WO2015011925A1 - Led device production method - Google Patents

Led device production method Download PDF

Info

Publication number
WO2015011925A1
WO2015011925A1 PCT/JP2014/003891 JP2014003891W WO2015011925A1 WO 2015011925 A1 WO2015011925 A1 WO 2015011925A1 JP 2014003891 W JP2014003891 W JP 2014003891W WO 2015011925 A1 WO2015011925 A1 WO 2015011925A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
led device
conversion layer
led
layered clay
Prior art date
Application number
PCT/JP2014/003891
Other languages
French (fr)
Japanese (ja)
Inventor
小嶋 健
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015528152A priority Critical patent/JPWO2015011925A1/en
Publication of WO2015011925A1 publication Critical patent/WO2015011925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method for manufacturing an LED device.
  • phosphors such as YAG phosphors have been placed in the vicinity of gallium nitride (GaN) -based blue LED (Light Emitting Diode) chips to receive blue light and blue light emitted from the blue LED elements.
  • GaN gallium nitride
  • An LED device that obtains white light by mixing yellow light emitted from a phosphor has been developed.
  • an LED device that obtains white light by arranging various phosphors in the vicinity of a blue LED element and mixing blue light emitted from the blue LED element with red light and green light emitted from the phosphor upon receiving blue light. has also been developed.
  • White LED devices are widely applied to various lighting devices; in order to reduce the cost of lighting devices, there is a demand for improved light extraction efficiency from LED devices and longer life of LED devices.
  • Patent Documents 2 and 3 propose that the LED element is covered with a wavelength conversion layer in which a phosphor is dispersed in ceramic.
  • a wavelength conversion layer is formed by applying a phosphor dispersion in which a phosphor is dispersed in a solvent.
  • a phosphor having a high specific gravity tends to settle. Therefore, in this technique, a swellable clay compound such as smectite is dispersed in the phosphor dispersion liquid to increase the viscosity of the phosphor dispersion liquid and enhance the dispersion stability of the phosphor.
  • JP 2005-136379 A International Publication No. 2011/129320 International Publication No. 2012/023425
  • Swellable clay compounds such as smectite contained in the wavelength conversion layer described above are easy to absorb moisture, and more easily conduct electricity.
  • smectite absorbs moisture, current leaks to the wavelength conversion layer when the LED device is used.
  • the metal reflective layer in contact with the wavelength conversion layer is corroded, and the light reflectivity of the metal reflective layer is lowered. That is, the light extraction efficiency from the LED device decreases with time.
  • the present invention has been made in view of the above-described problems. That is, the objective of this invention is providing the manufacturing method of the LED device which can maintain favorable light extraction efficiency over a long period of time.
  • this invention relates to the manufacturing method of the following LED devices.
  • a substrate, an LED element disposed on the substrate, a metal reflective layer disposed on the substrate and around the LED element, and a wavelength conversion layer covering the LED element and the metal reflective layer A method of preparing an LED device including an LED element and a metal reflective layer disposed on a substrate, and covering the LED element and the metal reflective layer of the LED package.
  • concentration of a clay compound is 2 mass% is a manufacturing method of the LED apparatus which is 500 microsiemens / cm or less.
  • the non-conductive layered clay compound is a compound in which the electric conductivity of an aqueous solution in which the concentration of the non-conductive layered clay compound is 2% by mass is 10 to 80 ⁇ S / cm. Of manufacturing the LED device.
  • the non-conductive layered clay compound is a compound in which the electric conductivity of an aqueous solution in which the concentration of the non-conductive layered clay compound is 2% by mass is 150 to 500 ⁇ S / cm. Of manufacturing the LED device.
  • the non-conductive layered clay compound is one or more compounds selected from the group consisting of muscovite, phlogopite, sericite, fluorine phlogopite, potassium tetrasilicon mica, and synthetic mica. 6] The manufacturing method of the LED device in any one of. [8] The method for manufacturing an LED device according to any one of [1] to [7], wherein the non-conductive layered clay compound has a water absorption rate of 0.2% by mass or more. [9] The method for manufacturing an LED device according to any one of [1] to [8], wherein the solvent includes alcohol.
  • the current hardly leaks in the wavelength conversion layer of the LED device obtained by the manufacturing method of the present invention. Therefore, the metal reflective layer hardly deteriorates with time, and high light extraction performance is realized over a long period of time.
  • the LED device 100 obtained by the manufacturing method of the present invention is disposed on the substrate 1, the LED element 3 disposed on the substrate 1, and on the substrate 1 and around the LED element 3.
  • a metal portion composed of the metal reflection layer 2 and the protruding electrode 4 and the wavelength conversion layer 5 covering the LED element 3 and the metal portion are included.
  • the LED device 100 includes a sealing layer 6 that covers the wavelength conversion layer 5 as necessary.
  • the wavelength conversion layer 5 of the present invention contains a layered clay compound.
  • the layered clay compound is a compound for enhancing the dispersion stability of the phosphor in the phosphor dispersion for preparing the wavelength conversion layer 5.
  • the conventional wavelength conversion layer contains a large amount of layered clay compounds having high hygroscopicity and high electrical conductivity. Therefore, when the layered clay compound absorbs moisture, current easily leaks to the wavelength conversion layer when the LED device is used. When the current leaks, there is a problem that the metal reflection layer and the metal electrode in contact with the wavelength conversion layer corrode, and the light extraction efficiency from the LED device decreases with time.
  • a non-conductive layered clay compound that hardly conducts electricity to the wavelength conversion layer 5 is included.
  • the non-conductive layered clay compound refers to a layered clay compound having an electric conductivity of 500 ⁇ S / cm or less when an aqueous solution having a concentration of 2% by mass is formed. That is, the nonconductive layered clay compound has low electrical conductivity even in a wet state. Therefore, even if the non-conductive layered clay compound absorbs moisture, current leakage to the wavelength conversion layer 5 is suppressed. As a result, corrosion of the metal part is suppressed over a long period of time, and high light extraction efficiency from the LED device 100 is maintained.
  • the electric conductivity of the aqueous solution of the non-conductive layered clay compound is preferably 250 ⁇ S / cm or less, more preferably 100 ⁇ S / cm or less.
  • the electrical conductivity is 10 to 80 ⁇ S / cm, corrosion of the metal part is easily suppressed, and high light extraction efficiency from the LED device 100 is easily maintained.
  • the electrical conductivity is 150 to 500 ⁇ S / cm, corrosion of the metal part is suppressed, and the dispersion stability of the phosphor in the phosphor dispersion liquid for preparing the wavelength conversion layer is likely to increase.
  • the electrical conductivity of the aqueous solution of the non-conductive layered clay compound is measured as follows.
  • the non-conductive layered clay compound and water are mixed so that the concentration of the non-conductive layered clay compound is 2% by mass. And the said liquid mixture is mixed for 5 minutes with an ultrasonic wave, and a nonelectroconductive layered clay compound is fully disperse
  • the electrical conductivity of the aqueous solution is measured with an electrical conductivity meter.
  • An example of the electrical conductivity meter is LAQUATwin B771 manufactured by Horiba, Ltd.
  • the substrate 1 may have a cavity (concave portion) as shown in FIG. 1 or may have a flat plate shape.
  • the shape of the cavity that the substrate 1 has is not particularly limited. For example, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, or the like may be used.
  • the substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin.
  • the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
  • the substrate 1 may contain an inorganic filler.
  • the inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
  • Metal wiring is usually formed on the surface of the substrate 1.
  • the metal wiring is a member that supplies electricity to the LED element 3 from a power source (not shown) arranged outside the substrate 1, and the metal reflection layer 2 described later may also serve as the metal wiring.
  • the metal reflection layer 2 also serves as a metal wiring.
  • the LED element 3 is electrically connected to a metal wiring formed on the surface of the substrate 1 and emits light of a specific wavelength.
  • the wavelength of the light emitted from the LED element 3 is not particularly limited.
  • the LED element 3 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light.
  • the configuration of the LED element 3 is not particularly limited.
  • the LED element 3 is an element that emits blue light
  • the LED element 3 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (cladding layer) and a transparent electrode layer.
  • the LED element 3 may have a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example.
  • the height of the LED element 3 is usually about 50 to 200 ⁇ m. In the LED device 100 shown in FIG. 1, only one LED element 3 is disposed on the substrate 1, but a plurality of LED elements 3 may be disposed on the substrate 1.
  • connection method between the LED element 3 and the metal wiring formed on the surface of the substrate 1 is not particularly limited.
  • the LED element 3 and the metal wiring (metal reflection layer) 2 may be connected via the protruding electrode 4.
  • the LED element 3 and the metal wiring 2 may be connected via a wire.
  • a mode in which the LED element 3 and the metal wiring 2 are connected via the protruding electrode 4 is referred to as a flip chip type.
  • a mode in which the LED element 3 and the metal wiring 2 are connected via a wire is called a wire bonding type.
  • a metal part means the metal members formed on the board
  • the metal part is covered with a wavelength conversion layer 5 described later.
  • the metal reflection layer 2 When the metal reflection layer 2 is included in the LED device 100, the light emitted from the LED element 3 and the fluorescence emitted from the phosphor in the wavelength conversion layer 5 are reflected to the light extraction surface side. As a result, the light extraction efficiency from the LED device 100 is increased.
  • the metal reflection layer 2 may also serve as a metal wiring for supplying electricity to the LED element 3; the pattern of the metal reflection layer 2 depends on the connection method between the LED element 3 and the metal wiring, and the like. Are appropriately selected.
  • the metal reflection layer 2 only needs to be formed at least around the LED element 3, and may be formed between the LED element 3 and the substrate 1 as shown in FIG. 1, for example. Further, when the substrate 1 has a cavity, the metal reflection layer 2 may be formed on the inner wall surface 7 of the cavity. When the metal reflection layer 2 is formed on the cavity inner wall surface 7, light traveling in the horizontal direction on the surface of the wavelength conversion layer 5 can be reflected by the metal reflection layer 2 and extracted.
  • the metal reflection layer 2 is not particularly limited as long as it is a layer made of a metal capable of reflecting light.
  • it may be a layer made of copper, aluminum, silver, palladium, or an alloy thereof.
  • the thickness of the metal reflective layer 2 is not particularly limited, and is preferably 100 to 1000 ⁇ m, more preferably 200 to 600 ⁇ m.
  • the metal reflective layer 2 whose surface is silver-plated is particularly easy to improve light reflectivity.
  • the wavelength conversion layer 5 is a layer that covers the LED element 3 and the metal part (the metal reflection layer 2, the protruding electrode 4, etc.), and is a layer that is formed by applying a phosphor dispersion described later. .
  • the wavelength conversion layer 5 includes a phosphor that emits fluorescence upon receiving light (excitation light) emitted from the LED element 3.
  • excitation light light
  • the color of the light from the LED device 100 becomes a desired color. For example, when the light from the LED element 3 is blue and the fluorescence emitted from the phosphor included in the wavelength conversion layer 5 is yellow, the light from the LED device 100 is white.
  • the wavelength conversion layer 5 contains a non-conductive layered clay compound and inorganic oxide fine particles in addition to the phosphor.
  • the wavelength conversion layer 5 contains a non-conductive layered clay compound or inorganic oxide fine particles, not only the dispersion stability of the phosphor is increased in the phosphor dispersion liquid when the wavelength conversion layer 5 is produced, but also the wavelength conversion layer 5 The film strength increases.
  • the wavelength conversion layer 5 may not include a binder or may include a binder.
  • the binder is contained in the wavelength conversion layer 5, the adhesion between the wavelength conversion layer 5 and the LED element 3 and the adhesion between the wavelength conversion layer 5 and the metal part (for example, the metal reflection layer 2) are enhanced.
  • the type of the binder contained in the wavelength conversion layer 5 is not particularly limited, but is preferably polysiloxane. When the wavelength conversion layer 5 contains a binder made of polysiloxane, the adhesion between the wavelength conversion layer 5 and the LED element 3 or the metal part is likely to increase.
  • the binder binds the phosphor, inorganic oxide fine particles, non-conductive layered clay compound, and the like, the strength of the wavelength conversion layer 5 tends to increase. Furthermore, when the wavelength conversion layer 5 includes a binder made of polysiloxane, it becomes difficult for the wavelength conversion layer 5 to transmit the hydrogen sulfide gas and the like included in the usage environment of the LED device 100. As a result, the metal part covered with the wavelength conversion layer 5 becomes more difficult to corrode.
  • the material of the sealing layer 6 to be described later enters a gap such as a phosphor constituting the wavelength conversion layer 5.
  • a gap such as a phosphor constituting the wavelength conversion layer 5.
  • the amount of polysiloxane contained in the wavelength conversion layer 5 is preferably 5 to 50% by mass, more preferably 10 to 30% by mass with respect to the total mass of the wavelength conversion layer 5. If the amount of polysiloxane is less than 5% by mass, the polysiloxane may not be able to bind particles such as phosphors sufficiently. On the other hand, when the amount of polysiloxane exceeds 50% by mass, the amount of the phosphor is relatively lowered, and the density of the phosphor in the wavelength conversion layer 5 is lowered, so that color unevenness may occur.
  • the thickness of the wavelength conversion layer 5 is preferably 5 to 200 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 10 to 100 ⁇ m.
  • the thickness of the wavelength conversion layer 5 is less than 5 ⁇ m, the amount of the phosphor is reduced and there is a possibility that sufficient fluorescence cannot be obtained.
  • the thickness of the wavelength conversion layer 5 exceeds 200 ⁇ m, the concentration of the phosphor in the wavelength conversion layer 5 becomes excessively low, so that the concentration of the phosphor may not be uniform.
  • the thickness of the wavelength conversion layer 5 means the maximum thickness of the wavelength conversion layer 5 formed on the light emitting surface of the LED element 3.
  • the thickness of the wavelength conversion layer 5 is measured with a laser holo gauge.
  • the LED device 100 may include a sealing layer 6.
  • the LED element 3 and the metal part are protected from external impact, gas, moisture, and the like. As a result, the metal part is less likely to corrode, and high light extraction from the LED device 100 is maintained over a long period of time.
  • the sealing layer 6 includes transparent resin or translucent ceramic.
  • the transparent resin include a silicone resin and an epoxy resin.
  • An example of the translucent ceramic includes polysiloxane.
  • the thickness of the sealing layer 6 is preferably 25 ⁇ m to 5 mm, and more preferably 1 to 3 mm. Generally, it is difficult to make the thickness of the sealing layer 6 containing the resin 25 ⁇ m or less. On the other hand, from the viewpoint of downsizing the LED device 100, the thickness of the sealing layer 6 is preferably 5 mm or less.
  • the thickness of the sealing layer 6 means the maximum thickness of the sealing layer 6 formed on the light emitting surface of the LED element 3. The thickness of the sealing layer 6 is measured with a laser holo gauge.
  • the thickness of the sealing layer 6 is preferably 0.5 to 10 ⁇ m, more preferably 0.8 to 5 ⁇ m, and still more preferably 1 ⁇ 2 ⁇ m.
  • the thickness of the sealing layer 6 is less than 0.5 ⁇ m, the gas barrier effect of the sealing layer 6 may not be sufficient.
  • the thickness of the sealing layer 6 exceeds 10 ⁇ m, cracks are likely to occur in the sealing layer 6, and in this case as well, there is a possibility that the gas barrier effect cannot be sufficiently obtained.
  • the thickness of the sealing layer 6 means the maximum thickness of the sealing layer 6 formed on the light emitting surface of the LED element 3. The thickness of the sealing layer 6 is measured with a laser holo gauge.
  • Phosphor dispersion liquid The wavelength conversion layer 5 described above is formed by applying a phosphor dispersion liquid containing at least a phosphor, a layered clay compound, inorganic oxide fine particles, and a solvent.
  • the phosphor contained in the phosphor dispersion liquid may be anything that is excited by light emitted from the LED element 3 and emits fluorescence having a wavelength different from that of the light emitted from the LED element 3.
  • examples of phosphors that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element, and emits yellow fluorescence (wavelength 550 nm to 650 nm).
  • the phosphor is, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • flux fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. .
  • the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
  • the kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
  • the average particle diameter of the phosphor is preferably 1 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m or less.
  • the average particle diameter of the phosphor refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the amount of the phosphor contained in the phosphor dispersion is preferably 10 to 99% by mass, more preferably 20 to 97% by mass with respect to the total mass of the solid content of the phosphor dispersion.
  • concentration of the phosphor is less than 10% by mass, there is a possibility that the fluorescence cannot be sufficiently obtained from the obtained wavelength conversion layer 5.
  • amount of the phosphor exceeds 99% by mass, the amount of the layered clay compound and the amount of the inorganic oxide fine particles are relatively decreased, and the dispersion stability of the phosphor in the phosphor dispersion liquid is lowered. There is a case.
  • the layered clay compound is mainly composed of a non-conductive layered clay compound having low conductivity. If the layered clay compound is a non-conductive layered clay compound, it becomes difficult for the current to leak into the wavelength conversion layer 5.
  • the non-conductive layered clay compound is not particularly limited as long as it is a layered clay compound satisfying the above electrical conductivity, but non-swelling such as muscovite, phlogopite, sericite, fluorine phlogopite, potassium tetrasilicon mica, synthetic mica, etc. It is preferable that it is a natural clay compound. In general, the non-swelling clay compound is less likely to take moisture into the molecular structure, so the electrical conductivity tends to be low.
  • the surface of the non-conductive layered clay compound may be modified (surface treatment) with an ammonium salt or the like.
  • the non-conductive layered clay compound is easily dispersed in the phosphor dispersion liquid.
  • the water absorption of the non-conductive layered clay compound is preferably 0.2% by mass or more, more preferably 0.5 to 5% by mass, and further preferably 1 to 2% by mass.
  • the water absorption rate of the non-conductive layered clay compound is preferably low to some extent from the viewpoint of suppressing the electrical conductivity, but if the water absorption rate is less than 0.2% by mass, the water absorption rate is dispersed in the phosphor dispersion. It becomes difficult. As a result, the viscosity of the phosphor dispersion liquid is difficult to increase, and sedimentation of the phosphor may not be sufficiently suppressed.
  • the water absorption of the non-conductive layered clay compound is measured with a moisture meter. Examples of the moisture meter include MOC-120H manufactured by Shimadzu Corporation.
  • the layered clay compound may contain a clay compound (other clay compound) other than the non-conductive layered clay compound.
  • other clay compounds include smectite clay minerals such as hectorite, saponite, stevensite, beidellite, montmorillonite, nontronite, or bentonite, and swellables such as sodium tetrasilicon fluorine mica and lithium tetrasilicon fluorine mica. Clay compounds and the like are included.
  • the average particle size of the layered clay compound is preferably from 0.1 to 100 ⁇ m, more preferably from 1 to 50 ⁇ m.
  • the size of the layered clay compound is 1 ⁇ m or more, the above-described viscosity improving effect is easily obtained.
  • the size of the layered clay compound is larger than 50 ⁇ m, the light transmittance of the obtained wavelength conversion layer 5 may be lowered.
  • the size of the layered clay compound is measured by a Coulter counter method or the like.
  • the amount of the non-conductive layered clay compound contained in the phosphor dispersion is preferably 0.3 to 20% by mass, more preferably 0.5 to 15% by mass with respect to the total mass of the solid content of the phosphor dispersion. %.
  • concentration of the non-conductive layered clay compound is less than 0.3% by mass, the viscosity of the phosphor dispersion liquid is not sufficiently increased. Further, the strength of the obtained wavelength conversion layer 5 is not sufficiently increased.
  • the concentration of the non-conductive layered clay compound exceeds 20% by mass, the amount of the phosphor is relatively reduced and sufficient fluorescence cannot be obtained.
  • the amount of the other clay compound is preferably 2% by mass or less with respect to the amount of the non-conductive layered clay compound contained in the phosphor dispersion liquid, and it is particularly preferable that no other clay compound is contained. .
  • the viscosity does not increase as the proportion of the layered clay compound in the phosphor dispersion increases. Viscosity is determined by the content ratio with other components such as the amount of solvent in the phosphor dispersion and the amount of phosphor.
  • Inorganic oxide fine particles When the inorganic oxide fine particles are contained in the phosphor dispersion liquid, the viscosity of the phosphor dispersion liquid is further increased.
  • examples of the inorganic oxide fine particles include silicon oxide, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide and the like.
  • the surface of the inorganic oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent.
  • the inorganic oxide fine particles may be porous particles, and the specific surface area is preferably 200 m 2 / g or more.
  • the solvent enters the porous voids, so that the viscosity of the phosphor dispersion liquid tends to increase.
  • the viscosity of the phosphor dispersion liquid is not simply determined by the amount of the inorganic oxide fine particles, but also varies depending on the ratio of the inorganic oxide fine particles and the solvent, the amount of the layered clay compound, and the like.
  • the average primary particle size of the inorganic oxide fine particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, and still more preferably 5 to 50 nm. When the average primary particle size of the inorganic oxide fine particles is within such a range, the viscosity of the phosphor dispersion liquid tends to increase.
  • the average primary particle size of the inorganic oxide fine particles is measured by a Coulter counter method.
  • the amount of inorganic oxide fine particles contained in the phosphor dispersion is preferably 1 to 40% by mass, more preferably 1 to 20% by mass, and still more preferably 1%, based on the total solid content of the phosphor dispersion. ⁇ 10% by mass.
  • the amount of the inorganic oxide fine particles is too small, the viscosity of the phosphor dispersion liquid is not sufficiently increased.
  • the amount of the inorganic oxide fine particles is too large, the amount of the layered clay compound is relatively reduced, and in the phosphor dispersion liquid, the phosphor may settle or the dispersibility of the phosphor may be lowered. .
  • the phosphor dispersion liquid contains a solvent.
  • the solvent is not particularly limited as long as the phosphor, the layered clay compound, and the inorganic oxide fine particles can be uniformly dispersed, but a solvent having a boiling point of 250 ° C. or lower is preferable. When the boiling point of the solvent is 250 ° C. or less, the drying rate of the phosphor dispersion liquid tends to increase.
  • the solvent examples include monoalcohols such as methanol, ethanol, propanol, and butanol; ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and the like.
  • the phosphor dispersion liquid may contain only one kind of solvent, or two or more kinds.
  • the solvent may contain water.
  • water When water is contained in the phosphor dispersion liquid, water enters between layers of the layered clay compound, and the viscosity of the phosphor dispersion liquid is likely to increase.
  • the amount of water contained in the phosphor dispersion is preferably 5% by mass or less, and more preferably 2% by mass or less with respect to the entire phosphor dispersion.
  • the amount of water contained in the phosphor dispersion is preferably 5% by mass or less, and more preferably 2% by mass or less with respect to the entire phosphor dispersion.
  • the total amount of the solvent contained in the phosphor dispersion liquid is appropriately set according to the viscosity of the entire phosphor dispersion liquid.
  • the total amount of the solvent contained in the phosphor dispersion is preferably 30 to 90% by mass, more preferably 40 to 70% by mass with respect to the entire phosphor dispersion.
  • a phosphor dispersion liquid is prepared by mixing and stirring a phosphor, a layered clay compound, inorganic oxide fine particles, and a solvent.
  • the stirrer can be, for example, a magnetic stirrer, an ultrasonic dispersing device, a homogenizer, a stirring mill, a blade kneading stirrer, a thin-film swirling disperser, a high-pressure impact disperser, a rotation and revolution mixer, and the like.
  • stirrer examples include known Ultra Turrax (manufactured by IKA Japan), TK homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primix), TK Philmix (manufactured by Primix), Claremix.
  • Nanomizer manufactured by Yoshida Kikai
  • SC Mill Mitsubishi Mining Co., Ltd.
  • Altimizer agitator Nanomizer
  • Nanomizer manufactured by Yoshida Kikai
  • a high-pressure impact type dispersing device etc., such as NANO 3000 (manufactured by Bitsubusha).
  • a rotating and rotating mixer such as Awatori Nertaro (manufactured by Shinky Corporation) and an ultrasonic dispersion device are also suitable for preparing the phosphor dispersion.
  • the phosphor is very hard particles, it is preferable to avoid wear at the portion where the stirrer and the phosphor dispersion liquid are in contact with each other, and mixing of wear powder associated therewith.
  • the material of the portion where the stirrer and the phosphor dispersion are in contact with each other may be ceramic such as titania, zirconia, alumina, or silicone carbide. It is also preferable to coat the wetted part with titanium-based oxide, chromium-based nitride, diamond-like carbon.
  • the viscosity of the obtained phosphor dispersion at 25 ° C. is preferably 10 to 1000 cP, more preferably 12 to 800 cP, and still more preferably 20 to 600 cP.
  • the viscosity of the phosphor dispersion is adjusted by the amount of the solvent, the amount of the layered clay compound, the amount of the inorganic oxide fine particles, and the like.
  • the viscosity of the phosphor dispersion is measured with a vibration viscometer.
  • Manufacturing method of LED device includes the following two steps. (1) Step of preparing an LED package in which the LED element 3 and the metal part are arranged on the substrate 1 (2) The wavelength conversion layer 5 is formed so as to cover the LED element 3 and the metal part arranged in the LED package. Forming process
  • the manufacturing method of the present invention may include (3) a step of forming the sealing layer 6 on the wavelength conversion layer 5 as necessary.
  • LED Package Preparation Step In the LED package preparation step, a substrate 1 on which a metal part (a metal reflection layer 2, a metal wiring, a protruding electrode 4, etc.) is formed on a substrate 1 is prepared, and an LED element 3 is mounted on the substrate 1. Deploy.
  • the substrate 1 on which the metal reflection layer 2 and the metal wiring are formed is produced by a known method.
  • the method for manufacturing the substrate 1 may be a method of integrally molding a resin and a metal plate (such as a copper plate) patterned into a desired shape. In order to improve the light reflectivity of the metal reflective layer 2, the surface of the metal plate may be further plated.
  • the LED element 3 is fixed on the substrate 1 on which the metal reflective layer 2 is formed, and the LED element 3 and the metal wiring are electrically connected.
  • the method for fixing the LED element 3 to the substrate 1 is not particularly limited, and may be a method for fixing the LED element 3 by, for example, die bonding. Further, the electrical connection between the LED element 3 and the metal wiring may be via a wire or via the protruding electrode 4.
  • Wavelength conversion layer forming step The wavelength conversion layer 5 is formed so as to cover the LED element 3 and the metal part of the LED package described above. As described above, the wavelength conversion layer 5 obtained by the method of the present invention does not leak a current even if it absorbs moisture. Therefore, the wavelength conversion layer 5 may not contain a binder, but a ceramic binder (polysiloxane) is used. Further, it may be included. Therefore, the film forming method of the wavelength conversion layer 5 can be the following three methods.
  • the phosphor dispersion liquid is applied so that the phosphor dispersion liquid covers the LED element 3 and the metal part (for example, the metal reflection layer 2).
  • the method for applying the phosphor dispersion liquid is not particularly limited, and may be a conventionally known method such as a bar coating method, a spin coating method, a spray coating method, a dispensing method, a jet dispensing method, and an ink jet method.
  • the spray coating method is preferable because a thin film can be formed.
  • the solvent contained in the coating film is dried to cure the coating film.
  • the temperature at which the solvent is dried is usually 20 to 200 ° C., preferably 25 to 150 ° C. There exists a possibility that a coating film may not fully dry that the temperature at the time of solvent drying is less than 20 degreeC. On the other hand, if the drying temperature exceeds 200 ° C., the LED element 3 may be affected.
  • Second Method a mixed liquid of the above-described phosphor dispersion liquid and a polysiloxane precursor is prepared, and the mixed liquid is coated on the LED element 3 and a metal part (for example, the metal reflection layer 2). As described above, the phosphor dispersion liquid is applied. You may mix a solvent with a liquid mixture as needed.
  • the mixing method of the phosphor dispersion and the polysiloxane precursor is not particularly limited, and may be a general mixing / stirring method.
  • the polysiloxane precursor mixed with the phosphor dispersion may be a bifunctional, trifunctional, or tetrafunctional silane compound (monomer); or an oligomer obtained by polymerizing these.
  • tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxy
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysi
  • bifunctional silane compounds include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxysilane , Ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethylmethoxypropoxy Silane, ethyldipentyloxysilane, ethyldiphenyloxysilane, propyldimethoxy
  • the oligomer of the silane compound is obtained by hydrolyzing one or more of the silane compounds in the presence of an acid catalyst, water, and an organic solvent, and then subjecting this to a condensation reaction.
  • the mass average molecular weight of the oligomer is preferably 1000 to 3000, more preferably 1200 to 2700, and further preferably 1500 to 2000.
  • the mass average molecular weight of the oligomer exceeds 3000, the viscosity of the mixed liquid of the phosphor dispersion liquid and the polysiloxane precursor becomes excessively high, and it may be difficult to form a uniform film.
  • the mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography. The mass average molecular weight of the oligomer is adjusted by the reaction conditions (particularly the reaction time) at the time of oligomer preparation.
  • the solvent that can be mixed with the phosphor dispersion and the polysiloxane precursor should be a solvent that can dissolve or uniformly disperse the polysiloxane precursor and has good compatibility with the phosphor dispersion.
  • the solvent for preparing the oligomer may be mixed, or different solvents may be mixed.
  • the solvent examples include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene glycol, diethylene glycol, Polyhydric alcohols such as propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono Propyl ether, diethylene glycol monobutyl ether, propylene glycol Monoethers of polyhydric alcohols such as methyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether
  • Ester ethers include the like; ketones such as acetone, methyl ethyl ketone and methyl isoamyl ketone.
  • ketones such as acetone, methyl ethyl ketone and methyl isoamyl ketone.
  • the mixed liquid of the phosphor dispersion liquid and the polysiloxane precursor only one kind of these solvents may be mixed, or two or more kinds may be mixed.
  • the method for applying the mixed liquid of the phosphor dispersion and the polysiloxane precursor is not particularly limited, and may be the same as the method for applying the phosphor dispersion in the first method described above.
  • the coating film After applying the above mixed solution, the coating film is heated to 100 ° C. or higher, preferably 150 to 300 ° C., and the coating film is dried and cured.
  • the heating temperature is less than 100 ° C., water generated during the dehydration condensation of the polysiloxane precursor and the solvent contained in the mixed solution cannot be sufficiently removed, and the light resistance of the coating film may be lowered.
  • the phosphor dispersion liquid described above is applied and cured on the LED element 3 and the metal part (for example, the metal reflection layer 2) to form a cured film of the phosphor dispersion liquid. And a step of separately applying a polysiloxane precursor on the cured film of the phosphor dispersion liquid.
  • the phosphor dispersion liquid is applied so as to cover the LED element 3 and the metal part.
  • the method for applying and curing the phosphor dispersion liquid may be the same as the method for applying the phosphor dispersion liquid in the first method described above.
  • a polysiloxane precursor is applied so as to cover the cured film.
  • a polysiloxane precursor is applied onto the cured film of the phosphor dispersion liquid, the polysiloxane precursor enters between the phosphor, the inorganic oxide fine particles, the layered clay compound, and the like.
  • the obtained wavelength conversion layer 5 phosphors, inorganic oxide fine particles, and layered clay compounds are bound by polysiloxane.
  • the polysiloxane precursor applied onto the cured film of the phosphor dispersion liquid may be the same as the polysiloxane precursor mixed with the phosphor dispersion liquid in the second method.
  • the polysiloxane precursor and a solvent may be mixed as necessary.
  • the method for applying the polysiloxane precursor is not particularly limited, and may be the same as the method for applying the phosphor dispersion.
  • the coating film is heated to 100 ° C. or more, preferably 150 to 300 ° C., and the coating film is dried and cured. If the heating temperature is less than 100 ° C., water generated during the dehydration condensation of the polysiloxane precursor cannot be sufficiently removed, and the light resistance of the coating film may be lowered.
  • the manufacturing method of the present invention may include a formation step of the sealing layer 6 that covers the wavelength conversion layer 5.
  • the formation method of the sealing layer 6 is appropriately selected according to the components contained in the sealing layer 6.
  • a resin composition containing the resin (silicone resin, epoxy resin, etc.) or a precursor thereof is prepared, and the composition is applied on the wavelength conversion layer 5 ⁇ Curing.
  • the resin composition may contain a solvent.
  • the solvent is not particularly limited as long as it can dissolve the resin or the precursor thereof, for example, hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; diethyl ether, tetrahydrofuran and the like And ethers such as propylene glycol monomethyl ether acetate and ethyl acetate.
  • the coating method of the resin composition is not particularly limited, and may be a coating method using a general coating apparatus such as a dispenser.
  • the curing method and curing conditions of the resin composition are appropriately selected depending on the type of resin.
  • An example of the curing method is heat curing.
  • a polysiloxane precursor-containing liquid containing a polysiloxane precursor is prepared, and the containing liquid is applied and cured on the wavelength conversion layer 5.
  • the polysiloxane precursor-containing liquid may contain a solvent.
  • the polysiloxane precursor and the solvent contained in the polysiloxane precursor-containing liquid can be the same as the polysiloxane precursor and the solvent applied in the film forming step (third method) of the wavelength conversion layer 5 described above.
  • coating method and hardening method of a polysiloxane precursor containing composition can also be the same method as the film-forming process (3rd method) of the above-mentioned wavelength conversion layer 5.
  • Polysiloxane precursor-containing liquid Polysiloxane precursor-containing liquid prepared by the following method (1) Polysiloxane precursor-containing liquid prepared by the following method (2)
  • the weight average molecular weight in terms of polystyrene was 1600.
  • the weight average molecular weight in terms of polystyrene was 1500.
  • phosphor dispersion liquid (1) 50 parts by mass of YAG phosphor, 2 parts by mass of layered clay compound (1), and inorganic oxide fine particles (silica product name) : RX300, manufactured by Nippon Aerosil Co., Ltd.) and 2 parts by mass of a mixed liquid of 1,3-butanediol and ethyl alcohol (weight ratio 3: 2) were mixed.
  • the obtained mixed liquid was dispersed for 5 minutes at 1000 rpm with a rotation and revolution mixer (Awatori Netaro ARE-310: manufactured by Sinky Corporation) to prepare a phosphor dispersion liquid (1).
  • LED device An aromatic polyamide circular substrate (opening diameter 3 mm, bottom surface diameter 2 mm, opening wall inclination angle 60 °) having a metal reflection layer 2 (silver plating) shown in FIG. 1 was prepared.
  • One blue LED element 3 (cuboid: 200 ⁇ m ⁇ 300 ⁇ m ⁇ 100 ⁇ m) was fixed to the center of the opening of the substrate 1 with a die-bonding adhesive.
  • the anode electrode and the cathode electrode of the LED element were respectively connected by wires to obtain an LED package.
  • the above-mentioned phosphor dispersion liquid (1) was applied by spraying so as to cover the LED element 3 of the LED package and the metal reflection layer 2.
  • the spray pressure at the time of spray application was 0.2 MPa.
  • the relative moving speed of the spray nozzle and the LED package was appropriately adjusted so that the thickness of the obtained wavelength conversion layer became a desired thickness.
  • the thickness of the wavelength conversion layer (relative movement speed between the spray nozzle and the LED package) was adjusted so that the chromaticity (x value) of white light emitted from the obtained LED element was 0.33.
  • heating was performed at 150 ° C. for 1 hour to form a wavelength conversion layer.
  • Examples 2 to 13, 16 to 17, and Comparative Examples 1 to 8> It implemented except having applied the fluorescent substance dispersion liquid (or liquid mixture of fluorescent substance dispersion liquid and polysiloxane precursor containing liquid) shown in the said Table 2 instead of the fluorescent substance dispersion liquid (1) in Example 1. As in Example 1, a wavelength conversion layer was formed.
  • Example 14> Instead of the phosphor dispersion liquid (1) in Example 1, as shown in Table 2 above, the phosphor dispersion liquid (6) was applied and cured in the same manner as in Example 1. Furthermore, the above-mentioned polysiloxane precursor containing liquid (2) was apply
  • Example 15 Instead of the phosphor dispersion liquid (1) in Example 1, the phosphor dispersion liquid (20) was applied as shown in Table 2 above. Then, it heated at 150 degreeC for 1 hour, and formed the wavelength conversion layer into a film. Furthermore, the above-mentioned polysiloxane precursor (2) was apply
  • Phenyl silicone manufactured by Shin-Etsu Chemical Co., Ltd .: KER-6000
  • a dispenser on the wavelength conversion layer of the sample prepared in each example and comparative example, and heated at 150 ° C. for 1 hour to form a sealing layer. did.
  • the obtained sealing layer had a thickness of 2 mm.
  • a current of 20 mA was passed through the LED device on which the sealing layer was formed; the chromaticity of the emission color and the total luminous flux of each LED device were measured.
  • the chromaticity and total luminous flux were measured with a spectral radiance meter CS-1000A manufactured by Konica Minolta Sensing. As described above, the chromaticity x value of each LED device is adjusted to 0.33.
  • the total luminous flux value of the LED device of Example 1 was used as a reference (100), and the total luminous flux value of each LED device was evaluated according to the following criteria.
  • Total luminous flux maintenance rate after wet heat environment test After the initial total luminous flux value was measured, the LED device was charged in a high-temperature and high-humidity tank (trade name: SH251 manufactured by Espec Co., Ltd.) at 85 ° C. and 85% Rh with a current of 20 mA flowing, and taken out after 1000 hours. And based on the following formula
  • Total luminous flux maintenance factor total luminous flux value after 1000 hours of wet heat environment test / initial total luminous flux value ⁇ 100 A: Total luminous flux maintenance factor was 97% or more. O: Total luminous flux maintenance factor was 95% or more and less than 97%. ⁇ : Total luminous flux maintenance factor was 90% or more and less than 95%. Luminous flux maintenance factor was less than 90%
  • the wavelength conversion layer containing the non-conductive layered clay compound did not leak electricity and the metal reflection layer was less deteriorated.
  • a clay mineral having an electric conductivity of 80 ⁇ S / cm or less is used, a good LED device having a very high total luminous flux maintenance factor and little deterioration in light emission characteristics can be obtained.
  • the heat shock test is performed. Even if I went there, it was hard to break. Since the silicone resin of the sealing layer enters the gap between the phosphors of the wavelength conversion layer and there is no clear interface between the wavelength conversion layer and the sealing layer, even if the temperature of the LED device changes, the wavelength conversion layer and the sealing layer It is presumed that there was little difference in expansion rate and contraction rate, and it was difficult to apply a load to the wire.
  • the phosphor dispersion containing the clay mineral having an electrical conductivity of 150 ⁇ S / cm or more showed very good sedimentation stability. It is considered that these clay minerals have an increased electrical affinity with the phosphor surface and suppress sedimentation of the phosphor.
  • the LED device of the present invention has high gas barrier properties and light extraction properties over a long period of time. Therefore, both can be applied to indoor and outdoor lighting devices.

Abstract

An objective of the present invention is to provide a production method for an LED device having a satisfactory light extraction efficiency over a long period. To achieve the above objective, a production method for an LED device containing a substrate, an LED element disposed on the substrate, a metal part disposed on the substrate, and a wavelength conversion layer covering the LED element and the metal part, comprises preparing an LED package having an LED element and a metal part disposed on a substrate, applying and solidifying a phosphor dispersion solution containing a phosphor, a non-conducting layer-shaped clay compound, inorganic oxide microparticles and a solvent so as to cover the LED element and the metal part of the LED package and form a wavelength conversion layer; the non-conducting layer-shaped clay compound being such a compound that an aqueous solution with a concentration of 2% by mass for the non-conducting layer-shaped clay compound has a conductivity of 500 μS/cm or lower.

Description

LED装置の製造方法Manufacturing method of LED device
 本発明はLED装置の製造方法に関する。 The present invention relates to a method for manufacturing an LED device.
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍に、YAG蛍光体等の蛍光体を配置し、青色LED素子が出射する青色光と、青色光を受けて蛍光体が出射する黄色光とを混色して白色光を得るLED装置が開発されている。また、青色LED素子の近傍に各種蛍光体を配置し、青色LED素子が出射する青色光と、青色光を受けて蛍光体が出射する赤色光や緑色光を混色して白色光を得るLED装置も開発されている。 In recent years, phosphors such as YAG phosphors have been placed in the vicinity of gallium nitride (GaN) -based blue LED (Light Emitting Diode) chips to receive blue light and blue light emitted from the blue LED elements. An LED device that obtains white light by mixing yellow light emitted from a phosphor has been developed. Also, an LED device that obtains white light by arranging various phosphors in the vicinity of a blue LED element and mixing blue light emitted from the blue LED element with red light and green light emitted from the phosphor upon receiving blue light. Has also been developed.
 白色LED装置は、各種照明装置に広く適用されており;照明装置のコスト低減のため、LED装置からの光取り出し効率向上や、LED装置の長寿命化が求められている。そこで、例えば基板上、かつLED素子の近傍に、金属反射層を設けることが検討されている(特許文献1)。この方法によれば、LED素子からの出射光等が、光取り出し面側に効率良く反射される。 White LED devices are widely applied to various lighting devices; in order to reduce the cost of lighting devices, there is a demand for improved light extraction efficiency from LED devices and longer life of LED devices. Thus, for example, it has been studied to provide a metal reflective layer on the substrate and in the vicinity of the LED element (Patent Document 1). According to this method, the emitted light from the LED element is efficiently reflected to the light extraction surface side.
 一方、特許文献2及び3には、蛍光体がセラミックに分散された波長変換層で、LED素子を被覆することが提案されている。これらの技術では、蛍光体が溶媒に分散された蛍光体分散液を塗布して、波長変換層が成膜される。このような蛍光体分散液において、比重の高い蛍光体は沈降しやすい。そこで、当該技術では、蛍光体分散液に、スメクタイト等の膨潤性粘土化合物を分散させ、蛍光体分散液の粘度を高め、蛍光体の分散安定性を高めている。 On the other hand, Patent Documents 2 and 3 propose that the LED element is covered with a wavelength conversion layer in which a phosphor is dispersed in ceramic. In these techniques, a wavelength conversion layer is formed by applying a phosphor dispersion in which a phosphor is dispersed in a solvent. In such a phosphor dispersion, a phosphor having a high specific gravity tends to settle. Therefore, in this technique, a swellable clay compound such as smectite is dispersed in the phosphor dispersion liquid to increase the viscosity of the phosphor dispersion liquid and enhance the dispersion stability of the phosphor.
特開2005-136379公報JP 2005-136379 A 国際公開第2011/129320号International Publication No. 2011/129320 国際公開第2012/023425号International Publication No. 2012/023425
 前述の特許文献2及び3の技術では、波長変換層にバインダが多く含まれると、蛍光体の密度が低くなり、LED装置からの出射光に色ムラが生じることがある。そこで、波長変換層中のセラミックバインダ量を少なくすることが考えられる。しかし、波長変換層中のセラミックバインダ量が少なくなると、LED装置内部に水分が入り込み易くなり、LED装置の内部の金属が腐食しやすくなる。また特に、波長変換層と金属反射層とが接する場合に、LED装置からの光取り出し効率が経時で低下する現象が見られた。その理由は以下の通りである。 In the techniques of Patent Documents 2 and 3 described above, if the wavelength conversion layer contains a large amount of binder, the density of the phosphor is lowered, and color unevenness may occur in the emitted light from the LED device. Therefore, it is conceivable to reduce the amount of the ceramic binder in the wavelength conversion layer. However, when the amount of the ceramic binder in the wavelength conversion layer is reduced, moisture easily enters the LED device, and the metal inside the LED device is easily corroded. In particular, when the wavelength conversion layer and the metal reflection layer are in contact with each other, a phenomenon in which the light extraction efficiency from the LED device decreases with time was observed. The reason is as follows.
 前述の波長変換層に含まれるスメクタイト等の膨潤性粘土化合物は吸湿しやすく、さらに電気を通しやすい。スメクタイト等が吸湿すると、LED装置の使用時に波長変換層に電流がリークする。その結果、波長変換層と接する金属反射層が腐食し、金属反射層の光反射性が低下する。つまり、経時でLED装置からの光取り出し効率が低下する。 Swellable clay compounds such as smectite contained in the wavelength conversion layer described above are easy to absorb moisture, and more easily conduct electricity. When smectite absorbs moisture, current leaks to the wavelength conversion layer when the LED device is used. As a result, the metal reflective layer in contact with the wavelength conversion layer is corroded, and the light reflectivity of the metal reflective layer is lowered. That is, the light extraction efficiency from the LED device decreases with time.
 同様に、LED素子と電気的に接続している金属電極が腐食すると、金属電極の抵抗値が大きくなり、同じ外部電圧を印加した場合には、LED装置の明るさが低減することになる。この場合も、経時でLED装置からの光取り出し効率が低下することにつながる。 Similarly, when the metal electrode electrically connected to the LED element corrodes, the resistance value of the metal electrode increases, and when the same external voltage is applied, the brightness of the LED device is reduced. This also leads to a decrease in light extraction efficiency from the LED device over time.
 本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は長期に亘って、良好な光取り出し効率を維持可能なLED装置の製造方法を提供することにある。 The present invention has been made in view of the above-described problems. That is, the objective of this invention is providing the manufacturing method of the LED device which can maintain favorable light extraction efficiency over a long period of time.
 即ち、本発明は、以下のLED装置の製造方法に関する。
 [1]基板と、前記基板上に配置されたLED素子と、前記基板上、かつ前記LED素子の周囲に配置された金属反射層と、前記LED素子及び前記金属反射層を被覆する波長変換層と、を含むLED装置の製造方法であって、基板上にLED素子及び金属反射層が配置されたLEDパッケージを準備する工程と、前記LEDパッケージの前記LED素子及び前記金属反射層を被覆するように、蛍光体、非導電性層状粘土化合物、無機酸化物微粒子、及び溶媒を含む蛍光体分散液を塗布・硬化させて、波長変換層を形成する工程と、を有し、前記非導電性層状粘土化合物の濃度が2質量%である水溶液の電気伝導率は、500μS/cm以下である、LED装置の製造方法。
That is, this invention relates to the manufacturing method of the following LED devices.
[1] A substrate, an LED element disposed on the substrate, a metal reflective layer disposed on the substrate and around the LED element, and a wavelength conversion layer covering the LED element and the metal reflective layer A method of preparing an LED device including an LED element and a metal reflective layer disposed on a substrate, and covering the LED element and the metal reflective layer of the LED package. And applying a phosphor dispersion liquid containing phosphor, non-conductive layered clay compound, inorganic oxide fine particles, and solvent to form a wavelength conversion layer, and forming the non-conductive layer The electrical conductivity of the aqueous solution whose density | concentration of a clay compound is 2 mass% is a manufacturing method of the LED apparatus which is 500 microsiemens / cm or less.
 [2]前記非導電性層状粘土化合物は、前記非導電性層状粘土化合物の濃度が2質量%である水溶液の電気伝導率が、10~80μS/cmとなる化合物である、[1]に記載のLED装置の製造方法。
 [3]前記非導電性層状粘土化合物は、前記非導電性層状粘土化合物の濃度が2質量%である水溶液の電気伝導率が、150~500μS/cmとなる化合物である、[1]に記載のLED装置の製造方法。
[2] The non-conductive layered clay compound is a compound in which the electric conductivity of an aqueous solution in which the concentration of the non-conductive layered clay compound is 2% by mass is 10 to 80 μS / cm. Of manufacturing the LED device.
[3] The non-conductive layered clay compound is a compound in which the electric conductivity of an aqueous solution in which the concentration of the non-conductive layered clay compound is 2% by mass is 150 to 500 μS / cm. Of manufacturing the LED device.
 [4]前記波長変換層上にさらに封止層を形成する、[1]~[3]のいずれかに記載のLED装置の製造方法。
 [5]シリコーン樹脂またはエポキシ樹脂を含む樹脂組成物を塗布し、硬化させ、前記波長変換層上に封止層を形成する、[4]に記載のLED装置の製造方法。
 [6]前記非導電性層状粘土化合物が、非膨潤性層状粘土化合物である、[1]~[5]のいずれかに記載のLED装置の製造方法。
[4] The method for manufacturing an LED device according to any one of [1] to [3], wherein a sealing layer is further formed on the wavelength conversion layer.
[5] The method for manufacturing an LED device according to [4], wherein a resin composition containing a silicone resin or an epoxy resin is applied and cured to form a sealing layer on the wavelength conversion layer.
[6] The method for manufacturing an LED device according to any one of [1] to [5], wherein the non-conductive layered clay compound is a non-swellable layered clay compound.
 [7]前記非導電性層状粘土化合物が、白雲母、金雲母、絹雲母、フッ素金雲母、カリウム四珪素雲母、合成雲母からなる群から選ばれる一種以上の化合物である、[1]~[6]のいずれかに記載のLED装置の製造方法。
 [8]前記非導電性層状粘土化合物の吸水率が0.2質量%以上である、[1]~[7]のいずれかに記載のLED装置の製造方法。
 [9]前記溶媒がアルコールを含む、[1]~[8]のいずれかに記載のLED装置の製造方法。
[7] The non-conductive layered clay compound is one or more compounds selected from the group consisting of muscovite, phlogopite, sericite, fluorine phlogopite, potassium tetrasilicon mica, and synthetic mica. 6] The manufacturing method of the LED device in any one of.
[8] The method for manufacturing an LED device according to any one of [1] to [7], wherein the non-conductive layered clay compound has a water absorption rate of 0.2% by mass or more.
[9] The method for manufacturing an LED device according to any one of [1] to [8], wherein the solvent includes alcohol.
 [10]前記蛍光体分散液がポリシロキサン前駆体を含む、[1]~[9]のいずれかに記載のLED装置の製造方法。
 [11]前記蛍光体分散液の硬化膜上にポリシロキサン前駆体を塗布し、前記波長変換層を形成する、[1]~[9]のいずれかに記載のLED装置の製造方法。
 [12]前記金属部は、前記基板上に配置された金属反射層または突起電極である、[1]~[11]のいずれかに記載のLED装置の製造方法。
 [13]前記金属部は銀を含む、[1]~[12]のいずれかに記載のLED装置の製造方法。
[10] The method for manufacturing an LED device according to any one of [1] to [9], wherein the phosphor dispersion contains a polysiloxane precursor.
[11] The method for manufacturing an LED device according to any one of [1] to [9], wherein a polysiloxane precursor is applied on a cured film of the phosphor dispersion liquid to form the wavelength conversion layer.
[12] The method for manufacturing an LED device according to any one of [1] to [11], wherein the metal part is a metal reflective layer or a protruding electrode disposed on the substrate.
[13] The method for manufacturing an LED device according to any one of [1] to [12], wherein the metal part includes silver.
 本発明の製造方法により得られるLED装置の波長変換層には、電流がリークし難い。したがって、金属反射層が経時で劣化し難く、長期間に亘って、高い光取り出し性が実現される。 The current hardly leaks in the wavelength conversion layer of the LED device obtained by the manufacturing method of the present invention. Therefore, the metal reflective layer hardly deteriorates with time, and high light extraction performance is realized over a long period of time.
本発明のLED装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the LED apparatus of this invention.
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist.
 1.LED装置の構成について
 本発明の製造方法で得られるLED装置の構造の例を図1の概略断面図に示す。本発明の製造方法で得られるLED装置100には、図1に示されるように、基板1と、基板1上に配置されたLED素子3と、基板1上かつLED素子3の周囲に配置された金属反射層2や突起電極4等からなる金属部と、当該LED素子3及び金属部を被覆する波長変換層5と、が含まれる。LED装置100には、必要に応じて、波長変換層5を覆う封止層6が含まれる。
1. About the structure of an LED device The example of the structure of the LED device obtained with the manufacturing method of this invention is shown in the schematic sectional drawing of FIG. As shown in FIG. 1, the LED device 100 obtained by the manufacturing method of the present invention is disposed on the substrate 1, the LED element 3 disposed on the substrate 1, and on the substrate 1 and around the LED element 3. In addition, a metal portion composed of the metal reflection layer 2 and the protruding electrode 4 and the wavelength conversion layer 5 covering the LED element 3 and the metal portion are included. The LED device 100 includes a sealing layer 6 that covers the wavelength conversion layer 5 as necessary.
 本発明の波長変換層5には、層状粘土化合物が含まれる。層状粘土化合物は、波長変換層5作製用の蛍光体分散液中において、蛍光体の分散安定性を高めるための化合物である。ここで、従来の波長変換層には、吸湿性が高く、かつ電気伝導性の高い層状粘土化合物が多く含まれていた。そのため、層状粘土化合物が吸湿すると、LED装置の使用時に波長変換層に電流がリークしやすかった。そして、電流がリークすると、波長変換層に接する金属反射層や金属電極が腐食し、経時でLED装置からの光取り出し効率が低下する、という問題があった。 The wavelength conversion layer 5 of the present invention contains a layered clay compound. The layered clay compound is a compound for enhancing the dispersion stability of the phosphor in the phosphor dispersion for preparing the wavelength conversion layer 5. Here, the conventional wavelength conversion layer contains a large amount of layered clay compounds having high hygroscopicity and high electrical conductivity. Therefore, when the layered clay compound absorbs moisture, current easily leaks to the wavelength conversion layer when the LED device is used. When the current leaks, there is a problem that the metal reflection layer and the metal electrode in contact with the wavelength conversion layer corrode, and the light extraction efficiency from the LED device decreases with time.
 これに対し、本発明では、波長変換層5に電気を通し難い非導電性層状粘土化合物が含まれる。非導電性層状粘土化合物とは、濃度2質量%の水溶液としたときに、その電気伝導率が500μS/cm以下となる層状粘土化合物をいう。つまり、非導電性層状粘土化合物は、湿潤状態においても、電気伝導率が低い。したがって、非導電性層状粘土化合物が吸湿したとしても、波長変換層5への電流のリークが抑制される。その結果、金属部の腐食が長期間に亘って抑制され、LED装置100からの高い光取り出し効率が維持される。非導電性層状粘土化合物の水溶液の電気伝導率は、好ましくは250μS/cm以下であり、さらに好ましくは100μS/cm以下である。特に、上記電気伝導率が、10~80μS/cmであると、金属部の腐食が抑制されやすく、LED装置100からの高い光取り出し効率が維持されやすい。一方、上記電気伝導率が150~500μS/cmであると、金属部の腐食が抑制されつつ、さらに波長変換層作製用の蛍光体分散液中での蛍光体の分散安定性が高まりやすい。 On the other hand, in the present invention, a non-conductive layered clay compound that hardly conducts electricity to the wavelength conversion layer 5 is included. The non-conductive layered clay compound refers to a layered clay compound having an electric conductivity of 500 μS / cm or less when an aqueous solution having a concentration of 2% by mass is formed. That is, the nonconductive layered clay compound has low electrical conductivity even in a wet state. Therefore, even if the non-conductive layered clay compound absorbs moisture, current leakage to the wavelength conversion layer 5 is suppressed. As a result, corrosion of the metal part is suppressed over a long period of time, and high light extraction efficiency from the LED device 100 is maintained. The electric conductivity of the aqueous solution of the non-conductive layered clay compound is preferably 250 μS / cm or less, more preferably 100 μS / cm or less. In particular, when the electrical conductivity is 10 to 80 μS / cm, corrosion of the metal part is easily suppressed, and high light extraction efficiency from the LED device 100 is easily maintained. On the other hand, when the electrical conductivity is 150 to 500 μS / cm, corrosion of the metal part is suppressed, and the dispersion stability of the phosphor in the phosphor dispersion liquid for preparing the wavelength conversion layer is likely to increase.
 非導電性層状粘土化合物の水溶液の電気伝導率は、以下のように測定する。非導電性層状粘土化合物及び水を、非導電性層状粘土化合物の濃度が2質量%となるように混合する。そして、当該混合液を5分間超音波で混合し、非導電性層状粘土化合物を十分に分散させる。当該水溶液の電気伝導率を電気伝導率計で測定する。電気伝導率計の例には、株式会社堀場製作所製のLAQUAtwin B771等がある。 The electrical conductivity of the aqueous solution of the non-conductive layered clay compound is measured as follows. The non-conductive layered clay compound and water are mixed so that the concentration of the non-conductive layered clay compound is 2% by mass. And the said liquid mixture is mixed for 5 minutes with an ultrasonic wave, and a nonelectroconductive layered clay compound is fully disperse | distributed. The electrical conductivity of the aqueous solution is measured with an electrical conductivity meter. An example of the electrical conductivity meter is LAQUATwin B771 manufactured by Horiba, Ltd.
 1-1.基板
 基板1は、図1に示されるようにキャビティ(凹部)を有していてもよく、平板状であってもよい。基板1が有するキャビティの形状は特に制限されない。例えば円錐台状であってもよく、角錐台状や、円柱状、角柱状等であってもよい。
1-1. Substrate The substrate 1 may have a cavity (concave portion) as shown in FIG. 1 or may have a flat plate shape. The shape of the cavity that the substrate 1 has is not particularly limited. For example, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, or the like may be used.
 基板1は、絶縁性及び耐熱性を有することが好ましく、セラミック樹脂や耐熱性樹脂からなることが好ましい。耐熱性樹脂の例には、液晶ポリマー、ポリフェニレンスルフィド、芳香族ナイロン、エポキシ樹脂、硬質シリコーンレジン、ポリフタル酸アミド等が含まれる。 The substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin. Examples of the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
 基板1には、無機フィラーが含まれていてもよい。無機フィラーは、酸化チタン、酸化亜鉛、アルミナ、シリカ、チタン酸バリウム、リン酸カルシウム、炭酸カルシウム、ホワイトカーボン、タルク、炭酸マグネシウム、窒化ホウ素、グラスファイバー等でありうる。 The substrate 1 may contain an inorganic filler. The inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
 基板1表面には通常、金属配線が形成される。金属配線は、基板1の外部に配置される電源(図示せず)から、LED素子3に電気を供給する部材であり、後述する金属反射層2が、金属配線を兼ねてもよい。図1に示されるLED装置100においても、金属反射層2が金属配線を兼ねている。 Metal wiring is usually formed on the surface of the substrate 1. The metal wiring is a member that supplies electricity to the LED element 3 from a power source (not shown) arranged outside the substrate 1, and the metal reflection layer 2 described later may also serve as the metal wiring. In the LED device 100 shown in FIG. 1, the metal reflection layer 2 also serves as a metal wiring.
 1-2.LED素子
 LED素子3は、基板1表面に形成された金属配線と電気的に接続されて、特定の波長の光を発する。LED素子3が出射する光の波長は特に制限されない。LED素子3は、例えば青色光(420nm~485nm程度の光)を発する素子であってもよく、紫外光を発する素子であってもよい。
1-2. LED element The LED element 3 is electrically connected to a metal wiring formed on the surface of the substrate 1 and emits light of a specific wavelength. The wavelength of the light emitted from the LED element 3 is not particularly limited. The LED element 3 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light.
 LED素子3の構成は、特に制限されない。LED素子3が、青色光を発する素子である場合、LED素子3は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体でありうる。LED素子3は、例えば200~300μm×200~300μmの発光面を有するものでありうる。またLED素子3の高さは、通常50~200μm程度である。図1に示されるLED装置100には、基板1に1つのLED素子3のみが配置されているが、基板1に複数のLED素子3が配置されていてもよい。 The configuration of the LED element 3 is not particularly limited. When the LED element 3 is an element that emits blue light, the LED element 3 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (cladding layer) and a transparent electrode layer. The LED element 3 may have a light emitting surface of 200 to 300 μm × 200 to 300 μm, for example. The height of the LED element 3 is usually about 50 to 200 μm. In the LED device 100 shown in FIG. 1, only one LED element 3 is disposed on the substrate 1, but a plurality of LED elements 3 may be disposed on the substrate 1.
 LED素子3と基板1表面に形成された金属配線との接続方法は特に制限されない。例えば図1に示されるように、LED素子3と金属配線(金属反射層)2とが、突起電極4を介して接続されてもよい。また、LED素子3と金属配線2とが、ワイヤを介して接続されてもよい。LED素子3と金属配線2とが、突起電極4を介して接続される態様をフリップチップ型という。一方、LED素子3と金属配線2とが、ワイヤを介して接続される態様をワイヤボンディング型という。 The connection method between the LED element 3 and the metal wiring formed on the surface of the substrate 1 is not particularly limited. For example, as shown in FIG. 1, the LED element 3 and the metal wiring (metal reflection layer) 2 may be connected via the protruding electrode 4. Moreover, the LED element 3 and the metal wiring 2 may be connected via a wire. A mode in which the LED element 3 and the metal wiring 2 are connected via the protruding electrode 4 is referred to as a flip chip type. On the other hand, a mode in which the LED element 3 and the metal wiring 2 are connected via a wire is called a wire bonding type.
 1-3.金属部
 本発明において、金属部とは、基板1上に形成された金属製の部材をいい、例えば、基材1上、かつLED素子3の周囲に配置された金属反射層2や金属からなる突起電極4をいう。当該金属部は、後述の波長変換層5により被覆される。
1-3. Metal part In this invention, a metal part means the metal members formed on the board | substrate 1, for example, consists of the metal reflective layer 2 arrange | positioned on the base material 1 and the circumference | surroundings of the LED element 3, and a metal. This refers to the protruding electrode 4. The metal part is covered with a wavelength conversion layer 5 described later.
 LED装置100に金属反射層2が含まれると、LED素子3が発する光や、波長変換層5中の蛍光体が発する蛍光が、光取り出し面側に反射される。その結果、LED装置100からの光取り出し効率が高まる。 When the metal reflection layer 2 is included in the LED device 100, the light emitted from the LED element 3 and the fluorescence emitted from the phosphor in the wavelength conversion layer 5 are reflected to the light extraction surface side. As a result, the light extraction efficiency from the LED device 100 is increased.
 前述のように、金属反射層2は、LED素子3に電気を供給するための金属配線を兼ねてもよく;金属反射層2のパターンは、LED素子3と金属配線との接続方式等に応じて適宜選択される。金属反射層2は、LED素子3の周囲に少なくとも形成されていればよく、例えば図1に示されるように、LED素子3と基板1との間に形成されていてもよい。また、基板1がキャビティを有する場合、キャビティ内壁面7に、金属反射層2が形成されてもよい。金属反射層2がキャビティ内壁面7に形成されると、波長変換層5表面に水平方向に進む光を、金属反射層2で反射させて、取り出すことができる。 As described above, the metal reflection layer 2 may also serve as a metal wiring for supplying electricity to the LED element 3; the pattern of the metal reflection layer 2 depends on the connection method between the LED element 3 and the metal wiring, and the like. Are appropriately selected. The metal reflection layer 2 only needs to be formed at least around the LED element 3, and may be formed between the LED element 3 and the substrate 1 as shown in FIG. 1, for example. Further, when the substrate 1 has a cavity, the metal reflection layer 2 may be formed on the inner wall surface 7 of the cavity. When the metal reflection layer 2 is formed on the cavity inner wall surface 7, light traveling in the horizontal direction on the surface of the wavelength conversion layer 5 can be reflected by the metal reflection layer 2 and extracted.
 金属反射層2は、光を反射可能な金属からなる層であれば、金属の種類は特に制限されない。例えば、銅、アルミ、銀、パラジウムやこれらの合金からなる層でありうる。金属反射層2の厚みは特に制限されず、好ましくは100~1000μm、さらに好ましくは200~600μmである。金属反射層2は表面に銀メッキが施されたものが特に光反射性が高まりやすい。 The metal reflection layer 2 is not particularly limited as long as it is a layer made of a metal capable of reflecting light. For example, it may be a layer made of copper, aluminum, silver, palladium, or an alloy thereof. The thickness of the metal reflective layer 2 is not particularly limited, and is preferably 100 to 1000 μm, more preferably 200 to 600 μm. The metal reflective layer 2 whose surface is silver-plated is particularly easy to improve light reflectivity.
 1-4.波長変換層
 波長変換層5は、LED素子3及び金属部(金属反射層2や突起電極4等)を被覆する層であり、後述の蛍光体分散液を塗布して成膜される層である。
1-4. Wavelength Conversion Layer The wavelength conversion layer 5 is a layer that covers the LED element 3 and the metal part (the metal reflection layer 2, the protruding electrode 4, etc.), and is a layer that is formed by applying a phosphor dispersion described later. .
 波長変換層5には、LED素子3が出射する光(励起光)を受けて、蛍光を発する蛍光体が含まれる。励起光と蛍光とが混ざることで、LED装置100からの光の色が所望の色となる。例えば、LED素子3からの光が青色であり、波長変換層5に含まれる蛍光体が発する蛍光が黄色であると、LED装置100からの光が白色となる。 The wavelength conversion layer 5 includes a phosphor that emits fluorescence upon receiving light (excitation light) emitted from the LED element 3. By mixing the excitation light and the fluorescence, the color of the light from the LED device 100 becomes a desired color. For example, when the light from the LED element 3 is blue and the fluorescence emitted from the phosphor included in the wavelength conversion layer 5 is yellow, the light from the LED device 100 is white.
 波長変換層5には、蛍光体の他に、非導電性層状粘土化合物、及び無機酸化物微粒子が含まれる。波長変換層5に非導電性層状粘土化合物や無機酸化物微粒子が含まれると、波長変換層5作製時の蛍光体分散液において、蛍光体の分散安定性が高まるだけでなく、波長変換層5の膜強度も高まる。 The wavelength conversion layer 5 contains a non-conductive layered clay compound and inorganic oxide fine particles in addition to the phosphor. When the wavelength conversion layer 5 contains a non-conductive layered clay compound or inorganic oxide fine particles, not only the dispersion stability of the phosphor is increased in the phosphor dispersion liquid when the wavelength conversion layer 5 is produced, but also the wavelength conversion layer 5 The film strength increases.
 波長変換層5には、バインダが含まれなくてもよく、バインダが含まれてもよい。波長変換層5にバインダが含まれると、波長変換層5とLED素子3との密着性や、波長変換層5と金属部(例えば金属反射層2)との密着性が高まる。波長変換層5に含まれるバインダの種類は特に制限されないが、ポリシロキサンであることが好ましい。波長変換層5にポリシロキサンからなるバインダが含まれると、波長変換層5とLED素子3や金属部との密着性が高まりやすい。また、バインダが蛍光体や無機酸化物微粒子、非導電性層状粘土化合物等を結着するため、波長変換層5の強度が高まりやすい。さらに、波長変換層5にポリシロキサンからなるバインダが含まれると、LED装置100の使用環境に含まれる硫化水素ガス等を波長変換層5が透過させ難くなる。その結果、波長変換層5に被覆されている金属部がさらに腐食し難くなる。 The wavelength conversion layer 5 may not include a binder or may include a binder. When the binder is contained in the wavelength conversion layer 5, the adhesion between the wavelength conversion layer 5 and the LED element 3 and the adhesion between the wavelength conversion layer 5 and the metal part (for example, the metal reflection layer 2) are enhanced. The type of the binder contained in the wavelength conversion layer 5 is not particularly limited, but is preferably polysiloxane. When the wavelength conversion layer 5 contains a binder made of polysiloxane, the adhesion between the wavelength conversion layer 5 and the LED element 3 or the metal part is likely to increase. Further, since the binder binds the phosphor, inorganic oxide fine particles, non-conductive layered clay compound, and the like, the strength of the wavelength conversion layer 5 tends to increase. Furthermore, when the wavelength conversion layer 5 includes a binder made of polysiloxane, it becomes difficult for the wavelength conversion layer 5 to transmit the hydrogen sulfide gas and the like included in the usage environment of the LED device 100. As a result, the metal part covered with the wavelength conversion layer 5 becomes more difficult to corrode.
 一方、波長変換層5にバインダが含まれない場合には、後述する封止層6の材料が波長変換層5を構成する蛍光体等の隙間に入り込む。その結果、波長変換層5と封止層6との明確な界面がなくなり、LED装置100が温度変化しても、波長変換層5及び封止層6の膨張率や収縮率の差が少なくなる。したがって、LED素子3と基板1上に形成された金属配線とを繋ぐワイヤの断線等が発生し難くなる。 On the other hand, when the wavelength conversion layer 5 does not contain a binder, the material of the sealing layer 6 to be described later enters a gap such as a phosphor constituting the wavelength conversion layer 5. As a result, there is no clear interface between the wavelength conversion layer 5 and the sealing layer 6, and even if the LED device 100 changes in temperature, the difference between the expansion rate and contraction rate of the wavelength conversion layer 5 and the sealing layer 6 is reduced. . Accordingly, disconnection of the wire connecting the LED element 3 and the metal wiring formed on the substrate 1 is less likely to occur.
 波長変換層5に含まれるポリシロキサンの量は、波長変換層5の総質量に対して5~50質量%であることが好ましく、より好ましくは10~30質量%である。ポリシロキサンの量が5質量%未満であると、ポリシロキサンが蛍光体等の粒子を十分に結着できない場合がある。一方、ポリシロキサンの量が50質量%を超えると、蛍光体の量が相対的に低下し、波長変換層5内の蛍光体の密度が低下するため、色ムラが生じることがある。 The amount of polysiloxane contained in the wavelength conversion layer 5 is preferably 5 to 50% by mass, more preferably 10 to 30% by mass with respect to the total mass of the wavelength conversion layer 5. If the amount of polysiloxane is less than 5% by mass, the polysiloxane may not be able to bind particles such as phosphors sufficiently. On the other hand, when the amount of polysiloxane exceeds 50% by mass, the amount of the phosphor is relatively lowered, and the density of the phosphor in the wavelength conversion layer 5 is lowered, so that color unevenness may occur.
 波長変換層5の厚みは5~200μmであることが好ましく、10~200μmであることがより好ましく、さらに好ましくは10~100μmである。波長変換層5の厚みが5μm未満であると、蛍光体量が少なくなり、十分な蛍光が得られないおそれがある。一方、波長変換層5の厚みが200μmを超えると、波長変換層5中の蛍光体の濃度が過剰に低くなるので、蛍光体の濃度が均一にならないおそれがある。波長変換層5の厚みとは、LED素子3の発光面上に形成された波長変換層5の最大厚みを意味する。波長変換層5の厚みは、レーザホロゲージで測定される。 The thickness of the wavelength conversion layer 5 is preferably 5 to 200 μm, more preferably 10 to 200 μm, and still more preferably 10 to 100 μm. When the thickness of the wavelength conversion layer 5 is less than 5 μm, the amount of the phosphor is reduced and there is a possibility that sufficient fluorescence cannot be obtained. On the other hand, if the thickness of the wavelength conversion layer 5 exceeds 200 μm, the concentration of the phosphor in the wavelength conversion layer 5 becomes excessively low, so that the concentration of the phosphor may not be uniform. The thickness of the wavelength conversion layer 5 means the maximum thickness of the wavelength conversion layer 5 formed on the light emitting surface of the LED element 3. The thickness of the wavelength conversion layer 5 is measured with a laser holo gauge.
 1-5.封止層
 図1に示されるように、LED装置100には、封止層6が含まれてもよい。LED装置100に封止層6が含まれると、外部の衝撃やガス、水分等からLED素子3や金属部が保護される。その結果、金属部がより腐食し難くなり、長期間に亘って、LED装置100からの高い光取り出し性が保持される。
1-5. Sealing Layer As shown in FIG. 1, the LED device 100 may include a sealing layer 6. When the LED device 100 includes the sealing layer 6, the LED element 3 and the metal part are protected from external impact, gas, moisture, and the like. As a result, the metal part is less likely to corrode, and high light extraction from the LED device 100 is maintained over a long period of time.
 封止層6には、透明樹脂または透光性セラミックが含まれる。透明樹脂の例には、シリコーン樹脂やエポキシ樹脂等が挙げられる。透光性セラミックの例には、ポリシロキサンが挙げられる。 The sealing layer 6 includes transparent resin or translucent ceramic. Examples of the transparent resin include a silicone resin and an epoxy resin. An example of the translucent ceramic includes polysiloxane.
 封止層6に樹脂が含まれる場合、封止層6の厚みは25μm~5mmであることが好ましく、さらに好ましくは1~3mmである。一般的に、樹脂が含まれる封止層6の厚みを25μm以下とすることは難しい。一方、LED装置100の小型化との観点から、封止層6の厚みは5mm以下であることが好ましい。封止層6の厚みは、LED素子3の発光面上に成膜された封止層6の最大厚みを意味する。封止層6の厚みは、レーザホロゲージで測定される。 When the sealing layer 6 contains a resin, the thickness of the sealing layer 6 is preferably 25 μm to 5 mm, and more preferably 1 to 3 mm. Generally, it is difficult to make the thickness of the sealing layer 6 containing the resin 25 μm or less. On the other hand, from the viewpoint of downsizing the LED device 100, the thickness of the sealing layer 6 is preferably 5 mm or less. The thickness of the sealing layer 6 means the maximum thickness of the sealing layer 6 formed on the light emitting surface of the LED element 3. The thickness of the sealing layer 6 is measured with a laser holo gauge.
 一方、封止層6に透光性セラミックが含まれる場合、封止層6の厚みは、0.5~10μmであることが好ましく、より好ましくは0.8~5μmであり、さらに好ましくは1~2μmである。封止層6の厚みが0.5μm未満であると、封止層6のガスバリア効果が十分にならない場合がある。一方、封止層6の厚みが10μmを超えると、封止層6にクラックが生じやすく、この場合もガスバリア効果が十分に得られないおそれがある。この場合も、封止層6の厚みは、LED素子3の発光面上に成膜された封止層6の最大厚みを意味する。封止層6の厚みは、レーザホロゲージで測定される。 On the other hand, when the sealing layer 6 contains a translucent ceramic, the thickness of the sealing layer 6 is preferably 0.5 to 10 μm, more preferably 0.8 to 5 μm, and still more preferably 1 ~ 2 μm. When the thickness of the sealing layer 6 is less than 0.5 μm, the gas barrier effect of the sealing layer 6 may not be sufficient. On the other hand, if the thickness of the sealing layer 6 exceeds 10 μm, cracks are likely to occur in the sealing layer 6, and in this case as well, there is a possibility that the gas barrier effect cannot be sufficiently obtained. Also in this case, the thickness of the sealing layer 6 means the maximum thickness of the sealing layer 6 formed on the light emitting surface of the LED element 3. The thickness of the sealing layer 6 is measured with a laser holo gauge.
 2.蛍光体分散液
 前述の波長変換層5は、蛍光体、層状粘土化合物、無機酸化物微粒子、及び溶媒が少なくとも含まれる蛍光体分散液を塗布して成膜される。
2. Phosphor dispersion liquid The wavelength conversion layer 5 described above is formed by applying a phosphor dispersion liquid containing at least a phosphor, a layered clay compound, inorganic oxide fine particles, and a solvent.
 2-1.蛍光体
 蛍光体分散液に含まれる蛍光体は、LED素子3から出射する光により励起されて、LED素子3からの出射光と異なる波長の蛍光を発するものであればよい。例えば、黄色の蛍光を発する蛍光体の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体等がある。YAG蛍光体は、青色LED素子から出射される青色光(波長420nm~485nm)を受けて、黄色の蛍光(波長550nm~650nm)を発する。
2-1. Phosphor The phosphor contained in the phosphor dispersion liquid may be anything that is excited by light emitted from the LED element 3 and emits fluorescence having a wavelength different from that of the light emitted from the LED element 3. For example, examples of phosphors that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors. The YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element, and emits yellow fluorescence (wavelength 550 nm to 650 nm).
 蛍光体は、例えば1)所定の組成を有する混合原料に、フラックス(フッ化アンモニウム等のフッ化物)を適量混合して加圧し、これを成形体とする。そして、2)得られた成形体を坩堝に詰め、空気中で1350~1450℃の温度範囲で、2~5時間焼成し、焼結体とすることで得られる。 The phosphor is, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Ga等の酸化物、または高温で容易に酸化物となる化合物を、化学両論比で十分に混合して得られる。また、所定の組成を有する混合原料は、1)Y、Gd、Ce、Smの希土類元素を化学両論比で酸に溶解した溶液と、シュウ酸とを混合し、共沈酸化物を得る。2)この共沈酸化物と、酸化アルミニウム、または酸化ガリウムとを混合しても得られる。 A mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. . Moreover, the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
 蛍光体の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体であってもよい。 The kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
 蛍光体の平均粒径は1μm~50μmであることが好ましく、10μm以下であることがより好ましい。蛍光体の粒径が大きいほど発光効率(波長変換効率)が高くなる。一方、蛍光体の粒径が大きすぎると、得られる波長変換層5に隙間が生じやすく、波長変換層5の強度が低下しやすい。蛍光体の平均粒径は、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。 The average particle diameter of the phosphor is preferably 1 μm to 50 μm, more preferably 10 μm or less. The larger the particle size of the phosphor, the higher the light emission efficiency (wavelength conversion efficiency). On the other hand, when the particle size of the phosphor is too large, a gap is likely to be generated in the obtained wavelength conversion layer 5 and the strength of the wavelength conversion layer 5 is likely to be reduced. The average particle diameter of the phosphor refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
 蛍光体分散液中に含まれる蛍光体の量は、蛍光体分散液の固形分全質量に対して10~99質量%であることが好ましく、より好ましくは20~97質量%である。蛍光体の濃度が10質量%未満であると、得られる波長変換層5から、十分に蛍光が得られないおそれがある。一方、蛍光体の量が99質量%を超えると、相対的に層状粘土化合物の量や、無機酸化物微粒子の量が少なくなり、蛍光体分散液内における、蛍光体の分散安定性が低下する場合がある。 The amount of the phosphor contained in the phosphor dispersion is preferably 10 to 99% by mass, more preferably 20 to 97% by mass with respect to the total mass of the solid content of the phosphor dispersion. When the concentration of the phosphor is less than 10% by mass, there is a possibility that the fluorescence cannot be sufficiently obtained from the obtained wavelength conversion layer 5. On the other hand, when the amount of the phosphor exceeds 99% by mass, the amount of the layered clay compound and the amount of the inorganic oxide fine particles are relatively decreased, and the dispersion stability of the phosphor in the phosphor dispersion liquid is lowered. There is a case.
 2-2.層状粘土化合物
 層状粘土化合物が蛍光体分散液に含まれると、蛍光体分散液の粘度が高まり、蛍光体の沈降が抑制される。さらに、得られる波長変換層5の強度が高まる。
2-2. Layered clay compound When the layered clay compound is contained in the phosphor dispersion liquid, the viscosity of the phosphor dispersion liquid increases, and sedimentation of the phosphor is suppressed. Furthermore, the strength of the obtained wavelength conversion layer 5 is increased.
 前述のように、層状粘土化合物は、主に導電性の低い非導電性層状粘土化合物で構成される。層状粘土化合物が非導電性層状粘土化合物であると波長変換層5に電流がリークし難くなる。 As described above, the layered clay compound is mainly composed of a non-conductive layered clay compound having low conductivity. If the layered clay compound is a non-conductive layered clay compound, it becomes difficult for the current to leak into the wavelength conversion layer 5.
 非導電性層状粘土化合物は、上記電気伝導率を満たす層状の粘土化合物であれば特に制限されないが、白雲母、金雲母、絹雲母、フッ素金雲母、カリウム四ケイ素雲母、合成雲母等の非膨潤性の粘土化合物であることが好ましい。一般的に、非膨潤性の粘土化合物のほうが、分子構造内部に水分を取り込み難いため、上記電気伝導率が低くなりやすい。 The non-conductive layered clay compound is not particularly limited as long as it is a layered clay compound satisfying the above electrical conductivity, but non-swelling such as muscovite, phlogopite, sericite, fluorine phlogopite, potassium tetrasilicon mica, synthetic mica, etc. It is preferable that it is a natural clay compound. In general, the non-swelling clay compound is less likely to take moisture into the molecular structure, so the electrical conductivity tends to be low.
 非導電性層状粘土化合物は、表面をアンモニウム塩等で修飾(表面処理)されていてもよい。非導電性層状粘土化合物の表面が修飾されていると、蛍光体分散液中に非導電性層状粘土化合物が分散しやすくなる。 The surface of the non-conductive layered clay compound may be modified (surface treatment) with an ammonium salt or the like. When the surface of the non-conductive layered clay compound is modified, the non-conductive layered clay compound is easily dispersed in the phosphor dispersion liquid.
 一方、非導電性層状粘土化合物の吸水率は、0.2質量%以上であることが好ましく、より好ましくは0.5~5質量%であり、さらに好ましくは1~2質量%である。非導電性層状粘土化合物の吸水率は、電気伝導率を抑制するとの観点からは、ある程度低いことが好ましいが、吸水率が0.2質量%未満であると、蛍光体分散液中で分散し難くなる。その結果、蛍光体分散液の粘度が高まり難く、蛍光体の沈降が十分に抑制されない場合がある。非導電性層状粘土化合物の吸水率は、水分計で測定する。水分計の例には、株式会社島津製作所製のMOC-120H等が含まれる。 On the other hand, the water absorption of the non-conductive layered clay compound is preferably 0.2% by mass or more, more preferably 0.5 to 5% by mass, and further preferably 1 to 2% by mass. The water absorption rate of the non-conductive layered clay compound is preferably low to some extent from the viewpoint of suppressing the electrical conductivity, but if the water absorption rate is less than 0.2% by mass, the water absorption rate is dispersed in the phosphor dispersion. It becomes difficult. As a result, the viscosity of the phosphor dispersion liquid is difficult to increase, and sedimentation of the phosphor may not be sufficiently suppressed. The water absorption of the non-conductive layered clay compound is measured with a moisture meter. Examples of the moisture meter include MOC-120H manufactured by Shimadzu Corporation.
 層状粘土化合物には、上記非導電性層状粘土化合物以外の粘土化合物(その他の粘土化合物)が含まれてもよい。その他の粘土化合物の例には、ヘクトライト、サポナイト、スチブンサイト、バイデライト、モンモリロナイト、ノントロナイト、またはベントナイト等のスメクタイト族粘土鉱物や、ナトリウム四ケイ素フッ素雲母、リチウム四ケイ素フッ素雲母等の膨潤性の粘土化合物等が含まれる。 The layered clay compound may contain a clay compound (other clay compound) other than the non-conductive layered clay compound. Examples of other clay compounds include smectite clay minerals such as hectorite, saponite, stevensite, beidellite, montmorillonite, nontronite, or bentonite, and swellables such as sodium tetrasilicon fluorine mica and lithium tetrasilicon fluorine mica. Clay compounds and the like are included.
 層状粘土化合物(非導電性層状粘土化合物及びその他の粘土化合物)の平均粒径は、0.1~100μmであることが好ましく、より好ましくは1~50μmである。層状粘土化合物の大きさが、1μm以上であると、前述の粘度向上効果が得られやすい。一方、層状粘土化合物の大きさが50μmより大きいと、得られる波長変換層5の光透過性が低下する場合がある。層状粘土化合物の大きさは、コールターカウンター法等で測定される。 The average particle size of the layered clay compound (non-conductive layered clay compound and other clay compounds) is preferably from 0.1 to 100 μm, more preferably from 1 to 50 μm. When the size of the layered clay compound is 1 μm or more, the above-described viscosity improving effect is easily obtained. On the other hand, if the size of the layered clay compound is larger than 50 μm, the light transmittance of the obtained wavelength conversion layer 5 may be lowered. The size of the layered clay compound is measured by a Coulter counter method or the like.
 蛍光体分散液に含まれる非導電性層状粘土化合物の量は、蛍光体分散液の固形分全質量に対して0.3~20質量%であることが好ましく、より好ましく0.5~15質量%である。非導電性層状粘土化合物の濃度が0.3質量%未満であると、蛍光体分散液の粘度が十分に高まらない。また、得られる波長変換層5の強度が十分に高まらない。一方、非導電性層状粘土化合物の濃度が20質量%を超えると、相対的に蛍光体の量が少なくなり、十分な蛍光が得られない。一方、その他の粘土化合物の量は、蛍光体分散液に含まれる非導電性層状粘土化合物の量に対して2質量%以下であることが好ましく、その他の粘土化合物が含まれないことが特に好ましい。
 なお、蛍光体分散液中の層状粘土化合物の割合が増えれば増えるほど、粘度が増加するわけではない。粘度は蛍光体分散液中の溶媒量、蛍光体量等、その他の成分との含有比率で定まる。
The amount of the non-conductive layered clay compound contained in the phosphor dispersion is preferably 0.3 to 20% by mass, more preferably 0.5 to 15% by mass with respect to the total mass of the solid content of the phosphor dispersion. %. When the concentration of the non-conductive layered clay compound is less than 0.3% by mass, the viscosity of the phosphor dispersion liquid is not sufficiently increased. Further, the strength of the obtained wavelength conversion layer 5 is not sufficiently increased. On the other hand, when the concentration of the non-conductive layered clay compound exceeds 20% by mass, the amount of the phosphor is relatively reduced and sufficient fluorescence cannot be obtained. On the other hand, the amount of the other clay compound is preferably 2% by mass or less with respect to the amount of the non-conductive layered clay compound contained in the phosphor dispersion liquid, and it is particularly preferable that no other clay compound is contained. .
Note that the viscosity does not increase as the proportion of the layered clay compound in the phosphor dispersion increases. Viscosity is determined by the content ratio with other components such as the amount of solvent in the phosphor dispersion and the amount of phosphor.
 2-3.無機酸化物微粒子
 蛍光体分散液に、無機酸化物微粒子が含まれると、蛍光体分散液の粘度がさらに高まる。無機酸化物微粒子の例には、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム等が含まれる。無機酸化物微粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。
2-3. Inorganic oxide fine particles When the inorganic oxide fine particles are contained in the phosphor dispersion liquid, the viscosity of the phosphor dispersion liquid is further increased. Examples of the inorganic oxide fine particles include silicon oxide, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide and the like. The surface of the inorganic oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent.
 無機酸化物微粒子は、多孔質状の粒子であってもよく、その比表面積は200m/g以上であることが好ましい。無機酸化物微粒子が多孔質であると、多孔質の空隙部に溶媒が入り込むため、蛍光体分散液の粘度が高まりやすい。ただし、蛍光体分散液の粘度は、単に無機酸化物微粒子の量によって定まるものではなく、無機酸化物微粒子と溶媒との比率や、層状粘土化合物の量等によっても変化する。 The inorganic oxide fine particles may be porous particles, and the specific surface area is preferably 200 m 2 / g or more. When the inorganic oxide fine particles are porous, the solvent enters the porous voids, so that the viscosity of the phosphor dispersion liquid tends to increase. However, the viscosity of the phosphor dispersion liquid is not simply determined by the amount of the inorganic oxide fine particles, but also varies depending on the ratio of the inorganic oxide fine particles and the solvent, the amount of the layered clay compound, and the like.
 無機酸化物微粒子の平均一次粒径は、5~100nmであることが好ましく、より好ましくは5~80nm、さらに好ましくは5~50nmである。無機酸化物微粒子の平均一次粒径が、このような範囲であると、蛍光体分散液の粘度が高まりやすい。無機酸化物微粒子の平均一次粒径は、コールターカウンター法で測定される。 The average primary particle size of the inorganic oxide fine particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, and still more preferably 5 to 50 nm. When the average primary particle size of the inorganic oxide fine particles is within such a range, the viscosity of the phosphor dispersion liquid tends to increase. The average primary particle size of the inorganic oxide fine particles is measured by a Coulter counter method.
 蛍光体分散液に含まれる無機酸化物微粒子の量は、蛍光体分散液の固形分全量に対して1~40質量%であることが好ましく、より好ましくは1~20質量%、さらに好ましくは1~10質量%である。無機酸化物微粒子の量が少なすぎると、蛍光体分散液の粘度が十分に高まらない。一方で、無機酸化物微粒子の量が多すぎると、相対的に層状粘土化合物の量が減少し、蛍光体分散液において、蛍光体が沈降したり、蛍光体の分散性が低下するおそれがある。 The amount of inorganic oxide fine particles contained in the phosphor dispersion is preferably 1 to 40% by mass, more preferably 1 to 20% by mass, and still more preferably 1%, based on the total solid content of the phosphor dispersion. ~ 10% by mass. When the amount of the inorganic oxide fine particles is too small, the viscosity of the phosphor dispersion liquid is not sufficiently increased. On the other hand, if the amount of the inorganic oxide fine particles is too large, the amount of the layered clay compound is relatively reduced, and in the phosphor dispersion liquid, the phosphor may settle or the dispersibility of the phosphor may be lowered. .
 2-4.溶媒
 蛍光体分散液には、溶媒が含まれる。溶媒は、蛍光体、層状粘土化合物、無機酸化物微粒子を均一に分散可能であれば、特に制限されないが、沸点が250℃以下の溶媒であることが好ましい。溶媒の沸点が250℃以下であると、蛍光体分散液の乾燥速度が高まりやすい。
2-4. Solvent The phosphor dispersion liquid contains a solvent. The solvent is not particularly limited as long as the phosphor, the layered clay compound, and the inorganic oxide fine particles can be uniformly dispersed, but a solvent having a boiling point of 250 ° C. or lower is preferable. When the boiling point of the solvent is 250 ° C. or less, the drying rate of the phosphor dispersion liquid tends to increase.
 溶媒は、メタノール、エタノール、プロパノール、ブタノール等のモノアルコール;エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられる。蛍光体分散液には、溶媒が一種のみ含まれてもよく、二種以上含まれてもよい。 Examples of the solvent include monoalcohols such as methanol, ethanol, propanol, and butanol; ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and the like. The phosphor dispersion liquid may contain only one kind of solvent, or two or more kinds.
 溶媒には、水が含まれてもよい。蛍光体分散液に水が含まれていると、層状粘土化合物の層間に水が入り込んで、蛍光体分散液の粘度が高まりやすくなる。 The solvent may contain water. When water is contained in the phosphor dispersion liquid, water enters between layers of the layered clay compound, and the viscosity of the phosphor dispersion liquid is likely to increase.
 蛍光体分散液に含まれる水の量は、蛍光体分散液全体に対して、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。蛍光体分散液における水の含有量が多すぎると、蛍光体分散液の濡れ性が低下する。そのため、蛍光体分散液を被塗布面(LED素子3の発光面や金属反射層2の表面、突起電極4の側面)に塗布したときに、均一な塗布膜が形成され難い。 The amount of water contained in the phosphor dispersion is preferably 5% by mass or less, and more preferably 2% by mass or less with respect to the entire phosphor dispersion. When there is too much content of water in a fluorescent substance dispersion liquid, the wettability of a fluorescent substance dispersion liquid will fall. For this reason, when the phosphor dispersion liquid is applied to the surface to be coated (the light emitting surface of the LED element 3, the surface of the metal reflection layer 2, the side surface of the protruding electrode 4), it is difficult to form a uniform coating film.
 蛍光体分散液に含まれる溶媒の総量は、蛍光体分散液全体の粘度に応じて適宜設定される。通常、蛍光体分散液に含まれる溶媒の総量は、蛍光体分散液全体に対して30~90質量%であることが好ましく、より好ましくは40~70質量%である。 The total amount of the solvent contained in the phosphor dispersion liquid is appropriately set according to the viscosity of the entire phosphor dispersion liquid. Usually, the total amount of the solvent contained in the phosphor dispersion is preferably 30 to 90% by mass, more preferably 40 to 70% by mass with respect to the entire phosphor dispersion.
 2-5.蛍光体分散液の調製方法
 蛍光体分散液は、蛍光体、層状粘土化合物、無機酸化物微粒子、溶媒を混合・攪拌して調製する。撹拌装置は、例えば、マグネチックスターラー、超音波分散装置、ホモジナイザー、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機、高圧衝撃式分散装置、自転公転ミキサーなどでありうる。
2-5. Method for preparing phosphor dispersion liquid A phosphor dispersion liquid is prepared by mixing and stirring a phosphor, a layered clay compound, inorganic oxide fine particles, and a solvent. The stirrer can be, for example, a magnetic stirrer, an ultrasonic dispersing device, a homogenizer, a stirring mill, a blade kneading stirrer, a thin-film swirling disperser, a high-pressure impact disperser, a rotation and revolution mixer, and the like.
 攪拌装置の具体例には、公知のウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DMPA・Sスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置等が含まれる。また、あわとり練太郎(シンキー社製)などの自転公転式ミキサーや超音波分散装置も蛍光体分散液の調製に好適である。 Specific examples of the stirrer include known Ultra Turrax (manufactured by IKA Japan), TK homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primix), TK Philmix (manufactured by Primix), Claremix. (M-Technics), Claire SS5 (M-Technics), Cavitron (Eurotech), media flow stirrers such as Fine Flow Mill (Pacific Kiko), Viscomill (Imex), Apex Mill (manufactured by Kotobuki Kogyo Co., Ltd.), Star Mill (manufactured by Ashizawa, Finetech), DMPA / S Super Flow (manufactured by Nihon Eirich), MPP Mill (manufactured by Inoue Seisakusho), spike mill (manufactured by Inoue Seisakusho), Mighty Mill Media such as Inoue Mfg. Co., Ltd., SC Mill (Mitsui Mining Co., Ltd.) (Manufactured by Sugino Machine Co., Ltd.) and Altimizer agitator, Nanomizer (manufactured by Yoshida Kikai), includes a high-pressure impact type dispersing device, etc., such as NANO 3000 (manufactured by Bitsubusha). In addition, a rotating and rotating mixer such as Awatori Nertaro (manufactured by Shinky Corporation) and an ultrasonic dispersion device are also suitable for preparing the phosphor dispersion.
 蛍光体は、非常に硬い粒子であるため、攪拌装置と蛍光体分散液とが接する部分の摩耗、及びこれに伴う摩耗粉の混入を避けることが好ましい。具体的には、攪拌装置と蛍光体分散液とが接する部分の材質を、チタニア、ジルコニア、アルミナ等のセラミックや、シリコーンカーバイドとすることが挙げられる。また、接液部分を、チタン系酸化物、クロム系窒化物、ダイアモンド・ライク・カーボンでコートすることも好ましい。 Since the phosphor is very hard particles, it is preferable to avoid wear at the portion where the stirrer and the phosphor dispersion liquid are in contact with each other, and mixing of wear powder associated therewith. Specifically, the material of the portion where the stirrer and the phosphor dispersion are in contact with each other may be ceramic such as titania, zirconia, alumina, or silicone carbide. It is also preferable to coat the wetted part with titanium-based oxide, chromium-based nitride, diamond-like carbon.
 得られる蛍光体分散液の25℃での粘度は10~1000cPであることが好ましく、12~800cPであることがより好ましく、20~600cPであることがさらに好ましい。蛍光体分散液の粘度は、溶媒の量や、層状粘土化合物の量、無機酸化物微粒子の量等で調整する。蛍光体分散液の粘度は、振動式粘度計で測定される。 The viscosity of the obtained phosphor dispersion at 25 ° C. is preferably 10 to 1000 cP, more preferably 12 to 800 cP, and still more preferably 20 to 600 cP. The viscosity of the phosphor dispersion is adjusted by the amount of the solvent, the amount of the layered clay compound, the amount of the inorganic oxide fine particles, and the like. The viscosity of the phosphor dispersion is measured with a vibration viscometer.
 3.LED装置の製造方法
 本発明のLED装置100の製造方法には、以下の2つの工程が含まれる。
 (1)基板1上にLED素子3及び金属部が配置されたLEDパッケージを準備する工程
 (2)前記LEDパッケージに配置されたLED素子3及び金属部を被覆するように、波長変換層5を形成する工程
3. Manufacturing method of LED device The manufacturing method of the LED device 100 of the present invention includes the following two steps.
(1) Step of preparing an LED package in which the LED element 3 and the metal part are arranged on the substrate 1 (2) The wavelength conversion layer 5 is formed so as to cover the LED element 3 and the metal part arranged in the LED package. Forming process
 本発明の製造方法には、必要に応じて、(3)波長変換層5上に封止層6を形成する工程が含まれてもよい。 The manufacturing method of the present invention may include (3) a step of forming the sealing layer 6 on the wavelength conversion layer 5 as necessary.
 3-1.LEDパッケージ準備工程
 LEDパッケージ準備工程では、基板1上に、金属部(金属反射層2や金属配線、突起電極4等)が形成された基板1を準備し、当該基板1上にLED素子3を配置する。金属反射層2や金属配線等が形成された基板1は、公知の方法で作製する。当該基板1の作製方法は、樹脂と所望の形状にパターニングされた金属板(銅板等)とを一体成型する方法等でありうる。金属反射層2の光反射性を高めるため、上記金属板の表面を、さらにメッキ処理してもよい。
3-1. LED Package Preparation Step In the LED package preparation step, a substrate 1 on which a metal part (a metal reflection layer 2, a metal wiring, a protruding electrode 4, etc.) is formed on a substrate 1 is prepared, and an LED element 3 is mounted on the substrate 1. Deploy. The substrate 1 on which the metal reflection layer 2 and the metal wiring are formed is produced by a known method. The method for manufacturing the substrate 1 may be a method of integrally molding a resin and a metal plate (such as a copper plate) patterned into a desired shape. In order to improve the light reflectivity of the metal reflective layer 2, the surface of the metal plate may be further plated.
 上記金属反射層2が形成された基板1上に、LED素子3を固定し、このLED素子3と金属配線とを電気的に接続する。LED素子3の基板1への固定方法は特に制限されず、例えばダイボンド等でLED素子3を固定する方法でありうる。また、LED素子3と金属配線との電気的な接続は、ワイヤを介してもよく、突起電極4を介してもよい。 The LED element 3 is fixed on the substrate 1 on which the metal reflective layer 2 is formed, and the LED element 3 and the metal wiring are electrically connected. The method for fixing the LED element 3 to the substrate 1 is not particularly limited, and may be a method for fixing the LED element 3 by, for example, die bonding. Further, the electrical connection between the LED element 3 and the metal wiring may be via a wire or via the protruding electrode 4.
 3-2.波長変換層形成工程
 前述のLEDパッケージのLED素子3及び金属部を被覆するように、波長変換層5を成膜する。前述のように、本発明の方法で得られる波長変換層5は、吸湿しても電流がリークし難いため、波長変換層5にバインダが含まれなくともよいが、セラミックバインダ(ポリシロキサン)がさらに含まれてもよい。そこで、波長変換層5の成膜方法は、以下の3種類の方法でありうる。
3-2. Wavelength conversion layer forming step The wavelength conversion layer 5 is formed so as to cover the LED element 3 and the metal part of the LED package described above. As described above, the wavelength conversion layer 5 obtained by the method of the present invention does not leak a current even if it absorbs moisture. Therefore, the wavelength conversion layer 5 may not contain a binder, but a ceramic binder (polysiloxane) is used. Further, it may be included. Therefore, the film forming method of the wavelength conversion layer 5 can be the following three methods.
 (i)蛍光体分散液を、塗布・硬化させて、波長変換層5を形成する方法(第一の方法)
 (ii)蛍光体分散液と、ポリシロキサン前駆体との混合液を、塗布・硬化させて波長変換層5を形成する方法(第二の方法)
 (iii)蛍光体分散液を塗布・硬化させて蛍光体分散液の硬化膜を成膜するステップと、当該蛍光体分散液の硬化膜上に、別途ポリシロキサン前駆体を塗布するステップとを行い、波長変換層5を形成する方法(第三の方法)
(I) Method of forming wavelength conversion layer 5 by applying and curing phosphor dispersion (first method)
(Ii) A method of forming the wavelength conversion layer 5 by applying and curing a mixed solution of a phosphor dispersion and a polysiloxane precursor (second method)
(Iii) Applying and curing the phosphor dispersion liquid to form a cured film of the phosphor dispersion liquid, and separately applying a polysiloxane precursor on the cured film of the phosphor dispersion liquid Method for forming wavelength conversion layer 5 (third method)
 3-2-1.第一の方法
 第一の方法では、前述の蛍光体分散液を、LED素子3及び金属部(例えば金属反射層2)を被覆するように、蛍光体分散液を塗布する。蛍光体分散液の塗布方法は、特に制限されず、バーコート法、スピンコート法、スプレーコート法、ディスペンス法、ジェットディスペンス法、インクジェット法等、従来公知の方法でありうる。特に、スプレーコート法が、薄い膜を形成可能であるため好ましい。
3-2-1. First Method In the first method, the phosphor dispersion liquid is applied so that the phosphor dispersion liquid covers the LED element 3 and the metal part (for example, the metal reflection layer 2). The method for applying the phosphor dispersion liquid is not particularly limited, and may be a conventionally known method such as a bar coating method, a spin coating method, a spray coating method, a dispensing method, a jet dispensing method, and an ink jet method. In particular, the spray coating method is preferable because a thin film can be formed.
 蛍光体分散液の塗布後、塗膜中に含まれる溶媒を乾燥させて、塗膜を硬化させる。溶媒を乾燥させる際の温度は、通常20~200℃であり、好ましくは25~150℃である。溶媒乾燥時の温度が20℃未満であると、塗膜が十分に乾燥しないおそれがある。一方、乾燥温度が200℃を超えると、LED素子3に影響を及ぼす可能性がある。 After applying the phosphor dispersion liquid, the solvent contained in the coating film is dried to cure the coating film. The temperature at which the solvent is dried is usually 20 to 200 ° C., preferably 25 to 150 ° C. There exists a possibility that a coating film may not fully dry that the temperature at the time of solvent drying is less than 20 degreeC. On the other hand, if the drying temperature exceeds 200 ° C., the LED element 3 may be affected.
 3-2-2.第二の方法
 第二の方法では、前述の蛍光体分散液と、ポリシロキサン前駆体との混合液を調製し、当該混合液を、LED素子3及び金属部(例えば金属反射層2)を被覆するように、蛍光体分散液を塗布する。混合液には、必要に応じて溶媒を混合してもよい。蛍光体分散液とポリシロキサン前駆体等の混合方法は特に制限されず、一般的な混合・攪拌方法でありうる。
3-2-2. Second Method In the second method, a mixed liquid of the above-described phosphor dispersion liquid and a polysiloxane precursor is prepared, and the mixed liquid is coated on the LED element 3 and a metal part (for example, the metal reflection layer 2). As described above, the phosphor dispersion liquid is applied. You may mix a solvent with a liquid mixture as needed. The mixing method of the phosphor dispersion and the polysiloxane precursor is not particularly limited, and may be a general mixing / stirring method.
 蛍光体分散液と混合するポリシロキサン前駆体は、2官能、3官能、または4官能のシラン化合物(モノマー);もしくはこれらが重合したオリゴマーでありうる。 The polysiloxane precursor mixed with the phosphor dispersion may be a bifunctional, trifunctional, or tetrafunctional silane compound (monomer); or an oligomer obtained by polymerizing these.
 4官能のシラン化合物の例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのテトラアルコキシシラン、テトラアリールオキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。 Examples of tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxymonobutoxy Silane, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dibutoxymonomethoxymonoethoxysilane, Examples include tetraalkoxysilanes such as dibutoxymonoethoxymonopropoxysilane and monomethoxymonoethoxymonopropoxymonobutoxysilane, and tetraaryloxysilane. Among these, tetramethoxysilane and tetraethoxysilane are preferable.
 3官能のシラン化合物の例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。これらの中でも、メチルトリメトキシシランおよびメチルトリエトキシシランがより好ましく、メチルトリメトキシシランがさらに好ましい。 Examples of trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltripentyloxysilane, methylmonomethoxydiethoxysilane, methylmonomethoxydipropoxysilane, methylmonomethoxydipentyl Monomethylsilane compounds such as oxysilane, methylmonomethoxydiphenyloxysilane, methylmethoxyethoxypropoxysilane, methylmonomethoxymonoethoxymonobutoxysilane; ethyltrimethoxysilane, ethyltripropoxysilane, ethyltripentyloxysilane, ethyltriphenyloxy Silane, ethyl monomethoxydiethoxysilane, ethyl monomethoxydipropoxysilane, ethyl monomethoxydipentyloxy Monoethylsilane compounds such as lan, ethylmonomethoxydiphenyloxysilane, ethylmonomethoxymonoethoxymonobutoxysilane; propyltrimethoxysilane, propyltriethoxysilane, propyltripentyloxysilane, propyltriphenyloxysilane, propylmonomethoxydi Monopropylsilane compounds such as ethoxysilane, propylmonomethoxydipropoxysilane, propylmonomethoxydipentyloxysilane, propylmonomethoxydiphenyloxysilane, propylmethoxyethoxypropoxysilane, propylmonomethoxymonoethoxymonobutoxysilane; butyltrimethoxysilane, Butyltriethoxysilane, Butyltripropoxysilane, Butyltripentyloxysilane, Butyltriphenyl Monobutylsilane compounds such as oxysilane, butylmonomethoxydiethoxysilane, butylmonomethoxydipropoxysilane, butylmonomethoxydipentyloxysilane, butylmonomethoxydiphenyloxysilane, butylmethoxyethoxypropoxysilane, butylmonomethoxymonoethoxymonobutoxysilane Is included. Among these, methyltrimethoxysilane and methyltriethoxysilane are more preferable, and methyltrimethoxysilane is more preferable.
 2官能のシラン化合物の例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。 Examples of bifunctional silane compounds include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxysilane , Ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethylmethoxypropoxy Silane, ethyldipentyloxysilane, ethyldiphenyloxysilane, propyldimethoxysilane, propyl Toxiethoxysilane, Propylethoxypropoxysilane, Propyldiethoxysilane, Propyldipentyloxysilane, Propyldiphenyloxysilane, Butyldimethoxysilane, Butylmethoxyethoxysilane, Butyldiethoxysilane, Butylethoxypropoxysilane, Butyldipropoxysilane, Butyl Methyldipentyloxysilane, butylmethyldiphenyloxysilane, dimethyldimethoxysilane, dimethylmethoxyethoxysilane, dimethyldiethoxysilane, dimethyldipentyloxysilane, dimethyldiphenyloxysilane, dimethylethoxypropoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, diethyl Methoxypropoxysilane, diethyldiethoxysilane, diethyleth Cypropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipentyloxysilane, dipropyldiphenyloxysilane, dibutyldimethoxysilane, dibutyldiethoxysilane, dibutyldipropoxysilane, dibutylmethoxypentyloxysilane, dibutylmethoxyphenyl Oxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldipentyloxysilane, methylethyldiphenyloxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, methylbutyldimethoxysilane, methylbutyl Diethoxysilane, methylbutyldipropoxysilane, methylethylethoxypropoxysilane, ethylpropyl Includes propyldimethoxysilane, ethylpropylmethoxyethoxysilane, dipropyldimethoxysilane, dipropylmethoxyethoxysilane, propylbutyldimethoxysilane, propylbutyldiethoxysilane, dibutylmethoxyethoxysilane, dibutylmethoxypropoxysilane, dibutylethoxypropoxysilane, etc. It is. Of these, dimethoxysilane, diethoxysilane, methyldimethoxysilane, and methyldiethoxysilane are preferable.
 一方、上記シラン化合物のオリゴマーは、上記シラン化合物の一種、または二種以上を、酸触媒、水、有機溶媒の存在下で加水分解した後、これを縮合反応させて得られる。 On the other hand, the oligomer of the silane compound is obtained by hydrolyzing one or more of the silane compounds in the presence of an acid catalyst, water, and an organic solvent, and then subjecting this to a condensation reaction.
 ポリシロキサン前駆体がオリゴマーである場合、当該オリゴマーの質量平均分子量は、好ましくは1000~3000であり、より好ましくは1200~2700であり、さらに好ましくは1500~2000である。オリゴマーの質量平均分子量が3000を超えると、蛍光体分散液とポリシロキサン前駆体との混合液の粘度が過剰に高くなり、均一な膜形成が困難となる場合がある。質量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される値(ポリスチレン換算)である。オリゴマーの質量平均分子量は、オリゴマー調製時の反応条件(特に反応時間)等で調整される。 When the polysiloxane precursor is an oligomer, the mass average molecular weight of the oligomer is preferably 1000 to 3000, more preferably 1200 to 2700, and further preferably 1500 to 2000. When the mass average molecular weight of the oligomer exceeds 3000, the viscosity of the mixed liquid of the phosphor dispersion liquid and the polysiloxane precursor becomes excessively high, and it may be difficult to form a uniform film. The mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography. The mass average molecular weight of the oligomer is adjusted by the reaction conditions (particularly the reaction time) at the time of oligomer preparation.
 蛍光体分散液とポリシロキサン前駆体との混合液に混合可能な溶媒は、ポリシロキサン前駆体を溶解、もしくは均一に分散可能であり、かつ蛍光体分散液との相溶性が良好なものであれば特に制限されず;例えば、上記オリゴマー調製用の溶媒を混合してもよく、異なる溶媒を混合してもよい。 The solvent that can be mixed with the phosphor dispersion and the polysiloxane precursor should be a solvent that can dissolve or uniformly disperse the polysiloxane precursor and has good compatibility with the phosphor dispersion. For example, the solvent for preparing the oligomer may be mixed, or different solvents may be mixed.
 溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類、あるいはこれらのモノアセテート類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;等が含まれる。蛍光体分散液とポリシロキサン前駆体との混合液には、これらの溶媒のうち1種のみを混合してもよく、2種以上混合してもよい。 Examples of the solvent include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene glycol, diethylene glycol, Polyhydric alcohols such as propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono Propyl ether, diethylene glycol monobutyl ether, propylene glycol Monoethers of polyhydric alcohols such as methyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, or their monoacetates; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether Polyhydric alcohol ethers in which all hydroxyl groups of polyhydric alcohols such as ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol methyl ethyl ether are all alkyl etherified; methyl acetate, ethyl acetate , Butyl acetate, etc. Ester ethers; include the like; ketones such as acetone, methyl ethyl ketone and methyl isoamyl ketone. In the mixed liquid of the phosphor dispersion liquid and the polysiloxane precursor, only one kind of these solvents may be mixed, or two or more kinds may be mixed.
 また、蛍光体分散液とポリシロキサン前駆体との混合液の塗布方法は、特に制限されず、前述の第一の方法の蛍光体分散液の塗布方法と同様でありうる。 The method for applying the mixed liquid of the phosphor dispersion and the polysiloxane precursor is not particularly limited, and may be the same as the method for applying the phosphor dispersion in the first method described above.
 上記混合液の塗布後、塗膜を100℃以上、好ましくは150~300℃に加熱し、塗膜を乾燥・硬化させる。加熱温度が100℃未満であると、ポリシロキサン前駆体の脱水縮合時に生じる水や、混合液に含まれる溶媒を十分に除去できず、塗膜の耐光性等が低下する可能性がある。 After applying the above mixed solution, the coating film is heated to 100 ° C. or higher, preferably 150 to 300 ° C., and the coating film is dried and cured. When the heating temperature is less than 100 ° C., water generated during the dehydration condensation of the polysiloxane precursor and the solvent contained in the mixed solution cannot be sufficiently removed, and the light resistance of the coating film may be lowered.
 3-2-3.第三の方法
 第三の方法では、前述の蛍光体分散液を、LED素子3及び金属部(例えば金属反射層2)上に塗布・硬化させて蛍光体分散液の硬化膜を成膜するステップと、当該蛍光体分散液の硬化膜上に、別途ポリシロキサン前駆体を塗布するステップとを行う。
3-2-3. Third Method In the third method, the phosphor dispersion liquid described above is applied and cured on the LED element 3 and the metal part (for example, the metal reflection layer 2) to form a cured film of the phosphor dispersion liquid. And a step of separately applying a polysiloxane precursor on the cured film of the phosphor dispersion liquid.
 蛍光体分散液は、LED素子3及び金属部を被覆するように塗布する。当該蛍光体分散液の塗布方法及び硬化方法は、前述の第一の方法の蛍光体分散液の塗布方法と同様でありうる。 The phosphor dispersion liquid is applied so as to cover the LED element 3 and the metal part. The method for applying and curing the phosphor dispersion liquid may be the same as the method for applying the phosphor dispersion liquid in the first method described above.
 蛍光体分散液の硬化膜の形成後、当該硬化膜を被覆するように、ポリシロキサン前駆体を塗布する。上記蛍光体分散液の硬化膜上に、ポリシロキサン前駆体を塗布すると、ポリシロキサン前駆体が、蛍光体や無機酸化物微粒子、層状粘土化合物等の間に入り込む。その結果、得られる波長変換層5において、蛍光体や無機酸化物微粒子、層状粘土化合物がポリシロキサンによって結着される。 After forming the cured film of the phosphor dispersion liquid, a polysiloxane precursor is applied so as to cover the cured film. When a polysiloxane precursor is applied onto the cured film of the phosphor dispersion liquid, the polysiloxane precursor enters between the phosphor, the inorganic oxide fine particles, the layered clay compound, and the like. As a result, in the obtained wavelength conversion layer 5, phosphors, inorganic oxide fine particles, and layered clay compounds are bound by polysiloxane.
 蛍光体分散液の硬化膜上に塗布するポリシロキサン前駆体は、第二の方法で、蛍光体分散液に混合するポリシロキサン前駆体と同様でありうる。ポリシロキサン前駆体の塗布時、必要に応じてポリシロキサン前駆体と溶媒とを混合してもよい。 The polysiloxane precursor applied onto the cured film of the phosphor dispersion liquid may be the same as the polysiloxane precursor mixed with the phosphor dispersion liquid in the second method. When applying the polysiloxane precursor, the polysiloxane precursor and a solvent may be mixed as necessary.
 ポリシロキサン前駆体の塗布方法は特に制限されず、蛍光体分散液の塗布方法と同様でありうる。また、ポリシロキサン前駆体の塗布後、塗膜を100℃以上、好ましくは150~300℃に加熱し、塗膜を乾燥・硬化させる。加熱温度が100℃未満であると、ポリシロキサン前駆体の脱水縮合時に生じる水を十分に除去できず、塗膜の耐光性等が低下する可能性がある。 The method for applying the polysiloxane precursor is not particularly limited, and may be the same as the method for applying the phosphor dispersion. After the polysiloxane precursor is applied, the coating film is heated to 100 ° C. or more, preferably 150 to 300 ° C., and the coating film is dried and cured. If the heating temperature is less than 100 ° C., water generated during the dehydration condensation of the polysiloxane precursor cannot be sufficiently removed, and the light resistance of the coating film may be lowered.
 3-3.封止層形成工程
 前述のように、本発明の製造方法には、波長変換層5を被覆する封止層6の形成工程が含まれてもよい。封止層6の形成方法は、封止層6に含まれる成分に応じて適宜選択される。
3-3. Sealing Layer Formation Step As described above, the manufacturing method of the present invention may include a formation step of the sealing layer 6 that covers the wavelength conversion layer 5. The formation method of the sealing layer 6 is appropriately selected according to the components contained in the sealing layer 6.
 例えば、樹脂が含まれる封止層6を形成する場合、当該樹脂(シリコーン樹脂やエポキシ樹脂等)またはその前駆体が含まれる樹脂組成物を調製し、当該組成物を波長変換層5上に塗布・硬化させる。樹脂組成物には、溶媒が含まれてもよい。当該溶媒は、上記樹脂またはその前駆体を溶解させることが可能なものであれば、特に制限されず、例えばトルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジエチルエーテル、テトラヒドロフランなどのエーテル類、プロピレングリコールモノメチルエーテルアセテート、エチルアセテートなどのエステル類等でありうる。 For example, in the case of forming the sealing layer 6 containing a resin, a resin composition containing the resin (silicone resin, epoxy resin, etc.) or a precursor thereof is prepared, and the composition is applied on the wavelength conversion layer 5・ Curing. The resin composition may contain a solvent. The solvent is not particularly limited as long as it can dissolve the resin or the precursor thereof, for example, hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; diethyl ether, tetrahydrofuran and the like And ethers such as propylene glycol monomethyl ether acetate and ethyl acetate.
 上記樹脂組成物の塗布方法は、特に制限されず、ディスペンサ等の一般的な塗布装置による塗布方法でありうる。樹脂組成物の硬化方法や硬化条件は、樹脂の種類により適宜選択する。硬化方法の一例として、加熱硬化が挙げられる。 The coating method of the resin composition is not particularly limited, and may be a coating method using a general coating apparatus such as a dispenser. The curing method and curing conditions of the resin composition are appropriately selected depending on the type of resin. An example of the curing method is heat curing.
 一方、ポリシロキサンが含まれる封止層6を形成する場合、ポリシロキサン前駆体が含まれるポリシロキサン前駆体含有液を調製し、当該含有液を波長変換層5上に塗布・硬化させる。ポリシロキサン前駆体含有液には、溶媒が含まれてもよい。ポリシロキサン前駆体含有液に含まれるポリシロキサン前駆体及び溶媒は、前述の波長変換層5の成膜工程(第三の方法)で塗布するポリシロキサン前駆体及び溶媒等と同様でありうる。また、ポリシロキサン前駆体含有組成物の塗布方法及び硬化方法も、前述の波長変換層5の成膜工程(第三の方法)と同様の方法でありうる。 On the other hand, when forming the sealing layer 6 containing polysiloxane, a polysiloxane precursor-containing liquid containing a polysiloxane precursor is prepared, and the containing liquid is applied and cured on the wavelength conversion layer 5. The polysiloxane precursor-containing liquid may contain a solvent. The polysiloxane precursor and the solvent contained in the polysiloxane precursor-containing liquid can be the same as the polysiloxane precursor and the solvent applied in the film forming step (third method) of the wavelength conversion layer 5 described above. Moreover, the application | coating method and hardening method of a polysiloxane precursor containing composition can also be the same method as the film-forming process (3rd method) of the above-mentioned wavelength conversion layer 5. FIG.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
 (1)層状粘土化合物の物性
 (層状粘土化合物の2質量%水溶液の電気伝導率の測定)
 表1に示す層状粘土化合物及び純水を、それぞれ、層状粘土化合物の濃度が2質量%となるように混合した。当該混合液を5分間超音波で分散し、層状粘土化合物を十分に分散させた。得られた水溶液の電気伝導率を、株式会社堀場製作所製の電気伝導率計LAQUAtwinB-771で測定した。測定結果を表1に示す。
(1) Physical properties of layered clay compound (Measurement of electrical conductivity of 2% by weight aqueous solution of layered clay compound)
The layered clay compound and pure water shown in Table 1 were mixed so that the concentration of the layered clay compound was 2% by mass. The mixed solution was dispersed with ultrasonic waves for 5 minutes to sufficiently disperse the layered clay compound. The electrical conductivity of the obtained aqueous solution was measured with an electrical conductivity meter LAQUATwin B-771 manufactured by Horiba, Ltd. The measurement results are shown in Table 1.
 (層状粘土化合物の吸水率の測定)
 層状粘土化合物の吸水率は、株式会社 島津製作所製の水分計MOC-120Hを用いて測定した。測定結果を表1に示す。
(Measurement of water absorption of layered clay compounds)
The water absorption rate of the layered clay compound was measured using a moisture meter MOC-120H manufactured by Shimadzu Corporation. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (2)蛍光体分散液の材料
 蛍光体分散液には、上記層状粘土化合物の他に、以下の材料を用いた。
 ・蛍光体
 YAG蛍光体  (根本特殊化学社製 Y-468)
 酸窒化ケイ素系蛍光体(根本特殊化学社製 ASK-23)
 ・無機酸化物微粒子
 シリカ(日本アエロジル社製 RX300)
 アルミナ(日本アエロジル社製 Alu-C)
 ・溶媒
 溶媒(1)1,3-ブタンジオール及びエチルアルコールの混合液(重量比3:2)
 溶媒(2)プロピレングリコール及びイソプロピルアルコールの混合液(重量比3:2)
(2) Material of phosphor dispersion liquid In addition to the layered clay compound, the following materials were used for the phosphor dispersion liquid.
・ Phosphor YAG phosphor (Y-468, manufactured by Nemoto Special Chemical)
Silicon oxynitride phosphor (ASK-23 manufactured by Nemoto Special Chemical Co., Ltd.)
・ Inorganic oxide fine particles Silica (RX300 manufactured by Nippon Aerosil Co., Ltd.)
Alumina (Alu-C made by Nippon Aerosil Co., Ltd.)
・ Solvent Solvent (1) Mixture of 1,3-butanediol and ethyl alcohol (weight ratio 3: 2)
Solvent (2) Propylene glycol and isopropyl alcohol mixture (weight ratio 3: 2)
 ・ポリシロキサン前駆体含有液
 以下の方法で調製されるポリシロキサン前駆体含有液(1)
 以下の方法で調製されるポリシロキサン前駆体含有液(2)
Polysiloxane precursor-containing liquid Polysiloxane precursor-containing liquid prepared by the following method (1)
Polysiloxane precursor-containing liquid prepared by the following method (2)
 <ポリシロキサン前駆体含有液(1)の調製方法>
 テトラメトキシシラン80g、メチルトリメトキシシラン72g、n-ブタノール140g、メチル-3-メトキシプロピオネート140g、水70g、及び硝酸0.1gを、25℃で3時間攪拌して加水分解反応させた。その後、26℃で2日間反応させて、ポリシロキサン前駆体(1)を含む反応溶液を得た。当該反応溶液400gに、n-ブタノール100g及びメチル-3-メトキシプロピオネート100gを混合し、ポリシロキサン前駆体含有液(1)を得た。
<Preparation Method of Polysiloxane Precursor-Containing Liquid (1)>
80 g of tetramethoxysilane, 72 g of methyltrimethoxysilane, 140 g of n-butanol, 140 g of methyl-3-methoxypropionate, 70 g of water, and 0.1 g of nitric acid were stirred at 25 ° C. for 3 hours to cause a hydrolysis reaction. Then, it was made to react at 26 degreeC for 2 days, and the reaction solution containing a polysiloxane precursor (1) was obtained. To 400 g of the reaction solution, 100 g of n-butanol and 100 g of methyl-3-methoxypropionate were mixed to obtain a polysiloxane precursor-containing liquid (1).
 ポリシロキサン前駆体(1)の分子量をGPCで測定したところ、ポリスチレン換算の重量平均分子量は1600であった。 When the molecular weight of the polysiloxane precursor (1) was measured by GPC, the weight average molecular weight in terms of polystyrene was 1600.
 <ポリシロキサン前駆体含有液(2)の調製方法>
 メチルトリエトキシシラン75gを、エチレングリコールジメチルエーテル400gに溶解させて攪拌した。当該混合物に、純水25g及び濃硝酸0.1gの混合物をゆっくり滴下した。得られた溶液を25℃で3時間攪拌し、室温で6日間静置して、ポリシロキサン前駆体(2)を得た。得られた溶液を120~140mmHg、40℃にて1時間減圧蒸留してポリシロキサン前駆体含有液(2)を得た。
<Preparation Method of Polysiloxane Precursor-Containing Liquid (2)>
75 g of methyltriethoxysilane was dissolved in 400 g of ethylene glycol dimethyl ether and stirred. A mixture of 25 g of pure water and 0.1 g of concentrated nitric acid was slowly added dropwise to the mixture. The resulting solution was stirred at 25 ° C. for 3 hours and allowed to stand at room temperature for 6 days to obtain a polysiloxane precursor (2). The obtained solution was distilled under reduced pressure at 120 to 140 mmHg and 40 ° C. for 1 hour to obtain a polysiloxane precursor-containing liquid (2).
 ポリシロキサン前駆体(2)の分子量をGPCで測定したところ、ポリスチレン換算の重量平均分子量は1500であった。 When the molecular weight of the polysiloxane precursor (2) was measured by GPC, the weight average molecular weight in terms of polystyrene was 1500.
 (3)蛍光体分散液の調製
 (3.1)蛍光体分散液(1)の調製
 YAG蛍光体50質量部と、層状粘土化合物(1)2質量部と、無機酸化物微粒子(シリカ 商品名:RX300、日本アエロジル社製)2質量部と、1,3-ブタンジオールとエチルアルコールとの混合液(重量比3:2)56質量部とを混合した。得られた混合液を、自転公転ミキサー(あわとり練太郎ARE-310:シンキー社製)にて、1000rpmで5分間分散させて、蛍光体分散液(1)を調製した。
(3) Preparation of phosphor dispersion liquid (3.1) Preparation of phosphor dispersion liquid (1) 50 parts by mass of YAG phosphor, 2 parts by mass of layered clay compound (1), and inorganic oxide fine particles (silica product name) : RX300, manufactured by Nippon Aerosil Co., Ltd.) and 2 parts by mass of a mixed liquid of 1,3-butanediol and ethyl alcohol (weight ratio 3: 2) were mixed. The obtained mixed liquid was dispersed for 5 minutes at 1000 rpm with a rotation and revolution mixer (Awatori Netaro ARE-310: manufactured by Sinky Corporation) to prepare a phosphor dispersion liquid (1).
 (3.2)蛍光体分散液(2)~(21)の調製
 下記表2に示される組成とした以外は、蛍光体分散液(1)と同様に、蛍光体分散液(2)~(21)を調製した。
(3.2) Preparation of phosphor dispersions (2) to (21) Phosphor dispersions (2) to (21) were prepared in the same manner as phosphor dispersion (1) except that the compositions shown in Table 2 below were used. 21) was prepared.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (4)LED装置の製造
 <実施例1>
 図1に示される、金属反射層2(銀メッキ)を有する芳香族ポリアミド製円形基板(開口径3mm、底面直径2mm、開口部の壁面傾斜角度60°)を準備した。基板1の開口部中央に、1つの青色LED素子3(直方体状;200μm×300μm×100μm)をダイボンド用接着剤で固定した。併せて、LED素子のアノード電極及びカソード電極を、それぞれワイヤで接続し、LEDパッケージを得た。
(4) Production of LED device <Example 1>
An aromatic polyamide circular substrate (opening diameter 3 mm, bottom surface diameter 2 mm, opening wall inclination angle 60 °) having a metal reflection layer 2 (silver plating) shown in FIG. 1 was prepared. One blue LED element 3 (cuboid: 200 μm × 300 μm × 100 μm) was fixed to the center of the opening of the substrate 1 with a die-bonding adhesive. In addition, the anode electrode and the cathode electrode of the LED element were respectively connected by wires to obtain an LED package.
 LEDパッケージのLED素子3、及び金属反射層2を被覆するように、前述の蛍光体分散液(1)をスプレー塗布した。スプレー塗布時のスプレー圧は、0.2MPaとした。また、スプレーノズルとLEDパッケージとの相対移動速度は、得られる波長変換層の厚みが所望の厚みとなるように、適宜調整した。具体的には、得られるLED素子から出射する白色光の色度(x値)が0.33となるよう、波長変換層の厚み(スプレーノズルとLEDパッケージとの相対移動速度)を調整した。蛍光体分散液の塗布後、150℃で1時間加熱し、波長変換層を成膜した。 The above-mentioned phosphor dispersion liquid (1) was applied by spraying so as to cover the LED element 3 of the LED package and the metal reflection layer 2. The spray pressure at the time of spray application was 0.2 MPa. Moreover, the relative moving speed of the spray nozzle and the LED package was appropriately adjusted so that the thickness of the obtained wavelength conversion layer became a desired thickness. Specifically, the thickness of the wavelength conversion layer (relative movement speed between the spray nozzle and the LED package) was adjusted so that the chromaticity (x value) of white light emitted from the obtained LED element was 0.33. After application of the phosphor dispersion, heating was performed at 150 ° C. for 1 hour to form a wavelength conversion layer.
 <実施例2~13、16~17、及び比較例1~8>
 実施例1における蛍光体分散液(1)に替えて、上記表2に示される蛍光体分散液(もしくは蛍光体分散液とポリシロキサン前駆体含有液との混合液)を塗布した以外は、実施例1と同様に、波長変換層を成膜した。
<Examples 2 to 13, 16 to 17, and Comparative Examples 1 to 8>
It implemented except having applied the fluorescent substance dispersion liquid (or liquid mixture of fluorescent substance dispersion liquid and polysiloxane precursor containing liquid) shown in the said Table 2 instead of the fluorescent substance dispersion liquid (1) in Example 1. As in Example 1, a wavelength conversion layer was formed.
 <実施例14>
 実施例1における蛍光体分散液(1)に替えて、上記表2に示されるように、蛍光体分散液(6)を塗布し、実施例1と同様に硬化させた。さらに、前述のポリシロキサン前駆体含有液(2)を、蛍光体分散液の硬化物上に塗布した。その後、150℃で1時間加熱し、蛍光体分散液の硬化物、及びポリシロキサンを含む波長変換層を成膜した。ポリシロキサン前駆体含有液(2)の塗布量は、得られる波長変換層全体の質量に対して、ポリシロキサンの質量が10質量%となるように調整した。
<Example 14>
Instead of the phosphor dispersion liquid (1) in Example 1, as shown in Table 2 above, the phosphor dispersion liquid (6) was applied and cured in the same manner as in Example 1. Furthermore, the above-mentioned polysiloxane precursor containing liquid (2) was apply | coated on the hardened | cured material of fluorescent substance dispersion liquid. Then, it heated at 150 degreeC for 1 hour, and formed the wavelength conversion layer containing the hardened | cured material of a phosphor dispersion liquid, and polysiloxane. The coating amount of the polysiloxane precursor-containing liquid (2) was adjusted so that the mass of the polysiloxane was 10% by mass with respect to the mass of the entire wavelength conversion layer to be obtained.
 <実施例15>
 実施例1における蛍光体分散液(1)に替えて、上記表2に示されるように、蛍光体分散液(20)を塗布した。その後、150℃で1時間加熱し、波長変換層を成膜した。
 さらに、前述のポリシロキサン前駆体(2)を、波長変換層上に塗布し、150℃で1時間加熱して封止層を成膜した。封止層の厚みは、5μmであった。
<Example 15>
Instead of the phosphor dispersion liquid (1) in Example 1, the phosphor dispersion liquid (20) was applied as shown in Table 2 above. Then, it heated at 150 degreeC for 1 hour, and formed the wavelength conversion layer into a film.
Furthermore, the above-mentioned polysiloxane precursor (2) was apply | coated on the wavelength conversion layer, and it heated at 150 degreeC for 1 hour, and formed the sealing layer into a film. The thickness of the sealing layer was 5 μm.
 <評価>
 各実施例及び比較例で作製したサンプルについて、以下の試験を行った。結果を上記表2に示す。
<Evaluation>
The following tests were conducted on samples prepared in each example and comparative example. The results are shown in Table 2 above.
 (波長変換層の密着性評価)
 各実施例及び比較例で作製したサンプルを、高さ60cmの位置から、鉄製の板の上に20回自由落下させた。1回落下させる毎に、波長変換層を観察し、波長変換層とLED素子や金属反射層との密着性を、以下のように評価した。
 ◎:20回落下後も、波長変換層が欠落しなかった
 ○:6回~20回の落下によって、波長変換層が欠落した
(Evaluation of adhesion of wavelength conversion layer)
The sample produced in each Example and the comparative example was freely dropped 20 times on the iron plate from the position of 60 cm in height. Each time it was dropped once, the wavelength conversion layer was observed, and the adhesion between the wavelength conversion layer and the LED element or the metal reflection layer was evaluated as follows.
A: The wavelength conversion layer was not lost even after 20 drops. O: The wavelength conversion layer was lost due to 6 to 20 drops.
 (初期全光束値の測定)
 各実施例及び比較例で作製したサンプルの波長変換層上に、フェニルシリコーン(信越化学工業社製:KER-6000)をディスペンサで塗布し、150℃で1時間加熱し、封止層を成膜した。得られた封止層の厚みは2mmであった。
(Measurement of initial total luminous flux value)
Phenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: KER-6000) is applied with a dispenser on the wavelength conversion layer of the sample prepared in each example and comparative example, and heated at 150 ° C. for 1 hour to form a sealing layer. did. The obtained sealing layer had a thickness of 2 mm.
 封止層を成膜したLED装置に、20mAの電流を流し;各LED装置の発光色の色度及び全光束を測定した。色度及び全光束は、コニカミノルタセンシング社製、分光放射輝度計CS-1000Aで測定した。前述のように、各LED装置の色度のx値は、0.33に調整されている。 A current of 20 mA was passed through the LED device on which the sealing layer was formed; the chromaticity of the emission color and the total luminous flux of each LED device were measured. The chromaticity and total luminous flux were measured with a spectral radiance meter CS-1000A manufactured by Konica Minolta Sensing. As described above, the chromaticity x value of each LED device is adjusted to 0.33.
 そして、実施例1のLED装置の全光束値を基準(100とする)にし、各LED装置の全光束値を以下の基準で評価した。
 ◎:実施例1のLED装置の全光束値100に対して、全光束値が102以上である
 ○:実施例1のLED装置の全光束値100に対して、全光束値が98以上102未満である
Then, the total luminous flux value of the LED device of Example 1 was used as a reference (100), and the total luminous flux value of each LED device was evaluated according to the following criteria.
A: The total luminous flux value is 102 or more with respect to the total luminous flux value 100 of the LED device of Example 1. O: The total luminous flux value is 98 or more and less than 102 with respect to the total luminous flux value 100 of the LED device of Example 1. Is
 (ヒートショック試験後の点灯評価)
 初期全光束値測定後の各LED装置をそれぞれ30個ずつ準備した。これらのサンプルを、ヒートショック試験機(エスペック社製TSE-11)にて、-40℃(30分間)及び120℃(30分間)を1サイクルとして、ヒートショック処理した。ワイヤと基板(配線)との接合部等における断線を確認するため、各サイクル後にLED装置を点灯させた。評価は下記の基準とした。
 ◎:ヒートショック処理を2000サイクル行っても、不点灯のサンプルが発生しなかった
 ○:ヒートショック処理を1500サイクル行っても不点灯のサンプルが発生しなかったが、2000サイクル行うと、1個以上のサンプルが不点灯であった
(Lighting evaluation after heat shock test)
Thirty LED devices after the initial total luminous flux value measurement were prepared. These samples were subjected to heat shock treatment using a heat shock tester (TSE-11 manufactured by Espec Corp.) at −40 ° C. (30 minutes) and 120 ° C. (30 minutes) as one cycle. The LED device was turned on after each cycle in order to confirm the disconnection at the junction between the wire and the substrate (wiring). The following criteria were used for evaluation.
◎: No lighting sample was generated even after 2000 cycles of heat shock treatment. ○: No lighting sample was generated even after 1500 cycles of heat shock processing. The above samples were not lit
 (湿熱環境試験後での全光束維持率)
 初期全光束値の測定後、LED装置に20mAの電流を流した状態で、85℃、85%Rhの高温高湿槽(エスペック社製 商品名:SH251)に投入し、1000時間後に取り出した。そして、以下の式に基づいて全光束維持率を算出し、以下の基準で評価した。
 全光束維持率=湿熱環境試験1000時間後の全光束値/初期全光束値×100
 ◎:全光束維持率が97%以上であった
 ○:全光束維持率が95%以上、97%未満であった
 △:全光束維持率が90%以上、95%未満であった
 ×:全光束維持率が90%未満であった
(Total luminous flux maintenance rate after wet heat environment test)
After the initial total luminous flux value was measured, the LED device was charged in a high-temperature and high-humidity tank (trade name: SH251 manufactured by Espec Co., Ltd.) at 85 ° C. and 85% Rh with a current of 20 mA flowing, and taken out after 1000 hours. And based on the following formula | equation, the total luminous flux maintenance factor was computed, and the following references | standards evaluated.
Total luminous flux maintenance factor = total luminous flux value after 1000 hours of wet heat environment test / initial total luminous flux value × 100
A: Total luminous flux maintenance factor was 97% or more. O: Total luminous flux maintenance factor was 95% or more and less than 97%. Δ: Total luminous flux maintenance factor was 90% or more and less than 95%. Luminous flux maintenance factor was less than 90%
 (蛍光体分散液の沈降安定性)
 分散液1~20について、24時間静置したときの上澄みの発生を観察した。
 ◎:上澄みの発生が全くみられなかった
 ○:わずかに上澄みの発生がみられた
 (結果)
 上記表2に示されるように、波長変換層に上記電気伝導率が500μS/cm以下である非導電性層状粘土化合物が含まれると、湿熱環境試験後の全光束維持率が高かった(実施例1~17)。非導電性層状粘土化合物は、吸湿しても電気を通し難い。そのため、当該非導電性層状粘土化合物が含まれる波長変換層には、電気がリークせず、金属反射層の劣化が少なかったと推察される。特に電気伝導率が80μS/cm以下である粘土鉱物を使用すると、全光束維持率が非常に高く、発光特性の劣化が少ない良好なLED装置が得られる。
(Sedimentation stability of phosphor dispersion)
With respect to dispersions 1 to 20, generation of a supernatant was observed when allowed to stand for 24 hours.
A: No generation of supernatant was observed. O: A slight generation of supernatant was observed. (Result)
As shown in Table 2 above, when the non-conductive layered clay compound having an electric conductivity of 500 μS / cm or less was contained in the wavelength conversion layer, the total luminous flux maintenance factor after the wet heat environment test was high (Examples). 1-17). A non-conductive layered clay compound is difficult to conduct electricity even if it absorbs moisture. Therefore, it is surmised that the wavelength conversion layer containing the non-conductive layered clay compound did not leak electricity and the metal reflection layer was less deteriorated. In particular, when a clay mineral having an electric conductivity of 80 μS / cm or less is used, a good LED device having a very high total luminous flux maintenance factor and little deterioration in light emission characteristics can be obtained.
 また、蛍光体分散液と、ポリシロキサン前駆体含有液との混合液を塗布して、波長変換層を成膜した場合(実施例12、13、及び15、並びに比較例8)には、波長変換層とLED素子や、金属反射層との密着性が高かった。また、蛍光体分散液の硬化膜上に、ポリシロキサン前駆体含有液を塗布し、硬化させた場合(実施例14)にも、LED素子や、金属反射層との密着性が高かった。
 波長変換層にポリシロキサンが含まれると(実施例12~15、及び比較例8)、蛍光体や無機酸化物微粒子、層状粘土化合物が結着され、膜強度が高まったと推察される。またさらに、波長変換層とLED素子や金属反射層との密着面積が大きくなったため、これらの層との界面での剥離が生じ難かったと推察される。
Further, when a wavelength conversion layer is formed by applying a mixture of the phosphor dispersion liquid and the polysiloxane precursor-containing liquid (Examples 12, 13, and 15, and Comparative Example 8), the wavelength The adhesion between the conversion layer and the LED element or the metal reflection layer was high. Moreover, also when the polysiloxane precursor containing liquid was apply | coated and hardened on the cured film of fluorescent substance dispersion liquid (Example 14), the adhesiveness with an LED element and a metal reflective layer was high.
When polysiloxane is contained in the wavelength conversion layer (Examples 12 to 15 and Comparative Example 8), it is presumed that the phosphor, the inorganic oxide fine particles, and the layered clay compound are bound to increase the film strength. Furthermore, since the adhesion area between the wavelength conversion layer and the LED element or the metal reflection layer is increased, it is presumed that peeling at the interface with these layers hardly occurred.
 また、波長変換層上に、ポリシロキサンからなる封止層を成膜した場合(実施例14及び15)、初期全光束値が高まった。波長変換層上に封止層を成膜すると、波長変換層表面の凹凸が封止層によって平滑化されたため、光取り出し効率が高まったと推察される。 In addition, when a sealing layer made of polysiloxane was formed on the wavelength conversion layer (Examples 14 and 15), the initial total luminous flux value increased. When the sealing layer is formed on the wavelength conversion layer, the unevenness on the surface of the wavelength conversion layer is smoothed by the sealing layer, so that it is presumed that the light extraction efficiency is increased.
 また、波長変換層にバインダ(ポリシロキサン)が含まれず、当該波長変換層上にシリコーン樹脂からなる封止層を有する実施例1~11及び比較例1~7のLED装置では、ヒートショック試験を行っても、断線し難かった。封止層のシリコーン樹脂が波長変換層の蛍光体の間隙に入り込み、波長変換層と封止層の明確な界面がなくなったため、LED装置が温度変化しても、波長変換層及び封止層の膨張率や収縮率に差が少なく、ワイヤに負荷がかかり難かったと推察される。
 さらに、粘土鉱物の電気伝導度が150μS/cm以上の粘土鉱物を含有する蛍光体分散液は、非常に良好な沈降安定性を示した。これらの粘土鉱物は蛍光体表面との電気的な親和力が大きくなり、蛍光体の沈降を抑制していると考えられる。
Further, in the LED devices of Examples 1 to 11 and Comparative Examples 1 to 7 in which the wavelength conversion layer does not contain a binder (polysiloxane) and the sealing layer made of silicone resin is provided on the wavelength conversion layer, the heat shock test is performed. Even if I went there, it was hard to break. Since the silicone resin of the sealing layer enters the gap between the phosphors of the wavelength conversion layer and there is no clear interface between the wavelength conversion layer and the sealing layer, even if the temperature of the LED device changes, the wavelength conversion layer and the sealing layer It is presumed that there was little difference in expansion rate and contraction rate, and it was difficult to apply a load to the wire.
Furthermore, the phosphor dispersion containing the clay mineral having an electrical conductivity of 150 μS / cm or more showed very good sedimentation stability. It is considered that these clay minerals have an increased electrical affinity with the phosphor surface and suppress sedimentation of the phosphor.
 本発明のLED装置は、長期間に亘って、ガスバリア性や光取り出し性が高い。したがって、屋内、屋外の照明装置等にいずれも適用可能である。 The LED device of the present invention has high gas barrier properties and light extraction properties over a long period of time. Therefore, both can be applied to indoor and outdoor lighting devices.
 1 基板
 2 金属反射層
 3 LED素子
 4 突起電極
 5 波長変換層
 6 封止層
 100 LED装置
DESCRIPTION OF SYMBOLS 1 Substrate 2 Metal reflective layer 3 LED element 4 Projection electrode 5 Wavelength conversion layer 6 Sealing layer 100 LED device

Claims (13)

  1.  基板と、前記基板上に配置されたLED素子と、前記基板上に配置された金属部と、前記LED素子及び前記金属部を被覆する波長変換層と、を含むLED装置の製造方法であって、
     基板上にLED素子及び金属部が配置されたLEDパッケージを準備し、
     前記LEDパッケージの前記LED素子及び前記金属部を被覆するように、蛍光体、非導電性層状粘土化合物、無機酸化物微粒子、及び溶媒を含む蛍光体分散液を塗布・硬化させて、波長変換層を形成し、
     前記非導電性層状粘土化合物は、前記非導電性層状粘土化合物の濃度が2質量%である水溶液の電気伝導率が、500μS/cm以下となる化合物である、LED装置の製造方法。
    A method for manufacturing an LED device, comprising: a substrate; an LED element disposed on the substrate; a metal portion disposed on the substrate; and a wavelength conversion layer covering the LED element and the metal portion. ,
    Preparing an LED package in which an LED element and a metal part are arranged on a substrate,
    A wavelength conversion layer is formed by applying and curing a phosphor dispersion containing a phosphor, a non-conductive layered clay compound, inorganic oxide fine particles, and a solvent so as to cover the LED element and the metal part of the LED package. Form the
    The said nonelectroconductive layered clay compound is a manufacturing method of the LED apparatus which is an electrical conductivity of the aqueous solution whose density | concentration of the said nonelectroconductive layered clay compound is 2 mass% becomes 500 microsiemens / cm or less.
  2.  前記非導電性層状粘土化合物は、前記非導電性層状粘土化合物の濃度が2質量%である水溶液の電気伝導率が、10~80μS/cmとなる化合物である、請求項1に記載のLED装置の製造方法。 2. The LED device according to claim 1, wherein the non-conductive layered clay compound is a compound having an electric conductivity of 10 to 80 μS / cm in an aqueous solution in which the concentration of the non-conductive layered clay compound is 2% by mass. Manufacturing method.
  3.  前記非導電性層状粘土化合物は、前記非導電性層状粘土化合物の濃度が2質量%である水溶液の電気伝導率が、150~500μS/cmとなる化合物である、請求項1に記載のLED装置の製造方法。 2. The LED device according to claim 1, wherein the non-conductive layered clay compound is a compound having an electric conductivity of 150 to 500 μS / cm in an aqueous solution in which the concentration of the non-conductive layered clay compound is 2% by mass. Manufacturing method.
  4.  前記波長変換層上にさらに封止層を形成する、請求項1~3のいずれか一項に記載のLED装置の製造方法。 The method for manufacturing an LED device according to any one of claims 1 to 3, wherein a sealing layer is further formed on the wavelength conversion layer.
  5.  シリコーン樹脂またはエポキシ樹脂を含む樹脂組成物を塗布し、硬化させ、前記波長変換層上に封止層を形成する、請求項4に記載のLED装置の製造方法。 The manufacturing method of the LED device of Claim 4 which apply | coats and hardens the resin composition containing a silicone resin or an epoxy resin, and forms a sealing layer on the said wavelength conversion layer.
  6.  前記非導電性層状粘土化合物が、非膨潤性層状粘土化合物である、請求項1~5のいずれか一項に記載のLED装置の製造方法。 The method for manufacturing an LED device according to any one of claims 1 to 5, wherein the non-conductive layered clay compound is a non-swellable layered clay compound.
  7.  前記非導電性層状粘土化合物が、白雲母、金雲母、絹雲母、フッ素金雲母、カリウム四珪素雲母、合成雲母からなる群から選ばれる一種以上の化合物である、請求項1~6のいずれか一項に記載のLED装置の製造方法。 The non-conductive layered clay compound is one or more compounds selected from the group consisting of muscovite, phlogopite, sericite, fluorine phlogopite, potassium tetrasilicon mica, and synthetic mica. The manufacturing method of the LED device as described in one term.
  8.  前記非導電性層状粘土化合物の吸水率が0.2質量%以上である、請求項1~7のいずれか一項に記載のLED装置の製造方法。 The method for manufacturing an LED device according to any one of claims 1 to 7, wherein the water absorption of the non-conductive layered clay compound is 0.2% by mass or more.
  9.  前記溶媒がアルコールを含む、請求項1~8のいずれか一項に記載のLED装置の製造方法。 The method for manufacturing an LED device according to any one of claims 1 to 8, wherein the solvent contains alcohol.
  10.  前記蛍光体分散液がポリシロキサン前駆体を含む、請求項1~9のいずれか一項に記載のLED装置の製造方法。 The LED device manufacturing method according to any one of claims 1 to 9, wherein the phosphor dispersion contains a polysiloxane precursor.
  11.  前記蛍光体分散液の硬化膜上にポリシロキサン前駆体を塗布し、前記波長変換層を形成する、請求項1~9のいずれか一項に記載のLED装置の製造方法。 10. The method for manufacturing an LED device according to claim 1, wherein a polysiloxane precursor is applied on a cured film of the phosphor dispersion liquid to form the wavelength conversion layer.
  12.  前記金属部は、前記基板上に配置された金属反射層または突起電極である、請求項1~11のいずれか一項に記載のLED装置の製造方法。 The method for manufacturing an LED device according to any one of claims 1 to 11, wherein the metal part is a metal reflective layer or a protruding electrode disposed on the substrate.
  13.  前記金属部は銀を含む、請求項1~12のいずれか一項に記載のLED装置の製造方法。 The method for manufacturing an LED device according to any one of claims 1 to 12, wherein the metal part includes silver.
PCT/JP2014/003891 2013-07-24 2014-07-24 Led device production method WO2015011925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528152A JPWO2015011925A1 (en) 2013-07-24 2014-07-24 Manufacturing method of LED device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013153520 2013-07-24
JP2013-153520 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015011925A1 true WO2015011925A1 (en) 2015-01-29

Family

ID=52392989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003891 WO2015011925A1 (en) 2013-07-24 2014-07-24 Led device production method

Country Status (2)

Country Link
JP (1) JPWO2015011925A1 (en)
WO (1) WO2015011925A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025013A1 (en) * 2015-08-11 2017-02-16 深圳朝伟达科技有限公司 Led encapsulation substrate
WO2017206331A1 (en) * 2016-06-02 2017-12-07 深圳朝伟达科技有限公司 Led package substrate and preparation method therefor
JP2019178209A (en) * 2018-03-30 2019-10-17 味の素株式会社 Resin composition and cured body thereof
JP2021097670A (en) * 2017-05-12 2021-07-01 株式会社クボタ Work vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323717A (en) * 2003-04-25 2004-11-18 Nippon Valqua Ind Ltd Filler-containing fluororesin sheet and manufacturing method thereof
JP2005179568A (en) * 2003-12-22 2005-07-07 Toshiba Corp Epoxy resin composition and cast insulator
WO2012090999A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing light emitting device
WO2013051280A1 (en) * 2011-10-07 2013-04-11 コニカミノルタアドバンストレイヤー株式会社 Phosphor dispersion liquid, and production method for led device using same
WO2013099193A1 (en) * 2011-12-26 2013-07-04 コニカミノルタ株式会社 Sealant for led device, led device, and method for producing led device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323717A (en) * 2003-04-25 2004-11-18 Nippon Valqua Ind Ltd Filler-containing fluororesin sheet and manufacturing method thereof
JP2005179568A (en) * 2003-12-22 2005-07-07 Toshiba Corp Epoxy resin composition and cast insulator
WO2012090999A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing light emitting device
WO2013051280A1 (en) * 2011-10-07 2013-04-11 コニカミノルタアドバンストレイヤー株式会社 Phosphor dispersion liquid, and production method for led device using same
WO2013099193A1 (en) * 2011-12-26 2013-07-04 コニカミノルタ株式会社 Sealant for led device, led device, and method for producing led device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Seihin Shokai Gosei Smectite", 15 August 2014 (2014-08-15), Retrieved from the Internet <URL:http://www.jade.dti.ne.jp/~coopchem/newsmectite.html> *
"Seihin Shokai Gosei Unmo", 15 August 2014 (2014-08-15), Retrieved from the Internet <URL:http://www.jade.dti.ne.jp/~coopchem/newmica.html> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025013A1 (en) * 2015-08-11 2017-02-16 深圳朝伟达科技有限公司 Led encapsulation substrate
WO2017206331A1 (en) * 2016-06-02 2017-12-07 深圳朝伟达科技有限公司 Led package substrate and preparation method therefor
JP2021097670A (en) * 2017-05-12 2021-07-01 株式会社クボタ Work vehicle
JP2019178209A (en) * 2018-03-30 2019-10-17 味の素株式会社 Resin composition and cured body thereof
JP7047539B2 (en) 2018-03-30 2022-04-05 味の素株式会社 Resin composition and its cured product

Also Published As

Publication number Publication date
JPWO2015011925A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US9708492B2 (en) LED device and coating liquid used for production of same
WO2014104295A1 (en) Light emitting device
WO2014103326A1 (en) Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid
JP5541433B1 (en) Method for manufacturing phosphor dispersion liquid and method for manufacturing LED device
WO2013099193A1 (en) Sealant for led device, led device, and method for producing led device
JP5843016B2 (en) LED device and manufacturing method thereof
WO2013051280A1 (en) Phosphor dispersion liquid, and production method for led device using same
JP2014130871A (en) Light emitting device
JP2014022508A (en) Led device and manufacturing method of the same
WO2015011925A1 (en) Led device production method
WO2014030342A1 (en) Led device and method for manufacturing same
JP2016154179A (en) Light-emitting device and manufacturing method thereof
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP2016145273A (en) Inorganic fine particle-containing polysiloxane composition, and method for producing the same
WO2014103330A1 (en) Phosphor dispersion, led device and method for manufacturing same
JP5729327B2 (en) Manufacturing method of LED device
JP5910340B2 (en) LED device and manufacturing method thereof
JP2016181535A (en) Light-emitting device, and coating liquid for manufacturing light-emitting device
WO2016024604A1 (en) Inorganic-microparticle-containing polysilsesquioxane composition, method for producing same, light-emitting device, and method for producing same
JP2015195269A (en) Light-emitting device and method of manufacturing the same
JP2014127495A (en) Led device and method for manufacturing the same
JP2014160713A (en) Led device manufacturing method
WO2016043159A1 (en) Phosphor dispersion liquid, method for manufacturing led device using same, and led device
JP2014041955A (en) Led device and manufacturing method of the same
WO2015049865A1 (en) Sealing agent for light emitting elements and led device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14828697

Country of ref document: EP

Kind code of ref document: A1