WO2015009017A1 - 션트전류 손실 방지를 위한 실링을 구비한 레독스 흐름전지 또는 연료 전지용 스택 - Google Patents

션트전류 손실 방지를 위한 실링을 구비한 레독스 흐름전지 또는 연료 전지용 스택 Download PDF

Info

Publication number
WO2015009017A1
WO2015009017A1 PCT/KR2014/006366 KR2014006366W WO2015009017A1 WO 2015009017 A1 WO2015009017 A1 WO 2015009017A1 KR 2014006366 W KR2014006366 W KR 2014006366W WO 2015009017 A1 WO2015009017 A1 WO 2015009017A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
seal
plate
stack
flow path
Prior art date
Application number
PCT/KR2014/006366
Other languages
English (en)
French (fr)
Inventor
한창훈
한신
허지향
Original Assignee
주식회사 에이치투
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치투 filed Critical 주식회사 에이치투
Priority to EP14826882.4A priority Critical patent/EP3024075B1/en
Publication of WO2015009017A1 publication Critical patent/WO2015009017A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a sealing 50 used to prevent leakage of electrolyte in a stack of redox flow cells or fuel cells.
  • Redox flow battery is one of the core products closely related to renewable energy, greenhouse gas reduction, secondary battery, smart grid, etc., which has recently attracted the greatest attention in the world, and fuel cells are fossil-free without environmental pollutant emission. It is a product that is rapidly expanding globally as a new energy generation source to replace fuel. Currently, most of the energy is obtained from fossil fuels, but the use of such fossil fuels has serious adverse effects on the environment, such as air pollution, acid rain, and global warming, and has low energy efficiency.
  • Fuel cell has been developed a lot of technologies due to the environment-friendly and unlimited resource supply, fuel cell vehicles, generators, heating supply using the same has been developed and is being sold. However, it is still difficult to manufacture and difficult to assemble and maintain.
  • the general structure of the redox flow battery to which the present invention is applied is a stack (1) in which a cell in which an electrochemical reaction occurs is stacked (1), a tank (3) for storing an electrolyte, and a pump for supplying electrolyte from the electrolyte tank to the stack. It consists of (4).
  • FIG. 2 shows the structure of the stack 1 in a simplified manner, and from the left side, the end plate 11-insulation plate 12-current plate 13-separation plate 14-gasket 15-flow frame 16 -Electrode 17-Gasket 15-Ion Exchange Membrane 18-Gasket 15-Electrode 17-Flow Frame 16-Gasket 15-Separator 14-Current Plate 13- Insulating plate 12 and end plate 11 are shown, forming a unit cell from divider 14 to divider 14 and generally one stack consists of several tens to hundreds of unit cells stacked.
  • the term plate refers to a configuration such as an end plate 11, an insulating plate 12, a current plate 13, a separation plate 14, and a flow frame 16 constituting the plate-shaped stack 1. .
  • Each part of the stack includes a seal 50 or a gasket 15 to prevent leakage of the electrolyte.
  • the seal 50 is compressed to prevent leakage of the electrolyte (see FIG. 3).
  • the seal 50 is grooved in contact surfaces of plates such as the end plate 11, the insulating plate 12, the current plate 13, the separator plate 14, and the flow frame 16 stacked up and down the seal 50. It is mounted in the form of fitting out, the size of the groove is equal to or larger than the cross-sectional area of the seal 50 is designed to fill the inside of the groove 50 after the compression (see Fig. 3).
  • the stack is assembled by stacking plates, gaskets, seals 50, etc., which form the stack, perpendicular to the ground.
  • FIG. 4 is a schematic drawing of the structure of a redox flow cell showing an ideal electron flow.
  • Redox flow cells use a current plate or current collector located at both ends of the stack to supply electrons, which pass through the cell and generate an electrochemical reaction.
  • the electrolyte is a material having a very high electrical conductivity, when the cell internal resistance increases, electrons move through a flow hole having a relatively low resistance as shown by the arrow of FIG. 5.
  • the present invention is to solve the problem that the seal 50, which was inserted into the groove of the lower surface of the plate is pulled out by gravity during the assembly process.
  • the present invention seeks to prevent shunt current losses that degrade the performance of a redox flow battery.
  • the present invention is a redox flow cell or fuel cell stack for stacking and assembling a plurality of plates, the sealing 50 is located between the plurality of plates, the plurality of plates are the sealing only on the surface facing upwards during assembly It relates to a redox flow cell or a fuel cell stack, in which a groove on which the 50 is placed is formed, and a groove on which the seal 50 is placed is not formed.
  • seal 50 of the present invention may include a seal 50a placed along the outer edge of the plate between the plurality of plates.
  • an electrolyte flow path 16c is formed in a part of the plurality of plates, and the plate on which the electrolyte flow path 16c is formed.
