WO2013069721A1 - Metal complex, and adsorbent, absorbent and separator formed of same - Google Patents

Metal complex, and adsorbent, absorbent and separator formed of same Download PDF

Info

Publication number
WO2013069721A1
WO2013069721A1 PCT/JP2012/078947 JP2012078947W WO2013069721A1 WO 2013069721 A1 WO2013069721 A1 WO 2013069721A1 JP 2012078947 W JP2012078947 W JP 2012078947W WO 2013069721 A1 WO2013069721 A1 WO 2013069721A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal complex
pyridyl
gas
synthesis example
carbon dioxide
Prior art date
Application number
PCT/JP2012/078947
Other languages
French (fr)
Japanese (ja)
Inventor
康貴 犬伏
堀 啓志
知嘉子 池田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2013069721A1 publication Critical patent/WO2013069721A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/08Copper compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • B01D2257/556Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a metal complex, and an adsorbent, an occlusion material and a separation material comprising the same. More specifically, it comprises a polyvalent carboxylic acid compound, at least one metal ion, an organic ligand capable of multidentate coordination with the metal ion, and an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms. It relates to a metal complex.
  • the metal complex of the present invention comprises an adsorbent for adsorbing a gas such as carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, a hydrocarbon having 1 to 4 carbon atoms, a rare gas, hydrogen sulfide, ammonia or organic vapor, It is preferable as a storage material for storing the gas and a separation material for separating the gas.
  • a gas such as carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, a hydrocarbon having 1 to 4 carbon atoms, a rare gas, hydrogen sulfide, ammonia or organic vapor.
  • Activated carbon is a representative example, and is widely used in various industries such as air purification, desulfurization, denitration, and removal of harmful substances by utilizing the excellent adsorption performance of activated carbon.
  • the demand for nitrogen has increased for semiconductor manufacturing processes, etc., and as a method for producing such nitrogen, a method of producing nitrogen from air by pressure swing adsorption method or temperature swing adsorption method using molecular sieve charcoal is used.
  • Molecular sieve charcoal is also applied to various gas separation and purification such as hydrogen purification from methanol cracked gas.
  • polymer metal complexes have been developed as adsorbents that give better adsorption performance.
  • the polymer metal complex has features such as (1) a large surface area and high porosity, (2) high designability, and (3) dynamic structural changes due to external stimuli. Expected characteristics.
  • Non-Patent Document 1 In practical use, not only further improvement of adsorption performance, storage performance and separation performance but also improvement of durability against water contained in actual gas is required (for example, see Non-Patent Document 1).
  • Non-Patent Document 2 After synthesizing a polymer metal complex consisting of 2-aminoterephthalic acid and a metal ion, an acid anhydride is reacted with the amino group at the 2-position of terephthalic acid constituting the polymer metal complex to form a polymer via an amide bond. It is known that water resistance is improved by introducing an alkyl chain into a metal complex (see Non-Patent Document 2).
  • the method described in Non-Patent Document 2 requires two steps of a polymer metal complex production step and an alkyl chain introduction step, which complicates the production process. The particle size and morphology of the polymer metal complex are complicated. There is a problem that cannot be controlled.
  • Non-Patent Document 2 does not mention any gas adsorption performance, occlusion performance, and separation performance of the metal complex.
  • a metal complex comprising terephthalic acid, at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and 4,4′-bipyridyl as an organic ligand.
  • formic acid coexists when reacting copper ions with terephthalic acid, reacted at 40 ° C. for 3 days, and then reacted with 4,4′-bipyridyl for 2 days at room temperature.
  • the use purpose of formic acid is not described, and no mention is made of the effect of monocarboxylic acid compounds other than formic acid on water resistance.
  • an object of the present invention is to provide a metal complex that can be used as a gas adsorbent, gas occlusion material or gas separation material having higher water resistance than conventional ones.
  • the present inventors have intensively studied, polyvalent carboxylic acid compounds, at least one metal ion, an organic ligand capable of multidentate coordination with the metal ion, and an aliphatic monocarboxylic acid having 3 to 24 carbon atoms. It has been found that the above object can be achieved by a metal complex comprising an acid compound, and the present invention has been achieved.
  • a polyvalent carboxylic acid compound at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, an organic ligand capable of multidentate coordination with the metal ion, A metal complex comprising an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms.
  • the polyvalent carboxylic acid compound is a dicarboxylic acid compound.
  • the multidentate organic ligand is 1,4-diazabicyclo [2.2.2] octane, pyrazine, 2,5-dimethylpyrazine, 4,4'-bipyridyl, 2,2'- Dimethyl-4,4′-bipyridine, 1,2-bis (4-pyridyl) ethyne, 1,4-bis (4-pyridyl) butadiyne, 1,4-bis (4-pyridyl) benzene, 3,6-di (4-pyridyl) -1,2,4,5-tetrazine, 2,2'-bi-1,6-naphthyridine, phenazine, diazapyrene, 2,6-di (4-pyridyl) -benzo [1,2- c: 4,5-c ′] dipyrrole-1,3,5,7 (2H, 6H) -tetron, 4,4′-bis (4-pyridyl) biphenylene,
  • An adsorbent comprising the metal complex according to any one of (1) to (3).
  • the adsorbent is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane or organic vapor.
  • the adsorbent according to (4) which is an adsorbent for adsorbing water.
  • An occlusion material comprising the metal complex according to any one of (1) to (3).
  • the occlusion material is an occlusion material for occluding carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia or organic vapor ( The occlusion material according to 6).
  • a gas storage device including a pressure-resistant container that can be kept airtight and provided with a gas inlet / outlet, and provided with a gas storage space inside the pressure-resistant container, wherein the storage material according to (6) is provided in the gas storage space. Internal gas storage device.
  • a gas vehicle provided with an internal combustion engine that obtains driving force from fuel gas supplied from the gas storage device according to (8).
  • a separating material comprising the metal complex according to any one of (1) to (3).
  • the separator is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, or organic vapor
  • the separating material according to (10), which is a separating material for separating (12)
  • the separator is methane and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, ethylene and carbon dioxide, methane and ethane, ethane and ethylene, propane and propene, ethylene and acetylene, nitrogen and methane or air.
  • a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, an organic ligand capable of multidentate coordination with the metal ion The method for producing a metal complex according to any one of (1) to (3), wherein an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms is reacted in a solvent to precipitate a metal complex.
  • a polyvalent carboxylic acid compound at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, and an organic ligand capable of multidentate coordination with the metal ion,
  • a metal complex comprising an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms can be provided.
  • the metal complex of the present invention is excellent in the adsorption performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxidation It can be used as an adsorbent for adsorbing gases, nitrogen oxides, siloxanes or organic vapors.
  • the metal complex of the present invention is excellent in the occlusion performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia or It can also be used as a storage material for storing gases such as organic vapor.
  • the metal complex of the present invention is excellent in the separation performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, It can also be used as a separating material for separating gases such as sulfur oxides, nitrogen oxides, siloxanes or organic vapors.
  • FIG. 4 is a schematic diagram of a jungle gym skeleton formed by coordination of 4,4′-bipyridyl at the axial position of a metal ion in a paddle wheel skeleton composed of a carboxylate ion and a zinc ion of terephthalic acid. It is a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double interpenetrated. It is a conceptual diagram of the gas vehicle provided with the gas storage apparatus. 3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 1.
  • FIG. 4 is a SEM photograph of the metal complex obtained in Synthesis Example 1.
  • FIG. 4 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 2.
  • FIG. 4 is a SEM photograph of the metal complex obtained in Synthesis Example 2.
  • 3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 3.
  • FIG. 4 is a SEM photograph of the metal complex obtained in Synthesis Example 3.
  • 6 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 4.
  • FIG. 4 is a SEM photograph of the metal complex obtained in Synthesis Example 4.
  • 3 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 1.
  • FIG. 3 is a SEM photograph of the metal complex obtained in Comparative Synthesis Example 1.
  • 4 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 2.
  • FIG. It is the result of having measured the sedimentation rate to the water of the metal complex obtained by the synthesis example 1, the synthesis example 2, the synthesis example 3, the comparative synthesis example 1, and the comparative synthesis example 2.
  • FIG. It is a photograph at the time of water contact angle measurement of the metal complex obtained in Synthesis Example 1.
  • 6 is a photograph of the metal complex obtained in Synthesis Example 2 when measured with a water contact angle. It is a photograph at the time of water contact angle measurement of the metal complex obtained in Synthesis Example 3. It is a photograph at the time of water contact angle measurement of the metal complex obtained in Synthesis Example 4.
  • FIG. 2 It is a water resistance evaluation result of the metal complex obtained by the synthesis example 1, the synthesis example 3, and the comparative synthesis example 2.
  • FIG. It is an adsorption isotherm of carbon dioxide at 273 K of the metal complexes obtained in Synthesis Example 1, Synthesis Example 2, Synthesis Example 3, Comparative Synthesis Example 1 and Comparative Synthesis Example 2.
  • 4 is an adsorption isotherm of ethylene at 273 K of the metal complex obtained in Synthesis Example 4.
  • 6 is an adsorption / desorption isotherm of methane at 273 K of the metal complex obtained in Synthesis Example 3.
  • FIG. 2 is an adsorption / desorption isotherm of methane at 273 K of the metal complex obtained in Comparative Synthesis Example 1.
  • FIG. 1 It is a water resistance evaluation result of the metal complex obtained by the synthesis example 1, the synthesis example 3, and the comparative synthesis example 2.
  • FIG. It is an adsorption isotherm of carbon dioxide at 273 K of the metal complexes
  • FIG. 2 is an adsorption / desorption isotherm of carbon dioxide and methane at 273 K of the metal complex obtained in Synthesis Example 3.
  • FIG. 2 is an adsorption and desorption isotherm of carbon dioxide and methane at 273 K of the metal complex obtained in Comparative Synthesis Example 1.
  • FIG. 3 is an adsorption / desorption isotherm of carbon dioxide and nitrogen at 313 K of the metal complex obtained in Synthesis Example 3.
  • FIG. 3 is an adsorption / desorption isotherm of ethane and methane at 298 K of the metal complex obtained in Synthesis Example 3.
  • FIG. 6 is an adsorption / desorption isotherm of carbon dioxide and methane at 293 K of the metal complex obtained in Synthesis Example 3.
  • the horizontal axis represents the diffraction angle (2 ⁇ ) and the vertical axis represents the diffraction intensity (Intensity) indicated by cps (Counts per Second) (FIGS. 4, 7, 9, 11, 13, and 15). ).
  • the horizontal axis is the equilibrium pressure (Pressure) expressed in MPa
  • the vertical axis is the equilibrium adsorption amount (Amount Adsorbed) expressed in mL (STP) / g (FIG. 22-30).
  • the gas adsorption amount (ads.) At each pressure when the pressure is increased and the gas adsorption amount (des.) At each pressure when the pressure is reduced are plotted.
  • STP standard state, Standard Temperature and Pressure
  • the horizontal axis is the gas flow time (Time [min]) in minutes, and the vertical axis is the ratio of outlet gas (Outlet Gas Ratio [%]) (FIG. 31).
  • the metal complex of the present invention includes a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, and an organic configuration capable of multidentate coordination with the metal ion. It consists of a ligand and an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms.
  • the polyvalent carboxylic acid compound used in the present invention is not particularly limited, and any of dicarboxylic acid compounds, tricarboxylic acid compounds, tetracarboxylic acid compounds and the like can be used.
  • the polyvalent carboxylic acid compound may be used alone, or two or more polyvalent carboxylic acid compounds may be mixed and used.
  • the metal complex of the present invention may be a mixture of two or more metal complexes composed of a single polyvalent carboxylic acid compound (preferably a dicarboxylic acid compound).
  • the polyvalent carboxylic acid compound may be used in the form of an acid anhydride or an alkali metal salt.
  • the polyvalent carboxylic acid compound may further have a substituent in addition to the carboxyl group.
  • the polyvalent carboxylic acid having a substituent is preferably an aromatic polyvalent carboxylic acid, and the substituent is preferably bonded to the aromatic ring of the aromatic polyvalent carboxylic acid.
  • the terephthalic acid may be 2-nitroterephthalic acid.
  • the number of substituents may be 1, 2 or 3.
  • the substituent is not particularly limited.
  • the substituent may be linear or branched such as an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group).
  • alkyl group having 1 to 5 carbon atoms halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, Isobutoxy group, tert-butoxy group, etc.), amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyl) Oxy group, n-butanoyloxy group, pivaloyloxy group, benzoyloxy group, etc.), alcohol Aryloxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, etc. n- butoxycarbonyl group), a nitro group, a cyano group, a hydroxyl group, an organic radicals
  • Examples of the metal ions belonging to groups 2 to 13 of the periodic table used in the present invention include magnesium ion, calcium ion, scandium ion, zirconium ion, vanadium ion, chromium ion, molybdenum ion, manganese ion, iron ion, and cobalt.
  • Ions, nickel ions, copper ions, zinc ions, cadmium ions, aluminum ions and the like can be used, among which manganese ions, cobalt ions, nickel ions, copper ions and zinc ions are preferable, and copper ions are more preferable.
  • the metal ion is preferably a single metal ion, but may be a mixed metal complex containing two or more kinds of metal ions.
  • the metal complex of the present invention may be a mixture of two or more metal complexes composed of a single metal ion.
  • the metal ion may be used in the form of a metal salt.
  • the metal salt include magnesium salt, calcium salt, scandium salt, zirconium salt, vanadium salt, chromium salt, molybdenum salt, manganese salt, iron salt, cobalt salt, nickel salt, copper salt, zinc salt, cadmium salt, aluminum A salt or the like can be used, among which a manganese salt, a cobalt salt, a nickel salt, a copper salt and a zinc salt are preferable, and a copper salt is more preferable.
  • the metal salt is preferably a single metal salt, but two or more metal salts may be mixed and used. Further, as these metal salts, organic acid salts such as acetates and formates, inorganic acid salts such as sulfates, nitrates, hydrochlorides, hydrobromides and carbonates can be used.
  • the multidentate organic ligand used in the present invention means a neutral ligand having at least two sites coordinated to a metal ion by an unshared electron pair.
  • Examples of such an organic ligand capable of multidentate coordination include a bidentate ligand, a tridentate ligand, and a tetradentate ligand, and any of these may be used.
  • Examples of the site coordinated to the metal ion by the lone pair include a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom.
  • the organic ligand capable of multidentate coordination is preferably a heteroaromatic ring compound, and more preferably a heteroaromatic ring compound having a nitrogen atom at a coordination site.
  • the multidentate organic ligand used in the present invention means a neutral ligand having at least two sites coordinated to a metal ion by an unshared electron pair.
  • the site coordinated to the metal ion by the lone pair include a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom.
  • the organic ligand capable of multidentate coordination is preferably a heteroaromatic ring compound, and more preferably a heteroaromatic ring compound having a nitrogen atom at a coordination site.
  • multidentate organic ligand examples include 1,4-diazabicyclo [2.2.2] octane, pyrazine, 2,5-dimethylpyrazine, 4,4′-bipyridyl, 2,2 ′.
  • the organic ligand capable of multidentate coordination may be used alone, or two or more organic ligands capable of multidentate coordination may be mixed and used.
  • the metal complex of the present invention may be a mixture of two or more metal complexes composed of a single multidentate organic ligand.
  • an organic ligand capable of multidentate coordination having two sites coordinated to a metal ion by a lone pair is preferable.
  • An organic ligand capable of bidentate coordination having a distance between sites coordinated to ions of 7.0 to 16.0 is more preferable.
  • the distance between the sites coordinated to the metal ion is half experience after performing conformational analysis with the molecular dynamics method MM3 using Scigress Explorer Professional Version 7.6.0.52 made by Fujitsu Limited. It is defined as the distance between two atoms at the farthest positions in the structural formula among the atoms coordinated to the metal ion in the most stable structure obtained by structural optimization by the mechanical molecular orbital method PM5.
  • Examples of the bidentate organic ligand having a distance between sites coordinated to metal ions of 7.0 to 16.0 mm include 4,4′-bipyridyl (7.061 ⁇ ), 4,4′-azopyridine (9.173 ⁇ ), N- (4-pyridyl) isonicotinamide (9.342 ⁇ ), trans-1,2-bis (4-pyridyl) ethene (9.386 ⁇ ), 1,2 -Bis (4-pyridyl) ethyne (9.583 ⁇ ), 1,4-bis (4-pyridyl) benzene (11.315 ⁇ ), 3,6-di (4-pyridyl) -1,2,4,5- Tetrazine (11.204 ⁇ ), 2,6-di (4-pyridyl) -benzo [1,2-c: 4,5-c ′] dipyrrole-1,3,5,7 (2H, 6H) -tetron ( 15.309 ⁇ ), 4,4′-bis (4-pyridyl) biphenyle (15.
  • Examples of the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms used in the present invention include propionic acid (3 carbon atoms), butyric acid (4 carbon atoms), isobutyric acid (4 carbon atoms), valeric acid (carbon number).
  • pivalic acid (5 carbon atoms), caproic acid (6 carbon atoms), enanthic acid, cyclohexanecarboxylic acid (7 carbon atoms), caprylic acid (8 carbon atoms), octylic acid (8 carbon atoms), pelargonic acid ( 9 carbon atoms, capric acid (10 carbon atoms), lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), pentadecylic acid (15 carbon atoms), palmitic acid (16 carbon atoms), margaric acid (carbon number) 17), stearic acid (18 carbon atoms), oleic acid (18 carbon atoms), linoleic acid (18 carbon atoms), ⁇ -linolenic acid (18 carbon atoms), tuberculostearic acid (19 carbon atoms), arachidic acid ( Charcoal Number 20), eicosapentaenoic acid (20 carbon atoms), behenic acid (22 carbon atoms), docosahe
  • aliphatic monocarboxylic acid compounds having 5 to 20 carbon atoms are preferable, and pivalic acid, octylic acid, lauric acid, myristic acid, palmitic acid and stearic acid are particularly preferable.
  • Formic acid (carbon number 1) and acetic acid (carbon number 2) having 2 or less carbon atoms do not exhibit sufficient water resistance.
  • the proportion of the portion (alkyl chain) that does not contribute to gas adsorption increases, so the adsorption amount per unit weight or unit volume decreases.
  • the proportion of the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms is not particularly limited as long as the effects of the present invention are not impaired, but the composition ratio of the polyvalent carboxylic acid compound to the monocarboxylic acid compound is 100 Is preferably in the range of 1 to 5,000: 1, more preferably in the range of 250: 1 to 2,500: 1.
  • composition ratio of the polycarboxylic acid compound and the monocarboxylic acid compound constituting the metal complex of the present invention is analyzed using gas chromatography, high performance liquid chromatography, or NMR after decomposing the metal complex into a uniform solution.
  • the present invention is not limited to these.
  • the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms may coexist from the initial stage of the reaction or may be added at the late stage of the reaction.
  • the metal complex of the present invention may further contain a monodentate organic ligand as long as the effects of the present invention are not impaired.
  • the monodentate organic ligand means a neutral ligand having one site coordinated to a metal ion by an unshared electron pair.
  • the monodentate organic ligand for example, furan, thiophene, pyridine, quinoline, isoquinoline, acridine, trimethylphosphine, triphenylphosphine, triphenylphosphite, methylisocyanide and the like can be used, and pyridine is particularly preferable.
  • the monodentate organic ligand may have a hydrocarbon group having 1 to 23 carbon atoms as a substituent.
  • the ratio is not particularly limited as long as the effect of the present invention is not impaired, but the bidentate organic ligand and the monodentate organic ligand are not limited.
  • the composition ratio with the ligand is preferably in the range of a molar ratio of 1: 5 to 1: 1,000, and more preferably in the range of 1:10 to 1: 100.
  • the composition ratio can be determined by analysis using gas chromatography, high performance liquid chromatography, NMR, or the like, but is not limited thereto.
  • the metal complex includes a polyvalent carboxylic acid compound, at least one metal salt selected from salts of metals belonging to Groups 2 to 13 of the periodic table, and an organic ligand capable of multidentate coordination with the metal ion.
  • a polyvalent carboxylic acid compound at least one metal salt selected from salts of metals belonging to Groups 2 to 13 of the periodic table
  • an organic ligand capable of multidentate coordination with the metal ion Can be produced by reacting an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms in a gas phase, a liquid phase or a solid phase, but for several hours to several days in a solvent under normal pressure. It is preferable to make it react and to precipitate a metal complex.
  • an aqueous solution or organic solvent solution of a metal salt and an aqueous solution or organic solvent solution containing a polyvalent carboxylic acid compound, an organic ligand capable of multidentate coordination, and an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms can be mixed and reacted under normal pressure to obtain the metal complex of the present invention.
  • the mixing ratio of the metal salt and the organic ligand capable of multidentate coordination is such that the molar ratio of metal salt: organic ligand capable of multidentate coordination is 1: 3 to 3: 1.
  • a molar ratio within the range of 1: 2 to 2: 1 is more preferable.
  • the yield of the target metal complex decreases, and purification of the metal complex obtained by leaving unreacted raw materials becomes difficult.
  • the molar concentration of the polyvalent carboxylic acid compound in the mixed solution for producing the metal complex is preferably 0.01 to 5.0 mol / L, and more preferably 0.05 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
  • the molar concentration of the metal salt in the mixed solution for producing the metal complex is preferably 0.01 to 5.0 mol / L, and more preferably 0.05 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex becomes difficult.
  • the molar concentration of the organic ligand capable of multidentate coordination in the mixed solution for producing the metal complex is preferably 0.005 to 2.5 mol / L, and more preferably 0.025 to 1.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
  • an organic solvent, water, or a mixed solvent thereof can be used.
  • the reaction temperature is preferably 253 to 423K.
  • the completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum dried at about 373 K for several hours to obtain the metal complex of the present invention.
  • the metal complex of the present invention does not adsorb gas when the solvent is adsorbed. Therefore, when the metal complex of the present invention is used as an adsorbent, occlusion material, or separation material, it is necessary to vacuum-dry the metal complex obtained in advance to remove the solvent in the pores. Usually, vacuum drying may be performed at a temperature at which the metal complex is not decomposed (for example, 293 K to 523 K or less), but the temperature is preferably lower (for example, 293 K to 393 K or less). This operation can be replaced by cleaning with supercritical carbon dioxide, and is more effective.
  • the metal complex of the present invention has a one-dimensional, two-dimensional, or three-dimensional integrated structure depending on the polyvalent carboxylic acid compound used, the metal ion, and the type of organic ligand that can be multidentately coordinated with the metal ion.
  • the particle size and morphology of the metal complex of the present invention can be controlled by the type and amount of the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms to be used.
  • the metal complex has a double jungle gym skeleton formed by coordination of 4,4'-bipyridyl at the axial position of the metal ion in the paddle wheel skeleton composed of the carboxylate ion and metal ion of terephthalic acid. It has an intrusive three-dimensional structure.
  • a schematic diagram of a jungle gym skeleton is shown in FIG. 1, and a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double-interpenetrated is shown in FIG.
  • the above “jungle gym skeleton” is an organic compound capable of multidentate coordination such as 4,4′-bipyridyl at the axial position of a metal ion in a paddle wheel skeleton composed of a polyvalent carboxylic acid compound such as terephthalic acid and a metal ion. It means a jungle gym-like three-dimensional structure formed by linking ligands and connecting two-dimensional lattice-like sheets composed of polyvalent carboxylic acid compounds and metal ions.
  • “A structure in which multiple jungle gym skeletons interpenetrate” is a three-dimensional integrated structure in which a plurality of jungle gym skeletons penetrate each other so as to fill the pores.
  • the metal complex has a structure in which the jungle gym skeleton is interpenetrated can be confirmed by, for example, single crystal X-ray structure analysis, powder X-ray crystal structure analysis, but is not limited thereto.
  • the reaction of the metal ion with the polyvalent carboxylic acid compound and the metal ion with the aliphatic group are allowed to coexist with an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms.
  • the reaction with the monocarboxylic acid compound will compete.
  • Aliphatic monocarboxylic acid compounds can be regarded as terminators in crystal growth reactions, while the reaction between metal ions and aliphatic monocarboxylic acid compounds is reversible, so the crystal nucleation rate and crystal growth rate are controlled. Is done. As a result, particle size and morphology can be controlled.
  • the aliphatic monocarboxylic acid compound When the aliphatic monocarboxylic acid compound is coordinated, there is only one coordination site of the monocarboxylic acid compound, so the crystal growth at the coordination site is stopped, and the particle size and morphology are also controlled. Considering this crystal growth mechanism, since the aliphatic monocarboxylic acid compound is unevenly distributed at the end of the crystal growth, that is, the crystal surface, the alkyl chain derived from the aliphatic monocarboxylic acid compound is exposed on the crystal surface of the metal complex. And since the approach of water to a metal ion is inhibited by the hydrophobic effect and steric effect of the alkyl chain, the decomposition reaction of the metal complex accompanied by the dissociation of the coordination bond is suppressed, and the water resistance is improved.
  • the uneven distribution of the aliphatic monocarboxylic acid compound on the crystal surface of the metal complex can be confirmed, for example, by time-of-flight secondary ion mass spectrometry.
  • the water repellency of the metal complex of the present invention can be evaluated by measuring the water contact angle.
  • the metal complex of the present invention preferably has a water contact angle of 90 ° or more, and more preferably 150 ° or more.
  • the hydrophobicity of the metal complex of the present invention can be evaluated by measuring the sedimentation rate when the metal complex is floated on the water surface. For example, when a powdered metal complex is floated on the surface of water and the sedimentation rate is measured, if the metal complex is hydrophobic, it repels water and agglomerates to form a lump, so it sinks faster due to an increase in its own weight. On the other hand, if the metal complex is hydrophilic, aggregation does not occur, so the particle size of the metal complex remains small and the sedimentation rate is slow. In other words, the faster the sedimentation rate, the more hydrophobic the metal complex is, and it is expected to exhibit high water resistance.
  • the water resistance of the metal complex of the present invention can be evaluated by exposing the metal complex to water vapor and measuring the amount of adsorption with time. In other words, even when the metal complex is placed under high humidity, if there is no significant change in the adsorption amount or adsorption rate retention rate of the metal complex, it means that the metal complex has water resistance.
  • the metal complex of the present invention is excellent in adsorption performance, occlusion performance, and separation performance of various gases. Therefore, the metal complex of the present invention is useful as an adsorbent, a storage material, and a separation material for various gases, and these are also included in the scope of the present invention.
  • Examples of the adsorbent, occlusion material, and separation material of the present invention include carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, and hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, acetylene, propane, propene, methyl Acetylene, propadiene, butane, 1-butene, isobutene, 1-butyne, 2-butyne, 1,3-butadiene, methylallene, etc.), noble gases (such as helium, neon, argon, krypton, xenon), hydrogen sulfide, ammonia , Sulfur oxides, nitrogen oxides, siloxanes (hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, etc.), water vapor or organic vapor can be suitably used to adsorb, occlude, and separate gases.
  • 1 to 4 carbon atoms methane, ethan
  • the separation material of the present invention in particular, carbon dioxide in methane, carbon dioxide in hydrogen, carbon dioxide in nitrogen, carbon dioxide in ethylene, ethane in methane, ethane in ethylene, and propene in propane It is suitable for separating acetylene in ethylene, methane in nitrogen, methane in air, or the like by a pressure swing adsorption method or a temperature swing adsorption method.
  • Organic vapor means vaporized organic substance that is liquid at room temperature and pressure.
  • organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine; aldehydes such as acetaldehyde; pentane, isoprene, hexane, cyclohexane, heptane, methylcyclohexane, octane, 1-octene, cyclooctane, C5-C16 aliphatic hydrocarbons such as cyclooctene, 1,5-cyclooctadiene, 4-vinyl-1-cyclohexene, 1,5,9-cyclododecatriene; aromatics such as benzene, toluene and xylene Hydrocarbons; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; halogenated hydrocarbons such as methyl chloride and
  • the adsorbent, occlusion material, and separation material of the present invention are cellulose acetate, polyamide, polyester, polycarbonate, polysulfone, polyethersulfone, polyolefin, polytetrafluoro, if necessary, as long as the effects of the present invention are not impaired. They may be combined with natural or synthetic fibers such as ethylene derivatives or paper, or inorganic fibers such as glass or alumina.
  • the usage form of the adsorbent, occlusion material and separation material in the present invention is not particularly limited.
  • the metal complex may be used as a powder, pellets, films, sheets, plates, pipes, tubes, rods, granules, various deformed shapes, fibers, hollow fibers, woven fabrics, knitted fabrics, non-woven fabrics, etc. You may shape
  • the method for producing the pellet containing the adsorbent, occlusion material or separation material of the present invention there is no particular limitation on the method for producing the pellet containing the adsorbent, occlusion material or separation material of the present invention, and any of the conventionally known pelletization methods can be adopted, but the density of the pellet can be increased. A tableting method is preferred.
  • the method for producing a sheet containing the adsorbent, occlusion material or separation material of the present invention is not particularly limited, and any conventionally known sheeting method can be adopted, but the density of the sheet can be further increased.
  • Wet paper making is preferred.
  • the wet papermaking method is a manufacturing method in which raw materials are dispersed in water, filtered through a net, and dried.
  • a honeycomb shape can be given. Any of the conventionally known processing methods can be adopted as a method for forming a sheet containing the adsorbent, occlusion material or separation material of the present invention into a honeycomb shape.
  • the honeycomb shape refers to a continuous hollow column body such as a square, sinusoidal, or roll-shaped hollow polygonal column or a cylinder in addition to a hexagonal cross section.
  • the sheet in order to make a sheet containing the adsorbent, occlusion material or separation material of the present invention into a sinusoidal honeycomb shape, the sheet is first shaped into a waveform through a shaping roll, and one side of the corrugated sheet or Join flat sheets on both sides. This is laminated to form a sinusoidal honeycomb filter.
  • it is normal to attach and fix an adhesive at the top of the corrugation, but when the corrugated sheets are laminated, the flat sheet between them is necessarily fixed, so it is not always necessary to apply the adhesive Absent.
  • attaching an adhesive agent it is necessary to use what does not impair the adsorption capacity of the sheet.
  • the adhesive for example, corn starch, vinyl acetate resin, acrylic resin, or the like can be used.
  • the pitch is preferably 0.5 to 8 mm, and the peak height is preferably 0.4 to 5 mm.
  • the metal complex of the present invention or the storage material of the present invention can also be used in a gas storage device taking advantage of its storage performance.
  • a gas storage device a pressure-resistant container that can be kept airtight and has a gas inlet / outlet is provided.
  • a gas storage device By press-fitting a desired gas into the gas storage device, the gas can be adsorbed and stored in the internal storage material.
  • the gas When taking out the gas from the gas storage device, the gas can be desorbed by opening the pressure valve and reducing the internal pressure in the pressure vessel.
  • the metal complex of the present invention may be embedded in powder form, but from the viewpoint of handleability, etc., a pellet shaped product obtained by molding the metal complex of the present invention is used. May be.
  • FIG. 3 shows an example of a gas vehicle equipped with the above-described gas storage device of the present invention.
  • the gas storage device can store fuel gas in the gas storage space 3, and can be suitably used as the fuel tank 1 of a gas vehicle or the like.
  • This gas vehicle includes the gas storage device in which the metal complex of the present invention is incorporated as a fuel tank 1, obtains natural gas stored in the tank from the fuel tank 1, and generates a combustion oxygen-containing gas (for example, air) ) And an engine as an internal combustion engine that obtains a driving force by combustion.
  • the fuel tank 1 includes a pressure vessel 2 and includes a pair of outlets 5 and 6 as inlets and outlets through which gas to be stored can enter and exit the container 2.
  • a pair of valves 7 constituting an airtight holding mechanism that can be maintained in a pressure state are provided at each of the entrances and exits.
  • Natural gas as fuel is filled into the fuel tank 1 in a pressurized state at a gas station.
  • the fuel tank 1 includes a storage material 4 made of the metal complex of the present invention, and the storage material 4 adsorbs natural gas (such as a gas containing methane as a main component) at room temperature and under pressure. . Then, when the valve 7 on the outlet side is opened, the gas in the adsorbed state is desorbed from the occlusion material 4 and sent to the engine side for combustion to obtain travel driving force.
  • the gas compression ratio can be increased with respect to the apparent pressure as compared with the fuel tank not filled with the occlusion material.
  • the thickness of the tank can be reduced and the weight of the entire gas storage device can be reduced, which is useful for gas vehicles and the like.
  • the fuel tank 1 is normally in a normal temperature state, and is not particularly cooled.
  • the temperature of the fuel tank 1 is relatively high, for example, in summer, when the temperature rises. Even in such a high temperature range (about 298 to 333 K), the occlusion material of the present invention can keep its adsorption capacity high and is useful.
  • the separation method includes a step of bringing the gas into contact with the metal complex of the present invention or the separation material of the present invention under conditions where the gas can be adsorbed to the metal complex.
  • the adsorption pressure and the adsorption temperature which are conditions under which the gas can be adsorbed on the metal complex, can be appropriately set according to the type of substance to be adsorbed.
  • the adsorption pressure is preferably from 0.01 to 10 MPa, more preferably from 0.1 to 3.5 MPa.
  • the adsorption temperature is preferably 195K to 343K, and more preferably 273 to 313K.
  • the separation method can be a pressure swing adsorption method or a temperature swing adsorption method.
  • the separation method further includes a step of increasing the pressure from the adsorption pressure to a pressure at which gas can be desorbed from the metal complex.
  • the desorption pressure can be appropriately set according to the type of substance to be adsorbed.
  • the desorption pressure is preferably 0.005 to 2 MPa, more preferably 0.01 to 0.1 MPa.
  • the separation method is a temperature swing adsorption method
  • the separation method further includes a step of raising the temperature from the adsorption temperature to a temperature at which the gas can be desorbed from the metal complex.
  • the desorption temperature can be appropriately set according to the type of substance to be adsorbed.
  • the desorption temperature is preferably 303 to 473K, and more preferably 313 to 373K.
  • the separation method is a pressure swing adsorption method or a temperature swing adsorption method
  • the step of bringing the gas into contact with the metal complex and the step of changing the pressure to a temperature or a temperature at which the gas can be desorbed from the metal complex are repeated as appropriate. Can do.
  • Water vapor exposure test A water vapor exposure test was performed on the metal complexes obtained in the synthesis examples and comparative synthesis examples using a low temperature and temperature and humidity chamber PL-2KP manufactured by Espec Co., Ltd., and used as an index for water resistance evaluation. Sampling was carried out 8 hours, 24 hours and 48 hours after the start of exposure to water vapor, and the amount of carbon dioxide adsorbed at 273 K was measured by the volumetric method, and an adsorption isotherm was prepared in the same manner as above. ⁇ Water vapor exposure conditions> Temperature: 353K Relative humidity: 80%
  • the reaction solution remained suspended.
  • the metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 0.817g (yield 11%).
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the powder X-ray crystal structure analysis it was found that the obtained metal complex had a structure in which the jungle gym skeleton was double interpenetrated.
  • the powder X-ray crystal structure analysis results are shown below.
  • the SEM photograph of the obtained metal complex is shown in FIG.
  • FIG. 7 shows a powder X-ray diffraction pattern of the obtained metal complex. From comparison between FIG. 4 and FIG. 7, it is clear that the obtained metal complex has the same structure as the metal complex obtained in Synthesis Example 1. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
  • the reaction solution remained suspended.
  • the metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 0.400g (yield 11%).
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From comparison between FIG. 4 and FIG. 9, it is clear that the obtained metal complex has the same structure as the metal complex obtained in Synthesis Example 1. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
  • the reaction solution remained suspended.
  • the metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 1.06g (yield 14%).
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
  • FIG. 13 shows a powder X-ray diffraction pattern of the obtained metal complex. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
  • FIG. 15 shows a powder X-ray diffraction pattern of the obtained metal complex.
  • Example 1 The metal complex obtained in Synthesis Example 1 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
  • Example 2 The metal complex obtained in Synthesis Example 2 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
  • Example 3 The metal complex obtained in Synthesis Example 3 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
  • the metal complexes obtained in Synthesis Example 1, Synthesis Example 2 and Synthesis Example 3 that satisfy the constituent requirements of the present invention are the metals obtained in Comparative Synthesis Example 1 and Comparative Synthetic Example 2 that do not satisfy the constituent requirements of the present invention. It is clear that the metal complex of the present invention is hydrophobic because the sedimentation rate is faster than that of the complex. ⁇ Figure 16 ⁇
  • Example 7 The metal complex obtained in Synthesis Example 4 was tried to measure the water contact angle, but the water repellency was high and the contact angle could not be measured. A photograph at the time of measurement is shown in FIG.
  • Example 8 The metal complex obtained in Synthesis Example 1 was subjected to a water vapor exposure test. The equilibrium adsorption amount of carbon dioxide at 0.92 MPa is calculated from the obtained adsorption isotherm, and the result of plotting the change in retention rate is shown in FIG. 21 (Example 8).
  • Example 9 The metal complex obtained in Synthesis Example 3 was subjected to a water vapor exposure test. The equilibrium adsorption amount of carbon dioxide at 0.92 MPa is calculated from the obtained adsorption isotherm, and the result of plotting the change in the retention is shown in FIG. 21 (Example 9).
  • the metal complexes obtained in Synthesis Example 1 and Synthesis Example 3 that satisfy the constituent requirements of the present invention are in equilibrium adsorption of carbon dioxide as compared with the metal complex obtained in Comparative Synthesis Example 2 that does not satisfy the constituent requirements of the present invention. Since the amount retention is high and the decrease in retention over time is small, it is clear that the metal complex of the present invention is excellent in water resistance.
  • Example 10 About the metal complex obtained by the synthesis example 1, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. 22 (Example 10).
  • Example 11 About the metal complex obtained by the synthesis example 2, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. 22 (Example 11).
  • Example 12 About the metal complex obtained by the synthesis example 3, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. 22 (Example 12).
  • FIG. 22 shows that the metal complex obtained in Synthesis Example 1, Synthesis Example 2 and Synthesis Example 3 and the metal complex obtained in Comparative Synthesis Example 1 and Comparative Synthesis Example 2 have the same carbon dioxide adsorption performance.
  • FIG. 23 clearly shows that the metal complex obtained in Synthesis Example 4 adsorbs ethylene as the pressure increases, so that the metal complex of the present invention can be used as an adsorbent for ethylene.
  • Example 14 For the metal complex obtained in Synthesis Example 3, the adsorption / desorption amount of methane at 273K was measured by the volumetric method, and an adsorption / desorption isotherm was created. The results are shown in FIG.
  • the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention is a comparative synthesis that does not have an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms. Compared to the metal complex obtained in Example 1, it is clear that the water resistance is improved while maintaining the same level of methane storage performance.
  • the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention adsorbs methane as the pressure increases, and 95% of the methane adsorbed as the pressure decreases without reducing the pressure to 0.1 MPa or less. Since the above is desorbed, it is clear that the effective storage amount of methane is large, and application to a fuel storage tank of a gas vehicle can be expected.
  • Example 15 For the metal complex obtained in Synthesis Example 3, the adsorption and desorption amounts of carbon dioxide and methane at 273 K were measured by a volumetric method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
  • FIG. 26 and FIG. 27 show that the separation performance of carbon dioxide and methane of the metal complex obtained in Synthesis Example 3 and that of the metal complex obtained in Comparative Synthesis Example 1 are equivalent.
  • the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention selectively adsorbs carbon dioxide with increasing pressure in the pressure range of 0 to 0.6 MPa, and carbon dioxide with decreasing pressure. It is clear that the metal complex of the present invention can be used as a separator for methane and carbon dioxide.
  • the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention selectively adsorbs carbon dioxide with increasing pressure in the pressure range of 0 to 1.0 MPa, and carbon dioxide with decreasing pressure. It is clear that the metal complex of the present invention can be used as a separator for nitrogen and carbon dioxide.
  • Example 17 For the metal complex obtained in Synthesis Example 3, the adsorption and desorption amounts of ethane and methane at 298 K were measured by the volume method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
  • the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention selectively adsorbs ethane as the pressure increases in the pressure range of 0 to 1.0 MPa, and releases ethane as the pressure decreases. Therefore, it is clear that the metal complex of the present invention can be used as a separator for methane and ethane.
  • FIG. 26 and FIG. 30 show that the adsorption start pressure of the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention depends on the temperature and can be controlled. By utilizing this feature, it is understood that the degree of separation can be improved in the temperature swing adsorption method as compared with the case of using a conventional separation material.
  • FIG. 31 shows that the metal complex obtained in Synthesis Example 1 that satisfies the constituent requirements of the present invention can preferentially adsorb carbon dioxide and concentrate methane to 99.5% or more. It is clear that the metal complex of the present invention can be used as a separator for methane and carbon dioxide because the breakthrough time of carbon dioxide (time until carbon dioxide is detected in the outlet gas) is long and only methane can be taken out during that time. . From FIG. 30, it is clear that the metal complex of the present invention releases carbon dioxide adsorbed as the pressure decreases, so that it can be used as a separation material used in the pressure swing adsorption method.

Abstract

To provide a metal complex which has high water resistance. The above-mentioned problem is solved by a metal complex which is formed of a polyvalent carboxylic acid compound, at least one kind of metal ion that is selected from among ions of the metals in groups 2-13 of the periodic table, an organic ligand that is multidentately coordinatable to the metal ion, and an aliphatic monocarboxylic acid compound having 3-24 carbon atoms.

Description

金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材Metal complex, adsorbent, occlusion material and separation material comprising the same
 本発明は、金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材に関する。さらに詳しくは、多価カルボン酸化合物と、少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とからなる金属錯体に関する。本発明の金属錯体は、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニアまたは有機蒸気などのガスを吸着するための吸着材、該ガスを吸蔵するための吸蔵材及び該ガスを分離するための分離材として好ましい。 The present invention relates to a metal complex, and an adsorbent, an occlusion material and a separation material comprising the same. More specifically, it comprises a polyvalent carboxylic acid compound, at least one metal ion, an organic ligand capable of multidentate coordination with the metal ion, and an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms. It relates to a metal complex. The metal complex of the present invention comprises an adsorbent for adsorbing a gas such as carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, a hydrocarbon having 1 to 4 carbon atoms, a rare gas, hydrogen sulfide, ammonia or organic vapor, It is preferable as a storage material for storing the gas and a separation material for separating the gas.
 これまで、脱臭、排ガス処理などの分野で種々の吸着材が開発されている。活性炭はその代表例であり、活性炭の優れた吸着性能を利用して、空気浄化、脱硫、脱硝、有害物質除去など各種工業において広く使用されている。近年は半導体製造プロセスなどへ窒素の需要が増大しており、かかる窒素を製造する方法として、分子ふるい炭を使用して圧力スイング吸着法や温度スイング吸着法により空気から窒素を製造する方法が使用されている。また、分子ふるい炭は、メタノール分解ガスからの水素精製など各種ガス分離精製にも応用されている。 So far, various adsorbents have been developed in fields such as deodorization and exhaust gas treatment. Activated carbon is a representative example, and is widely used in various industries such as air purification, desulfurization, denitration, and removal of harmful substances by utilizing the excellent adsorption performance of activated carbon. In recent years, the demand for nitrogen has increased for semiconductor manufacturing processes, etc., and as a method for producing such nitrogen, a method of producing nitrogen from air by pressure swing adsorption method or temperature swing adsorption method using molecular sieve charcoal is used. Has been. Molecular sieve charcoal is also applied to various gas separation and purification such as hydrogen purification from methanol cracked gas.
 圧力スイング吸着法や温度スイング吸着法により混合ガスを分離する際には、一般に、分離吸着材として分子ふるい炭やゼオライトなどを使用し、その平衡吸着量または吸着速度の差により分離を行っている。しかしながら、平衡吸着量の差によって混合ガスを分離する場合、これまでの吸着材では除去したいガスのみを選択的に吸着することができないため分離係数が小さくなり、装置の大型化は不可避であった。また、吸着速度の差によって混合ガスを分離する場合、ガスの種類によっては除去したいガスのみを吸着できるが、吸着と脱着を交互に行う必要があり、この場合も装置は依然として大型にならざるを得なかった。 When separating mixed gas by pressure swing adsorption method or temperature swing adsorption method, generally, molecular sieve charcoal or zeolite is used as the separation adsorbent, and separation is performed by the difference in the equilibrium adsorption amount or adsorption rate. . However, when separating the mixed gas based on the difference in the amount of equilibrium adsorption, the conventional adsorbents cannot selectively adsorb only the gas to be removed, so the separation factor becomes small, and the size of the apparatus is inevitable. . In addition, when separating the mixed gas based on the difference in adsorption speed, only the gas to be removed can be adsorbed depending on the type of gas, but it is necessary to perform adsorption and desorption alternately, and in this case, the apparatus still has to be large. I didn't get it.
 一方、より優れた吸着性能を与える吸着材として、高分子金属錯体が開発されている。高分子金属錯体は、(1)広い表面積と高い空隙率、(2)高い設計性、(3)外部刺激による動的構造変化、といった特徴を有しており、既存の吸着材にはない吸着特性が期待される。 On the other hand, polymer metal complexes have been developed as adsorbents that give better adsorption performance. The polymer metal complex has features such as (1) a large surface area and high porosity, (2) high designability, and (3) dynamic structural changes due to external stimuli. Expected characteristics.
 しかしながら、実用化に際しては、吸着性能、吸蔵性能及び分離性能のさらなる向上のみならず、実ガス中に含まれる水に対する耐久性の向上が求められている(例えば、非特許文献1参照)。 However, in practical use, not only further improvement of adsorption performance, storage performance and separation performance but also improvement of durability against water contained in actual gas is required (for example, see Non-Patent Document 1).
 2-アミノテレフタル酸と金属イオンとからなる高分子金属錯体を合成した後に、高分子金属錯体を構成するテレフタル酸の2位のアミノ基に酸無水物を反応させ、アミド結合を介して高分子金属錯体にアルキル鎖を導入することで、耐水性が向上することが知られている(非特許文献2参照)。しかしながら、非特許文献2に記載の方法は、高分子金属錯体の製造工程とアルキル鎖の導入工程の二工程が必要となるため、製造プロセスが複雑になる、高分子金属錯体の粒径やモルフォロジーを制御することはできないといった問題がある。また、非特許文献2では、金属錯体のガス吸着性能、吸蔵性能及び分離性能について何ら言及されていない。 After synthesizing a polymer metal complex consisting of 2-aminoterephthalic acid and a metal ion, an acid anhydride is reacted with the amino group at the 2-position of terephthalic acid constituting the polymer metal complex to form a polymer via an amide bond. It is known that water resistance is improved by introducing an alkyl chain into a metal complex (see Non-Patent Document 2). However, the method described in Non-Patent Document 2 requires two steps of a polymer metal complex production step and an alkyl chain introduction step, which complicates the production process. The particle size and morphology of the polymer metal complex are complicated. There is a problem that cannot be controlled. Non-Patent Document 2 does not mention any gas adsorption performance, occlusion performance, and separation performance of the metal complex.
 テレフタル酸と、銅、ロジウム、クロム、モリブデン、パラジウム、亜鉛およびタングステンから選択される少なくとも1種の2価の金属と、有機配位子として4,4’-ビピリジルとを含む金属錯体が開示されている(特許文献1参照)。実施例1において、銅イオンとテレフタル酸を反応させる際にギ酸を共存させ、40℃で3日間反応させた後に、4,4’-ビピリジルと室温で2日間反応させることで目的とする金属錯体を合成しているが、ギ酸の使用目的については記載がなく、また、ギ酸以外のモノカルボン酸化合物が耐水性に与える効果についても何ら言及されていない。 Disclosed is a metal complex comprising terephthalic acid, at least one divalent metal selected from copper, rhodium, chromium, molybdenum, palladium, zinc and tungsten, and 4,4′-bipyridyl as an organic ligand. (See Patent Document 1). In Example 1, formic acid coexists when reacting copper ions with terephthalic acid, reacted at 40 ° C. for 3 days, and then reacted with 4,4′-bipyridyl for 2 days at room temperature. However, the use purpose of formic acid is not described, and no mention is made of the effect of monocarboxylic acid compounds other than formic acid on water resistance.
特開2003-342260公報JP 2003-342260 A
 したがって、本発明の目的は、従来よりも耐水性が高いガス吸着材、ガス吸蔵材或いはガス分離材として使用できる金属錯体を提供することにある。 Therefore, an object of the present invention is to provide a metal complex that can be used as a gas adsorbent, gas occlusion material or gas separation material having higher water resistance than conventional ones.
 本発明者らは鋭意検討し、多価カルボン酸化合物と、少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とからなる金属錯体により、上記目的を達成できることを見出し、本発明に至った。 The present inventors have intensively studied, polyvalent carboxylic acid compounds, at least one metal ion, an organic ligand capable of multidentate coordination with the metal ion, and an aliphatic monocarboxylic acid having 3 to 24 carbon atoms. It has been found that the above object can be achieved by a metal complex comprising an acid compound, and the present invention has been achieved.
 すなわち、本発明によれば、以下のものが提供される。
(1)多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とからなる金属錯体。
(2)多価カルボン酸化合物がジカルボン酸化合物である(1)に記載の金属錯体。
(3)該多座配位可能な有機配位子が1,4-ジアザビシクロ[2.2.2]オクタン、ピラジン、2,5-ジメチルピラジン、4,4’-ビピリジル、2,2’-ジメチル-4,4’-ビピリジン、1,2-ビス(4-ピリジル)エチン、1,4-ビス(4-ピリジル)ブタジイン、1,4-ビス(4-ピリジル)ベンゼン、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジン、2,2’-ビ-1,6-ナフチリジン、フェナジン、ジアザピレン、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロン、4,4’-ビス(4-ピリジル)ビフェニレン、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミド、トランス-1,2-ビス(4-ピリジル)エテン、4,4’-アゾピリジン、1,2-ビス(4-ピリジル)エタン、4,4’-ジピリジルスルフィド、1,3-ビス(4-ピリジル)プロパン、1,2-ビス(4-ピリジル)-グリコール及びN-(4-ピリジル)イソニコチンアミドから選択される少なくとも1種である(1)または(2)に記載の金属錯体。
(4)(1)~(3)のいずれかに記載の金属錯体からなる吸着材。
(5)該吸着材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサンまたは有機蒸気を吸着するための吸着材である(4)に記載の吸着材。
(6)(1)~(3)のいずれかに記載の金属錯体からなる吸蔵材。
(7)該吸蔵材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニアまたは有機蒸気を吸蔵するための吸蔵材である(6)に記載の吸蔵材。
(8)気密保持可能でガスの出入口を備えた耐圧容器を備え、耐圧容器の内部にガス吸蔵空間を設けたガス貯蔵装置であって、前記ガス吸蔵空間に(6)に記載の吸蔵材を内装してあるガス貯蔵装置。
(9)(8)に記載のガス貯蔵装置から供給される燃料ガスにより駆動力を得る内燃機関を備えたガス自動車。
(10)(1)~(3)のいずれかに記載の金属錯体からなる分離材。
(11)該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサンまたは有機蒸気を分離するための分離材である(10)に記載の分離材。
(12)該分離材が、メタンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、エチレンと二酸化炭素、メタンとエタン、エタンとエチレン、プロパンとプロペン、エチレンとアセチレン、窒素とメタンまたは空気とメタンを分離するための分離材である(10)に記載の分離材。
(13)金属錯体と混合ガスとを0.01~10MPaの圧力範囲で接触させる工程を含むことを特徴とする(10)に記載の分離材を用いる分離方法。
(14)該分離方法が圧力スイング吸着法である(13)に記載の分離方法。
(15)多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とを溶媒中で反応させ、金属錯体を析出させる、(1)~(3)のいずれかに記載の金属錯体の製造方法。
That is, according to the present invention, the following is provided.
(1) a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, an organic ligand capable of multidentate coordination with the metal ion, A metal complex comprising an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms.
(2) The metal complex according to (1), wherein the polyvalent carboxylic acid compound is a dicarboxylic acid compound.
(3) The multidentate organic ligand is 1,4-diazabicyclo [2.2.2] octane, pyrazine, 2,5-dimethylpyrazine, 4,4'-bipyridyl, 2,2'- Dimethyl-4,4′-bipyridine, 1,2-bis (4-pyridyl) ethyne, 1,4-bis (4-pyridyl) butadiyne, 1,4-bis (4-pyridyl) benzene, 3,6-di (4-pyridyl) -1,2,4,5-tetrazine, 2,2'-bi-1,6-naphthyridine, phenazine, diazapyrene, 2,6-di (4-pyridyl) -benzo [1,2- c: 4,5-c ′] dipyrrole-1,3,5,7 (2H, 6H) -tetron, 4,4′-bis (4-pyridyl) biphenylene, N, N′-di (4-pyridyl) -1,4,5,8-naphthalenetetracarboxydiimide, trans-1,2-bis ( 4-pyridyl) ethene, 4,4′-azopyridine, 1,2-bis (4-pyridyl) ethane, 4,4′-dipyridyl sulfide, 1,3-bis (4-pyridyl) propane, 1,2-bis The metal complex according to (1) or (2), which is at least one selected from (4-pyridyl) -glycol and N- (4-pyridyl) isonicotinamide.
(4) An adsorbent comprising the metal complex according to any one of (1) to (3).
(5) The adsorbent is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane or organic vapor. The adsorbent according to (4), which is an adsorbent for adsorbing water.
(6) An occlusion material comprising the metal complex according to any one of (1) to (3).
(7) The occlusion material is an occlusion material for occluding carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia or organic vapor ( The occlusion material according to 6).
(8) A gas storage device including a pressure-resistant container that can be kept airtight and provided with a gas inlet / outlet, and provided with a gas storage space inside the pressure-resistant container, wherein the storage material according to (6) is provided in the gas storage space. Internal gas storage device.
(9) A gas vehicle provided with an internal combustion engine that obtains driving force from fuel gas supplied from the gas storage device according to (8).
(10) A separating material comprising the metal complex according to any one of (1) to (3).
(11) The separator is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, or organic vapor The separating material according to (10), which is a separating material for separating
(12) The separator is methane and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, ethylene and carbon dioxide, methane and ethane, ethane and ethylene, propane and propene, ethylene and acetylene, nitrogen and methane or air. The separation material according to (10), which is a separation material for separating methane.
(13) The separation method using the separation material according to (10), comprising a step of contacting the metal complex and the mixed gas in a pressure range of 0.01 to 10 MPa.
(14) The separation method according to (13), wherein the separation method is a pressure swing adsorption method.
(15) a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, an organic ligand capable of multidentate coordination with the metal ion, The method for producing a metal complex according to any one of (1) to (3), wherein an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms is reacted in a solvent to precipitate a metal complex.
 本発明により、多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とからなる金属錯体を提供することができる。 According to the present invention, a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, and an organic ligand capable of multidentate coordination with the metal ion, A metal complex comprising an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms can be provided.
 本発明の金属錯体は、各種ガスの吸着性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサンまたは有機蒸気などのガスを吸着するための吸着材として使用することができる。 Since the metal complex of the present invention is excellent in the adsorption performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxidation It can be used as an adsorbent for adsorbing gases, nitrogen oxides, siloxanes or organic vapors.
 また、本発明の金属錯体は、各種ガスの吸蔵性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニアまたは有機蒸気などのガスを吸蔵するための吸蔵材としても使用することができる。 In addition, since the metal complex of the present invention is excellent in the occlusion performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia or It can also be used as a storage material for storing gases such as organic vapor.
 さらに、本発明の金属錯体は、各種ガスの分離性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサンまたは有機蒸気などのガスを分離するための分離材としても使用することができる。 Furthermore, since the metal complex of the present invention is excellent in the separation performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, It can also be used as a separating material for separating gases such as sulfur oxides, nitrogen oxides, siloxanes or organic vapors.
テレフタル酸のカルボキシレートイオンと亜鉛イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に4,4’-ビピリジルが配位して形成されるジャングルジム骨格の模式図である。FIG. 4 is a schematic diagram of a jungle gym skeleton formed by coordination of 4,4′-bipyridyl at the axial position of a metal ion in a paddle wheel skeleton composed of a carboxylate ion and a zinc ion of terephthalic acid. ジャングルジム骨格が二重に相互貫入した三次元構造の模式図である。It is a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double interpenetrated. ガス貯蔵装置を備えたガス自動車の概念図である。It is a conceptual diagram of the gas vehicle provided with the gas storage apparatus. 合成例1で得た金属錯体の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 1. FIG. 合成例1で得た金属錯体のSEM写真である。4 is a SEM photograph of the metal complex obtained in Synthesis Example 1. 合成例1で得た金属錯体を重アンモニア水に溶解させて測定したH NMRスペクトルである。2 is a 1 H NMR spectrum measured by dissolving the metal complex obtained in Synthesis Example 1 in deuterated aqueous ammonia. 合成例2で得た金属錯体の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 2. FIG. 合成例2で得た金属錯体のSEM写真である。4 is a SEM photograph of the metal complex obtained in Synthesis Example 2. 合成例3で得た金属錯体の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 3. FIG. 合成例3で得た金属錯体のSEM写真である。4 is a SEM photograph of the metal complex obtained in Synthesis Example 3. 合成例4で得た金属錯体の粉末X線回折パターンである。6 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 4. FIG. 合成例4で得た金属錯体のSEM写真である。4 is a SEM photograph of the metal complex obtained in Synthesis Example 4. 比較合成例1で得た金属錯体の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 1. FIG. 比較合成例1で得た金属錯体のSEM写真である。3 is a SEM photograph of the metal complex obtained in Comparative Synthesis Example 1. 比較合成例2で得た金属錯体の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 2. FIG. 合成例1、合成例2、合成例3、比較合成例1及び比較合成例2で得た金属錯体の水への沈降速度を測定した結果である。It is the result of having measured the sedimentation rate to the water of the metal complex obtained by the synthesis example 1, the synthesis example 2, the synthesis example 3, the comparative synthesis example 1, and the comparative synthesis example 2. FIG. 合成例1で得た金属錯体の水接触角測定時の写真である。It is a photograph at the time of water contact angle measurement of the metal complex obtained in Synthesis Example 1. 合成例2で得た金属錯体の水接触角測定時の写真である。6 is a photograph of the metal complex obtained in Synthesis Example 2 when measured with a water contact angle. 合成例3で得た金属錯体の水接触角測定時の写真である。It is a photograph at the time of water contact angle measurement of the metal complex obtained in Synthesis Example 3. 合成例4で得た金属錯体の水接触角測定時の写真である。It is a photograph at the time of water contact angle measurement of the metal complex obtained in Synthesis Example 4. 合成例1、合成例3及び比較合成例2で得た金属錯体の耐水性評価結果である。It is a water resistance evaluation result of the metal complex obtained by the synthesis example 1, the synthesis example 3, and the comparative synthesis example 2. FIG. 合成例1、合成例2、合成例3、比較合成例1及び比較合成例2で得た金属錯体の273Kにおける二酸化炭素の吸着等温線である。It is an adsorption isotherm of carbon dioxide at 273 K of the metal complexes obtained in Synthesis Example 1, Synthesis Example 2, Synthesis Example 3, Comparative Synthesis Example 1 and Comparative Synthesis Example 2. 合成例4で得た金属錯体の273Kにおけるエチレンの吸着等温線である。4 is an adsorption isotherm of ethylene at 273 K of the metal complex obtained in Synthesis Example 4. 合成例3で得た金属錯体の273Kにおけるメタンの吸脱着等温線である。6 is an adsorption / desorption isotherm of methane at 273 K of the metal complex obtained in Synthesis Example 3. FIG. 比較合成例1で得た金属錯体の273Kにおけるメタンの吸脱着等温線である。2 is an adsorption / desorption isotherm of methane at 273 K of the metal complex obtained in Comparative Synthesis Example 1. FIG. 合成例3で得た金属錯体の273Kにおける二酸化炭素及びメタンの吸脱着等温線である。2 is an adsorption / desorption isotherm of carbon dioxide and methane at 273 K of the metal complex obtained in Synthesis Example 3. FIG. 比較合成例1で得た金属錯体の273Kにおける二酸化炭素及びメタンの吸脱着等温線である。2 is an adsorption and desorption isotherm of carbon dioxide and methane at 273 K of the metal complex obtained in Comparative Synthesis Example 1. FIG. 合成例3で得た金属錯体の313Kにおける二酸化炭素及び窒素の吸脱着等温線である。3 is an adsorption / desorption isotherm of carbon dioxide and nitrogen at 313 K of the metal complex obtained in Synthesis Example 3. FIG. 合成例3で得た金属錯体の298Kにおけるエタン及びメタンの吸脱着等温線である。3 is an adsorption / desorption isotherm of ethane and methane at 298 K of the metal complex obtained in Synthesis Example 3. FIG. 合成例3で得た金属錯体の293Kにおける二酸化炭素及びメタンの吸脱着等温線である。6 is an adsorption / desorption isotherm of carbon dioxide and methane at 293 K of the metal complex obtained in Synthesis Example 3. FIG. 合成例3で得た金属錯体について、容量比でメタン:二酸化炭素=60:40からなるメタンと二酸化炭素の混合ガスを用い、293K、0.8MPa、空間速度6min-1における破過曲線を測定した結果である。For the metal complex obtained in Synthesis Example 3, a breakthrough curve at 293 K, 0.8 MPa, space velocity 6 min −1 was measured using a mixed gas of methane and carbon dioxide having a volume ratio of methane: carbon dioxide = 60: 40. It is the result.
 粉末X線回折パターンの測定結果において、横軸は回折角(2θ)及び縦軸はcps(Counts per Second)で示す回折強度(Intensity)である(図4,7,9,11,13及び15)。 In the measurement result of the powder X-ray diffraction pattern, the horizontal axis represents the diffraction angle (2θ) and the vertical axis represents the diffraction intensity (Intensity) indicated by cps (Counts per Second) (FIGS. 4, 7, 9, 11, 13, and 15). ).
 吸脱着等温線の測定結果において、横軸はMPaで示す平衡圧(Pressure)及び縦軸はmL(STP)/gで示す平衡吸着量(Amount Adsorbed)である(図22-30)。吸脱着等温線の測定結果において、昇圧した際の各圧力におけるガスの吸着量(ads.)及び減圧した際の各圧力におけるガスの吸着量(des.)がそれぞれプロットされている。STP(標準状態、Standard Temperature and Pressure)は、温度273.15K及び圧力1bar(105Pa)の状態を示す。 In the measurement result of the adsorption / desorption isotherm, the horizontal axis is the equilibrium pressure (Pressure) expressed in MPa, and the vertical axis is the equilibrium adsorption amount (Amount Adsorbed) expressed in mL (STP) / g (FIG. 22-30). In the measurement results of the adsorption / desorption isotherm, the gas adsorption amount (ads.) At each pressure when the pressure is increased and the gas adsorption amount (des.) At each pressure when the pressure is reduced are plotted. STP (standard state, Standard Temperature and Pressure) indicates a state of a temperature of 273.15 K and a pressure of 1 bar (10 5 Pa).
 破過曲線の測定結果において、横軸は分単位のガスの流通時間(Time[min])であり、縦軸は出口ガスの割合(Outlet Gas Ratio[%])である(図31)。 In the measurement result of the breakthrough curve, the horizontal axis is the gas flow time (Time [min]) in minutes, and the vertical axis is the ratio of outlet gas (Outlet Gas Ratio [%]) (FIG. 31).
 本発明の金属錯体は、多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とからなる。 The metal complex of the present invention includes a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, and an organic configuration capable of multidentate coordination with the metal ion. It consists of a ligand and an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms.
 本発明に用いられる多価カルボン酸化合物としては、特に限定されるものではなく、ジカルボン酸化合物、トリカルボン酸化合物、テトラカルボン酸化合物等のいずれであっても使用することができる。例えば、コハク酸、1,4-シクロヘキサンジカルボン酸、フマル酸、ムコン酸、2,3-ピラジンジカルボン酸、イソフタル酸、テレフタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、9,10-アントラセンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-スチルベンジカルボン酸、2,5-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸、2,5-チオフェンジカルボン酸、2,2’-ジチオフェンジカルボン酸などのジカルボン酸化合物;トリメシン酸、トリメリット酸、ビフェニル-3,4’,5-トリカルボン酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、1,3,5-トリス(4’-カルボキシ[1,1’-ビフェニル]-4-イル)ベンゼン、2,4,6-トリス(4-カルボキシフェニル)-s-トリアジンなどのトリカルボン酸化合物;ピロメリット酸、3,3’,5,5’-テトラカルボキシジフェニルメタン、[1,1’:4’,1’’]ターフェニル-3,3’’,5,5’’-テトラカルボン酸、1,2,4,5-テトラキス(4-カルボキシフェニル)ベンゼンなどのテトラカルボン酸化合物などを使用することができ、中でもジカルボン酸化合物が好ましい。多価カルボン酸化合物は、単独で用いても良く、2種以上の多価カルボン酸化合物を混合して用いても良い。また、本発明の金属錯体は、単一の多価カルボン酸化合物(好ましくはジカルボン酸化合物)からなる金属錯体を2種以上混合したものでもよい。また、該多価カルボン酸化合物は、酸無水物やアルカリ金属塩の形で用いてもよい。 The polyvalent carboxylic acid compound used in the present invention is not particularly limited, and any of dicarboxylic acid compounds, tricarboxylic acid compounds, tetracarboxylic acid compounds and the like can be used. For example, succinic acid, 1,4-cyclohexanedicarboxylic acid, fumaric acid, muconic acid, 2,3-pyrazinedicarboxylic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 7-Naphthalenedicarboxylic acid, 9,10-anthracene dicarboxylic acid, 4,4′-biphenyl dicarboxylic acid, 4,4′-stilbene dicarboxylic acid, 2,5-pyridinedicarboxylic acid, 3,5-pyridinedicarboxylic acid, 2, , 5-thiophene dicarboxylic acid, 2,2′-dithiophene dicarboxylic acid and the like; trimesic acid, trimellitic acid, biphenyl-3,4 ′, 5-tricarboxylic acid, 1,3,5-tris (4 -Carboxyphenyl) benzene, 1,3,5-tris (4'-carboxy [1,1'-biphenyl) ] -4-yl) benzene, tricarboxylic acid compounds such as 2,4,6-tris (4-carboxyphenyl) -s-triazine; pyromellitic acid, 3,3 ′, 5,5′-tetracarboxydiphenylmethane, [ 1,1 ′: 4 ′, 1 ″] terphenyl-3,3 ″, 5,5 ″ -tetracarboxylic acid, 1,2,4,5-tetrakis (4-carboxyphenyl) benzene and other tetra Carboxylic acid compounds and the like can be used, and among them, dicarboxylic acid compounds are preferable. The polyvalent carboxylic acid compound may be used alone, or two or more polyvalent carboxylic acid compounds may be mixed and used. The metal complex of the present invention may be a mixture of two or more metal complexes composed of a single polyvalent carboxylic acid compound (preferably a dicarboxylic acid compound). The polyvalent carboxylic acid compound may be used in the form of an acid anhydride or an alkali metal salt.
 該多価カルボン酸化合物は、カルボキシル基以外に置換基をさらに有していてもよい。置換基を有する多価カルボン酸は、芳香族多価カルボン酸が好ましく、置換基は芳香族多価カルボン酸の芳香環に結合したものが好ましい。例えば、テレフタル酸は2-ニトロテレフタル酸であってもよい。置換基の数は1、2または3個が挙げられる。置換基としては、特に限定されないが、例えばアルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基などの直鎖または分岐を有する炭素数1~5のアルキル基)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基(メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基,n-ブトキシ基、イソブトキシ基、tert-ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、エポキシ基、アシロキシ基(アセトキシ基、n-プロパノイルオキシ基、n-ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基など)、ニトロ基、シアノ基、水酸基、アセチル基、トリフルオロメチル基などが挙げられる。 The polyvalent carboxylic acid compound may further have a substituent in addition to the carboxyl group. The polyvalent carboxylic acid having a substituent is preferably an aromatic polyvalent carboxylic acid, and the substituent is preferably bonded to the aromatic ring of the aromatic polyvalent carboxylic acid. For example, the terephthalic acid may be 2-nitroterephthalic acid. The number of substituents may be 1, 2 or 3. The substituent is not particularly limited. For example, the substituent may be linear or branched such as an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group). Having an alkyl group having 1 to 5 carbon atoms), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, Isobutoxy group, tert-butoxy group, etc.), amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyl) Oxy group, n-butanoyloxy group, pivaloyloxy group, benzoyloxy group, etc.), alcohol Aryloxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, etc. n- butoxycarbonyl group), a nitro group, a cyano group, a hydroxyl group, an acetyl group, and a trifluoromethyl group.
 本発明に用いられる周期表の2~13族に属する金属のイオンとしては、例えば、マグネシウムイオン、カルシウムイオン、スカンジウムイオン、ジルコニウムイオン、バナジウムイオン、クロムイオン、モリブデンイオン、マンガンイオン、鉄イオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、カドミウムイオン、アルミニウムイオンなどを使用することができ、中でもマンガンイオン、コバルトイオン、ニッケルイオン、銅イオン及び亜鉛イオンが好ましく、銅イオンがより好ましい。金属イオンは、単一の金属イオンを使用することが好ましいが、2種類以上の金属イオンを含む混合金属錯体であってもよい。また、本発明の金属錯体は、単一の金属イオンからなる金属錯体を2種以上混合したものでもよい。 Examples of the metal ions belonging to groups 2 to 13 of the periodic table used in the present invention include magnesium ion, calcium ion, scandium ion, zirconium ion, vanadium ion, chromium ion, molybdenum ion, manganese ion, iron ion, and cobalt. Ions, nickel ions, copper ions, zinc ions, cadmium ions, aluminum ions and the like can be used, among which manganese ions, cobalt ions, nickel ions, copper ions and zinc ions are preferable, and copper ions are more preferable. The metal ion is preferably a single metal ion, but may be a mixed metal complex containing two or more kinds of metal ions. The metal complex of the present invention may be a mixture of two or more metal complexes composed of a single metal ion.
 該金属イオンは金属塩の形で用いてもよい。金属塩としては、例えば、マグネシウム塩、カルシウム塩、スカンジウム塩、ジルコニウム塩、バナジウム塩、クロム塩、モリブデン塩、マンガン塩、鉄塩、コバルト塩、ニッケル塩、銅塩、亜鉛塩、カドミウム塩、アルミニウム塩などを使用することができ、中でもマンガン塩、コバルト塩、ニッケル塩、銅塩及び亜鉛塩が好ましく、銅塩がより好ましい。金属塩は、単一の金属塩を使用することが好ましいが、2種以上の金属塩を混合して用いてもよい。また、これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、硫酸塩、硝酸塩、塩酸塩、臭化水素酸塩、炭酸塩などの無機酸塩を使用することができる。 The metal ion may be used in the form of a metal salt. Examples of the metal salt include magnesium salt, calcium salt, scandium salt, zirconium salt, vanadium salt, chromium salt, molybdenum salt, manganese salt, iron salt, cobalt salt, nickel salt, copper salt, zinc salt, cadmium salt, aluminum A salt or the like can be used, among which a manganese salt, a cobalt salt, a nickel salt, a copper salt and a zinc salt are preferable, and a copper salt is more preferable. The metal salt is preferably a single metal salt, but two or more metal salts may be mixed and used. Further, as these metal salts, organic acid salts such as acetates and formates, inorganic acid salts such as sulfates, nitrates, hydrochlorides, hydrobromides and carbonates can be used.
 本発明に用いられる多座配位可能な有機配位子とは、非共有電子対で金属イオンに対して配位する部位を少なくとも2箇所持つ中性配位子を意味する。このような多座配位可能な有機配位子としては、二座配位子、三座配位子、四座配位子等があるが、これらのいずれであってもよい。非共有電子対で金属イオンに対して配位する部位としては、窒素原子、酸素原子、リン原子、硫黄原子などが挙げられる。該多座配位可能な有機配位子は、複素芳香環化合物であることが好ましく、中でも窒素原子を配位部位に有する複素芳香環化合物であることが好ましい。
 本発明に用いられる多座配位可能な有機配位子とは、非共有電子対で金属イオンに対して配位する部位を少なくとも2箇所持つ中性配位子を意味する。非共有電子対で金属イオンに対して配位する部位としては、窒素原子、酸素原子、リン原子、硫黄原子などが挙げられる。該多座配位可能な有機配位子は、複素芳香環化合物であることが好ましく、中でも窒素原子を配位部位に有する複素芳香環化合物であることが好ましい。
The multidentate organic ligand used in the present invention means a neutral ligand having at least two sites coordinated to a metal ion by an unshared electron pair. Examples of such an organic ligand capable of multidentate coordination include a bidentate ligand, a tridentate ligand, and a tetradentate ligand, and any of these may be used. Examples of the site coordinated to the metal ion by the lone pair include a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom. The organic ligand capable of multidentate coordination is preferably a heteroaromatic ring compound, and more preferably a heteroaromatic ring compound having a nitrogen atom at a coordination site.
The multidentate organic ligand used in the present invention means a neutral ligand having at least two sites coordinated to a metal ion by an unshared electron pair. Examples of the site coordinated to the metal ion by the lone pair include a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom. The organic ligand capable of multidentate coordination is preferably a heteroaromatic ring compound, and more preferably a heteroaromatic ring compound having a nitrogen atom at a coordination site.
 前記多座配位可能な有機配位子としては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン、ピラジン、2,5-ジメチルピラジン、4,4’-ビピリジル、2,2’-ジメチル-4,4’-ビピリジン、1,2-ビス(4-ピリジル)エチン、1,4-ビス(4-ピリジル)ブタジイン、1,4-ビス(4-ピリジル)ベンゼン、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジン、2,2’-ビ-1,6-ナフチリジン、フェナジン、ジアザピレン、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロン、4,4’-ビス(4-ピリジル)ビフェニレン、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミド、トランス-1,2-ビス(4-ピリジル)エテン、4,4’-アゾピリジン、1,2-ビス(4-ピリジル)エタン、4,4’-ジピリジルスルフィド、1,2-ビス(4-ピリジル)プロパン、1,2-ビス(4-ピリジル)-グリコール、N-(4-ピリジル)イソニコチンアミドなどの二座配位子、2,4,6-トリ(4-ピリジル)-1,3,5-トリアジンなどの三座配位子、テトラキス(3-ピリジルオキシメチレン)メタン、テトラキス(4-ピリジルオキシメチレン)メタンなどの四座配位子を使用することができる。多座配位可能な有機配位子は、単独で用いてもよく、2種以上の多座配位可能な有機配位子を混合して用いても良い。また、本発明の金属錯体は、単一の多座配位可能な有機配位子からなる金属錯体を2種以上混合したものでもよい。 Examples of the multidentate organic ligand include 1,4-diazabicyclo [2.2.2] octane, pyrazine, 2,5-dimethylpyrazine, 4,4′-bipyridyl, 2,2 ′. -Dimethyl-4,4'-bipyridine, 1,2-bis (4-pyridyl) ethyne, 1,4-bis (4-pyridyl) butadiyne, 1,4-bis (4-pyridyl) benzene, 3,6- Di (4-pyridyl) -1,2,4,5-tetrazine, 2,2'-bi-1,6-naphthyridine, phenazine, diazapyrene, 2,6-di (4-pyridyl) -benzo [1,2 -C: 4,5-c '] dipyrrole-1,3,5,7 (2H, 6H) -tetron, 4,4'-bis (4-pyridyl) biphenylene, N, N'-di (4-pyridyl) ) -1,4,5,8-naphthalenetetracarboxydiimide, Lance-1,2-bis (4-pyridyl) ethene, 4,4′-azopyridine, 1,2-bis (4-pyridyl) ethane, 4,4′-dipyridyl sulfide, 1,2-bis (4-pyridyl) Bidentate ligands such as propane, 1,2-bis (4-pyridyl) -glycol, N- (4-pyridyl) isonicotinamide, 2,4,6-tri (4-pyridyl) -1,3 , 5-triazine and other tetradentate ligands, and tetrakis (3-pyridyloxymethylene) methane, tetrakis (4-pyridyloxymethylene) methane and the like. The organic ligand capable of multidentate coordination may be used alone, or two or more organic ligands capable of multidentate coordination may be mixed and used. The metal complex of the present invention may be a mixture of two or more metal complexes composed of a single multidentate organic ligand.
 本発明に用いられる多座配位可能な有機配位子としては、非共有電子対で金属イオンに対して配位する部位を2箇所持つ二座配位可能な有機配位子が好ましく、金属イオンに対して配位する部位間の距離が7.0Å以上16.0Å以下である二座配位可能な有機配位子がより好ましい。ここで、金属イオンに対して配位する部位間の距離は、富士通株式会社製Scigress Explorer Professional Version 7.6.0.52を用い、分子力学法MM3で配座解析を行った後、半経験的分子軌道法PM5で構造最適化を行うことで求めた最安定構造における、金属イオンに対して配位する原子のうち構造式内で最も離れた位置にある2原子間の距離と定義する。 As the organic ligand capable of multidentate coordination used in the present invention, an organic ligand capable of bidentate coordination having two sites coordinated to a metal ion by a lone pair is preferable. An organic ligand capable of bidentate coordination having a distance between sites coordinated to ions of 7.0 to 16.0 is more preferable. Here, the distance between the sites coordinated to the metal ion is half experience after performing conformational analysis with the molecular dynamics method MM3 using Scigress Explorer Professional Version 7.6.0.52 made by Fujitsu Limited. It is defined as the distance between two atoms at the farthest positions in the structural formula among the atoms coordinated to the metal ion in the most stable structure obtained by structural optimization by the mechanical molecular orbital method PM5.
 金属イオンに対して配位する部位間の距離が7.0Å以上16.0Å以下である二座配位可能な有機配位子としては、例えば、4,4’-ビピリジル(7.061Å)、4,4’-アゾピリジン(9.173Å)、N-(4-ピリジル)イソニコチンアミド(9.342Å)、トランス-1,2-ビス(4-ピリジル)エテン(9.386Å)、1,2-ビス(4-ピリジル)エチン(9.583Å)、1,4-ビス(4-ピリジル)ベンゼン(11.315Å)、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジン(11.204Å)、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロン(15.309Å)、4,4’-ビス(4-ピリジル)ビフェニレン(15.570Å)、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミド(15.533Å)などである(かっこ内の数値は化合物中の窒素原子間距離を表す)。これらの中でも、特に4,4’-ビピリジルが好ましい。 Examples of the bidentate organic ligand having a distance between sites coordinated to metal ions of 7.0 to 16.0 mm include 4,4′-bipyridyl (7.061 Å), 4,4′-azopyridine (9.173Å), N- (4-pyridyl) isonicotinamide (9.342Å), trans-1,2-bis (4-pyridyl) ethene (9.386Å), 1,2 -Bis (4-pyridyl) ethyne (9.583Å), 1,4-bis (4-pyridyl) benzene (11.315Å), 3,6-di (4-pyridyl) -1,2,4,5- Tetrazine (11.204Å), 2,6-di (4-pyridyl) -benzo [1,2-c: 4,5-c ′] dipyrrole-1,3,5,7 (2H, 6H) -tetron ( 15.309Å), 4,4′-bis (4-pyridyl) biphenyle (15.570Å), N, N′-di (4-pyridyl) -1,4,5,8-naphthalenetetracarboxydiimide (15.533Å), etc. (numbers in parentheses are between nitrogen atoms in the compound) Represents distance). Among these, 4,4'-bipyridyl is particularly preferable.
 本発明に用いられる炭素数3~24の脂肪族モノカルボン酸化合物としては、例えば、プロピオン酸(炭素数3)、酪酸(炭素数4)、イソ酪酸(炭素数4)、吉草酸(炭素数5)、ピバル酸(炭素数5)、カプロン酸(炭素数6)、エナント酸、シクロヘキサンカルボン酸(炭素数7)、カプリル酸(炭素数8)、オクチル酸(炭素数8)、ペラルゴン酸(炭素数9)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、ペンタデシル酸(炭素数15)、パルミチン酸(炭素数16)、マルガリン酸(炭素数17)、ステアリン酸(炭素数18)、オレイン酸(炭素数18)、リノール酸(炭素数18)、α-リノレン酸(炭素数18)、ツベルクロステアリン酸(炭素数19)、アラキジン酸(炭素数20)、エイコサペンタエン酸(炭素数20)、ベヘン酸(炭素数22)、ドコサヘキサエン酸(炭素数22)、リグノセリン酸(炭素数24)、などを使用することができる。これらの中でも、炭素数5~20の脂肪族モノカルボン酸化合物が好ましく、特に、ピバル酸、オクチル酸、ラウリン酸、ミリスチン酸、パルミチン酸及びステアリン酸が好ましい。炭素数が2以下であるギ酸(炭素数1)及び酢酸(炭素数2)では十分な耐水性を発現しない。また、炭素数が25以上の場合はガス吸着に寄与しない部分(アルキル鎖)の割合が増えるため、単位重量、或いは単位容積あたりの吸着量が低下する。 Examples of the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms used in the present invention include propionic acid (3 carbon atoms), butyric acid (4 carbon atoms), isobutyric acid (4 carbon atoms), valeric acid (carbon number). 5), pivalic acid (5 carbon atoms), caproic acid (6 carbon atoms), enanthic acid, cyclohexanecarboxylic acid (7 carbon atoms), caprylic acid (8 carbon atoms), octylic acid (8 carbon atoms), pelargonic acid ( 9 carbon atoms, capric acid (10 carbon atoms), lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), pentadecylic acid (15 carbon atoms), palmitic acid (16 carbon atoms), margaric acid (carbon number) 17), stearic acid (18 carbon atoms), oleic acid (18 carbon atoms), linoleic acid (18 carbon atoms), α-linolenic acid (18 carbon atoms), tuberculostearic acid (19 carbon atoms), arachidic acid ( Charcoal Number 20), eicosapentaenoic acid (20 carbon atoms), behenic acid (22 carbon atoms), docosahexaenoic acid (22 carbon atoms), lignoceric acid (24 carbon atoms), or the like can be used. Among these, aliphatic monocarboxylic acid compounds having 5 to 20 carbon atoms are preferable, and pivalic acid, octylic acid, lauric acid, myristic acid, palmitic acid and stearic acid are particularly preferable. Formic acid (carbon number 1) and acetic acid (carbon number 2) having 2 or less carbon atoms do not exhibit sufficient water resistance. In addition, when the number of carbon atoms is 25 or more, the proportion of the portion (alkyl chain) that does not contribute to gas adsorption increases, so the adsorption amount per unit weight or unit volume decreases.
 炭素数3~24の脂肪族モノカルボン酸化合物の割合は、本発明の効果を損なわない限り特に限定されるものではないが、多価カルボン酸化合物とモノカルボン酸化合物との組成比は、100:1~5,000:1の範囲内であることが好ましく、250:1~2,500:1の範囲内であることがより好ましい。 The proportion of the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms is not particularly limited as long as the effects of the present invention are not impaired, but the composition ratio of the polyvalent carboxylic acid compound to the monocarboxylic acid compound is 100 Is preferably in the range of 1 to 5,000: 1, more preferably in the range of 250: 1 to 2,500: 1.
 本発明の金属錯体を構成する多価カルボン酸化合物とモノカルボン酸化合物の組成比は、金属錯体を分解して均一な溶液とした後に、ガスクロマトグラフィー、高速液体クロマトグラフィーまたはNMRを用いて分析することで決定することができるが、これらに限定されるものではない。 The composition ratio of the polycarboxylic acid compound and the monocarboxylic acid compound constituting the metal complex of the present invention is analyzed using gas chromatography, high performance liquid chromatography, or NMR after decomposing the metal complex into a uniform solution. However, the present invention is not limited to these.
 炭素数3~24の脂肪族モノカルボン酸化合物は、反応初期から共存させても、反応後期に添加してもよい。 The aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms may coexist from the initial stage of the reaction or may be added at the late stage of the reaction.
 本発明の金属錯体は、本発明の効果を損なわない範囲で、さらに単座有機配位子を含んでいてもよい。単座有機配位子とは、非共有電子対で金属イオンに対して配位する部位を1箇所持つ中性配位子を意味する。単座有機配位子としては、例えば、フラン、チオフェン、ピリジン、キノリン、イソキノリン、アクリジン、トリメチルホスフィン、トリフェニルホスフィン、トリフェニルホスファイト、メチルイソシアニドなどを使用することができ、中でもピリジンが好ましい。単座有機配位子は炭素数1~23の炭化水素基を置換基として有してもよい。 The metal complex of the present invention may further contain a monodentate organic ligand as long as the effects of the present invention are not impaired. The monodentate organic ligand means a neutral ligand having one site coordinated to a metal ion by an unshared electron pair. As the monodentate organic ligand, for example, furan, thiophene, pyridine, quinoline, isoquinoline, acridine, trimethylphosphine, triphenylphosphine, triphenylphosphite, methylisocyanide and the like can be used, and pyridine is particularly preferable. The monodentate organic ligand may have a hydrocarbon group having 1 to 23 carbon atoms as a substituent.
 本発明の金属錯体が前記単座有機配位子を含む場合、その割合は本発明の効果を損なわない限り特に限定されるものではないが、二座配位可能な有機配位子と単座有機配位子との組成比は、1:5~1:1,000のモル比の範囲内が好ましく、1:10~1:100の範囲内であることがより好ましい。当該組成比は、ガスクロマトグラフィー、高速液体クロマトグラフィーまたはNMRなどを用いて分析することで決定することができるが、これらに限定されるものではない。 When the metal complex of the present invention contains the monodentate organic ligand, the ratio is not particularly limited as long as the effect of the present invention is not impaired, but the bidentate organic ligand and the monodentate organic ligand are not limited. The composition ratio with the ligand is preferably in the range of a molar ratio of 1: 5 to 1: 1,000, and more preferably in the range of 1:10 to 1: 100. The composition ratio can be determined by analysis using gas chromatography, high performance liquid chromatography, NMR, or the like, but is not limited thereto.
 金属錯体は、多価カルボン酸化合物と、周期表の2~13族に属する金属の塩から選択される少なくとも1種の金属塩と、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とを、気相、液相または固相のいずれかで反応させることで製造することができるが、常圧下、溶媒中で数時間から数日間反応させ、金属錯体を析出させて製造することが好ましい。例えば、金属塩の水溶液または有機溶媒溶液と、多価カルボン酸化合物、多座配位可能な有機配位子及び炭素数3~24の脂肪族モノカルボン酸化合物を含有する水溶液または有機溶媒溶液とを、常圧下で混合して反応させることにより本発明の金属錯体を得ることができる。 The metal complex includes a polyvalent carboxylic acid compound, at least one metal salt selected from salts of metals belonging to Groups 2 to 13 of the periodic table, and an organic ligand capable of multidentate coordination with the metal ion. Can be produced by reacting an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms in a gas phase, a liquid phase or a solid phase, but for several hours to several days in a solvent under normal pressure. It is preferable to make it react and to precipitate a metal complex. For example, an aqueous solution or organic solvent solution of a metal salt and an aqueous solution or organic solvent solution containing a polyvalent carboxylic acid compound, an organic ligand capable of multidentate coordination, and an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms Can be mixed and reacted under normal pressure to obtain the metal complex of the present invention.
 金属錯体を製造するときの金属塩と多価カルボン酸化合物の混合比率は、金属塩:多価カルボン酸化合物=1:5~8:1のモル比の範囲内が好ましく、1:3~6:1のモル比の範囲内がより好ましい。これ以外の範囲で反応を行っても目的とする金属錯体は得られるが、収率が低下し、副反応も増えるために好ましくない。 The mixing ratio of the metal salt and the polyvalent carboxylic acid compound when producing the metal complex is preferably within the range of the molar ratio of metal salt: polyvalent carboxylic acid compound = 1: 5 to 8: 1, and 1: 3 to 6 A molar ratio in the range of 1 is more preferable. Even if the reaction is carried out in a range other than this, the desired metal complex can be obtained, but this is not preferable because the yield is lowered and the side reaction is also increased.
 金属錯体を製造するときの金属塩と多座配位可能な有機配位子の混合比率は、金属塩:多座配位可能な有機配位子=1:3~3:1のモル比の範囲内が好ましく、1:2~2:1のモル比の範囲内がより好ましい。これ以外の範囲では目的とする金属錯体の収率が低下し、また、未反応の原料が残留して得られた金属錯体の精製が困難になる。 When the metal complex is produced, the mixing ratio of the metal salt and the organic ligand capable of multidentate coordination is such that the molar ratio of metal salt: organic ligand capable of multidentate coordination is 1: 3 to 3: 1. Within the range, a molar ratio within the range of 1: 2 to 2: 1 is more preferable. In other ranges, the yield of the target metal complex decreases, and purification of the metal complex obtained by leaving unreacted raw materials becomes difficult.
 金属錯体を製造するときの多価カルボン酸化合物と炭素数3~24の脂肪族モノカルボン酸化合物の混合比率は、多価カルボン酸化合物:モノカルボン酸化合物=1:5~1:1,000のモル比の範囲内が好ましく、1:10~1:100のモル比の範囲内がより好ましい。これ以外の範囲では目的とする金属錯体の収率が低下し、また、未反応の原料が残留して得られた金属錯体の精製が困難になる。 When the metal complex is produced, the mixing ratio of the polyvalent carboxylic acid compound and the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms is as follows: polyvalent carboxylic acid compound: monocarboxylic acid compound = 1: 5 to 1: 1,000. Is preferably within the range of the molar ratio of 1:10 to 1: 100. In other ranges, the yield of the target metal complex decreases, and purification of the metal complex obtained by leaving unreacted raw materials becomes difficult.
 金属錯体を製造するための混合溶液における多価カルボン酸化合物のモル濃度は、0.01~5.0mol/Lが好ましく、0.05~2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。 The molar concentration of the polyvalent carboxylic acid compound in the mixed solution for producing the metal complex is preferably 0.01 to 5.0 mol / L, and more preferably 0.05 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
 金属錯体を製造するための混合溶液における金属塩のモル濃度は、0.01~5.0mol/Lが好ましく、0.05~2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では未反応の金属塩が残留し、得られた金属錯体の精製が困難になる。 The molar concentration of the metal salt in the mixed solution for producing the metal complex is preferably 0.01 to 5.0 mol / L, and more preferably 0.05 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex becomes difficult.
 金属錯体を製造するための混合溶液における多座配位可能な有機配位子のモル濃度は、0.005~2.5mol/Lが好ましく、0.025~1.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。 The molar concentration of the organic ligand capable of multidentate coordination in the mixed solution for producing the metal complex is preferably 0.005 to 2.5 mol / L, and more preferably 0.025 to 1.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.
 金属錯体の製造に用いる溶媒としては、有機溶媒、水またはそれらの混合溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、N,N-ジメチルホルムアミド、水またはこれらの混合溶媒を使用することができる。反応温度としては、253~423Kが好ましい。 As the solvent used for the production of the metal complex, an organic solvent, water, or a mixed solvent thereof can be used. Specifically, methanol, ethanol, propanol, diethyl ether, dimethoxyethane, tetrahydrofuran, hexane, cyclohexane, heptane, benzene, toluene, methylene chloride, chloroform, acetone, ethyl acetate, acetonitrile, N, N-dimethylformamide, water or These mixed solvents can be used. The reaction temperature is preferably 253 to 423K.
 反応が終了したことはガスクロマトグラフィーまたは高速液体クロマトグラフィーにより原料の残存量を定量することにより確認することができる。反応終了後、得られた混合液を吸引濾過に付して沈殿物を集め、有機溶媒による洗浄後、373K程度で数時間真空乾燥することにより、本発明の金属錯体を得ることができる。 The completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum dried at about 373 K for several hours to obtain the metal complex of the present invention.
 本発明の金属錯体は、溶媒が吸着した状態ではガスを吸着しない。そのため、本発明の金属錯体を吸着材、吸蔵材、或いは分離材として使用する際には、予め得られた金属錯体について真空乾燥を行い、細孔内の溶媒を取り除くことが必要である。通常は金属錯体が分解しない程度の温度(例えば293K~523K以下)で真空乾燥を行えばよいが、その温度はより低温(例えば293K~393K以下)であることが好ましい。この操作は、超臨界二酸化炭素による洗浄によっても代えることができ、より効果的である。 The metal complex of the present invention does not adsorb gas when the solvent is adsorbed. Therefore, when the metal complex of the present invention is used as an adsorbent, occlusion material, or separation material, it is necessary to vacuum-dry the metal complex obtained in advance to remove the solvent in the pores. Usually, vacuum drying may be performed at a temperature at which the metal complex is not decomposed (for example, 293 K to 523 K or less), but the temperature is preferably lower (for example, 293 K to 393 K or less). This operation can be replaced by cleaning with supercritical carbon dioxide, and is more effective.
 本発明の金属錯体は、用いる多価カルボン酸化合物、金属イオン及び該金属イオンに多座配位可能な有機配位子の種類により、一次元、二次元、或いは三次元の集積構造をとる。 The metal complex of the present invention has a one-dimensional, two-dimensional, or three-dimensional integrated structure depending on the polyvalent carboxylic acid compound used, the metal ion, and the type of organic ligand that can be multidentately coordinated with the metal ion.
 本発明の金属錯体は、用いる炭素数3~24の脂肪族モノカルボン酸化合物の種類及び使用量により、粒径やモルフォロジーを制御することができる。 The particle size and morphology of the metal complex of the present invention can be controlled by the type and amount of the aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms to be used.
 一例として、多価カルボン酸化合物としてテレフタル酸を、金属イオンとして亜鉛イオンを、多座配位可能な有機配位子として4,4’-ビピリジルを有する金属錯体について詳しく述べる。該金属錯体は、テレフタル酸のカルボキシレートイオンと金属イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に4,4’-ビピリジルが配位して形成されるジャングルジム骨格が二重に相互貫入した三次元構造を有する。ジャングルジム骨格の模式図を図1に、ジャングルジム骨格が二重に相互貫入した三次元構造の模式図を図2に示す。 As an example, a metal complex having terephthalic acid as a polyvalent carboxylic acid compound, zinc ion as a metal ion, and 4,4'-bipyridyl as an organic ligand capable of multidentate coordination will be described in detail. The metal complex has a double jungle gym skeleton formed by coordination of 4,4'-bipyridyl at the axial position of the metal ion in the paddle wheel skeleton composed of the carboxylate ion and metal ion of terephthalic acid. It has an intrusive three-dimensional structure. A schematic diagram of a jungle gym skeleton is shown in FIG. 1, and a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double-interpenetrated is shown in FIG.
 上記「ジャングルジム骨格」とは、テレフタル酸などの多価カルボン酸化合物と金属イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に4,4’-ビピリジル等の多座配位可能な有機配位子が配位し、多価カルボン酸化合物と金属イオンとからなる二次元格子状シート間を連結することで形成されるジャングルジム様の三次元構造を意味する。「ジャングルジム骨格が多重に相互貫入した構造」とは、複数のジャングルジム骨格が互いの細孔を埋める形で貫入し合った三次元集積構造である。 The above “jungle gym skeleton” is an organic compound capable of multidentate coordination such as 4,4′-bipyridyl at the axial position of a metal ion in a paddle wheel skeleton composed of a polyvalent carboxylic acid compound such as terephthalic acid and a metal ion. It means a jungle gym-like three-dimensional structure formed by linking ligands and connecting two-dimensional lattice-like sheets composed of polyvalent carboxylic acid compounds and metal ions. “A structure in which multiple jungle gym skeletons interpenetrate” is a three-dimensional integrated structure in which a plurality of jungle gym skeletons penetrate each other so as to fill the pores.
 該金属錯体がジャングルジム骨格が多重に相互貫入した構造を有することは、例えば単結晶X線構造解析、粉末X線結晶構造解析などにより確認できるが、これらに限定されるものではない。 The fact that the metal complex has a structure in which the jungle gym skeleton is interpenetrated can be confirmed by, for example, single crystal X-ray structure analysis, powder X-ray crystal structure analysis, but is not limited thereto.
 多価カルボン酸化合物と金属イオンとを反応させる際に、炭素数3~24の脂肪族モノカルボン酸化合物を共存させることで、金属イオンと多価カルボン酸化合物との反応及び金属イオンと脂肪族モノカルボン酸化合物との反応が競争することになる。脂肪族モノカルボン酸化合物は、結晶生長反応における停止剤と見なすことができる一方で、金属イオンと脂肪族モノカルボン酸化合物との反応は可逆であるので、結晶核生成速度及び結晶成長速度が制御される。その結果、粒径やモルフォロジーの制御が可能となる。 When the polyvalent carboxylic acid compound is reacted with the metal ion, the reaction of the metal ion with the polyvalent carboxylic acid compound and the metal ion with the aliphatic group are allowed to coexist with an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms. The reaction with the monocarboxylic acid compound will compete. Aliphatic monocarboxylic acid compounds can be regarded as terminators in crystal growth reactions, while the reaction between metal ions and aliphatic monocarboxylic acid compounds is reversible, so the crystal nucleation rate and crystal growth rate are controlled. Is done. As a result, particle size and morphology can be controlled.
 脂肪族モノカルボン酸化合物が配位した場合、モノカルボン酸化合物の配位部位が1箇所しかないので、その配位箇所における結晶の成長は停止し、粒径やモルフォロジーも制御される。この結晶成長メカニズムを考慮すると、結晶成長末端、即ち結晶表面に脂肪族モノカルボン酸化合物が偏在するので、金属錯体の結晶表面に脂肪族モノカルボン酸化合物由来のアルキル鎖が露出している。そして、アルキル鎖の疎水効果と立体効果により金属イオンへの水の接近が阻害されるため、配位結合の解離を伴う金属錯体の分解反応は抑制され、耐水性が向上する。 When the aliphatic monocarboxylic acid compound is coordinated, there is only one coordination site of the monocarboxylic acid compound, so the crystal growth at the coordination site is stopped, and the particle size and morphology are also controlled. Considering this crystal growth mechanism, since the aliphatic monocarboxylic acid compound is unevenly distributed at the end of the crystal growth, that is, the crystal surface, the alkyl chain derived from the aliphatic monocarboxylic acid compound is exposed on the crystal surface of the metal complex. And since the approach of water to a metal ion is inhibited by the hydrophobic effect and steric effect of the alkyl chain, the decomposition reaction of the metal complex accompanied by the dissociation of the coordination bond is suppressed, and the water resistance is improved.
 該金属錯体の結晶表面に脂肪族モノカルボン酸化合物が偏在することは、例えば飛行時間型二次イオン質量分析により確認できる。 The uneven distribution of the aliphatic monocarboxylic acid compound on the crystal surface of the metal complex can be confirmed, for example, by time-of-flight secondary ion mass spectrometry.
 前記の耐水性向上メカニズムは推定ではあるが、例え前記メカニズムに従っていない場合でも、本発明で規定する要件を満足するのであれば、本発明の技術的範囲に包含される。 Although the above water resistance improvement mechanism is estimated, even if it does not follow the above mechanism, it is included in the technical scope of the present invention as long as it satisfies the requirements defined in the present invention.
 本発明の金属錯体の撥水性は、水接触角を測定することにより評価できる。本発明の金属錯体は、水接触角が90°以上であることが好ましく、150°以上であることがより好ましい。 The water repellency of the metal complex of the present invention can be evaluated by measuring the water contact angle. The metal complex of the present invention preferably has a water contact angle of 90 ° or more, and more preferably 150 ° or more.
 また、本発明の金属錯体の疎水性は、その金属錯体を水表面に浮かべた時の沈降速度を測定することによって評価できる。例えば、粉末状の金属錯体を水表面に浮かべてその沈降速度を測定すると、金属錯体が疎水性であれば水と反発して凝集し、塊状になるため、自重の増加により早く沈む。一方、金属錯体が親水性であれば凝集は起こらないため金属錯体の粒子径は小さいままであり、沈降速度は遅い。つまり、沈降速度が速いほどその金属錯体は疎水性であり、高い耐水性を発揮することが期待される。 The hydrophobicity of the metal complex of the present invention can be evaluated by measuring the sedimentation rate when the metal complex is floated on the water surface. For example, when a powdered metal complex is floated on the surface of water and the sedimentation rate is measured, if the metal complex is hydrophobic, it repels water and agglomerates to form a lump, so it sinks faster due to an increase in its own weight. On the other hand, if the metal complex is hydrophilic, aggregation does not occur, so the particle size of the metal complex remains small and the sedimentation rate is slow. In other words, the faster the sedimentation rate, the more hydrophobic the metal complex is, and it is expected to exhibit high water resistance.
 さらに、本発明の金属錯体の耐水性は、金属錯体を水蒸気に暴露させ、時間経過に伴う吸着量の変化を測定することによって評価できる。つまり、高湿度下におかれた場合でも金属錯体の吸着量や吸着量保持率に大きな変化
が見られなければ、その金属錯体は耐水性を有していることを意味する。
Furthermore, the water resistance of the metal complex of the present invention can be evaluated by exposing the metal complex to water vapor and measuring the amount of adsorption with time. In other words, even when the metal complex is placed under high humidity, if there is no significant change in the adsorption amount or adsorption rate retention rate of the metal complex, it means that the metal complex has water resistance.
 本発明の金属錯体は、各種ガスの吸着性能、吸蔵性能及び分離性能に優れている。従って、本発明の金属錯体は、各種ガスの吸着剤、吸蔵材及び分離材として有用であり、これらも本発明の権利範囲に含まれる。 The metal complex of the present invention is excellent in adsorption performance, occlusion performance, and separation performance of various gases. Therefore, the metal complex of the present invention is useful as an adsorbent, a storage material, and a separation material for various gases, and these are also included in the scope of the present invention.
 本発明の吸着材、吸蔵材及び分離材は、例えば、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素(メタン、エタン、エチレン、アセチレン、プロパン、プロペン、メチルアセチレン、プロパジエン、ブタン、1-ブテン、イソブテン、1-ブチン、2-ブチン、1,3-ブタジエン、メチルアレンなど)、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノンなど)、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン(ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサンなど)、水蒸気または有機蒸気などのガスを吸着、吸蔵、分離するために好適に使用できる。本発明の分離材にあっては、特に、メタン中の二酸化炭素、水素中の二酸化炭素、窒素中の二酸化炭素、エチレン中の二酸化炭素、メタン中のエタン、エチレン中のエタン、プロパン中のプロペン、エチレン中のアセチレン、窒素中のメタンまたは空気中のメタンなどを、圧力スイング吸着法や温度スイング吸着法により分離するのに適している。 Examples of the adsorbent, occlusion material, and separation material of the present invention include carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, and hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, acetylene, propane, propene, methyl Acetylene, propadiene, butane, 1-butene, isobutene, 1-butyne, 2-butyne, 1,3-butadiene, methylallene, etc.), noble gases (such as helium, neon, argon, krypton, xenon), hydrogen sulfide, ammonia , Sulfur oxides, nitrogen oxides, siloxanes (hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, etc.), water vapor or organic vapor can be suitably used to adsorb, occlude, and separate gases. In the separation material of the present invention, in particular, carbon dioxide in methane, carbon dioxide in hydrogen, carbon dioxide in nitrogen, carbon dioxide in ethylene, ethane in methane, ethane in ethylene, and propene in propane It is suitable for separating acetylene in ethylene, methane in nitrogen, methane in air, or the like by a pressure swing adsorption method or a temperature swing adsorption method.
 有機蒸気とは、常温、常圧で液体状の有機物質の気化ガスを意味する。このような有機物質としては、メタノール、エタノールなどのアルコール類;トリメチルアミンなどのアミン類;アセトアルデヒドなどのアルデヒド類;ペンタン、イソプレン、ヘキサン、シクロヘキサン、ヘプタン、メチルシクロヘキサン、オクタン、1-オクテン、シクロオクタン、シクロオクテン、1,5-シクロオクタジエン、4-ビニル-1-シクロヘキセン、1,5,9-シクロドデカトリエンなどの炭素数5~16の脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;アセトン、メチルエチルケトンなどのケトン類;酢酸メチル、酢酸エチルなどのエステル類;塩化メチル、クロロホルムなどのハロゲン化炭化水素などが挙げられる。 Organic vapor means vaporized organic substance that is liquid at room temperature and pressure. Examples of such organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine; aldehydes such as acetaldehyde; pentane, isoprene, hexane, cyclohexane, heptane, methylcyclohexane, octane, 1-octene, cyclooctane, C5-C16 aliphatic hydrocarbons such as cyclooctene, 1,5-cyclooctadiene, 4-vinyl-1-cyclohexene, 1,5,9-cyclododecatriene; aromatics such as benzene, toluene and xylene Hydrocarbons; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; halogenated hydrocarbons such as methyl chloride and chloroform.
 本発明の吸着材、吸蔵材及び分離材は、本発明の効果を損なわない範囲であれば、必要に応じて、酢酸セルロース、ポリアミド、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリオレフィン、ポリテトラフルオロエチレン誘導体または紙などの天然もしくは合成繊維、或いはガラスもしくはアルミナなどの無機繊維と組み合わせて複合化してもよい。 The adsorbent, occlusion material, and separation material of the present invention are cellulose acetate, polyamide, polyester, polycarbonate, polysulfone, polyethersulfone, polyolefin, polytetrafluoro, if necessary, as long as the effects of the present invention are not impaired. They may be combined with natural or synthetic fibers such as ethylene derivatives or paper, or inorganic fibers such as glass or alumina.
 本発明における吸着材、吸蔵材及び分離材の使用形態は特に限定されない。例えば、金属錯体を粉末のまま用いてもよいし、ペレット、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体、各種異形成形体、繊維、中空糸、織布、編布、不織布などに成形して用いてもよい。 The usage form of the adsorbent, occlusion material and separation material in the present invention is not particularly limited. For example, the metal complex may be used as a powder, pellets, films, sheets, plates, pipes, tubes, rods, granules, various deformed shapes, fibers, hollow fibers, woven fabrics, knitted fabrics, non-woven fabrics, etc. You may shape | mold and use.
 本発明の吸着材、吸蔵材又は分離材を含むペレットの作製方法としては、特に限定はなく、従来から知られているペレット化方法のいずれもが採用できるが、よりペレットの高密度化が行える打錠成型法が好ましい。 There is no particular limitation on the method for producing the pellet containing the adsorbent, occlusion material or separation material of the present invention, and any of the conventionally known pelletization methods can be adopted, but the density of the pellet can be increased. A tableting method is preferred.
 本発明の吸着材、吸蔵材又は分離材を含むシートの作製方法としては、特に限定はなく、従来から知られているシート化方法のいずれもが採用できるが、よりシートの高密度化が行える湿式抄紙法が好ましい。湿式抄紙法は、水に原材料を分散させて、網で濾過し、乾燥する製造方法である。 The method for producing a sheet containing the adsorbent, occlusion material or separation material of the present invention is not particularly limited, and any conventionally known sheeting method can be adopted, but the density of the sheet can be further increased. Wet paper making is preferred. The wet papermaking method is a manufacturing method in which raw materials are dispersed in water, filtered through a net, and dried.
 異形成形体の例として、ハニカム形状を挙げることができる。本発明の吸着材、吸蔵材又は分離材を含むシートをハニカム形状とする方法としては、従来から知られている加工方法のいずれもが採用できる。なお、本発明においてハニカム形状とは、断面が六画形状のものの他、四角、正弦波形、ロール形のものなど中空多角柱、円柱などの中空柱体が連続したものをいう。例えば、本発明の吸着材、吸蔵材又は分離材を含むシートを正弦波形のハニカム形状とするには、まず当該シートを賦形ロールに通して波形に賦形し、波形の当該シートの片面または両面に平らなシートを接合する。これを積層化して正弦波形のハニカム形状のフィルターとする。ここで、波形の頂点に接着剤を付けて固定するのが普通であるが、波形の当該シートを積層するとその間にある平らなシートは必然的に固定されるので、必ずしも接着剤を付ける必要はない。なお、接着剤を付ける場合はシートの吸着能を損なわないものを使用する必要がある。接着剤としては、例えば、コーンスターチ、酢酸ビニル系樹脂、アクリル系樹脂などを使用することができる。ガス吸着性能を高めるためには、波形の当該シートの接着ピッチを小さくし、山高さを低くするとよい。ピッチは0.5~8mmが好ましく、山高さは0.4~5mmが好ましい。 As an example of the heteromorphic shape, a honeycomb shape can be given. Any of the conventionally known processing methods can be adopted as a method for forming a sheet containing the adsorbent, occlusion material or separation material of the present invention into a honeycomb shape. In addition, in the present invention, the honeycomb shape refers to a continuous hollow column body such as a square, sinusoidal, or roll-shaped hollow polygonal column or a cylinder in addition to a hexagonal cross section. For example, in order to make a sheet containing the adsorbent, occlusion material or separation material of the present invention into a sinusoidal honeycomb shape, the sheet is first shaped into a waveform through a shaping roll, and one side of the corrugated sheet or Join flat sheets on both sides. This is laminated to form a sinusoidal honeycomb filter. Here, it is normal to attach and fix an adhesive at the top of the corrugation, but when the corrugated sheets are laminated, the flat sheet between them is necessarily fixed, so it is not always necessary to apply the adhesive Absent. In addition, when attaching an adhesive agent, it is necessary to use what does not impair the adsorption capacity of the sheet. As the adhesive, for example, corn starch, vinyl acetate resin, acrylic resin, or the like can be used. In order to improve the gas adsorption performance, it is preferable to reduce the adhesion pitch of the corrugated sheet and reduce the peak height. The pitch is preferably 0.5 to 8 mm, and the peak height is preferably 0.4 to 5 mm.
 本発明の金属錯体又は本発明の吸蔵材は、その吸蔵性能を活かしてガス貯蔵装置に用いることもできる。ガス貯蔵装置の例としては、気密保持可能でガスの出入口を備えた耐圧容器を備え、耐圧容器の内部にガス貯蔵空間を設け、該ガス貯蔵空間に本発明の金属錯体からなる吸蔵材が内装されたガス貯蔵装置がある。当該ガス貯蔵装置に所望のガスを圧入することにより、内装した吸蔵材に当該ガスを吸着させ貯蔵することができる。ガス貯蔵装置からガスを取り出すときは、圧力弁を開放し、耐圧容器内の内圧を低下させることでガスを脱着させることができる。ガス貯蔵空間に吸蔵材を内装するにあたっては、本発明の金属錯体を粉末状で内装してもよいが、取り扱い性などの観点から、本発明の金属錯体を成形加工したペレット状のものを用いてもよい。 The metal complex of the present invention or the storage material of the present invention can also be used in a gas storage device taking advantage of its storage performance. As an example of a gas storage device, a pressure-resistant container that can be kept airtight and has a gas inlet / outlet is provided. There is a gas storage device. By press-fitting a desired gas into the gas storage device, the gas can be adsorbed and stored in the internal storage material. When taking out the gas from the gas storage device, the gas can be desorbed by opening the pressure valve and reducing the internal pressure in the pressure vessel. When the occlusion material is installed in the gas storage space, the metal complex of the present invention may be embedded in powder form, but from the viewpoint of handleability, etc., a pellet shaped product obtained by molding the metal complex of the present invention is used. May be.
 上述の本発明のガス貯蔵装置を備えたガス自動車の一例を図3に示す。ガス貯蔵装置は、燃料ガスをガス貯蔵空間3に貯蔵することができ、ガス自動車等の燃料タンク1として好適に用いることができる。このガス自動車は、本発明の金属錯体が内装された上記ガス貯蔵装置を燃料タンク1として備えるとともに、燃料タンク1からタンク内に貯蔵される天然ガスを得て、燃焼用酸素含有ガス(例えば空気)と混合して、その燃焼により走行駆動力を得る内燃機関としてのエンジンを備えている。燃料タンク1は、耐圧容器2を備えて構成されるとともに、貯蔵対象のガスが容器2内へと出入り可能な出入り口としての一対の出口5と入口6とを備え、容器2内のガスを加圧状態に維持可能な気密保持機構を構成する一対の弁7を、その出入り口夫々に備えている。燃料である天然ガスは、ガスステーションにおいて、加圧状態で燃料タンク1に充填される。該燃料タンク1には、本発明の金属錯体からなる吸蔵材4が内装されており、この吸蔵材4が、天然ガス(メタンを主成分とするガスなど)を常温、加圧状態で吸着する。そして、出口側の弁7を開放すると、吸着状態にあるガスは吸蔵材4から脱着され、エンジン側に送られて燃焼して走行駆動力を得ることができる。 FIG. 3 shows an example of a gas vehicle equipped with the above-described gas storage device of the present invention. The gas storage device can store fuel gas in the gas storage space 3, and can be suitably used as the fuel tank 1 of a gas vehicle or the like. This gas vehicle includes the gas storage device in which the metal complex of the present invention is incorporated as a fuel tank 1, obtains natural gas stored in the tank from the fuel tank 1, and generates a combustion oxygen-containing gas (for example, air) ) And an engine as an internal combustion engine that obtains a driving force by combustion. The fuel tank 1 includes a pressure vessel 2 and includes a pair of outlets 5 and 6 as inlets and outlets through which gas to be stored can enter and exit the container 2. A pair of valves 7 constituting an airtight holding mechanism that can be maintained in a pressure state are provided at each of the entrances and exits. Natural gas as fuel is filled into the fuel tank 1 in a pressurized state at a gas station. The fuel tank 1 includes a storage material 4 made of the metal complex of the present invention, and the storage material 4 adsorbs natural gas (such as a gas containing methane as a main component) at room temperature and under pressure. . Then, when the valve 7 on the outlet side is opened, the gas in the adsorbed state is desorbed from the occlusion material 4 and sent to the engine side for combustion to obtain travel driving force.
 上記燃料タンク1は、本発明の金属錯体を内装していることにより、吸蔵材を充填しない燃料タンクに比べ、見掛けの圧力に対してガスの圧縮率を高くできる。これによりタンクの肉厚を薄くすることができ、ガス貯蔵装置全体の軽量化が計れるためガス自動車等に有用である。また、燃料タンク1は、通常、常温状態にあり、特に冷却されたりすることはなく、気温が上昇する例えば夏場においては、比較的温度が高くなる。このような高温(298~333K程度)の温度域下においても、本発明の吸蔵材はその吸着能を高く保持することができ、有用である。 Since the fuel tank 1 includes the metal complex of the present invention, the gas compression ratio can be increased with respect to the apparent pressure as compared with the fuel tank not filled with the occlusion material. As a result, the thickness of the tank can be reduced and the weight of the entire gas storage device can be reduced, which is useful for gas vehicles and the like. Further, the fuel tank 1 is normally in a normal temperature state, and is not particularly cooled. The temperature of the fuel tank 1 is relatively high, for example, in summer, when the temperature rises. Even in such a high temperature range (about 298 to 333 K), the occlusion material of the present invention can keep its adsorption capacity high and is useful.
 分離方法は、ガスが金属錯体に吸着できる条件でガスと本発明の金属錯体又は本発明の分離材とを接触させる工程を含む。ガスが金属錯体に吸着できる条件である吸着圧力及び吸着温度は、吸着される物質の種類に応じて適宜設定することができる。例えば、吸着圧力は0.01~10MPaが好ましく、0.1~3.5MPaがより好ましい。また、吸着温度は195K~343Kが好ましく、273~313Kがより好ましい。 The separation method includes a step of bringing the gas into contact with the metal complex of the present invention or the separation material of the present invention under conditions where the gas can be adsorbed to the metal complex. The adsorption pressure and the adsorption temperature, which are conditions under which the gas can be adsorbed on the metal complex, can be appropriately set according to the type of substance to be adsorbed. For example, the adsorption pressure is preferably from 0.01 to 10 MPa, more preferably from 0.1 to 3.5 MPa. Further, the adsorption temperature is preferably 195K to 343K, and more preferably 273 to 313K.
 分離方法は、圧力スイング吸着法または温度スイング吸着法とすることができる。分離方法が圧力スイング吸着法である場合は、分離方法はさらに、圧力を、吸着圧力からガスを金属錯体から脱着させることができる圧力まで昇圧させる工程を含む。脱着圧力は、吸着される物質の種類に応じて適宜設定することができる。例えば、脱着圧力は0.005~2MPaが好ましく、0.01~0.1MPaがより好ましい。分離方法が温度スイング吸着法である場合は、分離方法はさらに、温度を、吸着温度からガスを金属錯体から脱着させることができる温度まで昇温させる工程を含む。脱着温度は、吸着される物質の種類に応じて適宜設定することができる。例えば、脱着温度は303~473Kが好ましく、313~373Kがより好ましい。 The separation method can be a pressure swing adsorption method or a temperature swing adsorption method. When the separation method is a pressure swing adsorption method, the separation method further includes a step of increasing the pressure from the adsorption pressure to a pressure at which gas can be desorbed from the metal complex. The desorption pressure can be appropriately set according to the type of substance to be adsorbed. For example, the desorption pressure is preferably 0.005 to 2 MPa, more preferably 0.01 to 0.1 MPa. When the separation method is a temperature swing adsorption method, the separation method further includes a step of raising the temperature from the adsorption temperature to a temperature at which the gas can be desorbed from the metal complex. The desorption temperature can be appropriately set according to the type of substance to be adsorbed. For example, the desorption temperature is preferably 303 to 473K, and more preferably 313 to 373K.
 分離方法は、圧力スイング吸着法または温度スイング吸着法である場合、ガスと金属錯体とを接触させる工程と、ガスを金属錯体から脱着させることができる圧力または温度まで変化させる工程を、適宜繰り返すことができる。 When the separation method is a pressure swing adsorption method or a temperature swing adsorption method, the step of bringing the gas into contact with the metal complex and the step of changing the pressure to a temperature or a temperature at which the gas can be desorbed from the metal complex are repeated as appropriate. Can do.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例および比較例における分析および評価は次のようにして行った。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Analysis and evaluation in the following examples and comparative examples were performed as follows.
(1)粉末X線回折パターンの測定
 X線回折装置を用いて、回折角(2θ)=5~50°の範囲を走査速度1°/分で走査し、対称反射法で測定した。分析条件の詳細を以下に示す。
<分析条件>
装置:株式会社リガク製SmartLab
X線源:CuKα(λ=1.5418Å) 45kV 200mA
ゴニオメーター:横型ゴニオメーター
検出器:D/teX Ultra
ステップ幅:0.02°
スリット:発散スリット=2/3°
     受光スリット=0.3mm
     散乱スリット=2/3°
(1) Measurement of powder X-ray diffraction pattern Using an X-ray diffractometer, the range of diffraction angle (2θ) = 5 to 50 ° was scanned at a scanning speed of 1 ° / min and measured by a symmetric reflection method. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: SmartLab, manufactured by Rigaku Corporation
X-ray source: CuKα (λ = 1.5418Å) 45 kV 200 mA
Goniometer: Horizontal goniometer Detector: D / teX Ultra
Step width: 0.02 °
Slit: Divergent slit = 2/3 °
Receiving slit = 0.3mm
Scattering slit = 2/3 °
(2)炭素数3~24の脂肪族モノカルボン酸化合物の定量
 金属錯体を重アンモニア水に溶解させて均一の溶液とし、H NMR測定を行い、得られたスペクトルの積分比から算出した。分析条件の詳細を以下に記す。
<分析条件>
装置:ブルカー・バイオスピン株式会社製Advance600
共鳴周波数:600MHz
溶媒:重アンモニア水
基準物質:3-(トリメチルシリル)プロパン酸ナトリウム-d4
温度:298K
フリップ角:30°
パルス繰返し時間:5.5秒
積算回数:2,000回
(2) Determination of aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms The metal complex was dissolved in deuterated ammonia water to obtain a uniform solution, 1 H NMR measurement was performed, and calculation was performed from the integral ratio of the obtained spectrum. Details of the analysis conditions are described below.
<Analysis conditions>
Apparatus: Advance600 manufactured by Bruker BioSpin Corporation
Resonance frequency: 600 MHz
Solvent: Heavy ammonia water Reference substance: Sodium 3- (trimethylsilyl) propanoate-d4
Temperature: 298K
Flip angle: 30 °
Pulse repetition time: 5.5 seconds Integration count: 2,000 times
(3)SEM観察
 走査電子顕微鏡を用いて、導電処理後の金属錯体について観察した。分析条件の詳細を以下に示す。
<分析条件>
装置:株式会社日立ハイテクノロジーズ製S-3000N
フィラメント:タングステンヘアピン
加速電圧:10.0kV
倍率:3,000倍
(3) SEM observation It observed about the metal complex after an electroconductive process using the scanning electron microscope. Details of the analysis conditions are shown below.
<Analysis conditions>
Equipment: Hitachi High-Technologies Corporation S-3000N
Filament: Tungsten hairpin acceleration voltage: 10.0 kV
Magnification: 3,000 times
(4)沈降速度測定
 高精度表面張力計を用いて、水表面に分散させた金属錯体の沈降重量の経時変化(沈降速度)を測定した。分析条件の詳細を以下に示す。
<分析条件>
装置:協和界面科学株式会社製DY-700
測定モード:紙類浸透測定
(4) Sedimentation rate measurement Using a high-precision surface tension meter, the time-dependent change (sedimentation rate) of the sedimentation weight of the metal complex dispersed on the water surface was measured. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: DY-700 manufactured by Kyowa Interface Science Co., Ltd.
Measurement mode: Paper penetration measurement
(5)水接触角測定
 接触角計を用いて、水接触角の測定を行った(JIS R3257に準拠)。このとき、測定に先立って粉末X線回折用試料ホルダーに力を加えずに試料を詰め、試料上面をガラス板で平滑にした。分析条件の詳細を以下に示す。
<分析条件>
装置:協和界面科学株式会社製DM-700
液量:3μL
着滴後待ち時間:0.1秒
解析法:θ/2法
(5) Water contact angle measurement The water contact angle was measured using a contact angle meter (based on JIS R3257). At this time, prior to the measurement, the sample was filled without applying force to the powder X-ray diffraction sample holder, and the upper surface of the sample was smoothed with a glass plate. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: DM-700 manufactured by Kyowa Interface Science Co., Ltd.
Liquid volume: 3μL
Waiting time after landing: 0.1 seconds Analysis method: θ / 2 method
(6)吸着等温線または吸脱着等温線の測定
 高圧ガス吸着量測定装置を用いて、容量法によりガス吸脱着量の測定を行い、吸着等温線または吸脱着等温線を作成した(JIS Z8831-2に準拠)。このとき、測定に先立って試料を373K、0.5Paで5時間乾燥し、吸着水などを除去した。分析条件の詳細を以下に示す。
<分析条件>
装置:日本ベル株式会社製BELSORP-HP
平衡待ち時間:500秒
(6) Measurement of adsorption isotherm or adsorption / desorption isotherm The gas adsorption / desorption amount was measured by a volume method using a high-pressure gas adsorption amount measuring device, and an adsorption isotherm or adsorption / desorption isotherm was created (JIS Z8831- 2). At this time, the sample was dried at 373 K and 0.5 Pa for 5 hours prior to measurement to remove adsorbed water and the like. Details of the analysis conditions are shown below.
<Analysis conditions>
Equipment: BELSORP-HP manufactured by Nippon Bell Co., Ltd.
Equilibrium waiting time: 500 seconds
(7)水蒸気曝露試験
 エスペック株式会社製低温恒温恒湿機PL-2KPを用い、合成例及び比較合成例で得られた金属錯体について水蒸気曝露試験を行って、耐水性評価の指標とした。水蒸気曝露開始から8時間後、24時間後、48時間後にサンプリングを行い、273Kにおける二酸化炭素の吸着量を容量法により測定し、上記と同様にして吸着等温線を作成した。
<水蒸気暴露条件>
温度:353K
相対湿度:80%
(7) Water vapor exposure test A water vapor exposure test was performed on the metal complexes obtained in the synthesis examples and comparative synthesis examples using a low temperature and temperature and humidity chamber PL-2KP manufactured by Espec Co., Ltd., and used as an index for water resistance evaluation. Sampling was carried out 8 hours, 24 hours and 48 hours after the start of exposure to water vapor, and the amount of carbon dioxide adsorbed at 273 K was measured by the volumetric method, and an adsorption isotherm was prepared in the same manner as above.
<Water vapor exposure conditions>
Temperature: 353K
Relative humidity: 80%
<合成例1>
 窒素雰囲気下、硫酸銅五水和物5.86g(23mmol)、テレフタル酸3.90g(23mmol)及びピバル酸71.9g(704mmol)をメタノール4,000mLに溶解させ、313Kで21時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。次に、単離した中間体を窒素雰囲気下でメタノール2,000mL中に分散させ、4,4’-ビピリジル1.83g(12mmol)を添加し、313Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体0.817g(収率11%)を得た。得られた金属錯体の粉末X線回折パターンを図4に示す。粉末X線結晶構造解析の結果、得られた金属錯体はジャングルジム骨格が二重に相互貫入した構造を有していることがわかった。粉末X線結晶構造解析結果を以下に示す。また、得られた金属錯体のSEM写真を図5に示す。
Triclinic(P-1)
a=7.87355Å
b=8.94070Å
c=10.79101Å
α=67.14528°
β=80.73986°
γ=79.31579°
wp=2.30%
=4.96%
<Synthesis Example 1>
Under a nitrogen atmosphere, 5.86 g (23 mmol) of copper sulfate pentahydrate, 3.90 g (23 mmol) of terephthalic acid, and 71.9 g (704 mmol) of pivalic acid were dissolved in 4,000 mL of methanol and stirred at 313 K for 21 hours. The precipitated metal complex was recovered by suction filtration, and then washed with methanol three times to isolate the intermediate. Next, the isolated intermediate was dispersed in 2,000 mL of methanol under a nitrogen atmosphere, 1.83 g (12 mmol) of 4,4′-bipyridyl was added, and the mixture was stirred at 313 K for 3 hours. At this time, the reaction solution remained suspended. The metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 0.817g (yield 11%). The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. As a result of the powder X-ray crystal structure analysis, it was found that the obtained metal complex had a structure in which the jungle gym skeleton was double interpenetrated. The powder X-ray crystal structure analysis results are shown below. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
Triclinic (P-1)
a = 7.887355Å
b = 8.994070cm
c = 10.79101mm
α = 67.14528 °
β = 80.73986 °
γ = 79.331579 °
R wp = 2.30%
R I = 4.96%
 得られた金属錯体10mgを重アンモニア水700mg(基準物質として3-(トリメチルシリル)プロパン酸ナトリウム-d4を0.4wt%含有)に溶解させ、H NMR測定を行った。得られたスペクトルを図6に示す。スペクトルを解析した結果、テレフタル酸の2位、3位、5位及び6位のプロトンに帰属される7.925ppm(s,4H)のピークの積分値を1,000とした際に、ピバル酸のtert-ブチル基のプロトンに帰属される1.122ppm(s,9H)のピークの積分値は3.345であったことから、金属錯体に含まれるテレフタル酸とピバル酸のモル比はテレフタル酸:ピバル酸=673:1であることが分かった。なお、図6において3.9ppm付近のブロードなシグナルは水によるものである。 10 mg of the obtained metal complex was dissolved in 700 mg of heavy ammonia water (containing 0.4 wt% of sodium 3- (trimethylsilyl) propanoate-d4 as a reference substance), and 1 H NMR measurement was performed. The obtained spectrum is shown in FIG. As a result of analyzing the spectrum, when the integral value of the peak of 7.925 ppm (s, 4H) attributed to protons at the 2nd, 3rd, 5th and 6th positions of terephthalic acid was set to 1,000, pivalic acid Since the integrated value of the peak at 1.122 ppm (s, 9H) attributed to the proton of tert-butyl group was 3.345, the molar ratio of terephthalic acid and pivalic acid contained in the metal complex was terephthalic acid. : Pivalic acid was found to be 673: 1. In FIG. 6, the broad signal around 3.9 ppm is due to water.
<合成例2>
 窒素雰囲気下、硫酸銅五水和物5.86g(23mmol)、テレフタル酸3.90g(23mmol)及びオクチル酸101g(704mmol)をメタノール4,000mLに溶解させ、313Kで43時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。次に、単離した中間体を窒素雰囲気下でメタノール2,000mL中に分散させ、4,4’-ビピリジル1.83g(12mmol)を添加し、313Kで5時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体1.12g(収率16%)を得た。得られた金属錯体の粉末X線回折パターンを図7に示す。図4と、図7との比較より、得られた金属錯体が合成例1で得た金属錯体と同様の構造を有していることは明らかである。また、得られた金属錯体のSEM写真を図8に示す。
<Synthesis Example 2>
Under a nitrogen atmosphere, 5.86 g (23 mmol) of copper sulfate pentahydrate, 3.90 g (23 mmol) of terephthalic acid, and 101 g (704 mmol) of octylic acid were dissolved in 4,000 mL of methanol and stirred at 313 K for 43 hours. The precipitated metal complex was recovered by suction filtration, and then washed with methanol three times to isolate the intermediate. Next, the isolated intermediate was dispersed in 2,000 mL of methanol under a nitrogen atmosphere, 1.83 g (12 mmol) of 4,4′-bipyridyl was added, and the mixture was stirred at 313 K for 5 hours. At this time, the reaction solution remained suspended. The metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373K and 50 Pa for 8 hours, and obtained the target metal complex 1.12g (yield 16%). FIG. 7 shows a powder X-ray diffraction pattern of the obtained metal complex. From comparison between FIG. 4 and FIG. 7, it is clear that the obtained metal complex has the same structure as the metal complex obtained in Synthesis Example 1. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
 合成例1と同様の手法を用いて、テレフタル酸の2位、3位、5位及び6位のプロトンに帰属される7.925ppm(s,4H)のピークの積分値と、オクチル酸の主鎖及び側鎖のプロトンに帰属される0.742ppm(s,3H)のピークと0.871ppm(s,3H)のピークの積分値を合算した値との比から、得られた金属錯体に含まれるテレフタル酸とオクチル酸のモル比を算出した結果、テレフタル酸:オクチル酸=252:1であることが分かった。 Using the same method as in Synthesis Example 1, the integrated value of the peak at 7.925 ppm (s, 4H) attributed to protons at the 2nd, 3rd, 5th and 6th positions of terephthalic acid, Included in the resulting metal complex from the ratio of the combined value of the 0.742 ppm (s, 3H) peak attributed to the chain and side chain protons to the 0.871 ppm (s, 3H) peak. As a result of calculating the molar ratio of terephthalic acid to octylic acid, it was found that terephthalic acid: octylic acid = 252: 1.
<合成例3>
 窒素雰囲気下、硫酸銅五水和物2.93g(12mmol)、テレフタル酸1.95g(12mmol)及びラウリン酸74.6g(370mmol)をメタノール2,000mLに溶解させ、313Kで18時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。次に、単離した中間体を窒素雰囲気下でメタノール1,800mL中に分散させ、4,4’-ビピリジル0.937g(6.0mmol)を添加し、298Kで7時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体0.400g(収率11%)を得た。得られた金属錯体の粉末X線回折パターンを図9に示す。図4と、図9との比較より、得られた金属錯体が合成例1で得た金属錯体と同様の構造を有していることは明らかである。また、得られた金属錯体のSEM写真を図10に示す。
<Synthesis Example 3>
Under a nitrogen atmosphere, 2.93 g (12 mmol) of copper sulfate pentahydrate, 1.95 g (12 mmol) of terephthalic acid and 74.6 g (370 mmol) of lauric acid were dissolved in 2,000 mL of methanol and stirred at 313 K for 18 hours. The precipitated metal complex was recovered by suction filtration, and then washed with methanol three times to isolate the intermediate. Next, the isolated intermediate was dispersed in 1,800 mL of methanol under a nitrogen atmosphere, 0.937 g (6.0 mmol) of 4,4′-bipyridyl was added, and the mixture was stirred at 298 K for 7 hours. At this time, the reaction solution remained suspended. The metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 0.400g (yield 11%). The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. From comparison between FIG. 4 and FIG. 9, it is clear that the obtained metal complex has the same structure as the metal complex obtained in Synthesis Example 1. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
 合成例1と同様の手法を用いて、テレフタル酸の2位、3位、5位及び6位のプロトンに帰属される7.925ppm(s,4H)のピークの積分値と、ラウリン酸のカルボキシル基α位のメチレン基プロトンに帰属される2.169ppm(s,2H)のピークの積分値の比から、得られた金属錯体に含まれるテレフタル酸とラウリン酸のモル比を算出した結果、テレフタル酸:ラウリン酸=687:1であることが分かった。 Using the same method as in Synthesis Example 1, the integrated value of the peak of 7.925 ppm (s, 4H) attributed to protons at the 2nd, 3rd, 5th and 6th positions of terephthalic acid and the carboxyl of lauric acid As a result of calculating the molar ratio of terephthalic acid and lauric acid contained in the obtained metal complex from the ratio of the integrated value of the peak of 2.169 ppm (s, 2H) attributed to the methylene group proton at the α group, It was found that acid: lauric acid = 687: 1.
<合成例4>
 窒素雰囲気下、硫酸銅五水和物5.86g(23mmol)、テレフタル酸3.90g(23mmol)及びラウリン酸141g(704mmol)をメタノール4,000mLに溶解させ、313Kで18時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。次に、単離した中間体を窒素雰囲気下でメタノール2,000mL中に分散させ、1,2-ビス(4-ピリジル)エテン2.14g(12mmol)を添加し、313Kで4時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体1.06g(収率14%)を得た。得られた金属錯体の粉末X線回折パターンを図11に示す。また、得られた金属錯体のSEM写真を図12に示す。
<Synthesis Example 4>
Under a nitrogen atmosphere, 5.86 g (23 mmol) of copper sulfate pentahydrate, 3.90 g (23 mmol) of terephthalic acid, and 141 g (704 mmol) of lauric acid were dissolved in 4,000 mL of methanol and stirred at 313 K for 18 hours. The precipitated metal complex was recovered by suction filtration, and then washed with methanol three times to isolate the intermediate. Next, the isolated intermediate was dispersed in 2,000 mL of methanol under a nitrogen atmosphere, 2.14 g (12 mmol) of 1,2-bis (4-pyridyl) ethene was added, and the mixture was stirred at 313 K for 4 hours. At this time, the reaction solution remained suspended. The metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 1.06g (yield 14%). The powder X-ray diffraction pattern of the obtained metal complex is shown in FIG. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
 合成例1と同様の手法を用いて、テレフタル酸の2位、3位、5位及び6位のプロトンに帰属される7.922ppm(s,4H)のピークの積分値と、ラウリン酸のカルボキシル基α位のメチレン基プロトンに帰属される1.919ppm(s,2H)のピークの積分値の比から、得られた金属錯体に含まれるテレフタル酸とラウリン酸のモル比を算出した結果、テレフタル酸:ラウリン酸=439:1であることが分かった。 Using the same method as in Synthesis Example 1, the integrated value of the peak of 7.922 ppm (s, 4H) attributed to the 2nd, 3rd, 5th and 6th position protons of terephthalic acid and the carboxyl of lauric acid As a result of calculating the molar ratio of terephthalic acid and lauric acid contained in the obtained metal complex from the ratio of the integrated value of the peak of 1.919 ppm (s, 2H) attributed to the methylene group proton at the group α-position, It was found that acid: lauric acid = 439: 1.
<比較合成例1>
 窒素雰囲気下、硫酸銅五水和物5.86g(24mmol)、テレフタル酸3.90g(24mmol)及び酢酸44.7g(775mmol)をメタノール4,000mLに溶解させ、313Kで6時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。次に、回収した金属錯体を窒素雰囲気下でメタノール2,000mL中に分散させ、4,4’-ビピリジル1.84g(12mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体0.992g(収率14%)を得た。得られた金属錯体の粉末X線回折パターンを図13に示す。また、得られた金属錯体のSEM写真を図14に示す。
<Comparative Synthesis Example 1>
Under a nitrogen atmosphere, 5.86 g (24 mmol) of copper sulfate pentahydrate, 3.90 g (24 mmol) of terephthalic acid and 44.7 g (775 mmol) of acetic acid were dissolved in 4,000 mL of methanol and stirred at 313 K for 6 hours. The precipitated metal complex was collected by suction filtration and then washed with methanol three times. Next, the recovered metal complex was dispersed in 2,000 mL of methanol under a nitrogen atmosphere, 1.84 g (12 mmol) of 4,4′-bipyridyl was added, and the mixture was stirred at 298 K for 3 hours. At this time, the reaction solution remained suspended. The metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained the target metal complex 0.992g (yield 14%). FIG. 13 shows a powder X-ray diffraction pattern of the obtained metal complex. Moreover, the SEM photograph of the obtained metal complex is shown in FIG.
<比較合成例2>
 窒素雰囲気下、硫酸銅五水和物5.86g(23mmol)、テレフタル酸3.90g(23mmol)及びギ酸32.4g(704mmol)をメタノール3,750mLに溶解させ、313Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。次に、単離した中間体を窒素雰囲気下でメタノール2,000mL中に分散させ、4,4’-ビピリジル1.83g(12mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体1.79g(収率12%)を得た。得られた金属錯体の粉末X線回折パターンを図15に示す。
<Comparative Synthesis Example 2>
Under a nitrogen atmosphere, 5.86 g (23 mmol) of copper sulfate pentahydrate, 3.90 g (23 mmol) of terephthalic acid and 32.4 g (704 mmol) of formic acid were dissolved in 3,750 mL of methanol and stirred at 313 K for 24 hours. The precipitated metal complex was recovered by suction filtration, and then washed with methanol three times to isolate the intermediate. Next, the isolated intermediate was dispersed in 2,000 mL of methanol under a nitrogen atmosphere, 1.83 g (12 mmol) of 4,4′-bipyridyl was added, and the mixture was stirred at 298 K for 3 hours. At this time, the reaction solution remained suspended. The metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained 1.79 g (yield 12%) of the target metal complex. FIG. 15 shows a powder X-ray diffraction pattern of the obtained metal complex.
<比較合成例3>
 窒素雰囲気下、硫酸銅五水和物5.86g(23mmol)、テレフタル酸3.90g(23mmol)及び安息香酸85.9g(704mmol)をメタノール3,750mLに溶解させ、313Kで24時間攪拌したが、溶液は均一のままであり、目的とする金属錯体を得ることはできなかった。
<Comparative Synthesis Example 3>
In a nitrogen atmosphere, 5.86 g (23 mmol) of copper sulfate pentahydrate, 3.90 g (23 mmol) of terephthalic acid and 85.9 g (704 mmol) of benzoic acid were dissolved in 3,750 mL of methanol and stirred at 313 K for 24 hours. The solution remained homogeneous and the target metal complex could not be obtained.
 合成例1~4及び比較合成例1~3で得られた金属錯体について、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
The metal complexes obtained in Synthesis Examples 1 to 4 and Comparative Synthesis Examples 1 to 3 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 合成例1で得られた金属錯体を水中に分散させ、沈降速度を測定した。結果を図16に示す。
<Example 1>
The metal complex obtained in Synthesis Example 1 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
<実施例2>
 合成例2で得られた金属錯体を水中に分散させ、沈降速度を測定した。結果を図16に示す。
<Example 2>
The metal complex obtained in Synthesis Example 2 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
<実施例3>
 合成例3で得られた金属錯体を水中に分散させ、沈降速度を測定した。結果を図16に示す。
<Example 3>
The metal complex obtained in Synthesis Example 3 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
<比較例1>
 比較合成例1で得られた金属錯体を水中に分散させ、沈降速度を測定した。結果を図16に示す。
<Comparative Example 1>
The metal complex obtained in Comparative Synthesis Example 1 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
<比較例2>
 比較合成例2で得られた金属錯体を水中に分散させ、沈降速度を測定した。結果を図16に示す。
<Comparative example 2>
The metal complex obtained in Comparative Synthesis Example 2 was dispersed in water, and the sedimentation rate was measured. The results are shown in FIG.
 図16より、本発明の構成要件を満たす合成例1、合成例2及び合成例3で得た金属錯体は、本発明の構成要件を満たさない比較合成例1及び比較合成例2で得た金属錯体に比べ、沈降速度が速いことから、本発明の金属錯体が疎水性であることは明らかである。
≪図16≫
From FIG. 16, the metal complexes obtained in Synthesis Example 1, Synthesis Example 2 and Synthesis Example 3 that satisfy the constituent requirements of the present invention are the metals obtained in Comparative Synthesis Example 1 and Comparative Synthetic Example 2 that do not satisfy the constituent requirements of the present invention. It is clear that the metal complex of the present invention is hydrophobic because the sedimentation rate is faster than that of the complex.
≪Figure 16≫
<実施例4>
 合成例1で得られた金属錯体について、水接触角の測定を試みたが、撥水性が高く接触角を測定できなかった。測定時の写真を図17に示す。
<Example 4>
For the metal complex obtained in Synthesis Example 1, an attempt was made to measure the water contact angle, but the water repellency was high and the contact angle could not be measured. A photograph at the time of measurement is shown in FIG.
<実施例5>
 合成例2で得られた金属錯体について、水接触角の測定を試みたが、撥水性が高く接触角を測定できなかった。測定時の写真を図18に示す。
<Example 5>
For the metal complex obtained in Synthesis Example 2, an attempt was made to measure the water contact angle, but the water repellency was high and the contact angle could not be measured. A photograph at the time of measurement is shown in FIG.
<実施例6>
 合成例3で得られた金属錯体について、水接触角の測定を試みたが、撥水性が高く接触角を測定できなかった。測定時の写真を図19に示す。
<Example 6>
With respect to the metal complex obtained in Synthesis Example 3, an attempt was made to measure the water contact angle, but the water repellency was high and the contact angle could not be measured. A photograph at the time of measurement is shown in FIG.
<実施例7>
 合成例4で得られた金属錯体について、水接触角の測定を試みたが、撥水性が高く接触角を測定できなかった。測定時の写真を図20に示す。
<Example 7>
The metal complex obtained in Synthesis Example 4 was tried to measure the water contact angle, but the water repellency was high and the contact angle could not be measured. A photograph at the time of measurement is shown in FIG.
 図17~図20より、本発明の構成要件を満たす合成例1、合成例2、合成例3及び合成例4で得た金属錯体は、水接触角が150°以上であることは明らかであり、本発明の金属錯体が超撥水性を有することは明らかである。 From FIG. 17 to FIG. 20, it is clear that the metal complexes obtained in Synthesis Example 1, Synthesis Example 2, Synthesis Example 3 and Synthesis Example 4 that satisfy the constituent requirements of the present invention have a water contact angle of 150 ° or more. It is clear that the metal complex of the present invention has super water repellency.
<実施例8>
 合成例1で得られた金属錯体について、水蒸気曝露試験を行った。得られた吸着等温線より0.92MPaにおける二酸化炭素の平衡吸着量を算出し、その保持率(retention rate) の変化をプロットした結果を図21に示す(Example 8)。
<Example 8>
The metal complex obtained in Synthesis Example 1 was subjected to a water vapor exposure test. The equilibrium adsorption amount of carbon dioxide at 0.92 MPa is calculated from the obtained adsorption isotherm, and the result of plotting the change in retention rate is shown in FIG. 21 (Example 8).
<実施例9>
 合成例3で得られた金属錯体について、水蒸気曝露試験を行った。得られた吸着等温線より0.92MPaにおける二酸化炭素の平衡吸着量を算出し、その保持率の変化をプロットした結果を図21に示す(Example 9)。
<Example 9>
The metal complex obtained in Synthesis Example 3 was subjected to a water vapor exposure test. The equilibrium adsorption amount of carbon dioxide at 0.92 MPa is calculated from the obtained adsorption isotherm, and the result of plotting the change in the retention is shown in FIG. 21 (Example 9).
<比較例3>
 比較合成例2で得られた金属錯体について、水蒸気曝露試験を行った。得られた吸着等温線より0.92MPaにおける二酸化炭素の平衡吸着量を算出し、その保持率の変化をプロットした結果を図21に示す(Comparative Example 3)。
<Comparative Example 3>
The metal complex obtained in Comparative Synthesis Example 2 was subjected to a water vapor exposure test. The equilibrium adsorption amount of carbon dioxide at 0.92 MPa is calculated from the obtained adsorption isotherm, and the result of plotting the change in the retention is shown in FIG. 21 (Comparative Example 3).
 図21より、本発明の構成要件を満たす合成例1及び合成例3で得た金属錯体は、本発明の構成要件を満たさない比較合成例2で得た金属錯体に比べ、二酸化炭素の平衡吸着量保持率が高く、時間の経過による保持率の低下も少ないことから、本発明の金属錯体が耐水性に優れていることは明らかである。 From FIG. 21, the metal complexes obtained in Synthesis Example 1 and Synthesis Example 3 that satisfy the constituent requirements of the present invention are in equilibrium adsorption of carbon dioxide as compared with the metal complex obtained in Comparative Synthesis Example 2 that does not satisfy the constituent requirements of the present invention. Since the amount retention is high and the decrease in retention over time is small, it is clear that the metal complex of the present invention is excellent in water resistance.
<実施例10>
 合成例1で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図22に示す(Example 10)。
<Example 10>
About the metal complex obtained by the synthesis example 1, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. 22 (Example 10).
<実施例11>
 合成例2で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図22に示す(Example 11)。
<Example 11>
About the metal complex obtained by the synthesis example 2, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. 22 (Example 11).
<実施例12>
 合成例3で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図22に示す(Example 12)。
<Example 12>
About the metal complex obtained by the synthesis example 3, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. 22 (Example 12).
<比較例4>
 比較合成例1で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図22に示す(Comparative Example 4)。
<Comparative Example 4>
About the metal complex obtained by the comparative synthesis example 1, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. 22 (Comparative Example 4).
<比較例5>
 比較合成例2で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図22に示す(Comparative Example 5)。
<Comparative Example 5>
For the metal complex obtained in Comparative Synthesis Example 2, the amount of carbon dioxide adsorbed at 273K was measured by the volumetric method, and an adsorption isotherm was prepared. The results are shown in FIG. 22 (Comparative Example 5).
 図22より、合成例1、合成例2及び合成例3で得た金属錯体と、比較合成例1及び比較合成例2で得た金属錯体の二酸化炭素の吸着性能は同等であることがわかる。 FIG. 22 shows that the metal complex obtained in Synthesis Example 1, Synthesis Example 2 and Synthesis Example 3 and the metal complex obtained in Comparative Synthesis Example 1 and Comparative Synthesis Example 2 have the same carbon dioxide adsorption performance.
 実施例1~12及び比較例1~5の結果より、本発明の構成要件を満たし、炭素数3~24の脂肪族モノカルボン酸化合物を有する合成例1、合成例2、合成例3及び合成例4で得た金属錯体は、炭素数3~24の脂肪族モノカルボン酸化合物を有さない比較合成例1及び比較合成例2で得た金属錯体に比べ、二酸化炭素の吸着性能は同等レベルを維持したまま耐水性が向上していることは明らかである。このような差が生じた理由は必ずしも定かではないが、本発明の金属錯体を構成するモノカルボン酸化合物が結晶表面に偏在し、そのモノカルボン酸化合物により疎水性が付与された結果、超撥水性を示し、細孔内への水蒸気の拡散が抑制され、優れた耐水性が発現したと考えられる。 From the results of Examples 1 to 12 and Comparative Examples 1 to 5, Synthesis Example 1, Synthesis Example 2, Synthesis Example 3 and Synthesis satisfying the constituent requirements of the present invention and having an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms The metal complex obtained in Example 4 has the same level of carbon dioxide adsorption performance as the metal complexes obtained in Comparative Synthesis Example 1 and Comparative Synthesis Example 2 that do not have an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms. It is clear that the water resistance is improved while maintaining the above. The reason why such a difference has occurred is not necessarily clear, but as a result of the monocarboxylic acid compound constituting the metal complex of the present invention being unevenly distributed on the crystal surface and imparting hydrophobicity by the monocarboxylic acid compound, super repellent properties are obtained. It is considered that water was exhibited, diffusion of water vapor into the pores was suppressed, and excellent water resistance was developed.
<実施例13>
 合成例4で得られた金属錯体について、273Kにおけるエチレンの吸着量を容量法により測定し、吸着等温線を作成した。結果を図23に示す。
<Example 13>
For the metal complex obtained in Synthesis Example 4, the adsorption amount of ethylene at 273 K was measured by a volumetric method, and an adsorption isotherm was created. The results are shown in FIG.
 図23より、合成例4で得た金属錯体は圧力の増加と共にエチレンを吸着するので、本発明の金属錯体がエチレンの吸着材として使用できることは明らかである。 FIG. 23 clearly shows that the metal complex obtained in Synthesis Example 4 adsorbs ethylene as the pressure increases, so that the metal complex of the present invention can be used as an adsorbent for ethylene.
<実施例14>
 合成例3で得られた金属錯体について、273Kにおけるメタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図24に示す。
<Example 14>
For the metal complex obtained in Synthesis Example 3, the adsorption / desorption amount of methane at 273K was measured by the volumetric method, and an adsorption / desorption isotherm was created. The results are shown in FIG.
<比較例6>
 比較合成例1で得られた金属錯体について、273Kにおけるメタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図25に示す。
<Comparative Example 6>
For the metal complex obtained in Comparative Synthesis Example 1, the adsorption / desorption amount of methane at 273 K was measured by the volume method, and an adsorption / desorption isotherm was prepared. The results are shown in FIG.
 図24と、図25との比較より、合成例3で得た金属錯体と比較合成例1で得た金属錯体のメタンの吸蔵性能は同等であることがわかる。 24 and FIG. 25, it can be seen that the methane occlusion performance of the metal complex obtained in Synthesis Example 3 and the metal complex obtained in Comparative Synthesis Example 1 is equivalent.
 実施例3と14及び比較例1と6の結果より、本発明の構成要件を満たす合成例3で得た金属錯体は、炭素数3~24の脂肪族モノカルボン酸化合物を有さない比較合成例1で得た金属錯体に比べ、メタンの吸蔵性能は同等レベルを維持したまま耐水性が向上していることは明らかである。 From the results of Examples 3 and 14 and Comparative Examples 1 and 6, the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention is a comparative synthesis that does not have an aliphatic monocarboxylic acid compound having 3 to 24 carbon atoms. Compared to the metal complex obtained in Example 1, it is clear that the water resistance is improved while maintaining the same level of methane storage performance.
 図24より、本発明の構成要件を満たす合成例3で得た金属錯体は圧力の増加と共にメタンを吸着し、また、0.1MPa以下に減圧することなく圧力の減少と共に吸着したメタンの95%以上を脱離するので、メタンの有効吸蔵量が多いことは明らかであり、ガス自動車の燃料貯蔵タンクへの応用が期待できる。 From FIG. 24, the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention adsorbs methane as the pressure increases, and 95% of the methane adsorbed as the pressure decreases without reducing the pressure to 0.1 MPa or less. Since the above is desorbed, it is clear that the effective storage amount of methane is large, and application to a fuel storage tank of a gas vehicle can be expected.
<実施例15>
 合成例3で得られた金属錯体について、273Kにおける二酸化炭素とメタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図26に示す。
<Example 15>
For the metal complex obtained in Synthesis Example 3, the adsorption and desorption amounts of carbon dioxide and methane at 273 K were measured by a volumetric method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
<比較例7>
 比較合成例1で得られた金属錯体について、273Kにおける二酸化炭素とメタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図27に示す。
<Comparative Example 7>
For the metal complex obtained in Comparative Synthesis Example 1, the adsorption and desorption amounts of carbon dioxide and methane at 273 K were measured by a volumetric method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
 図26と、図27との比較より、合成例3で得た金属錯体と比較合成例1で得た金属錯体の二酸化炭素とメタンの分離性能は同等であることがわかる。 FIG. 26 and FIG. 27 show that the separation performance of carbon dioxide and methane of the metal complex obtained in Synthesis Example 3 and that of the metal complex obtained in Comparative Synthesis Example 1 are equivalent.
 図26より、本発明の構成要件を満たす合成例3で得た金属錯体は0~0.6MPaの圧力範囲において圧力の増加と共に二酸化炭素を選択的に吸着し、また、圧力の減少と共に二酸化炭素を放出するので、本発明の金属錯体がメタンと二酸化炭素の分離材として使用できることは明らかである。 From FIG. 26, the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention selectively adsorbs carbon dioxide with increasing pressure in the pressure range of 0 to 0.6 MPa, and carbon dioxide with decreasing pressure. It is clear that the metal complex of the present invention can be used as a separator for methane and carbon dioxide.
<実施例16>
 合成例3で得られた金属錯体について、313Kにおける二酸化炭素と窒素の吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図28に示す。
<Example 16>
For the metal complex obtained in Synthesis Example 3, the adsorption and desorption amounts of carbon dioxide and nitrogen at 313 K were measured by the volume method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
 図28より、本発明の構成要件を満たす合成例3で得た金属錯体は0~1.0MPaの圧力範囲において圧力の増加と共に二酸化炭素を選択的に吸着し、また、圧力の減少と共に二酸化炭素を放出するので、本発明の金属錯体が窒素と二酸化炭素の分離材として使用できることは明らかである。 From FIG. 28, the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention selectively adsorbs carbon dioxide with increasing pressure in the pressure range of 0 to 1.0 MPa, and carbon dioxide with decreasing pressure. It is clear that the metal complex of the present invention can be used as a separator for nitrogen and carbon dioxide.
<実施例17>
 合成例3で得られた金属錯体について、298Kにおけるエタンとメタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図29に示す。
<Example 17>
For the metal complex obtained in Synthesis Example 3, the adsorption and desorption amounts of ethane and methane at 298 K were measured by the volume method, and an adsorption and desorption isotherm was created. The results are shown in FIG.
 図29より、本発明の構成要件を満たす合成例3で得た金属錯体は0~1.0MPaの圧力範囲において圧力の増加と共にエタンを選択的に吸着し、また、圧力の減少と共にエタンを放出するので、本発明の金属錯体がメタンとエタンの分離材として使用できることは明らかである。 From FIG. 29, the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention selectively adsorbs ethane as the pressure increases in the pressure range of 0 to 1.0 MPa, and releases ethane as the pressure decreases. Therefore, it is clear that the metal complex of the present invention can be used as a separator for methane and ethane.
<実施例18>
 合成例3で得られた金属錯体について、293Kにおける二酸化炭素とメタンの吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図30に示す。
<Example 18>
For the metal complex obtained in Synthesis Example 3, the adsorption and desorption amounts of carbon dioxide and methane at 293K were measured by the volume method, and adsorption and desorption isotherms were created. The results are shown in FIG.
 図26と、図30との比較より、本発明の構成要件を満たす合成例3で得た金属錯体の吸着開始圧力は温度に依存し、制御可能であることが分かる。この特徴を利用することにより、従来の分離材を用いる場合に比べて、温度スイング吸着法において分離度の向上が可能であり得ることが理解される。 FIG. 26 and FIG. 30 show that the adsorption start pressure of the metal complex obtained in Synthesis Example 3 that satisfies the constituent requirements of the present invention depends on the temperature and can be controlled. By utilizing this feature, it is understood that the degree of separation can be improved in the temperature swing adsorption method as compared with the case of using a conventional separation material.
 合成例3で得た金属錯体について、容量比でメタン:二酸化炭素=60:40からなるメタンと二酸化炭素の混合ガスを用い、293K、0.8MPa、空間速度6min-1における破過曲線の測定を行い、ガス分離性能を評価した。結果を図31に示す。 For the metal complex obtained in Synthesis Example 3, a breakthrough curve was measured at 293 K, 0.8 MPa, and a space velocity of 6 min −1 using a mixed gas of methane and carbon dioxide having a volume ratio of methane: carbon dioxide = 60: 40. The gas separation performance was evaluated. The results are shown in FIG.
 図31より、本発明の構成要件を満たす合成例1で得た金属錯体は二酸化炭素を優先的に吸着し、メタンを99.5%以上にまで濃縮することができることがわかる。二酸化炭素の破過時間(二酸化炭素が出口ガスに検出されるまでの時間)が長く、その間メタンのみを取り出せるので、本発明の金属錯体がメタンと二酸化炭素の分離材として使用できることは明らかである。また、図30より、本発明の金属錯体は、圧力の減少と共に吸着した二酸化炭素を放出するので、圧力スイング吸着法に用いる分離材として使用できることは明らかである。 FIG. 31 shows that the metal complex obtained in Synthesis Example 1 that satisfies the constituent requirements of the present invention can preferentially adsorb carbon dioxide and concentrate methane to 99.5% or more. It is clear that the metal complex of the present invention can be used as a separator for methane and carbon dioxide because the breakthrough time of carbon dioxide (time until carbon dioxide is detected in the outlet gas) is long and only methane can be taken out during that time. . From FIG. 30, it is clear that the metal complex of the present invention releases carbon dioxide adsorbed as the pressure decreases, so that it can be used as a separation material used in the pressure swing adsorption method.
1 ガス貯蔵装置(燃料タンク)
2 耐圧容器
3 ガス貯蔵空間
4 吸蔵材
5 出口
6 入口
7 弁
1 Gas storage device (fuel tank)
2 pressure vessel 3 gas storage space 4 occlusion material 5 outlet 6 inlet 7 valve

Claims (15)

  1.  多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とからなる金属錯体。 A polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, an organic ligand capable of multidentate coordination with the metal ion, and a carbon number of 3 A metal complex comprising 24 to 24 aliphatic monocarboxylic acid compounds.
  2.  多価カルボン酸化合物がジカルボン酸化合物である請求項1に記載の金属錯体。 The metal complex according to claim 1, wherein the polyvalent carboxylic acid compound is a dicarboxylic acid compound.
  3.  該多座配位可能な有機配位子が1,4-ジアザビシクロ[2.2.2]オクタン、ピラジン、2,5-ジメチルピラジン、4,4’-ビピリジル、2,2’-ジメチル-4,4’-ビピリジン、1,2-ビス(4-ピリジル)エチン、1,4-ビス(4-ピリジル)ブタジイン、1,4-ビス(4-ピリジル)ベンゼン、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジン、2,2’-ビ-1,6-ナフチリジン、フェナジン、ジアザピレン、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロン、4,4’-ビス(4-ピリジル)ビフェニレン、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミド、トランス-1,2-ビス(4-ピリジル)エテン、4,4’-アゾピリジン、1,2-ビス(4-ピリジル)エタン、4,4’-ジピリジルスルフィド、1,3-ビス(4-ピリジル)プロパン、1,2-ビス(4-ピリジル)-グリコール及びN-(4-ピリジル)イソニコチンアミドから選択される少なくとも1種である請求項1または2に記載の金属錯体。 The multidentate organic ligand is 1,4-diazabicyclo [2.2.2] octane, pyrazine, 2,5-dimethylpyrazine, 4,4′-bipyridyl, 2,2′-dimethyl-4. , 4′-bipyridine, 1,2-bis (4-pyridyl) ethyne, 1,4-bis (4-pyridyl) butadiyne, 1,4-bis (4-pyridyl) benzene, 3,6-di (4- Pyridyl) -1,2,4,5-tetrazine, 2,2′-bi-1,6-naphthyridine, phenazine, diazapyrene, 2,6-di (4-pyridyl) -benzo [1,2-c: 4 , 5-c ′] dipyrrole-1,3,5,7 (2H, 6H) -tetron, 4,4′-bis (4-pyridyl) biphenylene, N, N′-di (4-pyridyl) -1, 4,5,8-naphthalenetetracarboxydiimide, trans-1,2- Su (4-pyridyl) ethene, 4,4′-azopyridine, 1,2-bis (4-pyridyl) ethane, 4,4′-dipyridyl sulfide, 1,3-bis (4-pyridyl) propane, 1,2 The metal complex according to claim 1 or 2, which is at least one selected from -bis (4-pyridyl) -glycol and N- (4-pyridyl) isonicotinamide.
  4.  請求項1~3のいずれかに記載の金属錯体からなる吸着材。 An adsorbent comprising the metal complex according to any one of claims 1 to 3.
  5.  該吸着材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサンまたは有機蒸気を吸着するための吸着材である請求項4に記載の吸着材。 The adsorbent adsorbs carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane or organic vapor. The adsorbent according to claim 4, which is an adsorbent for the purpose.
  6.  請求項1~3のいずれかに記載の金属錯体からなる吸蔵材。 An occlusion material comprising the metal complex according to any one of claims 1 to 3.
  7.  該吸蔵材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニアまたは有機蒸気を吸蔵するための吸蔵材である請求項6に記載の吸蔵材。 The storage material according to claim 6, wherein the storage material is a storage material for storing carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia or organic vapor. The storage material described.
  8.  気密保持可能でガスの出入口を備えた耐圧容器を備え、耐圧容器の内部にガス吸蔵空間を設けたガス貯蔵装置であって、前記ガス吸蔵空間に請求項6に記載の吸蔵材を内装してあるガス貯蔵装置。 A gas storage device comprising a pressure-resistant container capable of being hermetically sealed and having a gas inlet / outlet, and having a gas storage space inside the pressure-resistant container, wherein the gas storage space includes the storage material according to claim 6. Some gas storage devices.
  9.  請求項8に記載のガス貯蔵装置から供給される燃料ガスにより駆動力を得る内燃機関を備えたガス自動車。 A gas vehicle provided with an internal combustion engine that obtains driving force from fuel gas supplied from the gas storage device according to claim 8.
  10.  請求項1~3のいずれかに記載の金属錯体からなる分離材。 A separation material comprising the metal complex according to any one of claims 1 to 3.
  11.  該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサンまたは有機蒸気を分離するための分離材である請求項10に記載の分離材。 The separation material separates carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, or organic vapor. The separation material according to claim 10, which is a separation material for the purpose.
  12.  該分離材が、メタンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、エチレンと二酸化炭素、メタンとエタン、エタンとエチレン、プロパンとプロペン、エチレンとアセチレン、窒素とメタンまたは空気とメタンを分離するための分離材である請求項10に記載の分離材。 The separation material separates methane and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, ethylene and carbon dioxide, methane and ethane, ethane and ethylene, propane and propene, ethylene and acetylene, nitrogen and methane or air and methane. The separation material according to claim 10, wherein the separation material is a separation material.
  13.  金属錯体と混合ガスとを0.01~10MPaの圧力範囲で接触させる工程を含むことを特徴とする請求項10に記載の分離材を用いる分離方法。 11. The separation method using a separation material according to claim 10, comprising a step of contacting the metal complex and the mixed gas in a pressure range of 0.01 to 10 MPa.
  14.  該分離方法が圧力スイング吸着法である請求項13に記載の分離方法。 The separation method according to claim 13, wherein the separation method is a pressure swing adsorption method.
  15.  多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、炭素数3~24の脂肪族モノカルボン酸化合物とを溶媒中で反応させ、金属錯体を析出させる、請求項1~3のいずれかに記載の金属錯体の製造方法。 A polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, an organic ligand capable of multidentate coordination with the metal ion, and a carbon number of 3 The method for producing a metal complex according to any one of claims 1 to 3, wherein the metal complex is precipitated by reacting with an aliphatic monocarboxylic acid compound of ~ 24 in a solvent.
PCT/JP2012/078947 2011-11-08 2012-11-08 Metal complex, and adsorbent, absorbent and separator formed of same WO2013069721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011244687 2011-11-08
JP2011-244687 2011-11-08

Publications (1)

Publication Number Publication Date
WO2013069721A1 true WO2013069721A1 (en) 2013-05-16

Family

ID=48290091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078947 WO2013069721A1 (en) 2011-11-08 2012-11-08 Metal complex, and adsorbent, absorbent and separator formed of same

Country Status (2)

Country Link
JP (1) JPWO2013069721A1 (en)
WO (1) WO2013069721A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007179A1 (en) * 2012-07-02 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
WO2015012263A1 (en) * 2013-07-25 2015-01-29 住友化学株式会社 Adsorption method for saturated hydrocarbon having no more than three carbon atoms, separation method, and separation device
WO2015012396A1 (en) * 2013-07-25 2015-01-29 国立大学法人北海道大学 Adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, and separation device
JP2017057439A (en) * 2015-09-14 2017-03-23 新日鐵住金株式会社 Method of manufacturing metal-porous polymer metal complex composite material, and metal-porous polymer metal complex composite material
JPWO2015147273A1 (en) * 2014-03-27 2017-05-25 東洋紡株式会社 Metal complex, adsorbent, occlusion material and separation material comprising the same
CN116272883A (en) * 2023-05-12 2023-06-23 山东德仕化工有限公司 Antioxidant for underground oil reservoir hydrogen production process, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090263656A1 (en) * 2006-10-11 2009-10-22 Byung-Joon Chae Organic-inorganic hybrid structures having nanoparticles adhering thereon and method for preparing the same
JP2009544646A (en) * 2006-07-27 2009-12-17 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing copper-containing metal organic framework material
JP2011517309A (en) * 2007-09-25 2011-06-02 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Biocompatible metal-organic structure suitable for edible use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544646A (en) * 2006-07-27 2009-12-17 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing copper-containing metal organic framework material
US20090263656A1 (en) * 2006-10-11 2009-10-22 Byung-Joon Chae Organic-inorganic hybrid structures having nanoparticles adhering thereon and method for preparing the same
JP2011517309A (en) * 2007-09-25 2011-06-02 ザ レジェンツ オブ ザ ユニヴァースティ オブ カリフォルニア Biocompatible metal-organic structure suitable for edible use

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
????? ET AL.: "??????????????? ????? ??? ???????????? ?????????", KOORDINATSIONNAYA KHIMIYA, vol. 3, no. 2, 1977, pages 183 - 192 *
AYAKO UMEMURA ET AL.: "Soshika Model ni yoru Takosei Sakutai Framework Seisei Kiko no Rironteki Kenkyu to Kessho Keitai no Sekkei", ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU, vol. 91, no. 2, 11 March 2011 (2011-03-11), pages 461 *
SERGIO J. GARIBAY ET AL.: "Postsynthetic Modification: A Versatile Approach Toward Multifunctional Metal-Organic Frameworks", INORGANIC CHEMISTRY, vol. 48, no. 15, 3 August 2009 (2009-08-03), pages 7341 - 7349, XP055067505 *
SONIA PEREZ-YANEZ ET AL.: "Open-Framework Copper Adeninate Compounds with Three-Dimensional Microchannels Tailored by Aliphatic Monocarboxylic Acids", INORGANIC CHEMISTRY, vol. 50, no. 12, 20 May 2011 (2011-05-20), pages 5330 - 5332, XP055067502 *
TAKAAKI TSURUOKA ET AL.: "Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth", ANGEWANDTE CHEMIE, vol. 48, no. 26, 15 June 2009 (2009-06-15), pages 4739 - 4743, XP055067497 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007179A1 (en) * 2012-07-02 2014-01-09 株式会社クラレ Metal complex, and absorbent, occlusion material and separation material produced therefrom
CN104411673A (en) * 2012-07-02 2015-03-11 株式会社可乐丽 Metal complex, and absorbent, occlusion material and separation material produced therefrom
EP2868649A4 (en) * 2012-07-02 2015-08-19 Kuraray Co Metal complex, and absorbent, occlusion material and separation material produced therefrom
US9586170B2 (en) 2012-07-02 2017-03-07 Kuraray Co., Ltd. Metal complex, and adsorbent material, storage material and separation material comprising metal complex
CN104411673B (en) * 2012-07-02 2018-10-23 株式会社可乐丽 Metal complex, and the sorbing material comprising metal complex, occluded material and separation material
WO2015012263A1 (en) * 2013-07-25 2015-01-29 住友化学株式会社 Adsorption method for saturated hydrocarbon having no more than three carbon atoms, separation method, and separation device
WO2015012396A1 (en) * 2013-07-25 2015-01-29 国立大学法人北海道大学 Adsorption/separation method for hydrocarbon mixed gas having at least four carbon atoms, and separation device
JPWO2015147273A1 (en) * 2014-03-27 2017-05-25 東洋紡株式会社 Metal complex, adsorbent, occlusion material and separation material comprising the same
JP2017057439A (en) * 2015-09-14 2017-03-23 新日鐵住金株式会社 Method of manufacturing metal-porous polymer metal complex composite material, and metal-porous polymer metal complex composite material
CN116272883A (en) * 2023-05-12 2023-06-23 山东德仕化工有限公司 Antioxidant for underground oil reservoir hydrogen production process, and preparation method and application thereof
CN116272883B (en) * 2023-05-12 2023-08-15 山东德仕化工有限公司 Antioxidant for underground oil reservoir hydrogen production process, and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2013069721A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2014007181A1 (en) Metal complex, and absorbent, occlusion material and separation material produced therefrom
JP6270720B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
JP6076255B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
JP5574669B2 (en) Metal complex and separation material comprising the same
WO2013069721A1 (en) Metal complex, and adsorbent, absorbent and separator formed of same
JP5478120B2 (en) Metal complex and method for producing the same
JP5677131B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP2011037794A (en) Metal complex and method for producing the same
US20150361102A1 (en) Method for producing metal complex
JP2012017268A (en) Metal complex and production method thereof
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
JP5478121B2 (en) Metal complex and method for producing the same
WO2013084826A1 (en) Metal complex, and adsorbent material, storage material and separator material each comprising same
JP6242136B2 (en) Porous metal complex composition
JP5677132B2 (en) Metal complex and method for producing the same
WO2014126238A1 (en) Metal complex, and adsorbent, absorbent and separator, each of which is formed of metal complex
JP2014028943A (en) Coordination polymer, and adsorbent, occlusion material, and separation material comprising the same
JP2015027954A (en) Metal complex, and adsorbent material, occlusion material and separation material composed thereof
JP2015205857A (en) Metal complex, and adsorbent, storage material and separation material composed thereof
JP2012184197A (en) Metal complex and adsorbent, occlusion material, and separation material consisting of the same
JP2015202469A (en) porous metal complex composition
JP5649480B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
JP2011037793A (en) Metal complex and method for producing the same
JP2014058481A (en) Metal complex, and adsorbent, occlusion material and separation material therefor
JP2014205665A (en) Metal complex, and adsorbent, storage material and separation material comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013543020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847663

Country of ref document: EP

Kind code of ref document: A1