WO2015013778A1 - Medidor telemétrico eletrônico de vazão de fluidos - Google Patents
Medidor telemétrico eletrônico de vazão de fluidos Download PDFInfo
- Publication number
- WO2015013778A1 WO2015013778A1 PCT/BR2013/000281 BR2013000281W WO2015013778A1 WO 2015013778 A1 WO2015013778 A1 WO 2015013778A1 BR 2013000281 W BR2013000281 W BR 2013000281W WO 2015013778 A1 WO2015013778 A1 WO 2015013778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- helical rotor
- flow rate
- fluid
- fluid flow
- electronic
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/06—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
- G01F1/075—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission with magnetic or electromagnetic coupling to the indicating device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/40—Arrangements in telecontrol or telemetry systems using a wireless architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/80—Arrangements in the sub-station, i.e. sensing device
Definitions
- the present application relates to an Electronic Telemetric Fluid Flow Meter which is suitable for measuring the flow of passing fluids in a conduction medium, especially cold water, and also to measure the flow of other fluids in order to process and totaling this flow by transmitting it later by means of a wireless connection via a wireless connection to another post-processing device, allowing indirect control and direct supervision and control of the fluid supply system, thus ensuring the correct flow information, its operation and operation, in favor of the service provider that manages that meter.
- a flow meter is a device used to measure the flow of fluids in a conduction medium, for example the flow of water in a supply pipe.
- a flowmeter especially a hydrometer, utilizes water flow to displace a turbine that drives a gear assembly.
- the axis of said turbine is coupled to a gear assembly which has the sole purpose of processing and displaying the totality of that flow. This totalization is displayed in the form of numbers printed on axial disks that will be read by the agent designated by the service provider administering the meter.
- gauges where there is, in the gear set as described above, the inclusion of one more specific gear to accommodate a magnet.
- the rotation of this magnet is detected by an accessory electronic circuit, aiming to process the totalization of this flow and transmit it for further data processing.
- inaccuracy in measurement occurs, especially in meters with advanced use time, due to wear of their various moving parts.
- gaps are found between the inner walls of the housing and the turbine blades, producing an unmeasured secondary flow, which incurs one more time is inaccurate in the measurement obtained.
- the function of information of equipment violation to the service provider is precarious, also, by the same necessity of additional external equipment, coupled to the main conventional equipment connected to the electric network.
- the present patent application contemplates a precision metered fluid flow meter and protection against fraud and tampering. The result of the measurements and the occurrence of fraud and violations are reported to the service provider who administers the equipment and the consumer consumption measurements via a telemetry connection.
- the present patent application relates to a meter containing a helical rotor, its only moving part, as opposed to the various mechanical moving parts in conventional meters, which allows the reduction of the moment of inertia existing at the beginning of the measurement. This remarkable feature results in a drastic reduction of wear f of this single moving part, allowing for increased measurement accuracy even at small fluid flow rates and long equipment life, bringing the advantage of savings in maintenance and adjustment.
- the alternation and variation of the magnetic flux caused by the sensors arranged around the helical rotor generates electrical signals that are analyzed and processed by an electronic circuit present in the device, which thus determines the flow of the rotor. passing fluid with great precision and totalizing it.
- This variation of magnetic fields in the sensors around the rotor is produced by magnetic devices placed at the ends or peripheries of the rotor, which is mounted on its axis, aligned with the shaft of the duct through which the fluid flows, allowing for increased accuracy of measurement.
- the flow of fluid through the helical rotor chamber produces a displacement in the rotor and its consequent rotation, proportional to the volume of fluid displaced.
- the direction and intensity of the flow can be monitored, according to the rotation of the helical rotor, thus enabling the increase or decrease of the totalization processed. consistent with the flow of fluid through the helical rotor chamber.
- its speed is determined by counting the time interval between this first pass and the next in the magnetic devices installed at the ends or periphery of the helical rotor.
- the flow is calculated by the magnetic devices, through the sensors present there.
- the totalization of the flow measurement is directly determined by computing the number of turns of the helical rotor, since the flow will be directly proportional to the speed and direction of the helical rotor.
- the equipment has a display where items such as the total reading processed, the instantaneous flow, or the momentary state of the battery can be checked.