  • the present invention relates to a redox flow cell or a fuel cell stack comprising a seal 50a disposed along an outer side of a plate and a seal 50b disposed adjacent to the electrolyte flow path.
  • the electrolyte flow path 16c of the present invention is formed to have overlapping portions when viewed in one direction, and the sealing 50b extends between the overlapping portions.
  • the plate formed with the electrolyte flow path of the present invention is the electrolyte passage 16b is not formed; And a seal 50c surrounding the electrolyte passage 16b.
  • seal 50a placed along the outer periphery of the plate of the present invention, the seal 50b adjacent to the electrolyte flow path, and the seal 50c surrounding the electrolyte passage 16b may be integrally formed.
  • the present invention removes the grooves on the surface facing the lower side of the plate adjacent to the seal 50 and the grooves are generated only on the surface facing upward, so that the sealing 50 does not follow the plate bottom surface in the stack assembly process.
  • the sealing 50b is provided between or adjacent the electrolyte flow path lines, so that the electrolyte can be prevented from escaping from the electrolyte flow path 16c and thereby the shunt current loss can be prevented.
  • FIG. 1 is a schematic diagram of a redox flow battery to which the present invention is applied.
  • FIG. 2 is an exploded perspective view of a conventional redox flow battery stack.
  • 3 is a view showing an assembled state of the seal between the plates.
  • FIG. 4 is a schematic diagram of a stack showing an ideal electron flow.
  • FIG. 5 is a schematic diagram of a stack showing generation of shunt current losses.
  • FIG. 6 is a view showing generation of electrolyte flow paths and shunt current losses generated in a plate.
  • FIG. 7 is a view showing a state in which the seal of the present invention is assembled.
  • FIG. 8 is a view showing a state in which the sealing of the present invention is stacked.
  • FIG. 9 is an assembly view of a redox flow battery using a conventional guide pin.
  • FIG. 2 simplifies the structure of the stack 1.
  • the stack is assembled by stacking from bottom to top, as shown in FIG.
  • the seal 50 may be a gasket 15 in the form of a plate, an o-ring in the shape of a round rubber band, or a gasket having various planar phenomena.
  • the seal 50 is mounted in the form of a groove to be inserted into the plate stacked up and down, the size of the groove is configured to be equal to or larger than the cross-sectional area of the seal 50 so that the seal 50 is fitted into the groove before compression It is placed in the groove, not in the form of losing. (See Fig. 3)
  • the grooves are removed from the lower surface of the plate adjacent to the seal 50 and only the upper surface is formed so that when the portion of the stack is moved in the stack assembly process, the seal 50 is attached to the lower surface of the plate. Improved efficiency of the assembly process by avoiding coming.
  • the shunt current loss occurs in the stack of the present invention because the resistance value of the electrolyte passage is smaller than the internal resistance of the cell, increasing the resistance value of the electrolyte passage can prevent the shunt current loss.
  • the most commonly used method is to lengthen the flow channel.
  • the resistance R is proportional to the length L and inversely proportional to the cross-sectional area A. Therefore, since the resistance L can be increased by lengthening the length L of the flow path, in the present invention, the electrolyte flow path 16c extending from the electrolyte passage 16a to the ion exchange membrane 18 is formed in the shape of the letter 'L' or 'S'. When viewed from one direction (for example, the arrow direction in FIG. 7), the electrolyte flow path was formed long so as to have overlapping portions.
  • the method of forming the electrolyte flow path 16c long includes not only the "L” shape or the "S” shape but also other modification methods that can be easily inferred by those skilled in the art.
  • a seal 50b is additionally installed between the adjacent and / or overlapping portions of the electrolyte flow passage so that the electrolyte does not escape from the passage 16a or the electrolyte flow passage 16c whereby the electrolyte flows, thereby shunt current loss. It was possible to prevent.
  • a seal 50a surrounding the outer side of the plate and a seal 50c surrounding the electrolyte passage 16b where the electrolyte flow path is not formed are formed to prevent the electrolyte from leaking.
  • the sealing 50a surrounding the outer periphery of the frame and the sealing 50b placed inside the electrolyte flow path are integrally manufactured or the sealings 50a and 50b and the electrolyte passage 16b are wrapped.
  • the 50c was integrally manufactured to prevent the electrolyte from leaving the electrolyte flow path 16c or leaking of the electrolyte in the flow frame 16.
  • the electrolyte flow path is formed in the flow frame 16 as an example, but the electrolyte flow path may be formed in a plate other than the flow frame 16.

