WO2015011786A1 - Optical component having nanoparticle thin film and optical application device using same - Google Patents

Optical component having nanoparticle thin film and optical application device using same Download PDF

Info

Publication number
WO2015011786A1
WO2015011786A1 PCT/JP2013/069944 JP2013069944W WO2015011786A1 WO 2015011786 A1 WO2015011786 A1 WO 2015011786A1 JP 2013069944 W JP2013069944 W JP 2013069944W WO 2015011786 A1 WO2015011786 A1 WO 2015011786A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
optical component
nanoparticles
nanoparticle
nanoparticle thin
Prior art date
Application number
PCT/JP2013/069944
Other languages
French (fr)
Japanese (ja)
Inventor
平田 浩二
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to JP2015528050A priority Critical patent/JPWO2015011786A1/en
Priority to PCT/JP2013/069944 priority patent/WO2015011786A1/en
Publication of WO2015011786A1 publication Critical patent/WO2015011786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present invention relates to an optical component such as a lens having a nanoparticle thin film such as a silicate nanoparticle, and an optical application apparatus using this optical component.
  • an optical component such as a lens having a nanoparticle thin film such as a silicate nanoparticle
  • a projection-type image display device which is one of optical application devices
  • the image displayed on a small image display element liquid crystal panel or DMD (Digital Mirror Device: Texas Instruments Inc.)
  • a projection lens is used as a projection lens in order to correct an aberration generated in an enlarged image projected on a screen (see Patent Document 1).
  • a projection lens in which a plastic lens having a free-form surface having a large design freedom with respect to an aspheric surface is applied.
  • inorganic polarizing plates are provided on the incident side and the exit side of the liquid crystal panel in order to increase the brightness and contrast of the image.
  • the inorganic polarizing plate used in Patent Document 3 is generally a grid structure of a metal (aluminum) material, and (4) the polarization property changes due to moisture adhering to the metal surface due to condensation or the like (depending on the polarization) There is a problem that the characteristics are impaired.
  • the plastic lens used in the vehicle lamp has a new problem due to the use environment such as (5) dirt on the surface of the vehicle, such as exhaust gas and dust, and the transmittance decreases. Also for these, it is required to form a protective film with simple equipment.
  • An object of the present invention is to provide an optical component in which a protective film having a desired performance is formed with simple equipment in order to solve the above-described problems.
  • the optical component of the present invention has a thin film made of inorganic nanoparticles having a particle size of approximately 15 nm or less on the surface of the substrate, and the particle size of the nanoparticles in the thin film is from the interface with the substrate It is characterized by decreasing toward the surface of the thin film and decreasing the relative density of the nanoparticles from the interface with the substrate toward the surface of the thin film due to pores existing in the thin film.
  • the thin film has an effective refractive index depending on the relative density of the nanoparticles at each film thickness position, the relative density of the nanoparticles on the surface of the thin film is approximately 40% or less, and the effective refractive index on the surface of the thin film is It is characterized by being smaller than the refractive index of the substrate.
  • FIG. 7 is an enlarged cross-sectional view of the exit lens 34 in FIG. 6.
  • FIG. 1 is a cross-sectional view of an essential part showing an embodiment of an optical component having a nanoparticle thin film.
  • the base material 10 is a plastic material for plastic lenses, for example, and a thin film 20 made of inorganic nanoparticles 21 is formed on the surface of the base material 10.
  • the inorganic nanoparticles 21 are fine particles having high hardness such as silicate (silicate) and titanium oxide, and have a predetermined particle size distribution (average particle size 5-10 nm) with a particle size of approximately 15 nm or less.
  • a first layer (L1) to which particles having a relatively large particle size are attached is formed at the interface with the substrate 10, and a second layer (L2) to which particles having a medium particle size are attached is formed thereon,
  • a third layer (L3) to which particles having a small particle size are attached is formed on the surface portion in contact with air to form a laminated structure. Note that particles having a small particle diameter exist not only in the L3 layer but also in the gap between the L1 layer and the L2 layer.
  • the volume density of the particles decreases from the substrate toward the surface.
  • the volume density is referred to as “relative density”.
  • the adhesion structure of the nanoparticles is schematically described, and since the particle size is continuously distributed, it is not necessarily separated into the L1 layer to the L3 layer and aligned and adhered as illustrated.
  • the number of layers is also arbitrary.
  • a thin film composed of such inorganic nanoparticles is performed as follows.
  • Inorganic nanoparticles silicate or titanium oxide
  • the solution containing the nanoparticles is applied to the surface of the substrate, or the substrate is dipped in the solution. Thereafter, the film is dried to vaporize the volatile solvent, thereby forming a thin film in which nanoparticles are laminated and attached to the surface of the substrate.
  • the particle size decreases from the substrate toward the air interface as shown in FIG. 1, and the relative density of the nanoparticles changes.
  • a film is formed. In this way, since the thin film is formed by a wet method such as coating or dipping, even a base material having low heat resistance such as plastic can be handled with simpler equipment than the vapor deposition method.
  • FIG. 2 is a diagram showing the particle size distribution of inorganic nanoparticles in the thin film.
  • the horizontal axis is the particle size of inorganic nanoparticles (silicate, titanium oxide), and the vertical axis is the cumulative frequency. Since the cumulative frequency on the vertical axis is represented by the cumulative value of the detected particle volume (measured in the direction from small particle size to large particle size), the apparent frequency increases as the particle size increases. From this particle size distribution, it can be said that there are many particles having an average particle size of 5 to 10 nm (average particle size).
  • the optical component thus formed with the inorganic nanoparticle coating film has the following characteristics. (1) By forming a high-hardness nanoparticle thin film on the surface of the substrate, the scratch resistance of the substrate (particularly plastic) is improved. (2) By forming a dense nanoparticle thin film on which water molecules do not pass on the surface of the substrate, moisture absorption is prevented and volume expansion of the substrate (particularly plastic) is prevented. (3) By reducing the relative density of the portion close to the surface (air interface) of the nanoparticle thin film, the effective refractive index can be reduced and the antireflection effect can be obtained. Hereinafter, the antireflection effect by the nanoparticle coating film will be mainly described.
  • FIG. 3 is a diagram showing the effective refractive index of the silicate nanoparticle thin film.
  • the horizontal axis represents the relative density of nanoparticles (silicate), and the vertical axis represents the effective refractive index.
  • this refractive index is referred to as “effective refractive index”.
  • the reflectance of the optical component (base material) can be greatly reduced by forming a thin film having a relative density on the surface of 40% or less.
  • FIG. 4 is a diagram showing the effective refractive index of the titanium oxide nanoparticle thin film.
  • the horizontal axis represents the relative density of nanoparticles (titanium oxide), and the vertical axis represents the effective refractive index.
  • the relative density 5%
  • FIG. 5 is a diagram showing the spectral transmittance of a plastic lens formed with a silicate nanoparticle thin film.
  • the horizontal axis represents wavelength and the vertical axis represents transmittance.
  • the transmittance is about 92%, but by forming a silicate nanoparticle thin film, the reflectance can be reduced and the transmittance of the lens can be increased to about 98%. In this case, the transmittance in the region of 500 to 550 nm is improved as the wavelength dependency.
  • FIG. 6 is a diagram showing an example of an optical system of the projection display apparatus 30 as an application example of the inorganic nanoparticle thin film.
  • Reference numeral 31 denotes a liquid crystal panel as an image display element
  • 32 denotes a cross prism
  • 33 denotes a projection lens group composed of a plurality of lenses
  • 34 denotes an exit lens as the final stage of the projection lens group 33
  • 35 denotes a reflection mirror.
  • the image light flux formed by the liquid crystal panel 31 is enlarged by the projection lens group 33 and is emitted from the exit lens 34.
  • the emitted image light beam is reflected by the reflection mirror 35 and projected onto a screen or the like.
  • the inorganic nanoparticle thin film is applied to the exit lens 34 and the reflection mirror 35 exposed to the outside air.
  • FIG. 7 is an enlarged cross-sectional view of the exit lens 34 in FIG.
  • the exit lens 34 is a plastic lens, and silicate nanoparticle thin films 20a and 20b are formed on the incident side and the exit side.
  • the outgoing lens 34 is prevented from being scratched and moisture-absorbed, and the transmittance is improved by reducing the reflection loss on the surface as shown in FIG.
  • FIG. 8 is an enlarged cross-sectional view of the reflection mirror 35 in FIG.
  • the reflection mirror 35 has a structure in which an aluminum metal film 12 is formed on a plastic or glass substrate 11, and the silicate nanoparticle thin film 20 is formed on the metal film 12. Thereby, the reflection mirror 35 can be prevented from being scratched and absorbing moisture.
  • FIG. 9 is a diagram showing an example of a headlight lens used in a vehicle lamp as an application example of an inorganic nanoparticle thin film.
  • the LED light source 13 was used and the silicate nanoparticle thin film 20 was formed on the emission surface of the plastic projection lens 14. This prevented the projection lens 14 from being damaged and absorbs moisture, and improved the transmittance by reducing the reflection loss on the surface as shown in FIG.
  • the vehicular lamp is used in an environment where the optical characteristics are likely to deteriorate due to dust adhering to the lens surface or sulfide in the air.
  • titanium oxide as inorganic nanoparticles, in addition to the above effects, a unique effect of photocatalytic action by ultraviolet rays (self-purifying action by reacting with water molecules in the air) can be obtained and transmitted. It is possible to prevent a decrease in the rate, that is, a decrease in the intensity of the projection light.
  • FIG. 10 is a diagram showing an application example of an inorganic nanoparticle thin film to a Fresnel lens.
  • the silicate nanoparticle thin film 20 was formed on the emission surface of the plastic Fresnel lens 15. Also in this case, the transmittance can be improved by preventing the Fresnel lens 15 from being scratched and absorbing moisture and reducing the reflection loss on the surface as shown in FIG.
  • FIG. 11 is a diagram showing an application example of an inorganic nanoparticle thin film to an inorganic polarizing plate.
  • the inorganic polarizing plate 16 has a structure (wire grid structure) in which fine metal wires (aluminum) 18 are arranged at a predetermined interval on a glass substrate 17. And the silicate nanoparticle thin film 20 was formed in these surfaces. Thereby, damage and moisture absorption of the inorganic polarizing plate 16 can be prevented. In particular, deterioration of the surface of the fine metal wire 18 due to condensation (hydrolysis caused by moisture adhering to change polarization characteristics) is prevented, and reliability is improved.
  • the inorganic polarizing plate having the conventional structure without a thin film had an endurance time of about 40 minutes, whereas the inorganic polarizing plate of this example In 12 hours, the durability was significantly improved.
  • the inorganic polarizing plate 16 shown here is a reflection type, the same effect can be obtained by an absorption type structure in which a light absorbing material is provided on the upper part of the thin metal wire 18.
  • silicate or titanium oxide is used as the inorganic nanoparticle material.
  • the material is not limited to this, and a high-hardness oxide or nitride can be appropriately used, or a composite material thereof may be used.
  • a protective film made of silicate nanoparticles or titanium oxide nanoparticles can be formed on the surface of a light transmissive member including a plastic lens or an inorganic polarizing plate by a simple method and process using a wet method.
  • a nanoparticle thin film By forming such a nanoparticle thin film, it is possible to provide an optical component having both scratch resistance, waterproofness and antireflection effect. Furthermore, by using such an optical component, it is possible to realize an optical application device such as a projection image display device having high luminance and high reliability.

