WO2015008410A1 - ネットワークシステム、制御装置、制御方法、および非一時的なコンピュータ可読媒体 - Google Patents

ネットワークシステム、制御装置、制御方法、および非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2015008410A1
WO2015008410A1 PCT/JP2014/001166 JP2014001166W WO2015008410A1 WO 2015008410 A1 WO2015008410 A1 WO 2015008410A1 JP 2014001166 W JP2014001166 W JP 2014001166W WO 2015008410 A1 WO2015008410 A1 WO 2015008410A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
node
nodes
unit
route
Prior art date
Application number
PCT/JP2014/001166
Other languages
English (en)
French (fr)
Inventor
昌洋 林谷
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/904,459 priority Critical patent/US20160197817A1/en
Priority to JP2015527145A priority patent/JPWO2015008410A1/ja
Publication of WO2015008410A1 publication Critical patent/WO2015008410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/38Flow based routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a network system, a control device, a control method, and a non-transitory computer-readable medium storing a control program, and in particular, a network system, a control device, a control method, and a control program for transferring packets. And non-transitory computer readable media.
  • Patent Documents 1 to 5 are known.
  • Patent Document 1 describes that a part of modules constituting an ONU is put into a power saving state.
  • Patent Document 2 describes that the power of the WDM module is turned off.
  • Patent Document 3 describes that each node constituting an optical network monitors traffic.
  • Patent Document 4 describes that all traffic on a network is aggregated to a predetermined node.
  • Patent Document 5 describes a top-of-rack switch that aggregates traffic of a plurality of physical servers.
  • Patent Documents 1 to 5 do not consider the nodes that constitute the all-optical network, so that it is not possible to reduce the energy depending on the node configuration.
  • an electrical buffer is used for the nodes constituting the all-optical network. For this reason, there is a problem that it is difficult to reduce the energy depending on the power consumption of the electric buffer.
  • the present invention provides a network system, a control device, a control method, and a non-transitory computer-readable medium storing a control program capable of reducing energy. Objective.
  • a network system is a network system including a plurality of nodes constituting a network and a control device that controls the plurality of nodes, wherein the plurality of nodes include a first route and a second route.
  • a packet transfer unit that transfers a packet to and from the second buffer, and an electric buffer that electrically holds and transfers the packet between the packet transfer unit and the second path.
  • a traffic aggregating unit that aggregates the route of the traffic passing through the plurality of nodes according to traffic flowing in the network, and a power source of the electric buffer or a power source of the entire node according to the route of the aggregated traffic
  • a power control unit that selects and controls either of them.
  • a traffic aggregating unit that aggregates a route of the traffic passing through the plurality of nodes according to traffic flowing in a network including the plurality of nodes, and a route according to the aggregated traffic route
  • a power control unit that selects and controls either a power source of an electric buffer that electrically holds a packet to be transferred in the node or a power source of the entire node.
  • the control method aggregates the routes of the traffic passing through the plurality of nodes according to traffic flowing in a network including a plurality of nodes, and determines the intra-nodes according to the route of the aggregated traffic.
  • the power source of the electric buffer that electrically holds the packet to be transferred in step S1 or the power source of the entire node is selected and controlled.
  • a non-transitory computer-readable medium storing a control program according to the present invention aggregates the routes of the traffic passing through the plurality of nodes according to traffic flowing in a network including the plurality of nodes, and the aggregation In order to cause a computer to execute a control process for selecting and controlling either a power source of an electric buffer that electrically holds a packet to be transferred in the node or a power source of the entire node according to the traffic route
  • a non-transitory computer readable medium storing a control program.
  • a non-transitory computer-readable medium storing a network system, a control device, a control method, and a control program capable of reducing energy.
  • FIG. 1 shows an example of the main configuration of the packet transfer system according to the present embodiment.
  • the packet transfer system includes a packet transfer unit 1, an electric buffer 2, and a power supply control unit 3.
  • the packet transfer unit 1 transfers a packet between the first route and the second route.
  • the electric buffer 2 electrically holds and transfers the packet between the packet transfer unit 1 and the second path (or on the second path).
  • the power supply control unit 3 controls the power supply of the electric buffer 2 according to the traffic flowing through the electric buffer 2.
  • FIG. 2 shows another example of the main configuration of the control device according to the present embodiment.
  • the control device 50 controls a node 51 that constitutes a network, and includes a traffic detection unit 4 and a power supply control unit 3.
  • the traffic detection unit 4 detects traffic flowing in the electric buffer 2 included in the node 51 and electrically holding a packet transferred by the node 51.
  • the power supply control unit 3 controls the power supply of the electric buffer 2 according to the detected traffic.
  • the power source of the electric buffer is controlled according to the traffic flowing through the electric buffer. For example, when no traffic is flowing in the electric buffer, the electric buffer can be turned off. Therefore, the power consumption of the electric buffer can be suppressed according to the traffic, so that the energy can be reduced.
  • FIG. 3 shows a configuration example of the network system according to the present embodiment.
  • the network system includes a plurality of nodes 20 configuring a network 200 and a node control device 10 that controls the plurality of nodes 20.
  • the network 200 is a grid network in which a plurality of nodes 20 are arranged in a grid (matrix).
  • the number of nodes 20 is nine, but any other number of nodes 20 may be provided.
  • the network 200 may have other topologies such as a ring shape, a mesh shape, and a tree shape.
  • the network 200 is an all-optical network (or an optical network), and adjacent nodes 20 are communicably connected via a connection line such as an optical fiber.
  • the network 200 is not limited to the all-optical network (or the optical network), but may be other wired / wireless networks.
  • the node control device 10 is communicably connected to each node 20 in order to control the plurality of nodes 20. In the present embodiment, the node control device 10 may be communicably connected to one node 20 in order to control one node 20.
  • the node 20 transfers a packet with another node 20 constituting the network 200, that is, within the network 200, and also transfers a packet with a connection system 41 other than the node 20.
  • the connection system 41 connected to the node 20 includes arbitrary devices and systems such as the server group 30 and the external network 40.
  • the node 20 is connected (accommodated) with a server group 30 including a plurality of servers 31 under its control, and transfers packets between the server group 30.
  • the plurality of nodes 20 and the server group 30 may be referred to as a network 200.
  • the node 20 is connected to an external network 40 outside the network (internal network) 200 and transfers packets to and from the external network 40.
  • FIG. 4 shows a configuration example of the node control device 10 and the node 20 according to the first embodiment.
  • FIG. 4 shows the node control device 10 and one node 20 included in the network system shown in FIG.
  • the node control device 10 will be described as a device external to the node 20, but is not limited thereto, and may be included in the node 20.
  • the node 20 includes an electrical buffer 201, a packet transfer unit 202, and a transfer information storage unit 203.
  • a path between the node 20 and another node 20 (in the network 200) is a first path
  • a path between the node 20 and the server group 30 or the external network 40 is a second path.
  • the node 20 includes a power supply unit that supplies power (power) to the entire node 20 including each unit (electrical buffer 201, packet transfer unit 202, and transfer information storage unit 203).
  • ON / OFF of power supply from the power supply unit to each unit (power ON / OFF of each unit) or ON / OFF of power supply from the power supply unit to the entire node 20 according to control from (Power ON / OFF) can be switched.
  • the transfer information storage unit 203 stores packet transfer information (transfer destination information, transfer table) and can be referred to from the packet transfer unit 202. In addition, the transfer information storage unit 203 sends the transfer information stored in the transfer information storage unit 203 to the node control apparatus 10.
  • the forwarding information is information for the packet forwarding unit 202 to forward the packet, and may be stored in advance in the forwarding information storage unit 203 or may be stored by an instruction from the node control device 10.
  • the node 20 generates transfer information according to the received packet. Thereby, the traffic flowing through the node 20 can be determined based on the transfer information.
  • the node control device 10 may generate the transfer information in response to an inquiry from the node 20 or the node 20.
  • the node 20 or the node control device 10 may generate transfer information based on policy information that defines a network policy.
  • the transfer information associates transmission destination (transfer destination) information for each packet destination information (destination address or label).
