WO2015008850A1 - Optical film, circularly-polarizing film, and 3d image display device - Google Patents

Optical film, circularly-polarizing film, and 3d image display device Download PDF

Info

Publication number
WO2015008850A1
WO2015008850A1 PCT/JP2014/069119 JP2014069119W WO2015008850A1 WO 2015008850 A1 WO2015008850 A1 WO 2015008850A1 JP 2014069119 W JP2014069119 W JP 2014069119W WO 2015008850 A1 WO2015008850 A1 WO 2015008850A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
phase difference
optical film
retardation region
retardation
Prior art date
Application number
PCT/JP2014/069119
Other languages
French (fr)
Japanese (ja)
Inventor
健人 大谷
大輔 杉山
森嶌 慎一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015008850A1 publication Critical patent/WO2015008850A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques

Definitions

  • the present invention relates to an optical film, a circularly polarizing film, and a 3D image display device.
  • a 3D image display device that displays a 3D (stereoscopic) image requires an optical member for making the right-eye image and the left-eye image into circularly polarized images in opposite directions, for example.
  • an optical member for example, a patterned optical anisotropic element is used in which regions having different slow axes and retardations are regularly arranged in a plane (Patent Document 1).
  • an object of the present invention is to provide an optical film in which crosstalk during 3D image observation is suppressed even when applied to a high-definition display panel.
  • Another object of the present invention is to provide a circularly polarizing film having the optical film and a 3D image display device.
  • the present inventors have found that the width of the first retardation region and the width of the second retardation region in the patterned optically anisotropic layer, and the boundary located between the two It has been found that the above problem can be solved by adjusting the width of the line. That is, it has been found that the above object can be achieved by the following configuration.
  • a display panel (1) a display panel; An optical film having a patterned optical anisotropic layer disposed on the viewing side of the display panel, The patterned optically anisotropic layer has a first retardation region and a second retardation region in which at least one of the in-plane slow axis direction and the in-plane retardation is different from each other, and the first retardation region and the second retardation region The regions are alternately arranged in stripes within the same plane, and the width of the first retardation region and the width of the second retardation region are 50 to 250 ⁇ m, A 3D image display device in which a width of a boundary line made of a non-oriented region located at (corresponding to) a boundary between a first phase difference region and a second phase difference region is 0.1 to 10 ⁇ m.
  • An optical film having a patterned optically anisotropic layer has a first retardation region and a second retardation region in which at least one of the in-plane slow axis direction and the in-plane retardation is different from each other, and the first retardation region and the second retardation region The regions are alternately arranged in stripes within the same plane, and the width of the first retardation region and the width of the second retardation region are 50 to 250 ⁇ m, An optical film in which the width of a boundary line composed of a non-oriented region located at (corresponding to) the boundary between the first retardation region and the second retardation region is 0.1 to 10 ⁇ m.
  • the present invention it is possible to provide an optical film in which crosstalk during 3D image observation is suppressed even when applied to a high-definition display panel. Moreover, according to this invention, the circularly-polarizing film which has the said optical film, and a 3D image display apparatus can also be provided.
  • FIG. 6 is a schematic diagram in which left and right eye image pixels of a display panel and left and right eye image retardation regions of a conventional stripe-patterned optically anisotropic layer are arranged in correspondence with each other. It is the schematic diagram which matched and arrange
  • FIG. 1 is a schematic cross-sectional view of a 3D image display device 1 manufactured in Example 1.
  • FIG. 6 is a schematic diagram showing the arrangement of wire grid polarizers in Comparative Example 1.
  • FIG. It is a schematic diagram which shows the method of measuring the width
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the angle for example, an angle such as “90 °”
  • the relationship for example, “orthogonal”, “parallel”, “crossing at 45 °”, etc.
  • the range of allowable error is included. For example, it means that the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation at wavelength ⁇ and retardation in the thickness direction, respectively.
  • Re ( ⁇ ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments) by allowing light of wavelength ⁇ nm to be incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. Details of the method for measuring Re ( ⁇ ) and Rth ( ⁇ ) are described in paragraphs 0010 to 0012 of JP2013-041213A, the contents of which are incorporated herein by reference.
  • a measurement wavelength is 550 nm.
  • phase difference regions first phase difference region and second phase difference region
  • an optical film, a display panel, and an optical film having an optically anisotropic layer having a phase difference region for left and right eye images arranged in a stripe shape.
  • a striped pattern optically anisotropic layer having a phase difference region for left and right eye images arranged in a stripe shape.
  • the periodic direction of the pattern coincides with the vertical direction (vertical direction) of the display surface.
  • FIG. 1 is a partially enlarged cross-sectional view in which left and right eye image pixels of a display panel portion and left and right eye image retardation regions of a conventional stripe-patterned optically anisotropic layer are arranged in correspondence with each other. Note that the left and right eye image retardation regions of the striped pattern optically anisotropic layer correspond to a first retardation region and a second retardation region described later, respectively.
  • a display panel 12 includes a display panel 12, a glass substrate 14, a polarizing film 16, and a striped pattern optically anisotropic layer 18 in this order.
  • left-eye image pixels (L) and right-eye image pixels (R) are alternately arranged, and black is placed between the left-eye image pixels (L) and the right-eye image pixels (R).
  • a matrix 20 is usually arranged.
  • the left-eye image phase difference region (L) and the right-eye image phase difference region (R) are alternately arranged in the stripe pattern optical anisotropic layer 18, and the left-eye image pixels in the display panel 12 are respectively arranged. It is arranged at a position facing (L) and the right-eye image pixel (R).
  • a boundary line 22 that is a non-oriented region exists between the left-eye image retardation region (L) and the right-eye image retardation region (R).
  • the light indicated by the arrow A in FIG. 1 is emitted from the right-eye image pixel (R) inside the display panel 12 and passes through the right-eye image retardation region (R) of the striped pattern optically anisotropic layer 18.
  • a normal right eye image pixel is created.
  • the light indicated by the arrow B is emitted from the right-eye image pixel (R) inside the display panel and passes through the boundary line 22.
  • the boundary line 22 does not have uniform optical anisotropy, and thus the light that has passed through causes crosstalk.
  • the present inventors have found that the crosstalk caused by the boundary indicated by the arrow B is worsened in the left-right eye phase difference regions (L, R) as the width of the boundary is wider.
  • L, R left-right eye phase difference regions
  • the deterioration of the crosstalk due to the boundary line becomes remarkable. That is, in order to achieve high definition without lowering luminance, it is necessary to improve crosstalk when the black matrix width is narrowed.
  • the widths of the first retardation region and the second retardation region corresponding to the left and right eye image retardation regions in the stripe pattern optical anisotropic layer are adjusted to predetermined values.
  • the above-described crosstalk can be reduced by adjusting the width of the boundary line to a predetermined value that is smaller than the conventional one.
  • the width of the black matrix 20 of the color filter arranged in the display panel 12 as shown in the 3D image display device 10b of FIG. A method for blocking the components (for example, Japanese Patent Application Laid-Open Nos. 2011-164563 and 2011-34045) has been proposed, but this causes a decrease in luminance, which is disadvantageous in increasing the resolution.
  • a method of reducing a component passing through the boundary line 22 of the striped pattern optically anisotropic layer 18 by narrowing the interval between the panel 12 and the striped pattern optically anisotropic layer 18 has been proposed. Although this method does not reduce the luminance, it is necessary to significantly reduce the thickness of the glass substrate 14 in order to improve the crosstalk. As a result, the impact resistance of the 3D image display device 10c is reduced, and the glass substrate 14 is handled. Yield decreases due to the decrease in sex.
  • FIG. 4 is a top view showing an example of the patterned optical anisotropic layer (hereinafter also referred to as a stripe-shaped patterned optical anisotropic layer) 100 in the optical film of the present invention.
  • 110 denotes a first retardation region.
  • 120 indicates a second phase difference region
  • 130 indicates a boundary line that is a boundary between the first phase difference region and the second phase difference region.
  • the arrows in the first phase difference region 110 and the second phase difference region 120 indicate the directions of the in-plane slow axes.
  • the reference numerals in the drawings are common to the following drawings unless otherwise specified.
  • FIG. 4 is a schematic diagram, and this is not the most appropriate dimension ratio in order to easily explain the relationship between the first phase difference region 110, the second phase difference region 120, and the boundary line 130. A preferable range of these dimensional ratios will be described later.
  • the first phase difference region and the second phase difference region are alternately arranged in stripes within the same plane, and the first phase difference region and the second phase difference region are in the in-plane slow axis direction and in-plane. At least one of the retardations is different from each other.
  • the optical film of the present invention is disposed outside the viewing side of the display panel together with the polarizing film, and the polarized image that has passed through each of the first retardation region and the second retardation region of the patterned optical anisotropic layer. Is recognized as an image for the right eye or the left eye through polarized glasses or the like. It is preferable that the first phase difference region and the second phase difference region have the same shape. Moreover, it is preferable that each arrangement
  • the centers of the widths of the first phase difference region and the second phase difference region may coincide with the centers of the pitch widths of the left-eye image pixel (L) and the right-eye image pixel (R) of the display panel.
  • the difference in the center position is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 5 ⁇ m or less.
  • the stripe may be formed in the longitudinal direction of the optical film, or may be formed in a direction perpendicular to the longitudinal direction.
  • the first retardation region 110 and the second retardation region 120 have in-plane slow axes that are orthogonal to each other.
  • FIG. 4 shows an aspect in which the in-plane slow axis direction of the first phase difference region 110 and the in-plane slow axis direction of the second phase difference region 120 are orthogonal to each other.
  • the angle formed between the in-plane slow axis and the in-plane slow axis of the second retardation region 120 is preferably 70 to 110 °, more preferably 80 to 100 °, and most preferably 90 °.
  • the in-plane retardation Re (550) with a wavelength of 550 nm of the first retardation region 110 and the second retardation region 120 is not particularly limited, but is preferably 110 to 160 nm, more preferably 120 to 150 nm, and further preferably 125 to 140 nm. preferable. Even when the optical film includes other layers (for example, a transparent support) other than the patterned optically anisotropic layer, it is preferable that the entire optical film exhibits the above in-plane retardation range.
  • the total of Rth of the transparent support and Rth of the patterned optically anisotropic layer preferably satisfies
  • W1 is the width of the first phase difference region 110
  • W2 is the width of the second phase difference region 120
  • W3 is located at the boundary between the first phase difference region and the second phase difference region (corresponding to )
  • the width of the boundary line 130 that is, the distance between one end of the first phase difference region 110 and one end of the second phase difference region 120.
  • the boundary line 130 is narrow, unlike the first phase difference region 110 and the second phase difference region 120, the boundary line 130 is intended to be a region where the phase difference characteristic is broken. That is, unlike the first retardation region 110 and the second retardation region 120, the boundary line 130 is a non-alignment region (boundary region) in which the liquid crystalline compound does not form a uniform alignment, and light leakage is not caused.
  • the boundary line 130 is a non-oriented region in which the liquid crystal compound is aligned in an arbitrary direction, and does not include an aligned region (domain).
  • W1 and W2 are 50 to 250 ⁇ m, respectively. Among these, 50 to 130 ⁇ m is preferable, and 50 to 80 ⁇ m is more preferable in that the occurrence of crosstalk is further suppressed. If W1 and W2 are outside the above ranges, the occurrence of crosstalk cannot be suppressed when applied to a high-definition display panel.
  • the difference between W1 and W2 is not particularly limited, but is preferably 0 to 5 ⁇ m and more preferably 0 to 1 ⁇ m from the viewpoint of suppressing the occurrence of crosstalk.
  • the width W3 of the boundary line is 0.1 to 10 ⁇ m, and is preferably 0.1 to 8 ⁇ m, more preferably 0.1 to 5 ⁇ m from the viewpoint of suppressing the occurrence of crosstalk.
  • the width W3 of the boundary line exceeds 10 ⁇ m, crosstalk is not sufficiently suppressed, and the image quality of the 3D image is inferior.
  • the measuring method of W1, W2, and W3 includes the method of measuring by polarization microscope observation.
  • the patterned optically anisotropic layer (patterned optically anisotropic layer in which the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region are orthogonal to each other) Polarization microscope so that the in-plane slow axis of either the phase difference region or the second phase difference region is parallel to one of the transmission axes of the two polarizing plates whose transmission axes are combined in an orthogonal position Installed on the sample stage (ECLIP E600W POL manufactured by NIKON). At this time, the first phase difference region and the second phase difference region are displayed in black.
  • the boundary line is not oriented, the light is not blocked and is displayed in white, so that each region can be specified.
  • a polarizing microscope is used so as to be parallel to one of the transmission axes of two polarizing plates combined in an orthogonal position.
  • a polarizing optical microscope is used to place a patterned optical anisotropic layer as a sample between two polarizing plates whose transmission axes are combined in an orthogonal position.
  • the observation view in which the first phase difference region is displayed in black and the observation view in which the second phase difference region is displayed in black are compared with each other by rotating the image in a plane that is vertical.
  • a region that is white display corresponds to a boundary line that is a non-oriented region.
  • the image observed from the polarizing microscope is taken into a PC from a digital camera (NIKON DIGITAL CAMERA DXM1200) attached to the polarizing microscope, and using the image analysis software WinROOF (Mitani Corporation), the first phase difference region, The second phase difference region and the width of the boundary line are measured.
  • a specific measuring method for example, when measuring the width of the boundary line, first, as shown in FIG. 8, observation is performed with a polarizing microscope so that the boundary line 130 is near the center. In that case, as shown in FIG. 8, it observes so that the direction where the boundary line 130 extends may become an up-down direction.
  • a straight line X connecting the vertices of the two convex portions protruding to the leftmost side among the convex portions protruding to the left side of the boundary line 130 is drawn.
  • a line (in the drawing, an arrow) is drawn from an arbitrary point Y on the straight line X to the right end of the boundary line 130 in a direction orthogonal to the straight line X, and the length is calculated.
  • the length is calculated at 10 points from an arbitrary point Y at intervals of 50 ⁇ m (in the figure, D is 50 ⁇ m), and the length at the obtained 10 points is arithmetically averaged to obtain the width A of the boundary 130.
  • the above observation is performed at three arbitrary positions of the patterned optically anisotropic layer, and the width A of the boundary line 130 obtained in each observation drawing is further arithmetically averaged to obtain the boundary line width W3.
  • the operation of drawing the straight line X and the measurement of the length from the straight line X to the right end of the boundary line 130 are performed using WinROOF.
  • the same operation is performed on the first phase difference region 110 and the second phase difference region 120 to obtain W1 and W2.
  • the aspect which the meandering line 130 meanders is disclosed in FIG. 8, it is not limited to this aspect, A linear form may be sufficient.
  • the pattern optically anisotropic layer preferably contains a liquid crystal compound.
  • the method for forming the patterned optically anisotropic layer containing a liquid crystalline compound include a method of fixing the liquid crystalline compound in an aligned state.
  • a method for immobilizing the liquid crystal compound a method of polymerizing and immobilizing the liquid crystal compound having an unsaturated double bond (polymerizable group) as the liquid crystal compound is preferably exemplified.
  • a pattern optical anisotropic layer forming composition containing a liquid crystal compound having an unsaturated double bond (polymerizable group) is applied directly or via an alignment film on a transparent support, and then irradiated with ionizing radiation.
  • the patterned optically anisotropic layer may have a single layer structure or a laminated structure.
  • the kind of unsaturated double bond contained in the liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, etc. are mentioned preferably, and a (meth) acryloyl group is more preferable.
  • liquid crystal compounds can be classified into a rod-shaped type and a disk-shaped type based on their shapes.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any of a rod-like liquid crystalline compound and a discotic liquid crystalline compound can be used.
  • Two or more kinds of rod-like liquid crystalline compounds, two or more kinds of disc-like liquid crystalline compounds, or a mixture of a rod-like liquid crystalline compound and a disk-like liquid crystalline compound may be used.
  • a rod-like liquid crystalline compound having a polymerizable group or a discotic liquid crystalline compound it is more preferable to use a rod-like liquid crystalline compound having a polymerizable group or a discotic liquid crystalline compound, and the liquid crystalline compound has 2 polymerizable groups in one molecule. It is more preferable to have the above.
  • the liquid crystal compound is a mixture of two or more, it is preferable that at least one liquid crystal compound has two or more polymerizable groups in one molecule.
  • the rod-like liquid crystal compound for example, those described in claim 1 of JP-T-11-53019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used.
  • tick liquid crystalline compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 are preferably used. However, it is not limited to these.
  • the alignment state of the liquid crystalline compound may be controlled.
  • the rod-like liquid crystalline compound it is preferable to fix the rod-like liquid crystalline compound in a horizontally aligned state.
  • the discotic liquid crystalline compound is vertically aligned. It is preferable to fix in a state.
  • “the rod-like liquid crystal compound is horizontally aligned” means that the director of the rod-like liquid crystal compound and the layer surface are parallel, and “the discotic liquid crystal compound is vertically aligned” means the discotic liquid crystal.
  • the disk surface and the layer surface of the functional compound are perpendicular. It is not strictly required to be horizontal or vertical, but each means a range of ⁇ 20 ° from an accurate angle. It is preferably within ⁇ 5 °, more preferably within ⁇ 3 °, even more preferably within ⁇ 2 °, and most preferably within ⁇ 1 °.
  • Various known additives can be used as the additive.
  • the first preferred embodiment utilizes a plurality of actions for controlling the alignment of the liquid crystal compound, and then eliminates any action by an external stimulus (heat treatment, etc.) to make the predetermined alignment control action dominant. Is the method.
  • the liquid crystalline compound is brought into a predetermined alignment state by the combined action of the alignment control ability by the alignment film and the alignment control ability of the alignment controller added to the liquid crystalline compound, and then fixed.
  • any action for example, action by the alignment control agent
  • disappears by external stimulation heat treatment, etc.
  • the other orientation control action action by the alignment film
  • another alignment state is realized and fixed to form the other retardation region. Details of this method are described in paragraphs [0017] to [0029] of Japanese Patent Application Laid-Open No. 2012-008170, the contents of which are incorporated herein by reference.
  • the second preferred embodiment is an embodiment using a pattern alignment film.
  • pattern alignment films having different alignment control capabilities are formed, a liquid crystalline compound is disposed thereon, and the liquid crystalline compound is aligned.
  • the liquid crystalline compounds achieve different alignment states depending on the alignment control ability of the pattern alignment film.
  • the pattern alignment film can be formed using a printing method, mask rubbing for the rubbing alignment film, mask exposure for the photo alignment film, or the like.
  • a method using a printing method is preferable in that large-scale equipment is not required and manufacturing is easy. Details of this method are described in paragraphs [0166] to [0181] of JP2012-032661A, the contents of which are incorporated herein by reference.
  • a photo acid generator is added to the alignment film.
  • a photoacid generator is added to the alignment film, and pattern exposure exposes a region where the photoacid generator is decomposed to generate an acidic compound and a region where no acid compound is generated.
  • the photoacid generator remains almost undecomposed in the non-irradiated portion, and the interaction between the alignment film material, the liquid crystal compound, and the alignment control agent added as necessary dominates the alignment state, and the liquid crystal compound Is oriented in a direction whose slow axis is perpendicular to the rubbing direction.
  • the alignment film When the alignment film is irradiated with light and an acidic compound is generated, the interaction is no longer dominant, the rubbing direction of the rubbing alignment film controls the alignment state, and the liquid crystalline compound has its slow axis parallel to the rubbing direction. To parallel orientation.
  • a water-soluble compound is preferably used. Examples of photoacid generators that can be used include Prog. Polym. Sci. 23, page 1485 (1998).