Abstract

본 발명은 앤드 플레이트(11), 절연판(12), 전류 플레이트(13), 분리판(14), 플로우 프레임(16) 및 이온교환막(18)을 포함하는 레독스 흐름전지 또는 연료 전지 스택에 있어서, 션트 전류 손실을 방지하기 위한 실링의 형상 및 조립성을 향상하기 위하여 한쪽에만 실링홈이 장착된 구조에 관한 발명이다.

Description

[규칙 제26조에 의한 보정 04.08.2014] 션트전류 손실 방지를 위한 실링을 구비한 레독스 흐름전지 또는 연료 전지용 스택
본 발명은 레독스 흐름 전지 또는 연료전지의 스택에서 전해질의 누수를 방지하기 위해 사용되는 실링(50)에 관한 것이다.
레독스 흐름전지는 최근 전 세계적으로 가장 큰 관심을 불러일으키고 있는 신재생에너지, 온실가스 감축, 2차 전지, 스마트그리드 등과 긴밀하게 연관된 핵심 제품 중 하나이고, 연료전지는 환경오염 물질 배출이 없이 화석연료를 대체할 신에너지 발전원으로써 전 세계적으로 급격한 시장의 확대가 진행중인 제품이다. 현재 대부분의 에너지를 화석 연료로부터 얻고 있으나, 이러한 화석 연료의 사용은 대기오염, 산성비 및 지구 온난화 같이 환경에 심각한 악영향을 미치고 있으며, 에너지 효율도 낮은 문제점이 있다.
이러한 화석 연료의 사용에 따른 문제점을 해결하기 위해 근래에는 신재생 에너지 및 연료전지에 대한 관심이 급속도로 높아졌다. 이러한 신재생 에너지에 대한 관심 및 연구는 국내뿐만 아니라 전 세계적으로 활발히 진행되고 있다.
신재생 에너지 시장의 경우 국내외적으로 성숙 단계에 접어들었다고는 하지만 재생에너지의 특성상 시간 및 날씨 등의 환경 영향에 따라 발생하는 에너지의 양이 크게 변화한다는 문제점이 있어, 이로 인해 신재생 에너지 발전의 안정화를 위해 발생된 재생 에너지를 저장하는 에너지 저장 시스템(ESS: Energy Storage System)의 보급이 매우 필요한 상황이며, 이러한 대용량 에너지 저장 시스템으로 주목받고 있는 것이 레독스 흐름 전지이다.
연료전지는 친환경성 및 무제한적인 자원 공급량으로 인해 이미 많은 기술 개발이 진행되었고, 이를 이용한 연료전지 자동차, 발전기, 난방 공급기 등이 개발되어 판매 중에 있다. 하지만 아직까지 제작이 난해하고 조립 및 유지보수가 어렵다는 단점을 갖고 있다.
본 발명이 적용되는 레독스 흐름전지의 일반적인 구조는 도 1과 같이 전기화학 반응이 일어나는 셀을 적층한 스택(1), 전해질을 보관하는 탱크(3) 및 전해질 탱크에서 스택으로 전해질을 공급하는 펌프(4)로 구성되어 있다.
도 2는 스택(1)의 구조를 단순 하여 보여주고 있으며 좌측에서부터 앤드 플레이트(11)-절연판(12)-전류 플레이트(13)-분리판(14)-가스켓(15)-플로우 프레임(16)-전극(17)-가스켓(15)-이온교환막(18)-가스켓(15)-전극(17)-플로우 프레임(16)-가스켓(15)-분리판(14)-전류판(13)-절연판(12)-앤드 플레이트(11)를 도시하고 있고, 분리판(14) ~ 분리판(14)까지 단위 셀을 이루며 일반적으로 하나의 스택은 수십 ~ 수백 개의 단위 셀을 적층하여 이루어진다.
본원 발명에서 플레이트란 용어는 판 형상의 스택(1)을 이루는 앤드 플레이트(11), 절연판(12), 전류 플레이트(13), 분리판(14), 플로우 프레임(16)과 같은 구성을 지칭한다.
스택의 각 부품 사이에는 전해질의 누수를 방지하기 위하여 실링(50) 또는 가스켓(15)이 포함되게 된다.