  • the destination information may include information for identifying a route, a link, a line, a label, and the like. It can also be said that the transfer information is a transfer rule (transfer rule, flow table) for transferring a packet. That is, the transfer information may include a flow entry describing a flow condition and a process (action) to which the packet belongs.
  • the presence / absence of traffic (traffic flowing through the electrical buffer 201) to the server group 30 or the external network 40, or to other nodes 20 (network 200) Addressed traffic (traffic flowing through the packet transfer unit 202) can be determined.
  • the packet transfer unit 202 receives a packet from the other node 20, determines a destination corresponding to the destination information of the packet based on the transfer information in the transfer information storage unit 203, and sends the packet to the determined destination. .
  • the packet transfer unit 202 sends a packet to another node 20 when the destination is the network 200 configured by the node 20, and otherwise sends the packet to the server group 30 or the external network through the electric buffer 201.
  • the packet is transmitted to 40.
  • the electric buffer 201 electrically holds input data (packets) and outputs (transfers) the data.
  • the electrical buffer 201 sends data (packets) input from another node 20 via the packet transfer unit 202 to the server group 30 or the external network 40 accommodated under the node 20.
  • the electrical buffer 201 sends data (packets) input from the server group 30 or the external network 40 to another node 20 via the packet transfer unit 202.
  • the node 20 is an optical transmission device such as an optical packet router.
  • the packet transfer unit 202 can be configured by an optical switch that switches an optical packet (an optical signal corresponding to the packet).
  • the electric buffer 201 can be configured by a memory such as a RAM (Random Access Memory) that holds an electric signal corresponding to a packet (converted optical packet).
  • the node 20 is not limited to an optical transmission device, and may be another transmission device.
  • the node control device 10 controls the transfer processing (transfer information) of the node 20 and further controls the power supply of the node 20.
  • the power-off control of the node 20 or the electric buffer 201 will be described. However, the power-on control may be performed as necessary. For example, after the node 20 or the electric buffer 201 is turned off, the node 20 or the electric buffer 201 may be turned on after a predetermined time has elapsed.
  • the node control apparatus 10 includes a traffic management unit 101 and a power supply control unit 102.
  • the traffic management unit (traffic detection unit) 101 receives the transfer information stored in the transfer information storage unit 203 from the node 20, and grasps (detects) the traffic status in the node 20 based on the received transfer information.
  • the traffic information indicating the traffic situation grasped by the traffic management unit 101 is received by the power control unit 102.
  • the power control unit 102 performs power OFF control of the electrical buffer 201 in the node 20 or power OFF control of the entire node 20 based on the traffic information received from the traffic management unit 101.
  • the power control unit 102 receives the transfer information from the transfer information storage unit 203 via the traffic management unit 101, and performs power OFF control of the entire electrical buffer 201 or the node 20 based on the received transfer information. It can also be said.
  • the power supply control unit 102 may include a traffic detection unit that detects traffic flowing in the node 20.
  • FIG. 5 is a flowchart showing the operation of the node control apparatus 10 according to the first embodiment.
  • the traffic management unit 101 of the node control device 10 monitors the traffic situation (S1010).
  • the traffic management unit 101 receives the transfer information in the transfer information storage unit 203 from the node 20, and grasps the traffic status of the node 20 based on the received transfer information.
  • the transfer information stored in the transfer information storage unit 203 is linked to the traffic transmission status in the node 20.
  • the traffic management unit 101 may periodically receive transfer information from the node 20.
  • the traffic management unit 101 sends traffic information (transfer information) indicating the grasped traffic status to the power supply control unit 102.
  • the power supply control unit 102 of the node control device 10 confirms whether there is traffic flowing in the electrical buffer 201 (S1020).
  • the traffic check in S1020 is performed based on whether or not the transfer information stored in the transfer information storage unit 203 includes transfer information addressed to the server group 30 or the external network 40.
  • the power supply control unit 102 receives transfer information (traffic information) from the traffic management unit 101, and when the received transfer information includes transfer information addressed to the server group 30 or the external network 40, there is traffic flowing in the electric buffer 201. If the received transfer information does not include the transfer information addressed to the server group 30 or the external network 40, it is determined that there is no traffic flowing in the electrical buffer 201.
  • the power control unit 102 of the node control device 10 When there is traffic flowing in the electric buffer 201 (S1020 / Yes), the power control unit 102 of the node control device 10 does not perform node-related power OFF control (S1021). In this case, the power supply control unit 102 does not perform power supply OFF control of the electric buffer 201 and power supply of the entire node 20 in order to enable transfer processing of packets addressed to the server group 30 or the external network 40.
  • the power supply control unit 102 of the node control device 10 checks whether there is traffic flowing through the packet transfer unit 202 (S1030).
  • the traffic confirmation in S1030 is performed based on whether or not the transfer information is stored in the transfer information storage unit 203.
  • the power control unit 102 When it is determined that there is traffic flowing through the packet transfer unit 202 (traffic to the network 200 or another node 20) and the transfer information is not stored in the transfer information storage unit 203, that is, transfer from the traffic management unit 101 When the information (traffic information) is not received (when the transfer information is not included in the traffic information), it is determined that there is no traffic flowing through the packet transfer unit 202.
  • the power control unit 102 of the node control device 10 When there is traffic flowing through the packet transfer unit 202 (S1030 / Yes), the power control unit 102 of the node control device 10 performs control so that the power of the electric buffer 201 in the node 20 is turned off (S1031). In this case, transfer processing of packets addressed to the server group 30 or the external network 40 is not necessary, and only transfer processing of packets addressed to other nodes 20 is possible.
  • the power supply OFF control of the electric buffer 201 is performed. The power supply OFF control of the electric buffer 201 may be performed whenever there is no traffic flowing in the electric buffer 201.
  • the power supply OFF control of the electric buffer 201 may be performed when there is no traffic flowing in the electric buffer 201 (S1031), and the power supply OFF control of the entire node 20 may be further performed when there is no traffic flowing through the packet transfer unit 202. (S1032).
  • the power control unit 102 of the node control device 10 performs control so that the entire power supply of the node 20 is turned off (S1032).
  • the power control unit 102 controls the power OFF of the entire node 20. I do.
  • the power supply of the entire node is turned off or the power supply of the electric buffer is turned off according to the presence / absence of traffic passing through the electric buffer and the presence / absence of traffic passing through the packet transfer unit.
  • the energy of the network can be reduced without affecting the traffic.
  • the power consumption of the electrical buffer at the node is dominant, so that the power consumption can be effectively reduced by turning off the power supply of the electrical buffer.
  • the optical network even if the power supply of the electric buffer is turned off, data can be transmitted between nodes as long as no packet collision occurs, so that the influence on the network can be suppressed.
  • the node control device further reduces energy by collecting routes.
  • FIG. 6 shows an example of the main configuration of the network transmission system according to the present embodiment.
  • the network system includes a plurality of nodes 51 that configure a network, and a control device 50 that controls the plurality of nodes 51.
  • the plurality of nodes 51 includes a packet transfer unit 1 and an electrical buffer 2.
  • the packet transfer unit 1 transfers a packet between the first route (route between the nodes 51) and the second route (route other than the node 51).
  • the electric buffer 2 electrically holds and transfers the packet between the packet transfer unit 1 and the second path.
  • the control device 50 includes a traffic aggregation unit 5 and a power supply control unit 3.
  • the traffic aggregating unit 5 aggregates traffic paths that pass through the plurality of nodes 51 according to the traffic flowing in the network.
  • the power supply control unit 3 selects and controls either the power supply of the electrical buffer 2 or the power supply of the entire node 51 according to the aggregated traffic route.
  • the traffic of a plurality of nodes is aggregated, and the electric buffer or the power supply of the entire node is controlled according to the aggregated traffic.
  • the electric buffer or the power supply of the entire node is controlled according to the aggregated traffic.
  • the network system according to this embodiment includes a plurality of nodes (referred to as nodes 21 in the present embodiment) constituting the network 200 and a node control device that controls the plurality of nodes 21 (in the present embodiment, the node control device 11). Called).
