WO2015013919A1 - 一种磁流变动力传动装置和控制方法 - Google Patents

一种磁流变动力传动装置和控制方法 Download PDF

Info

Publication number
WO2015013919A1
WO2015013919A1 PCT/CN2013/080524 CN2013080524W WO2015013919A1 WO 2015013919 A1 WO2015013919 A1 WO 2015013919A1 CN 2013080524 W CN2013080524 W CN 2013080524W WO 2015013919 A1 WO2015013919 A1 WO 2015013919A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
output
plate
assembly
coil
Prior art date
Application number
PCT/CN2013/080524
Other languages
English (en)
French (fr)
Inventor
沈锡鹤
Original Assignee
上海锘威传动控制有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海锘威传动控制有限责任公司 filed Critical 上海锘威传动控制有限责任公司
Priority to PCT/CN2013/080524 priority Critical patent/WO2015013919A1/zh
Publication of WO2015013919A1 publication Critical patent/WO2015013919A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/002Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders comprising a medium with electrically or magnetically controlled internal friction, e.g. electrorheological fluid, magnetic powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable

Definitions

  • the present invention relates to the field of magnetorheological power transmission, and more particularly to a magnetorheological power transmission device and a control method thereof, which can be applied to the intelligence of a power output and a power transmission process of an electric motor, an internal combustion engine, and various types of engines.
  • Automated control can be widely used in industrial, agricultural, military, civil, mining, port, production equipment, industrial robots and other industries where power equipment is required.
  • the conventional power transmission control method basically consists of two parts, one part is a mechanical connection device between a power source and a load, such as a clutch, a transmission, etc., and the other part is a power source control and execution device, such as power control. Box, servo drive box, etc.
  • the so-called power transmission control is mainly used to control the power source before the power output. Taking the electric drive as an example, the high-quality and high-efficiency power output can be realized by improving the technical grade of the motor product (such as frequency conversion, stepping, servo motor, etc.). purpose.
  • the traditional power transmission control method has the disadvantages of complicated product technology, high use cost, and troublesome maintenance.
  • the magnetorheological fluid inside the magnetorheological transmission is a new phase change material, which is a kind of micro-magnetic (micron or even nano-scale) soft magnetic particles and non-magnetic liquid mixed with high magnetic permeability and low hysteresis. And a magnetic particle suspension, in the absence of a magnetic field, the suspended particulate iron particles are free to move with the liquid.
  • the magnetorheological fluid changes from Newtonian fluid to plastomer or viscoelastic body with a certain yield shear stress at the moment of milliseconds; when the current in the magnetic field coil is changed to obtain a magnetic field of different strength, the magnetic current
  • the yield shear stress of the liquid also changes, that is, under the action of a strong magnetic field, the shear resistance is large, and the liquid property of high viscosity and low fluidity is exhibited; the low viscosity property is exhibited under the zero magnetic field condition, and the shearing
  • the shear yield strength has a stable correspondence with the magnetic field strength (or current magnitude); it is this rheology controllability of the magnetorheological fluid that enables the continuous damping of the damping force to achieve the power transmission clutch braking Active control.
  • the object of the present invention is to intelligently and automatically control a power transmission process (between a power source and a load) that does not include a power source, to innovate a power transmission control method, to improve a power transmission control technology, and an economy.
  • Efficacy Provides a magnetorheological power transmission device and control method through system program setting, simple operation, automatic, high-efficiency, low-cost control management of the power transmission process.
  • a magnetorheological power transmission device is designed, including an end cap seal ring, a code plate, a reset sensor, a damper plate, a diaphragm, an output clutch plate, an input clutch plate, an output bushing, a magnetic shield, and a joint.
  • a clutch coil assembly is disposed on a right side of the partition assembly, the partition plate abuts the clutch coil assembly, the damping plate is disposed in the device housing and abuts the brake coil assembly, and the output shaft is disposed in the device housing And passing through the inner diameter of the bearing, one end of the output shaft rises out of the cover assembly, the other end is connected to the output clutch piece through the output sleeve, the input clutch piece is provided on the right side of the output clutch piece, and the output clutch piece and the input clutch piece are mounted on the magnetic separation piece And separated by a magnetic separator, the input clutch plate is provided with an input clutch shaft, and the cavity in which the clutch plate is mounted in the device casing is filled with magnetorheological fluid, and the coupling is inserted into the input clutch shaft to form an integral body.
  • the clutch coil assembly is composed of a clutch coil bobbin and a clutch coil.
  • the brake coil assembly is composed of a brake bobbin and a brake coil, and the brake coil assembly and the clutch coil assembly respectively pull out the pin line to the outside of the housing.
  • the reset sensor and the pulse sensor are installed in the device housing, and the pin line is pulled out to the outside of the device housing; the right side cover assembly is sleeved into the input clutch shaft, and is fixedly mounted on the end surface of the device housing, left side The cover assembly is sleeved into the output shaft and fixedly mounted on the end surface of the device housing; the output housing of the device housing is provided with an output clutch plate, an input clutch plate, and the output clutch plate and the input clutch plate have a gap distance of 1.5 mm, and the magnetic current is used.
  • the liquid is used as a power transmission medium.
  • the steps of the method for installing the magnetorheological power transmission device are as follows: a. encapsulating the end cap seal ring bearing and the high speed oil into the end cover plate, fixing the oil seal pressure plate to form two cover plate assemblies,
  • the control method of the magnetorheological power transmission device is as follows: the circuit breaker is closed, the power source is turned on, the motor and the controller are in a standby state; the DC power source is supplied, the contact switch of the program driving controller is closed, and the power circuit contactor is closed.
  • Live working, motor running, controller clutch and brake coil are in power loss state, output shaft does not turn; start control system to working state, drive circuit produces output current, clutch coil is charged to generate magnetic field, clutch plate meshes, output shaft runs And output power; output shaft operation makes the sensor generate feedback pulse signal, the system program starts counting from 0 bit; When the comparison circuit gets the position pulse number equal to the sensor feedback pulse number, the system program controls the clutch coil to lose power, and the brake coil is charged.
  • the specific control methods are as follows: a. Time control mode: The electric main circuit is closed, the DC power supply is supplied, the system is started, the relay normally open contact is closed, the power supply is started, the motor is running; the control system is based on the running time value and output set by the single chip microcomputer.
  • the power transmission control mode of the present invention solves the control technology in the power transmission process, does not involve the power source product and the control technology, thereby greatly reducing the difficulty of power transmission control and operation.