스택이 조립되게 되면 실링(50)은 압축되며 전해질의 누수를 방지하게 된다 (도 3참고).
실링(50)은 실링(50)의 위 아래로 적층되는 앤드플레이트(11), 절연판(12), 전류 플레이트(13), 분리판(14), 플로우 프레임(16)와 같은 플레이트의 접촉면에 홈을 내어 끼우는 형태로 장착되며, 홈의 크기는 실링(50)의 단면적과 같거나 크게 하여 압축 후 홈의 내부를 실링(50)이 채워지도록 설계된다 (도 3참고).
일반적으로 스택은 도 9에 도시된 것처럼, 스택을 이루는 플레이트, 가스켓, 실링(50) 등을 지면에 수직으로 적층하여 조립한다.
그러나, 스택을 조립하는 과정에서 스택의 일부를 옮기게 되는데, 이러한 경우 플레이트의 아랫면의 홈에 끼어져 있던 실링(50)은 홈의 크기보다 작기 때문에 중력에 의하여 빠지는 경우가 발생하여 조립 과정에 불편한 점이 있었다.
또한, 레독스 흐름전지의 성능을 저하시키는 문제 중 하나는 션트 전류 손실(shunt current loss) 문제가 있다. 이는 도 4 및 도 5에 의하여 설명될 수 있다. 도 4는 이상적인 전자 흐름을 보여주는 레독스 흐름전지의 구조를 간략하게 그린 도면이다. 레독스 흐름전지는 스택의 양쪽 끝에 위치하고 있는 전류판(current plate 또는 current collector)을 이용하여 전자를 공급하고 이 전자는 셀 내부를 지나면서 전기 화학적 반응이 발생한다.
하지만 전해질은 전기 전도도가 매우 높은 물질이기 때문에 셀 내부 저항이 증가하면 도 5의 화살표와 같이 전기의 특성상 상대적으로 저항이 작은 유로 홀(flow hole)을 통해서 전자가 이동하게 된다.
따라서 스택을 설계할 때 이러한 션트 전류 손실(shunt current loss)을 방지해야 하는 문제점이 있다.
이와 관련하여 국내 공개 특허 10-2013-0040826, 발명의 명칭 멤브레인 기반 프로세스를 위한 멤브레인 스택과 이를 위한 멤브레인을 생산하기 위한 방법에 실링에 대한 내용이 있으나, 상기 문제점을 해결하고 있지는 않다.
본원 발명은 플레이트의 아랫면의 홈에 끼어져 있던 실링(50)이 조립과정에서 중력에 의하여 빠지는 문제점을 해결하고자 한다.
또한, 본원 발명은 레독스 흐름 전지의 성능을 저하시키는 션트 전류 손실을 방지하고자 한다.
본 발명은 다수의 플레이트를 적층하여 조립하는 레독스 흐름전지 또는 연료 전지 스택에 있어서, 상기 다수의 플레이트 사이에는 실링(50)이 위치하며, 상기 다수의 플레이트는 조립시 상부로 향하는 면에만 상기 실링(50)이 놓여지는 홈이 형성되고 하부로 항하는 면에는 실링(50)이 놓여지는 홈이 형성되지 않은 것을 특징으로 하는 레독스 흐름전지 또는 연료 전지용 스택에 관한 것이다.
또한, 본 발명의 상기 실링(50)은 다수의 플레이트 사이에서 상기 플레이트의 외곽을 따라 놓여지는 실링(50a)을 포함할 수 있다.
또한, 본 발명은 다수의 플레이트를 적층하여 조립하는 레독스 흐름전지 또는 연료 전지용 스택에 있어서, 상기 다수의 플레이트 중 일부에는 전해질 유로(16c)가 형성되며, 상기 전해질 유로(16c)가 형성된 플레이트는 플레이트의 외곽을 따라 놓여지는 실링(50a) 및 상기 전해질 유로에 인접하여 놓여지는 실링(50b)을 포함하는 것을 특징으로 하는 레독스 흐름전지 또는 연료 전지용 스택에 관한 것이다.
또한, 본 발명의 상기 전해질 유로(16c)는 한쪽방향에서 보면 중첩된 부분을 구비하도록 형성되며, 상기 실링(50b)은 상기 중첩된 부분 사이로 연장하는 것이다.