  • a connection system 41 such as a server group 30 or an external network 40 is connected to the plurality of nodes 21.
  • FIG. 7 shows a configuration example of the node control device 11 and the node 21 according to the second embodiment.
  • FIG. 7 shows a node control device 11 and one node 21 included in the network system similar to FIG.
  • the node control device 11 is assumed to be a device external to the node 21, and receives transfer information from the transfer information storage units 213 of the plurality of nodes 21.
  • the node 21 includes an electrical buffer 211, a packet transfer unit 212, and a transfer information storage unit 213.
  • the node 21 according to the present embodiment has the same configuration as the node 20 according to the first embodiment, and is an optical transmission device such as an optical packet router, for example.
  • the transfer information storage unit 213 stores packet transfer information (transfer destination information, transfer table) and is referred to by the packet transfer unit 212. In addition, the transfer information storage unit 213 sends the transfer information stored in the transfer information storage unit 213 to the node control device 11.
  • the packet transfer unit 212 receives a packet from the other node 21, determines a destination corresponding to the destination information of the packet based on the transfer information in the transfer information storage unit 213, and sends the packet to the determined destination. .
  • the packet transfer unit 212 sends a packet to another node 21 when the destination is the network 200 configured by the node 21, and otherwise sends the packet to the server group 30 or the external network through the electric buffer 211.
  • the packet is transmitted to 40.
  • the electrical buffer 211 sends data (packets) input from other nodes 21 via the packet transfer unit 212 to the server group 30 or the external network 40 accommodated under the nodes 21.
  • the electrical buffer 211 sends data (packets) input from the server group 30 or the external network 40 to another node 21 via the packet transfer unit 212.
  • the node control device 11 further includes a traffic aggregation unit in addition to the configuration of the node control device 11 according to the first embodiment. That is, as illustrated in FIG. 7, the node control device 11 includes a traffic management unit 111, a traffic aggregation unit 112, and a power supply control unit 113.
  • the traffic management unit 111 receives the transfer information stored in the transfer information storage unit 213 from each node 21, and grasps (detects) the traffic status in the network 200 based on the received transfer information.
  • the traffic information indicating the traffic situation grasped by the traffic management unit 111 is received by the traffic aggregation unit 112.
  • the traffic aggregation unit 112 aggregates traffic based on the traffic information received from the traffic management unit 111. Further, the traffic aggregation unit 112 sends traffic aggregation information (route aggregation information) indicating the traffic aggregation result to the power supply control unit 113. Based on the traffic aggregation information received from the traffic aggregation unit 112, the power source control unit 113 performs power OFF control of the electric buffer 211 in each node 21 or power OFF control of the entire node 21.
  • traffic aggregation information route aggregation information
  • FIG. 8 is a flowchart showing the operation of the node control apparatus 11 according to the second embodiment.
  • the traffic management unit 111 of the node control device 11 monitors the traffic status of the entire network 200 (S2010).
  • the traffic management unit 111 receives the transfer information in the transfer information storage unit 213 from each node 21 and grasps the traffic status of the entire network 200 based on the received transfer information.
  • the traffic management unit 111 sends traffic information (transfer information) indicating the grasped traffic state to the traffic aggregation unit 112.
  • the traffic aggregating unit 112 of the node control device 11 confirms whether the traffic route can be aggregated from the traffic state of the entire network 200 (S2020).
  • the traffic aggregating unit 112 identifies a traffic route based on the traffic information received from the traffic management unit 111, and determines whether the identified traffic route can be aggregated. For example, the traffic aggregating unit 112 determines whether routes can be aggregated so that there is no traffic of any node 21. Further, the traffic aggregating unit 112 determines whether the route can be aggregated while maintaining the route length or maintaining the shortest route.
  • the traffic aggregating unit 112 may determine whether routes can be aggregated based on a band that can be transmitted by the node 21.
  • the traffic aggregation unit 112 of the node control device 11 performs the traffic route aggregation (S2021).
  • the traffic aggregating unit 112 aggregates the traffic route so that there is no traffic of any node 21. As a result, the power OFF control of the entire node 21 without traffic can be performed. Further, the traffic aggregating unit 112 aggregates traffic routes so as to maintain the route length or maintain the shortest route. As a result, the route length does not increase even after route aggregation, and traffic transmission is not affected.
  • the traffic aggregation unit 112 updates the transfer information in the transfer information storage unit 213 in each node 21 so that the aggregated route is configured, and the route aggregation information (after the route aggregation) indicating the aggregated route Updated transfer information) is sent to the power supply control unit 113.
  • 9 and 10 show examples of route aggregation performed in S2021.
  • 9 and 10 show a state in which packets are transmitted between applications of the server 31 via the network 200 including the nodes 21-1 to 21-9.
  • FIG. 9 shows a state before the traffic routes are aggregated
  • FIG. 10 shows a state after the traffic routes are aggregated.
  • servers 31-1 to 31-3 are connected to the nodes 21-1 to 21-3, respectively, and servers 31-4 to 31-6 are connected to the nodes 21-7 to 21-9, respectively. ing.
  • the application APL1 of the server 31-1 and the application APL1 of the server 31-4 send packets via the route 32-1 via the nodes 21-1, 21-4, 21-7. Sending and receiving.
  • the application APL2 of the server 31-1 and the application APL2 of the server 31-6 send packets via the path 32-2 that passes through the nodes 21-1, 21-2, 21-3, 21-6, 21-9. Sending and receiving.
  • the application APL3 of the server 31-2 and the application APL3 of the server 31-5 transmit and receive packets via a path 32-3 that passes through the nodes 21-2, 21-5, and 21-8.
  • the application APL4 of the server 31-3 and the application APL4 of the server 31-5 transmit and receive packets via the path 32-4 that passes through the nodes 21-3, 21-6, 21-5, and 21-8. .
  • the nodes 21-4 to 21-6 are not connected to the server 31 or the like, there is no traffic flowing through the electric buffer 211, and therefore the power OFF control of the electric buffer 211 is possible.
  • the traffic aggregating unit 112 aggregates the traffic routes as shown in FIG. 9 as shown in FIG. Specifically, as shown in FIG. 10, the route 32-2 of the application APL2 is switched to a route via the nodes 21-1, 21-4, 21-7, 21-8, 21-9, and the application APL4 The route 32-4 is switched to a route passing through the nodes 21-3, 21-2, 21-5, 21-8. That is, the traffic aggregating unit 112 aggregates the route 32-1 of the application APL1 and the route 32-2 of the application APL2 so as to pass through the node 21-4, and the route 32-3 of the application APL3 and the route 32 of the application APL4. -4 are aggregated so as to pass through the node 21-5. In other words, the traffic aggregating unit 112 aggregates the routes so that there is no traffic of the node 21-6, and aggregates so as to maintain the route lengths (shortest routes) of the switched routes 32-2 and 32-4.
  • the power control unit 113 of the node control device 11 causes the traffic flowing in the electrical buffer 211 of each node 21 to flow. It is confirmed whether or not there is (S2030). The confirmation of the traffic in S2030 is performed based on whether or not the transfer information (route aggregation information) received from the traffic aggregation unit 112 includes the transfer information from each node 21 to the server group 30 or the external network 40.
  • the power supply control unit 113 receives the transfer information from the traffic aggregating unit 112, and if the received transfer information includes transfer information from the node 21 to the server group 30 or the external network 40, the power control unit 113 stores the transfer information in the electric buffer 211 of the corresponding node 21. It is determined that there is traffic flowing, and if the received transfer information does not include transfer information from the node 21 to the server group 30 or the external network 40, it is determined that there is no traffic flowing to the electrical buffer 211 of the corresponding node 21. To do.
  • the power supply control unit 113 of the node control device 11 When there is traffic flowing in the electric buffer 211 (S2030 / Yes), the power supply control unit 113 of the node control device 11 does not perform node-related power supply OFF control for the corresponding node 21 (S2031).
  • the power supply control unit 113 determines the presence / absence of traffic in the electrical buffer 211 for all the nodes 21, and forwards packets addressed to the server group 30 or the external network 40 to the nodes 21 that have traffic flowing in the electrical buffer 211. Therefore, the power OFF control of the electric buffer 211 and the power OFF of the entire node 21 are not performed.
