and the difference between the molecular weights of the gas and of the solid, make the reduction front (inferred striped area / white zone in Figure 2) advance to the right 1 .8 times faster than the gas / solid exchange front (marked as transition between T3 and T2 in Figure 2) ). The increase of gaseous moles in the reduction reaction of Fe 2 TiOs with CH 4 makes the gas / solid exchange front marked as transition between T1 and T4 advance 1.3 times faster than the marked as transition T3-T2 and 0.7 times with respect to the reduction front. The value of the reduction enthalpy of Fe 2 T05 with methane is moderate (ΔΗ = 106.5 kJ / mol CH 4 ) and the oxygen transport capacity of the ilmenite is low, so that the decrease in temperature in the front of reduction is just 55 ° C. In addition, the Fe 2 T05 is a material moderately reactive with CH 4 , which makes the initial temperature of the hot part of the bed (T1 in Figure 2) have to be at least 750 ° C to guarantee a high reaction rate and a clear reduction front. The inlet stream (13) of the fuel gas is fed at 20 bar and 400 ° C (T3 in Figure 2) after passing through the compressor (102) and the heat exchanger (103). The recirculation of 67% of the output stream of the reactor (101) allows to approximate the speeds of the fronts of reduction and heat exchange gas / solid so that the complete reduction of the Fe 2 TiOs can be carried out starting from a bed with 30% of it at 755 ° C (T1 in Figure 2) and 70% at 400 ° C (T4 in Figure 2). The input stream (13) of the fuel gas contains 4.46 kmol / s with a volume content of: 14% CH, 29% C0 2 and 57% H 2 0. For the operating conditions of this example, the Temperature jump resulting from the reduction of Fe 2 T¡Os with CH 4 is 55 ° C, so the temperature T2 is 700 ° C. Once the reduction of the oxide with the fuel gas has been completed, 51% of the bed remains cold at the temperature T3 of the inlet gas (400 ° C), and the rest remains at a temperature T2 of 700 ° C (T1 -55 ° C). In the second stage (200), a compressor (202) feeds an air flow of 5.95 kmol / s (21) at 20 bar and 400 ° C (T4 in Figure 2) through the exit point of the first stage (100). ), which is 700 ° C (T2), allowing achieved from the outset a front crisp oxidation FeT¡0 3 Fe2 T¡Os where all oxygen fed reaches complete conversion. The moderate exothermicity of the oxidation reaction of ilmenite with air causes the maximum temperature increase in the reaction front with a solid with the composition indicated in this example 2 (60% active phase) to be close to 400 ° C. The recirculation (28) of around 25% of the output stream of the reactor (201), makes it possible to accelerate the advance of the exchange front T5-T4 and bring it closer to the oxidation front, which is ahead moving 5.3 times more fast (see Figure 2). As there are less solids between both fronts to dissipate the heat generated in the oxidation reaction, there is a greater temperature increase in the reaction front (T5-T2), specifically 500 ° C, which means that for the initial conditions of the second stage (200) is reached a maximum temperature (T5) of 1200 ° C (limit value assumed in this example to ensure that the ilmenite does not suffer loss of activity or agglomeration phenomena). The current air mixture recycle nitrogen (23) reactor inlet (201) resulting is 7.39 kmol / s, with a composition by volume of 17% O2 and 83% N2. During the course of the second stage (200), a swap front T3-T2 moves ahead of the oxidation front (201) and another swap front T5-T4, indicated above, moves behind it. During the oxidation reaction of FeT03, the number of moles in the gas phase decreases when the O2 fed is consumed, so that the T3-T2 exchange front advances slower, specifically for the conditions of this example 0.83 times the speed of the T5-T4 exchange front. The output current (24) of the reactor (201) corresponds to a flow of 6.14 kmol / s, of which 12% (by volume) do so at a temperature of 400 ° C (T3 in Figure 2), which correspond at the time in which the first exchange front T3-T2 has not yet reached the exit, while the remaining 88% does so at 700 ° C (T2), corresponding to the time on the oxidation front still inside the reactor (201). The excess sensible heat is extracted in an exchanger (204) and the resulting current (25) is introduced into a blower (205) to compensate for the pressure drop in the reactor (201). The non-recirculated gas stream (27), corresponding to a flow of 4.71 kmol / s of nitrogen under pressure, is fed to the inlet of another reactor operating at that time in another third stage (300). The second stage (200) ends when the oxidation front reaches the end of the reactor (201), which implies that all the ilmenite present has been oxidized to Fe 2 T05. At that moment the exchange front T5-T4 is still inside the reactor (201), which makes 53% of the bed remain at 1200 ° C