또한, 본 발명의 상기 전해질 유로가 형성된 플레이트는 전해질 유로가 형성되지 않은 전해질용 통로(16b); 및 상기 전해질용 통로(16b)를 에워싸는 실링(50c)을 포함할 수 있다.
또한, 본 발명의 상기 플레이트의 외곽을 따라 놓여지는 실링(50a) 및 상기 전해질 유로에 인접하는 실링(50b) 및 상기 전해질용 통로(16b)를 에워싸는 실링(50c)은 일체형으로 이루어질 수 있다.
본원 발명은 실링(50)에 인접하는 플레이트의 하부로 향하는 면에는 홈을 제거하고 상부로 향하는 면에만 홈이 생성되도록 하여, 스택 조립 과정에서 플레이트 아랫면에 실링(50)이 따라오지 않도록 하여 조립과정의 효율을 향상시켰다.또한, 전해질 유로 라인 사이에 또는 인접하는 위치에 실링(50b)을 설치하여, 전해질이 전해질 유로(16c)로부터 이탈을 방지하고 이로 인하여 션트 전류 손실을 방지할 수 있게 하였다.
도 1은 본 발명이 적용되는 레독스 흐름전지의 개략도이다.
도 2는 종래 레독스 흐름전지 스택의 분해 사시도이다.
도 3은 플레이트 사이의 실링의 조립상태를 보여주는 도면이다.
도 4는 이상적인 전자 흐름을 보여주는 스택의 개략도이다..
도 5는 션트 전류 손실의 발생을 보여주는 스택의 개략도이다.
도 6은 플레이트에 생성된 전해질 유로와 션트 전류 손실의 발생을 보여주는 도면이다.
도 7은 본 발명의 실링이 조립된 상태를 보여주는 도면이다.
도 8은 본 발명의 실링이 적층되는 상태를 보여주는 도면이다.
도 9는 종래 가이드 핀을 이용한 레독스 흐름전지의 조립도이다.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다.
첨부된 도면은 본 발명의 예시적인 형태를 도시한 것으로, 이는 본 발명을 보다 상세히 설명하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적인 범위가 한정되는 것은 아니다.
본 발명의 레독스 흐름전지 또는 연료전지용 스택들은 반복적으로 적층되는 구조로서 도 2는 스택(1)의 구조를 단순화하여 보여주고 있다.
스택은 도 9에 도시된 것처럼, 아래에서 위로 적층하는 방식으로 조립이 된다.
조립과정에서, 스택을 구성하는 앤드 플레이트(11), 절연판(12), 전류 플레이트(13), 분리판(14), 플로우 프레임(16)와 같은 플레이트 사이에는 전해질의 누수를 방지하고자 하는 실링(50)이 놓여진다.
상기 실링(50)은 판 형태의 가스켓(15)이 될 수도 있고 동그란 고무줄 모양의 오링(o-ring)이 될 수도 있고 다양한 평면 현상을 갖는 줄형 가스켓(gasket)이 될 수도 있다.
상기 실링(50)은 위 아래로 적층되는 플레이트에 홈을 내어 끼우는 형태로 장착되며, 홈의 크기는 실링(50)의 단면적과 같거나 크게 구성되어 있어서 압축전에 실링(50)은 홈에 끼워 맞춰지는 형태가 아닌 홈에 얹혀 있게 된다. (도 3참조)
그러나, 스택을 조립하는 과정에서 스택의 일부 파트를 옮기게 되는데, 플레이트의 아랫면의 홈에 끼어져 있던 실링(50)이 플레이트와 함께 이동되는 과정에서, 중력에 의하여 빠지는 경우가 발생하여 조립 과정에 불편한 점이 있었다.
이에 본원 발명에서는 실링(50)에 인접하는 플레이트의 하부면에는 홈을 제거하고 상부면에만 홈이 생성되어 있도록 하여, 스택 조립 과정에서 스택의 일부를 옮기는 경우, 플레이트 아랫면에 실링(50)이 따라오지 않도록 하여 조립과정의 효율을 향상시켰다.