  • the power supply control unit 113 of the node control device 11 checks whether there is traffic flowing through the packet transfer unit 212 of each node 21 (S2040).
  • the confirmation of traffic in S2040 is performed by checking whether or not the transfer information received from the traffic aggregating unit 112 includes the transfer information of the node 21, that is, whether or not the transfer information is stored in the transfer information storage unit 213 of the node 21. To do.
  • the power supply control unit 113 receives the transfer information of the node 21 from the traffic aggregation unit 112 (when the transfer information of the node 21 is included in the route aggregation information), that is, the transfer information is stored in the transfer information storage unit 213 of the node 21. If it is stored, it is determined that there is traffic flowing through the packet transfer unit 212 of the corresponding node 21, and the transfer information of the node 21 is not received from the traffic aggregation unit 112 (the transfer information of the node 21 is included in the route aggregation information) In other words, when the transfer information is not stored in the transfer information storage unit 213 of the node 21, it is determined that there is no traffic flowing through the packet transfer unit 212 of the corresponding node 21.
  • the power control unit 113 of the node control device 11 When there is traffic flowing through the packet transfer unit 212 (S2040 / Yes), the power control unit 113 of the node control device 11 performs control so that the power of the electric buffer 211 in the corresponding node 21 is turned off (S2041).
  • the power supply control unit 113 determines the presence / absence of traffic in the packet transfer unit 212 for all the nodes 21 that are determined to have traffic flowing in the electrical buffer 211, and the node 21 that has traffic flowing in the packet transfer unit 212 Since only the transfer processing of packets addressed to other nodes 21 is possible, the power OFF control of the electric buffer 211 is performed without performing the power OFF control of the entire node 21. For example, in FIG. 10, the power control unit 113 performs power OFF control of the electrical buffer 211 for the nodes 21-4 and 21-5.
  • the power control unit 113 of the node control device 11 controls the entire node 21 to be turned off (S2042).
  • the power supply control unit 113 determines the presence / absence of traffic in the packet transfer unit 212 for all the nodes 21 that are determined to have traffic flowing in the electrical buffer 211, and determines whether there is no traffic flowing in the packet transfer unit 212. Performs the power OFF control of the entire node 21. For example, in FIG. 10, the power control unit 113 performs power OFF control of the entire node 21 with respect to the node 21-6.
  • the server functions are aggregated in addition to the traffic path aggregation, thereby further reducing energy consumption.
  • FIG. 11 shows an example of the main configuration of the network transmission system according to the present embodiment.
  • the network system includes a plurality of nodes 51 that configure the network, and a control device 50 that controls the plurality of nodes 51.
  • the plurality of nodes 51 includes a packet transfer unit 1 and an electrical buffer 2.
  • the packet transfer unit 1 transfers a packet between the first route (route between the nodes 51) and the second route (route other than the node 51).
  • the electric buffer 2 electrically holds and transfers the packet between the packet transfer unit 1 and the second path.
  • the control device 50 includes a server function aggregation unit 6 and a power supply control unit 3.
  • the server function aggregating unit 6 aggregates server functions related to traffic in the plurality of servers 52 according to the operating status of the servers 52 accommodated under the plurality of nodes 51.
  • the power control unit 3 selects and controls either the power source of the electrical buffer 2 or the power source of the entire node 51 according to the traffic path by the aggregated server function.
  • a plurality of server functions are aggregated, and the electric buffer or the power supply of the entire node is controlled according to the traffic caused by the aggregated server functions.
  • the network system according to this embodiment includes a plurality of nodes (referred to as nodes 22 in the present embodiment) configuring the network 200 and a node control device that controls the plurality of nodes 22 (in the present embodiment, the node control device 12). Called).
  • a connection system 41 such as a server group 30 or an external network 40 is connected to the plurality of nodes 22.
  • the node control device 12 is communicably connected to each server group 30 (server 31) in order to control a plurality of server groups 30 (servers 31).
  • FIG. 12 shows a configuration example of the node control device 12 and the node 22 according to the third embodiment.
  • FIG. 12 shows the node control device 12 and one node 22 included in the network system similar to FIG.
  • the node control device 12 is assumed to be a device external to the node 22, receives the transfer information from the transfer information storage unit 223 of the plurality of nodes 22, and further receives server information from the plurality of server groups 30 (servers 31). Receive.
  • the node 22 includes an electrical buffer 221, a packet transfer unit 222, and a transfer information storage unit 223.
  • the node 22 according to the present embodiment has the same configuration as the node 20 according to the first embodiment, and is an optical transmission device such as an optical packet router, for example.
  • the transfer information storage unit 223 stores packet transfer information (transfer destination information, transfer table) and is referred to by the packet transfer unit 222. In addition, the transfer information storage unit 223 sends the transfer information stored in the transfer information storage unit 223 to the node control device 12.
  • the packet transfer unit 222 receives a packet from the other node 22, determines a destination corresponding to the destination information of the packet based on the transfer information in the transfer information storage unit 223, and sends the packet to the determined destination. .
  • the packet transfer unit 222 transmits a packet to another node 22 when the destination is the network 200 configured by the node 22, and the server group 30 or the external network through the electric buffer 221 when the destination is other than the network 200.
  • the packet is transmitted to 40.
  • the electric buffer 221 sends data (packets) input from other nodes 22 via the packet transfer unit 222 to the server group 30 or the external network 40 accommodated under the nodes 22.
  • the electric buffer 221 sends data (packets) input from the server group 30 or the external network 40 to another node 22 via the packet transfer unit 222.
  • the node control device 12 further includes a server management unit and a server function aggregation unit in addition to the configuration of the node control device 11 according to the second embodiment. That is, as illustrated in FIG. 12, the node control device 12 includes a server management unit 121, a server function aggregation unit 122, a traffic management unit 123, a traffic aggregation unit 124, and a power supply control unit 125.
  • the server management unit 121 grasps (detects) the operation status of the server group 30 accommodated under each node 22 and sends the grasped operation status (server operation status) to the server function aggregation unit 122.
  • the server function aggregation unit 122 performs server function aggregation based on the server operation status received from the server management unit 121, and moves (aggregates) the server function. Furthermore, the server function aggregating unit 122 performs traffic route setting based on the server function aggregation result, and notifies the traffic management unit 123 of the route setting result (route setting information).
  • the traffic management unit 123 receives the route setting information from the server function aggregating unit 122, further receives the transfer information in the transfer information storage unit 223 from each node 22, and based on the received route setting information and transfer information, the network 200 Understand (detect) the traffic situation at.
  • the traffic aggregating unit 124 receives the traffic information indicating the traffic situation grasped by the traffic managing unit 123.
  • the traffic aggregation unit 124 aggregates traffic based on the traffic information received from the traffic management unit 123. Further, the traffic aggregation unit 124 sends traffic aggregation information (route aggregation information) indicating the traffic aggregation result to the power supply control unit 125. Based on the traffic aggregation information received from the traffic aggregation unit 124, the power source control unit 125 performs power OFF control of the electric buffer 221 in each node 22 or power OFF control of the entire node 22.
  • traffic aggregation information route aggregation information
  • FIG. 13 is a flowchart showing the operation of the node control apparatus 12 according to the third embodiment.
  • the server management unit 121 of the node control device 12 monitors the server group 30 of the entire network 200 (S3010).
  • the server management unit 121 collects (receives) the operating status of each server group 30 (server 31), and sends the collected operating status (server operating status) to the server function aggregation unit 122.
  • the server function aggregating unit 122 of the node control device 12 confirms whether the server functions can be aggregated (S3020). Can the server function aggregating unit 122 identify the server function (application) being executed in the server group 30 (server 31) based on the server operation status received from the server management unit 121 and consolidate the identified server function? Judge whether. For example, the server function aggregating unit 122 determines whether server functions can be aggregated between different server groups 30 (servers 31). Further, the server function aggregating unit 122 determines whether or not the server functions can be aggregated so that traffic of an arbitrary node 22 is eliminated. The server function aggregating unit 122 may determine whether the server functions can be aggregated based on performance and the like that can be executed by the server group 30 (server 31).