(temperatura máxima de oxidación, T5) y el 47% restante a 400 °C (temperatura del gas de entrada, T4). En la tercera etapa (300) se introduce nitrógeno a 20 bar de presión y a 400 °C (T4) para extraer gran parte del calor sensible retenido en los sólidos oxidados en la segunda etapa (200) y obtener a la salida un flujo de nitrógeno (34) a presión y a la máxima temperatura de oxidación de 1200 °C (T5 en Figura 2), que se alimenta a una turbina de gas (303) de un ciclo combinado donde se expande y enfría produciendo potencia. Para ello, se alimenta un flujo de 10.05 kmol/s de nitrógeno (33), que es una mezcla de 4.70 kmol/s de la corriente de gas no recirculada (27) en la segunda etapa (200) y de 5.35 kmol/s (corriente 63), que es una parte de los gases de salida del recuperador de calor (304) del ciclo combinado, que han sido recirculados y recomprimidos en un compresor (307) hasta 20 bar. Al igual que en el ejemplo 1 , puede resultar interesante, a efectos de maximizar el rendimiento de generación de electricidad en el ciclo combinado, aumentar la temperatura de la corriente de gas (34) de salida de la tercera etapa (300), para adecuarla a las temperaturas típicas de entrada de las turbinas de gas (1450 °C). En este caso sería necesario añadir al sistema un flujo de metano (60) a presión de 0.1 kmol/s que se quemaría a la entrada de la turbina con un flujo de aire también a presión de 0.92 kmol/s (tomado de la salida del compresor (202), con el contenido de oxígeno estequiométrico para elevar la corriente de flujo de nitrógeno (34) a 1450 °C. (maximum oxidation temperature, T5) and the remaining 47% at 400 ° C (inlet gas temperature, T4). In the third stage (300), nitrogen is introduced at 20 bar pressure and at 400 ° C (T4) to extract a large part of the sensible heat retained in the oxidized solids in the second stage (200) and obtain a nitrogen flow at the outlet (34) under pressure and at the maximum oxidation temperature of 1200 ° C (T5 in Figure 2), which is fed to a gas turbine (303) of a combined cycle where it expands and cools producing power. For this, a flow of 10.05 kmol / s of nitrogen (33) is fed, which is a mixture of 4.70 kmol / s of the non recirculated gas stream (27) in the second stage (200) and of 5.35 kmol / s (stream 63), which is a part of the exhaust gases of the heat recovery unit (304) of the combined cycle, which have been recirculated and recompressed in a compressor (307) up to 20 bar. As in example 1, it may be interesting, in order to maximize the electricity generation efficiency in the combined cycle, to increase the temperature of the gas stream (34) from the third stage (300), to adapt it at the typical inlet temperatures of gas turbines (1450 ° C). In this case it would be necessary to add to the system a flow of methane (60) at pressure of 0.1 kmol / s that would burn at the entrance of the turbine with a flow of air also under pressure of 0.92 kmol / s (taken from the outlet of the compressor (202), with the stoichiometric oxygen content to raise the nitrogen flow stream (34) to 1450 ° C.
Sin embargo, no todo el calor sensible retenido en los sólidos oxidados se puede emplear para la generación de potencia en el ciclo combinado, ya que parte de este calor sensible es necesario para reiniciar un nuevo ciclo con la primera etapa (100). Un balance de calor permite calcular el punto de transición entre la tercera etapa (300) y la cuarta etapa (400). En la cuarta etapa (400) el lecho parte con un 30% del mismo a 1200 °C y el 70% restante a 400° C. Se alimentan al reactor (401 ) 13.00 kmol/s de nitrógeno (43) a 20 bar y 400 °C, reciclados de la quinta etapa (500) y recomprimidos en la soplante (503), obteniéndose a la salida ese mismo flujo (44) a 1200 °C. However, not all the sensible heat retained in the oxidized solids can be used for power generation in the combined cycle, since part of this sensible heat is necessary to restart a new cycle with the first stage (100). A heat balance allows to calculate the transition point between the third stage (300) and the fourth stage (400). In the fourth stage (400) the bed starts with 30% of it at 1200 ° C and the remaining 70% at 400 ° C. The reactor (401) is fed with 13.00 kmol / s of nitrogen (43) at 20 bar and 400 ° C, recycled from the fifth stage (500) and recompressed in the blower (503), obtaining at the exit that same flow (44) at 1200 ° C.
Como la temperatura requerida para arrancar por el lado caliente del reactor (101 ) de la primera etapa (100) es 755 °C (T1 en Figura 2), el exceso de calor sensible de la corriente de salida (44) de la cuarta etapa (400) se extrae en el intercambiador de calor (502) previamente a ser alimentada al reactor (501 ) de la quinta etapa (500). La quinta etapa (500) finaliza cuando el 30% de los sólidos que conforman el lecho se han calentado hasta 755 °C, requisito indispensable para comenzar una nueva primera etapa (100) de reducción. As the temperature required to start from the hot side of the reactor (101) of the first stage (100) is 755 ° C (T1 in Figure 2), the sensible heat excess of the output stream (44) of the fourth stage (400) is extracted in the heat exchanger (502) prior to being fed to the reactor (501) of the fifth stage (500). The fifth stage (500) ends when 30% of the solids that make up the bed have been heated up to 755 ° C, a prerequisite for starting a new first stage (100) of reduction.
Para sincronizar las cinco etapas anteriores, posibilitando un cambio entre las mismas a un mismo tiempo es necesario utilizar un cierto número de reactores idénticos que operan en las distintas etapas del proceso. En este ejemplo, se ha fijado un tiempo de 5 minutos para llevar a cabo la primera etapa (100) de reducción. Considerando una alimentación al proceso de 0.63 kmol/s de CH4 puro y dado el tiempo de ciclo establecido, el balance de materia indica que se requiere para la primera etapa (100) una masa de sólidos (Fe2T¡05+AI203) aproximada de 460000 kg. Suponiendo que estos sólidos están en forma de pellets con una densidad media de 1800 kg/m3 y un diámetro equivalente de 0.01 m, y considerando una porosidad de lecho de 0.5, se obtiene un volumen de lecho de sólidos de 250 m3 En este ejemplo, por similitud con los reactores de reformado comerciales, se adopta para cada reactor una longitud de 5 m, lo que implica un área transversal de reactor de aproximadamente 50 m2 Para este ejemplo, se considera que esta área es compatible con la existencia de dos reactores de reducción de 25 m2 cada uno. Puesto que durante la primera etapa (100), a la entrada del reactor (101 ) se alimentan 4.46 kmol/s (14% en volumen de CH4), se considera que el gas circula a una velocidad superficial máxima de 0.4 m/s, dando lugar a una caída de presión de solo 0.03 bar a la salida del reactor. Fijadas las dimensiones de los reactores de la primera etapa (100), falta por definir el número adicional de reactores de las mismas dimensiones que operan en las etapas restantes. To synchronize the five previous stages, allowing a change between them at the same time, it is necessary to use a certain number of identical reactors that operate in the different stages of the process. In this example, a time of 5 minutes has been set to carry out the first reduction stage (100). Considering a feed to the process of 0.63 kmol / s of pure CH4 and given the established cycle time, the material balance indicates that a mass of solids is required for the first stage (100) (Fe 2 T05 + AI 2 03 ) approximately 460000 kg. Assuming that these solids are in the form of pellets with an average density of 1800 kg / m 3 and an equivalent diameter of 0.01 m, and considering a bed porosity of 0.5, a bed volume of solids of 250 m 3 is obtained. example, by similarity with the commercial reforming reactors, a length of 5 m is adopted for each reactor, which implies a reactor cross-sectional area of approximately 50 m 2 For this example, it is considered that this area is compatible with the existence of two reduction reactors of 25 m 2 each. Since during the first stage (100), at the entrance of the reactor (101) 4.46 kmol / s is fed (14% by volume of CH 4 ), the gas is considered to circulate at a maximum surface velocity of 0.4 m / s , resulting in a pressure drop of only 0.03 bar at the reactor outlet. Fixed the dimensions of the reactors of the first stage (100), it remains to define the additional number of reactors of the same dimensions that operate in the remaining stages.
En la segunda etapa (200), al reactor (201 ) se alimentan 7.39 kmol/s (17% en volumen de O2) también durante 5 minutos. En estas condiciones, se utilizan dos reactores operando simultáneamente y en condiciones idénticas como reactor (201 ). El gas pasa a una velocidad superficial máxima de 0.9 m/s, causando una pérdida de carga de 0.15 bar. Del mismo modo, a la tercera etapa (300) se alimentan 10.05 kmol/s de nitrógeno durante 5 minutos hasta completar la misma. Un único reactor opera en esta etapa (300). En las condiciones de este ejemplo el gas circula a una velocidad superficial máxima de 2.4 m/s, causando una pérdida de carga a la salida del reactor de 0.95 bar. Para llevar a cabo la cuarta etapa (400) se alimentan al reactor (401 ) 13 kmol/s de nitrógeno durante 5 minutos. Un único reactor operando como reactor (401 ) es suficiente en las condiciones de este ejemplo. El gas circula a una velocidad superficial máxima de 3.1 m/s, causando una pérdida de carga de 1 .6 bar. Finalmente, los 13 kmol/s de nitrógeno que salen de la cuarta etapa (400) se alimentan a un único reactor que opera como reactor (501 ) en la quinta etapa (500). Tras 5 minutos se consigue calentar el 30% de los sólidos del lecho a 755 °C, con lo que se alcanzan las condiciones requeridas para reiniciar un nuevo ciclo en la primera etapa (100). En la quinta etapa (500) el gas circula a una velocidad superficial máxima de 2.1 m/s, provocando una pérdida de carga a la salida de 0.75 bar. A la vista de estos resultados, con las suposiciones concretas para este ejemplo, se requiere un número de 7 reactores adiabáticos de 25 m2 de área transversal y 5 m de longitud operando en paralelo (Figura 5): 2 en la primera etapa (100), 2 en la segunda etapa (200) de oxidación, 1 en la tercera etapa (300) de intercambio de calor gas/sólido, que produce de forma continua gas caliente a presión para el ciclo combinado, 1 en la cuarta etapa (400) de intercambio de calor gas/sólido y 1 en la quinta etapa (500) acondicionando su temperatura para reiniciar el ciclo en la primera etapa (100). La duración de un ciclo completo es de 35 minutos. Aunque el número de reactores es menor (siete) que en el Ejemplo 1 (ocho), el volumen total de sólidos requeridos para el proceso empleando ilmenita como transportador de oxígeno es casi el doble que en el caso de emplear óxido de níquel. In the second stage (200), the reactor (201) is fed 7.39 kmol / s (17% by volume of O2) also for 5 minutes. Under these conditions, two reactors are used operating simultaneously and in identical conditions as reactor (201). The gas passes at a maximum surface velocity of 0.9 m / s, causing a pressure drop of 0.15 bar. In the same way, to the third stage (300) 10.05 kmol / s of nitrogen are fed during 5 minutes until completing it. A single reactor operates in this stage (300). Under the conditions of this example the gas circulates at a maximum surface velocity of 2.4 m / s, causing a pressure drop at the output of the reactor of 0.95 bar. To carry out the fourth stage (400), 13 kmol / s of nitrogen are fed to the reactor (401) for 5 minutes. A single reactor operating as reactor (401) is sufficient under the conditions of this example. The gas circulates at a maximum surface velocity of 3.1 m / s, causing a pressure drop of 1.6 bar. Finally, the 13 kmol / s of nitrogen leaving the fourth stage (400) are fed to a single reactor that operates as a reactor (501) in the fifth stage (500). After 5 minutes, 30% of the solids in the bed are heated to 755 ° C, thus achieving the conditions required to restart a new cycle in the first stage (100). In the fifth stage (500) the gas circulates at a maximum superficial velocity of 2.1 m / s, causing a loss of load at the outlet of 0.75 bar. In view of these results, with the concrete assumptions for this example, a number of 7 adiabatic reactors of 25 m 2 of cross-sectional area and 5 m of length operating in parallel is required (Figure 5): 2 in the first stage (100 ), 2 in the second oxidation stage (200), 1 in the third stage (300) of gas / solid heat exchange, which continuously produces hot gas under pressure for the combined cycle, 1 in the fourth stage (400 ) of heat exchange gas / solid and 1 in the fifth stage (500) conditioning its temperature to restart the cycle in the first stage (100). The duration of a complete cycle is 35 minutes. Although the number of reactors is lower (seven) than in Example 1 (eight), the total volume of solids required for the process using ilmenite as an oxygen carrier is almost double that in the case of using nickel oxide.

Claims

R E I V I N D I C A C I O N E S R E I V I N D I C A C I O N S
1 .- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado que comprende: a) una primera etapa (100) en la que se alimenta el gas combustible (13) a un reactor de lecho fijo (101 ) conteniendo sólidos inicialmente oxidados y con una parte de ellos calientes localizada a la entrada de gas combustible (13) a una primera temperatura (T1 ), donde esta primera etapa (100) finaliza con los sólidos completamente reducidos. caracterizado por que la primera etapa (100) comprende además la alimentación de un reciclo del gas (16) producto de la primera etapa (100) junto con el gas combustible (13) alimentado durante la primera etapa. 1 .- Procedure for the combustion of a gas in a fixed bed with an oxidized solid comprising: a) a first stage (100) in which the fuel gas (13) is fed to a fixed bed reactor (101) containing solids initially oxidized and with a part of them hot located at the fuel gas inlet (13) at a first temperature (T1), where this first stage (100) ends with the solids completely reduced. characterized in that the first stage (100) further comprises feeding a recycle of the gas (16) product of the first stage (100) together with the fuel gas (13) fed during the first stage.
2 - Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 1 caracterizado por que comprende: 2 - Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 1, characterized in that it comprises:
a) una segunda etapa (200) de oxidación de los sólidos con una mezcla de aire y nitrógeno reciclado (23) que entra por la salida de gases de la primera etapa (100) y dura hasta que la corriente de nitrógeno (24) que sale del reactor (201 ) lo hace a una temperatura máxima predeterminada (T5);  a) a second stage (200) of oxidation of the solids with a mixture of air and recycled nitrogen (23) that enters through the gas outlet of the first stage (100) and lasts until the nitrogen stream (24) that leaves the reactor (201) at a predetermined maximum temperature (T5);
b) una tercera etapa (300) en la que se continúa alimentando al reactor (301 ) nitrógeno reciclado o una mezcla de aire y de nitrógeno reciclado (33) si la oxidación de los sólidos no ha finalizado y en la que la corriente de nitrógeno (34) que sale del reactor a la temperatura máxima predeterminada (T5) se alimenta a la turbina de un ciclo combinado de gas; c) una cuarta etapa (400) en la que se continúa alimentando al reactor (401 ) nitrógeno reciclado o una mezcla de aire y de nitrógeno reciclado (43) si la oxidación de los sólidos no ha finalizado y en la que la corriente de nitrógeno (44) que sale de dicho reactor (401 ) a la temperatura máxima predeterminada (T5) se enfría ligeramente hasta la primera temperatura (T1 ) requerida para los sólidos a alta temperatura en la primera etapa (100); b) a third stage (300) in which recycled nitrogen or a mixture of air and recycled nitrogen (33) is continued to be fed to the reactor (301) if the oxidation of the solids has not ended and in which the nitrogen stream (34) that leaves the reactor at the predetermined maximum temperature (T5) is fed to the turbine of a combined gas cycle; c) a fourth stage (400) in which recycled nitrogen or a mixture of air and recycled nitrogen (43) is continued to be fed to the reactor (401) if the oxidation of the solids has not ended and in which the nitrogen stream (44) that leaves said reactor (401) at the predetermined maximum temperature (T5) cools slightly until the first temperature (T1) required for the high temperature solids in the first stage (100);
d) una quinta etapa (500) en la que se alimenta la corriente de nitrógeno (44) a alta temperatura que sale de la etapa cuarta (400) al reactor (501 ) que presenta sólidos fríos y completamente oxidados (50) tras la cuarta etapa (400).  d) a fifth stage (500) in which the nitrogen stream (44) is fed at high temperature leaving the fourth stage (400) to the reactor (501) which presents cold and completely oxidized solids (50) after the fourth stage stage (400).
3.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según cualquiera de las reivindicaciones anteriores caracterizado por que la primera etapa del ciclo (100) comprende una etapa de compresión y calentamiento de un gas combustible (10) mediante un compresor (102), donde sobre dicho gas ya comprimido y calentado (1 1 ) se lleva a cabo un intercambio de calor para adecuar la temperatura a la requerida para comenzar la primera etapa (100), obteniéndose una corriente (12) a la salida del intercambiador de calor (103), y donde la alimentación del reciclo de gas (16) de la corriente de gases a la salida (14) del reactor (101 ) se lleva a cabo mediante el bombeo de dicho reciclo de gas (16) para unirlo a la corriente de combustible (12) a la salida del intercambiador (103). 4.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 3 caracterizado por que en la segunda etapa (200) se hace uso de aire (20) que es comprimido en un compresor (202), para después adecuar su temperatura a la requerida para llevar a cabo la segunda etapa (200) mediante un intercambiador de calor (203) 3. Process for the combustion of a gas in a fixed bed with an oxidized solid according to any of the preceding claims, characterized in that the first stage of the cycle (100) comprises a step of compressing and heating a fuel gas (10) by means of a compressor (102), where on said gas already compressed and heated (11) a heat exchange is carried out to adjust the temperature to that required to start the first stage (100), obtaining a current (12) at the outlet of the heat exchanger (103), and where the gas recycle feed (16) of the gas stream to the outlet (14) of the reactor (101) is carried out by pumping said gas recycle (16) to connect it to the fuel stream (12) at the outlet of the exchanger (103). 4. Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 3, characterized in that in the second stage (200) air is used (20) which is compressed in a compressor (202), for later adjusting its temperature to that required to carry out the second stage (200) by means of a heat exchanger (203)
5.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 4 caracterizado por que parte de la corriente de salida (24) del reactor (201 ) se recircula y la corriente mezcla de aire y de nitrógeno reciclado (23) llega en todo momento al frente de reacción a una temperatura de los sólidos a baja temperatura (T4) en el reactor (201 ), y se calienta súbitamente hasta la temperatura máxima predeterminada (T5) que alcanza la corriente mezcla de aire y nitrógeno reciclado en el frente de reacción 5. Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 4, characterized in that part of the output stream (24) of the reactor (201) is recirculated and the mixed stream of air and recycled nitrogen ( 23) arrives at the reaction front at all times at a temperature of the solids at low temperature (T4) in the reactor (201), and is suddenly heated up to the predetermined maximum temperature (T5) which reaches the air-nitrogen mixture stream. recycled on the front of reaction
6.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 5 caracterizado por que la corriente de salida (24) 5 del reactor (201 ) se encuentra a la temperatura inferior del gas en el reactor (T3), que corresponde en este caso con la temperatura inicial de los sólidos situados a la salida del reactor (201 ) al comienzo de dicha segunda etapa (200). 0 7.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 6 caracterizado por que la corriente de nitrógeno producido (34) a alta presión y a la temperatura máxima preestablecida (T5) producida en la tercera etapa (300) se alimenta a la turbina de gas (303) de un ciclo combinado para la generación de potencia.6. Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 5, characterized in that the output stream (24) of the reactor (201) is at the lower temperature of the gas in the reactor (T3) , which corresponds in this case to the initial temperature of the solids located at the exit of the reactor (201) at the beginning of said second stage (200). 7. Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 6, characterized in that the nitrogen stream produced (34) at high pressure and at the maximum pre-established temperature (T5) produced in the third stage (300 ) is fed to the gas turbine (303) of a combined cycle for power generation.
5 5
8. - Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 7 caracterizado por que parte (61 ) de la corriente de nitrógeno de salida (34) del ciclo combinado se recicla y se recomprime en un compresor (307) y se enfría a la temperatura de los sólidos a baja o temperatura (T4) del reactor (301 ).  8. - Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 7 characterized in that part (61) of the output nitrogen stream (34) of the combined cycle is recycled and recompressed in a compressor (307 ) and cooled to the temperature of the solids at low or temperature (T4) of the reactor (301).
9. - Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 8 caracterizado por que se realimentan a la entrada del reactor (301 ) sendas corrientes de nitrógeno frío a presión (27 y53) 5 excedentes de la segunda etapa (200) y de la cuarta etapa (400), respectivamente, que conforman el presente procedimiento. 9. Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 8, characterized in that two streams of cold nitrogen under pressure (27 and 53) 5 surpluses of the second stage are fed back to the reactor inlet (301). (200) and the fourth stage (400), respectively, that make up the present process.
10. - Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 9 caracterizado por que en la cuarta etapa del ciclo 0 (400) se lleva a cabo la oxidación de la parte final de los sólidos reducidos en la primera etapa (100) y no oxidados todavía en la segunda y, tercera etapas (200, 300) mediante la alimentación de una mezcla de una corriente de aire comprimido y enfriado (42) y de una corriente de nitrógeno frió reciclado (54) al reactor (401 ) que queda completamente oxidado y a la temperatura de sólidos a baja temperatura (T4) al finalizar dicha cuarta etapa (400). 1 1.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 10 caracterizado por que en la quinta etapa (500) se calienta parte del lecho de sólidos completamente oxidados y fríos, que inicialmente están a la temperatura de sólidos a baja temperatura (T4) resultante del final de la cuarta etapa (400), para poder después reiniciar un nuevo ciclo con la primera etapa (100). 10. - Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 9, characterized in that in the fourth stage of cycle 0 (400) the oxidation of the final part of the reduced solids is carried out in the first stage. stage (100) and not yet oxidized in the second and third stages (200, 300) by feeding a mixture of an air stream compressed and cooled (42) and a stream of recycled cold nitrogen (54) to the reactor (401) that remains completely oxidized and at the temperature of solids at low temperature (T4) at the end of said fourth stage (400). 1. Procedure for the combustion of a gas in a fixed bed with an oxidized solid according to claim 10, characterized in that in the fifth stage (500) part of the bed of completely oxidized and cold solids is heated, which initially are at the temperature of solids at low temperature (T4) resulting from the end of the fourth stage (400), in order to then restart a new cycle with the first stage (100).
12.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 1 1 caracterizado por que la corriente de nitrógeno (44) que sale del reactor (401 ) en la cuarta etapa (400), se enfría ligeramente en un intercambiador de calor (502) hasta la primera temperatura (T1 ) requerida para los sólidos a alta temperatura y se alimenta al reactor (501 ), donde los sólidos se calientan progresivamente a la primera temperatura (T1 ) requerida para reiniciar un nuevo ciclo con la primera etapa (100). 13.- Procedimiento para la combustión de un gas en lecho fijo con un sólido oxidado según reivindicación 12 caracterizado por que la corriente de nitrógeno frío (51 ) que sale del reactor (501 ) a la temperatura de sólidos a baja temperatura (T4) se alimenta a un ventilador o soplante (503) y parte de la corriente (52) a la salida del ventilador o soplante (503) se recircula hacia la entrada del reactor (401 ) como corriente de nitrógeno frió reciclado (54), reactor12. Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 1 characterized in that the nitrogen stream (44) leaving the reactor (401) in the fourth stage (400), is cooled slightly in a heat exchanger (502) up to the first temperature (T1) required for the solids at high temperature and is fed to the reactor (501), where the solids are progressively heated to the first temperature (T1) required to restart a new cycle with the first stage (100). 13. Process for the combustion of a gas in a fixed bed with an oxidized solid according to claim 12, characterized in that the cold nitrogen stream (51) leaving the reactor (501) at the temperature of solids at low temperature (T4) is it feeds a fan or blower (503) and part of the stream (52) at the outlet of the fan or blower (503) is recirculated towards the reactor inlet (401) as recycled cold nitrogen stream (54), reactor
(401 ) que está operando en ese momento en la cuarta etapa (400), donde el resto del nitrógeno no reciclado (53) a la cuarta etapa (400), se alimenta al reactor (301 ), que está operando en ese momento en la tercera etapa (300). 14.- Instalación que hace uso del procedimiento descrito en cualquiera de las reivindicaciones 2-13 caracterizado por que comprende al menos ocho reactores adiabáticos de lecho fijo operados simultáneamente pero en distintas fases de las cinco etapas descritas anteriormente cuando se usan sólidos con alta capacidad de transporte de oxígeno, entre los que se encuentran los de un sistema NiO/Ni. 15.- Instalación que hace uso del procedimiento descrito en cualquiera de las reivindicaciones 2-13 caracterizado por que comprende al menos cinco reactores adiabáticos de lecho fijo operados simultáneamente en las cinco etapas del procedimiento descritas anteriormente cuando se usan sólidos con baja capacidad de transporte de oxígeno, entre los que se encuentra el sistema Fe2Ti05/FeTi03 (ilmenita). (401) that is operating at that time in the fourth stage (400), where the rest of the non-recycled nitrogen (53) to the fourth stage (400), is fed to the reactor (301), which is operating at that time in the third stage (300). 14. Installation that uses the method described in any of claims 2-13 characterized in that it comprises at least eight adiabatic fixed-bed reactors operated simultaneously but in different phases of the five stages described above when using solids with high oxygen transport capacity, among which are those of a NiO / Ni system. 15.- Installation that makes use of the procedure described in any of claims 2-13 characterized in that it comprises at least five adiabatic fixed-bed reactors operated simultaneously in the five stages of the procedure described above when using solids with low transport capacity of oxygen, among which is the system Fe 2 Ti0 5 / FeTi0 3 (ilmenite).
PCT/ES2014/070633 2013-08-02 2014-08-01 Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation WO2015015042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201331215 2013-08-02
ES201331215A ES2530546B1 (en) 2013-08-02 2013-08-02 PROCEDURE FOR THE COMBUSTION OF A GAS IN FIXED MILK WITH A RUSTY SOLID AND ASSOCIATED INSTALLATION

Publications (1)

Publication Number Publication Date
WO2015015042A1 true WO2015015042A1 (en) 2015-02-05

Family

ID=52431055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070633 WO2015015042A1 (en) 2013-08-02 2014-08-01 Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation

Country Status (2)

Country Link
ES (1) ES2530546B1 (en)
WO (1) WO2015015042A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724534A1 (en) * 1987-07-24 1989-02-02 Bayer Ag Process and apparatus for carrying out exothermic chemical reactions in the gas phase
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers
US20100279181A1 (en) * 2009-05-01 2010-11-04 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
EP2515038A1 (en) * 2011-04-21 2012-10-24 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Fixed bed chemical looping combustion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724534A1 (en) * 1987-07-24 1989-02-02 Bayer Ag Process and apparatus for carrying out exothermic chemical reactions in the gas phase
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers
US20100279181A1 (en) * 2009-05-01 2010-11-04 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
EP2515038A1 (en) * 2011-04-21 2012-10-24 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Fixed bed chemical looping combustion

Also Published As

Publication number Publication date
ES2530546A1 (en) 2015-03-03
ES2530546B1 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
ES2384491T3 (en) CO2 capture procedure using CaO and exothermic reduction of a solid
Yan et al. Developments in calcium/chemical looping and metal oxide redox cycles for high-temperature thermochemical energy storage: A review
ES2382189T3 (en) Integrated procedure of energy production and / or synthesis gas by in situ oxygen production, combustion and gasification in chemical loop
Fernández et al. Conceptual design of a hydrogen production process from natural gas with CO2 capture using a Ca–Cu chemical loop
Fernández et al. Conceptual design of a Ni-based chemical looping combustion process using fixed-beds
Spallina et al. Investigation of heat management for CLC of syngas in packed bed reactors
Spallina et al. Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal syngas
ES2838727T3 (en) System for capturing CO2 from a combustion gas through the carbonation-calcination cycles CaO / CaCO3
Martínez et al. Conceptual design of a three fluidised beds combustion system capturing CO2 with CaO
US20110198861A1 (en) Method for producing energy and capturing co2
Fernández et al. Chemical looping combustion process in fixed-bed reactors using ilmenite as oxygen carrier: Conceptual design and operation strategy
ES2555034T3 (en) System and procedure for energy storage using circulating fluidized bed combustors
AU2009246062A1 (en) System and method for processing flue gas
CN109072104A (en) For including the electricity generation system and method for methanation processing
CN104033890A (en) Oxygen-enriched combustion pulverized coal boiler integrating chemical-looping high-temperature air separation oxygen production and CO2 gathering method
CA2778179A1 (en) System and method for processing an input fuel gas and steam to produce carbon dioxide and an output fuel gas
AU2012201513A1 (en) CO2 recovery apparatus
Tian et al. Using a hierarchically-structured CuO@ TiO2-Al2O3 oxygen carrier for chemical looping air separation in a paralleled fluidized bed reactor
del Pozo et al. The potential of chemical looping combustion using the gas switching concept to eliminate the energy penalty of CO2 capture
Kunze et al. A novel IGCC plant with membrane oxygen separation and carbon capture by carbonation–calcinations loop
Rui et al. YBaCo4O7+ δ sorbent for oxygen-enriched carbon dioxide stream production at a low-temperature
Rydén et al. Hydrogen and power production with integrated carbon dioxide capture by chemical-looping reforming
ES2595443B1 (en) Integrated calcination-carbonation system and closed loop CO2 cycle for thermochemical energy storage and electric power generation
CA3191670A1 (en) Ammonia and urea production in reverse flow reactors
ES2530546B1 (en) PROCEDURE FOR THE COMBUSTION OF A GAS IN FIXED MILK WITH A RUSTY SOLID AND ASSOCIATED INSTALLATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831877

Country of ref document: EP

Kind code of ref document: A1