또한, 본원 발명의 스택에서 션트 전류 손실이 발생하는 이유는 셀의 내부 저항보다 전해질 통로의 저항값이 작기 때문이므로 전해질 통로의 저항값을 크게 하면 션트 전류 손실을 방지할 수 있다. 이에 가장 일반적으로 사용되는 방법은 유로(flow channel)를 길게 하는 방법이다.
R = L/A
저항 R은 길이 L에 비례하고 단면적 A에 반비례한다. 따라서 유로의 길이 L을 길게 하여 저항을 증가시킬 수 있으므로, 본원 발명에서는 전해질 통로(16a)에서 이온 교환막(18)까지 이르는 전해질 유로(16c)를 "ㄹ"자 형상 또는 "S"자 형상과 같이 한쪽 방향(예 도 7의 화살표 방향)에서 보았을 때 중첩된 부분을 구비하도록 하여 전해질 유로를 길게 형성하였다.
본원 발명에서 전해질 유로(16c)를 길게 형성하는 방법은 상기 "ㄹ"자 형상 또는 "S"자 형상뿐만 아니라 통상의 기술자가 용이하게 추론할 수 있는 기타 변형방법을 포함한다.
그러나, 상기 "ㄹ"자 형상 또는 "S"자 형상의 전해질 유로(16c)가 설치되는 경우, 전해질 유로(16c)가 아닌 전해질 통로(16a)에서 이온 교환막(18)의 영역으로 화살표와 같이 직접 전해질이 이동하는 상황이 발생할 수 있는데 (도 6에 도시), 이와 같은 경우 전해질의 이동 경로가 짧아져 전해질 통로의 저항값은 줄게 되고 션트 전류 손실이 발생할 수 있다.
이에 본원 발명에서는 전해질 유로에 인접하여 및/또는 중첩되는 부분 사이에 실링(50b)을 추가로 설치하여, 전해질이 전해진 통로(16a) 또는 전해질 유로(16c)로부터 이탈하지 않도록 하였고 이로 인하여 션트 전류 손실을 방지할 수 있게 하였다.
또한, 플로우 프레임에는 도 7과 같이 플레이트의 외곽을 감싸는 실링(50a)과 전해질 유로가 형성되지 않은 전해질 통로(16b)를 감싸는 실링(50c)을 형성하여 전해질이 새는 것을 막아준다.
또한, 본원 발명에서는 프레임의 외곽을 감싸는 실링(50a) 및 전해질 유로의 안쪽에 놓여지는 실링(50b)을 일체형으로 제작하거나 또는 상기 실링들(50a, 50b) 와 상기 전해질 통로(16b)를 감싸는 실링(50c)을 일체형으로 제작하여, 전해질이 전해질 유로(16c)를 이탈하거나 플로우 프레임(16)에서 전해질이 새는 것을 방지하였다.
상기 설명에서 전해질 유로가 플로우 프레임(16)에 형성되는 것을 예로 설명하였으나, 전해질 유로는 플로우 프레임(16)이 아닌 다른 플레이트에도 형성될 수 있다.