- This information can be obtained through an external access button, which allows you to choose which items to display on the display for a sufficient reading time only to save battery power.
- the meter In order to use the minimum power supplied by the battery, when the meter does not detect the presence of fluid movement, it may go into hibernation, returning to full operation as soon as the presence of fluid movement is detected and the consequent need for measurement, informed by the sensors in the equipment. Hibernation also occurs at long time intervals between the actuation of the sensors as well as at small fluid flows.
- the equipment will transmit the total fluid flow measurement obtained, associated with the meter identification code, allowing its capture by the service provider that manages the equipment.
- the equipment alarm is triggered generating information for the service provider that manages the equipment, allowing the necessary steps to be taken to remedy the event. thus ensuring the functionality of supervision and indirect control of the equipment.
- Figure 1 shows the helical rotor (19) mounted on the meter body, longitudinally to the water flow, where magnetic devices (20) and * (21) can be observed.
- the helical rotor (19) is mounted on the supports (22) and (23) which are locked within the meter body by means of the locks (24) and (25).
- Figure 1 shows the helical rotor (19) mounted with the magnetic devices (20) and (21) and support pins (26) and (27) in longitudinal section where the magnetic devices (20) and (21) can be observed. ) which operate in 180 degree opposition, mounted perpendicular to the helical rotor axis (19).
- the magnetic devices (20) and (21) align with the plane formed between them and the measuring sensors (16) and (17).
- the metal-made bearing pins (26) and (27) connect to each end of the helical rotor (19), creating stronger contact points with the bearings (22) and (23).
- Figure 2 presents the exploded view of the equipment, where it can be observed its main components placed near its connection points.
- the function button (17) which lends itself to providing the measurement information.
- the upper housing (5) It also includes the antenna (9) of the data transmission system.
- the battery (11) the magnetic field sensor (12) and the housing opening sensor (13) are placed.
- the meter body (14) provides fluid flow and supports the metering plate (15) where the metering sensors (16) and (17) as well as most electronic system components are located.
- the meter body (14) is coated with the magnetic shield (18) designed to protect the measuring system against interference from fields or external electromagnetic signals.
- the helical rotor (19) is mounted inside the meter body (14) where the magnetic devices (20) and (21) can be observed.
- the helical rotor (19) is. mounted on the supports (22) and (23) which are locked within the meter body (14) by means of the locks (24) and (25).
- the flow rate is defined as positive or negative and the resulting incremental or decremented totalisation. For example: if the measuring sensor (16) is triggered in advance s Immediate activation of the measuring sensor (17), counterclockwise rotation will occur and consequent positive fluid flow; If the measuring sensor (16) is actuated later and immediately after the measuring sensor (17) is activated, clockwise rotation and consequent negative flow of the fluid will occur.
- Figure 3 shows the assembled meter, containing the whole set already described and that make up the meter body, namely: an upper housing (5) with opening for the display (6), hinged lid (7) for closing and housing bottom (10).
- the hinged lid has an opening angle greater than 90 degrees allowing for a wide view of the measurement.
- the threaded connections for the fluid piping including the electronics board and the helical rotor.
- Figure 4 shows the block diagram of the electronics that make up the digital measurement system composed of a sensor block (28) that detects motion and determines the direction of helical rotor rotation, informing the microprocessor block (29) of the presence and polarity of the fluid flow.
- the microprocessor block (29) may enter hibernation mode if it does not detect helical rotor movement within a certain time interval and may still hibernate during intervals between detections. of movement when the flow rate is too low. In this way, the display (6) will be in the normal operating condition as off, being only turned on for a short time, in response to the requests made by the activation of the device, by means of the button, provided for such purpose.
- the present reading display (6) we can have the accumulated volume readings, the instantaneous or momentary flow rate and the estimated percentage of battery charge.
- the battery monitor block 32 monitors the estimated amount of charge still present in the battery. battery and informs it to the microprocessor block (29). This in turn, in addition to the other assignments, monitors the state of the housing aperture sensor (13) and the external magnetic field sensor (12).