  • pyridinium salts, iodonium salts and sulfonium salts are particularly preferably used. Details of this method are described in Japanese Patent Application No. 2010-289360, the contents of which are incorporated herein by reference.
  • the thickness of the patterned optically anisotropic layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m and more preferably 0.1 to 5 ⁇ m from the viewpoint that the optical film can be made thinner.
  • the optical film of the present invention may contain a layer other than the patterned optically anisotropic layer.
  • a transparent support may be included. That is, the optical film may be an embodiment having a transparent support and the patterned optically anisotropic layer disposed on the transparent support.
  • the material for forming the transparent support include polycarbonate polymers, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), and the like.
  • Styrene polymer polyolefin polymer such as polyethylene, polypropylene, ethylene propylene copolymer, vinyl chloride polymer, amide polymer such as nylon and aromatic polyamide, imide polymer, sulfone polymer, polyethersulfone polymer , Polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, It relates polymers, polyoxymethylene polymers, and epoxy polymers.
  • thermoplastic norbornene resin As a material for forming the transparent support, a thermoplastic norbornene resin can be preferably used. Examples of the thermoplastic norbornene-based resin include ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Corporation. In addition, as a material for forming the transparent support, a cellulose polymer represented by triacetyl cellulose (hereinafter referred to as cellulose acylate) can also be preferably used.
  • the in-plane retardation Re (550) at a wavelength of 550 nm of the transparent support is not particularly limited, but Re (550) as a laminate with the patterned optically anisotropic layer is 110 in that the effect of the present invention is more excellent.
  • the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the transparent support is not particularly limited, but Rth (550) as a laminate with the patterned optical anisotropic layer is 0 in that the effect of the present invention is more excellent.
  • the thickness of the transparent support is not particularly limited, but is preferably 1 to 60 ⁇ m and more preferably 1 to 40 ⁇ m from the viewpoint that the thickness of the optical film can be reduced.
  • Various additives for example, optical anisotropy adjusting agent, wavelength dispersion adjusting agent, fine particles, plasticizer, ultraviolet absorber, deterioration preventing agent, release agent, etc. may be added to the transparent support. it can.
  • an alignment film may be provided between the transparent support and the patterned optically anisotropic layer.
  • the alignment film generally contains a polymer as a main component.
  • the polymer material for alignment film is described in many documents, and many commercially available products can be obtained.
  • the polymer material used is preferably polyvinyl alcohol or polyimide, and derivatives thereof.
  • modified or unmodified polyvinyl alcohol is preferred.
  • the alignment film that can be used in the present invention refer to the modified polyvinyl alcohol described in WO01 / 88574A1, page 43, line 24 to page 49, line 8, and patent No.
  • the alignment film is usually subjected to a known rubbing treatment. That is, the alignment film is usually preferably a rubbing alignment film that has been rubbed.
  • the thickness of the alignment film is preferably thin, it is possible to provide alignment ability for forming the patterned optical anisotropic layer, and to reduce the surface irregularities of the transparent support, thereby providing a uniform pattern optical anisotropy. A certain thickness is required from the viewpoint of forming a layer. Specifically, the thickness of the alignment film is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m, and still more preferably 0.01 to 0.5 ⁇ m.
  • a photo-alignment film is not particularly limited, and those described in paragraphs [0024] to [0043] of WO 2005/096041 and trade name LPP-JP265CP manufactured by Roli technologies can be used.
  • the optical film of the present invention may have an antireflection layer.
  • the antireflection layer is preferably an antiglare layer, but may be a low refractive index layer, a medium refractive index layer, or a high refractive index layer.
  • An anti-glare layer contains a binder and translucent particles for imparting anti-glare properties, and surface irregularities are formed by the projections of the translucent particles themselves or by projections formed of an aggregate of a plurality of particles. It is preferable that it is a thing.
  • the refractive index of the high refractive index layer is preferably 1.70 to 1.74, more preferably 1.71 to 1.73.
  • the refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.60 to 1.64, and more preferably 1.61 to 1.63.
  • the low refractive index layer preferably has a refractive index of 1.30 to 1.47.
  • the refractive index of the low refractive index layer is preferably 1.33 to 1.38. More preferably, it is 35 to 1.37.
  • the high refractive index layer, medium refractive index layer, and low refractive index layer are formed by a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method, particularly a vacuum vapor deposition method or a sputtering method, which is a kind of physical vapor deposition method, and an inorganic substance.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a transparent oxide thin film can be used, a method using all wet coating is preferred.
  • the high refractive index layer, medium refractive index layer, and low refractive index layer those described in paragraphs [0197] to [0211] of JP-A-2009-98658 can be used.
  • ⁇ Circularly polarizing film (circularly polarizing film for 3D image display device)>
  • the optical film described above can be used as a circularly polarizing film by combining with the polarizing film.
  • the polarizing film used will be described in detail.
  • the polarizing film may be a member having a function of converting natural light into specific linearly polarized light.
  • an absorptive polarizer can be used.
  • the type of the polarizing film is not particularly limited, and a commonly used polarizing film can be used.
  • any of an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film Can also be used.
  • the iodine-based polarizing film and the dye-based polarizing film are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
  • a polarizing film is used as a polarizing plate by which the protective film was bonded on both surfaces.
  • the manufacturing method in particular of a circularly-polarizing film is not restrict
  • the said optical film and polarizing film include the process of laminating
  • the long polarizing plate is cut according to the size of the screen of the image display device used.
  • one of the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region forms an angle of + 45 ° with respect to the transmission axis of the polarizing film, and is relative to the transmission axis of the polarizing film.
  • the other of the in-plane slow axis of the first phase difference region and the in-plane slow axis of the second phase difference region preferably forms an angle of ⁇ 45 °.
  • FIG. 5 is a diagram showing the above-described embodiment, and shows the relationship between the transmission axis of the polarizing film 140 and the in-plane slow axis of the patterned optically anisotropic layer 100, and the transmission axis of the polarizing film 140,
  • the in-plane slow axes of the first retardation region 110 and the second retardation region 120 of the patterned optically anisotropic layer 100 form angles of 45 ° and ⁇ 45 °, respectively.
  • the angle is not limited to 45 ° and ⁇ 45 °, and may be 45 ° ⁇ 10 ° and ⁇ 45 ° ⁇ 10 °.
  • the rotation angle of the in-plane slow axis is expressed as a positive angle value in the clockwise direction and a negative angle value in the counterclockwise direction with reference to the transmission axis of the polarizing film when the optical film is observed from the polarizing film side.
  • the optical film and the polarizing film are preferably bonded directly or via an adhesive layer or an adhesive layer.
  • the surface of the transparent support is subjected to a surface treatment (eg, glow discharge treatment, corona discharge treatment, plasma treatment, ultraviolet (UV) treatment, flame treatment, saponification treatment, It is preferable to carry out solvent washing.
  • a surface treatment eg, glow discharge treatment, corona discharge treatment, plasma treatment, ultraviolet (UV) treatment, flame treatment, saponification treatment
  • the adhesive that can be used in the present invention include, but are not limited to, a polyvinyl alcohol-based adhesive.
  • the present invention also relates to a 3D image display device having the optical film.
  • the film of this invention is arrange
  • the pixel pitch of the display panel used in the 3D image display device is not particularly limited, but is preferably 10 to 250 ⁇ m, more preferably 10 to 130 ⁇ m, and further preferably 10 to 80 ⁇ m from the viewpoint of being suitable for combination with the optical film. preferable.
  • the relationship between the pixel pitch of the display panel and each region in the patterned optically anisotropic layer includes the width of the image pitch, the first retardation region and the second retardation region in the patterned optically anisotropic layer.
  • the total width of the width of one of the regions and the width of the boundary line is substantially the same, and the total width is preferably within ⁇ 20% with respect to the width of the image pitch, and within ⁇ 10% More preferably, it is more preferably within ⁇ 5%.
  • the display panel there is no limitation on the display panel.
  • the display panel may be a liquid crystal panel including a liquid crystal layer, an organic EL display panel including an organic EL layer, or a plasma display panel.
  • various possible configurations can be employed.
  • the optical film of the present invention may achieve the above function by combination with the polarizing film.
  • Example 1> Preparation of coating solution for antiglare hard coat layer
  • a mixed solvent 89 to 11 (mass ratio)
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • x, y, z, and n are 25, 25, 50, and 8, respectively.
  • a commercially available cellulose acylate TD60 (manufactured by FUJIFILM Corporation) (film thickness: 60 ⁇ m) is unwound in a roll form, and the coating solution 1 for antiglare hard coat layer is used, so that the film thickness is 4 ⁇ m.
  • An antiglare hard coat layer was applied.
  • the coating liquid 1 is applied on the support (Cellulose Acylate TD60) under the condition of a conveyance speed of 30 m / min. After coating and drying at 80 ° C.
  • the coating layer was cured by irradiating 180 mJ / cm 2 of ultraviolet rays to form an antiglare hard coat layer, and then wound up to prepare a support 1 with an antiglare hard coat layer.
  • an alignment film forming coating solution 1 having the following composition was continuously applied with a wire bar. Drying with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds, the support 1 with an alignment film before exposure was formed. The wire bar was adjusted so that the film thickness of the alignment film before exposure was 0.45 ⁇ m.
  • composition of coating liquid 1 for alignment film formation
  • Polymer material for alignment film (P-1) 2.4 parts by mass photoacid generator (S-1) 0.17 parts by mass radical polymerization initiator (Irgacure 2959, manufactured by Ciba Specialty Chemicals) 0.18 parts by weight Methanol 16.5 parts by weight IPA (isopropanol) 7.2 parts by weight water 73.55 parts by weight ⁇
  • S-1 mass photoacid generator
  • Irgacure 2959 manufactured by Ciba Specialty Chemicals
  • UV exposure Next, a stripe mask having a transverse stripe width of 96.2 ⁇ m at the transmission portion and a transverse stripe width of 96.2 ⁇ m at the shielding portion is placed on the above-prepared support 1 with alignment film before exposure, and 200 nm to 40 nm in air at room temperature.
  • Ultraviolet rays are irradiated for 0.06 seconds (irradiation amount 30 mJ / cm 2 ) using a light source unit of an ultraviolet irradiation device (Light Hammer 10, 240 W / cm, manufactured by Fusion UV Systems) having an illuminance of 500 mW / cm 2 in a wavelength region of 400 nm. Then, a pattern alignment film was formed.
  • an ultraviolet irradiation device Light Hammer 10, 240 W / cm, manufactured by Fusion UV Systems
  • the in-plane slow axis direction is parallel to the rubbing direction and the discotic liquid crystalline compound is vertically aligned, and the unexposed portion (second retardation region) is orthogonal. It was vertically aligned.
  • the wire bar was adjusted so that the thickness of the optically anisotropic layer 1 was 1.15 ⁇ m.
  • Discotic liquid crystal E-2 100 parts by weight alignment film interface aligner (II-1) 0.95 parts by weight air interface aligner (P-2) 1.0 part by weight photopolymerization initiator (Irgacure 907, Ciba Specialty Chemicals Co., Ltd.) 3.0 parts by mass sensitizer (Kayacure-DETX, Nippon Kayaku Co., Ltd.) 1.0 parts by mass methyl ethyl ketone 400 parts by mass ⁇ ⁇
  • optical film 1 (Preparation of optical film 1) As described above, the optical film 1 in which the antiglare hard coat layer was formed on one side of the support and the stripe-patterned optically anisotropic layer was formed on the back side was produced.
  • Two polarizing plates in which the in-plane slow axis of either the first retardation region or the second retardation region is combined in an orthogonal position with the stripe-patterned optically anisotropic layer of the produced optical film 1
  • a sensitive color plate having a phase difference of 530 nm is placed between the polarizing plates so as to be parallel to one of the transmission axes, and an in-plane slow axis forms an angle of 45 ° with the transmission axis of the polarizing plate. And placed on the patterned optically anisotropic layer.
  • the striped pattern optically anisotropic layer of the produced optical film 1 with the sensitive color plate removed has an in-plane slow axis in either the first retardation region or the second retardation region.
  • the polarizing plate (ECLIP E600W POL manufactured by NIKON) was placed so as to be parallel to the transmission axis of one of the two polarizing plates combined in an orthogonal position. At this time, the first phase difference region and the second phase difference region were dark and the boundary line looked bright.
  • the observed image was taken into a PC from a digital camera (NIKON DIGITAL CAMERA DXM1200) attached to a polarizing microscope.
  • the width W2 and the width W3 of the boundary line were measured by the method described above.
  • the width W1 and the width W2 measured by the above method were 91.2 ⁇ m, and the width W3 was 5.0 ⁇ m.
  • the angle is expressed as a positive angle value in the clockwise direction and a negative angle value in the counterclockwise direction when the display is observed from the optical film 1 side with the transmission axis of the polarizing film as 0 ° as a reference. Further, the centers of the widths of the first phase difference region and the second phase difference region are arranged so as to match the center of the pixel pitch width of the display panel.
  • FIG. 1 A partial enlarged cross-sectional view of the formed 3D image display device 1 is shown in FIG.
  • the configuration of the 3D image display device 10d is substantially the same as the embodiment of FIG. 1 except that the optical film 100 is used, and the same members are denoted by the same reference numerals.
  • FIG. 1 A partial enlarged cross-sectional view of the formed 3D image display device 1 is shown in FIG.
  • the configuration of the 3D image display device 10d is substantially the same as the embodiment of FIG. 1 except that the optical film 100 is used, and the same members are denoted by the same reference numerals.
  • W3 represents the width of the boundary line
  • W4 represents the pixel pitch
  • W5 represents the width of the black matrix (BM)
  • T1 represents the thickness of the glass substrate
  • T2 represents the thickness of the polarizing film.
  • Example 2> (Preparation of optical film 2) Instead of a stripe mask with a horizontal stripe width of 96.2 ⁇ m at the transparent portion and a horizontal stripe width of 96.2 ⁇ m at the shield portion, a stripe mask with a horizontal stripe width of 77.9 ⁇ m at the transparent portion and a horizontal stripe width of 77.9 ⁇ m at the shield portion is used.
  • An optical film 2 having a striped pattern optically anisotropic layer 2 was produced in the same manner as in Example 1 except that. In the striped pattern optically anisotropic layer 2, the width W1 and the width W2 were 72.9 ⁇ m, and the width W3 was 5.0 ⁇ m.
  • Example 3> (Preparation of optical film 3) Optical having striped pattern optically anisotropic layer 3 in the same manner as in Example 2 except that ZEONOR film ZF14 (manufactured by Nippon Zeon Co., Ltd.) (thickness: 100 ⁇ m) was used instead of cellulose acylate TD60. Film 3 was produced. In the striped pattern optically anisotropic layer 3, the width W1 and the width W2 were 72.9 ⁇ m, and the width W3 was 5.0 ⁇ m.
  • Example 4> (Preparation of optical film 4) An optical film 4 having a striped pattern optically anisotropic layer 4 in the same manner as in Example 2 except that ACRYPET VH (manufactured by Mitsubishi Rayon Co., Ltd.) (thickness 60 ⁇ m) was used instead of Cellulose Acylate TD60. Was made.
  • the width W1 and the width W2 were 72.9 ⁇ m, and the width W3 was 5.0 ⁇ m.
  • Example 5 (Preparation of optical film 5) An optical element having a striped pattern optically anisotropic layer 5 in the same manner as in Example 2 except that a polyethylene terephthalate film (manufactured by FUJIFILM Corporation) (thickness 75 ⁇ m) is used in place of the cellulose acylate TD60. Film 5 was produced. In the striped pattern optically anisotropic layer 5, the width W1 and the width W2 were 72.9 ⁇ m, and the width W3 was 5.0 ⁇ m.
  • a polyethylene terephthalate film manufactured by FUJIFILM Corporation
  • Example 6> (Preparation of optical film 6)
  • the illuminance in the wavelength region of 200 nm to 400 nm is changed from 500 mW / cm 2 to 150 mW / cm 2
  • the irradiation time is changed from 0.06 seconds (irradiation amount 30 mJ / cm 2 ) to 0.14 seconds.
  • An optical film 6 having a striped pattern optically anisotropic layer 6 was produced in the same manner as in Example 2 except that the irradiation dose was changed to 21 mJ / cm 2 .
  • the width W1 and the width W2 were 69.9 ⁇ m
  • the width W3 was 8.0 ⁇ m.
  • Example 7 (Preparation of optical film 7)
  • the optical film 7 having the stripe-shaped optically anisotropic layer 7 was prepared.
  • the width W1 and the width W2 were 67.9 ⁇ m, and the width W3 was 10.0 ⁇ m.
  • the substrate was dried with warm air of 80 ° C. for 120 seconds to form a support 8 with a polycinnamate photo-alignment film.
  • the wire bar was adjusted so that the thickness of the polycinnamate photo-alignment film (pre-exposure photo-alignment film) was 0.1 ⁇ m.
  • a stripe mask having a transverse stripe width of 96.2 ⁇ m at the transmission portion and a transverse stripe width of 96.2 ⁇ m at the shielding portion is disposed on the prepared support 8 with the polycinnamate photo-alignment film, and is allowed to stand at room temperature in air.
  • Ultraviolet rays were irradiated using a 160 W / cm 2 air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.). At this time, as shown in FIG.
  • a wire grid polarizer manufactured by Moxtek, ProFlux PPL02
  • Moxtek, ProFlux PPL02 is set in the direction 1
  • further mask A transmission part horizontal stripe width 96.2 ⁇ m, shielding part
  • the exposure was carried out through a stripe mask having a horizontal stripe width of 96.2 ⁇ m.
  • the wire grid polarizer is set in the direction 2
  • the mask B (a stripe mask with a transverse stripe width of 96.2 ⁇ m at the transmission portion and a transverse stripe width of 96.2 ⁇ m at the shielding portion).
  • the distance between the exposure mask surface and the photo-alignment film was set to 200 ⁇ m.
  • the pattern alignment film was formed by setting the illuminance of ultraviolet rays used at this time to 100 mW / cm 2 in the UV-A region (integration of wavelengths from 380 nm to 320 nm) and to 1000 mJ / cm 2 in the UV-A region.
  • Formation of striped pattern optically anisotropic layer 8 A coating solution for a patterned optical anisotropic layer described in JP-T-2012-517024 was applied to the patterned alignment film after UV exposure using a wire bar. Further, after drying at a film surface temperature of 105 ° C. for 120 seconds to obtain a liquid crystal phase state, it is cooled to 75 ° C., and an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm 2 is used under air. The optical film 8 having the striped pattern optically anisotropic layer 8 was prepared by fixing the alignment state by irradiating ultraviolet rays.
  • the wire bar was adjusted so that the thickness of the patterned optically anisotropic layer was 1.3 ⁇ m.
  • the width W1 and the width W2 were 83.2 ⁇ m, and the width W3 was 13.0 ⁇ m.
  • optical film 8 As described above, an optical film 8 was produced in which an antiglare hard coat layer was formed on one side of a support and a striped pattern optically anisotropic layer was formed on the back side.
  • the optical film 8 was observed with a polarizing microscope in accordance with the same procedure performed in (Evaluation 1 of the optical film 1), the first retardation region and the second retardation region were observed with respect to the transmission axis of the polarizing plate. It was confirmed that the in-plane slow axis formed angles of + 45 ° and ⁇ 45 °, respectively. That is, the in-plane slow axis of the first phase difference region and the in-plane slow axis of the second phase difference region were orthogonal.
  • ⁇ Comparative example 2> (Preparation of optical film 9)
  • the optical film 9 having the stripe-shaped optically anisotropic layer 9 was prepared.
  • the width W1 and the width W2 were 64.9 ⁇ m, and the width W3 was 13.0 ⁇ m.
  • the 3D image display device produced as described above displays a full-screen white display as a right-eye image / a full-screen black image as a left-eye image, and the right eye of 3D glasses on the lens of a luminance meter BM-5A manufactured by Topcon Technohouse.
  • the portion was attached, and the luminance was measured in 1 ° increments in the vertical angle range of + 3 ° to -3 °.
  • the left eye part of 3D glasses was attached to the lens of BM-5A, and the luminance was measured in increments of 1 ° in the vertical angle range of + 3 ° to ⁇ 3 °.
  • the luminance measured at the left eye portion of the 3D glasses is divided by the luminance measured at the right eye portion of the 3D glasses, and a value obtained by multiplying by 100 is crosstalk ((the luminance X measured at the left eye portion / the luminance Y measured at the right eye portion). ) ⁇ 100) (%).
  • Crosstalk ((the luminance X measured at the left eye portion / the luminance Y measured at the right eye portion). ) ⁇ 100) (%).
  • “C” when 6% or more and less than 7%, and 7% or more was evaluated as “D”.
  • the measurement results are shown in Tables 1 and 2. In practice, it is desirable that there is no “D”.
  • the luminance was measured in increments of 1 ° within a polar angle range of + 2 ° to ⁇ 2 °.
  • the evaluation result at a polar angle of 1 °, the evaluation result at -1 °, the evaluation result at a polar angle of 2 °, the evaluation result at -2 °, the evaluation result at a polar angle of 3 ° and the evaluation result at -3 ° Since the evaluation results are the same as each other, Table 1 below shows only the results of polar angles 1 °, 2 °, and 3 °, and Table 2 shows only the results of polar angles 1 ° and 2 °.
  • width W4, thickness T1, thickness T2, and width W5 represent the size of each component shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides an optical film that suppresses crosstalk during viewing of a 3D image even when applied in a high-definition display panel, a circularly-polarizing film provided with the optical film, and a 3D image display device. This optical film has a patterned optical anisotropy layer. The patterned optical anisotropy layer has first phase difference regions and second phase difference regions having mutually different in-plane lag axis directions and/or in-plane retardations. The first phase difference regions and the second phase difference regions are disposed alternately in stripes within the same plane. The widths of the first phase difference regions and the second phase difference regions are in the range 50-250 µm. The widths of boundary lines, located on the boundaries between the first phase difference regions and the second phase difference regions and comprising non-oriented regions, are in the range 0.1-10 µm.