Abstract

An optical component has a thin film formed from inorganic nanoparticles (silicate, titanium oxide, and the like) with a particle diameter of substantially 15 nm or less on the surface of a base material containing plastic. The particle diameter of the nanoparticles within the thin film becomes smaller moving from the interface with the base material toward the surface of the thin film. The relative density of the nanoparticles is reduced moving from the interface with the base material toward the surface of the thin film by holes present within the thin film. By making the relative density of the nanoparticles on the surface of the thin film substantially 40% or less, the effective refractive index at the surface of the thin film is made smaller than the refractive index of the base material. Thus, an optical component having both abrasion resistance and water resistance as well as an antireflective effect is provided.

Description

ナノ粒子薄膜を有する光学部品、及びこれを用いた光学応用装置Optical component having nanoparticle thin film and optical application apparatus using the same
 本発明は、シリケートナノ粒子等のナノ粒子薄膜を有するレンズ等の光学部品、及びこの光学部品を用いた光学応用装置に関する。 The present invention relates to an optical component such as a lens having a nanoparticle thin film such as a silicate nanoparticle, and an optical application apparatus using this optical component.
 光学応用装置の1つである投写型映像表示装置では、小型の映像表示素子(液晶パネルやDMD(Digital Mirror Device:米国テキサス・インスツルメンツ社))に表示した映像を投写レンズでスクリーン等に拡大投写する。その場合、スクリーン上に投写した拡大映像において発生する収差を補正するために、投写レンズとして非球面形状のプラスチックレンズが使用される(特許文献1参照)。更に、非球面に対して設計自由度が大きい自由曲面形状のプラスチックレンズを応用した投写レンズも知られている。 In a projection-type image display device, which is one of optical application devices, the image displayed on a small image display element (liquid crystal panel or DMD (Digital Mirror Device: Texas Instruments Inc.)) is enlarged and projected onto a screen or the like with a projection lens. To do. In this case, an aspheric plastic lens is used as a projection lens in order to correct an aberration generated in an enlarged image projected on a screen (see Patent Document 1). Furthermore, there is also known a projection lens in which a plastic lens having a free-form surface having a large design freedom with respect to an aspheric surface is applied.
 他方、近年の車両用灯具では、光源にLED(Light Emitting Diode)を使用しプラスチック製の光学レンズ及びリフレクタ(反射鏡)を用いて配光特性を制御する構成が主流となりつつある(特許文献2)。 On the other hand, in recent vehicle lamps, a configuration in which an LED (Light Emitting Diode) is used as a light source and a light distribution characteristic is controlled using a plastic optical lens and a reflector (reflecting mirror) is becoming mainstream (Patent Document 2). ).
 この他、上述した液晶パネルを映像表示素子として使用した投写型映像表示装置において映像の高輝度化と高コントラスト化のために、液晶パネルの入射側と出射側に無機偏光板を設けている。(特許文献3参照)
特開2006-78949号公報 特開2003-317513号公報 特開2009-3106号公報
In addition, in a projection display apparatus using the above-described liquid crystal panel as an image display element, inorganic polarizing plates are provided on the incident side and the exit side of the liquid crystal panel in order to increase the brightness and contrast of the image. (See Patent Document 3)
JP 2006-78949 A JP 2003-317513 A JP 2009-3106 A
 特許文献1及び2のプラスチックレンズでは、(1)レンズ表面の硬度が低く傷が付き易い、(2)プラスチックが吸湿することで体積膨張したり屈折率が変化する、(3)レンズ表面で光の反射損失が発生する、などの課題がある。これらの対策として、プラスチックレンズ表面に保護膜(反射防止膜)を形成することが有効であるが、保護膜を形成する際、プラスチックの熱変形温度以下で蒸着する必要があるため、ガラスへの蒸着装置に比べ高価な製造設備が必要となる。 In the plastic lenses of Patent Documents 1 and 2, (1) the lens surface has low hardness and is easily damaged, (2) the plastic expands in volume and the refractive index changes, and (3) light on the lens surface. There are problems such as the occurrence of reflection loss. As a countermeasure, it is effective to form a protective film (antireflection film) on the surface of the plastic lens. However, when forming the protective film, it is necessary to evaporate below the heat distortion temperature of the plastic. An expensive manufacturing facility is required as compared with the vapor deposition apparatus.
 他方、特許文献3などに用いられる無機偏光板は一般に金属(アルミニウム)素材のグリッド構造体であり、(4)結露などにより金属表面に水分が付着して偏光特性が変化する(場合によっては偏光特性が損なわれる)という課題がある。また、車載用灯具に使用されるプラスチックレンズでは、(5)車の排気ガスや塵埃など表面に汚れが付着し透過率が低下する等の使用環境による新たな課題がある。これらに対しても、簡単な設備で保護膜を形成することが求められている。 On the other hand, the inorganic polarizing plate used in Patent Document 3 is generally a grid structure of a metal (aluminum) material, and (4) the polarization property changes due to moisture adhering to the metal surface due to condensation or the like (depending on the polarization) There is a problem that the characteristics are impaired. In addition, the plastic lens used in the vehicle lamp has a new problem due to the use environment such as (5) dirt on the surface of the vehicle, such as exhaust gas and dust, and the transmittance decreases. Also for these, it is required to form a protective film with simple equipment.
 本発明の目的は、上記した各課題を解決するため、簡単な設備で所望の性能を有する保護膜を形成した光学部品を提供することである。 An object of the present invention is to provide an optical component in which a protective film having a desired performance is formed with simple equipment in order to solve the above-described problems.