- Another hypothesis for data transmission is its transfer upon request from the collecting equipment, when the transceiver block r (31) is enhanced by the data collector, thus activating the microprocessor block (29) so that they are transmitted and received the data.
- the meter identification number, the current total reading and a coherence check number of the transmitted data are transmitted.
- the meter waits for confirmation of receipt by the data collection unit. If it does not confirm receipt, the microprocessor block (29) resend the information until necessary, as often as determined by the provider of the service administering that equipment; In this case, to the data collection equipment, determine and inform the system . -supervisor the inactivity of that meter. However, it will not cease its measurement activities.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measuring Volume Flow (AREA)
Abstract
Medidor Telemétrico Eletrônico de Vazão de Fluidos destinado a medir a vazão de fluidos passantes em um meio de condução, em especial a água fria, objetivando também mensurar ainda a vazão de outros fluidos, de forma a processar e totalizar esta vazão, transmitindo-a posteriormente de forma telemétrica por meio de uma conexão sem fio conectada a outro dispositivo de pós-processamento, permitindo atingir de forma indireta o comando e de forma direta a supervisão e controle do sistema de fornecimento deste fluido, garantindo assim a operação, o funcionamento e a informação correta da vazão, ao fornecedor dos serviços que administra o equipamento e ao consumidor final, contendo um rotor helicoidal (19) com um ou mais dispositivos magnéticos (20) e (21) e sensores de medição (16) e (17) caracterizados por processar a vazão do fluido, pela contagem do número de revoluções do rotor helicoidal (19) provocadas pelo volume de fluído deslocado dentro da câmara do rotor helicoidal (19), incrementando-a ou, opcionalmente, decrementando-a, de acordo com o acionamento dos sensores de medição (16) e (17) pelos dispositivos magnéticos (20) e (21), calculando de forma precisa a vazão do fluido, baseada no intervalo de tempo decorrido entre o acionamento do primeiro sensor de medição (16) e o segundo sensor de medição (17) ou vice-versa, no caso de decréscimo da totalização processada.
Description
"Medidor Telemétrico Eletrônico de Vazão de Fluidos"
O presente pedido de invenção diz respeito a um Medidor Telemétrico Eletrônico de Vazão de Fluidos que se presta a medir a vazão de fluidos passantes em um meio de condução, em especial água fria, objetivando também mensurar a vazão de outros fluidos, de forma processar e totalizar esta vazão, transmitindo-a posteriormente de forma telemétrica, por meio de uma conexão sem fio, a outro dispositivo de pós-processamento, permitindo atingir de forma indireta o comando e de forma direta a supervisão e controle do sistema de fornecimento deste fluido, garantindo assim a informação correta da vazão, sua operação e funcionamento, em favor do fornecedor dos serviços que administra aquele medidor.
No atual estado da técnica um medidor de vazão é um dispositivo Utilizado para mensurar a vazão de fluidos em um meio de condução, por exemplo, o fluxo de água em um cano de abastecimento. Convencionalmente, um medidor de vazão, em especial um hidrômetro, utiliza o fluxo de água para o deslocamento de uma turbina que movimenta um conjunto de engrenagens. O eixo da referida turbina é acoplado a um conjunto de engrenagens que tem o propósito único de processar e apresentar a totalização dessa vazão. Esta totalização é exibida na forma de números impressos em discos axiais que serão lidos pelo agente designado pelo fornecedor do serviço que administra o medidor.
Existem versões de medidores onde há, no conjunto de engrenagens como o acima descrito, a inclusão de mais uma engrenagem específica para acomodar um ímã. A rotação deste ímã é detectada por um circuito eletrônico acessório, objetivando processar a totalização desta vazão e transmiti-la para processamento posterior de dados.
Dadas as limitações mecânicas dos equipamentos atuais, compreendidos no estado da técnica, há a ocorrência de imprecisão na medição, especialmente em medidores com avançado tempo de uso, pelo desgaste de suas diversas partes móveis. Alem disto, ainda que observado o grau de precisão utilizado para a fabricação das partes mecânicas do medidor convencional, são encontradas folgas entre as paredes internas da carcaça ê as pás da turbina, produzindo um escoamento secundário que não é medido, o que incorre mais uma vez èm imprecisão da medição obtida.