Description

光学フィルム、円偏光フィルム、3D画像表示装置Optical film, circularly polarizing film, 3D image display device
 本発明は、光学フィルム、円偏光フィルム、3D画像表示装置に関する。 The present invention relates to an optical film, a circularly polarizing film, and a 3D image display device.
 3D(立体)画像を表示する3D画像表示装置には、右目用画像および左目用画像を、例えば、互いに反対方向の円偏光画像とするための光学部材が必要である。このような光学部材には、例えば、遅相軸やレターデーションなどが互いに異なる領域が規則的に面内に配置されたパターン光学異方性素子が利用されている(特許文献1)。 A 3D image display device that displays a 3D (stereoscopic) image requires an optical member for making the right-eye image and the left-eye image into circularly polarized images in opposite directions, for example. As such an optical member, for example, a patterned optical anisotropic element is used in which regions having different slow axes and retardations are regularly arranged in a plane (Patent Document 1).
特許第3360787号公報Japanese Patent No. 3360787
 一方、液晶表示装置(以下、LCDとも言う)などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途を広げている。
 近年のフラットパネルディスプレイ市場において、LCDの性能改善のひとつとして、高精細化をより向上させる開発が進んでおり、特にタブレットPCやスマートフォンなどの小型サイズでより一層の高精細化が求められている。また、大型サイズにおいても現行のTV規格(FHD、NTSC(National Television System Committee)比72%≒(EBUEuropean Broadcasting Union)比100%)の次世代ハイビジョン(4K2K、EBU比100%以上)の開発が進められている。そのため、液晶表示装置の高精細化がますます求められている。これは、3D画像表示装置においても同様である。
 本発明者らは、従来公知のパターン光学異方性層を備える光学フィルムを画像ピッチが小さい高精細な表示パネルに適用して、その3D画像観察を行ったところ、クロストークの悪化が顕著になることを知見した。
On the other hand, flat panel displays such as liquid crystal display devices (hereinafter also referred to as LCDs) consume less power and are increasingly used as space-saving image display devices year by year.
In the recent flat panel display market, as one of the LCD performance improvement, development to improve the high definition is progressing, and more high definition is demanded especially in the small size such as tablet PC and smart phone. . In addition, the development of next-generation high-definition (4K2K, EBU ratio of 100% or more) of the current TV standard (FHD, NTSC (National Television System Committee) ratio 72% ≒ (EBU European Broadcasting Union) ratio 100%) is also advanced in large size. It has been. Therefore, higher definition of liquid crystal display devices is increasingly required. The same applies to the 3D image display apparatus.
The present inventors applied a conventionally known optical film having a patterned optically anisotropic layer to a high-definition display panel having a small image pitch and observed the 3D image. I found out that
 本発明は、上記実情に鑑みて、高精細な表示パネルに適用した際にも3D画像観察時のクロストークが抑制される光学フィルムを提供することを目的とする。
 また、本発明は、上記光学フィルムを有する円偏光フィルム、および、3D画像表示装置を提供することも目的とする。
In view of the above circumstances, an object of the present invention is to provide an optical film in which crosstalk during 3D image observation is suppressed even when applied to a high-definition display panel.
Another object of the present invention is to provide a circularly polarizing film having the optical film and a 3D image display device.
 本発明者らは、従来技術の問題点について鋭意検討した結果、パターン光学異方性層中の第1位相差領域の幅および第2位相差領域の幅、並びに、両者の間に位置する境界線の幅を調整することにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies on the problems of the prior art, the present inventors have found that the width of the first retardation region and the width of the second retardation region in the patterned optically anisotropic layer, and the boundary located between the two It has been found that the above problem can be solved by adjusting the width of the line.
That is, it has been found that the above object can be achieved by the following configuration.
(1) 表示パネルと、
 表示パネルの視認側に配置されるパターン光学異方性層を有する光学フィルムと、を少なくとも有し、
 パターン光学異方性層が、面内遅相軸方向および面内レターデーションの少なくとも一方が互いに異なる第1位相差領域および第2位相差領域を有し、第1位相差領域および第2位相差領域は、同一面内において、ストライプ状に交互に配置されており、第1位相差領域の幅および第2位相差領域の幅が50~250μmであり、
 第1位相差領域と第2位相差領域との境界に位置(対応)した、無配向領域からなる境界線の幅が0.1~10μmである、3D画像表示装置。
(2) 第1位相差領域の面内遅相軸方向と、第2位相差領域の面内遅相軸方向とが互いに直交している、(1)に記載の3D画像表示装置。
(3) 第1位相差領域および第2位相差領域の波長550nmでの面内レターデーションRe(550)が110~160nmである、(1)または(2)に記載の3D画像表示装置。
(4) 第1位相差領域の幅および第2位相差領域の幅が50~80μmである、(1)~(3)のいずれかに記載の3D画像表示装置。
(5) パターン光学異方性層が透明支持体上に配置されている、(1)~(4)のいずれかに記載の3D画像表示装置。
(6) 表示パネルの画素ピッチが10~250μmである、(1)~(5)のいずれかに記載の3D画像表示装置。
(7) パターン光学異方性層を有する光学フィルムであって、
 パターン光学異方性層が、面内遅相軸方向および面内レターデーションの少なくとも一方が互いに異なる第1位相差領域および第2位相差領域を有し、第1位相差領域および第2位相差領域は、同一面内において、ストライプ状に交互に配置されており、第1位相差領域の幅および第2位相差領域の幅が50~250μmであり、
 第1位相差領域と第2位相差領域との境界に位置(対応)した、無配向領域からなる境界線の幅が0.1~10μmである、光学フィルム。
(8) 第1位相差領域の面内遅相軸方向と、第2位相差領域の面内遅相軸方向とが互いに直交している、(7)に記載の光学フィルム。
(9) 第1位相差領域および第2位相差領域の波長550nmでの面内レターデーションRe(550)が110~160nmである、(7)または(8)に記載の光学フィルム。
(10) 第1位相差領域の幅および第2位相差領域の幅が50~80μmである、(7)~(9)のいずれかに記載の光学フィルム。
(11) パターン光学異方性層が透明支持体上に配置されている、(7)~(10)のいずれかに記載の光学フィルム。
(12) (7)~(10)のいずれかに記載の光学フィルムと、偏光膜とを備え、
 偏光膜の透過軸に対して第1位相差領域の面内遅相軸および第2位相差領域の面内遅相軸の一方が+45°の角度をなし、偏光膜の透過軸に対して第1位相差領域の面内遅相軸および第2位相差領域の面内遅相軸の他方が-45°の角度をなす、円偏光フィルム。
(1) a display panel;
An optical film having a patterned optical anisotropic layer disposed on the viewing side of the display panel,
The patterned optically anisotropic layer has a first retardation region and a second retardation region in which at least one of the in-plane slow axis direction and the in-plane retardation is different from each other, and the first retardation region and the second retardation region The regions are alternately arranged in stripes within the same plane, and the width of the first retardation region and the width of the second retardation region are 50 to 250 μm,
A 3D image display device in which a width of a boundary line made of a non-oriented region located at (corresponding to) a boundary between a first phase difference region and a second phase difference region is 0.1 to 10 μm.
(2) The 3D image display device according to (1), wherein the in-plane slow axis direction of the first phase difference region and the in-plane slow axis direction of the second phase difference region are orthogonal to each other.
(3) The 3D image display device according to (1) or (2), wherein the in-plane retardation Re (550) at a wavelength of 550 nm of the first retardation region and the second retardation region is 110 to 160 nm.
(4) The 3D image display device according to any one of (1) to (3), wherein a width of the first retardation region and a width of the second retardation region are 50 to 80 μm.
(5) The 3D image display device according to any one of (1) to (4), wherein the patterned optically anisotropic layer is disposed on a transparent support.
(6) The 3D image display device according to any one of (1) to (5), wherein a pixel pitch of the display panel is 10 to 250 μm.
(7) An optical film having a patterned optically anisotropic layer,
The patterned optically anisotropic layer has a first retardation region and a second retardation region in which at least one of the in-plane slow axis direction and the in-plane retardation is different from each other, and the first retardation region and the second retardation region The regions are alternately arranged in stripes within the same plane, and the width of the first retardation region and the width of the second retardation region are 50 to 250 μm,
An optical film in which the width of a boundary line composed of a non-oriented region located at (corresponding to) the boundary between the first retardation region and the second retardation region is 0.1 to 10 μm.
(8) The optical film according to (7), wherein the in-plane slow axis direction of the first retardation region and the in-plane slow axis direction of the second retardation region are orthogonal to each other.
(9) The optical film according to (7) or (8), wherein the in-plane retardation Re (550) at a wavelength of 550 nm of the first retardation region and the second retardation region is 110 to 160 nm.
(10) The optical film according to any one of (7) to (9), wherein the width of the first retardation region and the width of the second retardation region are 50 to 80 μm.
(11) The optical film according to any one of (7) to (10), wherein the patterned optically anisotropic layer is disposed on the transparent support.
(12) The optical film according to any one of (7) to (10), and a polarizing film,
One of the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region forms an angle of + 45 ° with respect to the transmission axis of the polarizing film. A circularly polarizing film in which the other of the in-plane slow axis of the one retardation region and the in-plane slow axis of the second retardation region forms an angle of −45 °.
 本発明によれば、高精細な表示パネルに適用した際にも3D画像観察時のクロストークが抑制される光学フィルムを提供することができる。
 また、本発明によれば、上記光学フィルムを有する円偏光フィルム、および、3D画像表示装置を提供することもできる。
According to the present invention, it is possible to provide an optical film in which crosstalk during 3D image observation is suppressed even when applied to a high-definition display panel.
Moreover, according to this invention, the circularly-polarizing film which has the said optical film, and a 3D image display apparatus can also be provided.
表示パネルの左右目画像用画素と、従来のストライプ状パターン光学異方性層の左右目画像用位相差領域とを対応させて配置した模式図である。FIG. 6 is a schematic diagram in which left and right eye image pixels of a display panel and left and right eye image retardation regions of a conventional stripe-patterned optically anisotropic layer are arranged in correspondence with each other. 従来のブラックマトリックスを太くした左右目画像用画素と、従来のストライプ状パターン光学異方性層の左右目画像用位相差領域とを対応させて配置した模式図である。It is the schematic diagram which matched and arrange | positioned the left-eye image pixel which made the conventional black matrix thick, and the right-and-left image phase difference area | region of the conventional striped pattern optically anisotropic layer. 従来の表示パネルの左右目画像用画素と、従来のストライプ状パターン光学異方性層の左右目画像用位相差領域との間のガラスの膜厚を小さくして配置した模式図である。It is the schematic diagram arrange | positioned by reducing the film thickness of the glass between the pixel for left-right eyes of the conventional display panel, and the phase difference area | region for right-and-eye images of the conventional stripe pattern optically anisotropic layer. パターン光学異方性層の一例を示す上面図である。It is a top view which shows an example of a pattern optical anisotropic layer. パターン光学異方性層の面内遅相軸と偏光膜の透過軸との関係の一例を示す概略図である。It is the schematic which shows an example of the relationship between the in-plane slow axis of a pattern optically anisotropic layer, and the transmission axis of a polarizing film. 実施例1で作製した3D画像表示装置1の模式的断面図である。1 is a schematic cross-sectional view of a 3D image display device 1 manufactured in Example 1. FIG. 比較例1におけるワイヤーグリッド偏光子の配置を示す概略図である。6 is a schematic diagram showing the arrangement of wire grid polarizers in Comparative Example 1. FIG. 境界線の幅を測定する方法を示す模式図である。It is a schematic diagram which shows the method of measuring the width | variety of a boundary line.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、角度(例えば「90°」等の角度)、およびその関係(例えば「直交」、「平行」、および「45°で交差」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることなどを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
Hereinafter, the present invention will be described in detail. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Further, in the present specification, regarding the angle (for example, an angle such as “90 °”) and the relationship (for example, “orthogonal”, “parallel”, “crossing at 45 °”, etc.), the technical field to which the present invention belongs. The range of allowable error is included. For example, it means that the angle is within the range of strict angle ± 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
 Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、および、厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH、またはWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。Re(λ)、Rth(λ)の測定方法の詳細は、特開2013-041213号公報の段落0010~0012に記載され、その内容は本明細書に参照として取り込まれる。なお、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。 Re (λ) and Rth (λ) represent in-plane retardation at wavelength λ and retardation in the thickness direction, respectively. Re (λ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments) by allowing light of wavelength λ nm to be incident in the normal direction of the film. In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. Details of the method for measuring Re (λ) and Rth (λ) are described in paragraphs 0010 to 0012 of JP2013-041213A, the contents of which are incorporated herein by reference. In addition, in this specification, when there is no special mention about a measurement wavelength, a measurement wavelength is 550 nm.
 以下に、本発明の光学フィルムの好適態様について詳述する。
 まず、従来技術の問題点と、本発明の特徴点について詳述する。
 パターン光学異方性層を有する光学フィルムを使用した3D画像表示装置では、通常、液晶パネル等の表示パネル部に存在する左右目画像用の画素と、パターン光学異方性層の左右目画像用の位相差領域(第1位相差領域および第2位相差領域)とをそれぞれ対応させて積層することが必要である。より具体的には、ストライプ状に配置された左右目画像用の位相差領域を有する光学異方性層(以後、ストライプ状パターン光学異方性層とも称する)を有する光学フィルムと表示パネルと貼合する際は、パターンの周期方向(ストライプ状の互いに異なる位相差領域が交互に入れ替わる方向)を、表示面の鉛直方向(上下方向)と一致させるのが一般的である。図1に、表示パネル部の左右目画像用画素と、従来のストライプ状パターン光学異方性層の左右目画像用位相差領域とを対応させて配置した一部拡大断面図を示す。なお、ストライプ状パターン光学異方性層の左右目画像用位相差領域は、後述する第1位相差領域および第2位相差領域にそれぞれ対応する。
Below, the suitable aspect of the optical film of this invention is explained in full detail.
First, the problems of the prior art and the features of the present invention will be described in detail.
In a 3D image display device using an optical film having a patterned optically anisotropic layer, usually, pixels for left and right eye images present in a display panel unit such as a liquid crystal panel, and right and left eye images of a patterned optically anisotropic layer These phase difference regions (first phase difference region and second phase difference region) need to be laminated in correspondence with each other. More specifically, an optical film, a display panel, and an optical film having an optically anisotropic layer (hereinafter also referred to as a striped pattern optically anisotropic layer) having a phase difference region for left and right eye images arranged in a stripe shape. When combining, it is common that the periodic direction of the pattern (the direction in which the different phase difference regions in the stripe form are alternately replaced) coincides with the vertical direction (vertical direction) of the display surface. FIG. 1 is a partially enlarged cross-sectional view in which left and right eye image pixels of a display panel portion and left and right eye image retardation regions of a conventional stripe-patterned optically anisotropic layer are arranged in correspondence with each other. Note that the left and right eye image retardation regions of the striped pattern optically anisotropic layer correspond to a first retardation region and a second retardation region described later, respectively.
 図1に示す従来の3D画像表示装置10aは、表示パネル12と、ガラス基板14と、偏光膜16と、ストライプ状パターン光学異方性層18とをこの順で有する。表示パネル12中には、左目画像用画素(L)と右目画像用画素(R)とが交互に配置され、左目画像用画素(L)と右目画像用画素(R)との間にはブラックマトリックス20が通常配置される。また、ストライプ状パターン光学異方性層18には、左目画像用位相差領域(L)と右目画像用位相差領域(R)とが交互に配置され、それぞれ表示パネル12中の左目画像用画素(L)と右目画像用画素(R)と対向する位置に配置される。なお、ストライプ状パターン光学異方性層18中、左目画像用位相差領域(L)と右目画像用位相差領域(R)との間には、無配向領域である境界線22が存在する。 1 includes a display panel 12, a glass substrate 14, a polarizing film 16, and a striped pattern optically anisotropic layer 18 in this order. In the display panel 12, left-eye image pixels (L) and right-eye image pixels (R) are alternately arranged, and black is placed between the left-eye image pixels (L) and the right-eye image pixels (R). A matrix 20 is usually arranged. In addition, the left-eye image phase difference region (L) and the right-eye image phase difference region (R) are alternately arranged in the stripe pattern optical anisotropic layer 18, and the left-eye image pixels in the display panel 12 are respectively arranged. It is arranged at a position facing (L) and the right-eye image pixel (R). In the striped pattern optically anisotropic layer 18, a boundary line 22 that is a non-oriented region exists between the left-eye image retardation region (L) and the right-eye image retardation region (R).
 図1中の矢印Aで示す光は、表示パネル12内部の右目画像用画素(R)から出射され、ストライプ状パターン光学異方性層18の右目画像用位相差領域(R)を通過するため、正常な右目画像用画素が作られる。一方、矢印Bに示す光は、表示パネル内部の右目画像用画素(R)から出射され、境界線22を通過する。境界線22は左右目画像用位相差領域と異なり、一様な光学異方性を持たないため、通過した光はクロストークを発生させる。これら矢印A~Bの現象は左目画像用画素(L)においても同様に生じる。つまり、本発明者らは、矢印Bで示した境界線を原因とするクロストークは、境界線の幅が広いほど左右目画像用位相差領域(L、R)において悪化することを知見した。
 また、近年の高精細化に伴う輝度低下を抑えるために、液晶セル内に配置されるカラーフィルタのブラックマトリックス幅を狭小化する傾向が進んでおり、このとき、ストライプ状パターン光学異方性層の境界線を原因とするクロストークの悪化が顕著となる懸念がある。つまり、輝度低下なく高精細化を達成するためには、ブラックマトリックス幅を狭小化したときのクロストークを改善させる必要がある。
 本発明においては、上記知見に基づき、ストライプ状パターン光学異方性層中の左右目画像用位相差領域にそれぞれ対応する第1位相差領域および第2位相差領域の幅を所定値に調整するとともに、境界線の幅を従来よりも小さく所定値に調整することにより、上述したクロストークの低減がなされることを見出している。
The light indicated by the arrow A in FIG. 1 is emitted from the right-eye image pixel (R) inside the display panel 12 and passes through the right-eye image retardation region (R) of the striped pattern optically anisotropic layer 18. A normal right eye image pixel is created. On the other hand, the light indicated by the arrow B is emitted from the right-eye image pixel (R) inside the display panel and passes through the boundary line 22. Unlike the phase difference region for the left and right eye images, the boundary line 22 does not have uniform optical anisotropy, and thus the light that has passed through causes crosstalk. These phenomena of arrows A to B occur similarly in the left-eye image pixel (L). That is, the present inventors have found that the crosstalk caused by the boundary indicated by the arrow B is worsened in the left-right eye phase difference regions (L, R) as the width of the boundary is wider.
In addition, in order to suppress a decrease in luminance due to high definition in recent years, there is a tendency to narrow the black matrix width of the color filter arranged in the liquid crystal cell. There is a concern that the deterioration of the crosstalk due to the boundary line becomes remarkable. That is, in order to achieve high definition without lowering luminance, it is necessary to improve crosstalk when the black matrix width is narrowed.
In the present invention, based on the above knowledge, the widths of the first retardation region and the second retardation region corresponding to the left and right eye image retardation regions in the stripe pattern optical anisotropic layer are adjusted to predetermined values. At the same time, it has been found that the above-described crosstalk can be reduced by adjusting the width of the boundary line to a predetermined value that is smaller than the conventional one.
 なお、クロストークを改善するため、例えば、図2の3D画像表示装置10bに示すような、表示パネル12内に配置されるカラーフィルタのブラックマトリックス20の幅を大きくすることでクロストークの原因となる成分を遮断する方法(例えば、特開2011-164563号公報および特開2011-34045号公報)が提案されているが、これは輝度の低下を招き、高解像度化においては不利となる。
 また、他の手段として、図3の3D画像表示装置10cに示したような、表示パネル12とストライプ状パターン光学異方性層18との間に有するガラス基板14の膜厚を小さくし、表示パネル12とストライプ状パターン光学異方性層18との間隔を狭くすることでストライプ状パターン光学異方性層18の境界線22を通過する成分を減らす方法(例えば、特開平10-268233号公報)が提案されている。この方法では輝度低下はないが、クロストーク改善のためにはガラス基板14の厚みを大幅に小さくする必要があり、結果として3D画像表示装置10cの耐衝撃性の低下や、ガラス基板14の取り扱い性低下に伴う歩留りの低下などが引き起こされる。
In order to improve the crosstalk, for example, the width of the black matrix 20 of the color filter arranged in the display panel 12 as shown in the 3D image display device 10b of FIG. A method for blocking the components (for example, Japanese Patent Application Laid-Open Nos. 2011-164563 and 2011-34045) has been proposed, but this causes a decrease in luminance, which is disadvantageous in increasing the resolution.
As another means, the thickness of the glass substrate 14 between the display panel 12 and the stripe pattern optical anisotropic layer 18 as shown in the 3D image display device 10c of FIG. A method of reducing a component passing through the boundary line 22 of the striped pattern optically anisotropic layer 18 by narrowing the interval between the panel 12 and the striped pattern optically anisotropic layer 18 (for example, JP-A-10-268233) ) Has been proposed. Although this method does not reduce the luminance, it is necessary to significantly reduce the thickness of the glass substrate 14 in order to improve the crosstalk. As a result, the impact resistance of the 3D image display device 10c is reduced, and the glass substrate 14 is handled. Yield decreases due to the decrease in sex.
<光学フィルム(3D画像表示装置用光学フィルム)>
 以下、本発明の光学フィルムについて詳細に説明する。
 図4は、本発明の光学フィルム中のパターン光学異方性層(以後、ストライプ状パターン光学異方性層とも称する)100の一例を示す上面図であって、110は第1位相差領域を、120は第2位相差領域を、130は第1位相差領域と第2位相差領域との境界である境界線を示している。第1位相差領域110および第2位相差領域120中の矢印は、それぞれの面内遅相軸の方向を示している。なお、図中の符号は、特に述べない限り、以下の図面についても共通するものとする。
 また、図4は概略図であり、第1位相差領域110と、第2位相差領域120と、境界線130の関係を分かりやすく説明するため、寸法比としてはこれが最も適切なものではない。これらの寸法比の好ましい範囲については後述する。
<Optical Film (Optical Film for 3D Image Display Device)>
Hereinafter, the optical film of the present invention will be described in detail.
FIG. 4 is a top view showing an example of the patterned optical anisotropic layer (hereinafter also referred to as a stripe-shaped patterned optical anisotropic layer) 100 in the optical film of the present invention. 110 denotes a first retardation region. , 120 indicates a second phase difference region, and 130 indicates a boundary line that is a boundary between the first phase difference region and the second phase difference region. The arrows in the first phase difference region 110 and the second phase difference region 120 indicate the directions of the in-plane slow axes. The reference numerals in the drawings are common to the following drawings unless otherwise specified.
Further, FIG. 4 is a schematic diagram, and this is not the most appropriate dimension ratio in order to easily explain the relationship between the first phase difference region 110, the second phase difference region 120, and the boundary line 130. A preferable range of these dimensional ratios will be described later.
 第1位相差領域および第2位相差領域は、同一面内において、ストライプ状に交互に配置されており、第1位相差領域および第2位相差領域は、面内遅相軸方向および面内レターデーションの少なくとも一方が互いに異なる。上述したように、本発明の光学フィルムは偏光膜とともに表示パネルの視認側外側に配置され、上記パターン光学異方性層の第1位相差領域および第2位相差領域のそれぞれを通過した偏光画像が、偏光眼鏡等を介して右目用または左目用の画像として、認識される。
 第1位相差領域と第2位相差領域は、互いに、等しい形状であるのが好ましい。また、それぞれの配置は、均等であることが好ましい。また、第1位相差領域および第2位相差領域の幅のそれぞれの中心が、表示パネルの左目画像用画素(L)および右目画像用画素(R)のピッチ幅のそれぞれ中心と一致することが好ましく、バラつきを含めた分布として中心位置の差(位相差領域の中心と画像様用画素の中心との位置の差)が30μm以下であることが好ましく、15μm以下がより好ましく、5μm以下がさらに好ましい。また、本実施形態では、ストライプは、光学フィルムの長手方向に形成されていてもよいし、長手方向に垂直な方向に形成されていてもよい。
The first phase difference region and the second phase difference region are alternately arranged in stripes within the same plane, and the first phase difference region and the second phase difference region are in the in-plane slow axis direction and in-plane. At least one of the retardations is different from each other. As described above, the optical film of the present invention is disposed outside the viewing side of the display panel together with the polarizing film, and the polarized image that has passed through each of the first retardation region and the second retardation region of the patterned optical anisotropic layer. Is recognized as an image for the right eye or the left eye through polarized glasses or the like.
It is preferable that the first phase difference region and the second phase difference region have the same shape. Moreover, it is preferable that each arrangement | positioning is equal. Further, the centers of the widths of the first phase difference region and the second phase difference region may coincide with the centers of the pitch widths of the left-eye image pixel (L) and the right-eye image pixel (R) of the display panel. Preferably, as a distribution including variations, the difference in the center position (the difference in position between the center of the phase difference region and the center of the image-like pixel) is preferably 30 μm or less, more preferably 15 μm or less, and further preferably 5 μm or less. preferable. Moreover, in this embodiment, the stripe may be formed in the longitudinal direction of the optical film, or may be formed in a direction perpendicular to the longitudinal direction.
 図4においては、第1位相差領域110および第2位相差領域120においては、互いに直交する面内遅相軸をそれぞれ有する。なお、図4においては、第1位相差領域110の面内遅相軸方向と第2位相差領域120の面内遅相軸方向とが直交する態様を示したが、第1位相差領域110の面内遅相軸と第2位相差領域120の面内遅相軸とのなす角は70~110°が好ましく、80~100°がより好ましく、90°が最も好ましい。
 第1位相差領域110および第2位相差領域120の波長550nmの面内レターデーションRe(550)は特に制限されないが、それぞれ110~160nmが好ましく、120~150nmがより好ましく、125~140nmがさらに好ましい。なお、光学フィルムがパターン光学異方性層以外の他の層(例えば、透明支持体)を含んでいる場合であっても、光学フィルム全体で上記面内レターデーションの範囲を示すことが好ましい。
 また、光学フィルムが後述する透明支持体を含む場合は、透明支持体のRthとパターン光学異方性層のRthの合計が|Rth|≦20nmを満たすことが好ましく、そのためには、透明支持体は、-150nm≦Rth(630)≦100nmを満たすことが好ましい。
In FIG. 4, the first retardation region 110 and the second retardation region 120 have in-plane slow axes that are orthogonal to each other. FIG. 4 shows an aspect in which the in-plane slow axis direction of the first phase difference region 110 and the in-plane slow axis direction of the second phase difference region 120 are orthogonal to each other. The angle formed between the in-plane slow axis and the in-plane slow axis of the second retardation region 120 is preferably 70 to 110 °, more preferably 80 to 100 °, and most preferably 90 °.
The in-plane retardation Re (550) with a wavelength of 550 nm of the first retardation region 110 and the second retardation region 120 is not particularly limited, but is preferably 110 to 160 nm, more preferably 120 to 150 nm, and further preferably 125 to 140 nm. preferable. Even when the optical film includes other layers (for example, a transparent support) other than the patterned optically anisotropic layer, it is preferable that the entire optical film exhibits the above in-plane retardation range.
In addition, when the optical film includes a transparent support described later, the total of Rth of the transparent support and Rth of the patterned optically anisotropic layer preferably satisfies | Rth | ≦ 20 nm. Preferably satisfies −150 nm ≦ Rth (630) ≦ 100 nm.
 図4において、W1は第1位相差領域110の幅を、W2は第2位相差領域120の幅を、また、W3は第1位相差領域と第2位相差領域との境界に位置(対応)した境界線130の幅、つまり、第1位相差領域110の一端と、第2位相差領域120の一端との間の距離を意味する。境界線130は狭い幅ではあるが、上記第1位相差領域110や第2位相差領域120とは異なり位相差特性が崩れた領域を意図する。つまり、境界線130は、第1位相差領域110および第2位相差領域120とは異なり、液晶性化合物が一様な配向を形成していない無配向領域(境界領域)であり、光漏れの原因となる。境界線130とは、言い換えると、液晶性化合物が任意の方向に配向している無配向な領域であり、配向している領域(ドメイン)などは含まれない。
 光学フィルム100において、W1およびW2はそれぞれ50~250μmである。なかでも、クロストークの発生がより抑制される点で、50~130μmが好ましく、50~80μmがより好ましい。W1、W2が上記範囲外であれば、高精細な表示パネルに適用した際に、クロストークの発生を抑制できない。W1とW2との差は特に制限されないが、クロストークの発生がより抑制される点で、0~5μmが好ましく、0~1μmがより好ましい。また、境界線の幅W3は、0.1~10μmであり、クロストークの発生がより抑制される点で、0.1~8μmが好ましく、0.1~5μmがより好ましい。境界線の幅W3が10μm超の場合、クロストークの抑制が十分でなく、3D画像の画質が劣る。
 なお、W1、W2、およびW3の測定方法は、偏光顕微鏡観察にて測定する方法が挙げられる。例えば、上記パターン光学異方性層(第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とが直交しているパターン光学異方性層)を、第1位相差領域または第2位相差領域のいずれか一方の面内遅相軸が、透過軸が直交位に組合された2枚の偏光板のいずれか一方の透過軸と平行になるように偏光顕微鏡(NIKON製 ECLIPE E600W POL)のサンプルステージ上に設置する。このとき、第1位相差領域、および、第2位相差領域は黒表示され、一方、境界線は無配向なので光が遮光されず、白表示されるため、各領域を特定することができる。境界線の範囲の測定方法としては、上記のように、直交位に組合された2枚の偏光板のいずれか一方の透過軸と平行になるように偏光顕微鏡を使用するが、その汎用的な手順としては、偏光顕微鏡を用いて、透過軸が直交位に組合された2枚の偏光板の間にサンプルとなるパターン光学異方性層を配置して、パターン光学異方性層を光軸に対して垂直となる面内で回転させて、第1位相差領域が黒表示となる状態の観察図と、第2位相差領域が黒表示となる状態の観察図とを比較して、2つの観察図中の両方において白表示となる領域が無配向領域である境界線に該当する。