Claims (3)

  1. 다수의 플레이트를 적층하여 조립하는 레독스 흐름 전지용 스택에 있어서, 상기 다수의 플레이트 중 일부에는 전해질 통로(16a)와 전해질 유로(16c)가 형성되며, 상기 전해질 유로(16c)는 한쪽 방향에서 보았을 때 중첩되는 부분을 형성하고,상기 전해질 유로(16c)가 형성된 플레이트는 외곽을 따라 놓여지는 실링(50a) 및 전해질 통로(16a)에서 이온 교환막(18)으로의 전해질의 직접 이동 및 전해질 유로(16c)에서의 전해질 이탈을 방지하기 위하여 상기 전해질 유로(16c)에 인접하며 상기 중첩되는 부분 사이로 연장되는 실링(50b)을 포함하며, 상기 전해질 유로(16c)가 형성된 플레이트에는 조립시 상부로 향하는 면에만 상기 실링들(50a, 50b)이 놓여지는 홈이 형성된 것을 특징으로 하는 레독스 흐름 전지용 스택.
  2. 제1항에 있어서
    상기 전해질 유로가 형성된 플레이트는 전해질 유로가 형성되지 않은 전해질용 통로(16b); 및 상기 전해질용 통로(16b)를 에워싸는 실링(50c)을 추가로 포함하고, 상기 전해질 유로(16c)는 "ㄹ"자 형상 또는 "S"자 형상을 이루는 것을 특징으로 하는 레독스 흐름 전지용 스택.
  3. 제1항 또는 제2항에 있어서
    상기 플레이트의 외곽을 따라 놓여지는 실링(50a) 및 상기 전해질 유로에 인접하는 실링(50b) 또는 상기 플레이트의 외곽을 따라 놓여지는 실링(50a), 상기 전해질 유로에 인접하는 실링(50b) 및 상기 전해질용 통로(16b)를 에워싸는 실링(50c)은 일체형으로 이루어진 것을 특징으로 하는 레독스 흐름 전지용 스택.
PCT/KR2014/006366 2013-07-16 2014-07-15 션트전류 손실 방지를 위한 실링을 구비한 레독스 흐름전지 또는 연료 전지용 스택 WO2015009017A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14826882.4A EP3024075B1 (en) 2013-07-16 2014-07-15 Redox flow battery or fuel cell stack provided with seal for preventing shunt current loss

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130083212A KR101465489B1 (ko) 2013-07-16 2013-07-16 션트전류 손실 방지를 위한 실링을 구비한 레독스 흐름전지 또는 연료 전지용 스택
KR10-2013-0083212 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015009017A1 true WO2015009017A1 (ko) 2015-01-22

Family

ID=52291677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006366 WO2015009017A1 (ko) 2013-07-16 2014-07-15 션트전류 손실 방지를 위한 실링을 구비한 레독스 흐름전지 또는 연료 전지용 스택

Country Status (3)

Country Link
EP (1) EP3024075B1 (ko)
KR (1) KR101465489B1 (ko)
WO (1) WO2015009017A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231153A1 (en) * 2020-05-15 2021-11-18 Ess Tech, Inc. Redox flow battery and battery system
US11340741B2 (en) 2013-10-17 2022-05-24 Lg Innotek Co., Ltd. Touch window having a sensing electrode with a variable width of a conductive line