Outro ponto negativo a ser observado nestes mesmos equipamentos é o contato do jato de água nas pás da turbina e o estreitamento feito no tubo, para que este jato produza um movimento de rotação suficiente para vencer o momento de inércia do conjunto dé engrenagens ao qual esta turbina está conectada. Esta característica produz um excessivo desgaste do eixo da turbina e do conjunto, pois este se encontra sujeito à grande força de deslocamento gerada pela água.
Na mesma linha de raciocínio, dentre as várias limitações existentes no atual estado da técnica, há um modelo de medidor convencional, com um parafuso fixado na sua parte externa destinado ao ajuste de compensação de perdas inerentes ao sistema mecânico para reduzir a imprecisão na medição. Este parafuso desvia o fluxo principal de água para fora da turbina, sendo um método indireto de compensação de perdas. A exposição externa deste parafuso torna-se ponto de violação, provocando uma totalização menor do que a existente naquele ponto de medição, com prejuízos para fornecedor do serviço que administra o medidor
Nos medidores de vazão mecânicos existentes, a função de transmissão sem fio, que permite o envio das totalizações das medições do fluído ao fornecedor do serviço é precária, tendo em vista a necessidade de um equipamento externo adicional acoplado ao equipamento convencional principal o qual, no atual estado da técnica, exige uma conexão com a rede elétrica.
Ainda, nestes mesmos medidores mecânicos, a função de informação de violação do equipamento ao fornecedor dos serviços é precária, também, pela mesma necessidade de equipamento externo adicional, acoplado ao equipamento convencional principal conectado com a rede elétrica.
O presente pedido de patente de invenção contempla um medidor de vazão de fluidos com precisão de medição e proteção contra fraudes e violações. O resultado das medições e a ocorrência de fraudes e violações são informadas ao fornecedor dos serviços que administra o equipamento e as medições de consumo ao consumidor através de conexão telemétrica.
Por meio da atividade inventiva aplicada a componentes mecânicos de precisão, da utilização da telemetria, e da redução de componentes mecanicamente acoplados, é alcançado um nível de erro de medição estimado em 3% (três por cento) inferior, portanto, aos valores obtidos com os medidores atuais que se situam na faixa de 15% (quinze por cento) a 20% (vinte por cento) para medidores mecânicos convencionais.
O presente pedido de patente de invenção se refere a um medidor que contém um rotor helicoidal, sua única parte móvel, em oposição às diversas partes móveis mecânicas existentes nos medidores convencionais, o que permite a redução do momento de inércia existente no início da medição. Esta notável característica resulta em uma drástica redução do desgastef desta única parte móvel, permitindo incremento na precisão da medição, mesmo em pequenas vazões de fluidos e longo tempo de uso do equipamento, trazendo a vantagem de economia em manutenção e ajustes.
No momento em que o rotor helicoidal é acionado, a alternância e a variação do fluxo magnético provocadas nos sensores dispostos em volta do rotor helicoidal, gera sinais elétricos que são analisados è processados por um circuito eletrônico presente no dispositivo que, assim determina a vazão do fluido passante com grande precisão e a totaliza. Esta variação de campos magnéticos nos sensores presentes no entorno do rotor é produzida por dispositivos magnéticos colocados nas extremidades ou na periferia dó rotor, que é montado em seu eixo, alinhado ao eixo do duto pelo qual o fluido escoa, permitindò o aumento na precisão da medição. O escoamento do fluido pela câmara do rotor helicoidal produz um deslocamento no rotor e sua consequente roíação, proporcional ao volume de fluido deslocado.
Pelo acionamento dos sensores magnéticos provocados com o deslocamento e a rotação do rotor helicoidal, poderão ser acompanhados o sentido e a intensidade do fluxo, em acordo com a rotação do rotor helicoidal, viabilizando-se, dessa forma, o incremento ou decremento da totalização processada, coerentemente com a passagem dó fluido pela câmara do rotor helicoidal.