 次に、偏光顕微鏡から観察される画像を、偏光顕微鏡に取り付けたデジタルカメラ(NIKON DIGITAL CAMERA DXM1200)からPCに取り込み、画像解析ソフトWinROOF(三谷商事株式会社)を用いて、第1位相差領域、第2位相差領域、および、境界線の幅を測定する。具体的な測定方法として、例えば、境界線の幅を測定する場合、まず、図8に示すように、偏光顕微鏡にて境界線130が中央付近にくるように観察する。その際、図8に示すように、境界線130が延びる方向が上下方向となるように観察する。次に、観察図において、境界線130の左側に突出する凸部のうち最も左側に突出した2つの凸部の頂点を結ぶ直線Xを引く。次に、直線X上の任意の点Yから、直線Xに対して直交する方向で、直線Xから境界線130の右側端部まで線(図中では矢印)を引き、その長さを算出する。なお、上記長さの算出は、任意の点Yから50μm間隔(図中、Dが50μm)で10箇所行い、得られた10箇所における長さを算術平均して、境界線130の幅Aを求める。さらに、上記観察をパターン光学異方性層の任意の3箇所において行い、各観察図において得られた境界線130の幅Aをさらに算術平均して、境界線の幅W3を求める。
 なお、上記直線Xを引く作業、および、直線Xから境界線130の右側端部までの長さの測定は、WinROOFを用いて行う。
 また、第1位相差領域110、第2位相差領域120についても同様の操作を行い、W1、W2を求める。
 なお、図8においては、境界線130が蛇行している態様が開示されているが、この態様には限定されず、直線状であってもよい。
In FIG. 4, W1 is the width of the first phase difference region 110, W2 is the width of the second phase difference region 120, and W3 is located at the boundary between the first phase difference region and the second phase difference region (corresponding to ) The width of the boundary line 130, that is, the distance between one end of the first phase difference region 110 and one end of the second phase difference region 120. Although the boundary line 130 is narrow, unlike the first phase difference region 110 and the second phase difference region 120, the boundary line 130 is intended to be a region where the phase difference characteristic is broken. That is, unlike the first retardation region 110 and the second retardation region 120, the boundary line 130 is a non-alignment region (boundary region) in which the liquid crystalline compound does not form a uniform alignment, and light leakage is not caused. Cause. In other words, the boundary line 130 is a non-oriented region in which the liquid crystal compound is aligned in an arbitrary direction, and does not include an aligned region (domain).
In the optical film 100, W1 and W2 are 50 to 250 μm, respectively. Among these, 50 to 130 μm is preferable, and 50 to 80 μm is more preferable in that the occurrence of crosstalk is further suppressed. If W1 and W2 are outside the above ranges, the occurrence of crosstalk cannot be suppressed when applied to a high-definition display panel. The difference between W1 and W2 is not particularly limited, but is preferably 0 to 5 μm and more preferably 0 to 1 μm from the viewpoint of suppressing the occurrence of crosstalk. The width W3 of the boundary line is 0.1 to 10 μm, and is preferably 0.1 to 8 μm, more preferably 0.1 to 5 μm from the viewpoint of suppressing the occurrence of crosstalk. When the width W3 of the boundary line exceeds 10 μm, crosstalk is not sufficiently suppressed, and the image quality of the 3D image is inferior.
In addition, the measuring method of W1, W2, and W3 includes the method of measuring by polarization microscope observation. For example, the patterned optically anisotropic layer (patterned optically anisotropic layer in which the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region are orthogonal to each other) Polarization microscope so that the in-plane slow axis of either the phase difference region or the second phase difference region is parallel to one of the transmission axes of the two polarizing plates whose transmission axes are combined in an orthogonal position Installed on the sample stage (ECLIP E600W POL manufactured by NIKON). At this time, the first phase difference region and the second phase difference region are displayed in black. On the other hand, since the boundary line is not oriented, the light is not blocked and is displayed in white, so that each region can be specified. As a measuring method of the range of the boundary line, as described above, a polarizing microscope is used so as to be parallel to one of the transmission axes of two polarizing plates combined in an orthogonal position. As a procedure, a polarizing optical microscope is used to place a patterned optical anisotropic layer as a sample between two polarizing plates whose transmission axes are combined in an orthogonal position. The observation view in which the first phase difference region is displayed in black and the observation view in which the second phase difference region is displayed in black are compared with each other by rotating the image in a plane that is vertical. In both of the figures, a region that is white display corresponds to a boundary line that is a non-oriented region.
Next, the image observed from the polarizing microscope is taken into a PC from a digital camera (NIKON DIGITAL CAMERA DXM1200) attached to the polarizing microscope, and using the image analysis software WinROOF (Mitani Corporation), the first phase difference region, The second phase difference region and the width of the boundary line are measured. As a specific measuring method, for example, when measuring the width of the boundary line, first, as shown in FIG. 8, observation is performed with a polarizing microscope so that the boundary line 130 is near the center. In that case, as shown in FIG. 8, it observes so that the direction where the boundary line 130 extends may become an up-down direction. Next, in the observation view, a straight line X connecting the vertices of the two convex portions protruding to the leftmost side among the convex portions protruding to the left side of the boundary line 130 is drawn. Next, a line (in the drawing, an arrow) is drawn from an arbitrary point Y on the straight line X to the right end of the boundary line 130 in a direction orthogonal to the straight line X, and the length is calculated. . The length is calculated at 10 points from an arbitrary point Y at intervals of 50 μm (in the figure, D is 50 μm), and the length at the obtained 10 points is arithmetically averaged to obtain the width A of the boundary 130. Ask. Further, the above observation is performed at three arbitrary positions of the patterned optically anisotropic layer, and the width A of the boundary line 130 obtained in each observation drawing is further arithmetically averaged to obtain the boundary line width W3.
The operation of drawing the straight line X and the measurement of the length from the straight line X to the right end of the boundary line 130 are performed using WinROOF.
The same operation is performed on the first phase difference region 110 and the second phase difference region 120 to obtain W1 and W2.
In addition, although the aspect which the meandering line 130 meanders is disclosed in FIG. 8, it is not limited to this aspect, A linear form may be sufficient.
 パターン光学異方性層には、液晶性化合物が含まれることが好ましい。
 液晶性化合物を含むパターン光学異方性層の形成方法としては、例えば、液晶性化合物を配向状態で固定化する方法が挙げられる。このとき、液晶性化合物を固定化する方法としては、上記液晶性化合物として不飽和二重結合(重合性基)を有する液晶性化合物を用い、重合させて固定化する方法等が好適に例示される。例えば、不飽和二重結合(重合性基)を有する液晶性化合物を含むパターン光学異方性層形成用組成物を透明支持体上に直接または配向膜を介して塗布して、電離放射線の照射により硬化(重合)させ、液晶性化合物を固定化する方法が挙げられる。なお、パターン光学異方性層は単層構造であっても、積層構造であってもよい。
 液晶性化合物に含まれる不飽和二重結合の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。
The pattern optically anisotropic layer preferably contains a liquid crystal compound.
Examples of the method for forming the patterned optically anisotropic layer containing a liquid crystalline compound include a method of fixing the liquid crystalline compound in an aligned state. In this case, as a method for immobilizing the liquid crystal compound, a method of polymerizing and immobilizing the liquid crystal compound having an unsaturated double bond (polymerizable group) as the liquid crystal compound is preferably exemplified. The For example, a pattern optical anisotropic layer forming composition containing a liquid crystal compound having an unsaturated double bond (polymerizable group) is applied directly or via an alignment film on a transparent support, and then irradiated with ionizing radiation. And a method of fixing (polymerizing) the liquid crystalline compound by the method described above. The patterned optically anisotropic layer may have a single layer structure or a laminated structure.
The kind of unsaturated double bond contained in the liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, etc. are mentioned preferably, and a (meth) acryloyl group is more preferable.
 一般的に、液晶性化合物はその形状から、棒状タイプと円盤状タイプに分類できる。さらにそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井正男著,2頁,岩波書店,1992)。本発明では、棒状液晶性化合物およびディスコティック液晶性化合物(円盤状液晶性化合物)のいずれも用いることができる。2種以上の棒状液晶性化合物、2種以上の円盤状液晶性化合物、または棒状液晶性化合物と円盤状液晶性化合物との混合物を用いてもよい。上述の液晶性化合物の固定化のために、重合性基を有する棒状液晶性化合物または円盤状液晶性化合物を用いて形成することがより好ましく、液晶性化合物が1分子中に重合性基を2以上有することがさらに好ましい。液晶性化合物が2種類以上の混合物の場合には、少なくとも1種類の液晶性化合物が1分子中に2以上の重合性基を有していることが好ましい。
 棒状液晶性化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく用いることができ、ディスコティック液晶性化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]や特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましく用いることができるが、これらに限定されない。
In general, liquid crystal compounds can be classified into a rod-shaped type and a disk-shaped type based on their shapes. In addition, there are low and high molecular types, respectively. Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). In the present invention, any of a rod-like liquid crystalline compound and a discotic liquid crystalline compound (discotic liquid crystalline compound) can be used. Two or more kinds of rod-like liquid crystalline compounds, two or more kinds of disc-like liquid crystalline compounds, or a mixture of a rod-like liquid crystalline compound and a disk-like liquid crystalline compound may be used. In order to fix the liquid crystalline compound, it is more preferable to use a rod-like liquid crystalline compound having a polymerizable group or a discotic liquid crystalline compound, and the liquid crystalline compound has 2 polymerizable groups in one molecule. It is more preferable to have the above. When the liquid crystal compound is a mixture of two or more, it is preferable that at least one liquid crystal compound has two or more polymerizable groups in one molecule.
As the rod-like liquid crystal compound, for example, those described in claim 1 of JP-T-11-53019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used. As the tick liquid crystalline compound, for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 are preferably used. However, it is not limited to these.
 パターン光学異方性層における面内レターデーションを上記範囲内とするために、液晶性化合物の配向状態を制御することがある。このとき、棒状液晶性化合物を用いる場合には、棒状液晶性化合物を水平配向した状態で固定化するのが好ましく、ディスコティック液晶性化合物を用いる場合には、ディスコティック液晶性化合物を垂直配向した状態で固定化するのが好ましい。なお、本発明において、「棒状液晶性化合物が水平配向」とは、棒状液晶性化合物のダイレクタと層面が平行であることをいい、「ディスコティック液晶性化合物が垂直配向」とは、ディスコティック液晶性化合物の円盤面と層面が垂直であることをいう。厳密に水平、垂直であることを要求するものではなく、それぞれ正確な角度から±20°の範囲であることを意味するものとする。±5°以内であることが好ましく、±3°以内であることがより好ましく、±2°以内であることがさらに好ましく、±1°以内であることが最も好ましい。
 また、液晶性化合物を水平配向、垂直配向状態とするために、水平配向、垂直配向を促進する添加剤(配向制御剤)を使用してもよい。添加剤としては各種公知のものを使用できる。
In order to make the in-plane retardation in the patterned optically anisotropic layer within the above range, the alignment state of the liquid crystalline compound may be controlled. At this time, when the rod-like liquid crystalline compound is used, it is preferable to fix the rod-like liquid crystalline compound in a horizontally aligned state. When the discotic liquid crystalline compound is used, the discotic liquid crystalline compound is vertically aligned. It is preferable to fix in a state. In the present invention, “the rod-like liquid crystal compound is horizontally aligned” means that the director of the rod-like liquid crystal compound and the layer surface are parallel, and “the discotic liquid crystal compound is vertically aligned” means the discotic liquid crystal. This means that the disk surface and the layer surface of the functional compound are perpendicular. It is not strictly required to be horizontal or vertical, but each means a range of ± 20 ° from an accurate angle. It is preferably within ± 5 °, more preferably within ± 3 °, even more preferably within ± 2 °, and most preferably within ± 1 °.
Moreover, in order to make a liquid crystalline compound into a horizontal alignment and a vertical alignment state, you may use the additive (alignment control agent) which accelerates | stimulates a horizontal alignment and a vertical alignment. Various known additives can be used as the additive.
 上述のパターン光学異方性層の形成方法としては、以下の好適な態様が例示されるが、これらに限定されることなく、各種公知の方法を用いて形成できる。
 第1の好適態様は、液晶性化合物の配向を制御する複数の作用を利用し、その後、外部刺激(熱処理等)によりいずれかの作用を消失させて、所定の配向制御作用を支配的にする方法である。上記の方法としては、例えば、配向膜による配向制御能と、液晶性化合物中に添加される配向制御剤の配向制御能との複合作用により、液晶性化合物を所定の配向状態とし、それを固定して一方の位相差領域を形成した後、外部刺激(熱処理等)により、いずれかの作用(例えば配向制御剤による作用)を消失させて、他の配向制御作用(配向膜による作用)を支配的にし、それによって他の配向状態を実現し、それを固定して他方の位相差領域を形成する。この方法の詳細については、特開2012-008170号公報の段落[0017]~[0029]に記載があり、その内容は本明細書に参照として取り込まれる。
Although the following suitable aspects are illustrated as a formation method of the above-mentioned pattern optically anisotropic layer, it can form using various well-known methods, without being limited to these.
The first preferred embodiment utilizes a plurality of actions for controlling the alignment of the liquid crystal compound, and then eliminates any action by an external stimulus (heat treatment, etc.) to make the predetermined alignment control action dominant. Is the method. As the above method, for example, the liquid crystalline compound is brought into a predetermined alignment state by the combined action of the alignment control ability by the alignment film and the alignment control ability of the alignment controller added to the liquid crystalline compound, and then fixed. After forming one phase difference region, any action (for example, action by the alignment control agent) disappears by external stimulation (heat treatment, etc.), and the other orientation control action (action by the alignment film) dominates. Thus, another alignment state is realized and fixed to form the other retardation region. Details of this method are described in paragraphs [0017] to [0029] of Japanese Patent Application Laid-Open No. 2012-008170, the contents of which are incorporated herein by reference.
 第2の好適態様は、パターン配向膜を利用する態様である。この態様では、互いに異なる配向制御能を有するパターン配向膜を形成し、その上に、液晶性化合物を配置し、液晶性化合物を配向させる。液晶性化合物は、パターン配向膜のそれぞれの配向制御能によって、互いに異なる配向状態を達成する。それぞれの配向状態を固定することで、配向膜のパターンに応じて第1および第2の位相差領域のパターンが形成される。パターン配向膜は、印刷法、ラビング配向膜に対するマスクラビング、光配向膜に対するマスク露光等を利用して形成することができる。大掛かりな設備が不要である点や製造容易な点で、印刷法を利用する方法が好ましい。この方法の詳細については、特開2012-032661号公報の段落[0166]~[0181]に記載があり、その内容は本明細書に参照として取り込まれる。 The second preferred embodiment is an embodiment using a pattern alignment film. In this embodiment, pattern alignment films having different alignment control capabilities are formed, a liquid crystalline compound is disposed thereon, and the liquid crystalline compound is aligned. The liquid crystalline compounds achieve different alignment states depending on the alignment control ability of the pattern alignment film. By fixing each alignment state, the pattern of the 1st and 2nd phase difference area | region is formed according to the pattern of an alignment film. The pattern alignment film can be formed using a printing method, mask rubbing for the rubbing alignment film, mask exposure for the photo alignment film, or the like. A method using a printing method is preferable in that large-scale equipment is not required and manufacturing is easy. Details of this method are described in paragraphs [0166] to [0181] of JP2012-032661A, the contents of which are incorporated herein by reference.
 第3の好適態様としては、例えば、配向膜中に光酸発生剤を添加する態様である。この例では、配向膜中に光酸発生剤を添加し、パターン露光により、光酸発生剤が分解して酸性化合物が発生した領域と、発生していない領域とを形成する。光未照射部分では光酸発生剤はほぼ未分解のままであり、配向膜材料、液晶性化合物、および必要に応じて添加される配向制御剤の相互作用が配向状態を支配し、液晶性化合物を、その遅相軸がラビング方向と直交する方向に配向させる。配向膜へ光照射し、酸性化合物が発生すると、その相互作用はもはや支配的ではなくなり、ラビング配向膜のラビング方向が配向状態を支配し、液晶性化合物は、その遅相軸をラビング方向と平行にして平行配向する。配向膜に用いられる光酸発生剤としては、水溶性の化合物が好ましく用いられる。使用可能な光酸発生剤の例には、Prog. Polym. Sci.,23巻、1485頁(1998年)に記載の化合物が含まれる。光酸発生剤としては、ピリジニウム塩、ヨードニウム塩およびスルホニウム塩が特に好ましく用いられる。この方法の詳細については、特願2010-289360号明細書に記載があり、その内容は本明細書に参照として取り込まれる。 As a third preferred embodiment, for example, a photo acid generator is added to the alignment film. In this example, a photoacid generator is added to the alignment film, and pattern exposure exposes a region where the photoacid generator is decomposed to generate an acidic compound and a region where no acid compound is generated. The photoacid generator remains almost undecomposed in the non-irradiated portion, and the interaction between the alignment film material, the liquid crystal compound, and the alignment control agent added as necessary dominates the alignment state, and the liquid crystal compound Is oriented in a direction whose slow axis is perpendicular to the rubbing direction. When the alignment film is irradiated with light and an acidic compound is generated, the interaction is no longer dominant, the rubbing direction of the rubbing alignment film controls the alignment state, and the liquid crystalline compound has its slow axis parallel to the rubbing direction. To parallel orientation. As the photoacid generator used in the alignment film, a water-soluble compound is preferably used. Examples of photoacid generators that can be used include Prog. Polym. Sci. 23, page 1485 (1998). As the photoacid generator, pyridinium salts, iodonium salts and sulfonium salts are particularly preferably used. Details of this method are described in Japanese Patent Application No. 2010-289360, the contents of which are incorporated herein by reference.
 パターン光学異方性層の厚みは特に限定されないが、光学フィルムをより薄くできる点より、0.1~10μmが好ましく、0.1~5μmがより好ましい。 The thickness of the patterned optically anisotropic layer is not particularly limited, but is preferably 0.1 to 10 μm and more preferably 0.1 to 5 μm from the viewpoint that the optical film can be made thinner.
 本発明の光学フィルムには上記パターン光学異方性層以外の層が含まれていてもよい。
 例えば、透明支持体が含まれていてもよい。つまり、光学フィルムは、透明支持体と、透明支持体上に配置された上記パターン光学異方性層を有する態様であってもよい。透明支持体を備えることにより、光学フィルムの機械的強度が向上する。
 透明支持体を形成する材料としては、例えば、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーなどが挙げられる。
The optical film of the present invention may contain a layer other than the patterned optically anisotropic layer.
For example, a transparent support may be included. That is, the optical film may be an embodiment having a transparent support and the patterned optically anisotropic layer disposed on the transparent support. By providing the transparent support, the mechanical strength of the optical film is improved.
Examples of the material for forming the transparent support include polycarbonate polymers, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), and the like. Styrene polymer, polyolefin polymer such as polyethylene, polypropylene, ethylene propylene copolymer, vinyl chloride polymer, amide polymer such as nylon and aromatic polyamide, imide polymer, sulfone polymer, polyethersulfone polymer , Polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, It relates polymers, polyoxymethylene polymers, and epoxy polymers.
 また、透明支持体を形成する材料としては、熱可塑性ノルボルネン系樹脂を好ましく用いることができる。熱可塑性ノルボルネン系樹脂としては、日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等が挙げられる。
 また、透明支持体を形成する材料としては、トリアセチルセルロースに代表される、セルロース系ポリマー(以下、セルロースアシレートという)も好ましく用いることができる。
As a material for forming the transparent support, a thermoplastic norbornene resin can be preferably used. Examples of the thermoplastic norbornene-based resin include ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Corporation.
In addition, as a material for forming the transparent support, a cellulose polymer represented by triacetyl cellulose (hereinafter referred to as cellulose acylate) can also be preferably used.
 透明支持体の波長550nmにおける面内レターデーションRe(550)は特に制限されないが、本発明の効果がより優れる点で、パターン光学異方性層との積層体としてのRe(550)は、110~160nmが好ましく、120~150nmがより好ましく、125~140nmが特に好ましい。
 透明支持体の波長550nmにおける厚み方向のレターデーションRth(550)は特に制限されないが、本発明の効果がより優れる点で、パターン光学異方性層との積層体としてのRth(550)は0~20nmが好ましく、0~10nmがより好ましく、0~5nmが特に好ましい。
 透明支持体の厚みは特に制限されないが、光学フィルムの厚みを薄くできる点で、1~60μmが好ましく、1~40μmがより好ましい。
 なお、透明支持体には、種々の添加剤(例えば、光学的異方性調整剤、波長分散調整剤、微粒子、可塑剤、紫外線吸収剤、劣化防止剤、剥離剤、など)を加えることができる。
The in-plane retardation Re (550) at a wavelength of 550 nm of the transparent support is not particularly limited, but Re (550) as a laminate with the patterned optically anisotropic layer is 110 in that the effect of the present invention is more excellent. Is preferably 160 nm, more preferably 120 nm to 150 nm, and particularly preferably 125 nm to 140 nm.
The retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the transparent support is not particularly limited, but Rth (550) as a laminate with the patterned optical anisotropic layer is 0 in that the effect of the present invention is more excellent. Is preferably 20 nm, more preferably 0 to 10 nm, and particularly preferably 0 to 5 nm.
The thickness of the transparent support is not particularly limited, but is preferably 1 to 60 μm and more preferably 1 to 40 μm from the viewpoint that the thickness of the optical film can be reduced.
Various additives (for example, optical anisotropy adjusting agent, wavelength dispersion adjusting agent, fine particles, plasticizer, ultraviolet absorber, deterioration preventing agent, release agent, etc.) may be added to the transparent support. it can.
 また、必要に応じて、上記透明支持体とパターン光学異方性層との間に、配向膜を設けてもよい。配向膜を設けることにより、パターン光学異方性層中の液晶性化合物の配向方向の制御がより容易となる。
 配向膜は、一般的にはポリマーを主成分とする。配向膜用ポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。利用されるポリマー材料は、ポリビニルアルコールまたはポリイミド、および、その誘導体が好ましい。特に、変性または未変性のポリビニルアルコールが好ましい。本発明に使用可能な配向膜については、WO01/88574A1号公報の43頁24行~49頁8行、特許第3907735号公報の段落[0071]~[0095]に記載の変性ポリビニルアルコールを参照することができる。なお、配向膜には、通常、公知のラビング処理が施される。つまり、配向膜は、通常、ラビング処理されたラビング配向膜であることが好ましい。
 配向膜の厚さは、薄い方が好ましいが、パターン光学異方性層形成のための配向能の付与、および、透明支持体の表面凹凸を緩和して均一な膜厚のパターン光学異方性層を形成するという観点からはある程度の厚みが必要となる。具体的には、配向膜の厚さは、0.01~10μmであることが好ましく、0.01~1μmであることがより好ましく、0.01~0.5μmであることがさらに好ましい。
 また、本発明では光配向膜を利用することも好ましい。光配向膜としては特に限定はされないが、WO2005/096041号公報の段落[0024]~[0043]に記載のものやRolic echnologies社製の商品名LPP-JP265CPなどを用いることができる。
Further, if necessary, an alignment film may be provided between the transparent support and the patterned optically anisotropic layer. By providing the alignment film, it becomes easier to control the alignment direction of the liquid crystalline compound in the patterned optically anisotropic layer.
The alignment film generally contains a polymer as a main component. The polymer material for alignment film is described in many documents, and many commercially available products can be obtained. The polymer material used is preferably polyvinyl alcohol or polyimide, and derivatives thereof. In particular, modified or unmodified polyvinyl alcohol is preferred. For the alignment film that can be used in the present invention, refer to the modified polyvinyl alcohol described in WO01 / 88574A1, page 43, line 24 to page 49, line 8, and patent No. 3907735, paragraphs [0071] to [0095]. be able to. The alignment film is usually subjected to a known rubbing treatment. That is, the alignment film is usually preferably a rubbing alignment film that has been rubbed.
Although the thickness of the alignment film is preferably thin, it is possible to provide alignment ability for forming the patterned optical anisotropic layer, and to reduce the surface irregularities of the transparent support, thereby providing a uniform pattern optical anisotropy. A certain thickness is required from the viewpoint of forming a layer. Specifically, the thickness of the alignment film is preferably 0.01 to 10 μm, more preferably 0.01 to 1 μm, and still more preferably 0.01 to 0.5 μm.
In the present invention, it is also preferable to use a photo-alignment film. The photo-alignment film is not particularly limited, and those described in paragraphs [0024] to [0043] of WO 2005/096041 and trade name LPP-JP265CP manufactured by Roli technologies can be used.
 また、本発明の光学フィルムは、反射防止層を有していてもよい。反射防止層としては防眩層が好ましいが、低屈折率層、中屈折率層、高屈折率層であってもよい。
 防眩層とは、バインダーおよび防眩性を付与するための透光性粒子を含有し、透光性粒子自体の突起あるいは複数の粒子の集合体で形成される突起によって表面の凹凸を形成されるものであることが好ましい。
The optical film of the present invention may have an antireflection layer. The antireflection layer is preferably an antiglare layer, but may be a low refractive index layer, a medium refractive index layer, or a high refractive index layer.
An anti-glare layer contains a binder and translucent particles for imparting anti-glare properties, and surface irregularities are formed by the projections of the translucent particles themselves or by projections formed of an aggregate of a plurality of particles. It is preferable that it is a thing.
 高屈折率層の屈折率は、1.70~1.74であることが好ましく、1.71~1.73であることがより好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整される。中屈折率層の屈折率は、1.60~1.64であることが好ましく、1.61~1.63であることがより好ましい。低屈折率層は、屈折率が1.30~1.47であることが好ましい。多層薄膜干渉型の反射防止フィルム(中屈折率層/高屈折率層/低屈折率層)の場合の低屈折率層の屈折率は1.33~1.38であることが好ましく、1.35~1.37であることがより好ましい。
 高屈折率層、中屈折率層、および低屈折率層の形成方法は化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法やスパッタ法により、無機物酸化物の透明薄膜を用いることもできるが、オールウェット塗布による方法が好ましい。
 高屈折率層、中屈折率層、および低屈折率層としては、特開2009-98658号公報の段落[0197]~[0211]に記載のものを使用することができる。
The refractive index of the high refractive index layer is preferably 1.70 to 1.74, more preferably 1.71 to 1.73. The refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.60 to 1.64, and more preferably 1.61 to 1.63. The low refractive index layer preferably has a refractive index of 1.30 to 1.47. In the case of a multilayer thin film interference type antireflection film (medium refractive index layer / high refractive index layer / low refractive index layer), the refractive index of the low refractive index layer is preferably 1.33 to 1.38. More preferably, it is 35 to 1.37.
The high refractive index layer, medium refractive index layer, and low refractive index layer are formed by a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method, particularly a vacuum vapor deposition method or a sputtering method, which is a kind of physical vapor deposition method, and an inorganic substance. Although a transparent oxide thin film can be used, a method using all wet coating is preferred.
As the high refractive index layer, medium refractive index layer, and low refractive index layer, those described in paragraphs [0197] to [0211] of JP-A-2009-98658 can be used.
<円偏光フィルム(3D画像表示装置用円偏光フィルム)>
 上述した光学フィルムは、偏光膜と組み合わせることにより、円偏光フィルムとして使用できる。
 まず、使用される偏光膜について詳述する。
<Circularly polarizing film (circularly polarizing film for 3D image display device)>
The optical film described above can be used as a circularly polarizing film by combining with the polarizing film.
First, the polarizing film used will be described in detail.
 偏光膜(偏光子層)は、自然光を特定の直線偏光に変換する機能を有する部材であればよく、例えば、吸収型偏光子を利用することができる。
 偏光膜の種類は特に制限はなく、通常用いられている偏光膜を利用することができ、例えば、ヨウ素系偏光膜、二色性染料を利用した染料系偏光膜、およびポリエン系偏光膜のいずれも用いることができる。ヨウ素系偏光膜、および染料系偏光膜は、一般に、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸することで作製される。
 なお、偏光膜は、その両面に保護フィルムが貼合された偏光板として用いられることが一般的である。
The polarizing film (polarizer layer) may be a member having a function of converting natural light into specific linearly polarized light. For example, an absorptive polarizer can be used.
The type of the polarizing film is not particularly limited, and a commonly used polarizing film can be used. For example, any of an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film Can also be used. The iodine-based polarizing film and the dye-based polarizing film are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
In addition, it is common that a polarizing film is used as a polarizing plate by which the protective film was bonded on both surfaces.
 円偏光フィルムの製造方法は特に制限されないが、例えば、上記光学フィルムと偏光膜とが、それぞれ長尺の状態で連続的に積層される工程を含むことが好ましい。長尺の偏光板は、用いられる画像表示装置の画面の大きさに合わせて裁断される。

 なお、偏光膜の透過軸に対して第1位相差領域の面内遅相軸および第2位相差領域の面内遅相軸の一方が+45°の角度をなし、偏光膜の透過軸に対して第1位相差領域の面内遅相軸および第2位相差領域の面内遅相軸の他方が-45°の角度をなすことが好ましい。このような構成とすることにより、正確に右円偏光および左円偏光が実現できる。図5は上記態様を示す図であり、偏光膜140の透過軸と、パターン光学異方性層100の面内遅相軸の関係を示したものであって、偏光膜140の透過軸と、パターン光学異方性層100の第1位相差領域110および第2位相差領域120の面内遅相軸がそれぞれ45°および-45°の角度をなしている。なお、上記角度は45°および-45°に限定されず、45°±10°および-45°±10°であればよい。 なお、上記面内遅相軸の回転角度は、偏光膜側から光学フィルムを観察して、偏光膜の透過軸を基準とし、時計回り方向に正、反時計回りに負の角度値をもって表す。
Although the manufacturing method in particular of a circularly-polarizing film is not restrict | limited, For example, it is preferable that the said optical film and polarizing film include the process of laminating | stacking continuously in a respectively elongate state. The long polarizing plate is cut according to the size of the screen of the image display device used.

Note that one of the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region forms an angle of + 45 ° with respect to the transmission axis of the polarizing film, and is relative to the transmission axis of the polarizing film. The other of the in-plane slow axis of the first phase difference region and the in-plane slow axis of the second phase difference region preferably forms an angle of −45 °. With such a configuration, right-handed circularly polarized light and left-handed circularly polarized light can be accurately realized. FIG. 5 is a diagram showing the above-described embodiment, and shows the relationship between the transmission axis of the polarizing film 140 and the in-plane slow axis of the patterned optically anisotropic layer 100, and the transmission axis of the polarizing film 140, The in-plane slow axes of the first retardation region 110 and the second retardation region 120 of the patterned optically anisotropic layer 100 form angles of 45 ° and −45 °, respectively. The angle is not limited to 45 ° and −45 °, and may be 45 ° ± 10 ° and −45 ° ± 10 °. The rotation angle of the in-plane slow axis is expressed as a positive angle value in the clockwise direction and a negative angle value in the counterclockwise direction with reference to the transmission axis of the polarizing film when the optical film is observed from the polarizing film side.
 光学フィルムと偏光膜との貼合は、直接または接着剤層や粘着剤層を介して貼り合わされることが好ましい。
 光学フィルムと偏光膜の間の接着性を改良するために、透明支持体の表面は表面処理(例、グロー放電処理、コロナ放電処理、プラズマ処理、紫外線(UV)処理、火炎処理、鹸化処理、溶剤洗浄)を実施することが好ましい。
 粘着剤層としては、例えば、動的粘弾性測定装置で測定した貯蔵弾性率G’と損失弾性率G”との比(tanδ=G”/G’)が0.001~1.5である物質のことを表し、いわゆる、粘着剤やクリープしやすい物質等が含まれる。本発明に用いることのできる粘着剤としては、例えば、ポリビニルアルコール系粘着剤が挙げられるが、これに限定されない。
The optical film and the polarizing film are preferably bonded directly or via an adhesive layer or an adhesive layer.
In order to improve the adhesion between the optical film and the polarizing film, the surface of the transparent support is subjected to a surface treatment (eg, glow discharge treatment, corona discharge treatment, plasma treatment, ultraviolet (UV) treatment, flame treatment, saponification treatment, It is preferable to carry out solvent washing.
As the pressure-sensitive adhesive layer, for example, the ratio (tan δ = G ″ / G ′) between the storage elastic modulus G ′ and the loss elastic modulus G ″ measured by a dynamic viscoelasticity measuring device is 0.001 to 1.5. Represents a substance, and includes so-called adhesives and substances that are easy to creep. Examples of the adhesive that can be used in the present invention include, but are not limited to, a polyvinyl alcohol-based adhesive.
<3D画像表示装置>
 本発明は、上記光学フィルムを有する3D画像表示装置にも関する。本発明のフィルムは、表示パネルの視認側に配置され、表示パネルが表示する画像を右目用および左目用の円偏光画像に変換する機能を有する。観察者は、これらの画像を円偏光眼鏡等の偏光板を介して観察し、立体画像として認識する。
<3D image display device>
The present invention also relates to a 3D image display device having the optical film. The film of this invention is arrange | positioned at the visual recognition side of a display panel, and has a function which converts the image which a display panel displays into the circularly polarized image for right eyes and left eyes. An observer observes these images through a polarizing plate such as circularly polarized glasses and recognizes them as a stereoscopic image.
 3D画像表示装置に使用される表示パネルの画素ピッチは特に制限されないが、上記光学フィルムとの組み合わせに適している点から、10~250μmが好ましく、10~130μmがより好ましく、10~80μmがさらに好ましい。
 なお、表示パネルの画素ピッチと、パターン光学異方性層中の各領域との関係としては、画像ピッチの幅と、パターン光学異方性層中の第1位相差領域および第2位相差領域の一方の領域の幅および境界線の幅の合計幅とが、略同一であることが好ましく、上記合計幅が画像ピッチの幅に対して±20%以内であることが好ましく、±10%以内であることがさらに好ましく、±5%以内であることがより好ましい。
The pixel pitch of the display panel used in the 3D image display device is not particularly limited, but is preferably 10 to 250 μm, more preferably 10 to 130 μm, and further preferably 10 to 80 μm from the viewpoint of being suitable for combination with the optical film. preferable.
The relationship between the pixel pitch of the display panel and each region in the patterned optically anisotropic layer includes the width of the image pitch, the first retardation region and the second retardation region in the patterned optically anisotropic layer. It is preferable that the total width of the width of one of the regions and the width of the boundary line is substantially the same, and the total width is preferably within ± 20% with respect to the width of the image pitch, and within ± 10% More preferably, it is more preferably within ± 5%.
 本発明において、表示パネルについては、なんら制限はない。例えば、液晶層を含む液晶パネルであっても、有機EL層を含む有機EL表示パネルであっても、プラズマディスプレイパネルであってもよい。いずれの態様についても、種々の可能な構成を採用することができる。また、透過モードの液晶パネル等は、視認側表面に画像表示のための偏光膜を有する態様では、本発明の光学フィルムは、当該偏光膜との組み合わせによって、上記機能を達成してもよい。 In the present invention, there is no limitation on the display panel. For example, it may be a liquid crystal panel including a liquid crystal layer, an organic EL display panel including an organic EL layer, or a plasma display panel. For any aspect, various possible configurations can be employed. Further, in a mode in which a liquid crystal panel or the like in a transmission mode has a polarizing film for image display on the viewing side surface, the optical film of the present invention may achieve the above function by combination with the polarizing film.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the examples shown below.
<実施例1>
(防眩性ハードコート層用塗布液の調製)
 下記の組成となるように各成分をMIBK(メチルイソブチルケトン)とMEK(メチルエチルケトン)との混合溶媒(89対11(質量比))と混合した。孔径30μmのポリプロピレン製フィルターでろ過して防眩性ハードコート層用塗布液1を調製した。塗布液の固形分濃度は40質量%である。
――――――――――――――――――――――――――――――――――
防眩性ハードコート層用塗布液1の組成
――――――――――――――――――――――――――――――――――
スメクタイト(ルーセンタイトSTN、コープケミカル社製) 1.00質量部
架橋アクリル-スチレン粒子(平均粒径2.5μm 屈折率1.52)(積水化成品工業社製)    8.00質量部
アクリレートモノマー(NKエステルA9550、新中村化学工業社製)
                          87.79質量部
重合開始剤(イルガキュア907、BASF社製)    3.00質量部
レベリング剤(P-4)                0.15質量部
MIBK(メチルイソブチルケトン)        133.50質量部
MEK(メチルエチルケトン)            16.50質量部
――――――――――――――――――――――――――――――――――
<Example 1>
(Preparation of coating solution for antiglare hard coat layer)
Each component was mixed with a mixed solvent (89 to 11 (mass ratio)) of MIBK (methyl isobutyl ketone) and MEK (methyl ethyl ketone) so as to have the following composition. It filtered with the polypropylene filter with a hole diameter of 30 micrometers, and prepared the coating liquid 1 for anti-glare hard-coat layers. The solid content concentration of the coating solution is 40% by mass.
――――――――――――――――――――――――――――――――――
Composition of Coating Solution 1 for Antiglare Hard Coat Layer ――――――――――――――――――――――――――――――――――
Smectite (Lucentite STN, manufactured by Coop Chemical Co., Ltd.) 1.00 parts by mass Cross-linked acrylic-styrene particles (average particle size 2.5 μm, refractive index 1.52) (manufactured by Sekisui Plastics Co., Ltd.) 8.00 parts by mass acrylate monomer ( NK Ester A9550, manufactured by Shin-Nakamura Chemical Co., Ltd.)
87.79 parts by mass polymerization initiator (Irgacure 907, manufactured by BASF) 3.00 parts by mass leveling agent (P-4) 0.15 parts by mass MIBK (methyl isobutyl ketone) 133.50 parts by mass MEK (methyl ethyl ketone) 50 parts by mass ――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、上記x、y、z、nは、それぞれ25、25、50、8である。 Note that the above x, y, z, and n are 25, 25, 50, and 8, respectively.
(防眩性ハードコート層の塗設)
 市販のセルロールアシレートTD60(富士フイルム(株)製)(膜厚:60μm)をロール形態で巻き出して、防眩性ハードコート層用塗布液1を使用し、膜厚4μmとなるように防眩性ハードコート層を塗設した。
 具体的には、特開2006-122889号公報の実施例1記載のスロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布液1を支持体(セルロールアシレートTD60)上に塗布し、80℃で150秒乾燥の後、さらに窒素パージ下酸素濃度約0.1%で160W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、照度400mW/cm2、照射量180mJ/cm2の紫外線を照射して塗布層を硬化させて防眩性ハードコート層を形成した後、巻き取り、防眩性ハードコート層付支持体1を作製した。
(Coating of antiglare hard coat layer)
A commercially available cellulose acylate TD60 (manufactured by FUJIFILM Corporation) (film thickness: 60 μm) is unwound in a roll form, and the coating solution 1 for antiglare hard coat layer is used, so that the film thickness is 4 μm. An antiglare hard coat layer was applied.
Specifically, in the die coating method using the slot die described in Example 1 of Japanese Patent Application Laid-Open No. 2006-122889, the coating liquid 1 is applied on the support (Cellulose Acylate TD60) under the condition of a conveyance speed of 30 m / min. After coating and drying at 80 ° C. for 150 seconds, using an air-cooled metal halide lamp (manufactured by Eye Graphics) with an oxygen concentration of about 0.1% under a nitrogen purge, an illuminance of 400 mW / cm 2 and an irradiation amount The coating layer was cured by irradiating 180 mJ / cm 2 of ultraviolet rays to form an antiglare hard coat layer, and then wound up to prepare a support 1 with an antiglare hard coat layer.
(アルカリ鹸化処理した支持体1の作製)
 上記作製した防眩性ハードコート層付支持体1を、温度60℃の誘電式加熱ロールを通過させ、表面温度を40℃に昇温した後に、防眩性ハードコート層付支持体1の防眩性ハードコート層が形成している面とは反対側の面に下記に示す組成のアルカリ溶液を、#6のワイヤーバーで連続的に塗布し、110℃に加熱し、ノリタケカンパニーリミテド社製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理した支持体1を作製した。
──────────────────────────────────
アルカリ溶液の組成
──────────────────────────────────
 水酸化カリウム                    2.0質量部
 水                          6.5質量部
 イソプロパノール                  85.0質量部
 界面活性剤SF-1:C1429O(CH2CH2O)20H  0.035質量部
 プロピレングリコール                 6.5質量部
──────────────────────────────────
(Preparation of alkali saponified support 1)
The produced antiglare hard coat layer-supported support 1 is passed through a dielectric heating roll having a temperature of 60 ° C., and the surface temperature is raised to 40 ° C. An alkaline solution having the composition shown below is continuously applied to the surface opposite to the surface on which the dazzling hard coat layer is formed with a # 6 wire bar, heated to 110 ° C., and manufactured by Noritake Company Limited. For 10 seconds under a steam far infrared heater. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified support 1.
──────────────────────────────────
Composition of alkaline solution ──────────────────────────────────
Potassium hydroxide 2.0 parts by weight Water 6.5 parts by weight Isopropanol 85.0 parts by weight Surfactant SF-1: C 14 H 29 O (CH 2 CH 2 O) 20 H 0.035 parts by weight Propylene glycol 6. 5 parts by mass──────────────────────────────────
(露光前配向膜付支持体1の作製)
 上記作製したアルカリ鹸化処理した支持体1の、鹸化処理を施した面に、下記の組成の配向膜形成用塗布液1をワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、露光前配向膜付支持体1を形成した。露光前配向膜の膜厚が、0.45μmとなるようにワイヤーバーを調整した。
──────────────────────────────────
配向膜形成用塗布液1の組成
──────────────────────────────────
配向膜用ポリマー材料(P-1)             2.4質量部
光酸発生剤(S-1)                 0.17質量部
ラジカル重合開始剤
(イルガキュア2959、チバ・スペシャルティ・ケミカルズ社製)
                           0.18質量部
メタノール                      16.5質量部
IPA(イソプロパノール)               7.2質量部
水                         73.55質量部
──────────────────────────────────
(Preparation of support 1 with alignment film before exposure)
On the surface subjected to the saponification treatment of the prepared support 1 subjected to the alkali saponification treatment, an alignment film forming coating solution 1 having the following composition was continuously applied with a wire bar. Drying with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds, the support 1 with an alignment film before exposure was formed. The wire bar was adjusted so that the film thickness of the alignment film before exposure was 0.45 μm.
──────────────────────────────────
Composition of coating liquid 1 for alignment film formation ──────────────────────────────────
Polymer material for alignment film (P-1) 2.4 parts by mass photoacid generator (S-1) 0.17 parts by mass radical polymerization initiator (Irgacure 2959, manufactured by Ciba Specialty Chemicals)
0.18 parts by weight Methanol 16.5 parts by weight IPA (isopropanol) 7.2 parts by weight water 73.55 parts by weight ──────────────────────── ──────────
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(紫外線露光)
 次に、透過部の横ストライプ幅96.2μm、遮蔽部の横ストライプ幅96.2μmのストライプマスクを上記作製した露光前配向膜付支持体1上に配置し、室温空気下にて、200nm~400nmの波長領域における照度500mW/cm2の紫外線照射装置(Light Hammer 10、240W/cm、Fusion UV Systems社製)を光源ユニットとして用いて紫外線を0.06秒間(照射量30mJ/cm2)照射しパターン配向膜を形成した。
(UV exposure)
Next, a stripe mask having a transverse stripe width of 96.2 μm at the transmission portion and a transverse stripe width of 96.2 μm at the shielding portion is placed on the above-prepared support 1 with alignment film before exposure, and 200 nm to 40 nm in air at room temperature. Ultraviolet rays are irradiated for 0.06 seconds (irradiation amount 30 mJ / cm 2 ) using a light source unit of an ultraviolet irradiation device (Light Hammer 10, 240 W / cm, manufactured by Fusion UV Systems) having an illuminance of 500 mW / cm 2 in a wavelength region of 400 nm. Then, a pattern alignment film was formed.
(ストライプ状パターン光学異方性層1の形成)
 上記紫外線露光後のパターン配向膜に、ストライプマスクのストライプに対して45°の角度を保持して500rpmで一方向に1往復、ラビング処理を行った。次いで、下記のパターン光学異方性層用塗布液を、ワイヤーバーで塗布した。さらに、膜面温度110℃で2分間加熱熟成した後、80℃まで冷却し空気下にて20mW/cm2の空冷メタルハライドランプ(アイグラフィックス社製)を用いて紫外線を20秒間照射して、その配向状態を固定化することによりストライプ状パターン光学異方性層1を形成した。マスク露光部分(第1位相差領域)は、ラビング方向に対し面内遅相軸方向が平行にディスコティック液晶性化合物が垂直配向しており、未露光部分(第2位相差領域)は直交に垂直配向していた。なお、光学異方性層1の膜厚が、1.15μmとなるようにワイヤーバーを調整した。
──────────────────────────────────
パターン光学異方性層用塗布液の組成
──────────────────────────────────
ディスコティック液晶E-2               100質量部
配向膜界面配向剤(II-1)             0.95質量部
空気界面配向剤(P-2)                1.0質量部
光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)    3.0質量部
増感剤(カヤキュア-DETX、日本化薬(株)製)    1.0質量部
メチルエチルケトン                   400質量部
──────────────────────────────────
(Formation of striped pattern optically anisotropic layer 1)
The pattern alignment film after the ultraviolet exposure was rubbed once in one direction at 500 rpm while maintaining an angle of 45 ° with respect to the stripe of the stripe mask. Subsequently, the following coating liquid for pattern optical anisotropic layers was apply | coated with the wire bar. Furthermore, after aging for 2 minutes at a film surface temperature of 110 ° C., the sample was cooled to 80 ° C. and irradiated with ultraviolet rays for 20 seconds using an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) of 20 mW / cm 2 under air. By fixing the orientation state, a stripe-patterned optically anisotropic layer 1 was formed. In the mask exposure portion (first retardation region), the in-plane slow axis direction is parallel to the rubbing direction and the discotic liquid crystalline compound is vertically aligned, and the unexposed portion (second retardation region) is orthogonal. It was vertically aligned. The wire bar was adjusted so that the thickness of the optically anisotropic layer 1 was 1.15 μm.
──────────────────────────────────
Composition of coating solution for pattern optical anisotropic layer──────────────────────────────────
Discotic liquid crystal E-2 100 parts by weight alignment film interface aligner (II-1) 0.95 parts by weight air interface aligner (P-2) 1.0 part by weight photopolymerization initiator (Irgacure 907, Ciba Specialty Chemicals Co., Ltd.) 3.0 parts by mass sensitizer (Kayacure-DETX, Nippon Kayaku Co., Ltd.) 1.0 parts by mass methyl ethyl ketone 400 parts by mass ────────────── ────────────────────
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(光学フィルム1の作製)
 以上のようにして、支持体の片面に防眩性ハードコート層を形成し、裏面にストライプ状パターン光学異方性層が形成された、光学フィルム1を作製した。
(Preparation of optical film 1)
As described above, the optical film 1 in which the antiglare hard coat layer was formed on one side of the support and the stripe-patterned optically anisotropic layer was formed on the back side was produced.
(光学フィルム1の評価1)
 作製した光学フィルム1について、KOBRA-21ADH(王子計測機器(株)製)を用いて、配向膜界面のディスコティック液晶のチルト角、空気界面のディスコティック液晶のチルト角、およびRe(550)をそれぞれ測定した結果、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は130nmであった。なお、垂直とは、チルト角70°~90°を表す。
(Evaluation 1 of optical film 1)
For the produced optical film 1, using KOBRA-21ADH (manufactured by Oji Scientific Instruments), the tilt angle of the discotic liquid crystal at the alignment film interface, the tilt angle of the discotic liquid crystal at the air interface, and Re (550) As a result of measurement, the tilt angle of the discotic liquid crystal at the air interface and the alignment film interface was vertical, and Re (550) was 130 nm. Note that “vertical” represents a tilt angle of 70 ° to 90 °.
 作製した光学フィルム1のストライプ状パターン光学異方性層を、第1位相差領域または第2位相差領域のいずれか一方の面内遅相軸が、直交位に組合された2枚の偏光板のいずれか一方の透過軸と平行になるように偏光板の間に入れ、さらに、位相差530nmの鋭敏色板を、その面内遅相軸が偏光板の透過軸と45°の角度をなすように、パターン光学異方性層上に設置した。次に、パターン光学異方性層を+45°回転させた状態、および、-45°回転させた状態を偏光顕微鏡(NIKON製 ECLIPE E600W POL)で観察した結果、+45°回転させた場合、第1位相差領域の面内遅相軸と鋭敏色板の面内遅相軸が平行になっているため、位相差は530nmよりも大きくなり、その色は青色に変化し、第2位相差領域の面内遅相軸は鋭敏色板の面内遅相軸と直交しているため、位相差は530nmよりも小さくなり、その色は黄色に変化した。また、-45°回転させた場合、逆の現象となることから、偏光板の透過軸に対して、第1位相差領域および第2位相差領域の面内遅相軸がそれぞれ+45°および-45°の角度をなしていることが確認された。 Two polarizing plates in which the in-plane slow axis of either the first retardation region or the second retardation region is combined in an orthogonal position with the stripe-patterned optically anisotropic layer of the produced optical film 1 In addition, a sensitive color plate having a phase difference of 530 nm is placed between the polarizing plates so as to be parallel to one of the transmission axes, and an in-plane slow axis forms an angle of 45 ° with the transmission axis of the polarizing plate. And placed on the patterned optically anisotropic layer. Next, as a result of observing a state in which the patterned optically anisotropic layer was rotated by + 45 ° and a state in which the patterned optically anisotropic layer was rotated by −45 ° with a polarizing microscope (ECLIP E600W POL manufactured by NIKON), Since the in-plane slow axis of the phase difference region and the in-plane slow axis of the sensitive color plate are parallel, the phase difference is larger than 530 nm, the color changes to blue, and the second phase difference region Since the in-plane slow axis was orthogonal to the in-plane slow axis of the sensitive color plate, the phase difference was smaller than 530 nm, and the color changed to yellow. Further, since the reverse phenomenon occurs when rotated by −45 °, the in-plane slow axes of the first retardation region and the second retardation region are + 45 ° and − It was confirmed that the angle was 45 °.
 次に、鋭敏色板を取り除いた状態で、作製した光学フィルム1のストライプ状パターン光学異方性層を、第1位相差領域または第2位相差領域のいずれか一方の面内遅相軸が、直交位に組合された2枚の偏光板のいずれか一方の透過軸と平行になるように偏光顕微鏡(NIKON製 ECLIPE E600W POL)に設置した。このとき、第1位相差領域、および、第2位相差領域は暗く、境界線は明るく見えた。また、観察される画像を偏光顕微鏡に取り付けたデジタルカメラ(NIKON DIGITAL CAMERA DXM1200)からPCに取り込んだ。この画像から、画像解析ソフトWinROOF(三谷商事株式会社)を用いて、図4に模式図を示すストライプ状パターン光学異方性層中の第1位相差領域の幅W1および第2位相差領域の幅W2、および、境界線の幅W3を上述した方法にて測定した。上記方法で測定した幅W1および幅W2は91.2μmであり、幅W3は5.0μmであった。 Next, the striped pattern optically anisotropic layer of the produced optical film 1 with the sensitive color plate removed has an in-plane slow axis in either the first retardation region or the second retardation region. The polarizing plate (ECLIP E600W POL manufactured by NIKON) was placed so as to be parallel to the transmission axis of one of the two polarizing plates combined in an orthogonal position. At this time, the first phase difference region and the second phase difference region were dark and the boundary line looked bright. Moreover, the observed image was taken into a PC from a digital camera (NIKON DIGITAL CAMERA DXM1200) attached to a polarizing microscope. From this image, using the image analysis software WinROOF (Mitani Corporation), the width W1 of the first retardation region and the second retardation region in the stripe pattern optically anisotropic layer schematically shown in FIG. The width W2 and the width W3 of the boundary line were measured by the method described above. The width W1 and the width W2 measured by the above method were 91.2 μm, and the width W3 was 5.0 μm.
 以上の結果から、光酸発生剤を含有したPVA系ラビング配向膜にマスク露光した後、一方向にラビング処理した該配向膜上でディスコティック液晶を配向させることによって、垂直配向であるとともに、面内遅相軸が直交した第1位相差領域(Re(550)=130nm)と第2位相差領域(Re(550)=130nm)を有するパターン化された光学異方性層が得られることが理解できる。 From the above results, the PVA-rubbed alignment film containing the photoacid generator is subjected to mask exposure, and then the discotic liquid crystal is aligned on the alignment film that has been rubbed in one direction, thereby achieving vertical alignment and surface It is possible to obtain a patterned optically anisotropic layer having a first retardation region (Re (550) = 130 nm) and a second retardation region (Re (550) = 130 nm) whose inner slow axes are orthogonal to each other. Understandable.
(3D画像表示装置1の作製)
 アップル製タブレット、i Pad Retinaディスプレイモデルの視認側偏光板に、上記で作製した光学フィルム1のストライプ状パターン光学異方性層側を貼合し、表1に示す3D画像表示装置1を作製した。貼り合せる際には、第1位相差領域の面内遅相軸と、第2位相差領域の面内遅相軸が、タブレット中の偏光板の透過軸に対して、それぞれ45°および-45°になるように配置した。なお、上記角度は、偏光膜の透過軸を基準の0°として、光学フィルム1側からディスプレイを観察して、時計回り方向に正、反時計回りに負の角度値をもって表してある。また、第1位相差領域および第2位相差領域の幅の中心が、表示パネルの画素ピッチ幅の中心と合うように配置した。後述する、3D画像表示装置2~10に関しても、第1位相差領域および第2位相差領域の面内遅相軸と偏光板の透過軸との関係、また、第1位相差領域と第2位相差領域、および、表示パネルの画素ピッチとの位置関係が上記態様となるように貼り合せた。
 形成された3D画像表示装置1の一部拡大断面図を図6に示す。3D画像表示装置10dの構成は、光学フィルム100を使用した点を除いて図1の態様と略同じであり、同一の部材には同一の符号をつける。なお、図6中では、光学フィルム1中のストライプ状パターン光学異方性層のみが記載され、他の構成(例えば、配向膜)は省略されている。図6中のW3は境界線の幅を、W4は画素ピッチを、W5はブラックマトリックス(BM)の幅を、T1はガラス基板の厚みを、T2は偏光膜の厚みをそれぞれ示す。
(Production of 3D image display device 1)
The striped pattern optically anisotropic layer side of the optical film 1 produced above was bonded to the viewing side polarizing plate of an Apple tablet, i Pad Retina display model, and the 3D image display device 1 shown in Table 1 was produced. . When bonding, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region are 45 ° and −45 ° with respect to the transmission axis of the polarizing plate in the tablet, respectively. It was arranged to be °. The angle is expressed as a positive angle value in the clockwise direction and a negative angle value in the counterclockwise direction when the display is observed from the optical film 1 side with the transmission axis of the polarizing film as 0 ° as a reference. Further, the centers of the widths of the first phase difference region and the second phase difference region are arranged so as to match the center of the pixel pitch width of the display panel. Regarding the 3D image display devices 2 to 10 described later, the relationship between the in-plane slow axis of the first retardation region and the second retardation region and the transmission axis of the polarizing plate, and the first retardation region and the second retardation region Bonding was performed so that the positional relationship between the phase difference region and the pixel pitch of the display panel is the above-described mode.