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160075923A (ko) * 2014-12-19 2016-06-30 오씨아이 주식회사 션트 손실을 감소시킨 레독스 흐름 전지
KR101742486B1 (ko) 2015-09-02 2017-06-02 전자부품연구원 가변 채널을 갖는 플로우 프레임 및 그를 포함하는 레독스 플로우 이차전지
KR101845138B1 (ko) * 2015-11-13 2018-04-03 오씨아이 주식회사 기밀성과 조립성을 향상시킨 레독스 흐름전지
CN112838238B (zh) * 2019-11-25 2022-06-14 北京和瑞储能科技有限公司 液流电池堆及其保温板
CN112993360B (zh) * 2019-12-13 2022-04-19 中国科学院大连化学物理研究所 一种锌溴单液流电堆和电池
CN113540496B (zh) * 2020-04-09 2022-12-30 陕西五洲矿业股份有限公司 一种全钒液流电池电堆用密封装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084010B2 (ja) * 1989-03-23 1996-01-17 関西電力株式会社 電解液循環型二次電池
JP3143613B2 (ja) * 1999-03-05 2001-03-07 住友電気工業株式会社 レドックスフロー型2次電池用セル
JP2007299550A (ja) * 2006-04-27 2007-11-15 Toyota Motor Corp 燃料電池
KR20090078550A (ko) * 2008-01-15 2009-07-20 삼성전자주식회사 연료전지 및 그 연료전지에 채용되는 스택과 냉각플레이트
CN101587959A (zh) * 2008-05-23 2009-11-25 大连融科储能技术发展有限公司 一种电极框及全钒液流储能电池堆
KR20130040826A (ko) 2010-04-06 2013-04-24 레드스택 비.브이. 멤브레인 기반 프로세스를 위한 멤브레인 스택과 이를 위한 멤브레인을 생산하기 위한 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727972B2 (ja) * 2004-11-25 2011-07-20 本田技研工業株式会社 燃料電池スタック
US10141594B2 (en) * 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084010B2 (ja) * 1989-03-23 1996-01-17 関西電力株式会社 電解液循環型二次電池
JP3143613B2 (ja) * 1999-03-05 2001-03-07 住友電気工業株式会社 レドックスフロー型2次電池用セル
JP2007299550A (ja) * 2006-04-27 2007-11-15 Toyota Motor Corp 燃料電池
KR20090078550A (ko) * 2008-01-15 2009-07-20 삼성전자주식회사 연료전지 및 그 연료전지에 채용되는 스택과 냉각플레이트
CN101587959A (zh) * 2008-05-23 2009-11-25 大连融科储能技术发展有限公司 一种电极框及全钒液流储能电池堆
KR20130040826A (ko) 2010-04-06 2013-04-24 레드스택 비.브이. 멤브레인 기반 프로세스를 위한 멤브레인 스택과 이를 위한 멤브레인을 생산하기 위한 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340741B2 (en) 2013-10-17 2022-05-24 Lg Innotek Co., Ltd. Touch window having a sensing electrode with a variable width of a conductive line
WO2021231153A1 (en) * 2020-05-15 2021-11-18 Ess Tech, Inc. Redox flow battery and battery system
US11670792B2 (en) 2020-05-15 2023-06-06 Ess Tech, Inc. Redox flow battery and battery system

Also Published As

Publication number Publication date
KR101465489B1 (ko) 2014-11-26
EP3024075A4 (en) 2017-03-29
EP3024075A1 (en) 2016-05-25
EP3024075B1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
WO2015009017A1 (ko) 션트전류 손실 방지를 위한 실링을 구비한 레독스 흐름전지 또는 연료 전지용 스택
CN101499532B (zh) 用于燃料电池极板的金属压条密封部
CN102122722B (zh) 一种固体氧化物燃料电池堆
US8236067B2 (en) Method and apparatus for fuel cell stack assembly
US11581564B2 (en) Electrochemical system
CA2650982A1 (en) Fuel cell having an embedded member in a gap between a separator and a porous member
KR102478090B1 (ko) 연료전지용 셀 프레임 및 이를 이용한 연료전지 스택
KR101431070B1 (ko) 이온교환막 및 플로우프레임 조립체를 구비한 레독스 흐름 전지용 스택
KR20150007750A (ko) 레독스 흐름 전지 및 셀 프레임
EP2824747A1 (en) Redox flow battery and cell frame
CN103633343A (zh) 具有阶梯式通道双极板的质子交换膜燃料电池
CN103811779A (zh) 液流电池用电极框、电堆及其电池系统
US20120111967A1 (en) Hollow-fiber membrane module for moisture exchange
KR101471886B1 (ko) 전해질용 관을 포함하는 레독스 흐름 전지용스택
WO2015009026A1 (ko) 분리판 결합체 및 분리판 탭을 포함하는 레독스 흐름 전지용 스택
TWI524585B (zh) 電化學液流電池單元組件及其雙極板
US10020529B2 (en) Flow battery stack including capillary tube
KR100793159B1 (ko) 연료전지 분리판의 밀봉 개선 구조
KR101534552B1 (ko) 연료전지
US20160285112A1 (en) Fuel cell assembly
KR20200028072A (ko) 연료전지 스택
CN108400366B (zh) 密封结构及包含其的液流电池
KR20150078554A (ko) 굴절형 냉각유로를 형성한 연료전지 분리판
KR20170063225A (ko) 연료전지 스택
KR101655151B1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지 스택

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014826882

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE