WO2015012396A1 - Adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, and separation device - Google Patents

Adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, and separation device Download PDF

Info

Publication number
WO2015012396A1
WO2015012396A1 PCT/JP2014/069724 JP2014069724W WO2015012396A1 WO 2015012396 A1 WO2015012396 A1 WO 2015012396A1 JP 2014069724 W JP2014069724 W JP 2014069724W WO 2015012396 A1 WO2015012396 A1 WO 2015012396A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal complex
carbon atoms
ligand
mixed gas
group
Prior art date
Application number
PCT/JP2014/069724
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 野呂
進 北川
魚谷 信夫
Original Assignee
国立大学法人北海道大学
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 国立大学法人京都大学 filed Critical 国立大学法人北海道大学
Priority to JP2015528359A priority Critical patent/JPWO2015012396A1/en
Publication of WO2015012396A1 publication Critical patent/WO2015012396A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons

Definitions

  • the present invention relates to a method for adsorbing and separating a hydrocarbon mixed gas having 4 or more carbon atoms and a separation apparatus for carrying out the adsorbing and separating method.
  • 1,3-Butadiene is a kind of raw material for synthetic rubber, and conventionally it has been produced mainly from naphtha.
  • raw materials are shifting from naphtha to shale gas, and the supply of 1,3-butadiene derived from naphtha is decreasing.
  • hydrocarbon gas having 4 or more carbon atoms such as 1,3-butadiene using shale gas as a raw material is being studied.
  • a hydrocarbon gas having 4 carbon atoms is produced from shale gas (methane) by FT reaction
  • 1,3-butadiene (boiling point ⁇ 4.41 ° C., critical diameter 4.31 angstrom)
  • 1-butene A mixed gas having a boiling point of ⁇ 6.26 ° C. and a critical diameter of 4.46 ⁇ is obtained.
  • 1,3-butadiene and 1-butene are not easily separated because their boiling points and critical diameters are close to each other. Therefore, separation using an adsorbent is considered.
  • the mixed gas contains a large amount of 1,3-butadiene, in order to purify it, other components, that is, 1, It is desirable to purify 1,3-butadiene by adsorbing butene or butane having a lower degree of unsaturation than 3-butadiene to the adsorbent. It is also important for the chemical industry plant design to collect the butene and butane adsorbed and use them as industrial raw materials.
  • a method using activated carbon or zeolite generally known as an adsorbent is known, but hydrocarbons having a low degree of unsaturation, particularly 1-butene and n- It is difficult to highly selectively adsorb hydrocarbons having 4 or more carbon atoms and low unsaturation such as butane, and such hydrocarbons having low unsaturation can be adsorbed with high selectivity. No practical adsorption method has been provided.
  • Non-patent Document 1 in a specific porous metal complex, the affinity for a saturated hydrocarbon having a specific degree of unsaturation is higher than the affinity for a hydrocarbon having a higher degree of unsaturation. It has been found.
  • J.H. Gascon et al. Chem. Eur. J. , 2011, 17, p. In 8832-8840 (Non-patent Document 2), it is described that butene and butane are recovered by the porous metal complex.
  • the temperature needs to be excessively increased.
  • the present invention has been made in view of the above-described problems of the prior art, and has a carbon number of 4 or more, such as a mixed gas of 1,3-butadiene and 1-butene, and is identical and unsaturated.
  • a carbon number of 4 or more such as a mixed gas of 1,3-butadiene and 1-butene
  • hydrocarbons having a higher degree of unsaturation can be purified.
  • a method of adsorbing and separating a hydrocarbon mixed gas having 4 or more carbon atoms capable of recovering a gas adsorbed in a temperature range (for example, 25 to 200 ° C.) that is possible and does not require an excessive temperature rise in practice, and
  • An object is to provide a separation device.
  • the adsorption separation method for hydrocarbon mixed gas having 4 or more carbon atoms of the present invention is represented by the following formula (1):
  • P is a saturated hydrocarbon group which may have a substituent other than R a ;
  • R a is a functional group having a coordination property to a metal ion;
  • m is an integer of 2 or more, a plurality of R a may be the same or different from each other.
  • a metal complex containing a ligand represented by the formula (hereinafter sometimes referred to as “first ligand”) and a metal ion has 4 or more carbon atoms, the same carbon number, and unsaturated. Carbon having a specific degree of unsaturation or less is selectively adsorbed on the metal complex by bringing a mixed gas containing at least two kinds of hydrocarbons having different degrees into contact with each other. This is a method for adsorbing and separating hydrocarbon mixed gas of several formulas or more.
  • P in the first ligand may be substituted with a saturated hydrocarbon group having 1 to 8 carbon atoms. It is preferably a saturated hydrocarbon group having 3 to 12 carbon atoms having
  • R a of the first ligand is “—CO 2 ⁇ ”, “—CS 2 ⁇ ”, “—C A group represented by any one selected from the group consisting of ( ⁇ O) S ⁇ ”and“ —C ( ⁇ O) NR A— ”(wherein R A is a hydrogen atom or an alkyl group having 4 or less carbon atoms). It is preferable that
  • the metal ion is at least one metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc. It is preferable that it is ion of these.
  • the metal complex includes “a hetero atom having 2 to 4 atoms” and “a heterocyclic group having no double bond”. It is preferable to further include a second ligand that satisfies both the conditions of “compound”.
  • the metal complex is represented by the following formula (2):
  • the metal complex has a molar ratio represented by [first ligand]: [third ligand]. The range is preferably 100: 0 to 20:80.
  • the metal complex is represented by the following formula (3):
  • a first ligand A represented by: A second ligand B which is a heterocyclic compound containing 2 to 4 heteroatoms and no double bond; Following formula (4):
  • Q 1 is a halogen atom or an unsaturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms; m 1 is 1 to 2; Is an integer.
  • the separation apparatus of the present invention comprises a separation means comprising a metal complex containing a ligand represented by the above formula (1) and a metal ion, An introduction means for introducing a mixed gas containing at least two kinds of hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation into the separation means, By bringing the mixed gas into contact with the metal complex, hydrocarbons having a specific degree of unsaturation or less in the mixed gas are selectively adsorbed on the metal complex, and hydrocarbons having a specific degree of unsaturation or less are not adsorbed. Separating hydrocarbons with higher saturation, This is a separation apparatus for hydrocarbon mixed gas having 4 or more carbon atoms.
  • “selectively adsorbing hydrocarbons having a specific degree of unsaturation to a metal complex” means carbons having the same carbon number and different degrees of unsaturation under the same temperature and pressure conditions.
  • the adsorption amount of hydrocarbons having a specific degree of unsaturation or less is larger than the adsorption amount of hydrocarbons having a higher degree of unsaturation.
  • the amount of adsorption can be measured by a volume method using, for example, an automatic specific surface area / pore distribution measuring device (BELSORP-miniII manufactured by Nippon Bell Co., Ltd.).
  • the degree of unsaturation means the proportion of carbon-carbon double bonds contained in hydrocarbons, and the degree of unsaturation is the number of double bonds in hydrocarbon molecules having the same carbon number and the same skeleton. It depends on the number of For example, in the case of a straight-chain hydrocarbon having 4 carbon atoms, the unsaturated is n-butane (double bond 0) ⁇ 1-butene (double bond 1) ⁇ 1,3-butadiene (double bond 2) in this order. The degree of unsaturation increases in the order of cyclohexane (double bond 0) ⁇ cyclohexene (double bond 1) in a cyclic hydrocarbon having 6 carbon atoms.
  • a mixed gas containing at least two types of hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation such as a mixed gas of 1,3-butadiene and 1-butene
  • the hydrocarbon gas having a carbon number of 4 or more can be purified by selectively adsorbing hydrocarbons having a specific degree of unsaturation or less in the mixed gas.
  • An adsorption separation method and a separation apparatus can be provided.
  • the adsorbed gas can be recovered in a temperature range (for example, 25 to 200 ° C.) that does not require an excessive temperature rise in practice.
  • FIG. 4 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 1.
  • 5 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 2.
  • 6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 3.
  • 6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 4.
  • 6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 5.
  • FIG. 10 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 6.
  • 6 is a schematic diagram showing a crystal structure of a metal complex obtained in Synthesis Example 7.
  • FIG. 10 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 7.
  • 6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 1.
  • 2 is a graph showing the 273 K adsorption isotherm of 1-butene and 1,3-butadiene measured in Example 1 using the metal complex obtained in Synthesis Example 1.
  • 4 is a graph showing the 273 K adsorption isotherm of n-butane, 1-butene and 1,3-butadiene measured in Example 2 using the metal complex obtained in Synthesis Example 2.
  • 4 is a graph showing 273 K adsorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 3 using the metal complex obtained in Synthesis Example 3.
  • 6 is a graph showing the 273 K adsorption isotherm of n-butane, 1-butene and 1,3-butadiene measured in Example 4 using the metal complex obtained in Synthesis Example 4.
  • 6 is a graph showing the 273 K adsorption isotherm of n-butane, 1-butene and 1,3-butadiene measured in Example 5 using the metal complex obtained in Synthesis Example 5.
  • 6 is a graph showing the 273K adsorption isotherm of 1-butene and 1,3-butadiene measured in Example 6 using the metal complex obtained in Synthesis Example 6.
  • 3 is a graph showing 303 K desorption isotherms of 1-butene and 1,3-butadiene measured in Example 7 using the metal complex obtained in Synthesis Example 1.
  • FIG. 6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 8 using the metal complex obtained in Synthesis Example 2.
  • FIG. 6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 9 using the metal complex obtained in Synthesis Example 3.
  • FIG. 6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 10 using the metal complex obtained in Synthesis Example 4.
  • FIG. 6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 11 using the metal complex obtained in Synthesis Example 5.
  • FIG. 10 is a graph showing the desorption isotherm of 303K of 1-butene and 1,3-butadiene measured in Example 12 using the metal complex obtained in Synthesis Example 6.
  • FIG. 16 is a graph showing the 273 K adsorption isotherm of n-butane and 1,3-butadiene measured in Example 13 using the metal complex obtained in Synthesis Example 7.
  • 4 is a graph showing the adsorption and desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Comparative Example 1 using the metal complex obtained in Comparative Synthesis Example 1.
  • the hydrocarbon mixed gas having 4 or more carbon atoms which is an object of the adsorption separation of the present invention, is a mixed gas containing at least two hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation. It is.
  • the hydrocarbon has preferably 6 or less carbon atoms.
  • the hydrocarbon mixture gas having 4 or more carbon atoms includes at least two kinds of saturated hydrocarbons and unsaturated hydrocarbons having different degrees of unsaturation, for example, a mixture containing hydrocarbons having 4 carbon atoms.
  • the gas examples include a mixed gas containing at least two or more of n-butane, isobutane, 1-butene, cis-2-butene, trans-2-butene, isobutene, 1,3-butadiene, cyclobutane, and cyclobutene.
  • the mixed gas containing a hydrocarbon having 5 carbon atoms n-pentane, 1-pentene, cis-2-pentene, trans-2-pentene, 1,3-pentadiene, 1,4-pentadiene, cyclopentane
  • Examples include a mixed gas containing at least two of cyclopentene and cyclopentadiene, and a mixture containing a hydrocarbon having 6 carbon atoms.
  • the mixed gas to be subjected to the adsorption separation of the present invention may be a mixed gas containing at least two kinds of hydrocarbons having the same carbon number and different degree of unsaturation, but has the same carbon number and the same skeleton.
  • a mixed gas containing at least two kinds of hydrocarbons having different degrees of unsaturation is preferable.
  • Examples of such a mixed gas include a mixed gas produced from shale gas (methane) by an FT reaction. Specifically, a mixed gas of 1-butene and 1,3-butadiene, a mixed gas of n-butane and 1,3-butadiene, a mixed gas of cis-2-butene and 1,3-butadiene, trans-2- Mixed gas of butene and 1,3-butadiene, mixed gas of n-butane and 1-butene, mixed gas of n-butane and cis-2-butene, mixed gas of n-butane and trans-2-butene, isobutane and A mixed gas of isobutene, a mixed gas of cyclobutane and cyclobutene, a mixed gas of n-pentane and 1-pentene, a mixed gas of n-pentane and cis-2-pentene, a mixed gas of n-pentane and trans-2-pen
  • the adsorption separation method for hydrocarbon mixed gas having 4 or more carbon atoms of the present invention is represented by the following formula (1):
  • P is a saturated hydrocarbon group which may have a substituent other than R a ;
  • R a is a functional group having a coordination property to a metal ion;
  • m is an integer of 2 or more, a plurality of R a may be the same or different from each other.
  • hydrocarbons having a specific degree of unsaturation or less are selectively adsorbed on the metal complex to separate hydrocarbons having a specific degree of unsaturation or less from hydrocarbons having a higher degree of unsaturation.
  • This is an adsorption separation method for hydrocarbon mixed gas having 4 or more carbon atoms.
  • a plurality of things “may be the same as or different from each other” means that a plurality of things “may be the same or all may be different, Only may be the same ".
  • P of the first ligand is a group formed by removing m hydrogen atoms from a saturated hydrocarbon compound which may have a substituent other than R a , and is an acyclic hydrocarbon group, a ring It may be a formula hydrocarbon group or a bridged cyclic hydrocarbon group.
  • P in such a first ligand is preferably a saturated hydrocarbon group having 12 or less carbon atoms which may be substituted with a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms.
  • a saturated hydrocarbon group having 3 to 12 carbon atoms having a cyclic structure which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and a saturated hydrocarbon having 1 to 3 carbon atoms. It is more preferably a saturated hydrocarbon group having 5 to 10 carbon atoms having a cyclic structure which may be substituted with a group.
  • the present inventors presume that when the carbon number of the saturated hydrocarbon group (excluding substituents) exceeds the upper limit, the selectivity of hydrocarbons having a low degree of unsaturation during hydrocarbon adsorption tends to decrease. To do.
  • saturated hydrocarbon compound in which m hydrogen atoms are removed to form P include acyclic hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, Decane, cyclic hydrocarbon group, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, decalin, bridged cyclic hydrocarbon group, [2.2.2] -bicyclooctane, adamantane Are preferred, cyclohexane, decalin, [2.2.2] -bicyclooctane and adamantane are more preferred, and cyclohexane and adamantane are even more preferred.
  • acyclic hydrocarbon groups such as methane, ethane, propane, butane, pentane, he
  • R a of the first ligand may be a functional group having a coordination property to a metal ion, and includes “—CO 2 ⁇ ”, “—CS 2 ⁇ ”, “—C ( ⁇ O) S ⁇ . , “—C ( ⁇ O) N (R A ) ⁇ ”, “—SO 3 ⁇ ”, “—PO 4 (R A ) ⁇ ”, “—C ⁇ N”, “—S ⁇ ”, “— Examples thereof include a group represented by any one selected from the group consisting of “O ⁇ ” and “—NH ⁇ ”.
  • M of the first ligand may be an integer of 1 to 4, but a low-dimensional metal complex (the description of the low-dimensional metal complex will be described later) can be easily obtained. Since expression can be expected, it is preferably an integer of 1 to 2, and more favorable selective adsorption characteristics are exhibited, and there is a tendency that excessive low pressure (for example, less than 5 kPa) is not required to recover the adsorbed gas. More preferably 1. When m is an integer of 2 or more, a plurality of Ra may be the same or different from each other.
  • P of the first ligand may have a substituent other than Ra , and when the number of substituents is 2 or more, these substituents are the same as each other. May be different.
  • substituent other than R a include a halogen atom and a saturated hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a halogen atom.
  • Such a saturated hydrocarbon group is preferably a saturated hydrocarbon group having 1 to 6 carbon atoms which may be substituted with a halogen atom, and more preferably one having 1 to 3 carbon atoms which may be substituted with a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable, and a fluorine atom is most preferable.
  • a substituent other than the R a is, which may be linear or branched or cyclic, cyclic In some cases, it may be monocyclic or polycyclic.
  • the saturated hydrocarbon group having 1 to 6 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group.
  • the substituent other than R a is a methyl group, an ethyl group, n- propyl Group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group are more preferable, methyl group, ethyl group, n-propyl group An isopropyl group, a cyclopentyl group, and a cyclohexyl group are more preferable, and a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are particularly preferable. Most preferred is a methyl group.
  • the metal complex may contain one of the first ligands alone or
  • the metal ion contained in the metal complex may be an ion of an arbitrary metal element, but is preferably an ion of a metal element selected from Groups 2 to 13 of the periodic table.
  • metal complexes As such metal ions, the synthesis of metal complexes is relatively easy, so magnesium, aluminum, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, strontium, yttrium. More preferred is an ion of at least one metal selected from the group consisting of niobium, molybdenum, ruthenium, rhodium, cadmium, barium, lanthanum, tantalum and tungsten. As said metal complex, 1 type in the said metal ion may be included independently, or 2 or more types may be included in combination.
  • metal salt as a raw material is relatively inexpensive, the group consisting of magnesium, aluminum, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc At least one metal ion selected from is more preferable, and since the synthesis of the metal complex is relatively easy, at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc Metal ions are particularly preferred.
  • the ion of copper, zinc, or cobalt is preferable, the ion of copper or cobalt is more preferable, and the ion of copper is further more preferable.
  • the metal ions are usually 1 to 7 valent cations.
  • the cation is preferably divalent to hexavalent, more preferably divalent to tetravalent, and even more preferably divalent to trivalent since it is necessary to form a metal complex with a plurality of ligands. And most preferably it is divalent.
  • the metal complex used in the present invention includes, in addition to the first ligand, “a hetero atom having 2 to 4 atoms (for example, at least one element selected from the group consisting of N, O and S”). And a second ligand that satisfies both the conditions of “a heterocyclic compound not containing a double bond”.
  • the second ligand may be a monocyclic group, a condensed ring group, or a group to which a monocyclic group is linked.
  • Triethylenediamine (1,4-diazabicyclo [2.2 .2] octane), piperazine, 2,5-dimethylpiperazine, 3,3′-bipiperidine, 4,4′-bipiperidine, 1,3-di- (4-piperidyl) propane, hexamethylenetetramine, 1,4- Examples include dioxane and 1,4-dithiane, and one of these may be used alone, or two or more may be used in combination.
  • a second ligand at least one selected from the group consisting of triethylenediamine, piperazine, 4,4′-bipiperidine, and hexamethylenetetramine is used because the stability of the metal complex can be further improved.
  • triethylenediamine or piperazine is more preferable, and triethylenediamine is most preferable.
  • the metal complex used in the present invention has the following formula (2):
  • Q is an R a substituent other than may have an unsaturated hydrocarbon group; R a and m R a and each of the first in the ligand independently It is synonymous with m.) May further contain a third ligand represented by:
  • the absolute difference between the number of carbon atoms in the P structure of the first ligand and the number of carbon atoms in the Q structure of the third ligand is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and further preferably an integer of 0 to 2.
  • this difference exceeds the upper limit, the present inventors infer that the selectivity of hydrocarbons with a low degree of unsaturation during hydrocarbon adsorption tends to decrease.
  • Q of the third ligand is a group formed by removing m hydrogen atoms from an unsaturated hydrocarbon compound which may have a substituent other than Ra , and is an acyclic hydrocarbon group. Or a cyclic hydrocarbon group.
  • Q of such a third ligand is preferably an unsaturated hydrocarbon group having 12 or less carbon atoms, which may be substituted by a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms. .
  • it is more preferably an unsaturated hydrocarbon group having 3 to 12 carbon atoms having a cyclic structure, which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and a saturated hydrocarbon group having 1 to 3 carbon atoms.
  • the unsaturated hydrocarbon compound in which m hydrogen atoms are removed to form Q include butene, pentene, hexene, heptene, octene, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, and cyclopentadiene.
  • 1,2,3,4-tetrahydronaphthalene benzene, naphthalene, anthracene, etc., preferably cyclopentene, cyclohexene, cycloheptene, cyclopentadiene, benzene, naphthalene, more preferably cyclohexene, benzene, naphthalene. . More preferred is benzene.
  • Q of the third ligand may have a substituent other than R a , and a preferable example thereof is a substituent other than R a in P of the first ligand. Synonymous with example.
  • 1 type in the said 3rd ligand may be included independently, or 2 or more types may be included in combination.
  • the selectivity of hydrocarbons due to the degree of unsaturation during hydrocarbon adsorption is further improved or more suitable. From the viewpoint of being applicable to the recovery of gas (hydrocarbon) having adsorbed pressure, it is preferable that the following relationships are satisfied.
  • the molar ratio represented by [metal ion]: [first ligand] is 1.0: 0.
  • the range is preferably 5 to 1.0: 4.0, more preferably 1.0: 0.8 to 1.0: 3.0, and 1.0: 1.0 to 1 More preferably, it is in the range of 0.0: 2.0.
  • the said metal complex further contains the said 3rd ligand in addition to the said 1st ligand, about the said metal ion, the said 1st ligand, and the said 3rd ligand, [
  • the molar ratio represented by [metal ion]: [first ligand + third ligand] is preferably in the range of 1.0: 0.5 to 1.0: 4.0, The range is more preferably 1.0: 0.8 to 1.0: 3.0, and still more preferably 1.0: 1.0 to 1.0: 2.0.
  • the ratio of the third ligand in the metal complex is 100: 0 to 20:80 in a molar ratio represented by [first ligand]: [third ligand].
  • a range is preferable.
  • P of the first ligand is composed of an acyclic hydrocarbon group or a cyclic hydrocarbon group
  • the molar ratio represented by [first ligand]: [third ligand] is , 100: 0 to 50:50 is more preferable
  • P of the first ligand includes a bridged cyclic hydrocarbon group
  • [first ligand]: [third The molar ratio represented by the ligand] is preferably in the range of 100: 0 to 20:80.
  • the metal complex further contains the second ligand in addition to the first ligand, the metal ion and the second ligand contained in the metal complex ]:
  • the molar ratio represented by [second ligand] is preferably in the range of 1.0: 0.2 to 1.0: 3.0, and 1.0: 0.3 to 1 The range is more preferably 0.0: 2.0, and still more preferably 1.0: 0.3 to 1.0: 1.0.
  • the complex is a metal complex that forms an integrated structure having a one-dimensional (linear) or two-dimensional (planar) dimensionality by being linked by an ionic bond and a coordinate bond. It is more preferable that the metal complex form an integrated structure.
  • the metal complex has a divalent metal ion, the first ligand having one functional group coordinated to the metal ion, and two heteroatoms.
  • the metal complex includes a divalent metal ion, the first ligand having two functional groups coordinated to the metal ion, and two heteroatoms.
  • the second ligand the molar ratio represented by [metal ion]: [first ligand]: [second ligand] is 3: 3: 1. Tend to be able to get when.
  • auxiliary ligands other than said 1st ligand, said 2nd ligand, and said 3rd ligand.
  • auxiliary ligands include triethylamine, water, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, acetone, Examples include pyridine, tetrahydrofuran, diethyl ether, dimethoxyethane, and methyl ethyl ether, and water, N, N-dimethylformamide, and N, N-diethylformamide are preferable.
  • These auxiliary ligands may be one kind or two or more kinds.
  • the metal complex used in the present invention preferably has a regular structure and a flexible structure, since the separation efficiency between hydrocarbons having a low degree of unsaturation and hydrocarbons having a high degree of unsaturation can be further increased.
  • the regular structure here means that at least one peak derived from the unit cell is observed at 15 ° (2 ⁇ ) or less, preferably 12 ° or less, more preferably 10 ° or less by measurement of powder X-ray diffraction.
  • the ordered structure is characterized, and the peak is preferably 3 ° (2 ⁇ ) or more, more preferably 4 ° or more.
  • the flexible structure here is characterized in that the structure is changed by an external stimulus (for example, adsorption of guest molecules).
  • the powder X-ray diffraction pattern of the metal complex having a flexible structure changes with the adsorption of small molecules.
  • the metal complex having a flexible structure changes its structure again when the adsorbed small molecules are desorbed, and usually recovers the structure before adsorbing the small molecules.
  • the metal complex is represented by the following formula (3):
  • P 1 is a halogen atom or a saturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and m 1 is 1 to 2)
  • the second ligand which is a heterocyclic compound containing a heteroatom having 2 to 4 atoms and no double bond.
  • Q 1 is a halogen atom or an unsaturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms; m 1 is 1 to 2; Is an integer.
  • the metal complex contains a third ligand C represented by the formula (I) and at least one metal ion selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, and zinc. .
  • P 1 of the ligand A is a saturated hydrocarbon having 12 or less carbon atoms which may be substituted with a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms in the P of the first ligand.
  • a group formed by removing m hydrogen atoms from a compound, and a preferable example is as described in the first ligand.
  • m 1 of the ligand A is an integer of 1 to 2 out of m of the first ligand, and a low-dimensional compound is easily obtained, and better selective adsorption characteristics are expected. Since it is possible, it is preferably 1.
  • the metal ion contained in the metal complex is an ion of at least one metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc among the above metal ions.
  • a metal ion is preferably a copper, zinc or cobalt ion, more preferably a copper or cobalt ion, and even more preferably a copper ion because the synthesis of the metal complex is extremely easy.
  • the preferable example of the said ligand B is synonymous with the preferable example of said 2nd ligand.
  • Q 1 of the ligand C is an unsaturated carbon atom having 12 or less carbon atoms which may be substituted with a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms in the Q of the third ligand.
  • a group obtained by removing m hydrogen atoms from a hydrogen compound, and a preferable example is as described in the third ligand.
  • the method for producing the metal complex used in the present invention is not particularly limited, but the ligand or a precursor thereof (the precursor of the first ligand and the second ligand as necessary).
  • a ligand and / or a precursor of a third ligand) are reacted in a solvent with a metal salt comprising the metal ion (and, if necessary, a counter ion and crystal water) or a hydrate thereof. It is preferable to manufacture by.
  • solvents such as water, methanol, ethanol, 2-propanol, tetrahydrofuran, acetone, acetonitrile, N, N-dimethylacetamide, N, N-diethylacetamide, chloroform and the like can be used. May further add another auxiliary ligand.
  • the functional groups in the precursor of the first ligand and the precursor of the third ligand include “—CO 2 A”, “—CS 2 A”, “—C ( ⁇ O)”. “SA”, “—C ( ⁇ O) N (R A ) A”, “—SO 3 A”, “—PO 4 (R A ) A”, “—C ⁇ N”, “—SA”, “— Examples are groups represented by any one selected from the group consisting of “OA” and “—NHA”.
  • A is a hydrogen atom, an alkali metal atom or an ammonium ion which may be substituted with an alkyl group, preferably a hydrogen atom.
  • the molar ratio of the precursor of the first ligand, the second ligand, the precursor of the third ligand, and the metal salt to be reacted is the same as that of each metal salt. It is necessary to adjust according to the coordination ability of the ligand.
  • the preferred ratio of the precursor of the first ligand and the precursor of the third ligand to be reacted is the ratio of the first ligand contained in the metal complex to be produced to the above-mentioned It is also necessary to adjust based on the ratio with the third ligand. Further, the yield of the ligand or the precursor thereof to be reacted may be improved by making the ligand or the precursor thereof in excess of the stoichiometric ratio compared to the metal salt. In some cases, the amount of ligand used excessively can be reduced by carrying out the reaction at a high concentration.
  • the metal salt is preferably fluoride, chloride, bromide, nitrate, sulfate, perchlorate, acetate, tetrafluoroborate, tetraphenylborate, hexafluorophosphate, hexafluorosilicic acid. Salts, hydrates thereof, or combinations thereof. Nitrate, sulfate, perchlorate, acetate, tetrafluoroborate are preferred because they are highly available and the coordinating power of the counter anion is preferably low enough not to interfere with the intended reaction. , Hexafluorophosphates or hydrates thereof, more preferably nitrates, sulfates, acetates or hydrates thereof.
  • the reaction temperature at the time of reacting the ligand or the precursor thereof with the metal salt is preferably 0 ° C. or higher and 200 ° C. or lower, more preferably 10 ° C. or higher and 150 ° C. or lower. More preferably, it is 10 degreeC or more and 100 degrees C or less, More preferably, they are 20 degreeC or more and 60 degrees C or less.
  • Such a reaction is preferably carried out under a pressure of 0.01 to 10 MPa, more preferably carried out under a pressure of 0.05 to 1 MPa, and even more preferably carried out under a pressure of 0.08 to 0.12 MPa. Usually, it is performed under normal pressure.
  • the reaction time is usually 1 minute to 1 week, preferably 5 minutes to 120 hours.
  • reaction vessel used for such a reaction an open vessel or a closed vessel such as an autoclave can be used.
  • the reaction vessel can be heated by using a liquid or gaseous heat medium, or by irradiating microwaves or ultrasonic waves.
  • the generated metal complex is precipitated in the reaction solution as a precipitate.
  • the precipitated metal complex can be washed with the same type of solvent used for the reaction or a solvent that is more volatile than the solvent used for the reaction. preferable.
  • the obtained metal complex is porous, since the solvent may be adsorbed in the pores, it is preferable to dry the metal complex in order to remove these. As such drying, vacuum drying under room temperature or heating conditions is preferable.
  • the precursor of the first ligand (and the precursor of the third ligand as necessary) and the metal salt It is also possible to adopt a stepwise synthesis method in which an intermediate is synthesized in advance, and then the second ligand is added to the intermediate to obtain the metal complex.
  • the above-mentioned metal complex is mixed with the hydrocarbon mixture gas having 4 or more carbon atoms, that is, hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation.
  • hydrocarbon mixture gas having 4 or more carbon atoms that is, hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation.
  • hydrocarbons having a specific degree of unsaturation or less in the mixed gas are selectively adsorbed on the metal complex.
  • Such metal complexes may be one kind or may contain two or more kinds.
  • the mechanism of action when the metal complex is used as an adsorbent is not clear, but in the state where the metal complex of the present invention adsorbs hydrocarbons, the first arrangement expected to be a part of the pore surface is used. It is known that the ligand P does not have a ⁇ -electron system, and when the metal complex of the present invention has a second ligand, the second ligand does not have a ⁇ -electron. The present inventors presume that this may be one of the factors that exhibit an adsorption behavior different from that of the metal complex of the gas adsorbent.
  • the present inventors consider that the interaction between the metal complex and the hydrocarbon having a high degree of unsaturation does not become strong, and that a highly selective adsorption characteristic is exhibited with respect to a hydrocarbon having a low degree of unsaturation. .
  • hydrocarbons having a specific degree of unsaturation and other hydrocarbons that is, And hydrocarbons having a degree of unsaturation greater than the specified degree of unsaturation.
  • the specific degree of unsaturation can be set to the target degree of unsaturation by adjusting the temperature and / or pressure according to the type of mixed gas or metal complex as described later. Further, with respect to the mixed gas containing other hydrocarbons, the temperature and / or pressure conditions are further adjusted to selectively adsorb hydrocarbons having a specific degree of unsaturation below the metal complex, and Hydrogen and hydrocarbons with a higher degree of unsaturation can be further separated.
  • n-butane and a hydrocarbon having a higher degree of unsaturation 1,3- Or hydrocarbons with a degree of unsaturation below 1-butene (n-butane and 1-butene) and hydrocarbons with a higher degree of unsaturation (1,3-butadiene, etc.) can do.
  • the hydrocarbon obtained by separation by the adsorption separation method of the present invention may have a composition ratio different from that of the mixed gas before separation, but the separated product is preferably 80 mol% or more, and 90 mol% or more. Is more preferably 95% or more, and particularly preferably 98% or more.
  • the hydrocarbon obtained by the recovery after the adsorption may be different from the mixed gas before the separation, but the recovered material is preferably 80 mol% or more, more preferably 90 mol% or more. Preferably, it is 95% or more, more preferably 98% or more.
  • the metal complex can be used as it is or in a powder form by appropriate pulverization, but it may be molded by an appropriate molding means and used as a molded body.
  • the type of molding agent and the type of the molding agent are selected so that the hydrocarbon gas adsorption characteristics and the hydrocarbon gas desorption characteristics after adsorption are not significantly impaired. It is preferable to determine the amount used.
  • An example of such a molding means is press molding.
  • the shape of the molded body when used as an adsorbent is desirably a shape that can maintain the strength required for the adsorbent.
  • the surface area of a molded article is large from a viewpoint of improving the hydrocarbon gas adsorption rate.
  • a pressure swing adsorption method pressure fluctuation Adsorption method: Pressure Swing Adsorption, Temperature Swing Adsorption Method (Temperature Swing Adsorption) and Permeation Separation Method (Membrane Separation), and Pressure Swing Adsorption Method are Preferred.
  • the hydrocarbon complex gas having 4 or more carbon atoms is brought into contact with the metal complex under a first predetermined pressure (adsorption pressure), and the hydrocarbon having a specific degree of unsaturation or less is brought into contact with the metal complex.
  • adsorption pressure a first predetermined pressure
  • the hydrocarbon having a specific degree of unsaturation or less is brought into contact with the metal complex.
  • the pressure in the space where the metal complex is arranged is raised or reduced to a desired adsorption pressure in advance, and then the mixture is subjected to the adsorption pressure under the adsorption pressure.
  • hydrocarbons with a specific degree of unsaturation or less are adsorbed and concentrated on the metal complex with high selectivity, and the hydrocarbon depletion and unsaturation are larger than the specific degree of unsaturation. Hydrogen is discharged from the space.
  • the pressure is changed to a second predetermined pressure (desorption pressure) to desorb hydrocarbons adsorbed on the metal complex. More preferably, the method further includes a step.
  • a desorption step regeneration step
  • the pressure in the space where the metal complex that selectively adsorbs hydrocarbons having a specific degree of unsaturation is arranged is reduced to a desired desorption pressure, The hydrocarbons adsorbed on the complex are discharged from the space by desorbing from the metal complex.
  • the second predetermined pressure desorption pressure
  • Hydrogen may be replaced with a hydrocarbon having a lower degree of unsaturation.
  • the obtained hydrocarbon having a specific degree of unsaturation or lower or a hydrocarbon having a higher degree of unsaturation has a low purity, and the higher-purity hydrocarbon is obtained.
  • the number of steps can be two or more. In that case, the adsorption step and the desorption step are repeated twice or more.
  • the adsorption conditions in the pressure swing adsorption method are determined depending on the object to be separated and the metal complex used, and the adsorption temperature is preferably 173 to 373K, more preferably 223 to 353K. More preferably, it is 253 to 353K, and most preferably 273 to 333K.
  • the adsorption pressure varies depending on the working temperature and the metal complex used, but is preferably 0.04 kPa to 3 MPa, more preferably 3 kPa to 3 MPa, and even more preferably 10 kPa to 2 MPa. More preferably, it is 30 kPa to 2 MPa, and particularly preferably 100 kPa to 2 MPa.
  • the adsorption pressure includes adsorption of one hydrocarbon (hydrocarbon having a specific degree of unsaturation) and the other hydrocarbon (hydrocarbon having a degree of unsaturation greater than the specific degree of unsaturation).
  • a pressure that increases the difference from the amount is employed, preferably a pressure that is 2 times or more, more preferably 5 times or more, and even more preferably 10 times or more.
  • the desorption pressure a pressure at which the adsorption amount of hydrocarbons having the specified degree of unsaturation or less is 50% or less of the saturated adsorption amount is adopted, preferably 20% or less, more preferably 10%.
  • a pressure of 5% or less is employed.
  • the desorption conditions of the adsorbed components in the pressure swing adsorption method are determined by the separation object and the metal complex used.
  • the desorption pressure varies depending on the object to be separated, the operating temperature, and the metal complex used. However, if the gas recovery pressure is too low, a recompression load is required to store or use the gas. It is preferable to collect by.
  • Such pressure is preferably 1 kPa or more, more preferably 2 kPa or more, and further preferably 5 kPa or more. More preferably, it is 10 kPa to 2 MPa, and particularly preferably 20 kPa to 1.5 MPa.
  • the method for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms it is adsorbed in a pressure region that can be used without requiring excessive pressure reduction (for example, less than 1 kPa or less than 5 kPa) in practice.
  • the recovered gas can be recovered.
  • the desorption temperature is preferably 223 to 373K. In the desorption step, it is not always necessary to positively increase the temperature, but it is preferable to compensate for the latent heat necessary for desorption, and it may be preferable to adjust the temperature and keep the temperature.
  • the separation apparatus includes a separation unit including the metal complex described above, and an introduction unit that introduces the hydrocarbon mixed gas having 4 or more carbon atoms into the separation unit, and contacts the mixed gas with the metal complex.
  • the hydrocarbon separation apparatus preferably further includes pressure control means for controlling the pressure of the space in which the metal complex is arranged in the separation means, and the pressure control means provides a first predetermined pressure. Under the condition that the mixed gas is brought into contact with the metal complex and the hydrocarbons having a specific degree of unsaturation or less are selectively adsorbed onto the metal complex so that the adsorption step can be performed. Is preferred.
  • the pressure is changed to a second predetermined pressure by the pressure control means, and adsorbed to the metal complex. It is preferable that the above-described desorption step can be performed by desorbing the hydrocarbon.
  • FIG. 1 shows a preferred embodiment of this hydrocarbon separation apparatus.
  • an adsorption tank (separation means) 1 filled with the above-described metal complex is disposed, and an inlet pipe P1 having a valve V1 at one end thereof is disposed.
  • the compressor 2 (introducing means) is connected, and the compressor 2 is connected to a feed gas P2 having a valve V2 (the mixture) and a purge gas introducing pipe P3 having a valve V3.
  • a decompressor 3 pressure control means
  • a product gas having a valve V5 is connected to the decompressor 3.
  • Hydrogen) discharge pipe P5 and purge gas discharge pipe P6 having valve V6 are connected.
  • a control means 4 for example, PLC
  • the compressor 2 the decompressor 3
  • the valves V1 to V6 so that their operations can be controlled.
  • the separation apparatus of the present invention further includes a temperature control means capable of controlling the temperature.
  • the following control is performed. That is, first, purge gas is introduced into the adsorption tank 1 by the compressor 2, and then the pressure in the adsorption tank 1 is reduced by the decompressor 3 so as to become the first predetermined pressure (adsorption pressure). Subsequently, the raw material gas is introduced into the adsorption tank 1 by the compressor 2 under the pressure, and hydrocarbons having a specific degree of unsaturation or less are selectively adsorbed and concentrated on the metal complex, and the hydrocarbons are depleted. And hydrocarbons having a degree of unsaturation greater than the specified degree of unsaturation are discharged as the first product gas.
  • the pressure in the adsorption tank 1 is reduced to the second predetermined pressure (desorption pressure) by the decompressor 3, thereby concentrating hydrocarbons having a specific degree of unsaturation or less adsorbed on the metal complex.
  • the component is desorbed from the metal complex and discharged as a second product gas.
  • the present invention is not limited to the above-described embodiment.
  • one of the compressor and the decompressor serves as both the introduction unit and the pressure control unit, Either one may be sufficient.
  • adsorption tank filled with the metal complex a plurality of adsorption tanks (adsorption towers) may be connected in parallel or in series.
  • Measurement of adsorption / desorption isotherm Measurement was performed by a volume method using an automatic specific surface area / pore distribution measuring apparatus. At this time, the sample was dried at 373 K and 5 Pa for 16 hours prior to measurement to remove adsorbed water and the like. Details of the measurement conditions are shown below. ⁇ Measurement conditions> Apparatus: BELSORP-miniII manufactured by Nippon Bell Co., Ltd. Pressure program: 5 kPa or less ⁇ 120 kPa ⁇ 10 kPa or less Equilibrium waiting time: 300 seconds.
  • [Cu 2 (chc) 4 ] and [Cu 2 (bza) 4 ] used in the following synthesis examples are as follows: J. et al. Chem. Soc. 1965, p. 6466-6477 According to the method described in 1. Structural formulas of [Cu 2 (chc) 4 ] and [Cu 2 (bza) 4 ] are shown below.
  • Solution B was added to Solution A, and the mixture was stirred at 298 K for 10 minutes, 0.056 g (0.5 mmol) of 1,4-diazabicyclo [2.2.2] octane was added, and the mixture was stirred at 298 K for 24 hours.
  • the deposited metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.3129 g (yield 83%) of the desired metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 3, it was confirmed that the obtained metal complex had an ordered structure.
  • Solution B was added to Solution A, and the mixture was stirred at 298 K for 10 minutes, 0.056 g (0.5 mmol) of 1,4-diazabicyclo [2.2.2] octane was added, and the mixture was stirred at 298 K for 24 hours.
  • the precipitated metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.2913 g (yield 78%) of the target metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 4, it was confirmed that the obtained metal complex had an ordered structure.
  • FIG. 5 shows a powder X-ray diffraction pattern of the obtained metal complex. From the results shown in FIG. 5, it was confirmed that the obtained metal complex had an ordered structure.
  • Solution B was added to Solution A, and the mixture was stirred at 298 K for 10 minutes, 0.046 g (0.413 mmol) of 1,4-diazabicyclo [2.2.2] octane was added, and the mixture was stirred at 298 K for 24 hours.
  • the precipitated metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.2259 g (yield 69%) of the target metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 6, it was confirmed that the obtained metal complex had an ordered structure.
  • the precipitated metal complex was collected by suction filtration, and then dried at 298K and 5 Pa for 2 hours to obtain 0.151 g (yield 15.5%) of the target metal complex.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 9, it was confirmed that the obtained metal complex had an ordered structure.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 10, it was confirmed that the obtained metal complex had an ordered structure.
  • Example 1 With respect to the metal complex obtained in Synthesis Example 1, adsorption isotherms of 1,3-butadiene and 1-butene at 273 K were measured by a capacitance method. The results are shown in FIG. 11. In the range of 30 to 110 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 6 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. This shows that 1,3-butadiene can be purified by selectively adsorbing and separating 1-butene from a mixed gas of 1,3-butadiene and 1-butene.
  • Example 2 With respect to the metal complex obtained in Synthesis Example 2, the adsorption isotherms of 1,3-butadiene, 1-butene and n-butane at 273 K were measured by the capacitance method. The results are shown in FIG. 12. In the range of 10 to 25 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 2 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity.
  • the n-butane adsorption amount exceeded the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount was about 3 times the maximum. From the results, it was confirmed that the adsorption property has selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
  • Example 3 With respect to the metal complex obtained in Synthesis Example 3, the adsorption isotherms at 273 K of 1,3-butadiene, 1-butene and n-butane were measured by the capacitance method. The results are shown in FIG. 13. In the range of 5 to 6 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 30 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity.
  • the n-butane adsorption amount exceeds the 1,3-butadiene adsorption amount, and the n-butane adsorption amount / 1,3-butadiene adsorption amount is about 60 times maximum. From these results, it was confirmed that the adsorption characteristics have selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
  • Example 4 For the metal complex obtained in Synthesis Example 4, the adsorption isotherms at 273 K of 1,3-butadiene, 1-butene and n-butane were measured by the capacitance method. The results are shown in FIG. 14. In the range of 16 to 32 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 4 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity.
  • the n-butane adsorption amount exceeded the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount was about 7 times at maximum. From the results, it was confirmed that the adsorption property has selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
  • Example 5 With respect to the metal complex obtained in Synthesis Example 5, the adsorption isotherms at 273 K of 1,3-butadiene, 1-butene and n-butane were measured by a volumetric method. The results are shown in FIG. 15. In the range of 11 to 14 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 5 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity.
  • the n-butane adsorption amount exceeded the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount was about 20 times at maximum. From the results, it was confirmed that the adsorption property has selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
  • Example 6 With respect to the metal complex obtained in Synthesis Example 6, adsorption isotherms of 1,3-butadiene and 1-butene at 273 K were measured by a capacitance method. The results are shown in FIG. 16. In the range of 11 to 14 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 5 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. This shows that 1,3-butadiene can be purified by selectively adsorbing and separating 1-butene from a mixed gas of 1,3-butadiene and 1-butene.
  • Example 7 With respect to the metal complex obtained in Synthesis Example 1, desorption isotherms of 1,3-butadiene and 1-butene at 303 K were measured by a capacitance method. The results are shown in FIG. 17, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessively low pressure in practice.
  • Example 8 With respect to the metal complex obtained in Synthesis Example 2, desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by a capacitance method. The result is shown in FIG. 18, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessive pressure reduction in practice.
  • Example 9 For the metal complex obtained in Synthesis Example 3, the adsorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by the capacitance method. The results are shown in FIG. 19, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessively low pressure in practice.
  • Example 10 With respect to the metal complex obtained in Synthesis Example 4, the desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by the capacitance method. The results are shown in FIG. 20, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessively low pressure in practice.
  • Example 11 For the metal complex obtained in Synthesis Example 5, the desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by the capacitance method. The results are shown in FIG. 21, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessive pressure reduction in practice.
  • Example 12 With respect to the metal complex obtained in Synthesis Example 6, desorption isotherms of 1,3-butadiene and 1-butene at 303 K were measured by a capacitance method. The results are shown in FIG. 22, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessive pressure reduction in practice.
  • Example 13 For the metal complex obtained in Synthesis Example 7, adsorption isotherms of 1,3-butadiene and n-butane at 273 K were measured by a volumetric method. The results are shown in FIG. 23. In the range of 0.04 to 1.2 kPa, the n-butane adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount is obtained. Shows a maximum of about 6 times, confirming that the adsorption characteristics are selective. This shows that 1,3-butadiene can be purified by selectively adsorbing and separating n-butane from a mixed gas of 1,3-butadiene and n-butane.
  • Comparative Example 1 With respect to the metal complex obtained in Comparative Synthesis Example 1, adsorption / desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 273 K were measured by a volumetric method. The results are shown in FIG. 24. Only 1,3-butadiene having a high degree of unsaturation was adsorbed.
  • carbonization such as a mixed gas of 1,3-butadiene, 1-butene and n-butane has 4 or more carbon atoms, the carbon number is the same, and the degree of unsaturation is different.
  • a mixed gas containing at least two kinds of hydrogen the degree of unsaturation is higher by selectively adsorbing hydrocarbons having a specific degree of unsaturation (for example, 1-butene and n-butane). It is possible to purify hydrocarbons (eg 1,3-butadiene). Further, the adsorbed hydrocarbon (gas) can be recovered in a temperature range (for example, 25 ° C.) that does not require an excessive temperature increase for practical use.
  • the present invention is very useful as a technique for reducing the size of an apparatus for separating or purifying a hydrocarbon gas having 4 or more carbon atoms or for saving energy.
  • SYMBOLS 1 Adsorption tank (separation means), 2 ... Compressor (introduction means), 3 ... Decompression machine (pressure control means), 4 ... Control means, V1-V6 ... Valve, P1-P6 ... Piping, 5 ... Cobalt atom, 6 ... oxygen atom, 7 ... carbon atom, 8 ... hydrogen atom, 9 ... nitrogen atom.

Abstract

An adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, characterized by causing hydrocarbons to be selectively adsorbed by a metal complex, by causing the mixed gas to come in contact with the metal complex, said metal complex including a ligand indicated by formula (1) and metal ions and said hydrocarbons having no more than a specified degree of unsaturation among mixed gases having at least four carbon atoms and including at least two types of hydrocarbons having the same number of carbon atoms and different degrees of unsaturation. (1) (in the formula, P indicates a saturated hydrocarbon group that can have a substituent other than Ra, Ra is a functional group having coordinating properties in relation to the metal ions, m is an integer between 1 and 4, and when m is an integer of 2 or higher, the plurality of Ra can be the same or different.)

Description

炭素数4以上の炭化水素混合ガスの吸着分離方法、及び分離装置Method and apparatus for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms
 本発明は、炭素数が4以上の炭化水素混合ガスの吸着分離方法、並びに吸着分離方法を実施する分離装置に関する。 The present invention relates to a method for adsorbing and separating a hydrocarbon mixed gas having 4 or more carbon atoms and a separation apparatus for carrying out the adsorbing and separating method.
 1,3-ブタジエンは合成ゴムの原材料の一種であり、従来は主にナフサを原料として製造されていた。しかし、最近の化学産業において、ナフサからシェールガスへ原料がシフトしつつあり、ナフサ由来の1,3-ブタジエンの提供が減少しつつある。この化学産業のプロセスの見直しに伴い、シェールガスを原料に用いた1,3-ブタジエン等の炭素数が4以上の炭化水素ガスの製造が検討されている。ここで、FT反応でシェールガス(メタン)から炭素数4の炭化水素ガスを製造すると、例えば、1,3-ブタジエン(沸点 -4.41℃、臨界直径 4.31オングストローム)と1-ブテン(沸点 -6.26℃、臨界直径 4.46オングストローム)とを含む混合ガスが得られる。この混合ガスから高純度の1,3-ブタジエンを分離するとなると、1,3-ブタジエンと1-ブテンとは、沸点、臨界直径が近似しているために分離が容易ではない。そこで、吸着剤を用いた分離が検討されるが、この場合、前記混合ガスには多量の1,3-ブタジエンが含まれることから、これを精製するには、他の成分、すなわち、1,3-ブタジエンよりも不飽和度の小さいブテンやブタンを吸着剤に吸着させて1,3-ブタジエンを精製することが望ましい。また、吸着されたブテンやブタンを回収し、これを工業原料として利用することも、化学産業のプラント設計上重要である。 1,3-Butadiene is a kind of raw material for synthetic rubber, and conventionally it has been produced mainly from naphtha. However, in the recent chemical industry, raw materials are shifting from naphtha to shale gas, and the supply of 1,3-butadiene derived from naphtha is decreasing. With the review of the chemical industry process, the production of hydrocarbon gas having 4 or more carbon atoms such as 1,3-butadiene using shale gas as a raw material is being studied. Here, when a hydrocarbon gas having 4 carbon atoms is produced from shale gas (methane) by FT reaction, for example, 1,3-butadiene (boiling point −4.41 ° C., critical diameter 4.31 angstrom) and 1-butene ( A mixed gas having a boiling point of −6.26 ° C. and a critical diameter of 4.46 Å is obtained. When high purity 1,3-butadiene is separated from this mixed gas, 1,3-butadiene and 1-butene are not easily separated because their boiling points and critical diameters are close to each other. Therefore, separation using an adsorbent is considered. In this case, since the mixed gas contains a large amount of 1,3-butadiene, in order to purify it, other components, that is, 1, It is desirable to purify 1,3-butadiene by adsorbing butene or butane having a lower degree of unsaturation than 3-butadiene to the adsorbent. It is also important for the chemical industry plant design to collect the butene and butane adsorbed and use them as industrial raw materials.
 吸着特性の違いを利用した分離方法としては、吸着剤として一般的に知られている活性炭やゼオライトを用いる方法が知られているが、不飽和度の小さい炭化水素、特に1-ブテンやn-ブタンのように炭素数が4以上の不飽和度の小さい炭化水素を高選択的に吸着することは困難であり、このような不飽和度の小さい炭化水素を高選択的に吸着することができる実用的な吸着方法は提供されてこなかった。 As a separation method using the difference in adsorption characteristics, a method using activated carbon or zeolite generally known as an adsorbent is known, but hydrocarbons having a low degree of unsaturation, particularly 1-butene and n- It is difficult to highly selectively adsorb hydrocarbons having 4 or more carbon atoms and low unsaturation such as butane, and such hydrocarbons having low unsaturation can be adsorbed with high selectivity. No practical adsorption method has been provided.
 近年、新たな吸着剤として多孔性金属錯体が検討されており、例えば、J.Gascon et al., J. Am. Chem. Soc.,2010,132,P.17704-17706(非特許文献1)では、特定の多孔性金属錯体において、特定の不飽和度の飽和炭化水素に対する親和性は不飽和度がそれよりも大きい炭化水素に対する親和性に比して高いことが見出されている。また、J.Gascon et al., Chem. Eur. J.,2011,17,P.8832-8840(非特許文献2)には、前記多孔性金属錯体によりブテンやブタンを回収することが記載されているが、この場合には過度に昇温する必要があるという問題があった。 In recent years, porous metal complexes have been studied as new adsorbents. Gascon et al. , J. Am. Chem. Soc. 2010, 132, p. In 17704-17706 (Non-patent Document 1), in a specific porous metal complex, the affinity for a saturated hydrocarbon having a specific degree of unsaturation is higher than the affinity for a hydrocarbon having a higher degree of unsaturation. It has been found. In addition, J.H. Gascon et al. , Chem. Eur. J. , 2011, 17, p. In 8832-8840 (Non-patent Document 2), it is described that butene and butane are recovered by the porous metal complex. However, in this case, there is a problem that the temperature needs to be excessively increased.
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、1,3-ブタジエンと1-ブテンとの混合ガスなどの炭素数が4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスから、前記混合ガスのうち特定の不飽和度以下の炭化水素を選択的に吸着させることで不飽和度がそれよりも大きい炭化水素の精製が可能であり、かつ、実用上過度の昇温を要しない温度領域(例えば、25~200℃)において吸着した気体を回収することができる炭素数4以上の炭化水素混合ガスの吸着分離方法、及び分離装置を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and has a carbon number of 4 or more, such as a mixed gas of 1,3-butadiene and 1-butene, and is identical and unsaturated. By selectively adsorbing hydrocarbons having a specific degree of unsaturation or less from a mixed gas containing at least two types of hydrocarbons having different degrees, hydrocarbons having a higher degree of unsaturation can be purified. A method of adsorbing and separating a hydrocarbon mixed gas having 4 or more carbon atoms capable of recovering a gas adsorbed in a temperature range (for example, 25 to 200 ° C.) that is possible and does not require an excessive temperature rise in practice, and An object is to provide a separation device.
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors have made the present invention.
 すなわち、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法は、下記式(1): That is, the adsorption separation method for hydrocarbon mixed gas having 4 or more carbon atoms of the present invention is represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(1)中、PはR以外の置換基を有していてもよい飽和炭化水素基であり;Rは金属イオンに配位性のある官能基であり;mは1~4の整数であり;mが2以上の整数である場合、複数あるRは互いに同一であっても異なっていてもよい。)
で表される配位子(以下、「第一の配位子」と記すこともある。)と金属イオンとを含む金属錯体に、炭素数4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスを接触せしめることにより、前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させることを特徴とする、炭素数4以上の炭化水素混合ガスの吸着分離方法である。
(In the formula (1), P is a saturated hydrocarbon group which may have a substituent other than R a ; R a is a functional group having a coordination property to a metal ion; And when m is an integer of 2 or more, a plurality of R a may be the same or different from each other.)
A metal complex containing a ligand represented by the formula (hereinafter sometimes referred to as “first ligand”) and a metal ion has 4 or more carbon atoms, the same carbon number, and unsaturated. Carbon having a specific degree of unsaturation or less is selectively adsorbed on the metal complex by bringing a mixed gas containing at least two kinds of hydrocarbons having different degrees into contact with each other. This is a method for adsorbing and separating hydrocarbon mixed gas of several formulas or more.
 本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法においては、前記第一の配位子のPが、炭素数1~8の飽和炭化水素基によって置換されていてもよい、環状構造を有する炭素数3~12の飽和炭化水素基であることが好ましい。 In the method for adsorbing and separating a hydrocarbon mixed gas having 4 or more carbon atoms according to the present invention, P in the first ligand may be substituted with a saturated hydrocarbon group having 1 to 8 carbon atoms. It is preferably a saturated hydrocarbon group having 3 to 12 carbon atoms having
 また、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法においては、前記第一の配位子のRが、「-CO 」、「-CS 」、「-C(=O)S」及び「-C(=O)NRA-」からなる群から選択されるいずれかで表される基(ここで、Rは水素原子又は炭素数4以下のアルキル基である。)であることが好ましい。 In the method for adsorbing and separating a hydrocarbon mixture gas having 4 or more carbon atoms according to the present invention, R a of the first ligand is “—CO 2 ”, “—CS 2 ”, “—C A group represented by any one selected from the group consisting of (═O) S ”and“ —C (═O) NR A— ”(wherein R A is a hydrogen atom or an alkyl group having 4 or less carbon atoms). It is preferable that
 また、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法においては、前記金属イオンが、クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンであることが好ましい。 In the method for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms according to the present invention, the metal ion is at least one metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc. It is preferable that it is ion of these.
 また、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法においては、前記金属錯体が、「2原子以上4原子以下のヘテロ原子を含み」かつ「二重結合を含まない複素環式化合物である」という両方の条件を満たす第二の配位子をさらに含むことが好ましい。 Further, in the method for adsorbing and separating a hydrocarbon mixture gas having 4 or more carbon atoms according to the present invention, the metal complex includes “a hetero atom having 2 to 4 atoms” and “a heterocyclic group having no double bond”. It is preferable to further include a second ligand that satisfies both the conditions of “compound”.
 また、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法においては、前記金属錯体が、下記式(2): Moreover, in the adsorption separation method of the hydrocarbon mixed gas having 4 or more carbon atoms of the present invention, the metal complex is represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(2)中、QはR以外の置換基を有していてもよい炭化水素基であり;R及びmはそれぞれ独立に前記第一の配位子中のR及びmと同義である。)
で表される第三の配位子をさらに含むことが好ましい。また、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法においては、前記金属錯体において、[第一の配位子]:[第三の配位子]で表されるmol比が100:0~20:80の範囲であることが好ましい。
(In the formula (2), Q is R have other substituents a be also substituted hydrocarbon group; and R a and m of R a and m the first in the ligand are each independently Synonymous.)
It is preferable that the 3rd ligand represented by these is further included. In the method for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms of the present invention, the metal complex has a molar ratio represented by [first ligand]: [third ligand]. The range is preferably 100: 0 to 20:80.
 さらに本発明においては、前記金属錯体が、下記式(3): Furthermore, in the present invention, the metal complex is represented by the following formula (3):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(3)中、Pは、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の飽和炭化水素基であり、mは1~2の整数である。)
で表される第一の配位子Aと、
 2原子以上4原子以下のヘテロ原子を含み、かつ、二重結合を含まない複素環式化合物である第二の配位子Bと、
 下記式(4):
(In Formula (3), P 1 is a halogen atom or a saturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and m 1 is 1 to 2) (It is an integer.)
A first ligand A represented by:
A second ligand B which is a heterocyclic compound containing 2 to 4 heteroatoms and no double bond;
Following formula (4):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(4)中、Qは、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の不飽和炭化水素基であり;mは1~2の整数である。)
で表される第三の配位子Cと、
 クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンと、
を含む金属錯体であることが好ましい。
(In Formula (4), Q 1 is a halogen atom or an unsaturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms; m 1 is 1 to 2; Is an integer.)
A third ligand C represented by:
Ions of at least one metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc;
It is preferable that it is a metal complex containing.
 本発明の分離装置は、上記式(1)で表される配位子と金属イオンとを含む金属錯体を備える分離手段と、
 前記分離手段に炭素数4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスを導入する導入手段と
を備えており、
 前記金属錯体に、前記混合ガスを接触せしめることにより前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させ、前記特定の不飽和度以下の炭化水素と不飽和度がそれよりも大きい炭化水素とを分離する、
炭素数4以上の炭化水素混合ガスの分離装置である。
The separation apparatus of the present invention comprises a separation means comprising a metal complex containing a ligand represented by the above formula (1) and a metal ion,
An introduction means for introducing a mixed gas containing at least two kinds of hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation into the separation means,
By bringing the mixed gas into contact with the metal complex, hydrocarbons having a specific degree of unsaturation or less in the mixed gas are selectively adsorbed on the metal complex, and hydrocarbons having a specific degree of unsaturation or less are not adsorbed. Separating hydrocarbons with higher saturation,
This is a separation apparatus for hydrocarbon mixed gas having 4 or more carbon atoms.
 なお、本発明において、「特定の不飽和度以下の炭化水素を金属錯体に選択的に吸着」するとは、同温、同圧の条件において互いに炭素数が同一でありかつ不飽和度の異なる炭化水素をそれぞれ金属錯体に吸着させた場合に、特定の不飽和度以下の炭化水素の吸着量がそれよりも不飽和度が大きい炭化水素の吸着量よりも多くなることをいう。前記吸着量は、例えば、自動比表面積/細孔分布測定装置(日本ベル株式会社製BELSORP-miniII)を用いて容量法により測定することができる。 In the present invention, “selectively adsorbing hydrocarbons having a specific degree of unsaturation to a metal complex” means carbons having the same carbon number and different degrees of unsaturation under the same temperature and pressure conditions. When hydrogen is adsorbed on a metal complex, the adsorption amount of hydrocarbons having a specific degree of unsaturation or less is larger than the adsorption amount of hydrocarbons having a higher degree of unsaturation. The amount of adsorption can be measured by a volume method using, for example, an automatic specific surface area / pore distribution measuring device (BELSORP-miniII manufactured by Nippon Bell Co., Ltd.).
 また、本発明において、不飽和度とは、炭化水素に含まれる炭素-炭素二重結合の割合を意味し、不飽和度の大小は、同一炭素数かつ同一骨格の炭化水素分子における二重結合の数によって決まる。例えば、炭素数が4の直鎖状炭化水素においては、n―ブタン(二重結合 0)<1-ブテン(二重結合 1)<1,3―ブタジエン(二重結合 2)の順に不飽和度は大きくなり、炭素数が6の環式炭化水素においては、シクロヘキサン(二重結合 0)<シクロヘキセン(二重結合 1)の順に不飽和度は大きくなる。 In the present invention, the degree of unsaturation means the proportion of carbon-carbon double bonds contained in hydrocarbons, and the degree of unsaturation is the number of double bonds in hydrocarbon molecules having the same carbon number and the same skeleton. It depends on the number of For example, in the case of a straight-chain hydrocarbon having 4 carbon atoms, the unsaturated is n-butane (double bond 0) <1-butene (double bond 1) <1,3-butadiene (double bond 2) in this order. The degree of unsaturation increases in the order of cyclohexane (double bond 0) <cyclohexene (double bond 1) in a cyclic hydrocarbon having 6 carbon atoms.
 本発明によれば、1,3―ブタジエンと1―ブテンとの混合ガスなどの炭素数が4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスから、前記混合ガスのうち特定の不飽和度以下の炭化水素を選択的に吸着させることにより、不飽和度がそれよりも大きい炭化水素を精製することができる、炭素数4以上の炭化水素ガスの吸着分離方法、及び分離装置を提供することができる。また、本発明によれば、吸着されたガスは、実用上過度の昇温を要しない温度領域(例えば、25~200℃)で回収することができる。 According to the present invention, a mixed gas containing at least two types of hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation, such as a mixed gas of 1,3-butadiene and 1-butene The hydrocarbon gas having a carbon number of 4 or more can be purified by selectively adsorbing hydrocarbons having a specific degree of unsaturation or less in the mixed gas. An adsorption separation method and a separation apparatus can be provided. Further, according to the present invention, the adsorbed gas can be recovered in a temperature range (for example, 25 to 200 ° C.) that does not require an excessive temperature rise in practice.
本発明を実施するのに有用な炭化水素の分離装置の好適な一実施形態を示す模式図である。It is a schematic diagram which shows suitable one Embodiment of the separation apparatus of the hydrocarbon useful for implementing this invention. 合成例1で得られた金属錯体の粉末X線回折パターンを示すグラフである。4 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 1. 合成例2で得られた金属錯体の粉末X線回折パターンを示すグラフである。5 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 2. 合成例3で得られた金属錯体の粉末X線回折パターンを示すグラフである。6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 3. 合成例4で得られた金属錯体の粉末X線回折パターンを示すグラフである。6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 4. 合成例5で得られた金属錯体の粉末X線回折パターンを示すグラフである。6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 5. 合成例6で得られた金属錯体の粉末X線回折パターンを示すグラフである。10 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 6. 合成例7で得られた金属錯体の結晶構造を示す模式図である。6 is a schematic diagram showing a crystal structure of a metal complex obtained in Synthesis Example 7. FIG. 合成例7で得られた金属錯体の粉末X線回折パターンを示すグラフである。10 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 7. 比較合成例1で得られた金属錯体の粉末X線回折パターンを示すグラフである。6 is a graph showing a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 1. 合成例1で得られた金属錯体を用いて実施例1で測定した1-ブテン及び1,3-ブタジエンの273Kの吸着等温線を示すグラフである。2 is a graph showing the 273 K adsorption isotherm of 1-butene and 1,3-butadiene measured in Example 1 using the metal complex obtained in Synthesis Example 1. FIG. 合成例2で得られた金属錯体を用いて実施例2で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの273Kの吸着等温線を示すグラフである。4 is a graph showing the 273 K adsorption isotherm of n-butane, 1-butene and 1,3-butadiene measured in Example 2 using the metal complex obtained in Synthesis Example 2. 合成例3で得られた金属錯体を用いて実施例3で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの273Kの吸着等温線を示すグラフである。4 is a graph showing 273 K adsorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 3 using the metal complex obtained in Synthesis Example 3. 合成例4で得られた金属錯体を用いて実施例4で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの273Kの吸着等温線を示すグラフである。6 is a graph showing the 273 K adsorption isotherm of n-butane, 1-butene and 1,3-butadiene measured in Example 4 using the metal complex obtained in Synthesis Example 4. 合成例5で得られた金属錯体を用いて実施例5で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの273Kの吸着等温線を示すグラフである。6 is a graph showing the 273 K adsorption isotherm of n-butane, 1-butene and 1,3-butadiene measured in Example 5 using the metal complex obtained in Synthesis Example 5. 合成例6で得られた金属錯体を用いて実施例6で測定した1-ブテン及び1,3-ブタジエンの273Kの吸着等温線を示すグラフである。6 is a graph showing the 273K adsorption isotherm of 1-butene and 1,3-butadiene measured in Example 6 using the metal complex obtained in Synthesis Example 6. 合成例1で得られた金属錯体を用いて実施例7で測定した1-ブテン及び1,3-ブタジエンの303Kの脱着等温線を示すグラフである。3 is a graph showing 303 K desorption isotherms of 1-butene and 1,3-butadiene measured in Example 7 using the metal complex obtained in Synthesis Example 1. FIG. 合成例2で得られた金属錯体を用いて実施例8で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの303Kの脱着等温線を示すグラフである。6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 8 using the metal complex obtained in Synthesis Example 2. FIG. 合成例3で得られた金属錯体を用いて実施例9で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの303Kの脱着等温線を示すグラフである。6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 9 using the metal complex obtained in Synthesis Example 3. FIG. 合成例4で得られた金属錯体を用いて実施例10で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの303Kの脱着等温線を示すグラフである。6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 10 using the metal complex obtained in Synthesis Example 4. FIG. 合成例5で得られた金属錯体を用いて実施例11で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの303Kの脱着等温線を示すグラフである。6 is a graph showing 303 K desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Example 11 using the metal complex obtained in Synthesis Example 5. FIG. 合成例6で得られた金属錯体を用いて実施例12で測定した1-ブテン及び1,3-ブタジエンの303Kの脱着等温線を示すグラフである。10 is a graph showing the desorption isotherm of 303K of 1-butene and 1,3-butadiene measured in Example 12 using the metal complex obtained in Synthesis Example 6. FIG. 合成例7で得られた金属錯体を用いて実施例13で測定したn-ブタン及び1,3-ブタジエンの273Kの吸着等温線を示すグラフである。16 is a graph showing the 273 K adsorption isotherm of n-butane and 1,3-butadiene measured in Example 13 using the metal complex obtained in Synthesis Example 7. 比較合成例1で得られた金属錯体を用いて比較例1で測定したn-ブタン、1-ブテン及び1,3-ブタジエンの吸脱着等温線を示すグラフである。4 is a graph showing the adsorption and desorption isotherms of n-butane, 1-butene and 1,3-butadiene measured in Comparative Example 1 using the metal complex obtained in Comparative Synthesis Example 1.
 以下、本発明をその好適な実施形態に即して詳細に説明する。先ず、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法について説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof. First, the method for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms according to the present invention will be described.
 本発明の吸着分離の対象である、炭素数4以上の炭化水素混合ガスは、炭素数が4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスである。前記炭化水素の炭素数としては、6以下であることが好ましい。前記炭素数4以上の炭化水素混合ガスは、飽和の炭化水素及び不飽和度の異なる不飽和炭化水素のうちの少なくとも2種以上を含むものであり、例えば、炭素数4の炭化水素を含む混合ガスとしては、n-ブタン、イソブタン、1-ブテン、cis-2-ブテン、trans-2-ブテン、イソブテン、1,3-ブタジエン、シクロブタン及びシクロブテンのうちの少なくとも2種以上を含む混合ガスが挙げられ、炭素数5の炭化水素を含む混合ガスとしては、n-ペンタン、1-ペンテン、cis-2-ペンテン、trans-2-ペンテン、1,3-ペンタジエン、1,4-ペンタジエン、シクロペンタン、シクロペンテン及びシクロペンタジエンのうちの少なくとも2種以上を含む混合ガスが挙げられ、炭素数6の炭化水素を含む混合ガスとしては、ヘキサン、1-ヘキセン、シクロヘキサン、シクロヘキセン及びベンゼンのうちの少なくとも2種以上を含む混合ガスが挙げられる。本発明の吸着分離の対象となる混合ガスとしては、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスであればよいが、互いに炭素数が同一かつ骨格が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスであることが好ましい。 The hydrocarbon mixed gas having 4 or more carbon atoms, which is an object of the adsorption separation of the present invention, is a mixed gas containing at least two hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation. It is. The hydrocarbon has preferably 6 or less carbon atoms. The hydrocarbon mixture gas having 4 or more carbon atoms includes at least two kinds of saturated hydrocarbons and unsaturated hydrocarbons having different degrees of unsaturation, for example, a mixture containing hydrocarbons having 4 carbon atoms. Examples of the gas include a mixed gas containing at least two or more of n-butane, isobutane, 1-butene, cis-2-butene, trans-2-butene, isobutene, 1,3-butadiene, cyclobutane, and cyclobutene. As the mixed gas containing a hydrocarbon having 5 carbon atoms, n-pentane, 1-pentene, cis-2-pentene, trans-2-pentene, 1,3-pentadiene, 1,4-pentadiene, cyclopentane, Examples include a mixed gas containing at least two of cyclopentene and cyclopentadiene, and a mixture containing a hydrocarbon having 6 carbon atoms. The scan, hexane, 1-hexene, cyclohexane, a mixed gas containing at least two or more of cyclohexene and benzene. The mixed gas to be subjected to the adsorption separation of the present invention may be a mixed gas containing at least two kinds of hydrocarbons having the same carbon number and different degree of unsaturation, but has the same carbon number and the same skeleton. A mixed gas containing at least two kinds of hydrocarbons having different degrees of unsaturation is preferable.
 このような混合ガスとしては、例えば、FT反応でシェールガス(メタン)から製造される混合ガスが挙げられる。具体的には、1-ブテン及び1,3-ブタジエンの混合ガス、n-ブタン及び1,3-ブタジエンの混合ガス、cis-2-ブテン及び1,3-ブタジエンの混合ガス、trans-2-ブテン及び1,3-ブタジエンの混合ガス、n-ブタン及び1-ブテンの混合ガス、n-ブタン及びcis-2-ブテンの混合ガス、n-ブタン及びtrans-2-ブテンの混合ガス、イソブタン及びイソブテンの混合ガス、シクロブタン及びシクロブテンの混合ガス、n-ペンタン及び1-ペンテンの混合ガス、n-ペンタン及びcis-2-ペンテンの混合ガス、n-ペンタン及びtrans-2-ペンテンの混合ガス、n-ペンタン及び1,3-ペンタジエンの混合ガス、n-ペンタン及び1,4-ペンタジエンの混合ガス、シクロペンタン及びシクロペンタジエンの混合ガス、シクロペンテン及びシクロペンタジエンの混合ガス、シクロペンタン及びシクロペンテンの混合ガス、ヘキサン及び1-ヘキセンの混合ガス、シクロヘキサン及びシクロヘキセンの混合ガス、並びにシクロヘキサン及びベンゼンの混合ガス等が挙げられ、より好ましくは、1-ブテン及び1,3-ブタジエンの混合ガス、並びにn-ブタン及び1,3-ブタジエンの混合ガスである。 Examples of such a mixed gas include a mixed gas produced from shale gas (methane) by an FT reaction. Specifically, a mixed gas of 1-butene and 1,3-butadiene, a mixed gas of n-butane and 1,3-butadiene, a mixed gas of cis-2-butene and 1,3-butadiene, trans-2- Mixed gas of butene and 1,3-butadiene, mixed gas of n-butane and 1-butene, mixed gas of n-butane and cis-2-butene, mixed gas of n-butane and trans-2-butene, isobutane and A mixed gas of isobutene, a mixed gas of cyclobutane and cyclobutene, a mixed gas of n-pentane and 1-pentene, a mixed gas of n-pentane and cis-2-pentene, a mixed gas of n-pentane and trans-2-pentene, n A mixed gas of pentane and 1,3-pentadiene, a mixed gas of n-pentane and 1,4-pentadiene, cyclopentane and A mixed gas of clopentadiene, a mixed gas of cyclopentene and cyclopentadiene, a mixed gas of cyclopentane and cyclopentene, a mixed gas of hexane and 1-hexene, a mixed gas of cyclohexane and cyclohexene, a mixed gas of cyclohexane and benzene, etc. A mixed gas of 1-butene and 1,3-butadiene, and a mixed gas of n-butane and 1,3-butadiene are more preferable.
 本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法は、下記式(1): The adsorption separation method for hydrocarbon mixed gas having 4 or more carbon atoms of the present invention is represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(1)中、PはR以外の置換基を有していてもよい飽和炭化水素基であり;Rは金属イオンに配位性のある官能基であり;mは1~4の整数であり;mが2以上の整数である場合、複数あるRは互いに同一であっても異なっていてもよい。)
で表される配位子(以下、「第一の配位子」と記すこともある。)と金属イオンとを含む金属錯体に、前記炭素数4以上の炭化水素混合ガスを接触せしめることにより、前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させ、前記特定の不飽和度以下の炭化水素と不飽和度がそれよりも大きい炭化水素とを分離する、炭素数4以上の炭化水素混合ガスの吸着分離方法である。
(In the formula (1), P is a saturated hydrocarbon group which may have a substituent other than R a ; R a is a functional group having a coordination property to a metal ion; And when m is an integer of 2 or more, a plurality of R a may be the same or different from each other.)
By bringing the hydrocarbon mixed gas having 4 or more carbon atoms into contact with a metal complex containing a ligand represented by the formula (hereinafter also referred to as “first ligand”) and a metal ion. In the mixed gas, hydrocarbons having a specific degree of unsaturation or less are selectively adsorbed on the metal complex to separate hydrocarbons having a specific degree of unsaturation or less from hydrocarbons having a higher degree of unsaturation. This is an adsorption separation method for hydrocarbon mixed gas having 4 or more carbon atoms.
 なお、本明細書において、複数あるものが「互いに同一であっても異なっていてもよい」とは、複数あるものが「すべて同一であってもよいし、すべて異なっていてもよく、一部のみが同一であってもよい」ことを意味する。 In the present specification, a plurality of things “may be the same as or different from each other” means that a plurality of things “may be the same or all may be different, Only may be the same ".
 前記第一の配位子のPは、R以外の置換基を有していてもよい飽和炭化水素化合物からm個の水素原子を除いてなる基であり、非環式炭化水素基、環式炭化水素基であっても、架橋型環式炭化水素基であってもよい。このような第一の配位子のPとしては、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい、炭素数12以下の飽和炭化水素基であることが好ましい。また、炭素数1~8の飽和炭化水素基によって置換されていてもよい、環状構造を有する炭素数3~12の飽和炭化水素基であることがより好ましく、炭素数1~3の飽和炭化水素基によって置換されていてもよい、環状構造を有する炭素数5~10の飽和炭化水素基であることがさらに好ましい。前記飽和炭化水素基(置換基を除く)の炭素数が前記上限を超えると、炭化水素吸着時の不飽和度の小さい炭化水素の選択性が低下する傾向にあると、本発明者らは推察する。 P of the first ligand is a group formed by removing m hydrogen atoms from a saturated hydrocarbon compound which may have a substituent other than R a , and is an acyclic hydrocarbon group, a ring It may be a formula hydrocarbon group or a bridged cyclic hydrocarbon group. P in such a first ligand is preferably a saturated hydrocarbon group having 12 or less carbon atoms which may be substituted with a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms. Further, it is more preferably a saturated hydrocarbon group having 3 to 12 carbon atoms having a cyclic structure, which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and a saturated hydrocarbon having 1 to 3 carbon atoms. It is more preferably a saturated hydrocarbon group having 5 to 10 carbon atoms having a cyclic structure which may be substituted with a group. The present inventors presume that when the carbon number of the saturated hydrocarbon group (excluding substituents) exceeds the upper limit, the selectivity of hydrocarbons having a low degree of unsaturation during hydrocarbon adsorption tends to decrease. To do.
 前記m個の水素原子が除かれてPとなる飽和炭化水素化合物の具体例としては、非環式炭化水素基である、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、環式炭化水素基である、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、架橋型環式炭化水素基である、[2.2.2]-ビシクロオクタン、アダマンタンが好ましく、シクロヘキサン、デカリン、[2.2.2]-ビシクロオクタン、アダマンタンがより好ましく、シクロヘキサン、アダマンタンがさらに好ましい。 Specific examples of the saturated hydrocarbon compound in which m hydrogen atoms are removed to form P include acyclic hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, Decane, cyclic hydrocarbon group, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, decalin, bridged cyclic hydrocarbon group, [2.2.2] -bicyclooctane, adamantane Are preferred, cyclohexane, decalin, [2.2.2] -bicyclooctane and adamantane are more preferred, and cyclohexane and adamantane are even more preferred.
 前記第一の配位子のRは、金属イオンに配位性のある官能基であればよく、「-CO 」、「-CS 」、「-C(=O)S」、「-C(=O)N(R」、「-SO 」、「-PO(R」、「-C≡N」、「-S」、「-O」及び「-NH」からなる群から選択されるいずれかで表される基が例示される。中でも、得られる金属錯体が秩序だった構造を形成しやすいことから、「-CO 」、「-CS 」、「-C(=O)S」及び「-C(=O)N(R」からなる群から選択されるいずれかで表される基が好ましく、「-CO 」で表される基がより好ましい。ここで、Rは、水素原子又は炭素数4以下のアルキル基である。 R a of the first ligand may be a functional group having a coordination property to a metal ion, and includes “—CO 2 ”, “—CS 2 ”, “—C (═O) S −. , “—C (═O) N (R A ) ”, “—SO 3 ”, “—PO 4 (R A ) ”, “—C≡N”, “—S ”, “— Examples thereof include a group represented by any one selected from the group consisting of “O ” and “—NH ”. Among them, since the obtained metal complex easily forms an ordered structure, “—CO 2 ”, “—CS 2 ”, “—C (═O) S ” and “—C (═O)” are used. A group represented by any one selected from the group consisting of “N (R A ) ” is preferable, and a group represented by “—CO 2 ” is more preferable. Here, R A is a hydrogen atom or an alkyl group having 4 or less carbon atoms.
 前記第一の配位子のmは、1~4の整数であればよいが、低次元の金属錯体(低次元の金属錯体の説明は後述)が得られやすくより良好な選択的吸着特性の発現が期待できることから、好ましくは1~2の整数であり、さらに良好な選択的吸着特性が発現し、吸着した気体の回収に過度の低圧(例えば5kPa未満)を要しない傾向にあることから、より好ましくは1である。なお、mが2以上の整数である場合には、複数あるRは互いに同一であっても異なっていてもよい。 M of the first ligand may be an integer of 1 to 4, but a low-dimensional metal complex (the description of the low-dimensional metal complex will be described later) can be easily obtained. Since expression can be expected, it is preferably an integer of 1 to 2, and more favorable selective adsorption characteristics are exhibited, and there is a tendency that excessive low pressure (for example, less than 5 kPa) is not required to recover the adsorbed gas. More preferably 1. When m is an integer of 2 or more, a plurality of Ra may be the same or different from each other.
 前記第一の配位子のPは、前記R以外の置換基を有していてもよく、該置換基の数が2以上である場合には、これら置換基は、互いに同一であっても異なっていてもよい。前記R以外の置換基としては、ハロゲン原子、ハロゲン原子で置換されていてもよい炭素数1~8の飽和炭化水素基が挙げられる。このような飽和炭化水素基として好ましくはハロゲン原子で置換されていてもよい炭素数1~6の飽和炭化水素基であり、より好ましくはハロゲン原子で置換されていてもよい炭素数1~3の飽和炭化水素基であり、さらに好ましくは置換されていない炭素数1~3の飽和炭化水素基である。前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、中でもフッ素原子、塩素原子が好ましく、フッ素原子が最も好ましい。 P of the first ligand may have a substituent other than Ra , and when the number of substituents is 2 or more, these substituents are the same as each other. May be different. Examples of the substituent other than R a include a halogen atom and a saturated hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a halogen atom. Such a saturated hydrocarbon group is preferably a saturated hydrocarbon group having 1 to 6 carbon atoms which may be substituted with a halogen atom, and more preferably one having 1 to 3 carbon atoms which may be substituted with a halogen atom. A saturated hydrocarbon group, more preferably an unsubstituted saturated hydrocarbon group having 1 to 3 carbon atoms. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable, and a fluorine atom is most preferable.
 前記R以外の置換基がハロゲン原子で置換されていてもよい飽和炭化水素基である場合、前記R以外の置換基は、直鎖状、分岐鎖状又は環状のいずれでもよく、環状である場合、単環式又は多環式のいずれでもよい。前記R以外の置換基のうち、前記炭素数1~6の飽和炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-へキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。 Wherein when the substituent other than R a is optionally substituted saturated hydrocarbon group by a halogen atom, a substituent other than the R a is, which may be linear or branched or cyclic, cyclic In some cases, it may be monocyclic or polycyclic. Among the substituents other than Ra , the saturated hydrocarbon group having 1 to 6 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. Tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethyl Examples thereof include a butyl group, 2,3-dimethylbutyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group.
 前記PがR以外の置換基を有する場合、前記第一の配位子の前駆体の合成がより容易となる点から、前記R以外の置換基はメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-へキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基がより好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロペンチル基、シクロヘキシル基がさらに好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基が特に好ましい。最も好ましくはメチル基である。前記金属錯体としては、前記第1の配位子のうちの1種を単独で含んでいても2種以上を組み合わせて含んでいてもよい。 If the P has a substituent other than R a, wherein from the viewpoint of synthesis of the first ligand of the precursor becomes easier, the substituent other than R a is a methyl group, an ethyl group, n- propyl Group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group are more preferable, methyl group, ethyl group, n-propyl group An isopropyl group, a cyclopentyl group, and a cyclohexyl group are more preferable, and a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are particularly preferable. Most preferred is a methyl group. The metal complex may contain one of the first ligands alone or in combination of two or more.
 前記金属錯体に含まれる金属イオンは、任意の金属元素のイオンでよいが、好ましくは周期表第2族から第13族から選ばれる金属元素のイオンである。 The metal ion contained in the metal complex may be an ion of an arbitrary metal element, but is preferably an ion of a metal element selected from Groups 2 to 13 of the periodic table.
 このような金属イオンとしては、金属錯体の合成が比較的容易であることから、マグネシウム、アルミニウム、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ストロンチウム、イットリウム、ニオブ、モリブデン、ルテニウム、ロジウム、カドミウム、バリウム、ランタン、タンタル及びタングステンからなる群から選択される少なくとも一つの金属のイオンがより好ましい。前記金属錯体としては、前記金属イオンのうちの1種を単独で含んでいても2種以上を組み合わせて含んでいてもよい。 As such metal ions, the synthesis of metal complexes is relatively easy, so magnesium, aluminum, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, strontium, yttrium. More preferred is an ion of at least one metal selected from the group consisting of niobium, molybdenum, ruthenium, rhodium, cadmium, barium, lanthanum, tantalum and tungsten. As said metal complex, 1 type in the said metal ion may be included independently, or 2 or more types may be included in combination.
 また、このような金属イオンとしては、原料となる金属塩が比較的安価であることから、マグネシウム、アルミニウム、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンがさらに好ましく、金属錯体の合成が比較的容易であることから、クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンが特に好ましい。さらに、このような金属イオンとしては、金属錯体の合成がきわめて容易であることから、銅、亜鉛又はコバルトのイオンが好ましく、銅又はコバルトのイオンがより好ましく、銅のイオンがさらに好ましい。 Further, as such metal ions, since the metal salt as a raw material is relatively inexpensive, the group consisting of magnesium, aluminum, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc At least one metal ion selected from is more preferable, and since the synthesis of the metal complex is relatively easy, at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc Metal ions are particularly preferred. Furthermore, as such a metal ion, since the synthesis | combination of a metal complex is very easy, the ion of copper, zinc, or cobalt is preferable, the ion of copper or cobalt is more preferable, and the ion of copper is further more preferable.
 前記金属イオンは、通常、1~7価の陽イオンである。そして、この陽イオンは、複数の配位子と共に金属錯体を形成する必要があることから、好ましくは2~6価であり、より好ましくは2~4価であり、さらに好ましくは2~3価であり、最も好ましくは2価である。 The metal ions are usually 1 to 7 valent cations. The cation is preferably divalent to hexavalent, more preferably divalent to tetravalent, and even more preferably divalent to trivalent since it is necessary to form a metal complex with a plurality of ligands. And most preferably it is divalent.
 本発明で用いる前記金属錯体は、前記第一の配位子に加えて、「2原子以上4原子以下のヘテロ原子(例えば、N、O及びSからなる群より選ばれる少なくとも1種類の元素の原子)を含み」かつ「二重結合を含まない複素環式化合物である」という両方の条件を満たす第二の配位子をさらに含んでいてもよい。 The metal complex used in the present invention includes, in addition to the first ligand, “a hetero atom having 2 to 4 atoms (for example, at least one element selected from the group consisting of N, O and S”). And a second ligand that satisfies both the conditions of “a heterocyclic compound not containing a double bond”.
 前記第二の配位子は、単環基であっても縮環基であっても、単環基が連結された基であってもよく、トリエチレンジアミン(1,4-ジアザビシクロ[2.2.2]オクタン)、ピペラジン、2,5-ジメチルピペラジン、3,3’-ビピペリジン、4,4’-ビピペリジン、1,3-ジ-(4-ピペリジル)プロパン、ヘキサメチレンテトラミン、1,4-ジオキサン、1,4-ジチアンが挙げられ、これらのうち1種を単独で用いても2種以上を組み合わせて用いてもよい。このような第二の配位子としては、金属錯体の安定性をより高められることから、トリエチレンジアミン、ピペラジン、4,4’-ビピペリジン、及びヘキサメチレンテトラミンからなる群から選択される少なくとも一つが好ましく、トリエチレンジアミン又はピペラジンがより好ましく、トリエチレンジアミンが最も好ましい。 The second ligand may be a monocyclic group, a condensed ring group, or a group to which a monocyclic group is linked. Triethylenediamine (1,4-diazabicyclo [2.2 .2] octane), piperazine, 2,5-dimethylpiperazine, 3,3′-bipiperidine, 4,4′-bipiperidine, 1,3-di- (4-piperidyl) propane, hexamethylenetetramine, 1,4- Examples include dioxane and 1,4-dithiane, and one of these may be used alone, or two or more may be used in combination. As such a second ligand, at least one selected from the group consisting of triethylenediamine, piperazine, 4,4′-bipiperidine, and hexamethylenetetramine is used because the stability of the metal complex can be further improved. Preferably, triethylenediamine or piperazine is more preferable, and triethylenediamine is most preferable.
 また、本発明で用いる前記金属錯体は、前記第一の配位子に加えて、下記式(2): In addition to the first ligand, the metal complex used in the present invention has the following formula (2):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(2)中、QはR以外の置換基を有していてもよい不飽和炭化水素基であり;R及びmはそれぞれ独立に前記第一の配位子中のR及びmと同義である。)
で表される第三の配位子をさらに含んでいてもよい。
(In the formula (2), Q is an R a substituent other than may have an unsaturated hydrocarbon group; R a and m R a and each of the first in the ligand independently It is synonymous with m.)
May further contain a third ligand represented by:
 このような第三の配位子を含む場合、前記第一の配位子のPの構造中の炭素数と、前記第三の配位子のQの構造中の炭素数との差の絶対値が0~6の整数であることが好ましく、0~4の整数であることがより好ましく、0~2の整数であることがさらに好ましい。この差が前記上限を超えていると、炭化水素吸着時の不飽和度の小さい炭化水素の選択性が低下する傾向にあると、本発明者らは推察する。 When such a third ligand is included, the absolute difference between the number of carbon atoms in the P structure of the first ligand and the number of carbon atoms in the Q structure of the third ligand The value is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and further preferably an integer of 0 to 2. When this difference exceeds the upper limit, the present inventors infer that the selectivity of hydrocarbons with a low degree of unsaturation during hydrocarbon adsorption tends to decrease.
 前記第三の配位子のQは、R以外の置換基を有していてもよい不飽和炭化水素化合物からm個の水素原子を除いてなる基であり、非環式炭化水素基であっても環式炭化水素基であってもよい。このような第三の配位子のQとしては、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい、炭素数12以下の不飽和炭化水素基であることが好ましい。また、炭素数1~8の飽和炭化水素基によって置換されていてもよい、環状構造を有する炭素数3~12の不飽和炭化水素基であることがより好ましく、炭素数1~3の飽和炭化水素基によって置換されていてもよい、環状構造を有する炭素数5~10の不飽和炭化水素基であることがさらに好ましい。 Q of the third ligand is a group formed by removing m hydrogen atoms from an unsaturated hydrocarbon compound which may have a substituent other than Ra , and is an acyclic hydrocarbon group. Or a cyclic hydrocarbon group. Q of such a third ligand is preferably an unsaturated hydrocarbon group having 12 or less carbon atoms, which may be substituted by a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms. . Further, it is more preferably an unsaturated hydrocarbon group having 3 to 12 carbon atoms having a cyclic structure, which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and a saturated hydrocarbon group having 1 to 3 carbon atoms. It is more preferably an unsaturated hydrocarbon group having 5 to 10 carbon atoms having a cyclic structure, which may be substituted with a hydrogen group.
 前記m個の水素原子が除かれてQとなる不飽和炭化水素化合物の具体例としては、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロペンタジエン、1,2,3,4-テトラヒドロナフタレン、ベンゼン、ナフタレン、アントラセンなどが挙げられ、好ましくはシクロペンテン、シクロヘキセン、シクロヘプテン、シクロペンタジエン、ベンゼン、ナフタレンであり、より好ましくは、シクロヘキセン、ベンゼン、ナフタレンである。さらに好ましくは、ベンゼンである。 Specific examples of the unsaturated hydrocarbon compound in which m hydrogen atoms are removed to form Q include butene, pentene, hexene, heptene, octene, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, and cyclopentadiene. 1,2,3,4-tetrahydronaphthalene, benzene, naphthalene, anthracene, etc., preferably cyclopentene, cyclohexene, cycloheptene, cyclopentadiene, benzene, naphthalene, more preferably cyclohexene, benzene, naphthalene. . More preferred is benzene.
 前記第三の配位子のQは、前記R以外の置換基を有していてもよく、その好ましい例は、前記第一の配位子のPにおける、R以外の置換基の好ましい例と同義である。また、前記金属錯体としては、前記第三の配位子のうちの1種を単独で含んでいても2種以上を組み合わせて含んでいてもよい。 Q of the third ligand may have a substituent other than R a , and a preferable example thereof is a substituent other than R a in P of the first ligand. Synonymous with example. Moreover, as said metal complex, 1 type in the said 3rd ligand may be included independently, or 2 or more types may be included in combination.
 本発明において、前記金属錯体に含まれる前記金属イオン及び前記各配位子との量比に関しては、炭化水素吸着時に不飽和度の大小による炭化水素の選択性がより向上したり、より好適な圧力を吸着した気体(炭化水素)の回収に適用できる傾向にあるという観点から、それぞれ以下に示す関係を満たしていることが好ましい。 In the present invention, regarding the quantitative ratio of the metal ions and the respective ligands contained in the metal complex, the selectivity of hydrocarbons due to the degree of unsaturation during hydrocarbon adsorption is further improved or more suitable. From the viewpoint of being applicable to the recovery of gas (hydrocarbon) having adsorbed pressure, it is preferable that the following relationships are satisfied.
 すなわち、先ず、前記金属錯体に含まれる前記金属イオンと前記第一の配位子について、[金属イオン]:[第一の配位子]で表されるmol比は、1.0:0.5~1.0:4.0の範囲であることが好ましく、1.0:0.8~1.0:3.0の範囲であることがより好ましく、1.0:1.0~1.0:2.0の範囲であることがさらに好ましい。 That is, first, regarding the metal ion and the first ligand contained in the metal complex, the molar ratio represented by [metal ion]: [first ligand] is 1.0: 0. The range is preferably 5 to 1.0: 4.0, more preferably 1.0: 0.8 to 1.0: 3.0, and 1.0: 1.0 to 1 More preferably, it is in the range of 0.0: 2.0.
 また、前記金属錯体が前記第一の配位子に加えて前記第三の配位子をさらに含む場合、前記金属イオンと前記第一の配位子及び前記第三の配位子について、[金属イオン]:[第一の配位子+第三の配位子]で表されるmol比は、1.0:0.5~1.0:4.0の範囲であることが好ましく、1.0:0.8~1.0:3.0の範囲であることがより好ましく、1.0:1.0~1.0:2.0の範囲であることがさらに好ましい。 Moreover, when the said metal complex further contains the said 3rd ligand in addition to the said 1st ligand, about the said metal ion, the said 1st ligand, and the said 3rd ligand, [ The molar ratio represented by [metal ion]: [first ligand + third ligand] is preferably in the range of 1.0: 0.5 to 1.0: 4.0, The range is more preferably 1.0: 0.8 to 1.0: 3.0, and still more preferably 1.0: 1.0 to 1.0: 2.0.
 さらに、前記金属錯体における前記第三の配位子の割合は、[第一の配位子]:[第三の配位子]で表されるmol比で、100:0~20:80の範囲であることが好ましい。第一の配位子のPが非環式炭化水素基又は、環式炭化水素基からなる場合、[第一の配位子]:[第三の配位子]で表されるmol比は、100:0~50:50の範囲であることがより好ましく、さらに第一の配位子のPが架橋型環式炭化水素基を含む場合、[第一の配位子]:[第三の配位子]で表されるmol比は、100:0~20:80の範囲であることが好ましい。 Furthermore, the ratio of the third ligand in the metal complex is 100: 0 to 20:80 in a molar ratio represented by [first ligand]: [third ligand]. A range is preferable. When P of the first ligand is composed of an acyclic hydrocarbon group or a cyclic hydrocarbon group, the molar ratio represented by [first ligand]: [third ligand] is , 100: 0 to 50:50 is more preferable, and when P of the first ligand includes a bridged cyclic hydrocarbon group, [first ligand]: [third The molar ratio represented by the ligand] is preferably in the range of 100: 0 to 20:80.
 また、前記金属錯体が前記第一の配位子に加えて前記第二の配位子をさらに含む場合、前記金属錯体に含まれる前記金属イオンと前記第二の配位子について、[金属イオン]:[第二の配位子]で表されるmol比は、1.0:0.2~1.0:3.0の範囲であることが好ましく、1.0:0.3~1.0:2.0の範囲であることがより好ましく、1.0:0.3~1.0:1.0の範囲であることがさらに好ましい。 Further, when the metal complex further contains the second ligand in addition to the first ligand, the metal ion and the second ligand contained in the metal complex ]: The molar ratio represented by [second ligand] is preferably in the range of 1.0: 0.2 to 1.0: 3.0, and 1.0: 0.3 to 1 The range is more preferably 0.0: 2.0, and still more preferably 1.0: 0.3 to 1.0: 1.0.
 また、本発明においては、炭化水素吸着時に不飽和度の大小による炭化水素の選択性がより向上したり、より好適な圧力を吸着した気体の回収に適用できる傾向にあるという観点から、前記金属錯体がイオン結合及び配位結合で連結されることで1次元(直鎖状)又は2次元(面状)の次元性をもつ集積構造を形成している金属錯体であることが好ましく、1次元の集積構造を形成している金属錯体であることがさらに好ましい。例えば、前記1次元の集積構造は、前記金属錯体が、2価の金属イオンと、金属イオンに配位性のある官能基を1つ有する前記第一の配位子と、ヘテロ原子が2原子である前記第二の配位子とからなる場合、[金属イオン]:[第一の配位子]:[第二の配位子]で表されるmol比が、2:4:1となるときに得ることができる傾向にある。また、前記2次元の集積構造は、前記金属錯体が、2価の金属イオンと、金属イオンに配位性のある官能基を2つ有する前記第一の配位子と、ヘテロ原子が2原子である前記第二の配位子とからなる場合、[金属イオン]:[第一の配位子]:[第二の配位子]で表されるmol比が、3:3:1となるときに得ることができる傾向にある。 Further, in the present invention, from the viewpoint that the selectivity of hydrocarbons due to the degree of unsaturation at the time of hydrocarbon adsorption is more improved or that a more suitable pressure tends to be applied to recovering the adsorbed gas, Preferably, the complex is a metal complex that forms an integrated structure having a one-dimensional (linear) or two-dimensional (planar) dimensionality by being linked by an ionic bond and a coordinate bond. It is more preferable that the metal complex form an integrated structure. For example, in the one-dimensional integrated structure, the metal complex has a divalent metal ion, the first ligand having one functional group coordinated to the metal ion, and two heteroatoms. And the second ligand, the molar ratio represented by [metal ion]: [first ligand]: [second ligand] is 2: 4: 1. Tend to be able to get when. In the two-dimensional integrated structure, the metal complex includes a divalent metal ion, the first ligand having two functional groups coordinated to the metal ion, and two heteroatoms. And the second ligand, the molar ratio represented by [metal ion]: [first ligand]: [second ligand] is 3: 3: 1. Tend to be able to get when.
 本発明においては、前述の金属錯体を形成するために、前記第一の配位子、前記第二の配位子及び前記第三の配位子以外の補助配位子をさらに有していてもよい。このような補助配位子としては、例えば、トリエチルアミン、水、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、アセトン、ピリジン、テトラヒドロフラン、ジエチルエーテル、ジメトキシエタン、メチルエチルエーテルが挙げられ、好ましくは水、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドである。こららの補助配位子は、一種でも二種以上でもよい。 In this invention, in order to form the above-mentioned metal complex, it further has auxiliary ligands other than said 1st ligand, said 2nd ligand, and said 3rd ligand. Also good. Examples of such auxiliary ligands include triethylamine, water, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, acetone, Examples include pyridine, tetrahydrofuran, diethyl ether, dimethoxyethane, and methyl ethyl ether, and water, N, N-dimethylformamide, and N, N-diethylformamide are preferable. These auxiliary ligands may be one kind or two or more kinds.
 本発明において用いる金属錯体としては、不飽和度の小さい炭化水素と不飽和度の大きい炭化水素との分離効率をより高めることができるので、規則構造及び柔軟構造を有することが好ましい。ここでいう規則構造とは、粉末X線回折の測定により単位格子に由来するピークが15°(2θ)以下、好ましくは12°以下、より好ましくは10°以下に1つ以上観測されることを特徴とする規則構造であり、前記ピークが3°(2θ)以上であることが好ましく、4°以上であることがより好ましい。また、ここでいう柔軟構造とは、外部刺激(例えばゲスト分子の吸着)により構造が変化することを特徴とする。本発明において柔軟構造を有する金属錯体は小分子の吸着に伴い粉末X線回折パターンが変化する。また、柔軟構造を有する金属錯体は、吸着した小分子が脱離することで再び構造が変化し、通常、小分子を吸着する前の構造を回復する。 The metal complex used in the present invention preferably has a regular structure and a flexible structure, since the separation efficiency between hydrocarbons having a low degree of unsaturation and hydrocarbons having a high degree of unsaturation can be further increased. The regular structure here means that at least one peak derived from the unit cell is observed at 15 ° (2θ) or less, preferably 12 ° or less, more preferably 10 ° or less by measurement of powder X-ray diffraction. The ordered structure is characterized, and the peak is preferably 3 ° (2θ) or more, more preferably 4 ° or more. Further, the flexible structure here is characterized in that the structure is changed by an external stimulus (for example, adsorption of guest molecules). In the present invention, the powder X-ray diffraction pattern of the metal complex having a flexible structure changes with the adsorption of small molecules. In addition, the metal complex having a flexible structure changes its structure again when the adsorbed small molecules are desorbed, and usually recovers the structure before adsorbing the small molecules.
 本発明においては、前記金属錯体が下記式(3): In the present invention, the metal complex is represented by the following formula (3):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(3)中、Pは、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の飽和炭化水素基であり、mは1~2の整数である。)で表される第一の配位子Aと、2原子以上4原子以下のヘテロ原子を含み、かつ、二重結合を含まない複素環式化合物である第二の配位子Bと、下記式(4): (In Formula (3), P 1 is a halogen atom or a saturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and m 1 is 1 to 2) And the second ligand which is a heterocyclic compound containing a heteroatom having 2 to 4 atoms and no double bond. B and the following formula (4):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(4)中、Qは、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の不飽和炭化水素基であり;mは1~2の整数である。)
で表される第三の配位子Cと、クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンと、を含む金属錯体であることが好ましい。
(In Formula (4), Q 1 is a halogen atom or an unsaturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms; m 1 is 1 to 2; Is an integer.)
It is preferable that the metal complex contains a third ligand C represented by the formula (I) and at least one metal ion selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, and zinc. .
 前記配位子AのPは、前記第一の配位子のPのうち、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の飽和炭化水素化合物からm個の水素原子を除いてなる基であり、好ましい例としては前記第一の配位子において述べたとおりである。また、前記配位子Aのmは、前記第一の配位子のmのうち、1~2の整数であり、低次元化合物が得られやすくより良好な選択的吸着特性の発現が期待できることから、好ましくは1である。 P 1 of the ligand A is a saturated hydrocarbon having 12 or less carbon atoms which may be substituted with a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms in the P of the first ligand. A group formed by removing m hydrogen atoms from a compound, and a preferable example is as described in the first ligand. In addition, m 1 of the ligand A is an integer of 1 to 2 out of m of the first ligand, and a low-dimensional compound is easily obtained, and better selective adsorption characteristics are expected. Since it is possible, it is preferably 1.
 前記金属錯体に含まれる金属イオンは、前述の金属イオンのうち、クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンである。このような金属イオンとしては、金属錯体の合成がきわめて容易であることから、銅、亜鉛又はコバルトのイオンが好ましく、銅又はコバルトのイオンがより好ましく、銅のイオンがさらに好ましい。 The metal ion contained in the metal complex is an ion of at least one metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc among the above metal ions. Such a metal ion is preferably a copper, zinc or cobalt ion, more preferably a copper or cobalt ion, and even more preferably a copper ion because the synthesis of the metal complex is extremely easy.
 また、前記配位子Bの好ましい例は、前記第二の配位子の好ましい例と同義である。前記配位子CのQは、前記第三の配位子のQのうち、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の不飽和炭化水素化合物からm個の水素原子を除いてなる基であり、好ましい例としては前記第三の配位子において述べたとおりである。 Moreover, the preferable example of the said ligand B is synonymous with the preferable example of said 2nd ligand. Q 1 of the ligand C is an unsaturated carbon atom having 12 or less carbon atoms which may be substituted with a halogen atom or a saturated hydrocarbon group having 1 to 8 carbon atoms in the Q of the third ligand. A group obtained by removing m hydrogen atoms from a hydrogen compound, and a preferable example is as described in the third ligand.
 また、本発明において用いる金属錯体の製造方法としては、特に限定はないが、前記配位子又はそれらの前駆体(前記第一の配位子の前駆体と、必要に応じて前記第二の配位子及び/又は第三の配位子の前駆体)を、前記金属イオン(並びに必要に応じて、カウンターイオン及び結晶水)からなる金属塩又はその水和物と溶媒中で反応せしめることにより製造することが好ましい。ここで用いる溶媒としては、水、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、アセトン、アセトニトリル、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、クロロホルム等の溶媒を使用でき、また、前記溶媒とは別の前記補助配位子をさらに加えてもよい。 In addition, the method for producing the metal complex used in the present invention is not particularly limited, but the ligand or a precursor thereof (the precursor of the first ligand and the second ligand as necessary). A ligand and / or a precursor of a third ligand) are reacted in a solvent with a metal salt comprising the metal ion (and, if necessary, a counter ion and crystal water) or a hydrate thereof. It is preferable to manufacture by. As the solvent used here, solvents such as water, methanol, ethanol, 2-propanol, tetrahydrofuran, acetone, acetonitrile, N, N-dimethylacetamide, N, N-diethylacetamide, chloroform and the like can be used. May further add another auxiliary ligand.
 なお、前記第一の配位子の前駆体と前記第三の配位子の前駆体における官能基としては、「-COA」、「-CSA」、「-C(=O)SA」、「-C(=O)N(R)A」、「-SOA」、「-PO(R)A」、「-C≡N」、「-SA」、「-OA」及び「-NHA」からなる群から選択されるいずれかで表される基が例示される。ここで、Aは、水素原子、アルカリ金属原子又はアルキル基で置換されていてもよいアンモニウムイオンであり、好ましくは水素原子である。 The functional groups in the precursor of the first ligand and the precursor of the third ligand include “—CO 2 A”, “—CS 2 A”, “—C (═O)”. “SA”, “—C (═O) N (R A ) A”, “—SO 3 A”, “—PO 4 (R A ) A”, “—C≡N”, “—SA”, “— Examples are groups represented by any one selected from the group consisting of “OA” and “—NHA”. Here, A is a hydrogen atom, an alkali metal atom or an ammonium ion which may be substituted with an alkyl group, preferably a hydrogen atom.
 前記金属錯体の製造において、反応せしめる、前記第一の配位子の前駆体、前記第二の配位子、前記第三の配位子の前駆体及び前記金属塩のモル比は、各配位子の配位能力の強弱に従って調節する必要がある。 In the production of the metal complex, the molar ratio of the precursor of the first ligand, the second ligand, the precursor of the third ligand, and the metal salt to be reacted is the same as that of each metal salt. It is necessary to adjust according to the coordination ability of the ligand.
 また、反応せしめる、前記第一の配位子の前駆体と前記第三の配位子の前駆体との好ましい比は、製造しようとする金属錯体に含まれる前記第一の配位子と前記第三の配位子との比に基づいても調節する必要がある。さらに、反応せしめる配位子又はそれらの前駆体は、金属塩に比して量論比より過剰にすることで、収率を向上させられる場合がある。また、高濃度で反応を実施することで、過剰に用いる配位子量を削減することができる場合もある。 The preferred ratio of the precursor of the first ligand and the precursor of the third ligand to be reacted is the ratio of the first ligand contained in the metal complex to be produced to the above-mentioned It is also necessary to adjust based on the ratio with the third ligand. Further, the yield of the ligand or the precursor thereof to be reacted may be improved by making the ligand or the precursor thereof in excess of the stoichiometric ratio compared to the metal salt. In some cases, the amount of ligand used excessively can be reduced by carrying out the reaction at a high concentration.
 前記金属塩として好ましくは、弗化物、塩化物、臭化物、硝酸塩、硫酸塩、過塩素酸塩、酢酸塩、テトラフルオロホウ酸塩、テトラフェニルホウ酸塩、ヘキサフルオロリン酸塩、ヘキサフルオロケイ酸塩、これらの水和物又はそれらの組み合わせが挙げられる。入手性がよく、かつカウンターアニオンの配位力が目的とする反応の妨げにならない程度に低いことが好ましいことから、好ましくは硝酸塩、硫酸塩、過塩素酸塩、酢酸塩、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩又はそれらの水和物であり、より好ましくは硝酸塩、硫酸塩、酢酸塩又はそれらの水和物である。 The metal salt is preferably fluoride, chloride, bromide, nitrate, sulfate, perchlorate, acetate, tetrafluoroborate, tetraphenylborate, hexafluorophosphate, hexafluorosilicic acid. Salts, hydrates thereof, or combinations thereof. Nitrate, sulfate, perchlorate, acetate, tetrafluoroborate are preferred because they are highly available and the coordinating power of the counter anion is preferably low enough not to interfere with the intended reaction. , Hexafluorophosphates or hydrates thereof, more preferably nitrates, sulfates, acetates or hydrates thereof.
 前記配位子又はそれらの前駆体を前記金属塩と反応せしめる際の反応温度は0℃以上200℃以下が好ましく、10℃以上150℃以下がより好ましい。さらに好ましくは、10℃以上100℃以下であり、より好ましくは20℃以上60℃以下である。係る反応は、0.01~10MPaの圧力下で行うことが好ましく、0.05~1MPaの圧力下で行うことがより好ましく、0.08~0.12MPaの圧力下で行うことがさらにより好ましく、通常、常圧下で行われる。反応時間は、通常1分~1週間、好ましくは5分~120時間である。 The reaction temperature at the time of reacting the ligand or the precursor thereof with the metal salt is preferably 0 ° C. or higher and 200 ° C. or lower, more preferably 10 ° C. or higher and 150 ° C. or lower. More preferably, it is 10 degreeC or more and 100 degrees C or less, More preferably, they are 20 degreeC or more and 60 degrees C or less. Such a reaction is preferably carried out under a pressure of 0.01 to 10 MPa, more preferably carried out under a pressure of 0.05 to 1 MPa, and even more preferably carried out under a pressure of 0.08 to 0.12 MPa. Usually, it is performed under normal pressure. The reaction time is usually 1 minute to 1 week, preferably 5 minutes to 120 hours.
 このような反応に用いる反応容器としては、開放型容器でも、オートクレーブなどの密閉型容器でも使用可能である。反応容器の加熱は、液体又は気体の熱媒を用いたり、マイクロ波や超音波を照射したりすることによって行うことができる。 As a reaction vessel used for such a reaction, an open vessel or a closed vessel such as an autoclave can be used. The reaction vessel can be heated by using a liquid or gaseous heat medium, or by irradiating microwaves or ultrasonic waves.
 また、前記反応において溶媒として適切なものを選択すると、生成した金属錯体は沈殿物として反応溶液中に析出する。析出した金属錯体を濾過などにより捕集した後、反応に用いた溶媒と同じ種類の溶媒、又は反応に用いた溶媒よりも揮発性が高い溶媒を用いて、析出した金属錯体を洗浄することが好ましい。さらに、得られた金属錯体が多孔性となっている場合は、細孔部に溶媒が吸着していることがあるため、これらを除去するために、金属錯体を乾燥することが好ましい。係る乾燥としては、室温又は加熱条件下での減圧乾燥が好ましい。 In addition, when an appropriate solvent is selected in the reaction, the generated metal complex is precipitated in the reaction solution as a precipitate. After collecting the precipitated metal complex by filtration or the like, the precipitated metal complex can be washed with the same type of solvent used for the reaction or a solvent that is more volatile than the solvent used for the reaction. preferable. Furthermore, when the obtained metal complex is porous, since the solvent may be adsorbed in the pores, it is preferable to dry the metal complex in order to remove these. As such drying, vacuum drying under room temperature or heating conditions is preferable.
 なお、前記第二の配位子を有する金属錯体を得る場合は、前記第一の配位子の前駆体(及び必要に応じて前記第三の配位子の前駆体)と前記金属塩とで予め中間体を合成し、次いで、その中間体に前記第二の配位子を加えて前記金属錯体を得るといった、段階的な合成方法を採用することもできる。 When obtaining a metal complex having the second ligand, the precursor of the first ligand (and the precursor of the third ligand as necessary) and the metal salt It is also possible to adopt a stepwise synthesis method in which an intermediate is synthesized in advance, and then the second ligand is added to the intermediate to obtain the metal complex.
 本発明の吸着分離方法においては、前述の金属錯体に、前記炭素数4以上の炭化水素混合ガス、すなわち、炭素数が4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスを接触せしめることにより、前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させる。係る金属錯体は、一種でも、二種以上を含んでいてもよい。 In the adsorption separation method of the present invention, the above-mentioned metal complex is mixed with the hydrocarbon mixture gas having 4 or more carbon atoms, that is, hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation. By bringing the mixed gas containing at least two kinds into contact with each other, hydrocarbons having a specific degree of unsaturation or less in the mixed gas are selectively adsorbed on the metal complex. Such metal complexes may be one kind or may contain two or more kinds.
 前記金属錯体を吸着剤として用いる場合の作用機構は定かではないが、本発明の金属錯体が炭化水素を吸着している状態においては、細孔表面の一部となると予想される第一の配位子のPがπ電子系をもたないことや、本発明の金属錯体が第二の配位子を有する場合には、第二の配位子がπ電子をもたないことが、既存の気体吸着剤の金属錯体と異なる吸着挙動を示す要因の一つとなっているのではないかと本発明者らは推察している。このため、金属錯体と不飽和度の大きい炭化水素との相互作用が強くならず、不飽和度の小さい炭化水素に対して高選択的な吸着特性を示すものと本発明者らは考えている。 The mechanism of action when the metal complex is used as an adsorbent is not clear, but in the state where the metal complex of the present invention adsorbs hydrocarbons, the first arrangement expected to be a part of the pore surface is used. It is known that the ligand P does not have a π-electron system, and when the metal complex of the present invention has a second ligand, the second ligand does not have a π-electron. The present inventors presume that this may be one of the factors that exhibit an adsorption behavior different from that of the metal complex of the gas adsorbent. For this reason, the present inventors consider that the interaction between the metal complex and the hydrocarbon having a high degree of unsaturation does not become strong, and that a highly selective adsorption characteristic is exhibited with respect to a hydrocarbon having a low degree of unsaturation. .
 本発明においては、前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させることで、前記の特定の不飽和度以下の炭化水素と他の炭化水素、すなわち、不飽和度が前記特定の不飽和度よりも大きい炭化水素とを分離する。前記特定の不飽和度は、後述のように混合ガスや金属錯体の種類に応じて、温度及び/又は圧力を調整することによって目的の不飽和度とすることができる。また、前記他の炭化水素を含む混合ガスについて、さらに温度及び/又は圧力条件を調整することで、別の特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させ、該炭化水素とそれよりも不飽和度が大きい炭化水素とをさらに分離することができる。本発明においては、例えば、前記炭素数が4の直鎖状炭化水素の混合ガスを吸着分離する場合、n-ブタンとそれよりも不飽和度が大きい炭化水素(1-ブテン及び1,3―ブタジエン等)とを、或いは、1-ブテンの不飽和度以下の炭化水素(n-ブタン及び1-ブテン)とそれよりも不飽和度が大きい炭化水素(1,3―ブタジエン等)とを分離することができる。 In the present invention, by selectively adsorbing hydrocarbons having a specific degree of unsaturation in the mixed gas to the metal complex, hydrocarbons having a specific degree of unsaturation and other hydrocarbons, that is, And hydrocarbons having a degree of unsaturation greater than the specified degree of unsaturation. The specific degree of unsaturation can be set to the target degree of unsaturation by adjusting the temperature and / or pressure according to the type of mixed gas or metal complex as described later. Further, with respect to the mixed gas containing other hydrocarbons, the temperature and / or pressure conditions are further adjusted to selectively adsorb hydrocarbons having a specific degree of unsaturation below the metal complex, and Hydrogen and hydrocarbons with a higher degree of unsaturation can be further separated. In the present invention, for example, when adsorbing and separating a mixed gas of a straight-chain hydrocarbon having 4 carbon atoms, n-butane and a hydrocarbon having a higher degree of unsaturation (1-butene and 1,3- Or hydrocarbons with a degree of unsaturation below 1-butene (n-butane and 1-butene) and hydrocarbons with a higher degree of unsaturation (1,3-butadiene, etc.) can do.
 本発明の吸着分離方法により分離して得られる炭化水素は、組成比が分離前の混合ガスと異なっていればよいが、分離取得物が80mol%以上であることが好ましく、90mol%以上であることがより好ましく、95%以上であることがさらに好ましく、98%以上であることが特に好ましい。 The hydrocarbon obtained by separation by the adsorption separation method of the present invention may have a composition ratio different from that of the mixed gas before separation, but the separated product is preferably 80 mol% or more, and 90 mol% or more. Is more preferably 95% or more, and particularly preferably 98% or more.
 また、吸着後に回収して得られる炭化水素も、組成比が分離前の混合ガスと異なっていればよいが、回収取得物が80mol%以上であることが好ましく、90mol%以上であることがより好ましく、95%以上であることがさらに好ましく、98%以上であることが特に好ましい。 Moreover, the hydrocarbon obtained by the recovery after the adsorption may be different from the mixed gas before the separation, but the recovered material is preferably 80 mol% or more, more preferably 90 mol% or more. Preferably, it is 95% or more, more preferably 98% or more.
 本発明の吸着分離方法において、前記金属錯体をそのまま、あるいは適当に粉砕することで粉末状にして用いることもできるが、適切な成型手段により成型して成型体として用いてもよい。なお、この成型において成型剤を用いる場合には、成型後に得られる吸着剤の炭化水素ガス吸着特性及び吸着後の炭化水素ガス脱離特性が著しく損なわれないようにして、成型剤の種類及びその使用量を定めることが好ましい。このような成型手段としてはプレス成型が例示される。吸着剤として用いる場合の成型体の形状は、吸着剤に要求される強度を維持できるような形状であることが望ましい。また、炭化水素ガス吸着速度を向上させるという観点から、成型品の表面積が大きいことが好ましい。 In the adsorptive separation method of the present invention, the metal complex can be used as it is or in a powder form by appropriate pulverization, but it may be molded by an appropriate molding means and used as a molded body. In the case of using a molding agent in this molding, the type of molding agent and the type of the molding agent are selected so that the hydrocarbon gas adsorption characteristics and the hydrocarbon gas desorption characteristics after adsorption are not significantly impaired. It is preferable to determine the amount used. An example of such a molding means is press molding. The shape of the molded body when used as an adsorbent is desirably a shape that can maintain the strength required for the adsorbent. Moreover, it is preferable that the surface area of a molded article is large from a viewpoint of improving the hydrocarbon gas adsorption rate.
 本発明において前述の金属錯体を用いて前記特定の不飽和度以下の炭化水素と不飽和度がそれよりも大きい炭化水素とを分離する具体的プロセスとしては、例えば、圧力スイング吸着法(圧力変動吸着法:Pressure Swing Adsorption)や温度スイング吸着法(温度変動吸着法:Temperature Swing Adsorption)や透過分離法(膜分離)が挙げられ、圧力スイング吸着法が好ましい。 In the present invention, as a specific process for separating hydrocarbons having a specific degree of unsaturation and hydrocarbons having a higher degree of unsaturation using the metal complex described above, for example, a pressure swing adsorption method (pressure fluctuation) Adsorption method: Pressure Swing Adsorption, Temperature Swing Adsorption Method (Temperature Swing Adsorption) and Permeation Separation Method (Membrane Separation), and Pressure Swing Adsorption Method are Preferred.
 圧力スイング吸着法においては、前記金属錯体に、第1の所定圧力(吸着圧力)の下で前記炭素数4以上の炭化水素混合ガスを接触せしめ、前記特定の不飽和度以下の炭化水素を前記金属錯体に高選択的に吸着させる吸着工程を含むことが好ましい。このような吸着工程においては、前記金属錯体が配置された空間(例えば、吸着槽内)の圧力を事前に所望の吸着圧力まで上昇又は低減させた後、前記混合物をその吸着圧力の下で前記空間に導入し、特定の不飽和度以下の炭化水素が高選択的に前記金属錯体に吸着されて濃縮され、その炭化水素の減損分と不飽和度が前記特定の不飽和度よりも大きい炭化水素が前記空間から排出される。 In the pressure swing adsorption method, the hydrocarbon complex gas having 4 or more carbon atoms is brought into contact with the metal complex under a first predetermined pressure (adsorption pressure), and the hydrocarbon having a specific degree of unsaturation or less is brought into contact with the metal complex. It is preferable to include an adsorption step for highly selectively adsorbing the metal complex. In such an adsorption step, the pressure in the space where the metal complex is arranged (for example, in the adsorption tank) is raised or reduced to a desired adsorption pressure in advance, and then the mixture is subjected to the adsorption pressure under the adsorption pressure. Introduced into the space, hydrocarbons with a specific degree of unsaturation or less are adsorbed and concentrated on the metal complex with high selectivity, and the hydrocarbon depletion and unsaturation are larger than the specific degree of unsaturation. Hydrogen is discharged from the space.
 また、このような圧力スイング吸着法においては、前記吸着工程の後に、圧力を第2の所定圧力(脱離圧力)に変化させ、前記金属錯体に吸着している炭化水素を脱離させる脱離工程をさらに含むことがより好ましい。このような脱離工程(再生工程)においては、特定の不飽和度以下の炭化水素を選択的に吸着している金属錯体が配置された空間の圧力を所望の脱離圧力まで低減し、金属錯体に吸着されている前記炭化水素の濃縮分を前記金属錯体から脱離せしめることによって前記空間から排出される。 In such a pressure swing adsorption method, after the adsorption step, the pressure is changed to a second predetermined pressure (desorption pressure) to desorb hydrocarbons adsorbed on the metal complex. More preferably, the method further includes a step. In such a desorption step (regeneration step), the pressure in the space where the metal complex that selectively adsorbs hydrocarbons having a specific degree of unsaturation is arranged is reduced to a desired desorption pressure, The hydrocarbons adsorbed on the complex are discharged from the space by desorbing from the metal complex.
 圧力を第2の所定圧力(脱離圧力)に変化させる前に、少量の不飽和度の小さい炭化水素をフィードすることで、前記空間の不飽和度が前記特定の不飽和度よりも大きい炭化水素をより不飽和度の小さい炭化水素に置換してもよい。 Before the pressure is changed to the second predetermined pressure (desorption pressure), a small amount of hydrocarbon having a low degree of unsaturation is fed, so that the degree of unsaturation in the space is larger than the specific degree of unsaturation. Hydrogen may be replaced with a hydrocarbon having a lower degree of unsaturation.
 なお、このような圧力スイング吸着法では、得られる前記特定の不飽和度以下の炭化水素又は不飽和度がそれよりも大きい炭化水素の純度が低く、より高純度の前記炭化水素を得るための工夫が必要な場合には、二段以上とすることができ、その場合は前記吸着工程と前記脱離工程とが二回以上繰り返して行われることになる。 Note that, in such a pressure swing adsorption method, the obtained hydrocarbon having a specific degree of unsaturation or lower or a hydrocarbon having a higher degree of unsaturation has a low purity, and the higher-purity hydrocarbon is obtained. When a device is required, the number of steps can be two or more. In that case, the adsorption step and the desorption step are repeated twice or more.
 前記の圧力スイング吸着法における吸着条件は、分離対象及び用いる金属錯体によって決定されるが、吸着温度は173~373Kが好ましく、223~353Kがより好ましい。さらに好ましくは253~353Kであり、最も好ましくは273~333Kである。吸着圧力は実施温度及び用いる金属錯体によって異なるが、0.04kPa~3MPaが好ましく、3kPa~3MPaがより好ましく、10kPa~2MPaがさらに好ましい。さらに好ましくは30kPa~2MPaであり、特に好ましくは100kPa~2MPaである。 The adsorption conditions in the pressure swing adsorption method are determined depending on the object to be separated and the metal complex used, and the adsorption temperature is preferably 173 to 373K, more preferably 223 to 353K. More preferably, it is 253 to 353K, and most preferably 273 to 333K. The adsorption pressure varies depending on the working temperature and the metal complex used, but is preferably 0.04 kPa to 3 MPa, more preferably 3 kPa to 3 MPa, and even more preferably 10 kPa to 2 MPa. More preferably, it is 30 kPa to 2 MPa, and particularly preferably 100 kPa to 2 MPa.
 また、前記吸着圧力としては、一方の炭化水素の吸着量(特定の不飽和度以下の炭化水素)と他方の炭化水素(不飽和度が前記特定の不飽和度よりも大きい炭化水素)の吸着量との差が大きくなる圧力が採用され、好ましくは2倍以上、より好ましくは5倍以上、さらに好ましくは10倍以上になる圧力が採用される。他方、前記脱離圧力としては、前記特定の不飽和度以下の炭化水素の吸着量が、飽和吸着量に対し50%以下になる圧力が採用され、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下になる圧力が採用される。 The adsorption pressure includes adsorption of one hydrocarbon (hydrocarbon having a specific degree of unsaturation) and the other hydrocarbon (hydrocarbon having a degree of unsaturation greater than the specific degree of unsaturation). A pressure that increases the difference from the amount is employed, preferably a pressure that is 2 times or more, more preferably 5 times or more, and even more preferably 10 times or more. On the other hand, as the desorption pressure, a pressure at which the adsorption amount of hydrocarbons having the specified degree of unsaturation or less is 50% or less of the saturated adsorption amount is adopted, preferably 20% or less, more preferably 10%. Hereinafter, more preferably, a pressure of 5% or less is employed.
 前記の圧力スイング吸着法における吸着成分の脱離条件は分離対象及び用いる金属錯体によって決定される。脱着圧力は分離対象、実施温度及び用いる金属錯体によって異なるが、気体の回収圧力が過度に低い場合、気体の貯蔵或いは利用のためには再圧縮の負荷が必要となることから、比較的高い圧力で回収することが好ましい。このような圧力としては、1kPa以上であることが好ましく、2kPa以上であることがより好ましく、5kPa以上であることがさらに好ましい。さらに好ましくは10kPa~2MPaであり、特に好ましくは20kPa~1.5MPaである。本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法によれば、このように実用上過度の低圧化(例えば1kPa未満、或いは5kPa未満)を要しないで用いることができる圧力領域において吸着した気体を回収することができる。また、本発明の炭素数4以上の炭化水素混合ガスの吸着分離方法によれば、50kPa以下(好ましくは1kPa~50kPa)という過度の高圧化を要しない圧力領域において吸着した気体を回収することができる。 また、脱離温度は223~373Kが好ましい。脱離工程では必ずしも積極的に昇温する必要はないが、脱離に必要な潜熱を補うことは好ましく、温調および保温の実施は好ましい場合もある。 The desorption conditions of the adsorbed components in the pressure swing adsorption method are determined by the separation object and the metal complex used. The desorption pressure varies depending on the object to be separated, the operating temperature, and the metal complex used. However, if the gas recovery pressure is too low, a recompression load is required to store or use the gas. It is preferable to collect by. Such pressure is preferably 1 kPa or more, more preferably 2 kPa or more, and further preferably 5 kPa or more. More preferably, it is 10 kPa to 2 MPa, and particularly preferably 20 kPa to 1.5 MPa. According to the method for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms according to the present invention, it is adsorbed in a pressure region that can be used without requiring excessive pressure reduction (for example, less than 1 kPa or less than 5 kPa) in practice. The recovered gas can be recovered. Further, according to the method for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms of the present invention, it is possible to recover the adsorbed gas in a pressure region that does not require an excessively high pressure of 50 kPa or less (preferably 1 kPa to 50 kPa). it can. The desorption temperature is preferably 223 to 373K. In the desorption step, it is not always necessary to positively increase the temperature, but it is preferable to compensate for the latent heat necessary for desorption, and it may be preferable to adjust the temperature and keep the temperature.
 次に、本発明の吸着分離方法を実施するのに好適な本発明の炭化水素の分離装置について説明する。かかる分離装置は、前述の金属錯体を備える分離手段と、前記分離手段に前記炭素数4以上の炭化水素混合ガスを導入する導入手段と、を備えており、前記金属錯体に前記混合ガスを接触せしめることにより前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させ、前記特定の不飽和度以下の炭化水素と不飽和度がそれよりも大きい炭化水素とを分離する装置である。 Next, the hydrocarbon separation apparatus of the present invention suitable for carrying out the adsorption separation method of the present invention will be described. The separation apparatus includes a separation unit including the metal complex described above, and an introduction unit that introduces the hydrocarbon mixed gas having 4 or more carbon atoms into the separation unit, and contacts the mixed gas with the metal complex. By selectively adsorbing hydrocarbons having a specific degree of unsaturation in the mixed gas to the metal complex, hydrocarbons having a specific degree of unsaturation and hydrocarbons having a higher degree of unsaturation, and Is a device for separating the.
 また、この炭化水素の分離装置においては、前記分離手段において前記金属錯体が配置された空間の圧力を制御する圧力制御手段をさらに備えていることが好ましく、前記圧力制御手段により第1の所定圧力の下で前記混合ガスを前記金属錯体に接触せしめ、前記特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させることにより、前述の吸着工程が実施できるようになっていることが好ましい。 The hydrocarbon separation apparatus preferably further includes pressure control means for controlling the pressure of the space in which the metal complex is arranged in the separation means, and the pressure control means provides a first predetermined pressure. Under the condition that the mixed gas is brought into contact with the metal complex and the hydrocarbons having a specific degree of unsaturation or less are selectively adsorbed onto the metal complex so that the adsorption step can be performed. Is preferred.
 さらに、その場合、前記特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させた後に、前記圧力制御手段により圧力を第2の所定圧力に変化させ、前記金属錯体に吸着している前記炭化水素を脱離させることにより、前述の脱離工程が実施できるようになっていることが好ましい。 Further, in that case, after selectively adsorbing hydrocarbons having a specific degree of unsaturation to the metal complex, the pressure is changed to a second predetermined pressure by the pressure control means, and adsorbed to the metal complex. It is preferable that the above-described desorption step can be performed by desorbing the hydrocarbon.
 図1に、この炭化水素の分離装置の好適な一実施形態を示す。 FIG. 1 shows a preferred embodiment of this hydrocarbon separation apparatus.
 図1に示す分離装置(圧力スイング吸着装置の一例)においては、前述の金属錯体が充填された吸着槽(分離手段)1が配置されており、その一端にバルブV1を有する導入管P1を介して圧縮機2(導入手段)が接続され、さらに圧縮機2にはバルブV2を有する原料ガス(前記混合物)の導入管P2とバルブV3を有するパージガスの導入管P3とが接続されている。また、吸着槽1の他端には、バルブV4を有する排出管P4を介して減圧機3(圧力制御手段)が接続され、さらに減圧機3にはバルブV5を有する製品ガス(分離された炭化水素)の排出管P5とバルブV6を有するパージガスの排出管P6とが接続されている。さらに、圧縮機2、減圧機3、バルブV1~V6には制御手段4(例えば、PLC)が電気的に接続されており、それらの動作を制御することができるように構成されている。また、本発明の分離装置は、温度を制御できる温度制御手段をさらに備えていることが好ましい。 In the separation apparatus (an example of a pressure swing adsorption apparatus) shown in FIG. 1, an adsorption tank (separation means) 1 filled with the above-described metal complex is disposed, and an inlet pipe P1 having a valve V1 at one end thereof is disposed. The compressor 2 (introducing means) is connected, and the compressor 2 is connected to a feed gas P2 having a valve V2 (the mixture) and a purge gas introducing pipe P3 having a valve V3. Further, a decompressor 3 (pressure control means) is connected to the other end of the adsorption tank 1 via a discharge pipe P4 having a valve V4. Further, a product gas having a valve V5 (separated carbonization) is connected to the decompressor 3. Hydrogen) discharge pipe P5 and purge gas discharge pipe P6 having valve V6 are connected. Further, a control means 4 (for example, PLC) is electrically connected to the compressor 2, the decompressor 3, and the valves V1 to V6 so that their operations can be controlled. Moreover, it is preferable that the separation apparatus of the present invention further includes a temperature control means capable of controlling the temperature.
 図1に示す分離装置を用いて炭化水素を分離する場合、例えば以下のように制御される。すなわち、先ず、吸着槽1内に圧縮機2によりパージガスが導入された後、減圧機3により吸着槽1内の圧力が前記第1の所定圧力(吸着圧力)となるように減圧される。次いで、その圧力の下で吸着槽1内に圧縮機2により原料ガスが導入され、特定の不飽和度以下の炭化水素が選択的に前記金属錯体に吸着されて濃縮し、その炭化水素の減損分と前記特定の不飽和度よりも不飽和度の大きな炭化水素が第一の製品ガスとして排出される。 When separating hydrocarbons using the separation apparatus shown in FIG. 1, for example, the following control is performed. That is, first, purge gas is introduced into the adsorption tank 1 by the compressor 2, and then the pressure in the adsorption tank 1 is reduced by the decompressor 3 so as to become the first predetermined pressure (adsorption pressure). Subsequently, the raw material gas is introduced into the adsorption tank 1 by the compressor 2 under the pressure, and hydrocarbons having a specific degree of unsaturation or less are selectively adsorbed and concentrated on the metal complex, and the hydrocarbons are depleted. And hydrocarbons having a degree of unsaturation greater than the specified degree of unsaturation are discharged as the first product gas.
 次に、減圧機3により吸着槽1内の圧力を前記第2の所定圧力(脱離圧力)まで減圧し、それにより前記金属錯体に吸着されていた特定の不飽和度以下の炭化水素の濃縮分が金属錯体から脱離して第二の製品ガスとして排出される。 Next, the pressure in the adsorption tank 1 is reduced to the second predetermined pressure (desorption pressure) by the decompressor 3, thereby concentrating hydrocarbons having a specific degree of unsaturation or less adsorbed on the metal complex. The component is desorbed from the metal complex and discharged as a second product gas.
 以上、炭化水素の分離装置の好適な一実施形態について説明したが、上記実施形態に限定されるものではなく、例えば、圧縮機と減圧機の一方が導入手段と圧力制御手段とを兼ねる場合はいずれか一方のみでもよい。また、金属錯体が充填された吸着槽として、複数の吸着槽(吸着塔)が並列又は直列に接続されていてもよい。 The preferred embodiment of the hydrocarbon separation apparatus has been described above. However, the present invention is not limited to the above-described embodiment. For example, when one of the compressor and the decompressor serves as both the introduction unit and the pressure control unit, Either one may be sufficient. Moreover, as an adsorption tank filled with the metal complex, a plurality of adsorption tanks (adsorption towers) may be connected in parallel or in series.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例及び比較例における分析及び評価はそれぞれ次のようにして行った。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Analysis and evaluation in the following examples and comparative examples were respectively performed as follows.
 (1)粉末X線回折パターンの測定
 粉末X線装置を用いて、回折角(2θ)=3~40°の範囲を走査速度2°/分で走査し、対称反射法で測定した。測定条件の詳細を以下に示す。
<測定条件>
装置:株式会社リガク製RINT-UltimaIII
X線源:CuKα(λ=1.5418Å) 40kV 40mA
ゴニオメーター:水平ゴニオメーター
検出器:シンチレーションカウンター
ステップ幅:0.02°
スリット:発散スリット=1mm
     発散縦制限スリット=10mm
     受光スリット=開放
     散乱スリット=開放。
(1) Measurement of Powder X-ray Diffraction Pattern Using a powder X-ray apparatus, a diffraction angle (2θ) = 3 to 40 ° was scanned at a scanning speed of 2 ° / min and measured by a symmetric reflection method. Details of the measurement conditions are shown below.
<Measurement conditions>
Equipment: RINT-UltimaIII manufactured by Rigaku Corporation
X-ray source: CuKα (λ = 1.5418Å) 40 kV 40 mA
Goniometer: Horizontal goniometer Detector: Scintillation counter Step width: 0.02 °
Slit: Divergence slit = 1mm
Divergence length restriction slit = 10mm
Receiving slit = open Scattering slit = open.
 (2)単結晶X線構造解析
 得られた単結晶をゴニオヘッドにマウントし、単結晶X線回折装置を用いて単結晶X線構造解析を行った。測定及び解析条件の詳細を以下に示す。
<測定・解析条件>
装置:株式会社リガク製R-AXIS RAPID
X線源:MoKα(λ=0.71073Å) 50kV 100mA
検出器:イメージングプレート
コリメータ:Φ0.8mm
解析ソフト:Yadokari‐XG 2009。
(2) Single-crystal X-ray structure analysis The obtained single crystal was mounted on a gonio head, and single-crystal X-ray structure analysis was performed using a single-crystal X-ray diffractometer. Details of measurement and analysis conditions are shown below.
<Measurement and analysis conditions>
Equipment: Rigaku Corporation R-AXIS RAPID
X-ray source: MoKα (λ = 0.10773Å) 50 kV 100 mA
Detector: Imaging plate collimator: Φ0.8mm
Analysis software: Yadokari-XG 2009.
 (3)元素分析
 炭素、水素及び窒素については、炭素・水素・窒素同時測定装置を用いて定量した。測定条件の詳細を以下に示す。
<測定条件>
装置:株式会社ジェイ・サイエンス・ラボ製MICRO CORDER JM10
燃焼温度:950℃
燃焼時間:4分。
(3) Elemental analysis About carbon, hydrogen, and nitrogen, it quantified using the carbon, hydrogen, and nitrogen simultaneous measuring apparatus. Details of the measurement conditions are shown below.
<Measurement conditions>
Apparatus: MICRO CORDER JM10 manufactured by J Science Lab Co., Ltd.
Combustion temperature: 950 ° C
Burning time: 4 minutes.
 (4)吸脱着等温線の測定
 自動比表面積/細孔分布測定装置を用いて容量法で測定を行った。このとき、測定に先立って試料を373K、5Paで16時間乾燥し、吸着水などを除去した。測定条件の詳細を以下に示す。
<測定条件>
装置:日本ベル株式会社製BELSORP-miniII
圧力プログラム:5kPa以下→120kPa→10kPa以下
平衡待ち時間:300秒。
(4) Measurement of adsorption / desorption isotherm Measurement was performed by a volume method using an automatic specific surface area / pore distribution measuring apparatus. At this time, the sample was dried at 373 K and 5 Pa for 16 hours prior to measurement to remove adsorbed water and the like. Details of the measurement conditions are shown below.
<Measurement conditions>
Apparatus: BELSORP-miniII manufactured by Nippon Bell Co., Ltd.
Pressure program: 5 kPa or less → 120 kPa → 10 kPa or less Equilibrium waiting time: 300 seconds.
 また、以下の合成例で用いる[Cu(chc)]及び[Cu(bza)]は、以下の文献:
J.Chem.Soc.,1965,P.6466-6477
に記載の方法に準拠して合成した。[Cu(chc)]及び[Cu(bza)]の構造式を以下に示す。
[Cu 2 (chc) 4 ] and [Cu 2 (bza) 4 ] used in the following synthesis examples are as follows:
J. et al. Chem. Soc. 1965, p. 6466-6477
According to the method described in 1. Structural formulas of [Cu 2 (chc) 4 ] and [Cu 2 (bza) 4 ] are shown below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、以下の合成例で用いる[Cu(adc)(HO)]の構造式を以下に示す。 The structural formula of [Cu 2 (adc) 4 (H 2 O) 2 ] used in the following synthesis examples is shown below.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (合成例1)
 大気下、[Cu(chc)]0.250g(0.395mmol)にメタノール50mLに加え298Kで30分間攪拌した後、この溶液に1,4-ジアザビシクロ[2.2.2]オクタン0.047g(0.415mmol)を加えた。その後、298Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで洗浄し、さらに298K、5Paで2時間乾燥し、目的の金属錯体0.2454g(収率83%)を得た。得られた金属錯体の粉末X線回折パターンを図2に示す。図2に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、銅イオン:シクロヘキサンカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン=2:4:1であった。
実測値 C:52.68,H:7.41,N:3.25(%)
理論値 C:54.60,H:7.55,N:3.75(%)。
(Synthesis Example 1)
Under air, 0.250 g (0.395 mmol) of [Cu 2 (chc) 4 ] was added to 50 mL of methanol, and the mixture was stirred at 298 K for 30 minutes. Then, 1,4-diazabicyclo [2.2.2] octane 047 g (0.415 mmol) was added. Then, it stirred at 298K for 24 hours. The deposited metal complex was collected by suction filtration, washed with methanol, and further dried at 298K and 5 Pa for 2 hours to obtain 0.2454 g (yield 83%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 2, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was copper ion: cyclohexanecarboxylate ion: 1,4-diazabicyclo [2.2.2] octane = 2: 4: 1.
Measured value C: 52.68, H: 7.41, N: 3.25 (%)
Theoretical value C: 54.60, H: 7.55, N: 3.75 (%).
 なお、合成例1において得られた金属錯体の構造(一次元構造)は、以下の構造式に示すような構造になっているものと考えられる。 In addition, it is thought that the structure (one-dimensional structure) of the metal complex obtained in Synthesis Example 1 has a structure as shown in the following structural formula.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 (合成例2)
 大気下、[Cu(chc)]0.284g(0.45mmol)にクロロホルム:メタノールが5:1である溶液70mLを加え298Kで5分間攪拌して溶解させ、これを溶液Aとした。続いて、[Cu(bza)]0.030g(0.05mmol)にクロロホルム:メタノールが5:1である溶液10mLを加え298Kで5分間攪拌して溶解させ、これを溶液Bとした。溶液Bを溶液Aに加え、298Kで10分間攪拌した後1,4-ジアザビシクロ[2.2.2]オクタン0.056g(0.5mmol)を加え、298Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、クロロホルムで洗浄し、さらに298K、5Paで2時間乾燥し、目的の金属錯体0.3129g(収率83%)を得た。得られた金属錯体の粉末X線回折パターンを図3に示す。図3に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、銅イオン:シクロヘキサンカルボキシレートイオン:ベンゼンカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン=2:3.6:0.4:1であった。
実測値 C:54.47,H:7.04,N:3.61(%)
理論値 C:54.78,H:7.25,N:3.76(%)。
(Synthesis Example 2)
Under air, 70 mL of a 5: 1 chloroform: methanol solution was added to 0.284 g (0.45 mmol) of [Cu 2 (chc) 4 ], and the mixture was dissolved by stirring at 298 K for 5 minutes. Subsequently, 10 mL of a solution of chloroform: methanol 5: 1 was added to 0.030 g (0.05 mmol) of [Cu 2 (bza) 4 ] and dissolved by stirring at 298 K for 5 minutes. Solution B was added to Solution A, and the mixture was stirred at 298 K for 10 minutes, 0.056 g (0.5 mmol) of 1,4-diazabicyclo [2.2.2] octane was added, and the mixture was stirred at 298 K for 24 hours. The deposited metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.3129 g (yield 83%) of the desired metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 3, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was as follows: copper ion: cyclohexanecarboxylate ion: benzenecarboxylate ion: 1,4-diazabicyclo [2.2.2] octane = 2: 3.6. : 0.4: 1.
Actual measurement C: 54.47, H: 7.04, N: 3.61 (%)
Theoretical value C: 54.78, H: 7.25, N: 3.76 (%).
 (合成例3)
 大気下、[Cu(chc)]0.253g(0.4mmol)にクロロホルム:メタノールが5:1である溶液60mLを加え298Kで5分間攪拌して溶解させ、これを溶液Aとした。続いて、[Cu(bza)]0.061g(0.1mmol)にクロロホルム:メタノールが5:1である溶液15mLを加え298Kで5分間攪拌して溶解させ、これを溶液Bとした。溶液Bを溶液Aに加え、298Kで10分間攪拌した後1,4-ジアザビシクロ[2.2.2]オクタン0.056g(0.5mmol)を加え、298Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、クロロホルムで洗浄し、さらに298K、5Paで2時間乾燥し、目的の金属錯体0.2913g(収率78%)を得た。得られた金属錯体の粉末X線回折パターンを図4に示す。図4に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、銅イオン:シクロヘキサンカルボキシレートイオン:ベンゼンカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン=2:3.2:0.8:1であった。
実測値 C:54.63,H:6.89,N:3.68(%)
理論値 C:54.96,H:6.94,N:3.77(%)。
(Synthesis Example 3)
Under atmosphere, 60 mL of a solution of chloroform: methanol 5: 1 was added to 0.253 g (0.4 mmol) of [Cu 2 (chc) 4 ] and dissolved by stirring at 298 K for 5 minutes. Subsequently, 15 mL of a solution of chloroform: methanol 5: 1 was added to 0.061 g (0.1 mmol) of [Cu 2 (bza) 4 ], and the mixture was dissolved by stirring at 298 K for 5 minutes. Solution B was added to Solution A, and the mixture was stirred at 298 K for 10 minutes, 0.056 g (0.5 mmol) of 1,4-diazabicyclo [2.2.2] octane was added, and the mixture was stirred at 298 K for 24 hours. The precipitated metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.2913 g (yield 78%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 4, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was as follows: copper ion: cyclohexanecarboxylate ion: benzenecarboxylate ion: 1,4-diazabicyclo [2.2.2] octane = 2: 3.2 : 0.8: 1.
Measured value C: 54.63, H: 6.89, N: 3.68 (%)
Theoretical value C: 54.96, H: 6.94, N: 3.77 (%).
 (合成例4)
 大気下、[Cu(chc)]0.242g(0.38mmol)にクロロホルム:メタノールが5:1である溶液51mLを加え298Kで5分間攪拌して溶解させ、これを溶液Aとした。続いて、[Cu(bza)]0.012g(0.02mmol)にクロロホルム:メタノールが5:1である溶液12mLを加え298Kで5分間攪拌して溶解させ、これを溶液Bとした。溶液Bを溶液Aに加え、298Kで10分間攪拌した後1,4-ジアザビシクロ[2.2.2]オクタン0.045g(0.4mmol)を加え、298Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、クロロホルムで洗浄し、さらに298K、5Paで2時間乾燥し、目的の金属錯体0.2312g(収率77%)を得た。得られた金属錯体の粉末X線回折パターンを図5に示す。図5に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、銅イオン:シクロヘキサンカルボキシレートイオン:ベンゼンカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン=2:3.8:0.2:1であった。
実測値 C:54.23,H:7.40,N:3.79(%)
理論値 C:54.69,H:7.40,N:3.75(%)。
(Synthesis Example 4)
Under air, 51 mL of a solution of chloroform: methanol 5: 1 was added to 0.242 g (0.38 mmol) of [Cu 2 (chc) 4 ] and dissolved by stirring at 298 K for 5 minutes. Subsequently, 12 mL of a 5: 1 chloroform: methanol solution was added to 0.012 g (0.02 mmol) of [Cu 2 (bza) 4 ], and the mixture was dissolved by stirring at 298 K for 5 minutes. Solution B was added to Solution A, and the mixture was stirred at 298 K for 10 minutes, 0.045 g (0.4 mmol) of 1,4-diazabicyclo [2.2.2] octane was added, and the mixture was stirred at 298 K for 24 hours. The precipitated metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.2312 g (yield 77%) of the target metal complex. FIG. 5 shows a powder X-ray diffraction pattern of the obtained metal complex. From the results shown in FIG. 5, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was as follows: copper ion: cyclohexanecarboxylate ion: benzenecarboxylate ion: 1,4-diazabicyclo [2.2.2] octane = 2: 3.8. : 0.2: 1.
Measured value C: 54.23, H: 7.40, N: 3.79 (%)
Theoretical value C: 54.69, H: 7.40, N: 3.75 (%).
 (合成例5)
 大気下、[Cu(chc)]0.211g(0.33mmol)にクロロホルム:メタノールが5:1である溶液54mLを加え298Kで5分間攪拌して溶解させ、これを溶液Aとした。続いて、[Cu(adc)(HO)]0.073g(0.083mmol)にクロロホルム:メタノールが40:1である溶液16mLを加え298Kで5分間攪拌して溶解させ、これを溶液Bとした。溶液Bを溶液Aに加え、298Kで10分間攪拌した後1,4-ジアザビシクロ[2.2.2]オクタン0.046g(0.413mmol)を加え、298Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、クロロホルムで洗浄し、さらに298K、5Paで2時間乾燥し、目的の金属錯体0.2259g(収率69%)を得た。得られた金属錯体の粉末X線回折パターンを図6に示す。図6に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、銅イオン:シクロヘキサンカルボキシレートイオン:アダマンタンカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン=2:3.4:0.6:1であった。
実測値 C:56.23,H:7.60,N:3.65(%)
理論値 C:56.11,H:7.55,N:3.60(%)。
(Synthesis Example 5)
Under air, 54 mL of a solution of chloroform: methanol 5: 1 was added to 0.211 g (0.33 mmol) of [Cu 2 (chc) 4 ], and the mixture was dissolved by stirring at 298 K for 5 minutes. Subsequently, 16 mL of a solution of chloroform: methanol 40: 1 was added to 0.073 g (0.083 mmol) of [Cu 2 (adc) 4 (H 2 O) 2 ] and dissolved by stirring at 298 K for 5 minutes. Was solution B. Solution B was added to Solution A, and the mixture was stirred at 298 K for 10 minutes, 0.046 g (0.413 mmol) of 1,4-diazabicyclo [2.2.2] octane was added, and the mixture was stirred at 298 K for 24 hours. The precipitated metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.2259 g (yield 69%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 6, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was as follows: copper ion: cyclohexanecarboxylate ion: adamantanecarboxylate ion: 1,4-diazabicyclo [2.2.2] octane = 2: 3.4. : 0.6: 1.
Measured value C: 56.23, H: 7.60, N: 3.65 (%)
Theoretical value C: 56.11, H: 7.55, N: 3.60 (%).
 (合成例6)
 大気下、[Cu(chc)]0.255g(0.4mmol)にクロロホルム:メタノールが5:1である溶液56mLを加え298Kで5分間攪拌して溶解させ、これを溶液Aとした。続いて[Cu(bza)]0.184g(0.3mmol)にクロロホルム:メタノールが5:1である溶液42mLを加え298Kで5分間攪拌して溶解させ、これを溶液Bとした。さらに[Cu(adc)(HO)]0.264g(0.3mmol)にクロロホルム:メタノールが40:1である溶液42mLを加え298Kで5分間攪拌して溶解させ、これを溶液Cとした。溶液Bおよび溶液Cを溶液Aに加え、298Kで10分間攪拌した後1,4-ジアザビシクロ[2.2.2]オクタン0.112g(1.0mmol)を加え、298Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、クロロホルムで洗浄し、さらに298K、5Paで2時間乾燥し、目的の金属錯体0.6084g(収率75%)を得た。得られた金属錯体の粉末X線回折パターンを図7に示す。図7に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、銅イオン:シクロヘキサンカルボキシレートイオン:ベンゼンカルボキシレートイオン:アダマンタンカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン=2:1.6:1.2:1.2:1であった。
実測値 C:57.94,H:6.74,N:3.46(%)
理論値 C:58.02,H:6.73,N:3.49(%)。
(Synthesis Example 6)
Under atmosphere, 56 mL of a solution of 5: 1 chloroform: methanol was added to 0.255 g (0.4 mmol) of [Cu 2 (chc) 4 ] and dissolved by stirring at 298 K for 5 minutes. Subsequently, 42 mL of a solution of chloroform: methanol 5: 1 was added to 0.184 g (0.3 mmol) of [Cu 2 (bza) 4 ] and dissolved by stirring at 298 K for 5 minutes. Furthermore, 42 mL of a solution of chloroform: methanol 40: 1 was added to 0.264 g (0.3 mmol) of [Cu 2 (adc) 4 (H 2 O) 2 ] and dissolved by stirring at 298 K for 5 minutes. C. Solution B and solution C were added to solution A, and the mixture was stirred at 298 K for 10 minutes, and then 0.14 g (1.0 mmol) of 1,4-diazabicyclo [2.2.2] octane was added and stirred at 298 K for 24 hours. The deposited metal complex was collected by suction filtration, washed with chloroform, and further dried at 298 K and 5 Pa for 2 hours to obtain 0.6084 g (yield 75%) of the desired metal complex. FIG. 7 shows a powder X-ray diffraction pattern of the obtained metal complex. From the results shown in FIG. 7, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was as follows: copper ion: cyclohexanecarboxylate ion: benzenecarboxylate ion: adamantanecarboxylate ion: 1,4-diazabicyclo [2.2.2] octane = 2: 1.6: 1.2: 1.2: 1.
Actual value C: 57.94, H: 6.74, N: 3.46 (%)
Theoretical value C: 58.02, H: 6.73, N: 3.49 (%).
 (合成例7)
 大気下、硝酸コバルト六水和物 0.873g(3.0mmol)とtrans-1,4-シクロヘキサンジカルボン酸0.500g(3.0mmol)にN,N-ジメチルホルムアミド30mlを加え、298Kで5分間攪拌して溶解させた。ここに、1,4-ジアザビシクロ[2.2.2]オクタン0.146g(1.3mmol)のアセトニトリル溶液30mlを加え、298Kで3時間攪拌した。析出した結晶について、単結晶X線構造解析を行った結果を以下に示す。
Monoclinic(C2/c)
a=30.8367(15)Å
b=9.7474(4)Å
c=18.4200(8)Å
α=90.0000°
β=118.8298(15)°
γ=90.0000°
V=4850.4(4)Å
Z=4
R=0.0638
Rw=0.2038
得られた金属錯体の骨格の組成は、コバルトイオン:trans-1,4-シクロヘキサンジカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン=3:3:1であった。また、得られた結晶構造を図8に示す。
(Synthesis Example 7)
Under air, 30 ml of N, N-dimethylformamide was added to 0.873 g (3.0 mmol) of cobalt nitrate hexahydrate and 0.500 g (3.0 mmol) of trans-1,4-cyclohexanedicarboxylic acid at 298 K for 5 minutes. Stir to dissolve. To this was added 30 ml of an acetonitrile solution of 0.146 g (1.3 mmol) of 1,4-diazabicyclo [2.2.2] octane, and the mixture was stirred at 298 K for 3 hours. The results of single crystal X-ray structural analysis of the precipitated crystals are shown below.
Monoclinic (C2 / c)
a = 30.8367 (15) Å
b = 9.7474 (4) Å
c = 18.4200 (8) Å
α = 90.0000 °
β = 11.8298 (15) °
γ = 90.0000 °
V = 4850.4 (4) 3 3
Z = 4
R = 0.0638
Rw = 0.2038
The composition of the skeleton of the obtained metal complex was cobalt ion: trans-1,4-cyclohexanedicarboxylate ion: 1,4-diazabicyclo [2.2.2] octane = 3: 3: 1. The obtained crystal structure is shown in FIG.
 析出した金属錯体を吸引濾過により回収した後、298K、5Paで2時間乾燥し、目的の金属錯体0.151g(収率15.5%)を得た。得られた金属錯体の粉末X線回折パターンを図9に示す。図9に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、コバルトイオン:trans-1,4-シクロヘキサンジカルボキシレートイオン:1,4-ジアザビシクロ[2.2.2]オクタン:N,N-ジメチルホルムアミド=3:3:1:3であった。
実測値 C:44.05,H:6.07,N:6.92(%)
理論値 C:45.98,H:6.23,N:6.87(%)。
The precipitated metal complex was collected by suction filtration, and then dried at 298K and 5 Pa for 2 hours to obtain 0.151 g (yield 15.5%) of the target metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 9, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was as follows: cobalt ion: trans-1,4-cyclohexanedicarboxylate ion: 1,4-diazabicyclo [2.2.2] octane: N, N -Dimethylformamide = 3: 3: 1: 3.
Actual value C: 44.05, H: 6.07, N: 6.92 (%)
Theoretical value C: 45.98, H: 6.23, N: 6.87 (%).
 (比較合成例1)
 大気下、トリフルオロメタンスルホン酸銅0.182g(0.5mmol)を水10mLに溶解させ、これを溶液Aとした。続いて、1,3-ビス(4-ピリジル)プロパン0.198g(1.0mmol)の2-ブタノン溶液10mLに溶液Aを滴下した。その後、298Kで20分間攪拌した。析出した金属錯体を吸引濾過により回収した後、水、続いてアセトンで洗浄し、さらに373K、5Paで4時間乾燥し、目的の金属錯体0.268g(収率70%)を得た。得られた金属錯体の粉末X線回折パターンを図10に示す。図10に示した結果から、得られた金属錯体は規則構造を有することが確認された。また、元素分析を行った結果、その組成比(モル比)は、銅イオン:トリフルオロメタンスルホン酸イオン:1,3-ビス(4-ピリジル)プロパン=1:2:2であった。
実測値 C:44.15,H:3.63,N:7.20,F:14,S:8.40(%)
理論値 C:44.35,H:3.72,N:7.39,F:15.03,S:8.46(%)。
(Comparative Synthesis Example 1)
Under air, 0.182 g (0.5 mmol) of copper trifluoromethanesulfonate was dissolved in 10 mL of water, and this was used as Solution A. Subsequently, Solution A was added dropwise to 10 mL of a 2-butanone solution of 0.198 g (1.0 mmol) of 1,3-bis (4-pyridyl) propane. Thereafter, the mixture was stirred at 298K for 20 minutes. The deposited metal complex was collected by suction filtration, washed with water and then with acetone, and further dried at 373 K and 5 Pa for 4 hours to obtain 0.268 g (yield 70%) of the desired metal complex. The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From the results shown in FIG. 10, it was confirmed that the obtained metal complex had an ordered structure. As a result of elemental analysis, the composition ratio (molar ratio) was copper ion: trifluoromethanesulfonic acid ion: 1,3-bis (4-pyridyl) propane = 1: 2: 2.
Measured value C: 44.15, H: 3.63, N: 7.20, F: 14, S: 8.40 (%)
Theoretical value C: 44.35, H: 3.72, N: 7.39, F: 15.03, S: 8.46 (%).
 (実施例1)
 合成例1で得られた金属錯体について、1,3-ブタジエン及び1-ブテンの273Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図11に示すが、30~110kPaの範囲において、1-ブテン吸着量は1,3-ブタジエン吸着量を上回り、1-ブテン吸着量/1,3-ブタジエン吸着量の値は最大で6倍程度を示したことから、吸着特性に選択性があることが確認された。このことより、1,3-ブタジエン及び1-ブテンの混合ガスから1-ブテンを選択的に吸着分離させて、1,3-ブタジエンを精製できることが分かる。
Example 1
With respect to the metal complex obtained in Synthesis Example 1, adsorption isotherms of 1,3-butadiene and 1-butene at 273 K were measured by a capacitance method. The results are shown in FIG. 11. In the range of 30 to 110 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 6 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. This shows that 1,3-butadiene can be purified by selectively adsorbing and separating 1-butene from a mixed gas of 1,3-butadiene and 1-butene.
 (実施例2)
 合成例2で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの273Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図12に示すが、10~25kPaの範囲において、1-ブテン吸着量は1,3-ブタジエン吸着量を上回り、1-ブテン吸着量/1,3-ブタジエン吸着量の値は最大で2倍程度を示したことから、吸着特性に選択性があることが確認された。また、10~25kPaの範囲において、n-ブタン吸着量は1,3-ブタジエン吸着量を上回り、n-ブタン吸着量/1,3-ブタジエン吸着量の値は最大で3倍程度を示したことから、吸着特性に選択性があることが確認された。このことより、1,3-ブタジエン、1-ブテン及びn-ブタンの混合ガスから1-ブテン、n-ブタンをそれぞれ選択的に吸着分離させて、1,3-ブタジエン、1-ブテンをそれぞれ精製できることが分かる。
(Example 2)
With respect to the metal complex obtained in Synthesis Example 2, the adsorption isotherms of 1,3-butadiene, 1-butene and n-butane at 273 K were measured by the capacitance method. The results are shown in FIG. 12. In the range of 10 to 25 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 2 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. In addition, in the range of 10 to 25 kPa, the n-butane adsorption amount exceeded the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount was about 3 times the maximum. From the results, it was confirmed that the adsorption property has selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
 (実施例3)
 合成例3で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの273Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図13に示すが、5~6kPaの範囲において、1-ブテン吸着量は1,3-ブタジエン吸着量を上回り、1-ブテン吸着量/1,3-ブタジエン吸着量の値は最大で30倍程度を示したことから、吸着特性に選択性があることが確認された。また、4.6~6kPaの範囲において、n-ブタン吸着量は1,3-ブタジエン吸着量を上回り、n-ブタン吸着量/1,3-ブタジエン吸着量の値は最大で60倍程度を示したことから、吸着特性に選択性があることが確認された。このことより、1,3-ブタジエン、1-ブテン及びn-ブタンの混合ガスから1-ブテン、n-ブタンをそれぞれ選択的に吸着分離させて、1,3-ブタジエン、1-ブテンをそれぞれ精製できることが分かる。
Example 3
With respect to the metal complex obtained in Synthesis Example 3, the adsorption isotherms at 273 K of 1,3-butadiene, 1-butene and n-butane were measured by the capacitance method. The results are shown in FIG. 13. In the range of 5 to 6 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 30 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. In the range of 4.6 to 6 kPa, the n-butane adsorption amount exceeds the 1,3-butadiene adsorption amount, and the n-butane adsorption amount / 1,3-butadiene adsorption amount is about 60 times maximum. From these results, it was confirmed that the adsorption characteristics have selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
 (実施例4)
 合成例4で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの273Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図14に示すが、16~32kPaの範囲において、1-ブテン吸着量は1,3-ブタジエン吸着量を上回り、1-ブテン吸着量/1,3-ブタジエン吸着量の値は最大で4倍程度を示したことから、吸着特性に選択性があることが確認された。また、16~32kPaの範囲において、n-ブタン吸着量は1,3-ブタジエン吸着量を上回り、n-ブタン吸着量/1,3-ブタジエン吸着量の値は最大で7倍程度を示したことから、吸着特性に選択性があることが確認された。このことより、1,3-ブタジエン、1-ブテン及びn-ブタンの混合ガスから1-ブテン、n-ブタンをそれぞれ選択的に吸着分離させて、1,3-ブタジエン、1-ブテンをそれぞれ精製できることが分かる。
Example 4
For the metal complex obtained in Synthesis Example 4, the adsorption isotherms at 273 K of 1,3-butadiene, 1-butene and n-butane were measured by the capacitance method. The results are shown in FIG. 14. In the range of 16 to 32 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 4 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. In addition, in the range of 16 to 32 kPa, the n-butane adsorption amount exceeded the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount was about 7 times at maximum. From the results, it was confirmed that the adsorption property has selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
 (実施例5)
 合成例5で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの273Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図15に示すが、11~14kPaの範囲において、1-ブテン吸着量は1,3-ブタジエン吸着量を上回り、1-ブテン吸着量/1,3-ブタジエン吸着量の値は最大で5倍程度を示したことから、吸着特性に選択性があることが確認された。また、10~14kPaの範囲において、n-ブタン吸着量は1,3-ブタジエン吸着量を上回り、n-ブタン吸着量/1,3-ブタジエン吸着量の値は最大で20倍程度を示したことから、吸着特性に選択性があることが確認された。このことより、1,3-ブタジエン、1-ブテン及びn-ブタンの混合ガスから1-ブテン、n-ブタンをそれぞれ選択的に吸着分離させて、1,3-ブタジエン、1-ブテンをそれぞれ精製できることが分かる。
(Example 5)
With respect to the metal complex obtained in Synthesis Example 5, the adsorption isotherms at 273 K of 1,3-butadiene, 1-butene and n-butane were measured by a volumetric method. The results are shown in FIG. 15. In the range of 11 to 14 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 5 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. In addition, in the range of 10 to 14 kPa, the n-butane adsorption amount exceeded the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount was about 20 times at maximum. From the results, it was confirmed that the adsorption property has selectivity. As a result, 1-butene and n-butane are selectively adsorbed and separated from a mixed gas of 1,3-butadiene, 1-butene and n-butane, respectively, and 1,3-butadiene and 1-butene are purified. I understand that I can do it.
 (実施例6)
 合成例6で得られた金属錯体について、1,3-ブタジエン及び1-ブテンの273Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図16に示すが、11~14kPaの範囲において、1-ブテン吸着量は1,3-ブタジエン吸着量を上回り、1-ブテン吸着量/1,3-ブタジエン吸着量の値は最大で5倍程度を示したことから、吸着特性に選択性があることが確認された。このことより、1,3-ブタジエン、1-ブテンの混合ガスから1-ブテンを選択的に吸着分離させて、1,3-ブタジエンを精製できることが分かる。
(Example 6)
With respect to the metal complex obtained in Synthesis Example 6, adsorption isotherms of 1,3-butadiene and 1-butene at 273 K were measured by a capacitance method. The results are shown in FIG. 16. In the range of 11 to 14 kPa, the 1-butene adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of 1-butene adsorption amount / 1,3-butadiene adsorption amount is 5 at the maximum. Since it was about double, it was confirmed that the adsorption property has selectivity. This shows that 1,3-butadiene can be purified by selectively adsorbing and separating 1-butene from a mixed gas of 1,3-butadiene and 1-butene.
 (実施例7)
 合成例1で得られた金属錯体について、1,3-ブタジエン及び1-ブテンの303Kにおける脱着等温線を容量法によりそれぞれ測定した。結果を図17に示すが、実用上過度の低圧化を要しないで用いることができる5kPa以上という圧力領域において吸着した気体を回収することができる。
(Example 7)
With respect to the metal complex obtained in Synthesis Example 1, desorption isotherms of 1,3-butadiene and 1-butene at 303 K were measured by a capacitance method. The results are shown in FIG. 17, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessively low pressure in practice.
 (実施例8)
 合成例2で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの303Kにおける脱着等温線を容量法によりそれぞれ測定した。結果を図18に示すが、実用上過度の低圧化を要しないで用いることができる5kPa以上という圧力領域において吸着した気体を回収することができる。
(Example 8)
With respect to the metal complex obtained in Synthesis Example 2, desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by a capacitance method. The result is shown in FIG. 18, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessive pressure reduction in practice.
 (実施例9)
 合成例3で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの303Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図19に示すが、実用上過度の低圧化を要しないで用いることができる5kPa以上という圧力領域において吸着した気体を回収することができる。
Example 9
For the metal complex obtained in Synthesis Example 3, the adsorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by the capacitance method. The results are shown in FIG. 19, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessively low pressure in practice.
 (実施例10)
 合成例4で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの303Kにおける脱着等温線を容量法によりそれぞれ測定した。結果を図20に示すが、実用上過度の低圧化を要しないで用いることができる5kPa以上という圧力領域において吸着した気体を回収することができる。
(Example 10)
With respect to the metal complex obtained in Synthesis Example 4, the desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by the capacitance method. The results are shown in FIG. 20, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessively low pressure in practice.
 (実施例11)
 合成例5で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの303Kにおける脱着等温線を容量法によりそれぞれ測定した。結果を図21に示すが、実用上過度の低圧化を要しないで用いることができる5kPa以上という圧力領域において吸着した気体を回収することができる。
(Example 11)
For the metal complex obtained in Synthesis Example 5, the desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 303 K were measured by the capacitance method. The results are shown in FIG. 21, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessive pressure reduction in practice.
 (実施例12)
 合成例6で得られた金属錯体について、1,3-ブタジエン及び1-ブテンの303Kにおける脱着等温線を容量法によりそれぞれ測定した。結果を図22に示すが、実用上過度の低圧化を要しないで用いることができる5kPa以上という圧力領域において吸着した気体を回収することができる。
Example 12
With respect to the metal complex obtained in Synthesis Example 6, desorption isotherms of 1,3-butadiene and 1-butene at 303 K were measured by a capacitance method. The results are shown in FIG. 22, and the adsorbed gas can be recovered in a pressure region of 5 kPa or more that can be used without requiring excessive pressure reduction in practice.
 (実施例13)
 合成例7で得られた金属錯体について、1,3-ブタジエン及びn-ブタンの273Kにおける吸着等温線を容量法によりそれぞれ測定した。結果を図23に示すが、0.04~1.2kPaの範囲において、n-ブタン吸着量は1,3-ブタジエン吸着量を上回り、n-ブタン吸着量/1,3-ブタジエン吸着量の値は最大で6倍程度を示したことから、吸着特性に選択性があることが確認された。このことより、1,3-ブタジエン及びn-ブタンの混合ガスからn-ブタンを選択的に吸着分離させて、1,3-ブタジエンを精製できることが分かる。
(Example 13)
For the metal complex obtained in Synthesis Example 7, adsorption isotherms of 1,3-butadiene and n-butane at 273 K were measured by a volumetric method. The results are shown in FIG. 23. In the range of 0.04 to 1.2 kPa, the n-butane adsorption amount exceeds the 1,3-butadiene adsorption amount, and the value of n-butane adsorption amount / 1,3-butadiene adsorption amount is obtained. Shows a maximum of about 6 times, confirming that the adsorption characteristics are selective. This shows that 1,3-butadiene can be purified by selectively adsorbing and separating n-butane from a mixed gas of 1,3-butadiene and n-butane.
 (比較例1)
 比較合成例1で得られた金属錯体について、1,3-ブタジエン、1-ブテン及びn-ブタンの273Kにおける吸脱着等温線を容量法によりそれぞれ測定した。結果を図24に示すが、不飽和度の大きい1,3-ブタジエンだけが吸着した。
(Comparative Example 1)
With respect to the metal complex obtained in Comparative Synthesis Example 1, adsorption / desorption isotherms of 1,3-butadiene, 1-butene and n-butane at 273 K were measured by a volumetric method. The results are shown in FIG. 24. Only 1,3-butadiene having a high degree of unsaturation was adsorbed.
 以上説明したように、本発明によれば、1,3-ブタジエン、1-ブテン及びn-ブタンの混合ガスなどの炭素数が4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスであっても、特定の不飽和度以下の炭化水素(例えば1-ブテン及びn-ブタン)を選択的に吸着させることにより、不飽和度がそれよりも大きい炭化水素(例えば1,3-ブタジエン)を精製することが可能である。また、吸着した炭化水素(気体)は、実用上過度の昇温を要しない温度領域(例えば、25℃)において回収することができる。 As explained above, according to the present invention, carbonization such as a mixed gas of 1,3-butadiene, 1-butene and n-butane has 4 or more carbon atoms, the carbon number is the same, and the degree of unsaturation is different. Even in a mixed gas containing at least two kinds of hydrogen, the degree of unsaturation is higher by selectively adsorbing hydrocarbons having a specific degree of unsaturation (for example, 1-butene and n-butane). It is possible to purify hydrocarbons (eg 1,3-butadiene). Further, the adsorbed hydrocarbon (gas) can be recovered in a temperature range (for example, 25 ° C.) that does not require an excessive temperature increase for practical use.
 したがって、本発明は、炭素数4以上の炭化水素ガスを分離や精製するための装置の小型化やエネルギーの省力化などのための技術として非常に有用である。 Therefore, the present invention is very useful as a technique for reducing the size of an apparatus for separating or purifying a hydrocarbon gas having 4 or more carbon atoms or for saving energy.
 1…吸着槽(分離手段)、2…圧縮機(導入手段)、3…減圧機(圧力制御手段)、4…制御手段、V1~V6…バルブ、P1~P6…配管、5…コバルト原子、6…酸素原子、7…炭素原子、8…水素原子、9…窒素原子。 DESCRIPTION OF SYMBOLS 1 ... Adsorption tank (separation means), 2 ... Compressor (introduction means), 3 ... Decompression machine (pressure control means), 4 ... Control means, V1-V6 ... Valve, P1-P6 ... Piping, 5 ... Cobalt atom, 6 ... oxygen atom, 7 ... carbon atom, 8 ... hydrogen atom, 9 ... nitrogen atom.

Claims (9)

  1.  下記式(1)で表される配位子(以下、「第一の配位子」と記すこともある。)と金属イオンとを含む金属錯体に、炭素数4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスを接触せしめることにより、前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させることを特徴とする、炭素数4以上の炭化水素混合ガスの吸着分離方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、PはR以外の置換基を有していてもよい飽和炭化水素基であり;Rは金属イオンに配位性のある官能基であり;mは1~4の整数であり;mが2以上の整数である場合、複数あるRは互いに同一であっても異なっていてもよい。)
    The metal complex containing a ligand represented by the following formula (1) (hereinafter sometimes referred to as “first ligand”) and a metal ion has 4 or more carbon atoms and has Contacting a mixed gas containing at least two kinds of hydrocarbons having the same and different degrees of unsaturation to selectively adsorb hydrocarbons having a specific degree of unsaturation among the mixed gases to the metal complex. A method for adsorbing and separating a hydrocarbon mixed gas having 4 or more carbon atoms.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), P is a saturated hydrocarbon group which may have a substituent other than R a ; R a is a functional group having a coordination property to a metal ion; And when m is an integer of 2 or more, a plurality of R a may be the same or different from each other.)
  2.  前記第一の配位子のPが、炭素数1~8の飽和炭化水素基によって置換されていてもよい、環状構造を有する炭素数3~12の飽和炭化水素基である、請求項1に記載の炭素数4以上の炭化水素混合ガスの吸着分離方法。 The P of the first ligand is a saturated hydrocarbon group having 3 to 12 carbon atoms having a cyclic structure, which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms. An adsorption separation method of a hydrocarbon mixed gas having 4 or more carbon atoms as described.
  3.  前記第一の配位子のRが、「-CO 」、「-CS 」、「-C(=O)S」及び「-C(=O)NRA-」からなる群から選択されるいずれかで表される基(ここで、Rは水素原子又は炭素数4以下のアルキル基である。)である、請求項1又は2に記載の炭素数4以上の炭化水素混合ガスの吸着分離方法。 R a of the first ligand is composed of “—CO 2 ”, “—CS 2 ”, “—C (═O) S ” and “—C (═O) NR A— ”. The carbon atom having 4 or more carbon atoms according to claim 1 or 2, which is a group represented by any one selected from the group (wherein R A is a hydrogen atom or an alkyl group having 4 or less carbon atoms). Adsorption separation method of hydrogen mixed gas.
  4.  前記金属イオンが、クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンである、請求項1~3のうちのいずれか一項に記載の炭素数4以上の炭化水素混合ガスの吸着分離方法。 The carbon according to any one of claims 1 to 3, wherein the metal ion is an ion of at least one metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, and zinc. A method for adsorbing and separating a hydrocarbon mixed gas having a number of 4 or more.
  5.  前記金属錯体が、2原子以上4原子以下のヘテロ原子を含み、かつ、二重結合を含まない複素環式化合物である第二の配位子をさらに含む、請求項1~4のうちのいずれか一項に記載の炭素数4以上の炭化水素混合ガスの吸着分離方法。 The metal complex further includes a second ligand that is a heterocyclic compound that includes a heteroatom having 2 to 4 atoms and does not include a double bond. An adsorption separation method of a hydrocarbon mixed gas having 4 or more carbon atoms according to claim 1.
  6.  前記金属錯体が、下記式(2)で表される第三の配位子をさらに含む、請求項1~5のうちのいずれか一項に記載の炭素数4以上の炭化水素混合ガスの吸着分離方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、QはR以外の置換基を有していてもよい不飽和炭化水素基であり;R及びmはそれぞれ独立に前記第一の配位子中のR及びmと同義である。)
    The adsorption of a hydrocarbon mixed gas having 4 or more carbon atoms according to any one of claims 1 to 5, wherein the metal complex further contains a third ligand represented by the following formula (2). Separation method.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), Q is an R a substituent other than may have an unsaturated hydrocarbon group; R a and m R a and each of the first in the ligand independently It is synonymous with m.)
  7.  前記金属錯体において、[第一の配位子]:[第三の配位子]で表されるmol比が、100:0~20:80の範囲である、請求項1~6のうちのいずれか一項に記載の炭素数4以上の炭化水素混合ガスの吸着分離方法。 In the metal complex, the molar ratio represented by [first ligand]: [third ligand] is in the range of 100: 0 to 20:80. The method for adsorption separation of a hydrocarbon mixed gas having 4 or more carbon atoms according to any one of the above.
  8.  前記金属錯体が、
     下記式(3)で表される第一の配位子Aと、
     2原子以上4原子以下のヘテロ原子を含み、かつ、二重結合を含まない複素環式化合物である第二の配位子Bと、
     下記式(4)で表される第三の配位子Cと、
     クロム、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選択される少なくとも一つの金属のイオンと、
    を含む金属錯体である、請求項1~7のうちのいずれか一項に記載の炭素数4以上の炭化水素混合ガスの吸着分離方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Pは、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の飽和炭化水素基であり、mは1~2の整数である。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Qは、ハロゲン原子又は炭素数1~8の飽和炭化水素基によって置換されていてもよい炭素数12以下の不飽和炭化水素基であり;mは式(3)中のmと同義である。)
    The metal complex is
    A first ligand A represented by the following formula (3);
    A second ligand B which is a heterocyclic compound containing 2 to 4 heteroatoms and no double bond;
    A third ligand C represented by the following formula (4);
    Ions of at least one metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper and zinc;
    The method for adsorbing and separating a hydrocarbon mixed gas having 4 or more carbon atoms according to any one of claims 1 to 7, which is a metal complex containing.
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (3), P 1 is a halogen atom or a saturated hydrocarbon group having 12 or less carbon atoms which may be substituted by a saturated hydrocarbon group having 1 to 8 carbon atoms, and m 1 is 1 to 2) (It is an integer.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (4), Q 1 is a halogen atom or a C 1-8 saturated hydrocarbon group which may be carbon number 12 or less substituted by unsaturated hydrocarbon group; m 1 is the formula (3 ) It is synonymous with m 1 in the inside.)
  9.  下記式(1)で表される配位子と金属イオンとを含む金属錯体を備える分離手段と、
     前記分離手段に炭素数が4以上であり、互いに炭素数が同一かつ不飽和度が異なる炭化水素を少なくとも2種以上含む混合ガスを導入する導入手段と
    を備えており、
     前記金属錯体に、前記混合ガスを接触せしめることにより前記混合ガスのうち特定の不飽和度以下の炭化水素を前記金属錯体に選択的に吸着させ、前記特定の不飽和度以下の炭化水素と不飽和度がそれよりも大きい炭化水素とを分離する、
    炭素数4以上の炭化水素混合ガスの分離装置。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、PはR以外の置換基を有していてもよい飽和炭化水素基であり;Rは金属イオンに配位性のある官能基であり;mは1~4の整数であり;mが2以上の整数である場合、複数あるRは互いに同一であっても異なっていてもよい。)
    A separating means comprising a metal complex containing a ligand represented by the following formula (1) and a metal ion;
    An introduction means for introducing a mixed gas containing at least two hydrocarbons having 4 or more carbon atoms, the same carbon number, and different degrees of unsaturation into the separation means,
    By bringing the mixed gas into contact with the metal complex, hydrocarbons having a specific degree of unsaturation or less in the mixed gas are selectively adsorbed on the metal complex, and hydrocarbons having a specific degree of unsaturation or less are not adsorbed. Separating hydrocarbons with higher saturation,
    An apparatus for separating a hydrocarbon mixed gas having 4 or more carbon atoms.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (1), P is a saturated hydrocarbon group which may have a substituent other than R a ; R a is a functional group having a coordination property to a metal ion; And when m is an integer of 2 or more, a plurality of R a may be the same or different from each other.)
PCT/JP2014/069724 2013-07-25 2014-07-25 Adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, and separation device WO2015012396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528359A JPWO2015012396A1 (en) 2013-07-25 2014-07-25 Method and apparatus for adsorbing and separating hydrocarbon mixed gas having 4 or more carbon atoms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-155004 2013-07-25
JP2013155004 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015012396A1 true WO2015012396A1 (en) 2015-01-29

Family

ID=52393428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069724 WO2015012396A1 (en) 2013-07-25 2014-07-25 Adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, and separation device

Country Status (2)

Country Link
JP (1) JPWO2015012396A1 (en)
WO (1) WO2015012396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162558A1 (en) * 2019-02-08 2020-08-13 愛三工業株式会社 Evaporated fuel treating apparatus
WO2021039273A1 (en) * 2019-08-23 2021-03-04 昭和電工株式会社 Method for recovering olefin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323016A (en) * 1996-06-07 1997-12-16 Osaka Gas Co Ltd Gas separation, gas separator and gas separating material
JP2008178853A (en) * 2006-12-26 2008-08-07 Nissan Motor Co Ltd Dehydrogenation catalyst of hydrocarbon and waste heat recovery system
JP2011524870A (en) * 2008-06-11 2011-09-08 サントゥル ナシオナル ドゥ ラ ルシェルシュ シアンティ フィック セーエヌエールエス Reducible porous crystalline solid hybrid for separating a mixture of molecules having different degrees of unsaturation and / or number of unsaturations
JP2013063951A (en) * 2011-08-26 2013-04-11 Sumitomo Chemical Co Ltd Method and apparatus for separating unsaturated hydrocarbon and saturated hydrocarbon, and metal complex
WO2013069721A1 (en) * 2011-11-08 2013-05-16 株式会社クラレ Metal complex, and adsorbent, absorbent and separator formed of same
WO2014045967A1 (en) * 2012-09-18 2014-03-27 昭和電工株式会社 1, 3-butadiene-separating material, and separation method using said separating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323016A (en) * 1996-06-07 1997-12-16 Osaka Gas Co Ltd Gas separation, gas separator and gas separating material
JP2008178853A (en) * 2006-12-26 2008-08-07 Nissan Motor Co Ltd Dehydrogenation catalyst of hydrocarbon and waste heat recovery system
JP2011524870A (en) * 2008-06-11 2011-09-08 サントゥル ナシオナル ドゥ ラ ルシェルシュ シアンティ フィック セーエヌエールエス Reducible porous crystalline solid hybrid for separating a mixture of molecules having different degrees of unsaturation and / or number of unsaturations
JP2013063951A (en) * 2011-08-26 2013-04-11 Sumitomo Chemical Co Ltd Method and apparatus for separating unsaturated hydrocarbon and saturated hydrocarbon, and metal complex
WO2013069721A1 (en) * 2011-11-08 2013-05-16 株式会社クラレ Metal complex, and adsorbent, absorbent and separator formed of same
WO2014045967A1 (en) * 2012-09-18 2014-03-27 昭和電工株式会社 1, 3-butadiene-separating material, and separation method using said separating material

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CANAN GUCUYENER ET AL.: "Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal-Organic Framework ZIF-7 through a Gate-Opening Mechanism", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, 2010, pages 17704 - 17706, XP055016114, DOI: doi:10.1021/ja1089765 *
JOHAN VAN DEN BERGH ET AL.: "Understanding the Anomalous Alkane Selectivity of ZIF-7 in the Separation of Light Alkane/Alkene Mixtures", CHEMISTRY A EUROPEAN JOURNAL, vol. 17, 2011, pages 8832 - 8840 *
KUNHAO LI ET AL.: "Unique gas and hydrocarbon adsorption in a highly porous metal-organic framework made of extended aliphatic ligands", CHEMICAL COMMUNICATIONS, vol. 46, 2008, pages 6123 - 6125 *
MING XUE ET AL.: "Rational Design and Control of the Dimensions of Channels in a Series of 3D Pillared Metal- Organic Frameworks: Synthesis, Structures, Adsorption, and Luminescence Properties", CRYSTAL GROWTH & DESIGN, vol. 8, no. 2, 2008, pages 427 - 434 *
NOUR NIJEM ET AL.: "Interaction of Molecular Hydrogen with Microporous Metal Organic Framework Materials at Room Temperature", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 5, 2010, pages 1654 - 1664, XP055045202, DOI: doi:10.1021/ja908817n *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162558A1 (en) * 2019-02-08 2020-08-13 愛三工業株式会社 Evaporated fuel treating apparatus
CN113383156A (en) * 2019-02-08 2021-09-10 爱三工业株式会社 Evaporated fuel treatment device
JPWO2020162558A1 (en) * 2019-02-08 2021-10-14 愛三工業株式会社 Evaporative fuel processing equipment
JP7071546B2 (en) 2019-02-08 2022-05-19 愛三工業株式会社 Evaporative fuel processing equipment
US11408378B2 (en) 2019-02-08 2022-08-09 Aisan Kogyo Kabushiki Kaisha Evaporated fuel processing device
CN113383156B (en) * 2019-02-08 2023-07-04 爱三工业株式会社 Evaporated fuel treatment device
WO2021039273A1 (en) * 2019-08-23 2021-03-04 昭和電工株式会社 Method for recovering olefin

Also Published As

Publication number Publication date
JPWO2015012396A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
Khoshhal et al. Study of the temperature and solvent content effects on the structure of Cu–BTC metal organic framework for hydrogen storage
Vo et al. Highly CO selective Cu (I)-doped MIL-100 (Fe) adsorbent with high CO/CO2 selectivity due to π complexation: Effects of Cu (I) loading and activation temperature
Gutiérrez et al. Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO 2 capture
US11285455B2 (en) Organic-inorganic hybrid nanoporous material containing intramolecular acid anhydride functional group, composition for adsorption comprising the same, and use thereof for separation of hydrocarbon gas mixture
Hu et al. Rationally tuning the separation performances of [M3 (HCOO) 6] frameworks for CH4/N2 mixtures via metal substitution
JP5649342B2 (en) Metal complex and method for producing the same
JP5478120B2 (en) Metal complex and method for producing the same
JP5677131B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP6278964B2 (en) Metal complex, adsorbent, separating material and method for separating 1,3-butadiene
Haq et al. Highly efficient separation of 1, 3-butadiene from nitrogen mixture by adsorption on highly stable MOF
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
JP6215213B2 (en) 1,3-butadiene separator and separation method using the separator
JP5478121B2 (en) Metal complex and method for producing the same
Guo et al. A pillared-layer metal–organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas
Zhang et al. An amino-coordination metal–organic framework for highly selective C 2 H 2/CH 4 and C 2 H 2/C 2 H 4 separations through the appropriate control of window sizes
Zhang et al. A new honeycomb MOF for C 2 H 4 purification and C 3 H 6 enrichment by separating methanol to olefin products
Bulánek et al. Efficient oxidative dehydrogenation of ethanol by VOx@ MIL-101: On par with VOx/ZrO2 and much better than MIL-47 (V)
JP2013063951A (en) Method and apparatus for separating unsaturated hydrocarbon and saturated hydrocarbon, and metal complex
WO2015012396A1 (en) Adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, and separation device
Qi et al. Sulphur-doped activated carbon as a metal-free catalyst for acetylene hydrochlorination
JP5677132B2 (en) Metal complex and method for producing the same
JP2012232928A (en) Metal complex, and adsorbent and separation material comprising the same
WO2013024888A1 (en) Separation material, and separation method using said separating material
KR101725756B1 (en) Separation method of olefin and paraffin using organic-inorganic hybrid nanoporous materials having breathing behavior
CN111440045B (en) Separation method of carbon-pentaene mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830284

Country of ref document: EP

Kind code of ref document: A1