Tendo sido detectada a rotação do rotor helicoidal, a sua velocidade é determinada a partir da contagem do intervalo de tempo entre esta primeira passagem e a próxima nos dispositivos magnéticos instalados nas extremidades ou na periferia do rotor helicoidal. Dessa forma, sabendo-se o volume deslocado em relação ao tempo, a vazão é calculada pelos dispositivos magnéticos, por intermédio dos sensores ali presentes. Assim, a totalização da medida da vazão é determinada de forma direta, computando-se a quantidade de voltas do rotor helicoidal , uma vez que a vazão será diretame te proporcional à velocidade e sentido do rotor helicoidal.
Em ação preventiva contra eventuais tentativas de fraude, onde campos magnéticos externos poderiam ser colocados próximos ao medidor com o objetivo de impedir o movimento do rotor helicoidal ou de produzir leituras imprecisas pelos sensores, outros sensores de aproximação de campos magnéticos externos estão instalados para coibir estes problemas, informando esta ocorrência ao sistema eletrônico e gerando um sinal de alarme que pode ser transmitido à unidade coletora de dados externa e esta o retransmite ao fornecedor do serviço ? que administra aquele equipamento. Além disto, sensores dé violação dá carcaça existentes no medidor, em eventuais tentativas de abertura do equipamento, irão produzir um sinal de alarme, ou anúncio telemétrico na central conectada de forma a proteger o conjunto contras, fraudes.
Adicionalmente, existe no equipamento uma blindagem eletromaghetica destinada a coibir possíveis tentativas de fraude quando da aproximação ou colocação de um campo magnético externo, emitindo de imediato um aviso telemétrico à fornecedora do serviço, não interferindo ou paralisando o processo medição da vazão do fluido, mas mantendo a precisão de suá medição.
Para prover informações sobre as medidas de vazão obtidas, o equipamento possui um mostrador (display) onde podem ser verificados itens como a totalização da leitura processada, a vazão instantânea, ou momentânea o estado da bateria. Tais informações podem ser obtidas por meio de um botão de acesso externo, que permite escolher os itens a serem exibidos no mostrador (display) durante um intervalo de tempo suficiente apenas para a leitura, de forma a economizar a carga da bateria.
Com o propósito de utilizar o mínimo de energia fornecida pela bateria, quando o medidor, não detecta a presença de movimento do fluido, pode entrar em estado de hibernação,
voltando ao pleno funcionamento tão logo seja detectada a presença de movimento de fluído e consequente necessidade de medição, informada pelos sensores existentes no equipamento. A hibernação também ocorre nos longos intervalos de tempo entre o acionamento dos sensores, bem como nas pequenas vazões de fluído. Em data previamente agendada, o equipamento irá transmitir a totalização da medida de vazão de fluído obtida, associada ao código de identificação d medidor, permitindo a sua captura pelo fornecedor dos serviços que administra o equipamento. Em ocorrências de fraude, nível crítico de carga da bateria e ainda a interferência de campos ou sinais eletromagnéticos, o alarme do equipamento é acionado gerando uma informação para o fornecedor dos serviços que administra o equipamento, permitindo a tomada de providências necessárias para sanar o ocorrido, garantindo desta forma a funcionalidade da supervisão e o controle indireto do equipamento.
O presente pedido de patente de invenção é descrito nas linhas a sèguir tendo como referência os desenhos devidamente numerados e identificados conforme segue: A figura 1 apresenta o rotor helicoidal (19) montado no corpo do medidor, em sentido longitudinal ao fluxo de água, onde podem ser observados os dispositivos magnéticos (20) e* (21). O rotor helicoidal (19) é montado nos apoios (22) e (23) os quais estão travados dentro do corpo do medidor por meio das travas (24) e (25).
A mesma figura 1 apresenta o rotor helicoidal (19) montado com òs dispositivos magnéticos (20) e (21) e pinos de apoio (26) e (27) em corte longitudinal onde podem ser observados os dispositivos magnéticos (20) e (21) que funcionam em oposição de 180 graus, montados perpendicularmente ao eixo do rotor helicoidal (19). Os dispositivos magnéticos (20) e (21) se alinham ao plano formado entre estes e os sensores de medição (16) e (17). Os pinos de apoio (26) e (27), construídos em metal, conectam-se a cada extremidade do rotor helicoidal (19), criando pontos de contato mais resistentes com os apoios (22) e (23).
