WO2015008577A1 - Adjustment method for shaft seal device - Google Patents

Adjustment method for shaft seal device Download PDF

Info

Publication number
WO2015008577A1
WO2015008577A1 PCT/JP2014/066423 JP2014066423W WO2015008577A1 WO 2015008577 A1 WO2015008577 A1 WO 2015008577A1 JP 2014066423 W JP2014066423 W JP 2014066423W WO 2015008577 A1 WO2015008577 A1 WO 2015008577A1
Authority
WO
WIPO (PCT)
Prior art keywords
packing
shaft
seal device
tightening
drive shaft
Prior art date
Application number
PCT/JP2014/066423
Other languages
French (fr)
Japanese (ja)
Inventor
兼太郎 小田
克弥 藤咲
信義 佐久間
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2015008577A1 publication Critical patent/WO2015008577A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/028Units comprising pumps and their driving means the driving means being a planetary gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • F16J15/184Tightening mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • the present invention relates to a method for adjusting a shaft seal device.
  • This application claims priority based on Japanese Patent Application No. 2013-149465 for which it applied to Japan on July 18, 2013, and uses the content here.
  • a turbo refrigerator having a turbo compressor that compresses and discharges a refrigerant by rotating an impeller by a motor
  • the turbo compressor is equipped with an IGV (inlet guide vane) as a throttle mechanism for the suction port and a DDC (Discharge Diffuser Controller) as the throttle mechanism for the discharge port, so that the intake and discharge amounts can be controlled. ing.
  • IGV inlet guide vane
  • DDC discharge Diffuser Controller
  • the control motor for driving the IGV and DDC is arranged outside the casing of the turbo compressor because it is affected by refrigerant, oil, and heat, and is provided to penetrate from the outside to the inside of the casing.
  • the internal mechanism is driven via the drive shaft. Since compressed gas is generated inside the casing of the turbo compressor, it is necessary to prevent gas leakage through the drive shaft. For this reason, the turbo compressor includes a shaft seal device that seals around the drive shaft.
  • Patent Document 1 listed below discloses a shaft sealing device that seals around the valve shaft of a piston valve.
  • the shaft seal device includes a packing housing portion formed around the valve shaft, a gland packing filled in the packing housing portion, a packing pressing means whose tip is pressed against the gland packing, and a packing pressing means.
  • Patent Document 2 listed below discloses a shaft seal packing attached to a shaft seal chamber of a valve.
  • the shaft seal packing includes a plurality of V-shaped annular packing bodies mounted in the shaft sealing chamber, a top adapter provided above the packing body, and a bottom adapter provided below the packing body.
  • a gland member is provided on the upper part of the shaft seal packing. The shaft seal packing is pressed from above by tightening the ground member with a bolt. In order to improve the sealing performance or to cope with the stress relaxation phenomenon, the bolt is tightened.
  • Patent Document 3 listed below discloses a structure in which a packing is compressed and water is stopped by tightening bolts and nuts in a joint used for a steel pipe for drainage.
  • the tightening torque of the bolt is appropriately managed by using the outer peripheral length of the packing as a parameter.
  • Patent Document 4 discloses a sealing device that seals between a roll shaft box and a roll shaft in a roll bearing portion of a continuous casting machine.
  • an adapter inside the machine, a V packing inside the machine, a lantern, a V packing outside the machine, and an adapter outside the machine are sequentially inserted into an annular step formed in the roll axle box, and then pressed. It is formed by fixing the member to the end of the roll axle box using a screw.
  • each part is compressed in the axial direction between the pressing member and the end surface of the stepped portion, and the lips of the V packing and the adapter are brought into close contact with the peripheral surface of the roll shaft or the inner surface of the roll shaft box.
  • the V-packing is tightened according to the situation of use.
  • Japanese Unexamined Patent Publication No. 11-166628 Japanese republished patent WO2008 / 007685 Japanese Unexamined Patent Publication No. 2013-19445 Japanese Unexamined Patent Publication No. 2003-220454
  • the control motor is removed, the spring shaft is installed on the drive shaft, etc., and the drive shaft is adjusted so that the sliding torque against the packing material becomes an appropriate value while tightening the packing. It was.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method for adjusting a shaft seal device that can eliminate the complexity of work.
  • the inventors of the present invention have conducted extensive experiments to solve the above problems, and as a result, when a V packing is used as the packing material, the torque of the bolt that tightens the V packing and the sliding torque of the drive shaft with respect to the V packing. And the present invention has been conceived. That is, in the first aspect of the present invention, the V packing is accommodated in a packing accommodating groove formed around the drive shaft, and the V packing is deformed by a pressing member that is movable in the axial direction by tightening a bolt.
  • a method for adjusting a shaft seal device for sealing around a shaft the correlation measuring step for measuring the correlation between the tightening torque of the bolt and the sliding torque of the drive shaft with respect to the V packing, and the correlation And a tightening torque management step for managing the tightening torque of the bolt.
  • the present invention measures the correlation between the tightening torque of the bolt and the sliding torque of the drive shaft, and manages the tightening torque of the bolt as a proxy, thereby reducing the sliding torque of the drive shaft. Can be managed. For this reason, in the present invention, it is not necessary to remove the control motor, install a spring measure or the like on the drive shaft, and directly manage the sliding torque of the drive shaft, thereby eliminating the complexity of adjusting the shaft seal device.
  • a second aspect of the present invention is a method for adjusting a shaft seal device according to the first aspect, further comprising a pre-tightening step of tightening and releasing the bolts as a set before the correlation measurement step.
  • a pre-tightening step of tightening and releasing the bolts as a set before the correlation measurement step.
  • the bolts are tightened and unfastened multiple times.
  • the bolt is tightened and unfastened multiple times, the bolt is physically adapted, and the correlation between the bolt tightening torque and the driving shaft sliding torque is obtained. Reproducibility can be improved and the adjustment accuracy of the shaft seal device can be further improved.
  • a motor unit is connected to the drive shaft, and the tightening torque management step includes: This is performed in a state where the drive shaft and the motor unit are connected.
  • the V packing in the method for adjusting a shaft seal device according to the first to fourth aspects, includes a male adapter, a female adapter, the male adapter, and the female adapter.
  • a second V-packing facing the female adapter side is accommodated on the female adapter side.
  • a method for adjusting a shaft seal device that can eliminate the complexity of work can be obtained.
  • FIG. 1 is a system diagram of a turbo refrigerator 1 in an embodiment of the present invention.
  • the turbo refrigerator 1 of the present embodiment cools cold water for air conditioning using, for example, Freon as a refrigerant.
  • the turbo refrigerator 1 includes a condenser 2, an economizer 3, an evaporator 4, and a turbo compressor 5.
  • the condenser 2 is connected to the gas discharge pipe 5a of the turbo compressor 5 through the flow path R1.
  • the refrigerant (compressed refrigerant gas X1) compressed by the turbo compressor 5 is supplied to the condenser 2 through the flow path R1.
  • the condenser 2 liquefies the compressed refrigerant gas X1.
  • the condenser 2 includes a heat transfer tube 2a through which cooling water flows, and cools the compressed refrigerant gas X1 by heat exchange between the compressed refrigerant gas X1 and the cooling water.
  • Compressed refrigerant gas X1 is cooled by heat exchange with cooling water, liquefied, becomes refrigerant liquid X2, and accumulates at the bottom of condenser 2.
  • the bottom of the condenser 2 is connected to the economizer 3 via the flow path R2.
  • An expansion valve 6 for reducing the pressure of the refrigerant liquid X2 is provided in the flow path R2.
  • the economizer 3 is supplied with the refrigerant liquid X2 decompressed by the expansion valve 6 through the flow path R2.
  • the economizer 3 temporarily stores the decompressed refrigerant liquid X2, and separates the refrigerant into a liquid phase and a gas phase.
  • the top of the economizer 3 is connected to the economizer connecting pipe 5b of the turbo compressor 5 through the flow path R3.
  • the gas phase component X3 of the refrigerant separated by the economizer 3 is supplied to the second compression stage 12 of the turbo compressor 5 through the flow path R3 without passing through the evaporator 4 and the first compression stage 11. This increases efficiency.
  • the bottom of the economizer 3 is connected to the evaporator 4 via a flow path R4.
  • the flow path R4 is provided with an expansion valve 7 for further reducing the pressure of the refrigerant liquid X2.
  • the refrigerant liquid X2 further reduced in pressure by the expansion valve 7 is supplied to the evaporator 4 through the flow path R4.
  • the evaporator 4 evaporates the refrigerant liquid X2 and cools the cold water with the heat of vaporization.
  • the evaporator 4 includes a heat transfer tube 4a through which cold water flows, and cools the cold water and evaporates the refrigerant liquid X2 by heat exchange between the refrigerant liquid X2 and the cold water.
  • Refrigerant liquid X2 takes heat by heat exchange with cold water and evaporates to become refrigerant gas X4.
  • the top of the evaporator 4 is connected to a gas suction pipe 5c of the turbo compressor 5 through a flow path R5.
  • the refrigerant gas X4 evaporated in the evaporator 4 is supplied to the turbo compressor 5 through the flow path R5.
  • the turbo compressor 5 compresses the evaporated refrigerant gas X4 and supplies it to the condenser 2 as the compressed refrigerant gas X1.
  • the turbo compressor 5 is a two-stage compressor including a first compression stage 11 that compresses the refrigerant gas X4 and a second compression stage 12 that further compresses the refrigerant compressed in one stage.
  • the first compression stage 11 is provided with an impeller 13, and the second compression stage 12 is provided with an impeller 14, which are connected by a rotating shaft 15.
  • the turbo compressor 5 rotates the impellers 13 and 14 by the motor 10 to compress the refrigerant.
  • the impellers 13 and 14 are radial impellers, and have blades including a three-dimensional twist (not shown) that guides the refrigerant sucked in the axial direction in the radial direction.
  • the gas intake pipe 5c is provided with an inlet guide vane 16 for adjusting the intake amount of the first compression stage 11.
  • the inlet guide vane 16 is rotatable so that the apparent area from the flow direction of the refrigerant gas X4 can be changed.
  • the inlet guide vane 16 is driven by driving force transmitted from an IGV control motor unit 16a (motor unit) disposed outside the casing 20 of the turbo compressor 5.
  • a diffuser channel is provided around each of the impellers 13 and 14.
  • the refrigerant derived in the radial direction of the impellers 13 and 14 is compressed and pressurized in the diffuser flow path, and further supplied to the next compression stage through a scroll flow path provided therearound.
  • An outlet throttle valve 17 is provided around the impeller 14, and the discharge amount from the gas discharge pipe 5a can be controlled.
  • the outlet throttle valve 17 is driven by a driving force transmitted from a DDC control motor unit 17a (motor unit) disposed outside the casing 20 of the turbo compressor 5.
  • the turbo compressor 5 includes a sealed casing 20.
  • the housing 20 is partitioned into a compression flow path space S1, a first bearing housing space S2, a motor housing space S3, a gear unit housing space S4, and a second bearing housing space S5.
  • Impellers 13 and 14 are provided in the compression flow path space S1.
  • the rotating shaft 15 that connects the impellers 13 and 14 is provided so as to be inserted into the compression flow path space S1, the first bearing housing space S2, and the gear unit housing space S4.
  • a bearing 21 that supports the rotary shaft 15 is provided in the first bearing housing space S2.
  • the motor housing space S3 is provided with a stator 22, a rotor 23, and a rotating shaft 24 connected to the rotor 23.
  • the rotary shaft 24 is provided so as to be inserted into the motor housing space S3, the gear unit housing space S4, and the second bearing housing space S5.
  • a bearing 31 that supports the non-load side of the rotating shaft 24 is provided.
  • a gear unit 25, bearings 26 and 27, and an oil tank 28 are provided in the gear unit housing space S4.
  • the gear unit 25 includes a large-diameter gear 29 fixed to the rotary shaft 24 and a small-diameter gear 30 fixed to the rotary shaft 15 and meshed with the large-diameter gear 29.
  • the gear unit 25 transmits the rotational driving force so that the rotational speed of the rotary shaft 15 increases (accelerates) with respect to the rotational speed of the rotary shaft 24.
  • the bearing 26 supports the rotating shaft 24.
  • the bearing 27 supports the rotating shaft 15.
  • the oil tank 28 stores lubricating oil supplied to each sliding portion such as the bearings 21, 26, 27, and 31.
  • the casing 20 is provided with seal portions 32 and 33 for sealing the periphery of the rotary shaft 15 between the compression flow path space S1 and the first bearing housing space S2. Further, the casing 20 is provided with a seal portion 34 that seals the periphery of the rotary shaft 15 between the compression flow path space S1 and the gear unit accommodation space S4. The casing 20 is provided with a seal portion 35 that seals the periphery of the rotary shaft 24 between the gear unit accommodation space S4 and the motor accommodation space S3. The casing 20 is provided with a seal portion 36 that seals the periphery of the rotary shaft 24 between the motor housing space S3 and the second bearing housing space S5.
  • FIG. 2 is a perspective view showing an appearance of the shaft seal device 40 in the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the shaft seal device 40 in the embodiment of the present invention.
  • the IGV control motor unit 16 a is attached to the housing 20 via a stuffing box 42.
  • the stuffing box 42 is formed in a trapezoidal frame shape.
  • the lower bottom portion 42b of the stuffing box 42 is fastened and fixed to the housing 20 by a plurality of bolts 43a.
  • the IGV control motor unit 16a is attached to the upper bottom portion 42a of the stuffing box 42 by a plurality of bolts 43b.
  • an insertion hole 45 through which the output shaft 44 of the IGV control motor unit 16 a is inserted is formed in the upper bottom portion 42 a of the stuffing box 42.
  • the output shaft 44 is connected to the drive shaft 41 of the inlet guide vane 16 via the shaft coupling 46.
  • the shaft coupling 46 has an engagement groove 47 that engages with each of the output shaft 44 and the drive shaft 41 in the rotation direction, and can transmit the driving force of the output shaft 44 to the drive shaft 41. ing.
  • a fitting portion 49 that fits into the insertion hole 48 formed in the housing 20 is formed.
  • An O-ring 50 that seals between the stuffing box 42 and the housing 20 is disposed around the fitting portion 49.
  • An insertion hole 51 is formed in the lower bottom portion 42 b of the stuffing box 42 so as to insert the insertion portion 49.
  • the drive shaft 41 is disposed in the insertion hole 51 with the spacer 52 interposed therebetween.
  • the shaft seal device 40 is provided in the stuffing box 42 and seals around the drive shaft 41 disposed in the insertion hole 51.
  • the shaft seal device 40 includes a packing housing groove 60, a V packing 70, a pressing member 80, and a bolt 90.
  • the packing housing groove 60 is formed in a cylindrical shape around the drive shaft 41.
  • the packing housing groove 60 is formed in the stuffing box 42 and has a diameter larger than the diameter of the drive shaft 41.
  • the V packing 70 includes a male adapter 71, a female adapter 72, and a plurality of V-shaped pieces 73 that are formed between the male adapter 71 and the female adapter 72.
  • the packing accommodating groove 60 accommodates the first V packing 70A and the second V packing 70B.
  • the first V packing 70 ⁇ / b> A is arranged with the male adapter 71 side facing the groove bottom 61 of the packing housing groove 60.
  • the second V packing 70B is arranged with the female adapter 72 side facing the female adapter 72 side of the first V packing 70B. That is, the first V packing 70 ⁇ / b> A is arranged in a direction that prevents gas leakage from the inside of the housing 20 to the outside.
  • the second V-packing 70B is arranged in a direction that prevents inflow of gas from the outside to the inside of the housing 20 in a vacuum hermetic test or the like.
  • the pressing member 80 presses the V packing 70 housed in the packing housing groove 60 in the axial direction.
  • the pressing member 80 is formed in a rectangular plate shape in plan view, an insertion hole 81 through which the drive shaft 41 is inserted, an insertion hole 82 through which the bolt 90 is inserted, a pressing portion 83 that presses the V packing 70, Have
  • the insertion hole 81 is formed in the center of the pressing member 80, and the insertion holes 82 are formed in pairs at equal intervals from the center of the insertion hole 81.
  • the pressing portion 83 protrudes in an annular shape on the back surface side of the pressing member 80 and is configured to be able to enter the packing housing groove 60.
  • the bolt 90 tightens the pressing member 80 and moves the pressing member 80 in the axial direction.
  • the bolt 90 is disposed through the insertion hole 82 of the pressing member 80, is screwed into the screw hole 53 formed in the stuffing box 42, and tightens the pressing member 80.
  • the bolt 90 is tightened at two positions sandwiching the drive shaft 41 to move the pressing member 80 in the axial direction.
  • the bolts 90 of the present embodiment are arranged in pairs in the direction passing between the leg portions 42c of the stuffing box 42, so that the screwdriver tool can be easily accessed.
  • FIG. 4 is a flowchart showing a method for adjusting the shaft seal device 40 according to the embodiment of the present invention.
  • the pre-tightening step s1, the correlation measurement step s2, and the tightening torque management step s3 are sequentially performed.
  • the pre-tightening step s1 and the correlation measurement step s2 are performed, for example, by the manufacturer of the turbo compressor 5, and the tightening torque management step s3 is performed, for example, at the delivery destination of the turbo compressor 5 (the assembly site of the turbo refrigerator 1). .
  • the pre-tightening step s1 is a step in which the bolt 90 is tightened and unfastened as a set before the correlation measuring step s2.
  • the bolt 90 is tightened and unfastened multiple times. Specifically, when the screw 90 is screwed / unscrewed into the screw hole 53 as one set and several sets (for example, 2 to 5 sets) are performed, the pre-tightening step s1 is finished.
  • the next correlation measurement step s2 is a step of measuring the correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 with respect to the V packing 70.
  • the IGV control motor unit 16a is removed, and a spring gauge or the like can be installed on the drive shaft 41.
  • the tightening torque of the bolt 90 is measured by spring measurement or the like, and the sliding torque of the drive shaft 41 at that time with respect to the V packing 70 is measured by spring measurement or the like.
  • the sliding torque of the drive shaft 41 is measured, and the measurement is performed until the sliding torque of the drive shaft 41 reaches an appropriate value (Tr shown in FIG. 5).
  • FIG. 5 is a diagram showing a correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 in the embodiment of the present invention.
  • the V packing 70 when used as the packing material, there is a correlation between the torque of the bolt 90 that tightens the V packing 70 and the sliding torque of the drive shaft 41 with respect to the V packing 70.
  • the V packing 70 has a strong elastic force (restoring force), and even if it is tightened and deformed, it can easily return to its original shape if the tightening is released. Therefore, it is considered that the V packing 70 does not remain crushed like the gland packing, and as a result, such a correlation occurs.
  • the mechanism of shaft sealing by the V packing 70 is as follows. That is, an axial thrust is generated in the pressing member 80 by tightening the bolt 90.
  • the pressing member 80 is movable in the axial direction
  • the V packing 70 accommodated in the packing accommodating groove 60 is contracted in the axial direction.
  • the V packing 70 contracts in the axial direction
  • the V packing 70 expands in the radial direction.
  • the inner diameter of the V packing 70 and the peripheral surface of the drive shaft 41 come into contact with each other, and the sliding friction resistance of the drive shaft 41 increases.
  • the sliding frictional resistance (sliding torque) of the drive shaft 41 exceeds a certain value, an appropriate shaft seal state in which no gas leaks is obtained.
  • the tightening torque of the bolt 90 is related to the sliding torque of the drive shaft 41 with respect to the V packing 70.
  • the V packing 70 is selected as the packing material but also the bolt 90 for tightening the V packing 70. It is also important.
  • the bolt 90 is tightened and unfastened multiple times to physically fit the bolt 90 and the screw hole 53.
  • the next tightening torque management step s3 is a step of managing the tightening torque of the bolt 90 based on the correlation measured in the correlation measuring step s2.
  • the tightening torque management step s3 is performed at the delivery destination of the turbo compressor 5. Even if the shaft seal device 40 is adjusted at the time of manufacturing the turbo compressor 5, it is affected by vibrations or the like at the time of transportation, so it is necessary to readjust the shaft seal device 40 at the delivery destination of the turbo compressor 5. is there.
  • This step is performed in a state where the drive shaft 41 and the IGV control motor unit 16a are connected as shown in FIG. That is, the bolt 90 exposed from the side of the stuffing box 42 is accessed, and tightening is performed until the tightening torque of the bolt 90 reaches an appropriate value (Tc shown in FIG. 5) by spring measurement or the like.
  • the heavy IGV control motor unit 16a is removed one by one, and a spring gauge or the like is installed on the drive shaft 41 to slide the drive shaft 41. There is no need to manage torque directly. As a result, the complexity of the adjustment work of the shaft seal device 40 at the delivery destination of the turbo compressor 5 can be eliminated, and the work time can be greatly shortened.
  • the V packing 70 is accommodated in the packing accommodating groove 60 formed around the drive shaft 41, and the V packing 70 is deformed by the pressing member 80 movable in the axial direction by tightening the bolt 90.
  • a method for adjusting the shaft seal device 40 that seals the periphery of the drive shaft 41 which is a correlation measurement step of measuring the correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 with respect to the V packing 70. and a tightening torque management step s3 for managing the tightening torque of the bolt 90 based on the correlation.
  • the sliding torque of the drive shaft 41 can be managed by managing the tightening torque of the bolt 90 as a proxy, and the trouble of adjusting the shaft sealing device 40 can be eliminated. be able to.
  • FIG. 6 is a perspective view showing the appearance of the shaft seal device 40 in another embodiment of the present invention.
  • the shaft seal device 40 of another embodiment is provided in a stuffing box 42 that attaches the DDC control motor unit 17 a to the housing 20.
  • the configurations of the shaft seal device 40 and the stuffing box 42 are substantially the same as those in the above embodiment.
  • the shaft seal device 40 can be adjusted properly without removing the DDC control motor unit 17a, so that the complexity of the adjustment work can be eliminated.
  • the mode in which the present technique is applied to the adjustment method of the shaft seal device that seals the drive shaft of the inlet guide vane of the turbo compressor and the drive shaft of the outlet throttle valve is exemplified.
  • the present invention is not limited to this form.
  • the present technique can also be applied to a method for adjusting a shaft seal device of a valve shaft of a valve device that also handles fluid.
  • a method for adjusting a shaft seal device that can eliminate the complexity of work can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Devices (AREA)

Abstract

Provided is an adjustment method for a shaft seal device, in which V-packing is accommodated in a packing accommodation groove that has been formed in the periphery of a drive shaft and the V-packing is deformed by a pressing member that can move axially by the tightening of a bolt, thereby sealing the periphery of a drive shaft, wherein the method involves the following: a correlation measurement step (s2) in which the correlation between the tightening torque of the bolt and the sliding torque of the drive shaft with respect to the V-packing is measured; and a tightening torque management step (s3) in which the tightening torque of the bolt is managed on the basis of the correlation. Due to this configuration, an adjustment method for a shaft seal device is obtained that can eliminate work complication.

Description

軸封装置の調整方法Adjusting method of shaft seal device
 本発明は、軸封装置の調整方法に関する。
 本願は、2013年7月18日に日本に出願された特願2013-149465号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for adjusting a shaft seal device.
This application claims priority based on Japanese Patent Application No. 2013-149465 for which it applied to Japan on July 18, 2013, and uses the content here.
 冷凍機として、モータによってインペラを回転駆動させて冷媒を圧縮して排出するターボ圧縮機を備えるターボ冷凍機が知られている。ターボ圧縮機においては、吸入口の絞り機構としてIGV(インレットガイドベーン)を備え、また、吐出口の絞り機構としてDDC(Discharge Diffuser Controller)を備え、吸入量、吐出量をコントロール可能な構成となっている。 As a refrigerator, a turbo refrigerator having a turbo compressor that compresses and discharges a refrigerant by rotating an impeller by a motor is known. The turbo compressor is equipped with an IGV (inlet guide vane) as a throttle mechanism for the suction port and a DDC (Discharge Diffuser Controller) as the throttle mechanism for the discharge port, so that the intake and discharge amounts can be controlled. ing.
 ところで、IGVやDDCを駆動させるコントロールモータは、冷媒や油や熱の影響を受けるため、ターボ圧縮機の筐体の外部に配置されており、筐体の外部から内部に貫通して設けられた駆動軸を介して、内部機構を駆動させる。ターボ圧縮機の筐体の内部では圧縮ガスが生成されるため、駆動軸を介したガス漏れを防止する必要がある。このため、ターボ圧縮機は、駆動軸の周りを封止する軸封装置を備えている。 By the way, the control motor for driving the IGV and DDC is arranged outside the casing of the turbo compressor because it is affected by refrigerant, oil, and heat, and is provided to penetrate from the outside to the inside of the casing. The internal mechanism is driven via the drive shaft. Since compressed gas is generated inside the casing of the turbo compressor, it is necessary to prevent gas leakage through the drive shaft. For this reason, the turbo compressor includes a shaft seal device that seals around the drive shaft.
 下記特許文献1には、ピストン弁の弁軸の周りを封止する軸封装置が開示されている。
 この軸封装置は、弁軸の周りに形成されたパッキン収容部と、パッキン収容部に充填されたグランドパッキンと、グランドパッキンに先端を押し当てられたパッキン押さえ手段と、パッキン押さえ手段を介してグランドパッキンを押さえるための締付部材と、を備えており、グランドパッキンに荷重を加えて変形させることにより、弁軸周りを封止する。
Patent Document 1 listed below discloses a shaft sealing device that seals around the valve shaft of a piston valve.
The shaft seal device includes a packing housing portion formed around the valve shaft, a gland packing filled in the packing housing portion, a packing pressing means whose tip is pressed against the gland packing, and a packing pressing means. A tightening member for holding the gland packing, and applying a load to the gland packing to deform it, thereby sealing the periphery of the valve shaft.
 下記特許文献2には、バルブの軸封室に装着される軸封パッキンが開示される。
 この軸封パッキンは、軸封室に装着される複数の断面V字形の環状のパッキン本体と、パッキン本体の上方に設けられるトップアダプタと、パッキン本体の下方に設けられるボトムアダプタと、を備える。軸封パッキンの上部にはグランド部材が設けられる。グランド部材をボルトにより締め付けることにより、軸封パッキンを上方から押圧する。シール性を向上させるため、あるいは、応力緩和現象に対応するために、ボルトは増し締めされる。
Patent Document 2 listed below discloses a shaft seal packing attached to a shaft seal chamber of a valve.
The shaft seal packing includes a plurality of V-shaped annular packing bodies mounted in the shaft sealing chamber, a top adapter provided above the packing body, and a bottom adapter provided below the packing body. A gland member is provided on the upper part of the shaft seal packing. The shaft seal packing is pressed from above by tightening the ground member with a bolt. In order to improve the sealing performance or to cope with the stress relaxation phenomenon, the bolt is tightened.
 下記特許文献3には、排水用の鋼管などに用いられる継手において、ボルトとナットの締め付けによりパッキングを圧縮して止水する構造が開示されている。
 ボルトを締め付ける際に、パッキングの外周長の変化がパッキングに掛かる加圧量に比例することに着目し、パッキングの外周長をパラメータとして用いることによりボルトの締め付けトルクを適切に管理する。
Patent Document 3 listed below discloses a structure in which a packing is compressed and water is stopped by tightening bolts and nuts in a joint used for a steel pipe for drainage.
When tightening the bolt, paying attention to the fact that the change in the outer peripheral length of the packing is proportional to the amount of pressure applied to the packing, the tightening torque of the bolt is appropriately managed by using the outer peripheral length of the packing as a parameter.
 下記特許文献4には、連続鋳造機のロールベアリング部におけるロール軸箱とロール軸との間をシールする密封装置が開示される。
 この密封装置は、ロール軸箱に形成される環状の段部に、機内側のアダプタ、機内側のVパッキン、ランタン、機外側のVパッキン、および機外側のアダプタを順次挿入し、その後、押さえ部材をロール軸箱の端部にネジを用いて固定することにより形成される。押さえ部材を固定すると、各部品は押さえ部材と段部の端面との間において軸方向に圧縮され、Vパッキンおよびアダプタの各リップがロール軸の周面またはロール軸箱の内面に密接する。Vパッキンは、使用の状況に応じて増し締めされる。
The following Patent Document 4 discloses a sealing device that seals between a roll shaft box and a roll shaft in a roll bearing portion of a continuous casting machine.
In this sealing device, an adapter inside the machine, a V packing inside the machine, a lantern, a V packing outside the machine, and an adapter outside the machine are sequentially inserted into an annular step formed in the roll axle box, and then pressed. It is formed by fixing the member to the end of the roll axle box using a screw. When the pressing member is fixed, each part is compressed in the axial direction between the pressing member and the end surface of the stepped portion, and the lips of the V packing and the adapter are brought into close contact with the peripheral surface of the roll shaft or the inner surface of the roll shaft box. The V-packing is tightened according to the situation of use.
日本国特開平11-166628号公報Japanese Unexamined Patent Publication No. 11-166628 日本国再公表特許WO2008/007685号公報Japanese republished patent WO2008 / 007685 日本国特開2013-19445号公報Japanese Unexamined Patent Publication No. 2013-19445 日本国特開2003-220454号公報Japanese Unexamined Patent Publication No. 2003-220454
 ところで、軸封装置では、気密性を保ちつつ、パッキン材を痛めることなく、また、コントロールモータのトルク不足になることがないような適正な調整を行う必要がある。従来の軸封装置の調整では、コントロールモータを取り外し、駆動軸にバネ測り等を設置して、パッキンを締め付けつつ、駆動軸のパッキン材に対する摺動トルクが適正な値になるように調整していた。 By the way, in the shaft seal device, it is necessary to make an appropriate adjustment so as not to damage the packing material and to prevent the torque of the control motor from being insufficient while maintaining airtightness. In the adjustment of the conventional shaft seal device, the control motor is removed, the spring shaft is installed on the drive shaft, etc., and the drive shaft is adjusted so that the sliding torque against the packing material becomes an appropriate value while tightening the packing. It was.
 しかしながら、ターボ圧縮機の製造時に軸封装置の調整を行っても、搬送時に振動等の影響を受けるため、ターボ圧縮機の納入先で軸封装置の調整を行う必要がある。そうすると、再びコントロールモータを取り外し、駆動軸にバネ測りを設置する等、軸封装置の調整作業が煩雑であった。 However, even if the shaft seal device is adjusted at the time of manufacturing the turbo compressor, it is affected by vibration and the like at the time of transportation. Therefore, it is necessary to adjust the shaft seal device at the turbo compressor delivery destination. Then, the adjustment work of the shaft seal device was complicated, such as removing the control motor again and installing a spring gauge on the drive shaft.
 本発明は、上記問題点に鑑みてなされたものであり、作業の煩雑さを解消できる軸封装置の調整方法の提供を目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a method for adjusting a shaft seal device that can eliminate the complexity of work.
 本願発明者らは、上記課題を解決するために鋭意実験を重ねた結果、パッキン材にVパッキンを採用した場合に、そのVパッキンを締め付けるボルトのトルクと、駆動軸のVパッキンに対する摺動トルクとの間に相関関係があることを見出し、本発明に想到した。
 すなわち、本発明の第一の態様は、駆動軸周りに形成されたパッキン収容溝にVパッキンを収容し、ボルトの締め付けにより軸方向に可動する押圧部材によって前記Vパッキンを変形させて、前記駆動軸周りを封止する軸封装置の調整方法であって、前記ボルトの締め付けトルクと、前記駆動軸の前記Vパッキンに対する摺動トルクとの相関関係を計測する相関関係計測工程と、前記相関関係に基づいて、前記ボルトの締め付けトルクを管理する締め付けトルク管理工程と、を有する。
 この手法を採用することによって、本発明では、ボルトの締め付けトルクと駆動軸の摺動トルクとの相関関係を計測し、ボルトの締め付けトルクを代理として管理することで、駆動軸の摺動トルクを管理することができる。このため、本発明では、コントロールモータを取り外し、駆動軸にバネ測り等を設置し、駆動軸の摺動トルクを直接管理する必要がなく、軸封装置の調整作業の煩雑さを解消できる。
The inventors of the present invention have conducted extensive experiments to solve the above problems, and as a result, when a V packing is used as the packing material, the torque of the bolt that tightens the V packing and the sliding torque of the drive shaft with respect to the V packing. And the present invention has been conceived.
That is, in the first aspect of the present invention, the V packing is accommodated in a packing accommodating groove formed around the drive shaft, and the V packing is deformed by a pressing member that is movable in the axial direction by tightening a bolt. A method for adjusting a shaft seal device for sealing around a shaft, the correlation measuring step for measuring the correlation between the tightening torque of the bolt and the sliding torque of the drive shaft with respect to the V packing, and the correlation And a tightening torque management step for managing the tightening torque of the bolt.
By adopting this method, the present invention measures the correlation between the tightening torque of the bolt and the sliding torque of the drive shaft, and manages the tightening torque of the bolt as a proxy, thereby reducing the sliding torque of the drive shaft. Can be managed. For this reason, in the present invention, it is not necessary to remove the control motor, install a spring measure or the like on the drive shaft, and directly manage the sliding torque of the drive shaft, thereby eliminating the complexity of adjusting the shaft seal device.
 また、本発明の第二の態様は、上記第一の態様に係る軸封装置の調整方法において、前記相関関係計測工程の前に、前記ボルトの締め付け及び締め付け解除をセットで行うプレ締め付け工程を有する。
 この手法を採用することによって、本発明では、ボルトの締め付けトルクと駆動軸の摺動トルクとの相関関係を計測する前に、ボルトの締め付け及び締め付け解除をセットで行うことで、軸封装置の調整精度を向上させることができる。
Further, a second aspect of the present invention is a method for adjusting a shaft seal device according to the first aspect, further comprising a pre-tightening step of tightening and releasing the bolts as a set before the correlation measurement step. Have.
By adopting this method, in the present invention, before measuring the correlation between the tightening torque of the bolt and the sliding torque of the drive shaft, the bolt is tightened and the tightening is released as a set. Adjustment accuracy can be improved.
 また、本発明の第三の態様は、上記第二の態様に係る軸封装置の調整方法において、前記プレ締め付け工程では、前記ボルトの締め付け及び締め付け解除のセットを複数回行う。
 この手法を採用することによって、本発明では、ボルトの締め付け及び締め付け解除のセットを複数回行って、ボルトを物理的になじませ、ボルトの締め付けトルクと駆動軸の摺動トルクとの相関関係の再現性を高め、軸封装置の調整精度をより向上させることができる。
According to a third aspect of the present invention, in the method for adjusting a shaft seal device according to the second aspect, in the pre-tightening step, the bolts are tightened and unfastened multiple times.
By adopting this method, in the present invention, the bolt is tightened and unfastened multiple times, the bolt is physically adapted, and the correlation between the bolt tightening torque and the driving shaft sliding torque is obtained. Reproducibility can be improved and the adjustment accuracy of the shaft seal device can be further improved.
 また、本発明の第四の態様は、上記第一ないし第三の態様に係る軸封装置の調整方法において、前記駆動軸には、モータユニットが接続されており、前記締め付けトルク管理工程は、前記駆動軸と前記モータユニットとが接続された状態で行う。
 この手法を採用することによって、本発明では、駆動軸からモータユニットを取り外すことなく、軸封装置の調整を行うため、作業の煩雑さを解消することができる。
According to a fourth aspect of the present invention, in the method for adjusting a shaft seal device according to the first to third aspects, a motor unit is connected to the drive shaft, and the tightening torque management step includes: This is performed in a state where the drive shaft and the motor unit are connected.
By adopting this method, in the present invention, since the shaft seal device is adjusted without removing the motor unit from the drive shaft, the complexity of the work can be eliminated.
 また、本発明の第五の態様は、上記第一ないし第四の態様に係る軸封装置の調整方法において、前記Vパッキンは、雄アダプタと、雌アダプタと、前記雄アダプタおよび前記雌アダプタの間に挟まれて形成される複数のV字ピースと、を有し、前記パッキン収容溝には、その溝底に前記雄アダプタ側を向けた第1のVパッキンと、前記第1のVパッキンの前記雌アダプタ側に、前記雌アダプタ側を向けた第2のVパッキンと、が収容されている。
 この手法を採用することによって、本発明では、パッキン収容溝に向きの異なる第1のVパッキンと第2のVパッキンとを収容することで、ボルトの締め付けトルクと駆動軸の摺動トルクとの相関関係の再現性を高めることができる。
According to a fifth aspect of the present invention, in the method for adjusting a shaft seal device according to the first to fourth aspects, the V packing includes a male adapter, a female adapter, the male adapter, and the female adapter. A plurality of V-shaped pieces sandwiched between the first V-packing and the first V-packing in the packing housing groove with the male adapter side facing the groove bottom. A second V-packing facing the female adapter side is accommodated on the female adapter side.
By adopting this method, in the present invention, the first V packing and the second V packing having different directions are accommodated in the packing accommodating groove, so that the bolt tightening torque and the driving shaft sliding torque can be reduced. The reproducibility of the correlation can be improved.
 本発明によれば、作業の煩雑さを解消できる軸封装置の調整方法が得られる。 According to the present invention, a method for adjusting a shaft seal device that can eliminate the complexity of work can be obtained.
本発明の実施形態におけるターボ冷凍機の系統図である。It is a systematic diagram of the turbo refrigerator in the embodiment of the present invention. 本発明の実施形態における軸封装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the shaft seal apparatus in embodiment of this invention. 本発明の実施形態における軸封装置の構成を示す断面図である。It is sectional drawing which shows the structure of the shaft seal apparatus in embodiment of this invention. 本発明の実施形態における軸封装置の調整方法を示すフロー図である。It is a flowchart which shows the adjustment method of the shaft seal apparatus in embodiment of this invention. 本発明の実施形態におけるボルトの締め付けトルクと駆動軸の摺動トルクとの相関関係を示す図である。It is a figure which shows the correlation of the bolting torque in embodiment of this invention, and the sliding torque of a drive shaft. 本発明の別実施形態における軸封装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the shaft seal apparatus in another embodiment of this invention.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の実施形態におけるターボ冷凍機1の系統図である。
 本実施形態のターボ冷凍機1は、例えばフロンを冷媒として、空調用の冷水を冷却する。ターボ冷凍機1は、図1に示すように、凝縮器2と、エコノマイザ3と、蒸発器4と、ターボ圧縮機5と、を備えている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of a turbo refrigerator 1 in an embodiment of the present invention.
The turbo refrigerator 1 of the present embodiment cools cold water for air conditioning using, for example, Freon as a refrigerant. As shown in FIG. 1, the turbo refrigerator 1 includes a condenser 2, an economizer 3, an evaporator 4, and a turbo compressor 5.
 凝縮器2は、流路R1を介してターボ圧縮機5のガス吐出管5aと接続されている。凝縮器2には、ターボ圧縮機5によって圧縮された冷媒(圧縮冷媒ガスX1)が流路R1を通って供給される。凝縮器2は、圧縮冷媒ガスX1を液化する。凝縮器2は、冷却水が流通する伝熱管2aを備え、圧縮冷媒ガスX1と冷却水と間の熱交換によって、圧縮冷媒ガスX1を冷却する。 The condenser 2 is connected to the gas discharge pipe 5a of the turbo compressor 5 through the flow path R1. The refrigerant (compressed refrigerant gas X1) compressed by the turbo compressor 5 is supplied to the condenser 2 through the flow path R1. The condenser 2 liquefies the compressed refrigerant gas X1. The condenser 2 includes a heat transfer tube 2a through which cooling water flows, and cools the compressed refrigerant gas X1 by heat exchange between the compressed refrigerant gas X1 and the cooling water.
 圧縮冷媒ガスX1は、冷却水との間の熱交換によって冷却され、液化し、冷媒液X2となって凝縮器2の底部に溜まる。凝縮器2の底部は、流路R2を介してエコノマイザ3と接続されている。流路R2には、冷媒液X2を減圧するための膨張弁6が設けられている。エコノマイザ3には、膨張弁6によって減圧された冷媒液X2が流路R2を通って供給される。エコノマイザ3は、減圧された冷媒液X2を一時的に貯留し、冷媒を液相と気相とに分離する。 Compressed refrigerant gas X1 is cooled by heat exchange with cooling water, liquefied, becomes refrigerant liquid X2, and accumulates at the bottom of condenser 2. The bottom of the condenser 2 is connected to the economizer 3 via the flow path R2. An expansion valve 6 for reducing the pressure of the refrigerant liquid X2 is provided in the flow path R2. The economizer 3 is supplied with the refrigerant liquid X2 decompressed by the expansion valve 6 through the flow path R2. The economizer 3 temporarily stores the decompressed refrigerant liquid X2, and separates the refrigerant into a liquid phase and a gas phase.
 エコノマイザ3の頂部は、流路R3を介してターボ圧縮機5のエコノマイザ連結管5bと接続されている。エコノマイザ3によって分離した冷媒の気相成分X3が、蒸発器4及び第1圧縮段11を経ることなく、流路R3を通ってターボ圧縮機5の第2圧縮段12に供給される。これにより、効率が高まる。一方、エコノマイザ3の底部は、流路R4を介して蒸発器4と接続されている。流路R4には、冷媒液X2をさらに減圧するための膨張弁7が設けられている。 The top of the economizer 3 is connected to the economizer connecting pipe 5b of the turbo compressor 5 through the flow path R3. The gas phase component X3 of the refrigerant separated by the economizer 3 is supplied to the second compression stage 12 of the turbo compressor 5 through the flow path R3 without passing through the evaporator 4 and the first compression stage 11. This increases efficiency. On the other hand, the bottom of the economizer 3 is connected to the evaporator 4 via a flow path R4. The flow path R4 is provided with an expansion valve 7 for further reducing the pressure of the refrigerant liquid X2.
 蒸発器4には、膨張弁7によってさらに減圧された冷媒液X2が流路R4を通って供給される。蒸発器4は、冷媒液X2を蒸発させてその気化熱によって冷水を冷却する。蒸発器4は、冷水が流通する伝熱管4aを備え、冷媒液X2と冷水と間の熱交換によって、冷水を冷却すると共に冷媒液X2を蒸発させる。冷媒液X2は、冷水との間の熱交換によって熱を奪って蒸発し、冷媒ガスX4となる。 The refrigerant liquid X2 further reduced in pressure by the expansion valve 7 is supplied to the evaporator 4 through the flow path R4. The evaporator 4 evaporates the refrigerant liquid X2 and cools the cold water with the heat of vaporization. The evaporator 4 includes a heat transfer tube 4a through which cold water flows, and cools the cold water and evaporates the refrigerant liquid X2 by heat exchange between the refrigerant liquid X2 and the cold water. Refrigerant liquid X2 takes heat by heat exchange with cold water and evaporates to become refrigerant gas X4.
 蒸発器4の頂部は、流路R5を介してターボ圧縮機5のガス吸入管5cと接続されている。ターボ圧縮機5には、蒸発器4において蒸発した冷媒ガスX4が流路R5を通って供給される。ターボ圧縮機5は、蒸発した冷媒ガスX4を圧縮し、圧縮冷媒ガスX1として凝縮器2に供給する。ターボ圧縮機5は、冷媒ガスX4を圧縮する第1圧縮段11と、一段階圧縮された冷媒をさらに圧縮する第2圧縮段12と、を具備する2段圧縮機である。 The top of the evaporator 4 is connected to a gas suction pipe 5c of the turbo compressor 5 through a flow path R5. The refrigerant gas X4 evaporated in the evaporator 4 is supplied to the turbo compressor 5 through the flow path R5. The turbo compressor 5 compresses the evaporated refrigerant gas X4 and supplies it to the condenser 2 as the compressed refrigerant gas X1. The turbo compressor 5 is a two-stage compressor including a first compression stage 11 that compresses the refrigerant gas X4 and a second compression stage 12 that further compresses the refrigerant compressed in one stage.
 第1圧縮段11にはインペラ13が設けられ、第2圧縮段12にはインペラ14が設けられており、それらが回転軸15で接続されている。ターボ圧縮機5は、モータ10によってインペラ13,14を回転駆動させて冷媒を圧縮する。インペラ13,14は、ラジアルインペラであり、軸方向で吸気した冷媒を半径方向に導出する不図示の3次元的ねじれを含むブレードを有する。 The first compression stage 11 is provided with an impeller 13, and the second compression stage 12 is provided with an impeller 14, which are connected by a rotating shaft 15. The turbo compressor 5 rotates the impellers 13 and 14 by the motor 10 to compress the refrigerant. The impellers 13 and 14 are radial impellers, and have blades including a three-dimensional twist (not shown) that guides the refrigerant sucked in the axial direction in the radial direction.
 ガス吸入管5cには、第1圧縮段11の吸入量を調節するためのインレットガイドベーン16が設けられている。インレットガイドベーン16は、冷媒ガスX4の流れ方向からの見かけ上の面積が変更可能なように回転可能とされている。インレットガイドベーン16は、ターボ圧縮機5の筐体20の外部に配置されたIGVコントロールモータユニット16a(モータユニット)から駆動力を伝達されて駆動する。 The gas intake pipe 5c is provided with an inlet guide vane 16 for adjusting the intake amount of the first compression stage 11. The inlet guide vane 16 is rotatable so that the apparent area from the flow direction of the refrigerant gas X4 can be changed. The inlet guide vane 16 is driven by driving force transmitted from an IGV control motor unit 16a (motor unit) disposed outside the casing 20 of the turbo compressor 5.
 インペラ13,14の周りには、それぞれディフューザ流路が設けられている。インペラ13,14の半径方向に導出した冷媒を、ディフューザ流路において圧縮・昇圧し、また、さらにその周りに設けられたスクロール流路によって次の圧縮段に供給する。インペラ14の周りには、出口絞り弁17が設けられており、ガス吐出管5aからの吐出量を制御できる。出口絞り弁17は、ターボ圧縮機5の筐体20の外部に配置されたDDCコントロールモータユニット17a(モータユニット)から駆動力を伝達されて駆動する。 A diffuser channel is provided around each of the impellers 13 and 14. The refrigerant derived in the radial direction of the impellers 13 and 14 is compressed and pressurized in the diffuser flow path, and further supplied to the next compression stage through a scroll flow path provided therearound. An outlet throttle valve 17 is provided around the impeller 14, and the discharge amount from the gas discharge pipe 5a can be controlled. The outlet throttle valve 17 is driven by a driving force transmitted from a DDC control motor unit 17a (motor unit) disposed outside the casing 20 of the turbo compressor 5.
 ターボ圧縮機5は、密閉型の筐体20を備える。筐体20は、圧縮流路空間S1と、第1の軸受収容空間S2と、モータ収容空間S3と、ギヤユニット収容空間S4と、第2の軸受収容空間S5と、に区画されている。圧縮流路空間S1には、インペラ13,14が設けられている。インペラ13,14を接続する回転軸15は、圧縮流路空間S1、第1の軸受収容空間S2、ギヤユニット収容空間S4に挿通して設けられている。第1の軸受収容空間S2には、回転軸15を支持する軸受21が設けられている。 The turbo compressor 5 includes a sealed casing 20. The housing 20 is partitioned into a compression flow path space S1, a first bearing housing space S2, a motor housing space S3, a gear unit housing space S4, and a second bearing housing space S5. Impellers 13 and 14 are provided in the compression flow path space S1. The rotating shaft 15 that connects the impellers 13 and 14 is provided so as to be inserted into the compression flow path space S1, the first bearing housing space S2, and the gear unit housing space S4. A bearing 21 that supports the rotary shaft 15 is provided in the first bearing housing space S2.
 モータ収容空間S3には、ステータ22と、ロータ23と、ロータ23に接続された回転軸24と、が設けられている。回転軸24は、モータ収容空間S3、ギヤユニット収容空間S4、第2の軸受収容空間S5に挿通して設けられている。第2の軸受収容空間S5には、回転軸24の反負荷側を支持する軸受31が設けられている。ギヤユニット収容空間S4には、ギヤユニット25と、軸受26,27と、オイルタンク28と、が設けられている。 The motor housing space S3 is provided with a stator 22, a rotor 23, and a rotating shaft 24 connected to the rotor 23. The rotary shaft 24 is provided so as to be inserted into the motor housing space S3, the gear unit housing space S4, and the second bearing housing space S5. In the second bearing housing space S5, a bearing 31 that supports the non-load side of the rotating shaft 24 is provided. A gear unit 25, bearings 26 and 27, and an oil tank 28 are provided in the gear unit housing space S4.
 ギヤユニット25は、回転軸24に固定される大径歯車29と、回転軸15に固定されると共に大径歯車29と噛み合う小径歯車30と、を有する。ギヤユニット25は、回転軸24の回転数に対して回転軸15の回転数が増加(増速)するように、回転駆動力を伝達する。軸受26は、回転軸24を支持する。軸受27は、回転軸15を支持する。オイルタンク28は、軸受21,26,27,31等の各摺動部位に供給される潤滑油を貯溜する。 The gear unit 25 includes a large-diameter gear 29 fixed to the rotary shaft 24 and a small-diameter gear 30 fixed to the rotary shaft 15 and meshed with the large-diameter gear 29. The gear unit 25 transmits the rotational driving force so that the rotational speed of the rotary shaft 15 increases (accelerates) with respect to the rotational speed of the rotary shaft 24. The bearing 26 supports the rotating shaft 24. The bearing 27 supports the rotating shaft 15. The oil tank 28 stores lubricating oil supplied to each sliding portion such as the bearings 21, 26, 27, and 31.
 筐体20には、圧縮流路空間S1と第1の軸受収容空間S2との間において、回転軸15の周囲をシールするシール部32,33が設けられている。また、筐体20には、圧縮流路空間S1とギヤユニット収容空間S4との間において、回転軸15の周囲をシールするシール部34が設けられている。また、筐体20には、ギヤユニット収容空間S4とモータ収容空間S3との間において、回転軸24の周囲をシールするシール部35が設けられている。また、筐体20には、モータ収容空間S3と第2の軸受収容空間S5との間において、回転軸24の周囲をシールするシール部36が設けられている。 The casing 20 is provided with seal portions 32 and 33 for sealing the periphery of the rotary shaft 15 between the compression flow path space S1 and the first bearing housing space S2. Further, the casing 20 is provided with a seal portion 34 that seals the periphery of the rotary shaft 15 between the compression flow path space S1 and the gear unit accommodation space S4. The casing 20 is provided with a seal portion 35 that seals the periphery of the rotary shaft 24 between the gear unit accommodation space S4 and the motor accommodation space S3. The casing 20 is provided with a seal portion 36 that seals the periphery of the rotary shaft 24 between the motor housing space S3 and the second bearing housing space S5.
 次に、図2及び図3を参照して、インレットガイドベーン16の駆動軸41周りを封止する軸封装置40の構成について説明する。
 図2は、本発明の実施形態における軸封装置40の外観を示す斜視図である。図3は、本発明の実施形態における軸封装置40の構成を示す断面図である。
Next, the configuration of the shaft seal device 40 that seals the periphery of the drive shaft 41 of the inlet guide vane 16 will be described with reference to FIGS. 2 and 3.
FIG. 2 is a perspective view showing an appearance of the shaft seal device 40 in the embodiment of the present invention. FIG. 3 is a cross-sectional view showing the configuration of the shaft seal device 40 in the embodiment of the present invention.
 図2に示すように、IGVコントロールモータユニット16aは、スタッフィングボックス42を介して筐体20に取り付けられている。スタッフィングボックス42は、台形の枠状に形成されている。スタッフィングボックス42の下底部42bは、複数のボルト43aによって筐体20に対し締結固定されている。また、スタッフィングボックス42の上底部42aには、IGVコントロールモータユニット16aが複数のボルト43bによって取り付けられている。 As shown in FIG. 2, the IGV control motor unit 16 a is attached to the housing 20 via a stuffing box 42. The stuffing box 42 is formed in a trapezoidal frame shape. The lower bottom portion 42b of the stuffing box 42 is fastened and fixed to the housing 20 by a plurality of bolts 43a. The IGV control motor unit 16a is attached to the upper bottom portion 42a of the stuffing box 42 by a plurality of bolts 43b.
 図3に示すように、スタッフィングボックス42の上底部42aには、IGVコントロールモータユニット16aの出力軸44が挿通するための挿通穴45が形成されている。
 出力軸44は、インレットガイドベーン16の駆動軸41と軸カップリング46を介して接続されている。軸カップリング46は、回転方向で出力軸44及び駆動軸41のそれぞれと係合する係合溝47を有し、出力軸44の駆動力を駆動軸41に伝達することが可能な構成となっている。
As shown in FIG. 3, an insertion hole 45 through which the output shaft 44 of the IGV control motor unit 16 a is inserted is formed in the upper bottom portion 42 a of the stuffing box 42.
The output shaft 44 is connected to the drive shaft 41 of the inlet guide vane 16 via the shaft coupling 46. The shaft coupling 46 has an engagement groove 47 that engages with each of the output shaft 44 and the drive shaft 41 in the rotation direction, and can transmit the driving force of the output shaft 44 to the drive shaft 41. ing.
 スタッフィングボックス42の下底部42bには、筐体20に形成された挿通穴48に嵌入する嵌入部49が形成されている。なお、嵌入部49の周りには、スタッフィングボックス42と筐体20との間をシールするOリング50が配置されている。スタッフィングボックス42の下底部42bには、嵌入部49を挿通するように挿通穴51が形成されている。挿通穴51には、スペーサー52を挟んで駆動軸41が配置されている。軸封装置40は、スタッフィングボックス42に設けられており、挿通穴51に配置された駆動軸41の周りを封止する。 In the lower bottom portion 42 b of the stuffing box 42, a fitting portion 49 that fits into the insertion hole 48 formed in the housing 20 is formed. An O-ring 50 that seals between the stuffing box 42 and the housing 20 is disposed around the fitting portion 49. An insertion hole 51 is formed in the lower bottom portion 42 b of the stuffing box 42 so as to insert the insertion portion 49. The drive shaft 41 is disposed in the insertion hole 51 with the spacer 52 interposed therebetween. The shaft seal device 40 is provided in the stuffing box 42 and seals around the drive shaft 41 disposed in the insertion hole 51.
 軸封装置40は、パッキン収容溝60と、Vパッキン70と、押圧部材80と、ボルト90と、を有する。パッキン収容溝60は、駆動軸41周りに円筒状に形成されている。
 このパッキン収容溝60は、スタッフィングボックス42に形成され、駆動軸41の径よりも大きな径を有している。Vパッキン70は、雄アダプタ71と、雌アダプタ72と、これら雄アダプタ71および雌アダプタ72の間に挟まれて形成される複数のV字ピース73と、を有する。
The shaft seal device 40 includes a packing housing groove 60, a V packing 70, a pressing member 80, and a bolt 90. The packing housing groove 60 is formed in a cylindrical shape around the drive shaft 41.
The packing housing groove 60 is formed in the stuffing box 42 and has a diameter larger than the diameter of the drive shaft 41. The V packing 70 includes a male adapter 71, a female adapter 72, and a plurality of V-shaped pieces 73 that are formed between the male adapter 71 and the female adapter 72.
 パッキン収容溝60には、第1のVパッキン70Aと第2のVパッキン70Bとが収容されている。第1のVパッキン70Aは、パッキン収容溝60の溝底61に雄アダプタ71側を向けて配置されている。また、第2のVパッキン70Bは、第1のVパッキン70Bの雌アダプタ72側に、雌アダプタ72側を向けて配置されている。すなわち、第1のVパッキン70Aは、筐体20の内部から外部へのガス漏れを防止する向きで配置されている。また、第2のVパッキン70Bは、真空気密試験等において、筐体20の外部から内部へのガスの流入を防止する向きで配置されている。 The packing accommodating groove 60 accommodates the first V packing 70A and the second V packing 70B. The first V packing 70 </ b> A is arranged with the male adapter 71 side facing the groove bottom 61 of the packing housing groove 60. The second V packing 70B is arranged with the female adapter 72 side facing the female adapter 72 side of the first V packing 70B. That is, the first V packing 70 </ b> A is arranged in a direction that prevents gas leakage from the inside of the housing 20 to the outside. The second V-packing 70B is arranged in a direction that prevents inflow of gas from the outside to the inside of the housing 20 in a vacuum hermetic test or the like.
 押圧部材80は、パッキン収容溝60に収容されたVパッキン70を軸方向に押圧する。押圧部材80は、平面視で長方形の板状に形成されており、駆動軸41が挿通する挿通穴81と、ボルト90が挿通する挿通穴82と、Vパッキン70を押圧する押圧部83と、を有する。挿通穴81は、押圧部材80の中央に形成されており、挿通穴82は、挿通穴81の中心から等間隔で対となって形成されている。押圧部83は、押圧部材80の裏面側において環状に突出しており、パッキン収容溝60に進入可能な構成となっている。 The pressing member 80 presses the V packing 70 housed in the packing housing groove 60 in the axial direction. The pressing member 80 is formed in a rectangular plate shape in plan view, an insertion hole 81 through which the drive shaft 41 is inserted, an insertion hole 82 through which the bolt 90 is inserted, a pressing portion 83 that presses the V packing 70, Have The insertion hole 81 is formed in the center of the pressing member 80, and the insertion holes 82 are formed in pairs at equal intervals from the center of the insertion hole 81. The pressing portion 83 protrudes in an annular shape on the back surface side of the pressing member 80 and is configured to be able to enter the packing housing groove 60.
 ボルト90は、押圧部材80を締め付け、押圧部材80を軸方向に可動させる。ボルト90は、押圧部材80の挿通穴82を挿通して配置され、スタッフィングボックス42に形成されたネジ穴53に螺合し、押圧部材80を締め付ける。本実施形態では、駆動軸41を挟んだ二箇所でボルト90の締め付けを行い、押圧部材80を軸方向に可動させる。また、本実施形態のボルト90は、スタッフィングボックス42の脚部42cの間を通過する方向において対となって配置されており、ねじ回し工具のアクセスが容易になっている。 The bolt 90 tightens the pressing member 80 and moves the pressing member 80 in the axial direction. The bolt 90 is disposed through the insertion hole 82 of the pressing member 80, is screwed into the screw hole 53 formed in the stuffing box 42, and tightens the pressing member 80. In the present embodiment, the bolt 90 is tightened at two positions sandwiching the drive shaft 41 to move the pressing member 80 in the axial direction. In addition, the bolts 90 of the present embodiment are arranged in pairs in the direction passing between the leg portions 42c of the stuffing box 42, so that the screwdriver tool can be easily accessed.
 続いて、上記構成の軸封装置40の調整方法(以下、本手法と称する場合がある)について説明する。
 図4は、本発明の実施形態における軸封装置40の調整方法を示すフロー図である。
 図4に示すように、本手法では、プレ締め付け工程s1、相関関係計測工程s2、締め付けトルク管理工程s3を、順に行う。なお、プレ締め付け工程s1、相関関係計測工程s2は、例えばターボ圧縮機5の製造元で行い、締め付けトルク管理工程s3は、例えばターボ圧縮機5の納入先(ターボ冷凍機1の組立現場)で行う。
Next, a method for adjusting the shaft seal device 40 having the above-described configuration (hereinafter sometimes referred to as the present method) will be described.
FIG. 4 is a flowchart showing a method for adjusting the shaft seal device 40 according to the embodiment of the present invention.
As shown in FIG. 4, in this method, the pre-tightening step s1, the correlation measurement step s2, and the tightening torque management step s3 are sequentially performed. The pre-tightening step s1 and the correlation measurement step s2 are performed, for example, by the manufacturer of the turbo compressor 5, and the tightening torque management step s3 is performed, for example, at the delivery destination of the turbo compressor 5 (the assembly site of the turbo refrigerator 1). .
 プレ締め付け工程s1は、相関関係計測工程s2の前に、ボルト90の締め付け及び締め付け解除をセットで行う工程である。本手法では、ボルト90の締め付け及び締め付け解除のセットを複数回行う。具体的に、ボルト90のネジ穴53に対する螺入/螺入解除を1セットとして、それを数セット(例えば2~5セット)行ったらプレ締め付け工程s1を終了する。 The pre-tightening step s1 is a step in which the bolt 90 is tightened and unfastened as a set before the correlation measuring step s2. In this method, the bolt 90 is tightened and unfastened multiple times. Specifically, when the screw 90 is screwed / unscrewed into the screw hole 53 as one set and several sets (for example, 2 to 5 sets) are performed, the pre-tightening step s1 is finished.
 次の相関関係計測工程s2は、ボルト90の締め付けトルクと、駆動軸41のVパッキン70に対する摺動トルクとの相関関係を計測する工程である。この工程では、IGVコントロールモータユニット16aを取り外し、駆動軸41にバネ測り等を設置できるようにする。また、ボルト90の締め付けトルクをバネ測り等で計測し、その時の駆動軸41のVパッキン70に対する摺動トルクをバネ測り等で計測する。そして、ボルト90を締め付けつつ、その都度、駆動軸41の摺動トルクを計測し、駆動軸41の摺動トルクが適正な値(図5に示すTr)となるまで計測を行う。 The next correlation measurement step s2 is a step of measuring the correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 with respect to the V packing 70. In this step, the IGV control motor unit 16a is removed, and a spring gauge or the like can be installed on the drive shaft 41. Further, the tightening torque of the bolt 90 is measured by spring measurement or the like, and the sliding torque of the drive shaft 41 at that time with respect to the V packing 70 is measured by spring measurement or the like. Each time the bolt 90 is tightened, the sliding torque of the drive shaft 41 is measured, and the measurement is performed until the sliding torque of the drive shaft 41 reaches an appropriate value (Tr shown in FIG. 5).
 図5は、本発明の実施形態におけるボルト90の締め付けトルクと駆動軸41の摺動トルクとの相関関係を示す図である。
 図5に示すように、パッキン材にVパッキン70を採用した場合に、そのVパッキン70を締め付けるボルト90のトルクと、駆動軸41のVパッキン70に対する摺動トルクとの間に相関関係があることが分かる。Vパッキン70は、グランドパッキン等と異なり、弾性力(復元力)が強く、締め付けて変形しても締め付けを解除すれば、元の形状に戻り易い。したがって、Vパッキン70は、グランドパッキンのように潰されたままになるといったことがなく、結果、このような相関関係が生じるものと考察される。
FIG. 5 is a diagram showing a correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 in the embodiment of the present invention.
As shown in FIG. 5, when the V packing 70 is used as the packing material, there is a correlation between the torque of the bolt 90 that tightens the V packing 70 and the sliding torque of the drive shaft 41 with respect to the V packing 70. I understand that. Unlike the gland packing or the like, the V packing 70 has a strong elastic force (restoring force), and even if it is tightened and deformed, it can easily return to its original shape if the tightening is released. Therefore, it is considered that the V packing 70 does not remain crushed like the gland packing, and as a result, such a correlation occurs.
 また、Vパッキン70による軸封のメカニズムは、次のようなものである。すなわち、ボルト90の締め付けにより、押圧部材80に軸方向の推力が生じる。押圧部材80が軸方向に可動すると、パッキン収容溝60に収容されたVパッキン70が軸方向に縮む。Vパッキン70が軸方向に縮むと、Vパッキン70が径方向に膨らむ。Vパッキン70が径方向に膨らむと、Vパッキン70の内径と駆動軸41の周面がきつく当たり、駆動軸41の摺動摩擦抵抗が大きくなる。駆動軸41の摺動摩擦抵抗(摺動トルク)がある値以上になるとガス漏れがない適正な軸封状態となる。 Moreover, the mechanism of shaft sealing by the V packing 70 is as follows. That is, an axial thrust is generated in the pressing member 80 by tightening the bolt 90. When the pressing member 80 is movable in the axial direction, the V packing 70 accommodated in the packing accommodating groove 60 is contracted in the axial direction. When the V packing 70 contracts in the axial direction, the V packing 70 expands in the radial direction. When the V packing 70 swells in the radial direction, the inner diameter of the V packing 70 and the peripheral surface of the drive shaft 41 come into contact with each other, and the sliding friction resistance of the drive shaft 41 increases. When the sliding frictional resistance (sliding torque) of the drive shaft 41 exceeds a certain value, an appropriate shaft seal state in which no gas leaks is obtained.
 このように、Vパッキン70による軸封のメカニズムからも、ボルト90の締め付けトルクが、駆動軸41のVパッキン70に対する摺動トルクに関係していることが分かる。
 なお、ボルト90の締め付けトルクと駆動軸41の摺動トルクとの相関関係の再現性を高めるためには、パッキン材としてVパッキン70を選定するだけでなく、Vパッキン70の締め付けを行うボルト90も重要である。本手法では、プレ締め付け工程s1において、ボルト90の締め付け及び締め付け解除のセットを複数回行って、ボルト90とネジ穴53とを物理的になじませている。これにより、ボルト90やネジ穴53に細かなバリ等を除去し、Vパッキン70の締め付けを円滑に行えるようにして、ボルト90の締め付けトルクと駆動軸41の摺動トルクとの相関関係の再現性を高めている。
Thus, it can be seen from the shaft sealing mechanism by the V packing 70 that the tightening torque of the bolt 90 is related to the sliding torque of the drive shaft 41 with respect to the V packing 70.
In order to improve the reproducibility of the correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41, not only the V packing 70 is selected as the packing material but also the bolt 90 for tightening the V packing 70. It is also important. In this method, in the pre-tightening step s1, the bolt 90 is tightened and unfastened multiple times to physically fit the bolt 90 and the screw hole 53. As a result, fine burrs and the like are removed from the bolt 90 and the screw hole 53 so that the V packing 70 can be tightened smoothly, and the correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 is reproduced. Increases sex.
 次の締め付けトルク管理工程s3は、相関関係計測工程s2で計測した相関関係に基づいて、ボルト90の締め付けトルクを管理する工程である。締め付けトルク管理工程s3は、ターボ圧縮機5の納入先で行う。ターボ圧縮機5の製造時に軸封装置40の調整を行っても、搬送時に振動等の影響を受けるため、ターボ圧縮機5の納入先で軸封装置40の再調整を行う必要があるためである。この工程は、図2に示すように、駆動軸41とIGVコントロールモータユニット16aとが接続された状態で行う。すなわち、スタッフィングボックス42の脇から露出するボルト90にアクセスし、バネ測り等でボルト90の締め付けトルクが適正な値(図5に示すTc)となるまで締め付けを行う。 The next tightening torque management step s3 is a step of managing the tightening torque of the bolt 90 based on the correlation measured in the correlation measuring step s2. The tightening torque management step s3 is performed at the delivery destination of the turbo compressor 5. Even if the shaft seal device 40 is adjusted at the time of manufacturing the turbo compressor 5, it is affected by vibrations or the like at the time of transportation, so it is necessary to readjust the shaft seal device 40 at the delivery destination of the turbo compressor 5. is there. This step is performed in a state where the drive shaft 41 and the IGV control motor unit 16a are connected as shown in FIG. That is, the bolt 90 exposed from the side of the stuffing box 42 is accessed, and tightening is performed until the tightening torque of the bolt 90 reaches an appropriate value (Tc shown in FIG. 5) by spring measurement or the like.
 図5に示すように、ボルト90の締め付けトルクと駆動軸41の摺動トルクとには相関関係があるため、ボルト90の締め付けトルクを適正な値(Tc)に調整すれば、駆動軸41の摺動トルクも適正な値(Tr)に調整することができる。すなわち、本手法では、ボルト90の締め付けトルクと駆動軸41の摺動トルクとの相関関係を計測し、ボルト90の締め付けトルクを代理として管理することで、駆動軸41の摺動トルクを管理することができる。このため、本手法では、ボルト90の締め付けトルクを管理するだけでよく、例えば、重量のあるIGVコントロールモータユニット16aをいちいち取り外し、駆動軸41にバネ測り等を設置し、駆動軸41の摺動トルクを直接管理する必要がない。この結果、ターボ圧縮機5の納入先での軸封装置40の調整作業の煩雑さを解消し、作業時間を大幅に短縮することができる。 As shown in FIG. 5, there is a correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41. Therefore, if the tightening torque of the bolt 90 is adjusted to an appropriate value (Tc), The sliding torque can also be adjusted to an appropriate value (Tr). That is, in this method, the correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 is measured, and the tightening torque of the bolt 90 is managed as a proxy to manage the sliding torque of the drive shaft 41. be able to. For this reason, in this method, it is only necessary to manage the tightening torque of the bolt 90. For example, the heavy IGV control motor unit 16a is removed one by one, and a spring gauge or the like is installed on the drive shaft 41 to slide the drive shaft 41. There is no need to manage torque directly. As a result, the complexity of the adjustment work of the shaft seal device 40 at the delivery destination of the turbo compressor 5 can be eliminated, and the work time can be greatly shortened.
 したがって、上述の本実施形態においては、駆動軸41周りに形成されたパッキン収容溝60にVパッキン70を収容し、ボルト90の締め付けにより軸方向に可動する押圧部材80によってVパッキン70を変形させて、駆動軸41周りを封止する軸封装置40の調整方法であって、ボルト90の締め付けトルクと、駆動軸41のVパッキン70に対する摺動トルクとの相関関係を計測する相関関係計測工程s2と、相関関係に基づいて、ボルト90の締め付けトルクを管理する締め付けトルク管理工程s3と、を有する。このような手法を採用することによって、ボルト90の締め付けトルクを代理として管理することで、駆動軸41の摺動トルクを管理することができ、軸封装置40の調整作業の煩雑さを解消することができる。 Therefore, in the above-described embodiment, the V packing 70 is accommodated in the packing accommodating groove 60 formed around the drive shaft 41, and the V packing 70 is deformed by the pressing member 80 movable in the axial direction by tightening the bolt 90. A method for adjusting the shaft seal device 40 that seals the periphery of the drive shaft 41, which is a correlation measurement step of measuring the correlation between the tightening torque of the bolt 90 and the sliding torque of the drive shaft 41 with respect to the V packing 70. and a tightening torque management step s3 for managing the tightening torque of the bolt 90 based on the correlation. By adopting such a method, the sliding torque of the drive shaft 41 can be managed by managing the tightening torque of the bolt 90 as a proxy, and the trouble of adjusting the shaft sealing device 40 can be eliminated. be able to.
 以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiment of the present invention has been described above with reference to the drawings, but the present invention is not limited to the above embodiment. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、図6に示すような構成を採用しても良い。なお、図6において、上記実施形態と同一又は同等の構成部分については同一の符号を付している。
 図6は、本発明の別実施形態における軸封装置40の外観を示す斜視面である。
For example, a configuration as shown in FIG. 6 may be adopted. In FIG. 6, the same or equivalent components as those in the above embodiment are given the same reference numerals.
FIG. 6 is a perspective view showing the appearance of the shaft seal device 40 in another embodiment of the present invention.
 図6に示すように、別実施形態の軸封装置40は、DDCコントロールモータユニット17aを筐体20に取り付けるスタッフィングボックス42に設けられている。軸封装置40及びスタッフィングボックス42の構成は、上記実施形態と略同一である。図1に示すように、出口絞り弁17も筐体20を貫通する駆動軸54によって駆動するため、駆動軸54の周りを軸封装置40で封止する必要がある。この別実施形態であっても、上記手法を採用すれば、DDCコントロールモータユニット17aを取り外すことなく、軸封装置40の調整が適正に行えるため、調整作業の煩雑さを解消することができる。 As shown in FIG. 6, the shaft seal device 40 of another embodiment is provided in a stuffing box 42 that attaches the DDC control motor unit 17 a to the housing 20. The configurations of the shaft seal device 40 and the stuffing box 42 are substantially the same as those in the above embodiment. As shown in FIG. 1, since the outlet throttle valve 17 is also driven by the drive shaft 54 that penetrates the housing 20, it is necessary to seal the periphery of the drive shaft 54 with the shaft seal device 40. Even in this alternative embodiment, if the above method is adopted, the shaft seal device 40 can be adjusted properly without removing the DDC control motor unit 17a, so that the complexity of the adjustment work can be eliminated.
 また、例えば、上記実施形態では、ターボ圧縮機のインレットガイドベーンの駆動軸や出口絞り弁の駆動軸の周りを封止する軸封装置の調整方法に本手法を適用した形態を例示したが、本発明はこの形態に限定されるものではない。例えば、本手法は、同じく流体を扱う弁装置の弁軸の軸封装置の調整方法にも適用することができる。 Further, for example, in the above-described embodiment, the mode in which the present technique is applied to the adjustment method of the shaft seal device that seals the drive shaft of the inlet guide vane of the turbo compressor and the drive shaft of the outlet throttle valve is exemplified. The present invention is not limited to this form. For example, the present technique can also be applied to a method for adjusting a shaft seal device of a valve shaft of a valve device that also handles fluid.
 本発明によれば、作業の煩雑さを解消できる軸封装置の調整方法が得られる。 According to the present invention, a method for adjusting a shaft seal device that can eliminate the complexity of work can be obtained.
1 ターボ冷凍機
5 ターボ圧縮機
16 インレットガイドベーン
16a IGVコントロールモータユニット(モータユニット)
17 出口絞り弁
17a DDCコントロールモータユニット(モータユニット)
40 軸封装置
60 パッキン収容溝
61 溝底
70 Vパッキン
70A 第1のVパッキン
70B 第2のVパッキン
71 雄アダプタ
72 雌アダプタ
73 V字ピース
80 押圧部材
90 ボルト
s1 プレ締め付け工程
s2 相関関係計測工程
s3 締め付けトルク管理工程
DESCRIPTION OF SYMBOLS 1 Turbo refrigerator 5 Turbo compressor 16 Inlet guide vane 16a IGV control motor unit (motor unit)
17 Outlet throttle valve 17a DDC control motor unit (motor unit)
40 shaft seal device 60 packing receiving groove 61 groove bottom 70 V packing 70A first V packing 70B second V packing 71 male adapter 72 female adapter 73 V-shaped piece 80 pressing member 90 bolt s1 pre-tightening step s2 correlation measuring step s3 Tightening torque management process

Claims (8)

  1.  駆動軸周りに形成されたパッキン収容溝にVパッキンを収容し、ボルトの締め付けにより軸方向に可動する押圧部材によって前記Vパッキンを変形させて、前記駆動軸周りを封止する軸封装置の調整方法であって、
     前記ボルトの締め付けトルクと、前記駆動軸の前記Vパッキンに対する摺動トルクとの相関関係を計測する相関関係計測工程と、
     前記相関関係に基づいて、前記ボルトの締め付けトルクを管理する締め付けトルク管理工程と、を有する軸封装置の調整方法。
    Adjustment of the shaft seal device that houses the V packing in the packing housing groove formed around the drive shaft, deforms the V packing by a pressing member that moves in the axial direction by tightening a bolt, and seals around the drive shaft A method,
    A correlation measuring step of measuring a correlation between a tightening torque of the bolt and a sliding torque of the drive shaft with respect to the V packing;
    And a tightening torque management step for managing a tightening torque of the bolt based on the correlation.
  2.  前記相関関係計測工程の前に、前記ボルトの締め付け及び締め付け解除をセットで行うプレ締め付け工程を有する請求項1に記載の軸封装置の調整方法。 The method for adjusting a shaft seal device according to claim 1, further comprising a pre-tightening step of tightening and releasing the bolts as a set before the correlation measurement step.
  3.  前記プレ締め付け工程では、前記ボルトの締め付け及び締め付け解除のセットを複数回行う請求項2に記載の軸封装置の調整方法。 The adjusting method of the shaft seal device according to claim 2, wherein in the pre-tightening step, the bolt is tightened and the tightening is released a plurality of times.
  4.  前記駆動軸には、モータユニットが接続されており、
     前記締め付けトルク管理工程は、前記駆動軸と前記モータユニットとが接続された状態で行う請求項1~3のいずれか一項に記載の軸封装置の調整方法。
    A motor unit is connected to the drive shaft,
    The shaft sealing device adjusting method according to any one of claims 1 to 3, wherein the tightening torque management step is performed in a state where the drive shaft and the motor unit are connected.
  5.  前記Vパッキンは、雄アダプタと、雌アダプタと、前記雄アダプタおよび前記雌アダプタの間に挟まれて形成される複数のV字ピースと、を有し、
     前記パッキン収容溝には、その溝底に前記雄アダプタ側を向けた第1のVパッキンと、前記第1のVパッキンの前記雌アダプタ側に、前記雌アダプタ側を向けた第2のVパッキンと、が収容されている請求項1に記載の軸封装置の調整方法。
    The V packing has a male adapter, a female adapter, and a plurality of V-shaped pieces formed between the male adapter and the female adapter,
    The packing receiving groove has a first V packing with the male adapter side facing the groove bottom, and a second V packing with the female adapter side facing the female adapter side of the first V packing. The method for adjusting the shaft seal device according to claim 1, wherein:
  6.  前記Vパッキンは、雄アダプタと、雌アダプタと、前記雄アダプタおよび前記雌アダプタの間に挟まれて形成される複数のV字ピースと、を有し、
     前記パッキン収容溝には、その溝底に前記雄アダプタ側を向けた第1のVパッキンと、前記第1のVパッキンの前記雌アダプタ側に、前記雌アダプタ側を向けた第2のVパッキンと、が収容されている請求項2に記載の軸封装置の調整方法。
    The V packing has a male adapter, a female adapter, and a plurality of V-shaped pieces formed between the male adapter and the female adapter,
    The packing receiving groove has a first V packing with the male adapter side facing the groove bottom, and a second V packing with the female adapter side facing the female adapter side of the first V packing. The method for adjusting the shaft seal device according to claim 2, wherein:
  7.  前記Vパッキンは、雄アダプタと、雌アダプタと、前記雄アダプタおよび前記雌アダプタの間に挟まれて形成される複数のV字ピースと、を有し、
     前記パッキン収容溝には、その溝底に前記雄アダプタ側を向けた第1のVパッキンと、前記第1のVパッキンの前記雌アダプタ側に、前記雌アダプタ側を向けた第2のVパッキンと、が収容されている請求項3に記載の軸封装置の調整方法。
    The V packing has a male adapter, a female adapter, and a plurality of V-shaped pieces formed between the male adapter and the female adapter,
    The packing receiving groove has a first V packing with the male adapter side facing the groove bottom, and a second V packing with the female adapter side facing the female adapter side of the first V packing. The method for adjusting a shaft seal device according to claim 3, wherein:
  8.  前記Vパッキンは、雄アダプタと、雌アダプタと、前記雄アダプタおよび前記雌アダプタの間に挟まれて形成される複数のV字ピースと、を有し、
     前記パッキン収容溝には、その溝底に前記雄アダプタ側を向けた第1のVパッキンと、前記第1のVパッキンの前記雌アダプタ側に、前記雌アダプタ側を向けた第2のVパッキンと、が収容されている請求項4に記載の軸封装置の調整方法。
    The V packing has a male adapter, a female adapter, and a plurality of V-shaped pieces formed between the male adapter and the female adapter,
    The packing receiving groove has a first V packing with the male adapter side facing the groove bottom, and a second V packing with the female adapter side facing the female adapter side of the first V packing. The method for adjusting the shaft seal device according to claim 4, wherein:
PCT/JP2014/066423 2013-07-18 2014-06-20 Adjustment method for shaft seal device WO2015008577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-149465 2013-07-18
JP2013149465A JP5994744B2 (en) 2013-07-18 2013-07-18 Adjusting method of shaft seal device

Publications (1)

Publication Number Publication Date
WO2015008577A1 true WO2015008577A1 (en) 2015-01-22

Family

ID=52346049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066423 WO2015008577A1 (en) 2013-07-18 2014-06-20 Adjustment method for shaft seal device

Country Status (2)

Country Link
JP (1) JP5994744B2 (en)
WO (1) WO2015008577A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741514B (en) 2014-07-03 2021-10-01 美商唯景公司 Laser patterning electrochromic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244164U (en) * 1988-09-20 1990-03-27
JPH0399277U (en) * 1990-01-30 1991-10-16
JP2004169882A (en) * 2002-11-22 2004-06-17 Nippon Valqua Ind Ltd Gland packing, and method for manufacturing the same
JP2013019445A (en) * 2011-07-08 2013-01-31 Ito Tekko Kk Method and device for indicating amount of packing pressure in joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244164U (en) * 1988-09-20 1990-03-27
JPH0399277U (en) * 1990-01-30 1991-10-16
JP2004169882A (en) * 2002-11-22 2004-06-17 Nippon Valqua Ind Ltd Gland packing, and method for manufacturing the same
JP2013019445A (en) * 2011-07-08 2013-01-31 Ito Tekko Kk Method and device for indicating amount of packing pressure in joint

Also Published As

Publication number Publication date
JP5994744B2 (en) 2016-09-21
JP2015021549A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
KR20130001221A (en) Integral compressor-expander
EP1683971A2 (en) Scroll fluid machine
US9945384B2 (en) Turbo compressor and turbo refrigerator
JP6728228B2 (en) Screw compressors and compressor elements and gearboxes utilized by screw compressors
JP2009103012A (en) Screw fluid machine
WO2014196465A1 (en) Sealing mechanism and turbo refrigerator
JP2019525060A (en) Screw compressor with male and female rotors
JP2011001937A (en) Screw compressor
US20180223851A1 (en) Compressor with oil pump assembly
US9739289B2 (en) Turbo-compressor
WO2015008577A1 (en) Adjustment method for shaft seal device
US8959949B2 (en) Turbo compressor
JP5614050B2 (en) Turbo compressor and turbo refrigerator
WO2015005274A1 (en) Turbo compressor and turbo refrigerating machine
JP5272941B2 (en) Turbo compressor and refrigerator
WO2022030185A1 (en) Compressor and method for manufacturing compressor
US20110219813A1 (en) Turbo compressor and turbo refrigerator
WO2018139500A1 (en) Scroll compressor
US8739561B2 (en) Turbo compressor, turbo refrigerator, and method of manufacturing turbo compressor
JP5478273B2 (en) Oil-free screw compressor
JP4773877B2 (en) Air conditioning compressor
JP2014101887A (en) Oil-free screw compressor
Arztmann Experience with dry running vacuum pumps in helium service
CZ308021B6 (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825651

Country of ref document: EP

Kind code of ref document: A1