  • the server function aggregating unit 122 of the node control device 12 aggregates the server functions (S3021).
  • the server function aggregating unit 122 moves the server function to the target server group 30 (server 31), and aggregates the server function in the destination server group 30 (server 31).
  • the server function aggregating unit 122 moves the server function between different server groups 30 (servers 31), and aggregates the server function. Further, the server function aggregating unit 122 aggregates the server functions so that traffic of an arbitrary node 22 is eliminated. As a result, the power OFF control of the entire node 22 without traffic can be performed.
  • the server function aggregation unit 122 of the node control device 12 After the server function aggregation (S3021), the server function aggregation unit 122 of the node control device 12 performs traffic route setting according to the server function aggregation (S3022). In this case, the server function aggregating unit 122 updates the transfer information in the transfer information storage unit 223 in each node 22 so that a route between the aggregated server functions is configured, and the route setting information indicating the route setting result is transmitted as traffic. Notify the management unit 123.
  • FIGS. 14 and 15 show examples of server function aggregation performed in S3021 and S3022.
  • 14 and 15 show a state in which packets are transmitted between applications (server functions) of the server 31 via the network 200 including the nodes 22-1 to 22-9.
  • FIG. 14 shows a state before the server functions are aggregated
  • FIG. 15 shows a state after the server functions are aggregated.
  • servers 31-1 to 31-3 are connected to nodes 22-1 to 22-3, respectively
  • servers 31-4 to 31-6 are connected to nodes 22-7 to 22-9, respectively. ing.
  • FIG. 14 is the same configuration as in FIG. 10 before the server function integration in FIG. That is, the application APL1 of the server 31-1 and the application APL1 of the server 31-4 send and receive packets via the path 32-1, and the application APL2 of the server 31-1 and the application APL2 of the server 31-6 pass through the path 32-2.
  • the application APL3 of the server 31-2 and the application APL3 of the server 31-5 transmit and receive the packet via the path 32-3, and the application APL4 of the server 31-3 and the application of the server 31-5 APL 4 transmits and receives packets via path 32-4.
  • the power supply OFF control of the entire node can be performed on the node 22-6, and the power supply OFF control of the electric buffer 221 can be performed on the nodes 22-4 and 22-5.
  • the server function aggregating unit 122 aggregates the configuration of the server function (application) as shown in FIG. 14 as shown in FIG. Specifically, as shown in FIG. 15, the applications APL1 to APL4 are collected in the servers 31-1 and 31-4, respectively. In accordance with the aggregation of the applications APL1 to APL4, the server function aggregating unit 122 switches the paths 32-1 to 32-4 of the applications APL1 to APL4 so as to pass through the nodes 22-1, 22-4, and 22-7. . That is, the server function aggregating unit 122 aggregates the server functions so that the traffic of the nodes 22-2, 22-3, 22-5, 22-8, and 22-9 is eliminated.
  • the server functions are aggregated so that all the applications are realized between the same servers, and the paths are set, so that the nodes 22-2, 22-3, 22-5, 22-8, 22- 9 can be eliminated, so that the power supply of the entire node can be controlled for five nodes 22 (22-2, 22-3, 22-5, 22-8, 22-9).
  • the power supply OFF control of the entire node is possible for the nodes 22-2, 22-3, 22-5, 22-6, 22-8, 22-9, and The power supply OFF control of the buffer 221 is possible.
  • the traffic management unit 123 of the node control device 12 monitors the traffic situation of the entire network. (S3030).
  • the traffic management unit 123 receives the route setting information from the server function aggregating unit 122, further receives the transfer information in the transfer information storage unit 223 from each node 22, and uses the received route setting information and transfer information for the entire network 200. Understand traffic conditions.
  • the traffic management unit 123 sends traffic information (transfer information) indicating the grasped traffic status to the traffic aggregation unit 124.
  • the traffic aggregating unit 124 of the node control device 12 confirms whether traffic route aggregation is possible from the traffic status of the entire network 200 (S3040).
  • the traffic aggregation unit 124 of the node control device 12 performs traffic route aggregation (S3041). In this case, the traffic aggregating unit 124 updates the transfer information in the transfer information storage unit 223 in each node 22 so that the aggregated route is configured, and the route aggregation information indicating the aggregated route (updated after route aggregation) Transfer information) to the power supply control unit 125.
  • the power supply control unit 125 of the node control device 12 determines whether there is traffic flowing in the electrical buffer 221 of each node 22. Confirm (S3050). The confirmation of the traffic in S3050 is performed based on whether or not the transfer information (route aggregation information) received from the traffic aggregation unit 124 includes the transfer information from each node 22 to the server group 30 or the external network 40. Note that, after server function aggregation, power control may be performed without performing traffic route aggregation. For example, the traffic management unit 123 may acquire transfer information for the entire network (S3030), and the power supply control unit 125 may turn off the electrical buffer 221 or the entire node 22 based on the transfer information (S3050 to S3050). S3062).
  • the power control unit 125 of the node control device 12 When there is traffic flowing in the electrical buffer 221 (S3050 / Yes), the power control unit 125 of the node control device 12 does not perform node-related power OFF control on the corresponding node 22 (S3051).
  • the power supply control unit 125 determines the presence or absence of traffic in the electrical buffer 221 for all the nodes 22, and for the node 22 with traffic flowing in the electrical buffer 221, the power supply OFF control of the electrical buffer 221 and the entire node 22 are controlled. Do not turn off the power.
  • the power supply control unit 125 of the node control device 12 checks whether there is traffic flowing through the packet transfer unit 222 of each node 22 (S3060).
  • the confirmation of the traffic in S3060 is performed by checking whether the transfer information received from the traffic aggregation unit 124 includes the transfer information of the node 22, that is, whether the transfer information is stored in the transfer information storage unit 223 of the node 22. To do.
  • the power supply control unit 125 of the node control device 12 controls the power supply of the electric buffer 221 in the corresponding node 22 to be turned off (S3061).
  • the power supply control unit 125 determines the presence / absence of traffic in the packet transfer unit 222 for all the nodes 22 determined to have traffic flowing in the electrical buffer 221, and the node 22 having traffic flowing in the packet transfer unit 222 Performs power OFF control of the electric buffer 221. For example, in FIG. 15, the power control unit 125 performs power OFF control of the electric buffer 221 for the node 22-4.
  • the power control unit 125 of the node control device 12 performs control so that the entire power of the node 22 is turned off (S3062).
  • the power supply control unit 125 determines the presence / absence of traffic in the packet transfer unit 222 for all the nodes 22 determined to have traffic flowing in the electrical buffer 221, and the node 22 having no traffic flowing in the packet transfer unit 222 Performs power OFF control of the entire node 22.
  • the power control unit 125 performs power OFF control of the entire node 22 with respect to the nodes 22-2, 22-3, 22-5, 22-6, 22-8, and 22-9.
  • Each configuration in the above-described embodiment is configured by hardware and / or software, and may be configured by one piece of hardware or software, or may be configured by a plurality of pieces of hardware or software.
  • Each function (each process) of the node or the node control device may be realized by a computer having a CPU, a memory, and the like.
  • a packet transfer program or control program for performing a packet transfer method (packet transfer process) or a control method (control process) in the embodiment is stored in the storage device, and each function is stored in the storage device.
  • the control program may be executed by the CPU.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Traffic management means for grasping the status of traffic transmitted in a network composed of a plurality of nodes; Traffic aggregation means for aggregating traffic in the network according to the traffic transmission status grasped by the traffic management means; Power control means for controlling the power of the electrical buffer of the node to be turned off or the power of the entire node to be turned off based on the traffic aggregation means;
  • a node control system comprising:
  • (Appendix 2) Server management means for managing the operating status of a group of servers in the network; Server function aggregation means for aggregating server functions in the network based on the server management means;
  • a traffic management function that grasps the status of traffic transmitted in a network consisting of multiple nodes, A traffic aggregation function for aggregating traffic in the network according to the traffic transmission status grasped by the traffic management means; A power control function for controlling the power of the electrical buffer of the node to be turned off or the power of the entire node to be turned off based on the traffic aggregation means;
  • a node control device comprising:
  • the node control device according to supplementary note 3, comprising:
  • a node control method comprising:
  • Traffic management processing to grasp the status of traffic transmitted in a network composed of multiple nodes, A traffic aggregation process for aggregating the traffic in the network according to the traffic transmission status grasped by the traffic management means; A power control process for controlling the power of the electrical buffer of the node to be turned off or the power of the entire node to be turned off based on the traffic aggregation means; Node control program for causing a computer to execute.