  • the transmission device of the invention adopts a novel magnetorheological fluid material and adopts advanced control means, can achieve safe, high-efficiency, accurate and energy-saving control effects, has wide product use, low manufacturing cost and large promotion value.
  • the clutch and brake made by the magnetorheological fluid of the invention have the advantages of large output, small volume, fast response, simple structure, continuously adjustable damping force, and easy realization of intelligent power transmission control.
  • the magnetorheological power transmission device of the invention adopts a non-contact flexible clutch brake, has the characteristics of starting, braking and overload protection, simplifies the control circuit of the power source motor, and effectively solves the traditional clutch use. Defects in mechanical friction losses and failures.
  • the magnetorheological power transmission device of the invention has the functions of open loop and closed loop control, can finely manage the power transmission process, and can replace the high-priced power transmission control products in the current market in a large scale, thereby reducing the production cost of the social enterprise.
  • the invention is an innovation of the traditional transmission control thinking method, and will play an active role in promoting the upgrading and development of China's power transmission control technology.
  • FIG. 1 is a front view of the present invention
  • Figure 2 is an isometric view of the present invention
  • Figure 3 is a front cross-sectional view of the present invention.
  • FIG. 4 is a block diagram of the control system of the present invention.
  • FIG. 5 is a block diagram of the principle of the single chip of the present invention.
  • Figure 6 is a diagram showing the operation panel of the controller of the present invention.
  • 1 is the end cap sealing ring
  • 2 is the code wheel
  • 3 is the reset sensor
  • 4 is the damping plate
  • 5 is the partition plate
  • 6 is the output clutch piece
  • 7 is the input clutch piece
  • 8 is the output Bushing
  • 9 is the magnetic separator
  • 10 is the coupling
  • 11 is the high speed oil seal
  • 12 is the end cover
  • 13 is the clutch coil frame
  • 14 is the clutch coil
  • 15 is a brake bobbin
  • 16 is a brake coil
  • 17 is a pulse sensor
  • 18 is a device housing
  • 19 is a bearing
  • 20 is an oil seal pressure plate
  • 21 is an output shaft
  • 22 is a magnetorheological fluid
  • Designation of Figure 3 is a summary drawing of the present invention.
  • a magnetorheological power transmission device of the present invention comprises an end cap seal ring, a code plate, a reset sensor, a damper plate, a partition plate, an output clutch plate, an input clutch plate, an output bushing, Magnetic separator, coupling, high speed oil seal, end cover, clutch coil bobbin, clutch coil, brake bobbin, brake coil, pulse sensor, device housing, bearing, oil seal plate, output shaft, magnetorheological fluid
  • the utility model is characterized in that two sets of cover plate assemblies are respectively arranged on the left and right sides of the device casing, the end cover cover is provided with an end cover seal ring, a bearing and a high speed oil seal, and the end cover plate fixes the oil seal pressure plate to form a cover plate assembly, and the device casing is provided a baffle assembly, the baffle assembly output shaft is fitted into the baffle to form a baffle assembly, a brake coil assembly is disposed on the left side of the baffle assembly, and a clutch coil assembly is disposed on the
  • the clutch coil assembly is composed of a clutch coil bobbin and a clutch coil.
  • the brake coil assembly is composed of a brake bobbin and a brake coil, and the brake coil assembly and the clutch coil assembly respectively pull out the pin line to the outside of the housing;
  • the sensor and the pulse sensor are installed in the device housing, and the pin line is pulled out to the outside of the device housing; the right side cover assembly is sleeved into the input clutch shaft, fixedly mounted on the end surface of the device housing, and the left cover assembly is inserted into the output shaft.
  • the device housing is fixedly mounted on the end surface of the device housing; the output housing is provided with the output clutch plate, the input clutch plate, the output clutch plate and the input clutch plate have a gap distance of 1.5 mm, and the magnetorheological fluid is used as the power transmission medium body, 2.
  • Embodiment 1 As shown in FIG. 3, the steps of installing the above-described magnetorheological power transmission device are as follows:
  • Embodiment 2 As shown in FIG. 4 and FIG. 5, the above control method of the magnetorheological power transmission device is as follows:
  • the main circuit of the electric circuit is closed, the power supply of the DC power supply, the system is started, the normally open contact of the relay is closed, the power supply is started, and the motor is running.
  • the control system drives the clutch according to the running time value of the single-chip microcomputer or the upper computer and the output shaft speed current value. Coil current, clutch closed, output shaft power output; When the running reaches the set time value, the clutch coil loses power and the clutch performs separation. At this time, the relay normally opens contact resets and cuts off the motor drive power; at this time, the control system drives the brake Coil current, brake closing, brake output shaft, end power output.
  • the main circuit of the electric circuit is closed, the power supply of the DC power supply, the system is started, the normally open contact of the relay is closed, the power supply is started, and the motor is running.
  • the pulse value of the control system according to the setting of the single chip microcomputer or the pulse amount sent by the upper computer, the output shaft speed current Value, drive clutch coil current, clutch close, output shaft power output; control system compares the set and feedback pulse number, when the feedback pulse count is equal to the set pulse value, the clutch coil loses power, the clutch performs separation, at this time
  • the relay normally open contact is reset, and the motor drive power is cut off; at this time, the control system drives the brake coil current, the brake is closed, the brake output shaft, and the power output is ended.
  • Cycle control mode Under the premise of setting the interval time and the number of cycles, the controller continuously repeats the process of circulating a power output duty cycle, time control state or pulse control state, gp "starting operation - reset stop - time interval - start Run - reset stop - ".
  • the driving circuit starts the control system to the working state, the driving circuit generates an output current, the clutch coil is charged to generate a magnetic field, the clutch plate is engaged, the output shaft is operated and the power is output;
  • the output shaft runs to generate a feedback pulse signal from the sensor.
  • the system program starts counting pulses from 0 bits.
  • the comparison circuit obtains the position pulse number or the number of the upper pulse and the number of the feedback pulse of the sensor, the system program controls the clutch coil to lose power, and the brake coil is energized. At this time, the clutch stops working, the brake starts to brake, and the controller circuit is driven at the same time. The switch contacts are restored, the motor is de-energized and stops running;
  • the control program commands the power controller and the motor to return to the initial standby state according to the set time
  • 5.1 four mode indications: a. time operation mode, b. position operation mode, c. cycle operation mode, d. parameter setting mode, default is time operation mode;
  • Panel operation Press and hold the enter key to enter the setting mode. After entering, the running indicator will be off and the indicator light will be on. At this time, the parameter serial number digital tube indicates which parameter is the current 8-digit digital tube. Press the up/down key to change the parameter, press the enter key. The parameters can be stored, press the exit key to reset the initial state.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

一种磁流变动力传动装置及其控制方法,磁流变动力传动装置由端盖密封圈(1)、码盘(2)、复位传感器(3)、阻尼板(4)、隔板(5)、输出离合片(6)、输入离合片(7)、输出轴套(8)、隔磁片(9)、联轴器(10)、高速油封(11)、端盖板(12)、离合线圈架(13)、离合线圈(14)、制动线圈架(15)、制动线圈(16)、脉冲传感器(17)、装置壳体(18)、轴承(19)、油封压板(20)、输出轴(21)、磁流变液(22)组成。磁流变动力传动装置适用于大范围动力传动应用场合,可以对动力传动过程实施自动化的控制管理。

Description

一种磁流变动力传动装置和控制方法
[技术领域】 本发明涉及磁流变动力传动领域, 具体地说是一种磁流变动力传动装置和 控制方法, 能适用于电机、 内燃机及各类发动机的动力输出和动力传送过程的 智能及自动化控制, 能广泛应用于工业、 农业、 军用、 民用、 矿山、 港口、 生 产设备、 工业机器人等各行各业必需使用动力装备的场合。
[背景技术】 传统的动力传动控制方式基本由两部分内容构成, 一部分是动力源与负载 之间的机械连接装置, 如离合器、 变速器等, 另一部分是动力源的控制和执行 装置, 如动力控制箱、 伺服驱动箱等。 以前所谓的动力传动控制主要针对动力 输出前的动力源进行控制, 以电力驱动为例,通过提升电机产品的技术等级(如 变频、 步进、 伺服电机等), 来实现优质、 高效的动力输出目的。 但传统的动力 传动控制方式存在产品技术复杂、 使用成本高、 维修保养麻烦等缺点, 比较适 用于小功率需求的有限范围, 并不适用大功率、 广泛应用的普遍场合。 目前, 尚无发现对动力源到负载之间 (不含动力源) 的动力连接装置进行 智能化控制的案例, 本发明的磁流变传动装置和控制方法通过采用新材料、 新 技术、 对传统的传动控制方式进行变革和创新, 较好地解决了该项传动技术空 白和对动力连接装置进行智能控制的成本问题, 能取代传统的控制方式, 适用 于大范围动力传动应用场合。 磁流变传动装置内部的磁流变液体是一种新型相变材料, 它是一种由高磁 导率、 低磁滞性的微小 (微米甚至纳米级) 软磁性颗粒和非导磁体液体混合而 成的磁性粒悬浮液, 当无磁场时, 悬浮的微粒铁颗粒自由地随液体运动, 当施 加磁场时, 这些悬浮的微粒铁颗粒被互相吸引, 形成一串串链式结构从磁场一 极到另一极, 此时磁流变液体就在毫秒级的瞬间由牛顿流体变成塑性体或有一 定屈服剪应力的粘弹性体; 当改变磁场线圈中的电流从而获得不同强度的磁场, 磁流变液的屈服剪应力也发生变化, 即在强磁场作用下, 抗剪切力很大, 呈现 出高粘度、 低流动性的液体特性; 在零磁场条件下呈现出低粘度的特性, 其剪 切屈服强度与磁场强度 (或电流大小) 具有稳定的对应关系; 正是磁流变液的 这种流变可控性使其能够实现阻尼力的连续可变, 从而达到对动力传动离合制 动的主动控制。
[发明内容】 本发明的目的是针对不包括动力源在内的动力传动过程 (动力源到负载之 间) 进行智能化和自动化控制, 创新动力传动的控制方式、 提升动力传动的控 制技术和经济效能; 通过系统程序的设置, 简便的使用操作, 对动力传动过程 实施自动化、 高效率、 低成本的控制管理, 提供一种磁流变动力传动装置和控 制方法。 为实现上述目的, 设计一种磁流变动力传动装置, 包括端盖密封圈、 码盘、 复位传感器、 阻尼板、 隔板、 输出离合片、 输入离合片、 输出轴套、 隔磁片、 联轴器、 高速油封、 端盖板、 离合线圈架、 离合线圈、 制动线圈架、 制动线圈、 脉冲传感器、 装置壳体、 轴承、 油封压板、 输出轴、 磁流变液, 其特征在于装 置壳体左右两侧分别设有两套盖板组件, 端盖板内设有端盖密封圈、 轴承、 高 速油封, 端盖板固定油封压板形成盖板组件, 装置壳体内设有隔板组件, 所述 的隔板组件输出轴套装入隔板形成隔板组件, 隔板组件左侧设有制动线圈组件, 隔板组件右侧设有离合线圈组件, 所述的隔板紧靠离合线圈组件, 所述的阻尼 板设置于装置壳体内并紧靠制动线圈组件, 所述的输出轴设置于装置壳体内并 穿过轴承内径, 输出轴一端升出盖板组件, 另一端穿过输出轴套连接输出离合 片, 输出离合片右侧设有输入离合片, 输出离合片和输入离合片安装在隔磁片 上, 并通过隔磁片隔开, 输入离合片上设有输入离合片轴, 装置壳体内安装离 合片的腔体内注满磁流变液, 所述的联轴器套入输入离合片轴, 构成整体。 所述的离合线圈组件由离合线圈架、 离合线圈组成, 所述的制动线圈组件 由制动线圈架、 制动线圈组成, 制动线圈组件和离合线圈组件分别拉出引脚线 到壳体外; 所述的复位传感器、 脉冲传感器安装在装置壳体内, 拉出引脚线到 装置壳体外; 所述的右侧盖板组件套入输入离合片轴, 固定安装在装置壳体端 面, 左侧盖板组件套入输出轴, 固定安装在装置壳体端面; 所述装置壳体的腔 体内设有输出离合片、输入离合片,输出离合片、输入离合片间隙距离为 1.5mm, 采用磁流变液作动力传动媒介体。 所述的磁流变动力传动装置的安装方法步骤如下: a. 将端盖密封圈轴承、 高速油封装入端盖板, 固定油封压板, 形成两套盖 板组件,
b. 将输出轴套装入隔板, 形成隔板组件,
c 安装离合线圈架、 离合线圈, 形成离合线圈组件,
d. 安装制动线圈架、 制动线圈, 形成制动线圈组件,
e. 将轴承、 高速油封、 装入装置壳体内, 固定油封压板,
f. 安装复位传感器、 脉冲传感器在装置壳体内, 拉出引脚线到壳体外, g. 安装阻尼板在装置壳体内, h. 将输出轴穿入装置壳体内的轴承内径,
i. 安装码盘在输出轴上,
j. 安装制动线圈组件到装置壳体内, 紧靠阻尼板, 拉出引脚线到壳体外, k. 安装隔板组件到装置壳体内,
1. 将输出离合片与输出轴进行固定安装,
m. 安装离合线圈组件到装置壳体内, 紧靠隔板, 拉出引脚线到壳体外, n. 安装隔磁片到输出离合片,
0. 安装输入离合片到隔磁片,
P. 将一套盖板组件套入输入离合片轴, 固定安装在装置壳体端面,
q. 将一套盖板组件套入输出轴, 固定安装在装置壳体端面,
r. 在装置壳体安装离合片的腔体内注满磁流变液,
s. 将联轴器套入输入离合片轴内, 完成装配整件磁流变传动装置。 所述的磁流变动力传动装置的控制方法为: 断路器合闸, 接通动力电源, 电动机和控制器处于待机状态; 直流电源供电, 程序驱动控制器的触点开关闭 合, 动力回路接触器带电工作, 电动机运转, 控制器的离合及制动器线圈任处 于失电状态, 输出轴不转; 启动控制系统到工作状态, 驱动电路产生输出电流, 离合线圈带电产生磁场, 离合片啮合, 输出轴运转并输出动力; 输出轴运转使 传感器产生反馈脉冲信号, 系统程序从 0位开始脉冲计数; 当比较电路得到位 置脉冲数与传感器反馈脉冲数相等数值, 系统程序控制离合线圈失电, 制动线 圈带电, 此时离合器停止工作, 制动器启动刹车, 同时驱动控制器电路的开关 触点复原, 电动机失电并停止运转; 控制程序根据设定的时间, 命令动力控制 器及电机恢复到初始待机状态; 输出轴循环运行结束, 断路器开闸, 切断动力 控制电源。 具体控制方法如下: a. 时间控制模式: 电气主回路合闸, 直流电源供电, 系统启动, 继电器常 开触点闭合, 启动动力电源, 电动机运转; 控制系统根据单片机设定的运行时 间值、 输出轴速度电流值, 驱动离合器线圈电流, 离合器闭合, 输出轴动力输 出; 当运行到达设定的时间值时, 离合器线圈失电, 离合器执行分离, 此时继 电器常开触点复位, 切断电机驱动电源; 此时控制系统驱动制动器线圈电流, 制动器合闸, 制动输出轴, 结束动力输出; b. 位置控制模式: 电气主回路合闸, 直流电源供电, 系统启动, 继电器常 开触点闭合, 启动动力电源, 电动机运转; 控制系统根据单片机设定的脉冲数 值、 输出轴速度电流值, 驱动离合器线圈电流, 离合器闭合, 输出轴动力输出; 控制系统比较设定和反馈的脉冲数, 当反馈的脉冲计数等于设定的脉冲数值时, 离合器线圈失电, 离合器执行分离, 此时继电器常开触点复位, 切断电机驱动 电源; 此时控制系统驱动制动器线圈电流, 制动器合闸, 制动输出轴, 结束动 力输出; c 循环控制模式: 在设定间隔时间和周期次数的前提下, 控制器连续重复 循环一个动力输出工作周期的过程。 本发明与现有技术相比, 有如下积极效果及优点:
1. 本发明的动力传动控制方式, 是解决动力传送过程中的控制技术, 不涉 及动力源产品及控制技术, 因此大大降低了对动力传送控制和操作的难度。 2. 本发明的传动装置采用新型磁流变液材料、 施以先进控制手段, 能实现 安全、 高效、 精确、 节能的控制效果, 产品用途广、 制造成本低, 推广价值大。
3. 本发明应用磁流变液制作的离合器和制动器具有出力大、 体积小、 响应 快、 结构简单、 阻尼力连续可调、 易于实现智能化动力传动控制等优点。
4. 本发明的磁流变动力传动装置, 采用非接触式的柔性离合制动器, 具有 启动、 制动和过载保护的特性, 简化了动力源电机的控制电路, 而且有效地解 决了传统离合器使用中产生的机械摩擦损耗和故障的缺陷。
5. 本发明的磁流变动力传动装置具有开环和闭环控制功能, 能对动力传动 过程进行精细化管理, 可以大范围地取代目前市场高价的动力传动控制产品, 从而降低社会企业生产成本。
6. 本发明是对传统传动控制思想方法的创新, 将会对我国动力传动控制技 术的升级发展, 起到积极的推进作用。
[附图说明】 图 1是本发明主视图;
图 2是本发明等轴视图;
图 3是本发明主视剖面图;
图 4是本发明控制系统原理框图;
图 5是本发明单片机原理框图;
图 6是本发明控制器操作面板图;
如图所示, 图中: 1为端盖密封圈, 2为码盘, 3为复位传感器, 4为阻尼 板, 5为隔板, 6为输出离合片, 7为输入离合片, 8为输出轴套, 9为隔磁片, 10为联轴器, 11为高速油封, 12为端盖板, 13为离合线圈架, 14为离合线圈, 15为制动线圈架, 16为制动线圈, 17为脉冲传感器, 18为装置壳体, 19为轴 承, 20为油封压板, 21为输出轴, 22为磁流变液;
指定图 3为本发明的摘要附图。
[具体实舫式】 下面结合附图对本发明作进一步说明, 这种装置的结构和原理对本专业的 人来说是非常清楚的。 应当理解, 此处所描述的具体实施例仅仅用以解释本发 明, 并不用于限定本发明。
如图 1、 图 3所示, 本发明的一种磁流变动力传动装置包括端盖密封圈、码 盘、 复位传感器、 阻尼板、 隔板、 输出离合片、 输入离合片、 输出轴套、 隔磁 片、 联轴器、 高速油封、 端盖板、 离合线圈架、 离合线圈、 制动线圈架、 制动 线圈、 脉冲传感器、 装置壳体、 轴承、 油封压板、 输出轴、 磁流变液, 其特征 在于装置壳体左右两侧分别设有两套盖板组件, 端盖板内设有端盖密封圈、 轴 承、 高速油封, 端盖板固定油封压板形成盖板组件, 装置壳体内设有隔板组件, 所述的隔板组件输出轴套装入隔板形成隔板组件, 隔板组件左侧设有制动线圈 组件, 隔板组件右侧设有离合线圈组件, 所述的隔板紧靠离合线圈组件, 所述 的阻尼板设置于装置壳体内并紧靠制动线圈组件; 输出轴设置于装置壳体内并 穿过轴承内径, 输出轴一端升出盖板组件, 另一端穿过输出轴套连接输出离合 片, 输出离合片右侧设有输入离合片, 输出离合片和输入离合片安装在隔磁片 上, 并通过隔磁片隔开, 输入离合片上设有输入离合片轴, 装置壳体内安装离 合片的腔体内注满磁流变液, 所述的联轴器套入输入离合片轴, 构成整体。 离合线圈组件由离合线圈架、 离合线圈组成, 制动线圈组件由制动线圈架、 制动线圈组成, 制动线圈组件和离合线圈组件分别拉出引脚线到壳体外; 复位 传感器、 脉冲传感器安装在装置壳体内, 拉出引脚线到装置壳体外; 右侧盖板 组件套入输入离合片轴, 固定安装在装置壳体端面, 左侧盖板组件套入输出轴, 固定安装在装置壳体端面; 装置壳体的腔体内设有输出离合片、 输入离合片, 输出离合片、 输入离合片间隙距离为 1.5mm, 采用磁流变液作动力传动媒介体, 见图 2。 实施例 1 如图 3所示, 上述的磁流变动力传动装置的安装方法步骤如下:
1. 将端盖密封圈轴承、 高速油封装入端盖板, 固定油封压板, 形成两套盖 板组件,
2. 将输出轴套装入隔板, 形成隔板组件,
3. 安装离合线圈架、 离合线圈, 形成离合线圈组件,
4. 安装制动线圈架、 制动线圈, 形成制动线圈组件,
5. 将轴承、 高速油封、 装入装置壳体内, 固定油封压板,
6. 安装复位传感器、 脉冲传感器在装置壳体内, 拉出引脚线到壳体外,
7. 安装阻尼板在装置壳体内,
8. 将输出轴穿入装置壳体内的轴承内径,
9. 安装码盘在输出轴上,
10. 安装制动线圈组件到装置壳体内, 紧靠阻尼板, 拉出引脚线到壳体外,
11. 安装隔板组件到装置壳体内,
12. 将输出离合片与输出轴进行固定安装,
13. 安装离合线圈组件到装置壳体内, 紧靠隔板, 拉出引脚线到壳体外,
14. 安装隔磁片到输出离合片, 15. 安装输入离合片到隔磁片,
16. 将一套盖板组件套入输入离合片轴, 固定安装在装置壳体端面,
17. 将一套盖板组件套入输出轴, 固定安装在装置壳体端面,
18. 在装置壳体安装离合片的腔体内注满磁流变液,
19. 将联轴器套入输入离合片轴内, 完成装配整件磁流变传动装置。
实施例 2 如图 4、 图 5所示, 上述的磁流变动力传动装置的控制方法如下:
1. 时间控制模式
电气主回路合闸, 直流电源供电, 系统启动, 继电器常开触点闭合, 启动动力 电源, 电动机运转; 控制系统根据单片机或上位机设定计的运行时间值、 输出 轴速度电流值, 驱动离合器线圈电流, 离合器闭合, 输出轴动力输出; 当运行 到达设定的时间值时, 离合器线圈失电, 离合器执行分离, 此时继电器常开触 点复位, 切断电机驱动电源; 此时控制系统驱动制动器线圈电流, 制动器合闸, 制动输出轴, 结束动力输出。
2. 位置控制模式
电气主回路合闸, 直流电源供电, 系统启动, 继电器常开触点闭合, 启动 动力电源, 电动机运转; 控制系统根据单片机设定计的脉冲数值或上位机送来 的脉冲量、 输出轴速度电流值, 驱动离合器线圈电流, 离合器闭合, 输出轴动 力输出; 控制系统比较设定和反馈的脉冲数, 当反馈的脉冲计数等于设定的脉 冲数值时, 离合器线圈失电, 离合器执行分离, 此时继电器常开触点复位, 切 断电机驱动电源; 此时控制系统驱动制动器线圈电流, 制动器合闸, 制动输出 轴, 结束动力输出。
3. 循环控制模式 在设定间隔时间和周期次数的前提下, 控制器连续重复循环一个动力输出 工作周期, 时间控制状态或脉冲控制状态的运行环境的过程, gp "启动运行一 复位停止——时间间隔——启动运行——复位停止—— "。
4. 传动控制程序
4.1、 断路器合闸, 接通动力电源, 电动机和控制器处于待机状态;
4.2、 直流电源供电, 程序驱动控制器的触点开关闭合, 动力回路接触器带 电工作, 电动机运转, 控制器的离合及制动器线圈任处于失电状态, 输出轴不 转;
4.3、 设置运行模式、 运行时间、 脉冲数、 循环数、 各类运行参数;
4.4、 启动控制系统到工作状态, 驱动电路产生输出电流, 离合线圈带电产 生磁场, 离合片啮合, 输出轴运转并输出动力;
4.5、 输出轴运转使传感器产生反馈脉冲信号, 系统程序从 0位开始脉冲计 数;
4.6、 当比较电路得到位置脉冲数或上位脉冲数与传感器反馈脉冲数相等数 值, 系统程序控制离合线圈失电, 制动线圈带电, 此时离合器停止工作, 制动 器启动刹车, 同时驱动控制器电路的开关触点复原, 电动机失电并停止运转;
4.7、 控制程序根据设定的时间, 命令动力控制器及电机恢复到初始待机状 态;
4.8、 输出轴循环运行结束, 断路器开闸, 切断动力控制电源。
5. 面板操作方法, 如图 6所示,
5.1、四种模式指示: a. 时间运行模式, b. 位置运行模式 ,c. 循环运行模式, d. 参数设置模式, 默认为时间运行模式;
5.2、 面板设置: 上下加减按键, 确认退出按键; 5.3、 菜单设置: 延时打开触点 1、 延时闭合触点 2、 当前运行模式、 运行时 间数、 位置脉冲数、 运行循环次数、 线圈驱动电流、 输出脉冲数、 满度输出电 压值;
5.4、 面板操作: 长按确认键进入设置模式, 进入后运行指示灯灭设置指示 灯亮; 此时参数序号数码管指示当前 8位数码管为哪一个参数, 按上下键可改 变参数, 按确认键可存储参数, 按退出键可系统复位初始状态。

Claims

权 利 要 求 书
1. 一种磁流变动力传动装置, 包括端盖密封圈、 码盘、 复位传感器、 阻尼板、 隔板、 输出离合片、 输入离合片、 输出轴套、 隔磁片、 联轴器、 高速油封、 端盖板、 离合线圈架、 离合线圈、 制动线圈架、 制动线圈、 脉冲传感器、 装 置壳体、 轴承、 油封压板、 输出轴、 磁流变液, 其特征在于装置壳体左右两 侧分别设有两套盖板组件, 端盖板内设有端盖密封圈、 轴承、 高速油封, 端 盖板固定油封压板形成盖板组件, 装置壳体内设有隔板组件, 所述的隔板组 件输出轴套装入隔板形成隔板组件, 隔板组件左侧设有制动线圈组件, 隔板 组件右侧设有离合线圈组件, 所述的隔板紧靠离合线圈组件, 所述的阻尼板 设置于装置壳体内并紧靠制动线圈组件, 所述的输出轴设置于装置壳体内并 穿过轴承内径, 输出轴一端升出盖板组件, 另一端穿过输出轴套连接输出离 合片, 输出离合片右侧设有输入离合片, 输出离合片和输入离合片安装在隔 磁片上, 并通过隔磁片隔开, 输入离合片上设有输入离合片轴, 装置壳体内 安装离合片的腔体内注满磁流变液, 所述的联轴器套入输入离合片轴, 构成 整体。
2. 如权利要求 1所述的一种磁流变动力传动装置, 其特征在于所述的离合线圈 组件由离合线圈架、 离合线圈组成, 所述的制动线圈组件由制动线圈架、 制 动线圈组成, 制动线圈组件和离合线圈组件分别拉出引脚线到壳体外。
3. 如权利要求 1所述的一种磁流变动力传动装置, 其特征在于所述的复位传感 器、 脉冲传感器安装在装置壳体内, 拉出引脚线到装置壳体外, 所述的输出 轴上设有码盘。
4. 如权利要求 1所述的一种磁流变动力传动装置, 其特征在于所述的右侧盖板 组件套入输入离合片轴, 固定安装在装置壳体端面, 左侧盖板组件套入输出 轴, 固定安装在装置壳体端面。
5. 如权利要求 1所述的一种磁流变动力传动装置, 其特征在于所述装置壳体的 腔体内设有输出离合片、 输入离合片, 输出离合片、 输入离合片间隙距离为 1. 5mm, 采用磁流变液作动力传动媒介体。
6. 一种如权利要求 1所述的磁流变动力传动装置的安装方法, 其特征在于所述 的安装方法步骤如下: a. 将端盖密封圈轴承、 高速油封装入端盖板, 固定油封压板, 形成两套 盖板组件,
b. 将输出轴套装入隔板, 形成隔板组件,
c 安装离合线圈架、 离合线圈, 形成离合线圈组件,
d. 安装制动线圈架、 制动线圈, 形成制动线圈组件,
e. 将轴承、 高速油封、 装入装置壳体内, 固定油封压板,
f. 安装复位传感器、 脉冲传感器在装置壳体内, 拉出引脚线到壳体外, g. 安装阻尼板在装置壳体内,
h. 将输出轴穿入装置壳体内的轴承内径,
i. 安装码盘在输出轴上,
j . 安装制动线圈组件到装置壳体内,紧靠阻尼板,拉出引脚线到壳体外, k. 安装隔板组件到装置壳体内,
1. 将输出离合片与输出轴进行固定安装,
m. 安装离合线圈组件到装置壳体内, 紧靠隔板, 拉出引脚线到壳体外, n. 安装隔磁片到输出离合片,
0. 安装输入离合片到隔磁片,
P. 将一套盖板组件套入输入离合片轴, 固定安装在装置壳体端面, q. 将一套盖板组件套入输出轴, 固定安装在装置壳体端面,
r. 在装置壳体安装离合片的腔体内注满磁流变液,
s. 将联轴器套入输入离合片轴内, 完成装配整件磁流变传动装置。
7. 一种如权利要求 1所述的磁流变动力传动装置的控制方法, 其特征在于所述 的控制方法如下: 断路器合闸, 接通动力电源, 电动机和控制器处于待机状 态; 直流电源供电, 程序驱动控制器的触点开关闭合, 动力回路接触器带电 工作, 电动机运转, 控制器的离合及制动器线圈任处于失电状态, 输出轴不 转; 启动控制系统到工作状态, 驱动电路产生输出电流, 离合线圈带电产生 磁场, 离合片啮合, 输出轴运转并输出动力; 输出轴运转使传感器产生反馈 脉冲信号, 系统程序从 0位开始脉冲计数; 当比较电路得到位置脉冲数与传 感器反馈脉冲数相等数值, 系统程序控制离合线圈失电, 制动线圈带电, 此 时离合器停止工作,制动器启动刹车,同时驱动控制器电路的开关触点复原, 电动机失电并停止运转; 控制程序根据设定的时间, 命令动力控制器及电机 恢复到初始待机状态; 输出轴循环运行结束, 断路器开闸, 切断动力控制电 源。
8. 如权利要求 8所述的控制方法, 其特征在于所述的具体控制方法如下: a. 时间控制模式: 电气主回路合闸, 直流电源供电, 系统启动, 继电 器常开触点闭合, 启动动力电源, 电动机运转; 控制系统根据单片机设定的 运行时间值、 输出轴速度电流值, 驱动离合器线圈电流, 离合器闭合, 输出 轴动力输出; 当运行到达设定的时间值时, 离合器线圈失电, 离合器执行分 离, 此时继电器常开触点复位, 切断电机驱动电源; 此时控制系统驱动制动 器线圈电流, 制动器合闸, 制动输出轴, 结束动力输出; b. 位置控制模式: 电气主回路合闸, 直流电源供电, 系统启动, 继电 器常开触点闭合, 启动动力电源, 电动机运转; 控制系统根据单片机设定的 脉冲数值、 输出轴速度电流值, 驱动离合器线圈电流, 离合器闭合, 输出轴 动力输出; 控制系统比较设定和反馈的脉冲数, 当反馈的脉冲计数等于设定 的脉冲数值时, 离合器线圈失电, 离合器执行分离, 此时继电器常开触点复 位, 切断电机驱动电源; 此时控制系统驱动制动器线圈电流, 制动器合闸, 制动输出轴, 结束动力输出;
C. 循环控制模式: 在设定间隔时间和周期次数的前提下, 控制器连续 重复循环一个动力输出工作周期的过程。
PCT/CN2013/080524 2013-07-31 2013-07-31 一种磁流变动力传动装置和控制方法 WO2015013919A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080524 WO2015013919A1 (zh) 2013-07-31 2013-07-31 一种磁流变动力传动装置和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080524 WO2015013919A1 (zh) 2013-07-31 2013-07-31 一种磁流变动力传动装置和控制方法

Publications (1)

Publication Number Publication Date
WO2015013919A1 true WO2015013919A1 (zh) 2015-02-05

Family

ID=52430857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080524 WO2015013919A1 (zh) 2013-07-31 2013-07-31 一种磁流变动力传动装置和控制方法

