WO2015008512A1 - 伝送装置、伝送システムおよび経路切替方法 - Google Patents

伝送装置、伝送システムおよび経路切替方法 Download PDF

Info

Publication number
WO2015008512A1
WO2015008512A1 PCT/JP2014/060070 JP2014060070W WO2015008512A1 WO 2015008512 A1 WO2015008512 A1 WO 2015008512A1 JP 2014060070 W JP2014060070 W JP 2014060070W WO 2015008512 A1 WO2015008512 A1 WO 2015008512A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wavelength
optical
unit
path
Prior art date
Application number
PCT/JP2014/060070
Other languages
English (en)
French (fr)
Inventor
英生 縣島
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to RU2016104878A priority Critical patent/RU2637511C2/ru
Priority to JP2015527194A priority patent/JP6090876B2/ja
Priority to BR112016000693-3A priority patent/BR112016000693B1/pt
Priority to MA38819A priority patent/MA38819B1/fr
Publication of WO2015008512A1 publication Critical patent/WO2015008512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems

Definitions

  • the present invention relates to a transmission apparatus that transmits an optical signal, and more particularly, to a wavelength division multiplexing transmission apparatus that supports a line redundancy system capable of switching paths in order to avoid a failure.
  • a line redundancy method is known as a method for improving reliability related to transmission of a WDM (Wavelength Division Multiplexing) signal by switching a route for transmitting a WDM signal to avoid a failure. Yes.
  • WDM Widelength Division Multiplexing
  • a wavelength multiplexing transmission apparatus serving as a receiving end that receives a WDM signal usually detects a path failure.
  • a wavelength division multiplex transmission apparatus at a receiving end that receives a WDM signal monitors each input optical level of an optical wavelength signal in a WDM signal input from each of a plurality of paths using an optical monitoring apparatus. Based on the monitoring result, it is detected whether or not the optical wavelength signal is blocked.
  • the wavelength division multiplexing transmission apparatus determines that a failure has occurred in the operation path, and transmits the WDM signal.
  • the transmission route is switched from the active route to the standby route.
  • the above line redundancy method only detects a failure based on the input light level, so it cannot monitor the frame error or bit error of the optical signal, and cannot accurately detect the failure. There's a problem.
  • Patent Document 1 discloses a communication device that can detect a frame error and a bit error of an optical signal.
  • the communication apparatus includes a plurality of optical couplers provided corresponding to each of a plurality of paths, and a plurality of monitoring devices provided corresponding to each of the plurality of paths.
  • the one optical signal is branched, one is output to a predetermined route, and the other is input to the monitoring device corresponding to its own route.
  • Each monitoring device analyzes the input optical signal and detects a frame error or a bit error.
  • Patent Document 1 has a problem that the scale and cost of the communication device increase because a monitoring device for analyzing the optical signal must be provided for each path.
  • an optical wavelength converter for relay that performs regenerative relay processing on a WDM signal may be provided on the path.
  • the optical wavelength conversion unit that performs regenerative repeat processing in the optical wavelength conversion device for relay correctly corrects the failure with the optical wavelength multiplexing transmission device at the receiving end.
  • a general wavelength multiplexing transmission apparatus extracts an optical wavelength signal that needs to be converted from a WDM signal, and outputs it to an optical wavelength conversion unit that converts the wavelength of the extracted optical wavelength signal.
  • a wavelength division multiplexing transmission apparatus that outputs a WDM signal as it is to an optical wavelength converter.
  • the WDM signal is input as it is to the optical monitoring device that monitors the optical level, and even when a specific optical wavelength signal is blocked, the blockage is detected due to the influence of other optical wavelength signals. There are concerns that cannot be made.
  • An object of the present invention is to provide a transmission apparatus, a transmission system, and a path switching method that can solve at least the problem that the scale and cost of a communication apparatus increase.
  • a transmission apparatus is provided with a plurality of paths corresponding to a plurality of paths for transmitting wavelength multiplexed signals in which a plurality of optical wavelength signals having different wavelengths are combined, and the wavelength multiplexed signals transmitted through the corresponding paths.
  • an optical monitoring unit that detects an optical level of an optical wavelength signal included in the wavelength multiplexed signal, and any one of the plurality of paths is selected, and the wavelength multiplexed signal or the wavelength multiplexed signal transmitted through the selected path is selected. Based on the switching unit that outputs the included optical wavelength signal as an optical signal, the light level detected by the optical monitoring unit, and the optical signal output from the switching unit, a fault that has occurred in each path is detected.
  • a signal processing unit that switches a path selected by the switching unit according to the detection result.
  • the transmission system is provided with a plurality of paths corresponding to each of a plurality of paths for transmitting wavelength multiplexed signals in which a plurality of optical wavelength signals having different wavelengths are combined, and the wavelength multiplexed signals transmitted through the corresponding paths.
  • an optical monitoring unit that detects an optical level of an optical wavelength signal included in the wavelength multiplexed signal, and any one of the plurality of paths is selected, and the wavelength multiplexed signal or the wavelength multiplexed signal transmitted through the selected path is selected. Based on the monitoring result of the optical level by the optical monitoring unit and the optical signal output from the switching unit, a failure occurring in each path is detected based on the switching unit that outputs the included optical wavelength signal as an optical signal.
  • a signal processing unit that switches a path selected by the switching unit according to the detection result, and a plurality of relay transmission devices belonging to each of the plurality of paths. And, with a.
  • the path switching method detects the optical level of a wavelength multiplexed signal in which a plurality of optical wavelength signals having different wavelengths transmitted through each of a plurality of paths are combined or an optical wavelength signal included in the wavelength multiplexed signal. Selecting one of the plurality of paths, outputting a wavelength multiplexed signal transmitted through the selected path or an optical wavelength signal included in the wavelength multiplexed signal as an optical signal, and detecting the detected optical level; Based on the output optical signal, a failure occurring in each path is detected, and the selected path is switched according to the detection result.
  • FIG. 1 is a diagram showing a wavelength division multiplexing transmission system according to an embodiment of the present invention.
  • the wavelength division multiplexing transmission system shown in FIG. 1 is a transmission system that transmits WDM signals, and includes wavelength division multiplexing transmission apparatuses 1 to 4.
  • the WDM signal is transmitted from the wavelength division multiplexing transmission apparatus 1 to the wavelength division multiplexing transmission apparatus 3.
  • the path from the wavelength division multiplexing transmission apparatus 1 to the wavelength division multiplexing transmission apparatus 3 includes a path A where the wavelength division multiplexing transmission apparatus 2 is interposed and a path B where the wavelength division multiplexing transmission apparatus 4 is interposed.
  • the wavelength division multiplexing transmission device 1 is a transmission device serving as a transmission end that transmits a WDM signal.
  • the wavelength multiplexing transmission apparatus 1 includes a plurality of optical wavelength conversion units 11, optical wavelength multiplexing units 12A and 12B, wavelength monitoring units 13A and 13B, a monitoring control unit 14, and optical monitoring control units 15A and 15B.
  • the plurality of optical wavelength conversion units 11 and the monitoring control unit 14 have a configuration common to the paths A and B, and the optical wavelength multiplexing unit 12A, the wavelength monitoring unit 13A, and the optical monitoring control unit 15A correspond to the path A.
  • the optical wavelength multiplexing unit 12B, the wavelength monitoring unit 13B, and the optical monitoring control unit 15B are configurations corresponding to the path B.
  • Each optical wavelength converter 11 receives a client signal, which is an optical signal having a specific wavelength, from a client device (not shown) such as a router. Each optical wavelength converter 11 converts the wavelength of the inputted client signal into a wavelength for WDM signal, and outputs the client signal obtained by converting the wavelength as an optical wavelength signal. In addition, the wavelength of the optical wavelength signal which each optical wavelength conversion part 11 outputs differs from each other.
  • Each optical wavelength conversion unit 11 specifically includes a signal processing unit 111 and a coupler unit 112.
  • the client signal is input to the signal processing unit 111.
  • the signal processing unit 111 converts the wavelength of the input client signal into a wavelength for the WDM signal, and outputs the client signal obtained by converting the wavelength as an optical wavelength signal.
  • the coupler unit 112 branches the optical wavelength signal output from the signal processing unit 111 into two, outputs one optical wavelength signal to the optical wavelength multiplexing unit 12A of the path A, and transmits the other optical wavelength signal of the path B. It outputs to the optical wavelength multiplexing part 12B.
  • the optical wavelength multiplexer 12A multiplexes the optical wavelength signals output from the optical wavelength converters 11 to generate a WDM signal obtained by multiplexing the optical wavelength signals, and outputs the generated WDM signal. .
  • the wavelength monitoring unit 13A detects each wavelength of the optical wavelength signal included in the WDM signal generated by the optical wavelength multiplexing unit 12A, and notifies the optical monitoring control unit 15A of the wavelength via the monitoring control unit 14. Specifically, the wavelength monitoring unit 13A, for each wavelength of all the optical wavelength signals that can be included in the WDM signal, has its wavelength included in the WDM signal generated by the optical wavelength multiplexing unit 12A. Whether the wavelength actually exists is detected.
  • the monitoring control unit 14 detects a failure that occurs in each optical wavelength conversion unit 11, and notifies the failure to the optical monitoring control units 15A and 15B.
  • the optical supervisory control unit 15A generates an optical supervisory signal indicating the wavelength and the failure notified from each of the wavelength supervisory part 13A and the supervisory controller 14, and the optical supervisory signal is output from the optical wavelength multiplexer 12A. Are combined and output.
  • the optical wavelength multiplexing unit 12B, the wavelength monitoring unit 13B, and the optical monitoring control unit 15B have the same functions as the optical wavelength multiplexing unit 12A, the wavelength monitoring unit 13A, and the optical monitoring control unit 15A.
  • the same processing as that performed by the optical wavelength multiplexing unit 12A, the wavelength monitoring unit 13A, and the optical monitoring control unit 15A is performed on the WDM signal output to.
  • the wavelength division multiplexing transmission apparatus 2 is a relay transmission apparatus that relays a WDM signal.
  • the wavelength multiplexing transmission apparatus 2 includes a wavelength monitoring unit 21, an optical wavelength separation unit 22, a plurality of optical wavelength conversion units 23, an optical wavelength multiplexing unit 24, a wavelength monitoring unit 25, a monitoring control unit 26, and an optical monitoring. And a control unit 27.
  • the wavelength monitoring unit 21 detects each wavelength of the optical wavelength signal included in the WDM signal output from the wavelength multiplexing transmission apparatus 1 and notifies the optical monitoring control unit 27 of the wavelength via the monitoring control unit 26. Specifically, for each wavelength of all optical wavelength signals that can be included in the optical wavelength multiplexed signal, the wavelength monitoring unit 21 includes the wavelength in the WDM signal output from the wavelength multiplexing transmission device 1. It is detected whether it actually exists as the wavelength of the optical wavelength signal.
  • the optical wavelength demultiplexing unit 22 demultiplexes the WDM signal output from the wavelength multiplexing transmission apparatus 1 into an optical wavelength signal and an optical monitoring signal included in the WDM signal, and outputs the demultiplexed signals. At this time, the optical wavelength separation unit 22 outputs the optical monitoring signal to the monitoring control unit 26 and outputs each of the optical wavelength signals to each optical wavelength conversion unit 23.
  • Each optical wavelength converter 23 is sometimes called a regenerative repeater.
  • Each optical wavelength converter 23 corresponds to each wavelength of the optical wavelength signal, performs regenerative relay processing on the optical wavelength signal having the corresponding wavelength, and outputs the optical wavelength signal subjected to the regenerative relay processing.
  • the regenerative relay process is, for example, a 3R relay process. Note that the 3R relay processing includes equalization (Reshaping) processing, retiming processing, and identification regeneration (Regenerating) processing.
  • each optical wavelength converter 23 performs a detection process for detecting a failure that has occurred in the path A based on an optical wavelength signal having a corresponding wavelength.
  • each optical wavelength conversion unit 23 When a failure is detected in the detection process, each optical wavelength conversion unit 23 outputs an alarm signal indicating the failure as an optical wavelength signal, or the optical monitoring control unit 26 detects the failure via the monitoring control unit 26. Notification processing to notify 27 is performed. More specifically, in each optical wavelength converter 23, the path A to which the wavelength division multiplexing transmission device 2 belongs is an active path that is currently used for transmission of WDM signals, or a fault occurs in the active path. A route flag indicating whether the route is a standby route to be switched when an error occurs is set. Each optical wavelength conversion unit 23 performs output processing when the route flag indicates an active route, and performs notification processing when the route flag indicates a standby route.
  • the alarm signal output in the output process is an AIS (alarm indication signal) signal or a signal corresponding thereto, and is preferably a signal having a wavelength corresponding to the optical wavelength converter 23.
  • AIS alarm indication signal
  • the optical wavelength multiplexer 24 multiplexes the optical wavelength signals output from the optical wavelength converters 23 to generate a WDM signal obtained by multiplexing the optical wavelength signals, and outputs the generated WDM signal. .
  • the wavelength monitoring unit 25 detects each wavelength of the optical wavelength signal included in the WDM signal generated by the optical wavelength multiplexing unit 24 and notifies the optical monitoring control unit 27 of the wavelength via the monitoring control unit 26. Specifically, for each wavelength of all optical wavelength signals that can be included in the WDM signal, the wavelength monitoring unit 25 has an optical wavelength signal whose wavelength is included in the WDM signal generated by the optical wavelength multiplexing unit 12A. It is detected whether or not it exists as a wavelength.
  • the supervisory control unit 26 detects a fault that has occurred in the wavelength division multiplex transmission device 1 based on the optical supervisory signal from the optical wavelength demultiplexing unit 22 and notifies the optical supervisory control unit 27 of the fault. Also, the supervisory control unit 26 receives setting information indicating whether the path A is the active system from the wavelength division multiplex transmission apparatus 3, and changes the path flag set in each optical wavelength conversion unit 23 based on the information. To do.
  • the optical monitoring control unit 27 generates an optical monitoring signal indicating a failure and a wavelength notified from each of the optical wavelength conversion units 23, the wavelength monitoring unit 25, and the monitoring control unit 26, and the optical monitoring signal is transmitted to the optical wavelength multiplexing unit.
  • the signal is combined with the WDM signal output from 12A and output.
  • the wavelength multiplexing transmission device 4 is a relay transmission device that relays WDM signals.
  • the wavelength multiplexing transmission device 4 includes a wavelength monitoring unit 41, an optical wavelength separation unit 42, a plurality of optical wavelength conversion units 43, an optical wavelength multiplexing unit 44, a wavelength monitoring unit 45, a monitoring control unit 46, and an optical monitoring control. Part 47.
  • Each part of the wavelength division multiplexing transmission device 4 has the same function as that of the configuration of the same name of the wavelength division multiplexing transmission device 2, and performs the same processing as the configuration of the same name on the WDM signal transmitted through the path B. Do.
  • the wavelength division multiplexing transmission device 3 is a transmission device serving as a receiving end of the WDM signal.
  • the wavelength multiplexing transmission apparatus 3 includes optical monitoring control units 31A and 31B, optical wavelength separation units 32A and 32B, a plurality of optical wavelength conversion units 33, and a monitoring control unit 34.
  • the optical monitoring control unit 31A and the optical wavelength separation unit 32A have a configuration corresponding to the path A, and the optical monitoring control unit 31B and the optical wavelength separation unit 32B have a configuration corresponding to the path B.
  • the control unit 34 has a configuration common to the routes A and B.
  • the optical supervisory control unit 31A is an acquisition unit that acquires an optical supervisory signal from the WDM signal output from the wavelength division multiplex transmission device 2.
  • the optical monitoring control unit 31A notifies the optical wavelength conversion unit 33 of the failure and wavelength indicated by the acquired optical monitoring signal via the monitoring control unit 34.
  • the optical wavelength demultiplexing unit 32A demultiplexes the WDM signal output from the wavelength division multiplex transmission device 2 into an optical wavelength signal and an optical monitoring signal included in the WDM signal, and each of the demultiplexed optical wavelength signals. Output to the optical wavelength converter 33.
  • the optical supervisory control unit 31B and the optical wavelength demultiplexing unit 32B have the same functions as the optical supervisory control unit 31A and the optical wavelength demultiplexing unit 32B, and for the WDM signal that transmits the path B output from the wavelength division multiplexing transmission device 2 Then, the same processing as that of the optical monitoring control unit 31B and the optical wavelength separation unit 32B is performed.
  • Each optical wavelength converter 33 corresponds to each of the wavelengths of the optical wavelength signal, and receives the optical wavelength signal having the corresponding wavelength from both of the optical wavelength separators 32A and 32B.
  • Each optical wavelength converter 33 selects one of paths A and B, and an optical wavelength signal demultiplexed from the WDM signal transmitted through the selected path, that is, optical wavelength separation corresponding to the selected path.
  • the optical wavelength signal received from the unit 32A or 32B is output as a client signal to a client device (not shown).
  • Each of the optical wavelength converters 33 specifically includes optical monitoring units 331A and 331B, a switching unit 332, and a signal processing unit 333.
  • the optical monitoring unit 331A has a configuration corresponding to the path A
  • the optical monitoring unit 331B has a configuration corresponding to the path B.
  • the optical monitoring unit 331A detects the optical level of the optical wavelength signal received from the optical wavelength demultiplexing unit 32A, and outputs the optical level to each signal processing unit 333 via the monitoring control unit 34.
  • the light monitoring unit 331B detects the light level of the light wavelength signal received from the light wavelength separation unit 32B, and outputs the light level to each signal processing unit 333 via the monitoring control unit 34.
  • the switching unit 332 selects one of the paths A and B, and outputs an optical wavelength signal demultiplexed from the wavelength multiplexed signal transmitted through the selected path.
  • the signal processing unit 333 converts the wavelength of the optical wavelength signal output from the switching unit 332 into a wavelength for the client device, and outputs the converted optical wavelength signal to the client device. Since the optical wavelength signal in the wavelength multiplexed signal transmitted through the path selected by the switching unit 332 is output to the client device, the path selected by the switching unit 332 is the active system path. Become.
  • the signal processing unit 333 is based on the failure and wavelength notified from the optical monitoring control units 31A and 31B, the optical level notified from the optical monitoring units 331A and 331B, and the optical wavelength signal output from the switching unit 332.
  • the failure occurring in each of the routes A and B is detected, and the route selected by the switching unit 332 is switched based on the detection result.
  • the signal processing unit 333 sets the route selected by the switching unit 332 as an active route, sets the route not selected by the switching unit 332 as a standby route, and indicates the setting.
  • the setting information is notified to the monitoring control unit 34.
  • the signal processing unit 333 detects a failure that has occurred in the operating system path based on the optical wavelength signal output from the switching unit 332. At this time, the signal processing unit 333 determines whether or not the optical wavelength signal is an alarm signal. If the optical wavelength signal is an alarm signal, the signal processing unit 333 determines that a failure has occurred in the operation path. If the optical wavelength signal is not an alarm signal, the optical wavelength signal is analyzed to detect whether the optical wavelength signal has an error (for example, at least one of a frame error and a bit error). It is determined that a failure has occurred on the active route. Note that the signal processing unit 333 may use not only the optical wavelength signal but also the information notified from the optical monitoring control unit and the optical monitoring unit corresponding to the path of the active system for detection of the failure.
  • the standby path is not connected to the standby path to each signal processing unit 333, and therefore is different from the failure detection by the active path A.
  • the signal processing unit 333 determines the light level notified from the optical monitoring unit corresponding to the standby path and the failure and wavelength notified from the optical monitoring control unit 31A corresponding to the standby path. Based on this, a failure in the backup path is detected. For example, when the light level falls below a predetermined threshold, when a failure is notified from the light monitoring control unit 31A, or when the wavelength notified from the light monitoring control unit 31A no longer exists, the path of the standby system Detect failure.
  • the monitoring control unit 34 notifies the setting information from each signal processing unit 333 to the monitoring control units 26 and 46 of the wavelength division multiplexing transmission apparatuses 2 and 4.
  • the coupler unit 112 and the switching unit 332 are described as being provided inside the optical wavelength conversion units 11 and 33, but may be provided outside them. Further, in the present embodiment, the coupler unit that combines the WDM signal and the optical monitoring signal is described as being provided in the optical monitoring control units 15A, 15B, 27, and 47. However, the coupler unit may be provided outside them. Good.
  • optical wavelength conversion unit 23 and 43 may not be provided or may be provided in multiple stages.
  • Each of the wavelength division multiplexing transmission apparatuses 2 and 4 may be provided in multiple stages.
  • the optical wavelength demultiplexing units 22, 42, 32A and 32B output the WDM signal after separating it into the optical wavelength signal
  • the WDM signal may be output as it is.
  • the switching unit 332 outputs the wavelength multiplexed signal transmitted through the selected path as it is. Therefore, the switching unit 332 selects any one of a plurality of paths, and outputs the wavelength multiplexed signal transmitted through the selected path or the optical wavelength signal included in the wavelength multiplexed signal as an optical signal.
  • the WDM signal is transmitted in one direction from the wavelength division multiplexing transmission apparatus 1 to the wavelength division multiplexing transmission apparatus 3 in order to simplify the description. It is desirable that the WDM signal be configured to be bidirectional so that the WDM signal is transmitted from the wavelength division multiplexing transmission apparatus 3 to the wavelength division multiplexing transmission apparatus 1 as well.
  • 2 to 5 are diagrams for explaining the operation of the wavelength division multiplexing transmission system.
  • the route A is used as an active route and the route B is used as a standby route.
  • each optical wavelength conversion unit 23 of the wavelength division multiplexing transmission apparatus 2 when the path A is disconnected between the wavelength division multiplexing transmission apparatuses 1 and 2 as shown in FIG. 2, each optical wavelength conversion unit 23 of the wavelength division multiplexing transmission apparatus 2 generates an alarm signal to generate an optical signal. It outputs to the optical wavelength multiplexing part 24 as a wavelength signal.
  • each signal processing unit 333 of the wavelength division multiplexing apparatus 3 detects that a failure has occurred in the path A because the optical wavelength signal is an alarm signal.
  • each signal processing unit 333 since no failure has occurred in the route B, each signal processing unit 333 switches the route selected by each switching unit 332 from the route A to the route B. As a result, it is possible to avoid a failure that has occurred in the route A.
  • each signal processing unit 333 recognizes that a failure has occurred in the path B based on the notified detection result.
  • each signal processing unit 333 detects that a failure has occurred in the route A, as in the example of FIG. In this case, since a failure has occurred in the route B, each signal processing unit 333 does not switch the route selected by the switching unit 332.
  • the wavelength monitoring unit 45 in the wavelength division multiplexing transmission device 4 causes the optical wavelength conversion unit 43 in which the failure occurs in the output unit.
  • the corresponding wavelength is not detected, and this is reflected in the optical monitoring signal output from the optical monitoring control unit 47.
  • the failure in the output unit of the optical wavelength conversion unit 43 is notified to the signal processing unit 333 of the optical wavelength conversion unit 33 via the optical monitoring control unit 31B and the monitoring control unit 34 in the wavelength multiplexing transmission device 3. It is recognized that a failure has occurred in path B.
  • the optical monitoring unit 331B of the optical wavelength conversion unit 33 corresponding to the wavelength corresponding to the optical wavelength conversion unit 43 in which the failure has occurred in the output unit also detects that the optical level of the optical wavelength signal having the wavelength has decreased. Therefore, the signal processing unit 333 also detects a failure by using the light level notified from the light monitoring unit 331B.
  • each signal processing unit 333 detects that a failure has occurred in the route A in the same manner as in the example of FIG. In this case, since a failure has occurred in the route B, each signal processing unit 333 does not switch the route selected by the switching unit 332.
  • the optical wavelength demultiplexing units 32A and 32B When the optical wavelength demultiplexing units 32A and 32B output the WDM signal as it is, it may be difficult for the optical monitoring units 331A and 331B to detect a decrease in the optical level. For this reason, since the failure cannot be accurately detected only by the light monitoring units 331A and 331B, in this embodiment, not only the light monitoring units 331A and 331B but also the light monitoring control units 31A and 31B are used for detecting the failure. Yes.
  • the optical wavelength conversion unit 43 in the wavelength division multiplexing transmission apparatus 4 detects a failure, and an optical monitoring signal indicating the failure is an optical signal.
  • the monitoring control unit 47 transmits the signal to the optical monitoring control unit 31B in the downstream wavelength division multiplex transmission apparatus 3, and the failure is notified to each signal processing unit 333 via the monitoring control unit 34, and the failure occurs in the path B. It is recognized.
  • each signal processing unit 333 detects that a failure has occurred in the route A in the same manner as in the example of FIG. In this case, since a failure has occurred in the route B, each signal processing unit 333 does not switch the route selected by the switching unit 332.
  • the wavelength multiplexed signal transmitted through the selected path or the optical wavelength signal included in the wavelength multiplexed signal, and the wavelength multiplexed signal transmitted through each path or the wavelength multiplexed signal are transmitted. Since the failure is detected based on the optical wavelength signal included in the signal, it is not necessary to provide a signal processing unit for analyzing the wavelength multiplexed signal or the optical wavelength signal for each path, thereby increasing the scale and cost of the communication device. It becomes possible to suppress. It is also possible to detect a frame error, a bit error, etc. of the wavelength multiplexed signal transmitted through the operational transmission line.
  • the optical monitoring signal indicating the failure is combined with the WDM signal and notified from the upstream to the downstream, the configuration in which the WDM signal is output to the optical wavelength conversion unit as it is is based on the optical monitoring signal. It becomes possible to detect the failure.
  • an alarm signal indicating the failure is output as a wavelength optical signal. Since the wavelength optical signal does not need to be blocked, it is possible to suppress the optical level of the WDM signal from changing suddenly and affecting the WDM signal transmitted through another path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 通信装置の規模やコストが増加してしまうという問題を解決することが可能な伝送装置を提供する。 光監視部331Aおよび331Bは、波長が異なる複数の光波長信号が合波された波長多重信号を伝送する複数の経路のそれぞれに対応して設けられ、その対応する経路を伝送してきた波長多重信号またはその波長多重信号に含まれる光波長信号の光レベルを検知する。切替部332は、複数の経路のいずれかを選択し、その選択した経路を伝送してきた波長多重信号またはその波長多重信号に含まれる光波長信号を光信号として出力する。信号処理部333は、光監視部331Aおよび331Bにて検知された光レベルと、切替部332から出力された光信号に基づいて、各経路で発生した障害を検知し、当該検知結果に応じて、切替部332にて選択される経路を切り換える。

Description

伝送装置、伝送システムおよび経路切替方法
 本発明は、光信号の伝送を行う伝送装置に関し、特には、障害を回避するために経路を切り替えることが可能なライン冗長方式に対応した波長多重伝送装置に関する。
 光通信の分野において、WDM(Wavelength Division Multiplexing:波長多重)信号の伝送に係る信頼性を向上させるための方式として、WDM信号を伝送する経路を切り替えて障害を回避するライン冗長方式が知られている。
 ライン冗長方式では、通常、WDM信号を受信する受信端となる波長多重伝送装置が経路の障害を検知している。具体的には、WDM信号を受信する受信端の波長多重伝送装置が、複数の経路のそれぞれから入力されたWDM信号内の光波長信号のそれぞれの入力光レベルを光監視装置を用いて監視し、その監視結果に基づいて、光波長信号の遮断が発生したか否かを検知する。現在使用している運用系の経路から入力されたWDM信号内の光波長信号の遮断が発生した場合、波長多重伝送装置は、運用系の経路で障害が発生したと判断して、WDM信号を伝送させる経路を、運用系の経路から予備系の経路に切り替える。
 しかしながら、上記のライン冗長方式では、入力光レベルに基づいて障害を検知しているだけなので、光信号のフレームエラーやビットエラーを監視することができず、障害を正確に検知することができないという問題がある。
 これに対して光信号のフレームエラーやビットエラーを検知することが可能な通信装置が特許文献1に記載されている。この通信装置は、複数の経路のそれぞれに対応して複数設けられた光カプラと、複数の経路のそれぞれに対応して複数設けられた監視装置とを備え、各光カプラは、自身の経路からの光信号を分岐して、一方を所定の方路に出力し、他方を自身の経路に対応する監視装置に入力する。そして、各監視装置が入力された光信号を解析してフレームエラーやビットエラーを検知する。
特開2000-151607号公報
 しかしながら、特許文献1に記載の通信装置では、光信号を解析する監視装置を経路ごとに設けなければならないため、通信装置の規模やコストが増加してしまうという問題がある。
 なお、一般的なライン冗長方式では、WDM信号に対して再生中継処理を行う中継用の光波長変換装置が経路上に設けられることがある。中継用の光波長変換装置において再生中継処理を行う光波長変換部は、その光波長変換部の入力側の経路で障害が発生した場合、その障害を受信端の光波長多重伝送装置で正常に検知できるように、障害が発生した経路を伝送するWDM信号を遮断して、受信端の光波長多重伝送装置の光監視部が検知する入力光レベルを下げる必要がある。しかしながら、WDM信号が遮断されると、WDM信号に含まれる複数の光波長信号が同時に遮断されるため、受信端の光波長多重伝送装置に入力されるWDM信号の入力光レベルが急激に変化し、他の経路を伝送するWDM信号に影響を及ぼす懸念があった。
 また、一般的な波長多重伝送装置は、WDM信号から波長を変換する必要のある光波長信号を抽出して、その抽出した光波長信号の波長を変換する光波長変換部に出力していたが、近年では、WDM信号をそのまま光波長変換部に出力する波長多重伝送装置が提案されている。この場合、光レベルを監視する光監視装置には、WDM信号がそのまま入力されることとなり、特定の光波長信号で遮断が発生しても、他の光波長信号の影響でその遮断を検知することができない懸念がある。
 特許文献1に記載の通信装置では、これらの懸念についても考慮されていない。
 本発明の目的は、少なくとも通信装置の規模やコストが増加してしまうという問題を解決することが可能な伝送装置、伝送システムおよび経路切替方法を提供することである。
 本発明による伝送装置は、波長が異なる複数の光波長信号が合波された波長多重信号を伝送する複数の経路のそれぞれに対応して複数設けられ、当該対応する経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号の光レベルを検知する光監視部と、前記複数の経路のいずれかを選択し、当該選択した経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号を光信号として出力する切替部と、前記光監視部にて検知された光レベルと、前記切替部から出力された光信号に基づいて、各経路で発生した障害を検知し、当該検知結果に応じて、前記切替部にて選択される経路を切り換える信号処理部と、を有する。
 本発明による伝送システムは、波長が異なる複数の光波長信号が合波された波長多重信号を伝送する複数の経路のそれぞれに対応して複数設けられ、当該対応する経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号の光レベルを検知する光監視部と、前記複数の経路のいずれかを選択し、当該選択した経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号を光信号として出力する切替部と、前記光監視部による前記光レベルの監視結果と、前記切替部から出力された光信号に基づいて、各経路で発生した障害を検知し、当該検知結果に応じて、前記切替部にて選択される経路を切り換える信号処理部と、を有する伝送装置と、前記複数の経路のそれぞれに所属する複数の中継用伝送装置と、を有する。
 本発明による経路切替方法は、複数の経路のそれぞれを伝送する、波長が異なる複数の光波長信号が合波された波長多重信号または当該波長多重信号に含まれる光波長信号の光レベルを検知し、前記複数の経路のいずれかを選択し、当該選択した経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号を光信号として出力し、前記検知された光レベルと、前記出力された光信号に基づいて、各経路で発生した障害を検知し、当該検知結果に応じて、前記選択される経路を切り換える。
 本発明によれば、通信装置の規模やコストが増加を抑制することが可能になる。
本発明の一実施形態の波長多重伝送システムを示す図である。 本発明の一実施形態の波長多重伝送システムの動作の一例を説明するための図である。 本発明の一実施形態の波長多重伝送システムの動作の他の例を説明するための図である。 本発明の一実施形態の波長多重伝送システムの動作の他の例を説明するための図である。 本発明の一実施形態の波長多重伝送システムの動作の他の例を説明するための図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。
 図1は、本発明の一実施形態の波長多重伝送システムを示す図である。図1に示す波長多重伝送システムは、WDM信号の伝送を行う伝送システムであり、波長多重伝送装置1~4を有する。図1では、WDM信号は、波長多重伝送装置1から波長多重伝送装置3に伝送されるものとしている。また、波長多重伝送装置1から波長多重伝送装置3までの経路には、波長多重伝送装置2が介在する経路Aと、波長多重伝送装置4が介在する経路Bとがある。
 波長多重伝送装置1は、WDM信号を送信する送信端となる伝送装置である。波長多重伝送装置1は、複数の光波長変換部11と、光波長多重部12Aおよび12Bと、波長監視部13Aおよび13Bと、監視制御部14と、光監視制御部15Aおよび15Bとを有する。
 なお、複数の光波長変換部11および監視制御部14は、経路AおよびBに共通の構成であり、光波長多重部12A、波長監視部13Aおよび光監視制御部15Aは、経路Aに対応にする構成であり、光波長多重部12B、波長監視部13Bおよび光監視制御部15Bは、経路Bに対応する構成である。
 各光波長変換部11には、ルータのようなクライアント装置(図示せず)から、特定の波長を有する光信号であるクライアント信号が入力される。各光波長変換部11は、入力されたクライアント信号の波長をWDM信号用の波長に変換し、その波長を変換したクライアント信号を光波長信号として出力する。なお、各光波長変換部11が出力する光波長信号の波長はそれぞれ異なっている。
 各光波長変換部11は、具体的には、信号処理部111と、カプラ部112とを有する。
 信号処理部111にはクライアント信号が入力される。信号処理部111は、入力されたクライアント信号の波長を、WDM信号用の波長に変換し、その波長を変換したクライアント信号を光波長信号として出力する。
 カプラ部112は、信号処理部111から出力された光波長信号を2つに分岐し、一方の光波長信号を経路Aの光波長多重部12Aに出力し、他方の光波長信号を経路Bの光波長多重部12Bに出力する。
 光波長多重部12Aは、各光波長変換部11から出力された光波長信号を合波することで、それらの光波長信号を多重化したWDM信号を生成し、その生成したWDM信号を出力する。
 波長監視部13Aは、光波長多重部12Aが生成したWDM信号に含まれる光波長信号のそれぞれの波長を検知し、その波長を監視制御部14を介して光監視制御部15Aに通知する。具体的には、波長監視部13Aは、WDM信号に含めることが可能な全ての光波長信号のそれぞれの波長について、その波長が、光波長多重部12Aが生成したWDM信号に含まれる光波長信号の波長として実際に存在するか否かを検知する。
 監視制御部14は、各光波長変換部11で生じる障害を検知し、その障害を光監視制御部15Aおよび15Bに通知する。
 光監視制御部15Aは、波長監視部13Aおよび監視制御部14のそれぞれから通知された波長および障害を示す光監視信号を生成し、その光監視信号を光波長多重部12Aから出力されたWDM信号に合波して出力する。
 光波長多重部12B、波長監視部13Bおよび光監視制御部15Bは、光波長多重部12A、波長監視部13Aおよび光監視制御部15Aと同様な機能を有し、光波長変換部11から経路Bに出力されたWDM信号に対して光波長多重部12A、波長監視部13Aおよび光監視制御部15Aと同様な処理を行う。
 波長多重伝送装置2は、WDM信号を中継する中継用伝送装置である。波長多重伝送装置2は、波長監視部21と、光波長分離部22と、複数の光波長変換部23と、光波長多重部24と、波長監視部25と、監視制御部26と、光監視制御部27とを有する。
 波長監視部21は、波長多重伝送装置1から出力されたWDM信号に含まれる光波長信号のそれぞれの波長を検知し、その波長を監視制御部26を介して光監視制御部27に通知する。具体的には、波長監視部21は、光波長多重信号に含めることが可能な全ての光波長信号のそれぞれの波長について、その波長が、波長多重伝送装置1から出力されたWDM信号に含まれる光波長信号の波長として実際に存在するか否かを検知する。
 光波長分離部22は、波長多重伝送装置1から出力されたWDM信号を、WDM信号に含まれる光波長信号および光監視信号のそれぞれに分波して出力する。このとき、光波長分離部22は、光監視信号を監視制御部26に出力し、光波長信号のそれぞれを各光波長変換部23に出力する。
 各光波長変換部23は、再生中継部と呼ばれることもある。各光波長変換部23は、光波長信号の波長のそれぞれに対応し、その対応する波長を有する光波長信号に対して再生中継処理を行い、再生中継処理を行った光波長信号を出力する。再生中継処理は、例えば、3R中継処理である。なお、3R中継処理は、等化(Reshaping)処理、リタイミング(Retiming)処理および識別再生(Regenerating)処理を含む。
 また、各光波長変換部23は、対応する波長を有する光波長信号に基づいて、経路Aで生じた障害を検知する検知処理を行う。
 検知処理にて障害を検知した場合、各光波長変換部23は、その障害を示す警報信号を光波長信号として出力する出力処理、または、その障害を監視制御部26を介して光監視制御部27に通知する通知処理を行う。より具体的には、各光波長変換部23には、波長多重伝送装置2が所属している経路AがWDM信号の伝送に現在使用されている運用系の経路か、運用系の経路で障害が発生したときに切り替える予備系の経路かを示す経路フラグが設定されている。各光波長変換部23は、経路フラグが運用系の経路を示す場合、出力処理を行い、経路フラグが予備系の経路を示す場合、通知処理を行う。なお、出力処理で出力される警報信号は、AIS(alarm indication signal)信号またはそれに相当する信号であり、光波長変換部23に対応する波長を有する信号であることが望ましい。
 光波長多重部24は、各光波長変換部23から出力された光波長信号を合波することで、それらの光波長信号を多重化したWDM信号を生成し、その生成したWDM信号を出力する。
 波長監視部25は、光波長多重部24が生成したWDM信号に含まれる光波長信号のそれぞれの波長を検知し、その波長を監視制御部26を介して光監視制御部27に通知する。具体的には、波長監視部25は、WDM信号に含めることが可能な全ての光波長信号のそれぞれの波長について、その波長が、光波長多重部12Aが生成したWDM信号に含まれる光波長信号の波長として存在するか否かを検知する。
 監視制御部26は、光波長分離部22からの光監視信号に基づいて、波長多重伝送装置1で生じた障害を検知し、その障害を光監視制御部27に通知する。また、監視制御部26は、波長多重伝送装置3から経路Aが運用系か否かを示す設定情報を受信し、その情報に基づいて各光波長変換部23に設定されている経路フラグを変更する。
 光監視制御部27は、各光波長変換部23、波長監視部25および監視制御部26のそれぞれから通知された障害および波長を示す光監視信号を生成し、その光監視信号を光波長多重部12Aから出力されたWDM信号に合波して出力する。
 波長多重伝送装置4は、WDM信号を中継する中継用伝送装置である。波長多重伝送装置4は、波長監視部41と、光波長分離部42と、複数の光波長変換部43と、光波長多重部44と、波長監視部45と、監視制御部46、光監視制御部47とを有する。なお、波長多重伝送装置4の各部は、波長多重伝送装置2の同名の構成が有する機能と同様な機能を有し、経路Bを伝送するWDM信号に対してその同名の構成と同様な処理を行う。
 波長多重伝送装置3は、WDM信号の受信端となる伝送装置である。波長多重伝送装置3は、光監視制御部31Aおよび31Bと、光波長分離部32Aおよび32Bと、複数の光波長変換部33と、監視制御部34とを有する。
 光監視制御部31Aおよび光波長分離部32Aは経路Aに対応する構成であり、光監視制御部31Bおよび光波長分離部32Bは経路Bに対応する構成であり、各光波長変換部33および監視制御部34は経路AおよびBに共通の構成である。
 光監視制御部31Aは、波長多重伝送装置2から出力されたWDM信号から光監視信号を取得する取得部である。光監視制御部31Aは、取得した光監視信号が示す障害および波長を監視制御部34を介して光波長変換部33に通知する。
 光波長分離部32Aは、波長多重伝送装置2から出力されたWDM信号を、WDM信号に含まれる光波長信号および光監視信号のそれぞれに分波し、その分波した光波長信号のそれぞれを各光波長変換部33に出力する。
 光監視制御部31Bおよび光波長分離部32Bは、光監視制御部31Aおよび光波長分離部32Bと同様な機能を有し、波長多重伝送装置2から出力された経路Bを伝送するWDM信号に対して光監視制御部31Bおよび光波長分離部32Bと同様な処理を行う。
 各光波長変換部33は、光波長信号の波長のそれぞれに対応し、その対応する波長を有する光波長信号を光波長分離部32Aおよび32Bの両方から受け付ける。各光波長変換部33は、経路AおよびBのいずれかを選択し、その選択した経路を伝送してきたWDM信号から分波された光波長信号、つまり、その選択した経路に対応する光波長分離部32Aまたは32Bから受け付けた光波長信号をクライアント信号としてクライアント装置(図示せず)に出力する。
 各光波長変換部33は、具体的には、光監視部331Aおよび331Bと、切替部332と、信号処理部333とを有する。なお、光監視部331Aは経路Aに対応する構成であり、光監視部331Bは経路Bに対応する構成である。
 光監視部331Aは、光波長分離部32Aから受け付けた光波長信号の光レベルを検知し、その光レベルを監視制御部34を介して各信号処理部333に出力する。
 光監視部331Bは、光波長分離部32Bから受け付けた光波長信号の光レベルを検知し、その光レベルを監視制御部34を介して各信号処理部333に出力する。
 切替部332は、経路AおよびBのいずれかを選択し、その選択した経路を伝送してきた波長多重信号から分波された光波長信号を出力する。
 信号処理部333は、切替部332から出力された光波長信号の波長をクライアント装置用の波長に変換し、その変換した光波長信号をクライアント装置に出力する。なお、切替部332にて選択された経路を伝送してきた波長多重信号内の光波長信号がクライアント装置に出力されることとなるので、切替部332にて選択された経路が運用系の経路となる。
 また、信号処理部333は、光監視制御部31Aおよび31Bから通知された障害および波長と、光監視部331Aおよび331Bから通知された光レベルと、切替部332から出力された光波長信号に基づいて、経路AおよびBのそれぞれで発生した障害を検知し、その検知結果に基づいて切替部332にて選択される経路を切り替える。このとき、信号処理部333は、切替部332にて選択される経路を運用系の経路と設定し、切替部332にて選択されていない経路を予備系の経路と設定し、その設定を示す設定情報を監視制御部34に通知する。
 具体的には、信号処理部333は、切替部332から出力された光波長信号に基づいて、運用系の経路で発生した障害を検知する。このとき、信号処理部333は、光波長信号が警報信号か否かを判断し、光波長信号が警報信号の場合、運用系の経路で障害が発生したと判断する。また、光波長信号が警報信号でない場合、その光波長信号を解析して、光波長信号にエラー(例えば、フレームエラーおよびビットエラーの少なくとも一方)があるか否かを検知し、エラーがあると、運用系の経路で障害が発生したと判断する。なお、信号処理部333は、光波長信号だけでなく、運用系の経路に対応する光監視制御部および光監視部から通知された情報も、障害の検知に用いてもよい。
 一方、予備系の経路については、各信号処理部333に予備系の経路に接続されていないので、運用系の経路Aによる障害の検知とは異なる。
 具体的には、信号処理部333は、予備系の経路に対応する光監視部から通知された光レベルと、予備系の経路に対応する光監視制御部31Aから通知された障害と波長とに基づいて、予備系の経路の障害を検知する。例えば、光レベルが所定の閾値以下になった場合、光監視制御部31Aから障害が通知された場合、光監視制御部31Aから通知された波長が存在しなくなった場合に、予備系の経路の障害を検知する。
 監視制御部34は、各信号処理部333からの設定情報を波長多重伝送装置2および4の監視制御部26および46に通知する。
 以上説明した本実施形態では、カプラ部112および切替部332は、光波長変換部11および33の内部に備わっているものとして説明したが、それらの外部に備わっていてもよい。また、WDM信号および光監視信号を合波するカプラ部は、本実施形態では、光監視制御部15A、15B、27および47に備わっているものとして説明したが、それらの外部に備わっていてもよい。
 また、光波長変換部23および43は、光波長信号ごとに1つだけ設けられていたが、なくてもよいし、多段に設けられていてもよい。また、波長多重伝送装置2および4のそれぞれが多段に設けられていてもよい。
 また、光波長分離部22、42、32Aおよび32Bは、WDM信号を光波長信号に分離して出力していたが、WDM信号をそのまま出力してもよい。この場合、切替部332は、選択した経路を伝送してきた波長多重信号をそのまま出力することになる。したがって、切替部332は、複数の経路のいずれかを選択し、その選択した経路を伝送してきた波長多重信号またはその波長多重信号に含まれる光波長信号を光信号として出力することになる。
 また、図1に示す波長多重伝送システムでは、説明を簡略化するために、WDM信号が波長多重伝送装置1から波長多重伝送装置3までの一方向に伝送されていたが、波長多重伝送システムは、WDM信号が波長多重伝送装置3から波長多重伝送装置1にも伝送させる双方向に対応した構成であることが望ましい。
 次に波長多重伝送システムの動作を説明する。
 図2~図5は、波長多重伝送システムの動作を説明するための図である。以下の説明では、経路Aが運用系の経路として使用され、経路Bが予備系の経路として使用されているものとする。
 上記の状況において、図2に示すように波長多重伝送装置1および2の間において経路Aが切断された場合、波長多重伝送装置2の各光波長変換部23は、警報信号を生成して光波長信号として光波長多重部24に出力する。この場合、波長多重伝送装置3の各信号処理部333は、光波長信号が警報信号であるので、経路Aで障害が発生したことを検知する。図2の例では、経路Bで障害が発生していないので、各信号処理部333は、各切替部332にて選択する経路を経路Aから経路Bに切り替える。これにより、経路Aで生じた障害を回避することができる。
 次に図3~図5を用いて予備系の経路Bでも障害が発生している場合の動作について説明する。
 図3の例では、波長多重伝送装置4および3の間において経路Bが切断され、その後、図2の例と同様に波長多重伝送装置1および2の間において経路Aが切断されたとしている。
 この場合、先ず、経路Bが切断されると、経路Bを伝送しているWDM信号が遮断されるので、波長多重伝送装置3における各光監視部331BがWDM信号内の光波長信号の各波長が検知されなくなり、そのことが監視制御部34を介して各信号処理部333に通知される。各信号処理部333は、その通知された検知結果に基づいて、経路Bで障害が発生していることを認識する。その後、上記のように経路Aが切断されると、図2の例と同様にして各信号処理部333は経路Aで障害が発生したことを検知する。この場合、経路Bで障害が発生しているので、各信号処理部333は、切替部332にて選択する経路の切り替えを行わない。
 なお、予備系の経路で障害が発生しているときに、運用系の経路で障害が発生しても、経路の切り替えを行わないことは、ライン冗長方式における一般的な切替方法である。
 また、図4の例では、波長多重伝送装置4の光波長変換部43の出力部において障害が発生し、その後、図2の例と同様に波長多重伝送装置1および2の間において経路Aが切断されたとしている。
 この場合、先ず、波長多重伝送装置4の光波長変換部43の出力部において障害が発生すると、波長多重伝送装置4における波長監視部45において、出力部で障害が発生した光波長変換部43に対応する波長が検知されなくなり、そのことが光監視制御部47から出力される光監視信号に反映される。これにより、光波長変換部43の出力部における障害は、波長多重伝送装置3では、光監視制御部31Bおよび監視制御部34を経由して光波長変換部33の信号処理部333に通知され、経路Bで障害が発生していることが認識される。
 また、出力部で障害が発生した光波長変換部43に対応する波長に応じた光波長変換部33の光監視部331Bでも、その波長を有する光波長信号の光レベルが低下したことが検知されるので、信号処理部333は、光監視部331Bから通知された光レベルを用いることでも障害を検知している。
 その後、上記のように経路Aが切断されると、図2の例と同様にして各信号処理部333は経路Aで障害が発生したことを検知する。この場合、経路Bで障害が発生しているので、各信号処理部333は、切替部332にて選択する経路の切り替えを行わない。
 なお、光波長分離部32Aおよび32BがWDM信号をそのまま出力する場合、光監視部331Aおよび331Bにて光レベルの低下を検知することが困難になることがある。このため、光監視部331Aおよび331Bのみでは障害を正確に検知することができないため、本実施形態では光監視部331Aおよび331Bだけでなく、光監視制御部31Aおよび31Bも障害の検知に用いている。
 また、図5の例では、波長多重伝送装置1および4の間において経路Bが切断され、その後、図2の例と同様に波長多重伝送装置1および2の間において経路Aが切断されたとしている。
 この場合、先ず、波長多重伝送装置1および4の間において経路Bが切断されると、波長多重伝送装置4における光波長変換部43にて障害が検知され、その障害を示す光監視信号が光監視制御部47から下流の波長多重伝送装置3における光監視制御部31Bに伝達され、その障害が監視制御部34を介して各信号処理部333に通知され、経路Bで障害が発生していることが認識される。
 その後、上記のように経路Aが切断されると、図2の例と同様にして各信号処理部333は経路Aで障害が発生したことを検知する。この場合、経路Bで障害が発生しているので、各信号処理部333は、切替部332にて選択する経路の切り替えを行わない。
 以上説明したように本実施形態によれば、選択された経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号と、各経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号に基づいて、障害が検知されるので、波長多重信号または光波長信号を解析する信号処理部を経路ごとに設けなくてもよくなるため、通信装置の規模やコストの増加を抑制することが可能になる。なお、運用系の伝送路を伝送してきた波長多重信号のフレームエラーやビットエラーなども検知することができる。
 また、本実施形態では、障害を示す光監視信号がWDM信号に合波されて上流から下流に通知されるので、WDM信号がそのまま光波長変換部に出力される構成でも、光監視信号に基づいて障害を検知することが可能になる。
 また、本実施形態では、中継用の波長変換装置2および4が運用系の経路上で発生した障害を検知した場合、その障害を示す警報信号が波長光信号として出力されるので、障害発生時に、波長光信号を遮断させなくてもよくなるため、WDM信号の光レベルが急激に変化して、他の経路を伝送するWDM信号に影響を及ぼすことを抑制することが可能になる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されたものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更を行うことができる。
 例えば、WDM信号を伝送する経路は、2つだけであったが、実際には複数あればよい。3つ以上の経路が存在する場合、1つの経路が運用系の経路となり、その他の経路が予備系の経路となる。
 この出願は、2013年7月16日に出願された日本出願特願2013-147536号公報を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1~4  波長多重伝送装置
 11、23、33、43   光波長変換部
 12A、12B、24、44  光波長多重部
 13A、13B、21、41  波長監視部
 14、26、34、46   監視制御部
 15A、15B、25、45、47、31A、31B  光監視制御部
 22、42、32A、32B  光波長分離部
 111、333  信号処理部
 112  カプラ部
 331A、331B 光監視部
 332  切替部

Claims (9)

  1.  波長が異なる複数の光波長信号が合波された波長多重信号を伝送する複数の経路のそれぞれに対応して複数設けられ、当該対応する経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号の光レベルを検知する光監視部と、
     前記複数の経路のいずれかを選択し、当該選択した経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号を光信号として出力する切替部と、
     前記光監視部にて検知された光レベルと、前記切替部から出力された光信号に基づいて、各経路で発生した障害を検知し、当該検知結果に応じて、前記切替部にて選択される経路を切り換える信号処理部と、を有する伝送装置。
  2.  前記信号処理部は、前記光信号を解析して、当該光信号にビットエラーおよびフレームエラーの少なくとも一方があると、前記切替部にて選択された経路の障害を検知する、請求項1に記載の伝送装置。
  3.  前記波長多重信号には、当該波長多重信号に含まれる複数の光波長信号の波長のそれぞれを示す光監視信号が合波され、
     前記複数の経路のそれぞれに対応して複数設けられ、当該対応する経路を伝送してきた波長多重信号から前記光監視信号を取得する取得部をさらに有し、
     前記信号処理部は、前記取得部が取得した光監視信号にさらに基づいて、前記障害を検知する、請求項1または2に記載の伝送装置。
  4.  前記信号処理部は、前記光監視信号が示す波長が存在しなくなった場合、当該光監視信号を含む波長多重信号を伝送してきた経路の障害を検知する、請求項3に記載の伝送装置。
  5.  前記切替部にて選択された経路を伝送してきた波長多重信号には、当該経路で生じた障害を示す信号が前記光波長信号として含まれ、
     前記切替部にて選択された経路以外に経路を伝送してきた波長多重信号には、当該経路で生じた障害をさらに示す前記光監視信号が合波されている、請求項3または4に記載の伝送装置。
  6.  波長が異なる複数の光波長信号が合波された波長多重信号を伝送する複数の経路のそれぞれに対応して複数設けられ、当該対応する経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号の光レベルを検知する光監視部と、
     前記複数の経路のいずれかを選択し、当該選択した経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号を光信号として出力する切替部と、
     前記光監視部による前記光レベルの監視結果と、前記切替部から出力された光信号に基づいて、各経路で発生した障害を検知し、当該検知結果に応じて、前記切替部にて選択される経路を切り換える信号処理部と、を有する伝送装置と、
     前記複数の経路のそれぞれに所属する複数の中継用伝送装置と、を有する伝送システム。
  7.  各中継用伝送装置は、
     前記波長多重信号に含まれる複数の光波長信号の波長のそれぞれを検知する波長監視部と、
     前記波長監視部にて検知された波長のそれぞれを示す光監視信号を前記波長多重信号に合波して出力する光監視制御部と、を有し、
     前記伝送装置は、
     前記複数の経路のそれぞれに対応して複数設けられ、当該対応する経路を伝送してきた波長多重信号から前記光監視信号を取得する取得部をさらに有し、
     前記信号処理部は、前記取得部が取得した光監視信号にさらに基づいて、前記障害を検知する、請求項6に記載の伝送システム。
  8.  各中継用伝送装置は、
     前記波長多重信号を前記波長多重信号に含まれる光波長信号のそれぞれに分波して出力する分離部と、
     前記分離部から出力された各光波長信号に対して再生中継処理と、各光波長信号に基づいて当該中継用伝送装置が所属する経路で生じた障害を検知する検知処理とを行い、前記再生中継処理を行った光波長信号を出力する再生中継部と、
     各再生中継部にて再生中継処理が行われた光波長信号を合波して出力する多重部と、を有し、
     前記切替部にて選択されている経路に所属する中継用伝送装置の再生中継部は、前記障害を検知した場合、当該障害を示す警報信号を前記光波長信号として出力し、
     前記光監視制御部は、前記切替部にて選択されている経路以外に所属する中継用伝送装置の再生中継部が前記障害を検知した場合、当該障害をさらに示す光監視信号を前記波長多重信号に合波して出力する、請求項7に記載の伝送システム。
  9.  複数の経路のそれぞれを伝送する、波長が異なる複数の光波長信号が合波された波長多重信号または当該波長多重信号に含まれる光波長信号の光レベルを検知し、
     前記複数の経路のいずれかを選択し、当該選択した経路を伝送してきた波長多重信号または当該波長多重信号に含まれる光波長信号を光信号として出力し、
     前記検知された光レベルと、前記出力された光信号に基づいて、各経路で発生した障害を検知し、当該検知結果に応じて、前記選択される経路を切り換える、経路切替方法。
PCT/JP2014/060070 2013-07-16 2014-04-07 伝送装置、伝送システムおよび経路切替方法 WO2015008512A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2016104878A RU2637511C2 (ru) 2013-07-16 2014-04-07 Передающее устройство, система передачи и способ коммутации трактов
JP2015527194A JP6090876B2 (ja) 2013-07-16 2014-04-07 伝送装置、伝送システムおよび経路切替方法
BR112016000693-3A BR112016000693B1 (pt) 2013-07-16 2014-04-07 Dispositivo de transmissão, sistema de transmissão, e método de comutação de percurso
MA38819A MA38819B1 (fr) 2013-07-16 2014-04-07 Dispositif de transmission, système de transmission et procédé de commutation de chemin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013147536 2013-07-16
JP2013-147536 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008512A1 true WO2015008512A1 (ja) 2015-01-22

Family

ID=52345987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060070 WO2015008512A1 (ja) 2013-07-16 2014-04-07 伝送装置、伝送システムおよび経路切替方法

Country Status (5)

Country Link
JP (1) JP6090876B2 (ja)
BR (1) BR112016000693B1 (ja)
MA (1) MA38819B1 (ja)
RU (1) RU2637511C2 (ja)
WO (1) WO2015008512A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338788A (ja) * 2002-05-21 2003-11-28 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ伝送システム
WO2005008924A1 (ja) * 2003-07-18 2005-01-27 Fujitsu Limited 伝送ルート切替制御方法および光伝送装置
JP2005295464A (ja) * 2004-04-05 2005-10-20 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
WO2006080050A1 (ja) * 2005-01-25 2006-08-03 Fujitsu Limited ネットワーク管理装置、光分岐挿入ノードおよびネットワーク管理方法
JP2009194513A (ja) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> ノード装置およびエクストラトラヒックの送受信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413147B2 (en) * 2005-08-23 2008-08-19 Young Kun Bae System and method for propellantless photon tether formation flight
US8290428B2 (en) * 2006-12-06 2012-10-16 Qualcomm Incorporated Methods and apparatus for RLC re-transmission schemes
RU2380834C1 (ru) * 2008-06-23 2010-01-27 Юрий Федорович Кутаев Способ лазерной космической связи и комплекс для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338788A (ja) * 2002-05-21 2003-11-28 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ伝送システム
WO2005008924A1 (ja) * 2003-07-18 2005-01-27 Fujitsu Limited 伝送ルート切替制御方法および光伝送装置
JP2005295464A (ja) * 2004-04-05 2005-10-20 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
WO2006080050A1 (ja) * 2005-01-25 2006-08-03 Fujitsu Limited ネットワーク管理装置、光分岐挿入ノードおよびネットワーク管理方法
JP2009194513A (ja) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> ノード装置およびエクストラトラヒックの送受信方法

Also Published As

Publication number Publication date
MA38819A1 (fr) 2016-08-31
MA38819B1 (fr) 2017-05-31
BR112016000693A2 (ja) 2017-07-25
RU2637511C2 (ru) 2017-12-05
BR112016000693B1 (pt) 2022-11-16
RU2016104878A (ru) 2017-08-21
JP6090876B2 (ja) 2017-03-08
JPWO2015008512A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US20190158940A1 (en) Procedures, apparatuses, systems, and computer programs for providing optical network channel protection
US7286758B2 (en) Method for switching transmission route, and optical transmission device
JP5414914B2 (ja) 波長多重光伝送システム、送信装置および受信装置
JP6024391B2 (ja) 伝送装置、伝送システム、及び障害検出方法
JP2006166037A (ja) 光伝送装置および光伝送システム
JP6729696B2 (ja) 中継装置、監視システムおよび監視情報の伝達方法
JP4569222B2 (ja) 光分岐挿入装置並びに光分岐挿入方法
JP2009296044A (ja) 光送信装置および光送受信装置
JP2010147674A (ja) 波長多重光伝送装置
JP5435223B2 (ja) 波長分割多重伝送装置およびその信号光監視方法
JP5499313B2 (ja) トランスポンダ、中継装置、及び端局装置
JP4704261B2 (ja) 光通信装置
JP6090876B2 (ja) 伝送装置、伝送システムおよび経路切替方法
WO2014010151A1 (ja) 波長分割多重通信装置及び光ネットワークシステム
JP4862059B2 (ja) 光信号伝送システム及び光信号伝送システム用光受信装置
JP2005286736A (ja) 波長切替制御方法、可変波長伝送装置および可変波長伝送システム
JP4999759B2 (ja) 光パス切替え装置
CA2620950C (en) Video transmission system of a ring network
JP2005269112A (ja) 光プロテクション装置
JP2006186538A (ja) 光伝送装置及び光伝送路切換方法
JP2008199450A (ja) 光アクセスシステム
WO2021229744A1 (ja) 障害検出装置、障害検出方法及び障害検出プログラムの記録媒体
JP6278923B2 (ja) ネットワークシステムおよび通信事業者側回線終端装置
JP6241117B2 (ja) 多重伝送装置、多重伝送装置を備えた冗長構成ネットワークおよび冗長構成ネットワークの障害信号の挿入方法
JP2013207639A (ja) 波長分割多重光伝送装置及び波長分割多重光伝送装置を備えたネットワーク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000693

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 16018440

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 38819

Country of ref document: MA

ENP Entry into the national phase

Ref document number: 2016104878

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14826263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016000693

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160113