 上記課題を解決するため、本発明の光学部品は、基材の表面に粒径略15nm以下の無機ナノ粒子からなる薄膜を有し、薄膜内のナノ粒子の粒径が基材との界面から薄膜の表面に向い小さくなるとともに、薄膜内に存在する空孔によりナノ粒子の相対密度は基材との界面から薄膜の表面に向い減少することを特徴とする。 In order to solve the above problems, the optical component of the present invention has a thin film made of inorganic nanoparticles having a particle size of approximately 15 nm or less on the surface of the substrate, and the particle size of the nanoparticles in the thin film is from the interface with the substrate It is characterized by decreasing toward the surface of the thin film and decreasing the relative density of the nanoparticles from the interface with the substrate toward the surface of the thin film due to pores existing in the thin film.
 さらに前記薄膜は、各膜厚位置においてナノ粒子の相対密度に依存した実効屈折率を有し、薄膜の表面においてナノ粒子の相対密度は略40%以下であり、薄膜の表面における実効屈折率は基材の持つ屈折率よりも小さいことを特徴とする。 Further, the thin film has an effective refractive index depending on the relative density of the nanoparticles at each film thickness position, the relative density of the nanoparticles on the surface of the thin film is approximately 40% or less, and the effective refractive index on the surface of the thin film is It is characterized by being smaller than the refractive index of the substrate.
 本発明によれば、簡単な設備で所望の性能を有する保護膜を形成した光学部品を提供することができる。 According to the present invention, it is possible to provide an optical component in which a protective film having a desired performance is formed with simple equipment.
ナノ粒子薄膜を有する光学部品の一実施例を示す要部断面図。The principal part sectional drawing which shows one Example of the optical component which has a nanoparticle thin film. 薄膜内の無機ナノ粒子の粒径分布を示す図。The figure which shows the particle size distribution of the inorganic nanoparticle in a thin film. シリケートナノ粒子薄膜の実効屈折率を示す図。The figure which shows the effective refractive index of a silicate nanoparticle thin film. 酸化チタンナノ粒子薄膜の実効屈折率を示す図。The figure which shows the effective refractive index of a titanium oxide nanoparticle thin film. シリケートナノ粒子薄膜を形成したプラスチックレンズの分光透過率を示す図。The figure which shows the spectral transmittance of the plastic lens which formed the silicate nanoparticle thin film. 無機ナノ粒子薄膜の適用例として投写型映像表示装置30の光学系の例を示す図。The figure which shows the example of the optical system of the projection type video display apparatus 30 as an application example of an inorganic nanoparticle thin film. 図6における出射レンズ34の拡大断面図。FIG. 7 is an enlarged cross-sectional view of the exit lens 34 in FIG. 6. 図6における反射ミラー35の拡大断面図。The expanded sectional view of the reflective mirror 35 in FIG. 無機ナノ粒子薄膜の適用例として車両用灯具に使用されるヘッドライト用レンズの例を示す図。The figure which shows the example of the lens for headlights used for a vehicle lamp as an application example of an inorganic nanoparticle thin film. 無機ナノ粒子薄膜のフレネルレンズへの適用例を示す図。The figure which shows the example of application to the Fresnel lens of an inorganic nanoparticle thin film. 無機ナノ粒子薄膜の無機偏光板への適用例を示す図。The figure which shows the example of application to the inorganic polarizing plate of an inorganic nanoparticle thin film.
 以下、本実施例について、図を参照しながら説明する。
  図1は、ナノ粒子薄膜を有する光学部品の一実施例を示す要部断面図である。ここでは、光学部品の基材に形成した無機ナノ粒子からなる薄膜の構造を模式的に示す。基材10は例えばプラスチックレンズ用のプラスチック材で、基材10の表面に無機ナノ粒子21からなる薄膜20を形成している。無機ナノ粒子21はシリケート(ケイ酸塩)や酸化チタンなどの硬度の高い微粒子で、その粒径は略15nm以下で所定の粒径分布(平均粒径5-10nm)を有している。基材10との界面では粒径の比較的大きな粒子が付着した第1層(L1)が形成され、その上に粒径が中程度の粒子が付着した第2層(L2)が形成され、空気と接する表面部には粒径の小さな粒子が付着した第3層(L3)が形成されて積層構造となっている。なお、粒径の小さな粒子はL3層だけでなく、L1層とL2層の間隙にも存在する。
Hereinafter, the present embodiment will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of an essential part showing an embodiment of an optical component having a nanoparticle thin film. Here, the structure of a thin film made of inorganic nanoparticles formed on a substrate of an optical component is schematically shown. The base material 10 is a plastic material for plastic lenses, for example, and a thin film 20 made of inorganic nanoparticles 21 is formed on the surface of the base material 10. The inorganic nanoparticles 21 are fine particles having high hardness such as silicate (silicate) and titanium oxide, and have a predetermined particle size distribution (average particle size 5-10 nm) with a particle size of approximately 15 nm or less. A first layer (L1) to which particles having a relatively large particle size are attached is formed at the interface with the substrate 10, and a second layer (L2) to which particles having a medium particle size are attached is formed thereon, A third layer (L3) to which particles having a small particle size are attached is formed on the surface portion in contact with air to form a laminated structure. Note that particles having a small particle diameter exist not only in the L3 layer but also in the gap between the L1 layer and the L2 layer.
 基材10に付着後の各微粒子間には隙間(空孔)が存在し、空孔の割合(空孔率)は基材から表面に向って(L1層からL3層に向って)大きくなっている。言い換えれば、粒子の体積密度は基材から表面に向って小さくなっている。以下、体積密度を「相対密度」と呼ぶ。なお、ここではナノ粒子の付着構造を模式的に説明しており、粒径は連続的に分布しているので、図示するようにL1層~L3層に分離し整列して付着する訳ではなく、層数も任意である。 There are gaps (holes) between the fine particles after adhering to the substrate 10, and the ratio of the holes (porosity) increases from the substrate to the surface (from the L1 layer to the L3 layer). ing. In other words, the volume density of the particles decreases from the substrate toward the surface. Hereinafter, the volume density is referred to as “relative density”. Here, the adhesion structure of the nanoparticles is schematically described, and since the particle size is continuously distributed, it is not necessarily separated into the L1 layer to the L3 layer and aligned and adhered as illustrated. The number of layers is also arbitrary.