A Figura 2 apresenta a vista explodida do equipamento, onde podem ser observados seus principais componentes colocados próximos aos seus pontos de conexão.
Na carcaça superior (5), ao lado do display (6) e tampa articulada (16), é colocado o botão de função (17), o qual se presta a disponibilizar as informações de medida. A carcaça superior (5)
comporta também a antena (9) do sistema de transmissão de dados. Na carcaça inferior (10) é colocada a bateria (11), o sensor de campo magnético (12) e o sensor de abertura das carcaças (13).
O corpo do medidor (14) dá passagem ao fluido e suporta a placa de medição (15) onde estão localizados os sensores de medição (16) e (17) assim como a maioria dos componentes eletrônicos do sistema.
O corpo do medidor (14) é revestido com a blindagem magnética (18) destinada a proteger o sistema de medição contra a interferência de campos ou sinais eletromagnéticos externos.
Montado dentro do corpo do medidor (14) está o rotor helicoidal (19) onde podem ser observados os dispositivos magnéticos (20) e (21). O rotor helicoidal (19) é. montado nos apoios (22) e (23) os quais estão travados dentro do corpo do medidor (14) por meio das travas (24) e (25).
Tomando novamente como referência a figura 2, pode ser observado que, por meio da ordem,, de acionamento dos sensores de medição (16) e (17), o sentido de rotação do rotor helicoidal (19) é determinado. Dessa forma, a vazão é definida como positiva ou negativa e a;.{ consequente totalização incrementada ou decrementada. Exemplificando: caso seja acionado o sensor de medição (16) de forma antecipada s Imediata ao acionamento do sensor de> medição (17), ocorrerá rotação em sentido anti-horário e consequente fluxo positivo do fluido; caso haja o acionamento do sensor de medição (16) de forma posterior e imediata ao acionamento do sensor de medição (17), ocorrerá rotação em sentido horário e consequente fluxo negativo do fluido.
A Figura 3 apresenta o medidor montado, contendo todo o conjunto já descrito e que compõe o corpo do medidor, quais sejam: uma carcaça superior (5) com abertura para o display (6), tampa articulada (7) para seu fechamento e carcaça inferior (10). Á tampa articulada possui ângulo de abertura maior do que 90 graus o que permite a visualização ampla da medida. Também podem ser observas as conexões rosqueadas para a tubulação do fluido, incluindo a placa eletrônica e o rotor helicoidal.
A figura 4 apresenta o diagrama em blocos da eletrônica que compõe o sistema de medição digital composto de um bloco sensor (28) que detecta o movimento e determina o sentido de
rotação do rotor helicoidal, informando ao bloco microprocessador (29) a presença e a polaridade da vazão do fluido.
Com o objetivo de se usar o mínimo de energia proveniente da bateria, poderá o bloco microprocessador (29) entrar em modo de hibernação caso este não detecte o movimento do rotor helicoidal em determinado intervalo de tempo, podendo ainda hibernar durante os intervalos entre as detecções de movimento quando a vazão se apresentar muito baixa. Desta forma, o display (6) ficará na condição regular de operação como desligado, sendo apenas ligado durante pequeno intervalo de tempo, como resposta às requisições feitas pelo acionamento do dispositivo, por meio de uso do botão, provido pára tal fim. No display de leitura presente (6), podemos ter as leituras de volume acumulado, a vazão instantânea ou momentânea e o percentual estimado de carga da bateria.
O bloco monitor da bateria (32) monitora a quantidade estimada da carga ainda presente na. bateria e a informa ao bloco microprocessador (29). Este por sua vez, além das outras;, atribuições, monitora o estado do sensor de abertura das carcaças (13) e do sensor de campo magnético externo (12).
Na ocorrência de disparo do sensor de campo magnético (12), do sensor de abertura da.; carcaça (13) ou da presença de nível crítico de carga da bateria, assim como indicado pelo; bloco monitor da bateria (32), será gerado um alarme para o sistema, quando haverá a consequente transmissão telemétrica imediata desta informação ao fornecedor dos serviços pelo bloco microprocessador (29) utilizando o transceiver (31).