A partial enlarged cross-sectional view of the formed 3D image display device 1 is shown in FIG. The configuration of the 3D image display device 10d is substantially the same as the embodiment of FIG. 1 except that the optical film 100 is used, and the same members are denoted by the same reference numerals. In FIG. 6, only the striped pattern optically anisotropic layer in the optical film 1 is shown, and other configurations (for example, alignment films) are omitted. In FIG. 6, W3 represents the width of the boundary line, W4 represents the pixel pitch, W5 represents the width of the black matrix (BM), T1 represents the thickness of the glass substrate, and T2 represents the thickness of the polarizing film.
<実施例2>
(光学フィルム2の作製)
 透過部の横ストライプ幅96.2μm、遮蔽部の横ストライプ幅96.2μmのストライプマスクの代わりに、透過部の横ストライプ幅77.9μm、遮蔽部の横ストライプ幅77.9μmのストライプマスクを用いた以外、実施例1と同様の操作にてストライプ状パターン光学異方性層2を有する光学フィルム2を作製した。ストライプ状パターン光学異方性層2において、幅W1および幅W2は72.9μmであり、幅W3は5.0μmであった。
<Example 2>
(Preparation of optical film 2)
Instead of a stripe mask with a horizontal stripe width of 96.2 μm at the transparent portion and a horizontal stripe width of 96.2 μm at the shield portion, a stripe mask with a horizontal stripe width of 77.9 μm at the transparent portion and a horizontal stripe width of 77.9 μm at the shield portion is used. An optical film 2 having a striped pattern optically anisotropic layer 2 was produced in the same manner as in Example 1 except that. In the striped pattern optically anisotropic layer 2, the width W1 and the width W2 were 72.9 μm, and the width W3 was 5.0 μm.
(光学フィルム2の評価)
 作製した光学フィルム2について、上記(光学フィルム1の評価1)と同様の評価を行ったところ、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交し、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は130nmであった。
(Evaluation of optical film 2)
About the produced optical film 2, when the same evaluation as the above (Evaluation 1 of the optical film 1) was performed, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region were The tilt angles of the discotic liquid crystals perpendicular to each other at the air interface and the alignment film interface were vertical, and Re (550) was 130 nm.
(3D画像表示装置2の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム2のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置2を作製した。
(Production of 3D image display device 2)
The striped pattern optically anisotropic layer side of the optical film 2 produced above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, and the 3D image display device 2 shown in Table 2 was produced.
<実施例3>
(光学フィルム3の作製)
 セルロールアシレートTD60に代えてゼオノアフィルムZF14(日本ゼオン(株)製)(厚さ100μm)を用いた以外、実施例2と同様の操作にてストライプ状パターン光学異方性層3を有する光学フィルム3を作製した。ストライプ状パターン光学異方性層3において、幅W1および幅W2は72.9μmであり、幅W3は5.0μmであった。
<Example 3>
(Preparation of optical film 3)
Optical having striped pattern optically anisotropic layer 3 in the same manner as in Example 2 except that ZEONOR film ZF14 (manufactured by Nippon Zeon Co., Ltd.) (thickness: 100 μm) was used instead of cellulose acylate TD60. Film 3 was produced. In the striped pattern optically anisotropic layer 3, the width W1 and the width W2 were 72.9 μm, and the width W3 was 5.0 μm.
(光学フィルム3の評価)
 作製した光学フィルム3について、上記(光学フィルム1の評価1)と同様の評価を行ったところ、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交し、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は128nmであった。
(Evaluation of optical film 3)
About the produced optical film 3, when the same evaluation as the above (Evaluation 1 of the optical film 1) was performed, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region were The tilt angle of the discotic liquid crystal perpendicular to each other at the air interface and the alignment film interface was vertical, and Re (550) was 128 nm.
(3D画像表示装置3の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム3のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置3を作製した。
(Production of 3D image display device 3)
The striped pattern optically anisotropic layer side of the optical film 3 produced above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, and the 3D image display device 3 shown in Table 2 was produced.
<実施例4>
(光学フィルム4の作製)
 セルロールアシレートTD60に代えてアクリペットVH(三菱レイヨン社製)(厚さ60μm)を用いた以外、実施例2と同様の操作にてストライプ状パターン光学異方性層4を有する光学フィルム4を作製した。ストライプ状パターン光学異方性層4において、幅W1および幅W2は72.9μmであり、幅W3は5.0μmであった。
<Example 4>
(Preparation of optical film 4)
An optical film 4 having a striped pattern optically anisotropic layer 4 in the same manner as in Example 2 except that ACRYPET VH (manufactured by Mitsubishi Rayon Co., Ltd.) (thickness 60 μm) was used instead of Cellulose Acylate TD60. Was made. In the striped pattern optically anisotropic layer 4, the width W1 and the width W2 were 72.9 μm, and the width W3 was 5.0 μm.
(光学フィルム4の評価)
 作製した光学フィルム4について、上記(光学フィルム1の評価1)と同様の評価を行ったところ、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交し、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は130nmであった。
(Evaluation of optical film 4)
About the produced optical film 4, when the same evaluation as the above (Evaluation 1 of the optical film 1) was performed, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region were The tilt angles of the discotic liquid crystals perpendicular to each other at the air interface and the alignment film interface were vertical, and Re (550) was 130 nm.
(3D画像表示装置4の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム4のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置4を作製した。
(Preparation of 3D image display device 4)
The striped pattern optically anisotropic layer side of the optical film 4 produced above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, to produce the 3D image display device 4 shown in Table 2.
<実施例5>
(光学フィルム5の作製)
 セルロールアシレートTD60に代えてポリエチレンテレフタレートフィルム(富士フイルム(株)製)(厚さ75μm)を用いた以外、実施例2と同様の操作にてストライプ状パターン光学異方性層5を有する光学フィルム5を作製した。ストライプ状パターン光学異方性層5において、幅W1および幅W2は72.9μmであり、幅W3は5.0μmであった。
<Example 5>
(Preparation of optical film 5)
An optical element having a striped pattern optically anisotropic layer 5 in the same manner as in Example 2 except that a polyethylene terephthalate film (manufactured by FUJIFILM Corporation) (thickness 75 μm) is used in place of the cellulose acylate TD60. Film 5 was produced. In the striped pattern optically anisotropic layer 5, the width W1 and the width W2 were 72.9 μm, and the width W3 was 5.0 μm.
(光学フィルム5の評価)
 作製した光学フィルム5について、上記(光学フィルム1の評価1)と同様の評価を行ったところ、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交し、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は138nmであった。
(Evaluation of optical film 5)
About the produced optical film 5, when the same evaluation as the above (Evaluation 1 of the optical film 1) was performed, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region were The tilt angles of the discotic liquid crystals perpendicular to each other at the air interface and the alignment film interface were vertical, and Re (550) was 138 nm.
(3D画像表示装置5の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム5のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置5を作製した。
(Preparation of 3D image display device 5)
The striped pattern optically anisotropic layer side of the optical film 5 produced above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, and the 3D image display device 5 shown in Table 2 was produced.
<実施例6>
(光学フィルム6の作製)
 上記(紫外線露光)の際において、200nm~400nmの波長領域における照度を500mW/cm2から150mW/cm2に変え、照射時間を0.06秒間(照射量30mJ/cm2)から0.14秒間(照射量21mJ/cm2)に変更した以外、実施例2と同様の操作にてストライプ状パターン光学異方性層6を有する光学フィルム6を作製した。ストライプ状パターン光学異方性層6において、幅W1および幅W2は69.9μmであり、幅W3は8.0μmであった。
<Example 6>
(Preparation of optical film 6)
In the above (ultraviolet exposure), the illuminance in the wavelength region of 200 nm to 400 nm is changed from 500 mW / cm 2 to 150 mW / cm 2 , and the irradiation time is changed from 0.06 seconds (irradiation amount 30 mJ / cm 2 ) to 0.14 seconds. An optical film 6 having a striped pattern optically anisotropic layer 6 was produced in the same manner as in Example 2 except that the irradiation dose was changed to 21 mJ / cm 2 . In the striped pattern optically anisotropic layer 6, the width W1 and the width W2 were 69.9 μm, and the width W3 was 8.0 μm.
(光学フィルム6の評価)
 作製した光学フィルム6について、上記(光学フィルム1の評価1)と同様の評価を行ったところ、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交し、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は125nmであった。
(Evaluation of optical film 6)
About the produced optical film 6, when the same evaluation as the above (Evaluation 1 of the optical film 1) was performed, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region were The tilt angles of the discotic liquid crystals perpendicular to each other at the air interface and the alignment film interface were vertical, and Re (550) was 125 nm.
(3D画像表示装置6の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム6のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置6を作製した。
(Production of 3D image display device 6)
The striped pattern optically anisotropic layer side of the optical film 6 produced above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, and the 3D image display device 6 shown in Table 2 was produced.
<実施例7>
(光学フィルム7の作製)
 上記(紫外線露光)の際において、照射時間を0.14秒間(照射量21mJ/cm2)から0.12秒間(照射量18mJ/cm2)に変更した以外は、実施例6と同様の操作にてストライプ状パターン光学異方性層7を有する光学フィルム7を作製した。ストライプ状パターン光学異方性層7において、幅W1および幅W2は67.9μmであり、幅W3は10.0μmであった。
<Example 7>
(Preparation of optical film 7)
In the above (ultraviolet exposure), the same operation as in Example 6 except that the irradiation time was changed from 0.14 second (irradiation amount 21 mJ / cm 2 ) to 0.12 second (irradiation amount 18 mJ / cm 2 ). The optical film 7 having the stripe-shaped optically anisotropic layer 7 was prepared. In the striped pattern optically anisotropic layer 7, the width W1 and the width W2 were 67.9 μm, and the width W3 was 10.0 μm.
(光学フィルム7の評価)
 作製した光学フィルム7について、上記(光学フィルム1の評価1)と同様の評価を行ったところ、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交し、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は125nmであった。
(Evaluation of optical film 7)
About the produced optical film 7, when the same evaluation as the above (Evaluation 1 of the optical film 1) was performed, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region were The tilt angles of the discotic liquid crystals perpendicular to each other at the air interface and the alignment film interface were vertical, and Re (550) was 125 nm.
(3D画像表示装置7の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム7のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置7を作製した。
(Production of 3D image display device 7)
The striped pattern optically anisotropic layer side of the optical film 7 prepared above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, and the 3D image display device 7 shown in Table 2 was prepared.
<比較例1>
(光配向膜付支持体8の作製)
 実施例1で作製したアルカリ鹸化処理した支持体1の鹸化処理を施した面に、特表2012-517024号記載のポリノルボルネンとアクリレート単量体を主成分とする光配向膜形成用塗布液2をワイヤーバーで連続的に塗布した。80℃の温風で120秒乾燥し、ポリシンナメート光配向膜付支持体8を形成した。ポリシンナメート光配向膜(露光前光配向膜)の膜厚が、0.1μmとなるようにワイヤーバーを調整した。
──────────────────────────────────
光配向膜形成用塗布液2の組成
──────────────────────────────────
ポリノルボルネン(以下構造式)(Mw=150,000) 2.0質量部
ペンタエリスリトールトリアクリレート          1.0質量部
ラジカル重合開始剤(イルガキュア907、BASF社製) 0.25質量部
シクロヘキサノン                  96.75質量部
──────────────────────────────────
<Comparative Example 1>
(Preparation of support 8 with photo-alignment film)
A coating solution 2 for forming a photo-alignment film mainly comprising polynorbornene and an acrylate monomer described in JP 2012-517024 A on the surface subjected to the saponification treatment of the support 1 subjected to the alkali saponification treatment prepared in Example 1. Was continuously applied with a wire bar. The substrate was dried with warm air of 80 ° C. for 120 seconds to form a support 8 with a polycinnamate photo-alignment film. The wire bar was adjusted so that the thickness of the polycinnamate photo-alignment film (pre-exposure photo-alignment film) was 0.1 μm.
──────────────────────────────────
Composition of coating liquid 2 for photo-alignment film formation ──────────────────────────────────
Polynorbornene (hereinafter structural formula) (Mw = 150,000) 2.0 parts by mass Pentaerythritol triacrylate 1.0 part by mass radical polymerization initiator (Irgacure 907, manufactured by BASF) 0.25 parts by mass cyclohexanone 96.75 parts by mass ──────────────────────────────────
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(偏光紫外線露光)
 次に、透過部の横ストライプ幅96.2μm、遮蔽部の横ストライプ幅96.2μmのストライプマスクを上記作製したポリシンナメート光配向膜付支持体8上に配置し、室温空気下にて、160W/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射した。このとき、ワイヤーグリッド偏光子(Moxtek社製, ProFlux PPL02)を図7(a)に示すように、方向1にセットして、さらにマスクA(透過部の横ストライプ幅96.2μm、遮蔽部の横ストライプ幅96.2μmのストライプマスク)を通して、露光を行った。その後、図7(b)に示すように、ワイヤーグリッド偏光子を方向2にセットして、さらにマスクB(透過部の横ストライプ幅96.2μm、遮蔽部の横ストライプ幅96.2μmのストライプマスク)を通して、露光を行った。露光マスク面と光配向膜の間の距離を200μmに設定した。この際用いる紫外線の照度はUV-A領域(波長380nm~320nmの積算)において100mW/cm2、照射量はUV-A領域において1000mJ/cm2とし、パターン配向膜を形成した。
(Polarized UV exposure)
Next, a stripe mask having a transverse stripe width of 96.2 μm at the transmission portion and a transverse stripe width of 96.2 μm at the shielding portion is disposed on the prepared support 8 with the polycinnamate photo-alignment film, and is allowed to stand at room temperature in air. Ultraviolet rays were irradiated using a 160 W / cm 2 air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.). At this time, as shown in FIG. 7A, a wire grid polarizer (manufactured by Moxtek, ProFlux PPL02) is set in the direction 1, and further mask A (transmission part horizontal stripe width 96.2 μm, shielding part The exposure was carried out through a stripe mask having a horizontal stripe width of 96.2 μm. Thereafter, as shown in FIG. 7B, the wire grid polarizer is set in the direction 2, and the mask B (a stripe mask with a transverse stripe width of 96.2 μm at the transmission portion and a transverse stripe width of 96.2 μm at the shielding portion). ) To perform exposure. The distance between the exposure mask surface and the photo-alignment film was set to 200 μm. The pattern alignment film was formed by setting the illuminance of ultraviolet rays used at this time to 100 mW / cm 2 in the UV-A region (integration of wavelengths from 380 nm to 320 nm) and to 1000 mJ / cm 2 in the UV-A region.
(ストライプ状パターン光学異方性層8の形成)
 上記紫外線露光後のパターン配向膜に、特表2012-517024号記載のパターン光学異方性層用塗布液を、ワイヤーバーで塗布した。さらに、膜面温度105℃で120秒間乾燥して液晶相状態とした後、75℃まで冷却して、空気下にて160W/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射して、その配向状態を固定化して、ストライプ状パターン光学異方性層8を有する光学フィルム8を作製した。なお、パターン光学異方性層の膜厚が、1.3μmとなるようにワイヤーバーを調整した。また、ストライプ状パターン光学異方性層8において、幅W1および幅W2は83.2μmであり、幅W3は13.0μmであった。
(Formation of striped pattern optically anisotropic layer 8)
A coating solution for a patterned optical anisotropic layer described in JP-T-2012-517024 was applied to the patterned alignment film after UV exposure using a wire bar. Further, after drying at a film surface temperature of 105 ° C. for 120 seconds to obtain a liquid crystal phase state, it is cooled to 75 ° C., and an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm 2 is used under air. The optical film 8 having the striped pattern optically anisotropic layer 8 was prepared by fixing the alignment state by irradiating ultraviolet rays. The wire bar was adjusted so that the thickness of the patterned optically anisotropic layer was 1.3 μm. In the stripe-patterned optically anisotropic layer 8, the width W1 and the width W2 were 83.2 μm, and the width W3 was 13.0 μm.
──────────────────────────────────
パターン光学異方性層用塗布液
──────────────────────────────────
棒状液晶性化合物(LC242、BASF(株)製)    100質量部
水平配向剤A                      0.3質量部
光重合開始剤                      3.3質量部
(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)
増感剤(カヤキュア-DETX、日本化薬(株)製)    1.1質量部
メチルエチルケトン                   300質量部
──────────────────────────────────
──────────────────────────────────
Coating solution for pattern optical anisotropic layer ------------------------
Rod-shaped liquid crystalline compound (LC242, manufactured by BASF Corporation) 100 parts by mass horizontal alignment agent A 0.3 parts by mass photopolymerization initiator 3.3 parts by mass (Irgacure 907, manufactured by Ciba Specialty Chemicals Co., Ltd.)
Sensitizer (Kayacure-DETX, Nippon Kayaku Co., Ltd.) 1.1 parts by weight Methyl ethyl ketone 300 parts by weight ───────────────────────── ─────────
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(光学フィルム8の作製)
 以上のようにして、支持体の片面に防眩性ハードコート層を形成し、裏面にストライプ状パターン光学異方性層が形成された、光学フィルム8を作製した。
 光学フィルム8に対して、(光学フィルム1の評価1)で実施した同様の手順に従って偏光顕微鏡により観察したところ、偏光板の透過軸に対して、第1位相差領域および第2位相差領域の面内遅相軸がそれぞれ+45°および-45°の角度をなしていることが確認された。つまり、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交していた。
(Preparation of optical film 8)
As described above, an optical film 8 was produced in which an antiglare hard coat layer was formed on one side of a support and a striped pattern optically anisotropic layer was formed on the back side.
When the optical film 8 was observed with a polarizing microscope in accordance with the same procedure performed in (Evaluation 1 of the optical film 1), the first retardation region and the second retardation region were observed with respect to the transmission axis of the polarizing plate. It was confirmed that the in-plane slow axis formed angles of + 45 ° and −45 °, respectively. That is, the in-plane slow axis of the first phase difference region and the in-plane slow axis of the second phase difference region were orthogonal.
(光学フィルム8の評価)
 作製した光学フィルム8について、KOBRA-21ADH(王子計測機器(株)製)を用いて上記方法に従って、配向膜界面の棒状液晶性化合物のチルト角、空気界面の棒状液晶性化合物のチルト角、およびRe(550)をそれぞれ測定した結果、空気界面および配向膜界面の棒状液晶性化合物のチルト角は水平であり、Re(550)は130nmであった。なお、水平とは、チルト角0°~20°を表す。
(Evaluation of optical film 8)
About the produced optical film 8, according to the above method using KOBRA-21ADH (manufactured by Oji Scientific Instruments), the tilt angle of the rod-like liquid crystalline compound at the alignment film interface, the tilt angle of the rod-like liquid crystalline compound at the air interface, and As a result of measuring Re (550), the tilt angle of the rod-like liquid crystal compound at the air interface and the alignment film interface was horizontal, and Re (550) was 130 nm. Note that horizontal means a tilt angle of 0 ° to 20 °.
(3D画像表示装置8の作製)
 アップル製タブレット、i Pad Retinaディスプレイモデルの視認側偏光板に、上記で作製した光学フィルム8のストライプ状パターン光学異方性層側を貼合し、表1に示す3D画像表示装置8を作製した。
(Production of 3D image display device 8)
The striped pattern optically anisotropic layer side of the optical film 8 produced above was bonded to the viewing side polarizing plate of an Apple tablet, i Pad Retina display model, and the 3D image display device 8 shown in Table 1 was produced. .
<比較例2>
(光学フィルム9の作製)
 上記(紫外線露光)の際において、照射時間を0.14秒間(照射量21mJ/cm2)から0.10秒間(照射量15mJ/cm2)に変更した以外は、実施例6と同様の操作にてストライプ状パターン光学異方性層9を有する光学フィルム9を作製した。ストライプ状パターン光学異方性層9において、幅W1および幅W2は64.9μmであり、幅W3は13.0μmであった。
<Comparative example 2>
(Preparation of optical film 9)
In the above (ultraviolet exposure), the same operation as in Example 6 except that the irradiation time was changed from 0.14 second (irradiation amount 21 mJ / cm 2 ) to 0.10 second (irradiation amount 15 mJ / cm 2 ). The optical film 9 having the stripe-shaped optically anisotropic layer 9 was prepared. In the striped pattern optically anisotropic layer 9, the width W1 and the width W2 were 64.9 μm, and the width W3 was 13.0 μm.
(光学フィルム9の評価)
 作製した光学フィルム9について、上記(光学フィルム1の評価1)と同様の評価を行ったところ、第1位相差領域の面内遅相軸と第2位相差領域の面内遅相軸とは直交し、空気界面および配向膜界面のディスコティック液晶のチルト角は垂直であり、Re(550)は125nmであった。
(Evaluation of optical film 9)
When the same evaluation as the above (Evaluation 1 of optical film 1) was performed on the produced optical film 9, the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region were determined. The tilt angles of the discotic liquid crystals perpendicular to each other at the air interface and the alignment film interface were vertical, and Re (550) was 125 nm.
(3D画像表示装置9の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム9のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置9を作製した。
(Preparation of 3D image display device 9)
The striped pattern optically anisotropic layer side of the optical film 9 produced above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, to produce the 3D image display device 9 shown in Table 2.
<比較例3>
(光学フィルム10の作製)
 マスクAおよびマスクBのストライプ幅を96.2μmから77.9μmに変更した以外、比較例1と同様の操作にてストライプ状パターン光学異方性層10を有する光学フィルム10を作製した。ストライプ状パターン光学異方性層10において、幅W1および幅W2は64.9μmであり、幅W3は13.0μmであった。
<Comparative Example 3>
(Preparation of optical film 10)
An optical film 10 having a striped pattern optically anisotropic layer 10 was produced in the same manner as in Comparative Example 1 except that the stripe width of the mask A and the mask B was changed from 96.2 μm to 77.9 μm. In the striped pattern optically anisotropic layer 10, the width W1 and the width W2 were 64.9 μm, and the width W3 was 13.0 μm.
(光学フィルム10の評価)
 作製した光学フィルム10について、KOBRA-21ADH(王子計測機器(株)製)を用いて、配向膜界面の棒状液晶のチルト角、空気界面の棒状液晶のチルト角、および、Re(550)をそれぞれ測定した結果、空気界面および配向膜界面の液晶のチルト角は水平であり、Re(550)は130nmであった。なお、水平とは、チルト角0°~20°を表す。
(Evaluation of optical film 10)
For the produced optical film 10, the KOBRA-21ADH (manufactured by Oji Scientific Instruments) was used to set the tilt angle of the rod-like liquid crystal at the alignment film interface, the tilt angle of the rod-like liquid crystal at the air interface, and Re (550), respectively. As a result of the measurement, the tilt angle of the liquid crystal at the air interface and the alignment film interface was horizontal, and Re (550) was 130 nm. Note that horizontal means a tilt angle of 0 ° to 20 °.
(3D画像表示装置10の作製)
 アップル製スマートフォン、i Phone5の視認側偏光板に、上記で作製した光学フィルム10のストライプ状パターン光学異方性層側を貼合し、表2に示す3D画像表示装置10を作製した。
(Production of 3D image display device 10)
The striped pattern optically anisotropic layer side of the optical film 10 produced above was bonded to the viewing side polarizing plate of an Apple smartphone, iPhone 5, and the 3D image display device 10 shown in Table 2 was produced.
<3D画像表示装置の評価>
(上下方向のクロストークの評価)
 上記で作製した3D画像表示装置に、右目用画像として全画面白表示/左目用画像として全画面黒表示の立体画像を表示し、トプコンテクノハウス製輝度計BM-5Aのレンズに3Dメガネの右目部分を取り付け、上下方向に極角+3°~-3°の範囲で1°刻みに輝度を測定した。同様に、BM-5Aのレンズに3Dメガネの左目部分を取り付け、上下方向に極角+3°~-3°の範囲で1°刻みに輝度を測定した。3Dメガネの左目部分で測定した輝度を3Dメガネの右目部分で測定した輝度で除して、さらに100を乗した値をクロストーク((左目部分で測定した輝度X/右目部分で測定した輝度Y)×100)(%)とした。クロストークが5%未満となる場合は「A」、5%以上で6%未満となる場合は「B」、6%以上で7%未満となる場合は「C」、7%以上となる場合は「D」として評価した。測定の結果を表1~2に示す。実用上、「D」がないことが望ましい。
 なお、実施例2~7、および、比較例2~3に関しては、極角+2°~-2°の範囲で1°刻みに輝度を測定した。
 また、極角1°での評価結果と-1°での評価結果、極角2°での評価結果と-2°での評価結果、極角3°での評価結果と-3°での評価結果は、それぞれ同じ結果となることから、以下の表1では極角1°と2°と3°の結果のみを示し、表2では極角1°と2°の結果のみを示す。
 なお、表1および表2中の、幅W4、厚みT1、厚みT2、および、幅W5は、図6中に示す各構成の大きさを表す。
 
<Evaluation of 3D image display device>
(Evaluation of vertical crosstalk)
The 3D image display device produced as described above displays a full-screen white display as a right-eye image / a full-screen black image as a left-eye image, and the right eye of 3D glasses on the lens of a luminance meter BM-5A manufactured by Topcon Technohouse. The portion was attached, and the luminance was measured in 1 ° increments in the vertical angle range of + 3 ° to -3 °. Similarly, the left eye part of 3D glasses was attached to the lens of BM-5A, and the luminance was measured in increments of 1 ° in the vertical angle range of + 3 ° to −3 °. The luminance measured at the left eye portion of the 3D glasses is divided by the luminance measured at the right eye portion of the 3D glasses, and a value obtained by multiplying by 100 is crosstalk ((the luminance X measured at the left eye portion / the luminance Y measured at the right eye portion). ) × 100) (%). "C" when crosstalk is less than 5%, "B" when 5% or more and less than 6%, "C" when 6% or more and less than 7%, and 7% or more Was evaluated as “D”. The measurement results are shown in Tables 1 and 2. In practice, it is desirable that there is no “D”.
For Examples 2 to 7 and Comparative Examples 2 to 3, the luminance was measured in increments of 1 ° within a polar angle range of + 2 ° to −2 °.
Also, the evaluation result at a polar angle of 1 °, the evaluation result at -1 °, the evaluation result at a polar angle of 2 °, the evaluation result at -2 °, the evaluation result at a polar angle of 3 ° and the evaluation result at -3 ° Since the evaluation results are the same as each other, Table 1 below shows only the results of polar angles 1 °, 2 °, and 3 °, and Table 2 shows only the results of polar angles 1 ° and 2 °.
In Tables 1 and 2, width W4, thickness T1, thickness T2, and width W5 represent the size of each component shown in FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 上記表1~2の結果から分かるように、本発明の光学フィルムを使用した場合は、画像ピッチが短い高精細な表示パネルにおいてもクロストークの発生が抑制されることが確認された。
 一方、実施例1と比較例1との比較、および、実施例2~7と比較例2~3との比較から分かるように、境界線の幅が所定値以上である場合、極角が大きくなるにつれてクロストークの発生することが確認された。なかでも、境界線の幅が8μm以下の場合(より好ましくは5μm以下の場合)、クロストークの発生がより抑制されることが確認された。
As can be seen from the results in Tables 1 and 2, it was confirmed that the use of the optical film of the present invention suppresses the occurrence of crosstalk even in a high-definition display panel with a short image pitch.
On the other hand, as can be seen from the comparison between Example 1 and Comparative Example 1 and the comparison between Examples 2 to 7 and Comparative Examples 2 to 3, the polar angle is large when the width of the boundary line is equal to or larger than a predetermined value. As a result, it was confirmed that crosstalk occurred. In particular, it was confirmed that the occurrence of crosstalk is further suppressed when the width of the boundary line is 8 μm or less (more preferably, 5 μm or less).
 10a,10b,10c,10d 3D画像表示装置
 12 表示パネル
 14 ガラス基板
 16,140 偏光膜
 18 ストライプ状パターン光学異方性層
 20 ブラックマトリックス
 22,130 境界線
 100 パターン光学異方性層
 110 第1位相差領域
 120 第2位相差領域
 
10a, 10b, 10c, 10d 3D image display device 12 Display panel 14 Glass substrate 16, 140 Polarizing film 18 Striped pattern optical anisotropic layer 20 Black matrix 22, 130 Boundary line 100 Pattern optical anisotropic layer 110 First place Phase difference region 120 Second phase difference region

Claims (12)

  1.  表示パネルと、
     前記表示パネルの視認側に配置されるパターン光学異方性層を有する光学フィルムと、を少なくとも有し、
     前記パターン光学異方性層が、面内遅相軸方向および面内レターデーションの少なくとも一方が互いに異なる第1位相差領域および第2位相差領域を有し、前記第1位相差領域および前記第2位相差領域は、同一面内において、ストライプ状に交互に配置されており、前記第1位相差領域の幅および前記第2位相差領域の幅が50~250μmであり、
     前記第1位相差領域と前記第2位相差領域との境界に位置した、無配向領域からなる境界線の幅が0.1~10μmである、3D画像表示装置。
    A display panel;
    An optical film having a patterned optical anisotropic layer disposed on the viewing side of the display panel,
    The patterned optically anisotropic layer has a first retardation region and a second retardation region in which at least one of an in-plane slow axis direction and an in-plane retardation is different from each other, the first retardation region and the first retardation region The two phase difference regions are alternately arranged in stripes within the same plane, and the width of the first phase difference region and the width of the second phase difference region are 50 to 250 μm,
    A 3D image display device, wherein a boundary line made of a non-oriented region located at a boundary between the first retardation region and the second retardation region has a width of 0.1 to 10 μm.
  2.  前記第1位相差領域の面内遅相軸方向と、前記第2位相差領域の面内遅相軸方向とが互いに直交している、請求項1に記載の3D画像表示装置。 The 3D image display device according to claim 1, wherein an in-plane slow axis direction of the first phase difference region and an in-plane slow axis direction of the second phase difference region are orthogonal to each other.
  3.  前記第1位相差領域および前記第2位相差領域の波長550nmでの面内レターデーションRe(550)が110~160nmである、請求項1または2に記載の3D画像表示装置。 The 3D image display device according to claim 1 or 2, wherein an in-plane retardation Re (550) at a wavelength of 550 nm of the first retardation region and the second retardation region is 110 to 160 nm.
  4.  前記第1位相差領域の幅および前記第2位相差領域の幅が50~80μmである、請求項1~3のいずれか1項に記載の3D画像表示装置。 4. The 3D image display device according to claim 1, wherein a width of the first retardation region and a width of the second retardation region are 50 to 80 μm.
  5.  前記パターン光学異方性層が透明支持体上に配置されている、請求項1~4のいずれか1項に記載の3D画像表示装置。 The 3D image display device according to any one of claims 1 to 4, wherein the patterned optically anisotropic layer is disposed on a transparent support.
  6.  前記表示パネルの画素ピッチが10~250μmである、請求項1~5のいずれか1項に記載の3D画像表示装置。 The 3D image display device according to any one of claims 1 to 5, wherein a pixel pitch of the display panel is 10 to 250 µm.
  7.  パターン光学異方性層を有する光学フィルムであって、
     前記パターン光学異方性層が、面内遅相軸方向および面内レターデーションの少なくとも一方が互いに異なる第1位相差領域および第2位相差領域を有し、前記第1位相差領域および前記第2位相差領域は、同一面内において、ストライプ状に交互に配置されており、前記第1位相差領域の幅および前記第2位相差領域の幅が50~250μmであり、
     前記第1位相差領域と前記第2位相差領域との境界に位置した、無配向領域からなる境界線の幅が0.1~10μmである、光学フィルム。
    An optical film having a patterned optically anisotropic layer,
    The patterned optically anisotropic layer has a first retardation region and a second retardation region in which at least one of an in-plane slow axis direction and an in-plane retardation is different from each other, the first retardation region and the first retardation region The two phase difference regions are alternately arranged in stripes within the same plane, and the width of the first phase difference region and the width of the second phase difference region are 50 to 250 μm,
    An optical film in which a width of a boundary line composed of a non-oriented region located at a boundary between the first retardation region and the second retardation region is 0.1 to 10 μm.
  8.  前記第1位相差領域の面内遅相軸方向と、前記第2位相差領域の面内遅相軸方向とが互いに直交している、請求項7に記載の光学フィルム。 The optical film according to claim 7, wherein an in-plane slow axis direction of the first retardation region and an in-plane slow axis direction of the second retardation region are orthogonal to each other.
  9.  前記第1位相差領域および前記第2位相差領域の波長550nmでの面内レターデーションRe(550)が110~160nmである、請求項7または8に記載の光学フィルム。 The optical film according to claim 7 or 8, wherein an in-plane retardation Re (550) at a wavelength of 550 nm of the first retardation region and the second retardation region is 110 to 160 nm.
  10.  前記第1位相差領域の幅および前記第2位相差領域の幅が50~80μmである、請求項7~9のいずれか1項に記載の光学フィルム。 10. The optical film according to claim 7, wherein a width of the first retardation region and a width of the second retardation region are 50 to 80 μm.
  11.  前記パターン光学異方性層が透明支持体上に配置されている、請求項7~10のいずれか1項に記載の光学フィルム。 The optical film according to any one of claims 7 to 10, wherein the patterned optically anisotropic layer is disposed on a transparent support.
  12.  請求項7~10のいずれか1項に記載の光学フィルムと、偏光膜とを備え、
     前記偏光膜の透過軸に対して前記第1位相差領域の面内遅相軸および前記第2位相差領域の面内遅相軸の一方が+45°の角度をなし、前記偏光膜の透過軸に対して前記第1位相差領域の面内遅相軸および前記第2位相差領域の面内遅相軸の他方が-45°の角度をなす、円偏光フィルム。
     
     
    The optical film according to any one of claims 7 to 10, and a polarizing film,
    One of the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region forms an angle of + 45 ° with respect to the transmission axis of the polarizing film, and the transmission axis of the polarizing film In contrast, the other of the in-plane slow axis of the first retardation region and the in-plane slow axis of the second retardation region forms an angle of −45 °.

PCT/JP2014/069119 2013-07-18 2014-07-17 Optical film, circularly-polarizing film, and 3d image display device WO2015008850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-149337 2013-07-18
JP2013149337 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015008850A1 true WO2015008850A1 (en) 2015-01-22

Family

ID=52346292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069119 WO2015008850A1 (en) 2013-07-18 2014-07-17 Optical film, circularly-polarizing film, and 3d image display device

Country Status (2)

Country Link
TW (1) TW201508353A (en)
WO (1) WO2015008850A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090522A1 (en) * 2018-10-30 2020-05-07 富士フイルム株式会社 Film roll, optical film, 3d image display device, and 3d image display system
CN111708179A (en) * 2020-07-16 2020-09-25 宁波维真显示科技股份有限公司 3D display module
WO2021039525A1 (en) * 2019-08-23 2021-03-04 富士フイルム株式会社 Optical laminate, method for manufacturing patterned optical anisotropic layer, 3d image display device, and 3d image display system
CN113359313A (en) * 2021-05-21 2021-09-07 宁波维真显示科技股份有限公司 Three-dimensional LED stereoscopic display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186272A (en) * 1996-12-19 1998-07-14 Sanyo Electric Co Ltd Liquid crystal stereoscopic display device
JP2013029552A (en) * 2011-07-26 2013-02-07 Fujifilm Corp Optical film and stereoscopic image display device
JP2013037354A (en) * 2011-07-13 2013-02-21 Dainippon Printing Co Ltd Pattern retardation film, metal mold for manufacturing pattern retardation film, and image display device
JP2013134394A (en) * 2011-12-27 2013-07-08 Fujifilm Corp Patterned retardation film, manufacturing method thereof, method of manufacturing optical laminate, 3d image display device, and mask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186272A (en) * 1996-12-19 1998-07-14 Sanyo Electric Co Ltd Liquid crystal stereoscopic display device
JP2013037354A (en) * 2011-07-13 2013-02-21 Dainippon Printing Co Ltd Pattern retardation film, metal mold for manufacturing pattern retardation film, and image display device
JP2013029552A (en) * 2011-07-26 2013-02-07 Fujifilm Corp Optical film and stereoscopic image display device
JP2013134394A (en) * 2011-12-27 2013-07-08 Fujifilm Corp Patterned retardation film, manufacturing method thereof, method of manufacturing optical laminate, 3d image display device, and mask

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090522A1 (en) * 2018-10-30 2020-05-07 富士フイルム株式会社 Film roll, optical film, 3d image display device, and 3d image display system
JPWO2020090522A1 (en) * 2018-10-30 2021-09-30 富士フイルム株式会社 Film roll, optical film, 3D image display device and 3D image display system
JP7096356B2 (en) 2018-10-30 2022-07-05 富士フイルム株式会社 Film rolls, optical films, 3D image display devices and 3D image display systems
WO2021039525A1 (en) * 2019-08-23 2021-03-04 富士フイルム株式会社 Optical laminate, method for manufacturing patterned optical anisotropic layer, 3d image display device, and 3d image display system
JPWO2021039525A1 (en) * 2019-08-23 2021-03-04
JP7324851B2 (en) 2019-08-23 2023-08-10 富士フイルム株式会社 Optical laminate, method for producing patterned optically anisotropic layer, 3D image display device and 3D image display system
CN111708179A (en) * 2020-07-16 2020-09-25 宁波维真显示科技股份有限公司 3D display module
CN113359313A (en) * 2021-05-21 2021-09-07 宁波维真显示科技股份有限公司 Three-dimensional LED stereoscopic display device

Also Published As

Publication number Publication date
TW201508353A (en) 2015-03-01

Similar Documents

Publication Publication Date Title
US8305503B1 (en) Phase difference element and display device
JP5815492B2 (en) Optical film, polarizing plate, image display device, and 3D image display system
JP2012237928A (en) Optical film, polarizing plate, image display device and three-dimensional image display system
JP5660786B2 (en) Patterning retardation film and manufacturing method thereof, polarized glasses, video display system and manufacturing method thereof
JP2021501366A (en) Laminated body and liquid crystal display device containing it
WO2015008850A1 (en) Optical film, circularly-polarizing film, and 3d image display device
US9921347B2 (en) Alignment film, method of manufacturing the alignment film, retardation film, method of manufacturing the retardation film, and display
JP6987411B2 (en) Laminated body and liquid crystal display device including it
JP7026789B2 (en) Liquid crystal display device
JP5274929B2 (en) Liquid crystal panel and liquid crystal display device
US9618795B2 (en) Liquid crystal panel and liquid crystal display
KR102137551B1 (en) Retardation film for ips mode, polarizing plate comprising the same and liquid crystal display comprising the same
JP2013033083A (en) Optical anisotropic element, polarizing plate, image display device, and three-dimensional image display system
JP7069332B2 (en) Laminated body and liquid crystal display device including it
JP2015523605A (en) Display device
JP5711071B2 (en) LAMINATE, LOW REFLECTIVE LAMINATE, POLARIZING PLATE, IMAGE DISPLAY DEVICE, AND 3D IMAGE DISPLAY SYSTEM
WO2016031881A1 (en) Method for producing optical laminate, optical laminate, polarizing plate and organic el display device
JP6756112B2 (en) Optical film and image display device
JP5837680B2 (en) Stereoscopic image display apparatus and stereoscopic image display system
TWI857324B (en) Optical laminate and optical display apparatus comprising the same
JP7324851B2 (en) Optical laminate, method for producing patterned optically anisotropic layer, 3D image display device and 3D image display system
KR20220048382A (en) Module for optical display apparatus and optical display apparatus comprising the same
KR20230017523A (en) Optical laminate and optical display apparatus comprising the same
JP2013156494A (en) Pattern retardation plate, and polarizing plate having the same, stereoscopic image display device, and stereoscopic image display system
KR20200105215A (en) Polarizing Plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14826297

Country of ref document: EP

Kind code of ref document: A1