 なお、ナノ粒子薄膜により後述するように反射防止効果が得られるが、その効果を促進するために、薄膜20の膜厚tを光の波長λに対し、t=λ/4近傍とする。これにより、薄膜表面の反射光と基材界面の反射光とが打ち消し合い、反射率を低減させることができる。 Although the antireflection effect is obtained by the nanoparticle thin film as will be described later, the film thickness t of the thin film 20 is set to the vicinity of t = λ / 4 with respect to the wavelength λ of light in order to promote the effect. Thereby, the reflected light of the thin film surface and the reflected light of the base material interface cancel each other, and the reflectance can be reduced.
 このような無機ナノ粒子からなる薄膜の形成は次のように行う。粒径15nm以下の無機ナノ粒子(シリケートや酸化チタン)を、揮発性のアルコールを含む液体に溶融させる。このナノ粒子を含む溶液を基材の表面に塗布、又は溶液中に基材をディッピングする。その後乾燥させて揮発性溶媒を気化させることで、基材表面にナノ粒子が積層付着された薄膜を形成する。この時、粒径の大きな粒子は優先的に基材に吸着することから、図1に示すように基材から空気界面に向かって粒径が小さくなり、またナノ粒子の相対密度が変化するように成膜される。このように、塗布又はディッピングなどの湿式法により薄膜を形成するので、プラスチックのような耐熱性の低い基材であっても、蒸着法などに比べて簡単な設備で対応可能となる。 The formation of a thin film composed of such inorganic nanoparticles is performed as follows. Inorganic nanoparticles (silicate or titanium oxide) having a particle size of 15 nm or less are melted in a liquid containing volatile alcohol. The solution containing the nanoparticles is applied to the surface of the substrate, or the substrate is dipped in the solution. Thereafter, the film is dried to vaporize the volatile solvent, thereby forming a thin film in which nanoparticles are laminated and attached to the surface of the substrate. At this time, since particles having a large particle size are preferentially adsorbed to the substrate, the particle size decreases from the substrate toward the air interface as shown in FIG. 1, and the relative density of the nanoparticles changes. A film is formed. In this way, since the thin film is formed by a wet method such as coating or dipping, even a base material having low heat resistance such as plastic can be handled with simpler equipment than the vapor deposition method.
 図2は、薄膜内の無機ナノ粒子の粒径分布を示す図である。横軸は、無機ナノ粒子(シリケート、酸化チタン)の粒径、縦軸は累積度数である。なお、縦軸の累積度数は検出される粒子体積の累積値(粒径小→大の方向に測定)で表わしているため、粒径が大きくなるにつれて見かけの度数が大きくなっている。この粒径分布より、粒径が5~10nmの粒子が多い(平均粒径)と言える。 FIG. 2 is a diagram showing the particle size distribution of inorganic nanoparticles in the thin film. The horizontal axis is the particle size of inorganic nanoparticles (silicate, titanium oxide), and the vertical axis is the cumulative frequency. Since the cumulative frequency on the vertical axis is represented by the cumulative value of the detected particle volume (measured in the direction from small particle size to large particle size), the apparent frequency increases as the particle size increases. From this particle size distribution, it can be said that there are many particles having an average particle size of 5 to 10 nm (average particle size).
 このようにして無機ナノ粒子コーティング膜を形成した光学部品は、以下の特徴を有する。
(1)基材表面に高硬度のナノ粒子薄膜を形成することで、基材(特にプラスチック)の耐擦傷性が向上する。
(2)基材表面に水の分子が通過しない緻密なナノ粒子薄膜を形成することで、吸湿を防止し基材(特にプラスチック)の体積膨張などを防止する。
(3)ナノ粒子薄膜の表面(空気界面)に近い部分の相対密度を小さくすることで、実効的な屈折率を低下させ、反射防止効果を得ることができる。以下、ナノ粒子コーティング膜による反射防止効果を中心に説明する。
The optical component thus formed with the inorganic nanoparticle coating film has the following characteristics.
(1) By forming a high-hardness nanoparticle thin film on the surface of the substrate, the scratch resistance of the substrate (particularly plastic) is improved.
(2) By forming a dense nanoparticle thin film on which water molecules do not pass on the surface of the substrate, moisture absorption is prevented and volume expansion of the substrate (particularly plastic) is prevented.
(3) By reducing the relative density of the portion close to the surface (air interface) of the nanoparticle thin film, the effective refractive index can be reduced and the antireflection effect can be obtained. Hereinafter, the antireflection effect by the nanoparticle coating film will be mainly described.
 図3は、シリケートナノ粒子薄膜の実効屈折率を示す図である。横軸はナノ粒子(シリケート)の相対密度を、縦軸は実効屈折率を示す。上記したように形成された薄膜には空孔が存在するので、薄膜内の実効的な屈折率は、ナノ粒子(シリケート)の屈折率(N1=1.42)と空孔(空気)の屈折率(N0=1.0)の中間の値となる。以下、この屈折率を「実効屈折率」と呼ぶ。例えば相対密度=40%のときの実効屈折率はNa=1.3となる。すなわち、薄膜内の相対密度を膜厚方向に変化させ、表面での相対密度を40%とすれば薄膜表面での実効屈折率はNa=1.3となる。 FIG. 3 is a diagram showing the effective refractive index of the silicate nanoparticle thin film. The horizontal axis represents the relative density of nanoparticles (silicate), and the vertical axis represents the effective refractive index. Since the thin film formed as described above has vacancies, the effective refractive index in the thin film is the refraction index of the nanoparticles (silicate) (N1 = 1.42) and the refraction of the vacancies (air). It becomes an intermediate value of the rate (N0 = 1.0). Hereinafter, this refractive index is referred to as “effective refractive index”. For example, the effective refractive index when the relative density is 40% is Na = 1.3. That is, if the relative density in the thin film is changed in the film thickness direction and the relative density on the surface is 40%, the effective refractive index on the surface of the thin film is Na = 1.3.
 この場合、薄膜表面での反射率Raは、薄膜表面の実効屈折率Naに依存し、
  Ra={(Na-N0)/(Na+N0)}=0.017(1.7%)
となる。
In this case, the reflectance Ra on the thin film surface depends on the effective refractive index Na on the thin film surface,
Ra = {(Na−N0) / (Na + N0)} 2 = 0.017 (1.7%)
It becomes.
 一方、基材であるプラスチックの屈折率を1.5とすれば、薄膜なしでの反射率は0.04であり、また薄膜がナノ粒子(シリケート)100%の場合の反射率は0.03となる。よって、表面での相対密度を40%以下とした薄膜を形成することで、光学部品(基材)の反射率を大幅に低減できる。 On the other hand, if the refractive index of the plastic as the base material is 1.5, the reflectance without a thin film is 0.04, and the reflectance when the thin film is 100% of nanoparticles (silicate) is 0.03. It becomes. Therefore, the reflectance of the optical component (base material) can be greatly reduced by forming a thin film having a relative density on the surface of 40% or less.
 同様に図4は、酸化チタンナノ粒子薄膜の実効屈折率を示す図である。横軸はナノ粒子(酸化チタン)の相対密度を、縦軸は実効屈折率を示す。この場合も実効屈折率は、ナノ粒子(酸化チタン)の屈折率(N2=2.5)と空孔(空気)の屈折率(N0=1.0)の中間の値となる。例えば相対密度=5%のとき、実効屈折率はNb=1.3となる。 Similarly, FIG. 4 is a diagram showing the effective refractive index of the titanium oxide nanoparticle thin film. The horizontal axis represents the relative density of nanoparticles (titanium oxide), and the vertical axis represents the effective refractive index. Also in this case, the effective refractive index is an intermediate value between the refractive index of the nanoparticles (titanium oxide) (N2 = 2.5) and the refractive index of the air holes (air) (N0 = 1.0). For example, when the relative density = 5%, the effective refractive index is Nb = 1.3.
 この場合、薄膜表面での反射率Rbは、薄膜表面の実効屈折率Nbに依存し、
  Rb={(Nb-N0)/(Nb+N0)}=0.017(1.7%)
となる。薄膜がナノ粒子(酸化チタン)100%の場合の反射率は0.18となることから、ナノ粒子薄膜を形成することで光学部品の反射率を低減できる。
In this case, the reflectance Rb on the thin film surface depends on the effective refractive index Nb on the thin film surface,
Rb = {(Nb−N0) / (Nb + N0)} 2 = 0.017 (1.7%)
It becomes. Since the reflectance when the thin film is 100% of nanoparticles (titanium oxide) is 0.18, the reflectance of the optical component can be reduced by forming the nanoparticle thin film.
 図5は、シリケートナノ粒子薄膜を形成したプラスチックレンズの分光透過率を示す図である。横軸に波長、縦軸に透過率を示す。薄膜なしの場合は透過率が約92%であるのに対し、シリケートナノ粒子薄膜を形成することで反射率を低減し、レンズの透過率を約98%まで増大することができる。この場合、波長依存性としては特に500~550nmの領域での透過率が向上している。 FIG. 5 is a diagram showing the spectral transmittance of a plastic lens formed with a silicate nanoparticle thin film. The horizontal axis represents wavelength and the vertical axis represents transmittance. In the absence of a thin film, the transmittance is about 92%, but by forming a silicate nanoparticle thin film, the reflectance can be reduced and the transmittance of the lens can be increased to about 98%. In this case, the transmittance in the region of 500 to 550 nm is improved as the wavelength dependency.
 次に、ナノ粒子薄膜を形成した光学部品の例をいくつか説明する。
  図6は、無機ナノ粒子薄膜の適用例として投写型映像表示装置30の光学系の例を示す図である。31は映像表示素子である液晶パネル、32はクロスプリズム、33は複数枚のレンズからなる投写レンズ群、34は投写レンズ群33のうち最終段となる出射レンズ、35は反射ミラーである。液晶パネル31で形成された映像光束は投写レンズ群33で拡大され、出射レンズ34から出射する。出射した映像光束は反射ミラー35で反射し、スクリーン等へ投写される。本例では、無機ナノ粒子薄膜を、外気に露出する出射レンズ34と反射ミラー35に適用している。
Next, some examples of optical components on which nanoparticle thin films are formed will be described.
FIG. 6 is a diagram showing an example of an optical system of the projection display apparatus 30 as an application example of the inorganic nanoparticle thin film. Reference numeral 31 denotes a liquid crystal panel as an image display element, 32 denotes a cross prism, 33 denotes a projection lens group composed of a plurality of lenses, 34 denotes an exit lens as the final stage of the projection lens group 33, and 35 denotes a reflection mirror. The image light flux formed by the liquid crystal panel 31 is enlarged by the projection lens group 33 and is emitted from the exit lens 34. The emitted image light beam is reflected by the reflection mirror 35 and projected onto a screen or the like. In this example, the inorganic nanoparticle thin film is applied to the exit lens 34 and the reflection mirror 35 exposed to the outside air.
 図7は、図6における出射レンズ34の拡大断面図である。出射レンズ34はプラスチックレンズで、その入射側と出射側にシリケートナノ粒子薄膜20a,20bを形成した。これにより、出射レンズ34の傷付きと吸湿を防止し、かつ図5に示したように、表面での反射損失を低減することで透過率を向上させた。 FIG. 7 is an enlarged cross-sectional view of the exit lens 34 in FIG. The exit lens 34 is a plastic lens, and silicate nanoparticle thin films 20a and 20b are formed on the incident side and the exit side. As a result, the outgoing lens 34 is prevented from being scratched and moisture-absorbed, and the transmittance is improved by reducing the reflection loss on the surface as shown in FIG.
 図8は、図6における反射ミラー35の拡大断面図である。反射ミラー35は、プラスチック又はガラス基材11上にアルミニウムの金属膜12を形成した構造で、金属膜12上にシリケートナノ粒子薄膜20を形成した。これにより、反射ミラー35の傷付きと吸湿を防止できる。 FIG. 8 is an enlarged cross-sectional view of the reflection mirror 35 in FIG. The reflection mirror 35 has a structure in which an aluminum metal film 12 is formed on a plastic or glass substrate 11, and the silicate nanoparticle thin film 20 is formed on the metal film 12. Thereby, the reflection mirror 35 can be prevented from being scratched and absorbing moisture.
 図9は、無機ナノ粒子薄膜の適用例として車両用灯具に使用されるヘッドライト用レンズの例を示す図である。例えば、LED光源13を使用し、プラスチックの投影レンズ14の出射面にシリケートナノ粒子薄膜20を形成した。これにより、投影レンズ14の傷付きと吸湿を防止し、かつ図5に示したように、表面での反射損失を低減することで透過率を向上させた。 FIG. 9 is a diagram showing an example of a headlight lens used in a vehicle lamp as an application example of an inorganic nanoparticle thin film. For example, the LED light source 13 was used and the silicate nanoparticle thin film 20 was formed on the emission surface of the plastic projection lens 14. This prevented the projection lens 14 from being damaged and absorbs moisture, and improved the transmittance by reducing the reflection loss on the surface as shown in FIG.
 なお、車両用灯具は、レンズ表面に付着した塵や空気中の硫化物などのため光学特性が劣化し易い環境で使用される。このような場合、無機ナノ粒子として酸化チタンを用いることにより、上記の効果に加えて、紫外線による光触媒作用(空気中の水分子と反応して自己浄化作用)という特有の効果が得られ、透過率の低下、すなわち投影光の強度低下を防止できる。 Note that the vehicular lamp is used in an environment where the optical characteristics are likely to deteriorate due to dust adhering to the lens surface or sulfide in the air. In such a case, by using titanium oxide as inorganic nanoparticles, in addition to the above effects, a unique effect of photocatalytic action by ultraviolet rays (self-purifying action by reacting with water molecules in the air) can be obtained and transmitted. It is possible to prevent a decrease in the rate, that is, a decrease in the intensity of the projection light.
 図10は、無機ナノ粒子薄膜のフレネルレンズへの適用例を示す図である。プラスチック材のフレネルレンズ15の出射面にシリケートナノ粒子薄膜20を形成した。この場合も、フレネルレンズ15の傷付きと吸湿を防止し、かつ図5に示したように、表面での反射損失を低減することで透過率を向上させることができる。 FIG. 10 is a diagram showing an application example of an inorganic nanoparticle thin film to a Fresnel lens. The silicate nanoparticle thin film 20 was formed on the emission surface of the plastic Fresnel lens 15. Also in this case, the transmittance can be improved by preventing the Fresnel lens 15 from being scratched and absorbing moisture and reducing the reflection loss on the surface as shown in FIG.
 図11は、無機ナノ粒子薄膜の無機偏光板への適用例を示す図である。無機偏光板16は、ガラス基材17の上に所定間隔で金属細線(アルミニウム)18を配列した構造(ワイヤグリッド構造)である。そしてこれらの表面にシリケートナノ粒子薄膜20を形成した。これにより、無機偏光板16の傷付きと吸湿を防止できる。特に、結露による金属細線18表面の劣化(水分が付着することで加水分解を起こし偏光特性が変化する)を防止し、信頼性が向上する。例えば、煮沸試験にて金属細線18が剥離するまでの耐久時間を調べたところ、薄膜なしの従来構造の無機偏光板は耐久時間が約40分であるのに対し、本実施例の無機偏光板では12時間となり、耐久性が大幅に向上できた。なお、ここで示す無機偏光板16は反射型タイプであるが、金属細線18の上部に光吸収材を設けた吸収型タイプの構造でも同様の効果がある。 FIG. 11 is a diagram showing an application example of an inorganic nanoparticle thin film to an inorganic polarizing plate. The inorganic polarizing plate 16 has a structure (wire grid structure) in which fine metal wires (aluminum) 18 are arranged at a predetermined interval on a glass substrate 17. And the silicate nanoparticle thin film 20 was formed in these surfaces. Thereby, damage and moisture absorption of the inorganic polarizing plate 16 can be prevented. In particular, deterioration of the surface of the fine metal wire 18 due to condensation (hydrolysis caused by moisture adhering to change polarization characteristics) is prevented, and reliability is improved. For example, when the endurance time until the thin metal wire 18 peeled in the boiling test was examined, the inorganic polarizing plate having the conventional structure without a thin film had an endurance time of about 40 minutes, whereas the inorganic polarizing plate of this example In 12 hours, the durability was significantly improved. In addition, although the inorganic polarizing plate 16 shown here is a reflection type, the same effect can be obtained by an absorption type structure in which a light absorbing material is provided on the upper part of the thin metal wire 18.
 以上の実施例では無機ナノ粒子材料としてシリケートや酸化チタンを用いたが、材料はこれに限らず、高硬度の酸化物や窒化物を適宜用いることができ、またこれらの複合材料としても良い。 In the above embodiments, silicate or titanium oxide is used as the inorganic nanoparticle material. However, the material is not limited to this, and a high-hardness oxide or nitride can be appropriately used, or a composite material thereof may be used.
 上記実施例によれば、プラスチックレンズを含む光透過性部材や無機偏光板の表面にシリケートナノ粒子や酸化チタンナノ粒子による保護膜を湿式法により簡単な設備と工程で形成できる。このようなナノ粒子薄膜を形成することで、耐擦傷性、防水性と反射防止効果を併せ持った光学部品を提供することができる。更に、このような光学部品を使用することで、高輝度で信頼性の高い投射型映像表示装置などの光学応用装置を実現できる。 According to the above embodiment, a protective film made of silicate nanoparticles or titanium oxide nanoparticles can be formed on the surface of a light transmissive member including a plastic lens or an inorganic polarizing plate by a simple method and process using a wet method. By forming such a nanoparticle thin film, it is possible to provide an optical component having both scratch resistance, waterproofness and antireflection effect. Furthermore, by using such an optical component, it is possible to realize an optical application device such as a projection image display device having high luminance and high reliability.
 10,11…基材、12…金属膜、13…LED光源、14…投影レンズ、15…フレネルレンズ、16…無機偏光板、17…カラス基材、18…金属細線、20…無機ナノ粒子コーティング薄膜、21…無機ナノ粒子、30…投写型映像表示装置、31…液晶パネル、32…クロスプリズム、33…投写レンズ群、34…出射レンズ、35…反射ミラー。 DESCRIPTION OF SYMBOLS 10,11 ... Base material, 12 ... Metal film, 13 ... LED light source, 14 ... Projection lens, 15 ... Fresnel lens, 16 ... Inorganic polarizing plate, 17 ... Crow base material, 18 ... Metal fine wire, 20 ... Inorganic nanoparticle coating Thin film, 21... Inorganic nanoparticles, 30... Projection type image display device, 31... Liquid crystal panel, 32.

Claims (8)

  1.  基材の表面に粒径略15nm以下の無機ナノ粒子からなる薄膜を有し、
     該薄膜内の前記ナノ粒子の粒径が前記基材との界面から前記薄膜の表面に向い小さくなるとともに、
     該薄膜内に存在する空孔により前記ナノ粒子の相対密度は前記基材との界面から前記薄膜の表面に向い減少することを特徴としたナノ粒子薄膜を有する光学部品。
    Having a thin film made of inorganic nanoparticles having a particle size of approximately 15 nm or less on the surface of the substrate;
    The particle size of the nanoparticles in the thin film decreases from the interface with the substrate toward the surface of the thin film,
    An optical component having a nanoparticle thin film, wherein the relative density of the nanoparticles decreases from the interface with the substrate toward the surface of the thin film due to pores present in the thin film.
  2.  請求項1に記載のナノ粒子薄膜を有する光学部品であって、
     前記薄膜は各膜厚位置において前記ナノ粒子の相対密度に依存した実効屈折率を有し、
     前記薄膜の表面において前記ナノ粒子の相対密度は略40%以下であり、該薄膜の表面における前記実効屈折率は前記基材の持つ屈折率よりも小さいことを特徴としたナノ粒子薄膜を有する光学部品。
    An optical component having the nanoparticle thin film according to claim 1,
    The thin film has an effective refractive index depending on the relative density of the nanoparticles at each film thickness position,
    An optical having a nanoparticle thin film, wherein the relative density of the nanoparticles on the surface of the thin film is approximately 40% or less, and the effective refractive index on the surface of the thin film is smaller than the refractive index of the substrate. parts.
  3.  請求項2に記載のナノ粒子薄膜を有する光学部品であって、
     前記薄膜表面での反射率は前記基材の持つ反射率よりも小さいことを特徴としたナノ粒子薄膜を有する光学部品。
    An optical component having the nanoparticle thin film according to claim 2,
    An optical component having a nanoparticle thin film, characterized in that the reflectance on the surface of the thin film is smaller than the reflectance of the substrate.
  4.  請求項2に記載のナノ粒子薄膜を有する光学部品であって、
     前記薄膜の膜厚tは、当該光学部品で使用する光の波長λに対し略t=λ/4となるように形成したことを特徴としたナノ粒子薄膜を有する光学部品。
    An optical component having the nanoparticle thin film according to claim 2,
    An optical component having a nanoparticle thin film, wherein the thickness t of the thin film is formed to be approximately t = λ / 4 with respect to a wavelength λ of light used in the optical component.
  5.  請求項1ないし4のいずれか1項に記載のナノ粒子薄膜を有する光学部品であって、
     前記無機ナノ粒子はシリケート又は酸化チタンを含むことを特徴としたナノ粒子薄膜を有する光学部品。
    An optical component having the nanoparticle thin film according to any one of claims 1 to 4,
    An optical component having a nanoparticle thin film, wherein the inorganic nanoparticles include silicate or titanium oxide.
  6.  請求項1ないし4のいずれか1項に記載のナノ粒子薄膜を有する光学部品であって、
     前記基材はプラスチックを含むことを特徴としたナノ粒子薄膜を有する光学部品。
    An optical component having the nanoparticle thin film according to any one of claims 1 to 4,
    An optical component having a nanoparticle thin film, wherein the substrate includes plastic.
  7.  請求項1ないし6のいずれか1項に記載のナノ粒子薄膜を有する光学部品であって、
     当該光学部品は、レンズ、反射ミラー、無機偏光板のいずれかであることを特徴としたナノ粒子薄膜を有する光学部品。
    An optical component having the nanoparticle thin film according to any one of claims 1 to 6,
    An optical component having a nanoparticle thin film, wherein the optical component is any one of a lens, a reflection mirror, and an inorganic polarizing plate.
  8.  請求項1ないし7のいずれか1項に記載のナノ粒子薄膜を有する光学部品を用いたことを特徴とする光学応用装置。 An optical application apparatus using the optical component having the nanoparticle thin film according to any one of claims 1 to 7.
PCT/JP2013/069944 2013-07-23 2013-07-23 Optical component having nanoparticle thin film and optical application device using same WO2015011786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015528050A JPWO2015011786A1 (en) 2013-07-23 2013-07-23 Optical component having nanoparticle thin film and optical application apparatus using the same
PCT/JP2013/069944 WO2015011786A1 (en) 2013-07-23 2013-07-23 Optical component having nanoparticle thin film and optical application device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069944 WO2015011786A1 (en) 2013-07-23 2013-07-23 Optical component having nanoparticle thin film and optical application device using same