Abstract

ネットワークシステムは、複数のノード(51)と制御装置(50)とを備え、複数のノード(51)は、第1の経路と第2の経路との間でパケットを転送するパケット転送部(1)と、パケット転送部(1)と第2の経路との間でパケットを転送する電気バッファ(2)とを備え、制御装置(50)は、ネットワーク内を流れるトラフィックに応じて、トラフィックの経路を集約するトラフィック集約部(5)と、集約したトラフィックの経路に応じて、電気バッファ(2)の電源またはノード(51)全体の電源のいずれかを選択して制御する電源制御部(3)と、を備えるものである。これにより、低エネルギー化を図ることが可能なネットワークシステムを提供することができる。

Description

ネットワークシステム、制御装置、制御方法、および非一時的なコンピュータ可読媒体
 本発明は、ネットワークシステム、制御装置、制御方法、および制御プログラムが格納された非一時的なコンピュータ可読媒体に関し、特に、パケットを転送するネットワークシステム、制御装置、制御方法、および制御プログラムが格納された非一時的なコンピュータ可読媒体に関する。
 近年、ネットワークにおけるトラフィックが急増していることにより、ネットワークの消費電力増大が課題となっている。ネットワークの消費電力の増大を防ぐために、全光ネットワーク(フォトニックネットワーク)の導入が検討されている。全光ネットワークでは光処理でデータを扱うため、低エネルギー化が可能である。しかしながら、全光ネットワークでは光バッファ(メモリ)の実現が技術的に困難であり、現状ではノード(ネットワークノード)の部分では電気バッファを用いるのが通常となっている。
 関連する技術として、例えば、特許文献1~5が知られている。特許文献1には、ONUを構成するモジュールの一部を省電力状態とすることが記載されている。特許文献2には、WDMモジュールの電源をオフすることが記載されている。特許文献3には、光ネットワークを構成する各ノードがトラフィックを監視することが記載されている。特許文献4には、ネットワークの全てのトラフィックを所定のノードに集約することが記載されている。特許文献5には、複数の物理サーバのトラフィックを集約するトップオブラックスイッチが記載されている。
特開2012-095089号公報 特開2007-306316号公報 特開2006-166343号公報 特開2012-169823号公報 特開2013-026816号公報
 特許文献1~5では、上記全光ネットワークを構成するようなノードについて考慮されていないため、ノードの構成によっては低エネルギー化を図ることはできない。
 また、上記のように全光ネットワークを構成するノードには電気バッファが用いられている。このため、電気バッファの消費電力によっては、低エネルギー化を図ることが困難であるという問題がある。
 そこで、本発明は、このような問題に鑑み、低エネルギー化を図ることが可能なネットワークシステム、制御装置、制御方法、および制御プログラムが格納された非一時的なコンピュータ可読媒体を提供することを目的とする。
 本発明に係るネットワークシステムは、ネットワークを構成する複数のノードと、前記複数のノードを制御する制御装置とを備えるネットワークシステムであって、前記複数のノードは、第1の経路と第2の経路との間でパケットを転送するパケット転送部と、前記パケット転送部と前記第2の経路との間で前記パケットを電気的に保持し転送する電気バッファと、を備え、前記制御装置は、前記ネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約するトラフィック集約部と、前記集約したトラフィックの経路に応じて、前記電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御する電源制御部と、を備えるものである。
 本発明に係る制御装置は、複数のノードを含むネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約するトラフィック集約部と、前記集約したトラフィックの経路に応じて、前記ノード内で転送するパケットを電気的に保持する電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御する電源制御部と、を備えるものである。
 本発明に係る制御方法は、複数のノードを含むネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約し、前記集約したトラフィックの経路に応じて、前記ノード内で転送するパケットを電気的に保持する電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御するものである。
 本発明に係る制御プログラムが格納された非一時的なコンピュータ可読媒体は、複数のノードを含むネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約し、前記集約したトラフィックの経路に応じて、前記ノード内で転送するパケットを電気的に保持する電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御する、制御処理をコンピュータに実行させるための制御プログラムが格納された非一時的なコンピュータ可読媒体である。
 本発明によれば、低エネルギー化を図ることが可能なネットワークシステム、制御装置、制御方法、および制御プログラムが格納された非一時的なコンピュータ可読媒体を提供することができる。
第1の実施形態に係るパケット転送システムの概略構成を示す構成図である。 第1の実施形態に係る制御装置の概略構成を示す構成図である。 第1の実施形態に係るネットワークシステムの構成例を示す構成図である。 第1の実施形態に係るノード制御装置及びノードの構成例を示す構成図である。 第1の実施形態に係るノード制御装置の動作例を示すフローチャートである。 第2の実施形態に係るネットワークシステムの概略構成を示す構成図である。 第2の実施形態に係るノード制御装置及びノードの構成例を示す構成図である。 第2の実施形態に係るノード制御装置の動作例を示すフローチャートである。 第2の実施形態に係る経路集約処理を説明するための説明図である。 第2の実施形態に係る経路集約処理を説明するための説明図である。 第3の実施形態に係るネットワークシステムの概略構成を示す構成図である。 第3の実施形態に係るノード制御装置及びノードの構成例を示す構成図である。 第3の実施形態に係るノード制御装置の動作例を示すフローチャートである。 第3の実施形態に係るサーバ機能集約処理を説明するための説明図である。 第3の実施形態に係るサーバ機能集約処理を説明するための説明図である。
(第1の実施形態)
 以下、図面を参照して第1の実施形態について説明する。
<第1の実施形態の概要>
 まず、第1の実施形態の特徴についてその概要を説明する。図1は、本実施形態に係るパケット転送システムの主要な構成の一例を示している。
 図1に示すように、本実施形態に係るパケット転送システムは、パケット転送部1、電気バッファ2、電源制御部3を備えている。パケット転送部1は、第1の経路と第2の経路との間でパケットを転送する。電気バッファ2は、パケット転送部1と第2の経路との間で(もしくは第2の経路上で)パケットを電気的に保持し転送する。電源制御部3は、電気バッファ2を流れるトラフィックに応じて、電気バッファ2の電源を制御する。
 また、図2は、本実施形態に係る制御装置の主要な構成の他の例を示している。図2に示すように、本実施形態に係る制御装置50は、ネットワークを構成するノード51を制御するものであり、トラフィック検出部4、電源制御部3を備えている。トラフィック検出部4は、ノード51に含まれる電気バッファ2であって、ノード51が転送するパケットを電気的に保持する電気バッファ2に流れるトラフィックを検出する。電源制御部3は、検出したトラフィックに応じて、電気バッファ2の電源を制御する。
 このように、本実施形態では、電気バッファを流れるトラフィックに応じて、電気バッファの電源を制御することとした。例えば、電気バッファにトラフィックが流れていない場合には電気バッファの電源をオフすることができる。したがって、トラフィックに応じて電気バッファの消費電力を抑えることができるため、低エネルギー化を図ることができる。
<第1の実施形態の構成>
 次に、第1の実施形態の構成例について説明する。図3は、本実施形態に係るネットワークシステムの構成例を示している。
 図3に示すように、本実施形態に係るネットワークシステムは、ネットワーク200を構成する複数のノード20と、複数のノード20を制御するノード制御装置10を備えている。