Outra hipótese para a transmissão de dados é a sua transferência por solicitação do equipamento coletor, quando o bloco transceptor (transceiver)r (31) é acioriado pelo coletor de dados, acionando assim o bloco microprocessador (29) a fim de que sejam transmitidos e recebidos os dados. Nesta ocorrência, iniciada pela solicitação recebida através do bloco transceptor (transceiver) (31), são transmitidos o número de identificação do medidor, a leitura atual totalizada e um número de verificação da coerência dos dados transmitidos.
Assim que o medidor transmite a sua leitura, seja sob solicitação ou proativamente, no caso de fraude ou violação, este espera pela confirmação do recebimento da informação pela unidade coletora de dados. Caso esta não confirme o recebimento, o bloco microprocessador (29)
reenviará a informação até que seja necessária, cu em quantidade de vezes determinada pelo fornecedor do serviço que administra aquele equipamento, , cabendo; neste caso, ao equipamento coletor de dados, determinar e informar ao sistema . -supervisor a inatividade daquele medidor. Entretanto, este não cessará as suas atividades de medição. As características apresentadas nesta descrição, nas reivindicações e nos desenhos, podem ser providas independentemente ou em qualquer combinação apropriada sem descaracterizar o escopo principal, isto é, o de medir a vazão de fluídos telemetricamente. Uma característica de alguma reivindicação subsidiária, assim, pode ser incorporada em uma reivindicação da qual ela não é dependente.
Claims
1. Medidor Telemétrico Eletrônico de Vazão de Fluidos destinado a medir a vazão de fluidos passantes em um meio de condução, em especial a água fria, objetivando também mensurar ainda a vazão de outros fluidos, de forma a processar e totalizar esta vazão, transmitindo-a posteriormente de forma telemétrica por meio de uma conexão sem fio conectada a um outro dispositivo de pós-processamento, permitindo atingir de forma indireta o comando e de forma direta a supervisão e controle do sistema de fornecimento deste fluido, garantindo assim a operação, o funcionamento e a informação correta da totalização da vazão, ao fornecedor dos serviços que administra o equipamento e ao consumidor final, contendo um rotor helicoidal (19) com um ou mais dispositivos magnéticos (20) e (21) e sensores de medição (16) e (17) caracterizados por processar e computar, ou totalizar a vazão do fluido pela contagem do número de revoluções de um rotor helicoidal (19) provocadas pelo volume de fluído deslocado dentro da câmara desse roic-r (19), com superior precisão, incrementando- a ou, opcionalmente, decrementando-a, de acordo com o acionamento dos sensores de medição (16) e (17) pelos dispositivos magnéticos (20) e (2i), caicuianao ae. Torma precisa a vazão do fluido,, baseada no intervalo de tempo decorrido entre o acionamento do primeiro sensor de medição (16) e o segundo sensor de medição (17) qu vice-versa, no caso de decréscimo da totalização processada.
2. Medidor Telemétrico Eletrônico de Vazão de Fluidos de acordo com a reivindicação 1, caracterizado pelo fato de utilizar um rotor helicoidal (19) que é acionado com a passagem do fluido pela câmara do rotor helicoidal (19), a única parte móvel mecânica do conjunto ora apresentado, produzido em com primento suficiente , para auferir ao sistema a precisão desejada, contendo dispositivos magnéticos distribuídos nas extremidades ou na periferia do rotor helicoidal (19), de modo a acionar sensores eletrônicos (16) e (17) que visam processar a rotação do rotor helicoidal (19), proporcionalmente aq volume de fluido passante.
3. Medidor Telemétrico Eletrônico de Vazão de Fluidos, de acordo com a reivindicação 1, caracterizado pelo fato de utilizar dispositivos magnéticos (20) e (21) posicionados diretamente no rotor helicoidal (19), no plano de corte transversal do meio de condução.
4. Medidor Telemétrico Eletrônico de Vazão de Fluidos, de acordo com a reivindicação 1, caracterizado por conter um circuito eletrônico. acoplado ao rotor helicoidal (19) que processa o movimento das rotações, permitindo realizar as medições, e transmitir e ou receber, telemetricamente, informações de medição para o fornecedor dos serviços que administra o equipamento além de apresentá-las em um mostrador (display) (6), para o consumidor final e se necessário para o fornecedor dos serviços que administra o equipamento.
5. Medidor Telemétrico Eletrônico de Vazão de Fluidos, de acordo com a reivindicação 1, caracterizado por conter um sensor e um circuito de proteção contra eventual interferência eletromagnética externa, conectado ao circuito eletrônico, capaz de notificar a central do fornecedor do serviço através de conexão telemétrica.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/BR2013/000281 WO2015013778A1 (pt) | 2013-08-02 | 2013-08-02 | Medidor telemétrico eletrônico de vazão de fluidos |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/BR2013/000281 WO2015013778A1 (pt) | 2013-08-02 | 2013-08-02 | Medidor telemétrico eletrônico de vazão de fluidos |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015013778A1 true WO2015013778A1 (pt) | 2015-02-05 |
Family
ID=52430769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2013/000281 WO2015013778A1 (pt) | 2013-08-02 | 2013-08-02 | Medidor telemétrico eletrônico de vazão de fluidos |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015013778A1 (pt) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3240063A (en) * | 1960-10-27 | 1966-03-15 | Lynch Corp | Flowmeter |
US7650801B2 (en) * | 2005-09-08 | 2010-01-26 | M & Fc Holding Llc | Turbine flowmeter |
US8407115B2 (en) * | 2006-06-29 | 2013-03-26 | Carina Technology, Inc. | System and method for monitoring, controlling, and displaying utility information |
US8602384B2 (en) * | 2009-07-31 | 2013-12-10 | Capstone Metering Llc | Water meter |
-
2013
- 2013-08-02 WO PCT/BR2013/000281 patent/WO2015013778A1/pt active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3240063A (en) * | 1960-10-27 | 1966-03-15 | Lynch Corp | Flowmeter |
US7650801B2 (en) * | 2005-09-08 | 2010-01-26 | M & Fc Holding Llc | Turbine flowmeter |
US8407115B2 (en) * | 2006-06-29 | 2013-03-26 | Carina Technology, Inc. | System and method for monitoring, controlling, and displaying utility information |
US8602384B2 (en) * | 2009-07-31 | 2013-12-10 | Capstone Metering Llc | Water meter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9476740B2 (en) | Reverse flow detection and annunciation | |
US20070241930A1 (en) | Automatic Meter-Reading Interface for Fluid Sensing Meters | |
RU2337320C1 (ru) | Счетчик для учета воды | |
WO2019233388A1 (zh) | 高精度双向计量流体计量表 | |
US20050028609A1 (en) | Flow-monitoring method and device | |
WO2015013778A1 (pt) | Medidor telemétrico eletrônico de vazão de fluidos | |
CN202661117U (zh) | 法兰式超声波流量计 | |
KR100363836B1 (ko) | 적산 열량계 | |
BR102016002021A2 (pt) | Electronic fluid flow control telemetric meter | |
WO2015089594A1 (pt) | Medidor telemétrico de vazão de fluidos sem partes móveis | |
CN208588421U (zh) | 高精度双向计量电子水表 | |
JP6824543B1 (ja) | 水道メータ | |
WO2015089595A1 (pt) | Medidor telemétrico de vazão de fluidos com troca de relojoaria | |
CN210108453U (zh) | 一种电子计数式水表 | |
KR100212443B1 (ko) | 무선통신을 이용한 수도 및 개스검침회로 | |
GB2101219A (en) | Rotary fluid-flow meter | |
CN217877851U (zh) | 一种装配稳定的智能远传水表 | |
JP2008275501A (ja) | 電子式流量計 | |
KR100363835B1 (ko) | 수도미터 | |
CN219798438U (zh) | 一种双机电转换的物联网水表 | |
CN217877853U (zh) | 一种nb无磁远程控制用可警报的水表 | |
CN221445203U (zh) | 一种光纤光栅流量测量装置 | |
CN214121354U (zh) | 一种水表故障检测装置 | |
ES2939497T3 (es) | Sistema, método y producto de programa de ordenador de detección de un cable cortado | |
CN221259981U (zh) | 一种欠压自动关阀的智能水表 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13890747 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13890747 Country of ref document: EP Kind code of ref document: A1 |