Publications (1)

Publication Number Publication Date
WO2015011786A1 true WO2015011786A1 (en) 2015-01-29

Family

ID=52392868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069944 WO2015011786A1 (en) 2013-07-23 2013-07-23 Optical component having nanoparticle thin film and optical application device using same

Country Status (2)

Country Link
JP (1) JPWO2015011786A1 (en)
WO (1) WO2015011786A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181995A (en) * 2020-07-21 2020-11-05 日亜化学工業株式会社 Light-emitting device, method for manufacturing the same, and display device
WO2023047948A1 (en) * 2021-09-24 2023-03-30 東海光学株式会社 Optical product and manufacturing method for optical product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319579A (en) * 1998-05-15 1999-11-24 Toshiba Lighting & Technology Corp Photocatalytic body and illuminator
JP2002006108A (en) * 2000-04-17 2002-01-09 Dainippon Printing Co Ltd Antireflecting film and its manufacturing method
JP2004139001A (en) * 2001-12-27 2004-05-13 Canon Inc Optical element, optical modulating element and image display apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090119418A (en) * 2008-05-16 2009-11-19 삼성전자주식회사 Optical member, light emitting device having the same and methods of manufacturing the same and the light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319579A (en) * 1998-05-15 1999-11-24 Toshiba Lighting & Technology Corp Photocatalytic body and illuminator
JP2002006108A (en) * 2000-04-17 2002-01-09 Dainippon Printing Co Ltd Antireflecting film and its manufacturing method
JP2004139001A (en) * 2001-12-27 2004-05-13 Canon Inc Optical element, optical modulating element and image display apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181995A (en) * 2020-07-21 2020-11-05 日亜化学工業株式会社 Light-emitting device, method for manufacturing the same, and display device
JP7057525B2 (en) 2020-07-21 2022-04-20 日亜化学工業株式会社 Light emitting device and its manufacturing method, and display device
WO2023047948A1 (en) * 2021-09-24 2023-03-30 東海光学株式会社 Optical product and manufacturing method for optical product

Also Published As

Publication number Publication date
JPWO2015011786A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP2005242361A (en) Selective reflection
JP5860961B2 (en) Optical wheel
WO2002069000A1 (en) Multi-layer film cut filter and production method therefor, uv cut filter, dustproof glass, display panel and projection type display unit
US9890919B2 (en) Lamp lens with reduced chromatic aberration and lamp for vehicle using the same
US9952368B2 (en) Polarization conversion element and optical device
JP5913863B2 (en) Optical elements for UV or EUV lithography
JP4193855B2 (en) Light source device and projector
JP2020511688A (en) Vehicle projection assembly
WO2019146545A1 (en) Diffusion plate and optical device
WO2015011786A1 (en) Optical component having nanoparticle thin film and optical application device using same
JP5566667B2 (en) Polarization conversion element
US20060119946A1 (en) Structure and fabrication method for high temperature integration rod
JP2012189773A (en) Polarization element
US9594192B2 (en) Optical element, optical system, and method of manufacturing optical element
US6937398B2 (en) Highly reflective optical components
JP6670879B2 (en) Polarizing element, liquid crystal projector and method of manufacturing polarizing element
US20070206166A1 (en) Light-projecting system for a projector and method of projecting light thereof
JP2010048896A (en) Optical system
US7621646B2 (en) Curved band-pass filter
JP2019203974A (en) Wire grid polarization element, liquid crystal device, and electronic apparatus
JP2011107309A (en) Polarized light source
JP6999719B2 (en) Polarizing elements and LCD projectors
JP7452143B2 (en) Multi-lens array, light source device and projector
US20220373721A1 (en) Prism module manufacturing method, prism module and projection device
JP6378252B2 (en) Polarizing element and liquid crystal projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889986

Country of ref document: EP

Kind code of ref document: A1