 この例では、ネットワーク200は、複数のノード20が格子状(マトリクス状)に配置された格子状ネットワークである。図3ではノード20の数は9個であるのが、その他の任意の数のノード20を備えていてもよい。また、ネットワーク200は、リング状、メッシュ状、ツリー状などその他のトポロジであってもよい。
 ネットワーク200は、一例として、全光ネットワーク(もしくは光ネットワーク)であり、隣接するノード20の間が光ファイバなどの接続回線を介して通信可能に接続されている。なお、ネットワーク200は、全光ネットワーク(もしくは光ネットワーク)に限らず、その他の有線/無線ネットワークでもよい。ノード制御装置10は、複数のノード20を制御するために、それぞれのノード20と通信可能に接続されている。なお、本実施形態では、ノード制御装置10は、1つのノード20を制御するために、1つのノード20と通信可能に接続されていてもよい。
 ノード20は、ネットワーク200を構成する他のノード20との間で、すなわちネットワーク200内でパケットを転送するとともに、ノード20以外の接続システム41との間でもパケットを転送する。ノード20に接続する接続システム41には、サーバ群30や外部ネットワーク40など任意の装置やシステムが含まれる。例えば、ノード20は、配下に複数のサーバ31を含むサーバ群30と接続(収容)し、サーバ群30との間でパケットを転送する。なお、複数のノード20とサーバ群30とを含めてネットワーク200と称してもよい。また、例えば、ノード20は、ネットワーク(内部ネットワーク)200より外部の外部ネットワーク40と接続し、外部ネットワーク40との間でパケットを転送する。
 図4は、第1の実施形態に係るノード制御装置10及びノード20の構成例を示している。図4は、図3で示したネットワークシステムに含まれるノード制御装置10と1つのノード20を示している。ここで、ノード制御装置10は、ノード20の外部の装置として説明するが、これに限らず、ノード20の内部に含まれていてもよい。
 図4に示すように、ノード20は、電気バッファ201、パケット転送部202、および転送情報格納部203を備えている。例えば、ノード20と他のノード20との間(ネットワーク200内)の経路が第1の経路であり、ノード20とサーバ群30または外部ネットワーク40との間の経路が第2の経路である。なお、ノード20は、各部(電気バッファ201、パケット転送部202、および転送情報格納部203)を含むノード20全体に電源(電力)を供給する電源供給部を有しており、ノード制御装置10からの制御に応じて、電源供給部から各部への電源供給のON/OFF(各部の電源ON/OFF)や、電源供給部からノード20全体への電源供給のON/OFF(ノード20全体の電源ON/OFF)を切り替えることができる。
 転送情報格納部203は、パケットの転送情報(転送先情報、転送テーブル)を格納しており、パケット転送部202から参照可能である。また、転送情報格納部203は、ノード制御装置10に対して転送情報格納部203に格納されている転送情報を送出する。
 転送情報は、パケット転送部202がパケットを転送するための情報であり、予め転送情報格納部203に格納されていてもよいし、ノード制御装置10からの指示により格納されてもよい。例えば、ノード20は、受信したパケットに応じて転送情報を生成する。これにより、転送情報に基づいてノード20に流れるトラフィックを判定することができる。例えば、受信したパケットに該当する転送情報が転送情報格納部203に格納されていない場合、ノード20、もしくはノード20の問い合わせに応じてノード制御装置10が転送情報を生成してもよい。ノード20もしくはノード制御装置10は、ネットワークポリシーを規定するポリシー情報などに基づいて転送情報を生成してもよい。
 例えば、転送情報は、パケットの宛先情報(宛先アドレスやラベル)ごとに送出先(転送先)情報を関連付けている。送出先情報は、経路やリンク、回線、ラベルなどを識別する情報を含んでいてもよい。また、転送情報は、パケットを転送する転送ルール(転送規則、フローテーブル)であるとも言える。すなわち、転送情報は、パケットが属するフローの条件と処理(アクション)を記述したフローエントリを含んでいてもよい。例えば、転送情報に含まれる宛先情報やフローの条件などを参照することで、サーバ群30または外部ネットワーク40あてのトラフィック(電気バッファ201を流れるトラフィック)の有無や、他のノード20あて(ネットワーク200あて)のトラフィック(パケット転送部202を流れるトラフィック)の有無を判定することができる。
 パケット転送部202は、他のノード20からパケットを受信し、転送情報格納部203の転送情報に基づいてパケットの宛先情報等に対応した送出先を決定し、決定した送出先へパケットを送出する。例えば、パケット転送部202は、送出先がノード20で構成されるネットワーク200の場合、他のノード20へパケットを送出し、送出先がそれ以外の場合、電気バッファ201を通じてサーバ群30または外部ネットワーク40へ、パケットを送出する。
 電気バッファ201は、入力されたデータ(パケット)を電気的に保持し出力(転送)する。電気バッファ201は、他のノード20からパケット転送部202を介して入力されたデータ(パケット)を、ノード20の配下に収容されたサーバ群30または外部ネットワーク40へ送出する。また、電気バッファ201は、サーバ群30または外部ネットワーク40から入力されたデータ(パケット)を、パケット転送部202を介して他のノード20へ送出する。
 例えば、ノード20は、光パケットルータなどの光伝送装置である。これにより、全光ネットワーク(もしくは光ネットワーク)において、低エネルギー化を図ることができる。光伝送装置では、パケット転送部202は、光パケット(パケットに対応する光信号)をスイッチングする光スイッチにより構成することができる。また、電気バッファ201は、パケットに対応する(光パケットを変換した)電気信号を保持するRAM(Random Access Memory)などのメモリにより構成することができる。なお、ノード20は、光伝送装置に限らず、その他の伝送装置であってもよい。
 ノード制御装置10は、ノード20の転送処理(転送情報)を制御するとともに、さらに、ノード20の電源を制御する。以下では、ノード20または電気バッファ201の電源OFFの制御について説明するが、必要に応じて電源ONの制御を行ってもよい。例えば、ノード20または電気バッファ201の電源OFFの後、一定時間経過後にノード20または電気バッファ201の電源をONとしてもよい。
 図4に示すように、ノード制御装置10は、トラフィック管理部101および電源制御部102を備えている。トラフィック管理部(トラフィック検出部)101は、ノード20から転送情報格納部203に格納されている転送情報を受信し、受信した転送情報に基づいてノード20におけるトラフィック状況を把握(検出)する。トラフィック管理部101が把握したトラフィック状況を示すトラフィック情報は、電源制御部102が受信する。
 電源制御部102は、トラフィック管理部101から受信したトラフィック情報に基づいて、ノード20内の電気バッファ201の電源OFF制御、またはノード20全体の電源OFF制御を行う。電源制御部102は、トラフィック管理部101を経由して、転送情報格納部203から転送情報を受信し、受信した転送情報に基づいて、電気バッファ201またはノード20全体の電源OFF制御を行っているとも言える。例えば、電源制御部102が、ノード20に流れるトラフィックを検出するトラフィック検出部を含んでいてもよい。
<第1の実施形態の動作>
 次に、第1の実施形態の動作例について説明する。図5は、第1の実施形態に係るノード制御装置10の動作を示すフローチャートである。
 まず、ノード制御装置10のトラフィック管理部101は、トラフィック状況をモニタする(S1010)。トラフィック管理部101は、ノード20から転送情報格納部203の転送情報を受信し、受信した転送情報によってノード20のトラフィック状況を把握する。ここで、転送情報格納部203に格納されている転送情報は、ノード20におけるトラフィックの伝送状況と連動しているものとする。例えば、トラフィック管理部101は、ノード20から転送情報を定期的に受信してもよい。トラフィック管理部101は、把握したトラフィック状況を示すトラフィック情報(転送情報)を電源制御部102へ送出する。
 続いて、ノード制御装置10の電源制御部102は、電気バッファ201に流れるトラフィックがあるかどうかを確認する(S1020)。S1020におけるトラフィックの確認は、転送情報格納部203に格納された転送情報に、サーバ群30または外部ネットワーク40あての転送情報が含まれるかどうかで行う。電源制御部102は、トラフィック管理部101から転送情報(トラフィック情報)を受信し、受信した転送情報にサーバ群30または外部ネットワーク40あての転送情報が含まれる場合、電気バッファ201に流れるトラフィックがあると判定し、また、受信した転送情報にサーバ群30または外部ネットワーク40あての転送情報が含まれない場合、電気バッファ201に流れるトラフィックはないと判定する。