Country Status (1)

Country Link
WO (1) WO2015013919A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150242A1 (zh) * 2015-03-23 2016-09-29 中国矿业大学 一种基于磁流变技术的采煤机电机扭矩轴过载保护装置
CN107830080A (zh) * 2017-12-04 2018-03-23 洛阳理工学院 一种新型的磁流变液超越离合器
CN108374840A (zh) * 2018-03-30 2018-08-07 浙江师范大学 一种基于磁流变效应的滑动轴承制动装置及控制方法
RU2692504C1 (ru) * 2018-12-04 2019-06-25 Анатолий Александрович Рыбаков Способ расцепления ведущего вала с ведомым валом и торможения ведомого вала механизмом сцепления-расцепления валов на основе феррожидкости
RU2698266C1 (ru) * 2019-01-21 2019-08-23 Анатолий Александрович Рыбаков Способ адаптации динамических нагрузок муфты расцепления-сцепления ведущего вала с ведомым валом и муфты торможения ведомого вала на основе феррожидкости
CN112567148A (zh) * 2018-09-25 2021-03-26 阿尔卑斯阿尔派株式会社 转矩产生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324686A (ja) * 2003-04-22 2004-11-18 Shiida Kensetsu Kk 磁気クラッチ/ブレーキ・ユニット
US20090266666A1 (en) * 2008-04-29 2009-10-29 Mcdaniel Andrew Joseph Magneto-rheological clutch and wheel transmission apparatuses and methods
CN103148125A (zh) * 2013-03-25 2013-06-12 沈锡鹤 一种磁流变的动力制动装置
CN103148190A (zh) * 2013-03-25 2013-06-12 沈锡鹤 一种磁流变离合、制动、变速控制的传动总成装置
CN103161845A (zh) * 2013-03-25 2013-06-19 沈锡鹤 一种磁流变离合传动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324686A (ja) * 2003-04-22 2004-11-18 Shiida Kensetsu Kk 磁気クラッチ/ブレーキ・ユニット
US20090266666A1 (en) * 2008-04-29 2009-10-29 Mcdaniel Andrew Joseph Magneto-rheological clutch and wheel transmission apparatuses and methods
CN103148125A (zh) * 2013-03-25 2013-06-12 沈锡鹤 一种磁流变的动力制动装置
CN103148190A (zh) * 2013-03-25 2013-06-12 沈锡鹤 一种磁流变离合、制动、变速控制的传动总成装置
CN103161845A (zh) * 2013-03-25 2013-06-19 沈锡鹤 一种磁流变离合传动装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150242A1 (zh) * 2015-03-23 2016-09-29 中国矿业大学 一种基于磁流变技术的采煤机电机扭矩轴过载保护装置
CN107830080A (zh) * 2017-12-04 2018-03-23 洛阳理工学院 一种新型的磁流变液超越离合器
CN107830080B (zh) * 2017-12-04 2024-05-14 洛阳理工学院 一种新型的磁流变液超越离合器
CN108374840A (zh) * 2018-03-30 2018-08-07 浙江师范大学 一种基于磁流变效应的滑动轴承制动装置及控制方法
CN108374840B (zh) * 2018-03-30 2023-08-25 浙江师范大学 一种基于磁流变效应的滑动轴承制动装置及控制方法
CN112567148A (zh) * 2018-09-25 2021-03-26 阿尔卑斯阿尔派株式会社 转矩产生装置
RU2692504C1 (ru) * 2018-12-04 2019-06-25 Анатолий Александрович Рыбаков Способ расцепления ведущего вала с ведомым валом и торможения ведомого вала механизмом сцепления-расцепления валов на основе феррожидкости
RU2698266C1 (ru) * 2019-01-21 2019-08-23 Анатолий Александрович Рыбаков Способ адаптации динамических нагрузок муфты расцепления-сцепления ведущего вала с ведомым валом и муфты торможения ведомого вала на основе феррожидкости

Similar Documents

Publication Publication Date Title
WO2015013919A1 (zh) 一种磁流变动力传动装置和控制方法
WO2015161430A1 (zh) 一种磁流变伺服调速减速器及其组装控制方法
TWI539094B (zh) A Magnetorheological Force Control Motor and Its Control Method
CN203463530U (zh) 一种磁流变动力传动装置
TWI571572B (zh) A magnetorheological power transmission and control method
CN105914100B (zh) 一种大容量接触器的动态可靠控制策略
CN103363001B (zh) 一种磁流变动力传动装置及其安装方法和控制方法
CN202058650U (zh) 触电保安系统专用微功耗接触器
CN201306510Y (zh) 节能真空电磁阀
CN208200242U (zh) 一种双制动三相电动葫芦
CN206889526U (zh) 一种新型车用电磁离合器
CN109505895A (zh) 一种磁流变液制动器
CN204289279U (zh) 一种新型交流接触器
CN203823037U (zh) 一种磁流变伺服调速减速器
CN202510816U (zh) 一种智能型永磁控制阀门
CN202065377U (zh) 一种电磁离合器
CN206480524U (zh) 一种开关装置及使用该装置的快速开关
CN205264594U (zh) 快速单相旁路真空接触器
CN204041450U (zh) 地面驱动螺杆泵抱闸间歇式制动系统
CN104048038A (zh) 一种磁流变伺服调速减速器及其组装控制方法
CN209651769U (zh) 一种节能双制动三相电动葫芦
CN202013852U (zh) 智能交流接触器
CN201963893U (zh) 一种两位二通高速开关阀
CN202302201U (zh) 新型电动阀门
CN205806266U (zh) 张力控制用手动自动双控式磁粉离合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13890449

Country of ref document: EP

Kind code of ref document: A1