 電気バッファ201に流れるトラフィックがある場合(S1020/Yes)、ノード制御装置10の電源制御部102は、ノード関係の電源OFF制御を実施しない(S1021)。この場合、サーバ群30または外部ネットワーク40あてのパケットの転送処理を可能とするため、電源制御部102は、電気バッファ201の電源OFF制御、およびノード20全体の電源OFFを行わない。
 一方、電気バッファ201に流れるトラフィックがない場合(S1020/No)、ノード制御装置10の電源制御部102は、パケット転送部202を流れるトラフィックがあるかどうかを確認する(S1030)。S1030におけるトラフィックの確認は、転送情報格納部203に転送情報が格納されているか否かで行う。電源制御部102は、転送情報格納部203に転送情報が格納されている場合、すなわち、トラフィック管理部101から転送情報(トラフィック情報)を受信した場合(トラフィック情報に転送情報が含まれる場合)、パケット転送部202を流れるトラフィック(ネットワーク200もしくは他のノード20あてのトラフィック)があると判定し、また、転送情報格納部203に転送情報が格納されていない場合、すなわち、トラフィック管理部101から転送情報(トラフィック情報)を受信しない場合(トラフィック情報に転送情報が含まれない場合)、パケット転送部202を流れるトラフィックがないと判定する。
 パケット転送部202を流れるトラフィックがある場合(S1030/Yes)、ノード制御装置10の電源制御部102は、ノード20内の電気バッファ201の電源をOFFにするように制御する(S1031)。この場合、サーバ群30または外部ネットワーク40あてのパケットの転送処理は不要であり、他のノード20あてのパケットの転送処理のみ可能とするため、電源制御部102は、ノード20全体の電源OFF制御は行わず、電気バッファ201の電源OFF制御を行う。なお、電気バッファ201に流れるトラフィックがない場合に常に電気バッファ201の電源OFF制御を行ってもよい。例えば、電気バッファ201に流れるトラフィックがない場合に電気バッファ201の電源OFF制御を行い(S1031)、パケット転送部202を流れるトラフィックがない場合に、さらにノード20全体の電源OFF制御を行ってもよい(S1032)。
 一方、パケット転送部202を流れるトラフィックがない場合(S1030/No)、ノード制御装置10の電源制御部102は、ノード20の全体の電源をOFFにするように制御する(S1032)。この場合、サーバ群30または外部ネットワーク40あてのパケットの転送処理は不要であり、他のノード20あてのパケットの転送処理も不要であるため、電源制御部102は、ノード20全体の電源OFF制御を行う。
<第1の実施形態の効果>
 本実施形態の効果について説明する。本実施形態では、ノードにおけるトラフィックに応じてノード全体の電力またはノード内にある電気バッファの電力を制御するため、ネットワークの低エネルギー化を実現することができる。
 すなわち、関連する技術などにおいては、光ネットワークなどにおけるノードで電気バッファを用いるため、トラフィック増大時の消費電力が懸念されている。そこで、本実施形態では、電気バッファを通過するトラフィックの有無、およびパケット転送部を通過するトラフィックの有無に応じて、ノード全体の電源をOFFまたは電気バッファの電源をOFFとする。これにより、トラフィックに影響を与えることなく、ネットワークの低エネルギー化を図ることができる。光ネットワークではノードにおける電気バッファの消費電力が支配的であるため、電気バッファの電源をOFFすることで効果的に消費電力を低くすることができる。さらに、光ネットワーク内においては、電気バッファの電源をOFFとしても、パケットの衝突が発生しない限り、ノード間でデータ伝送することが可能であるため、ネットワークへの影響を抑えることができる。
(第2の実施形態)
 以下、図面を参照して第2の実施形態について説明する。第2の実施形態では、ノード制御装置が経路を集約することでさらに低エネルギー化を実現する。
<第2の実施形態の概要>
 まず、第2の実施形態の特徴についてその概要を説明する。図6は、本実施形態に係るネットワーク送システムの主要な構成の一例を示している。
 図6に示すように、本実施形態に係るネットワークシステムは、ネットワークを構成する複数のノード51と、複数のノード51を制御する制御装置50とを備えている。複数のノード51は、パケット転送部1、電気バッファ2を備えている。パケット転送部1は、第1の経路(ノード51間の経路)と第2の経路(ノード51以外との経路)との間でパケットを転送する。電気バッファ2は、パケット転送部1と第2の経路との間でパケットを電気的に保持し転送する。
 制御装置50は、トラフィック集約部5、電源制御部3を備えている。トラフィック集約部5は、ネットワーク内を流れるトラフィックに応じて、複数のノード51を経由するトラフィックの経路を集約する。電源制御部3は、集約したトラフィックの経路に応じて、電気バッファ2の電源またはノード51全体の電源のいずれかを選択して制御する。
 このように、本実施形態では、複数のノードのトラフィックを集約し、集約したトラフィックに応じて、電気バッファまたはノード全体の電源を制御することとした。トラフィックを集約することにより、電源制御可能な電気バッファまたはノードを増やすことが可能となるため、さらに低エネルギー化を図ることができる。
<第2の実施形態の構成>
 次に、第2の実施形態の構成例について説明する。本実施形態に係るネットワークシステムの構成は、図3で示した第1の実施形態と同様である。すなわち、本実施形態に係るネットワークシステムは、ネットワーク200を構成する複数のノード(本実施形態ではノード21と称する)と、複数のノード21を制御するノード制御装置(本実施形態ではノード制御装置11と称する)を備えている。また、複数のノード21には、サーバ群30や外部ネットワーク40などの接続システム41が接続されている。
 図7は、第2の実施形態に係るノード制御装置11及びノード21の構成例を示している。図7は、図3と同様のネットワークシステムに含まれるノード制御装置11と1つのノード21を示している。ここで、ノード制御装置11は、ノード21の外部の装置であるものとし、複数のノード21の転送情報格納部213から転送情報を受信する。
 図7に示すように、ノード21は、電気バッファ211、パケット転送部212、および転送情報格納部213を備えている。本実施形態に係るノード21は、第1の実施形態に係るノード20と同様の構成であり、例えば、光パケットルータなどの光伝送装置である。
 すなわち、転送情報格納部213は、パケットの転送情報(転送先情報、転送テーブル)を格納しており、パケット転送部212から参照される。また、転送情報格納部213は、ノード制御装置11に対して転送情報格納部213に格納されている転送情報を送出する。
 パケット転送部212は、他のノード21からパケットを受信し、転送情報格納部213の転送情報に基づいてパケットの宛先情報等に対応した送出先を決定し、決定した送出先へパケットを送出する。例えば、パケット転送部212は、送出先がノード21で構成されるネットワーク200の場合、他のノード21へパケットを送出し、送出先がそれ以外の場合、電気バッファ211を通じてサーバ群30または外部ネットワーク40へ、パケットを送出する。
 電気バッファ211は、他のノード21からパケット転送部212を介して入力されたデータ(パケット)を、ノード21の配下に収容されたサーバ群30または外部ネットワーク40へ送出する。また、電気バッファ211は、サーバ群30または外部ネットワーク40から入力されたデータ(パケット)を、パケット転送部212を介して他のノード21へ送出する。
 本実施形態に係るノード制御装置11は、第1の実施形態に係るノード制御装置11の構成に加えて、さらにトラフィック集約部を備えている。すなわち、図7に示すように、ノード制御装置11は、トラフィック管理部111、トラフィック集約部112、および電源制御部113を備えている。
 トラフィック管理部111は、各ノード21から転送情報格納部213に格納されている転送情報を受信し、受信した転送情報に基づいてネットワーク200におけるトラフィック状況を把握(検出)する。トラフィック管理部111が把握したトラフィック状況を示すトラフィック情報は、トラフィック集約部112が受信する。
 トラフィック集約部112は、トラフィック管理部111から受信したトラフィック情報に基づいてトラフィックの集約を行う。さらに、トラフィック集約部112は、トラフィック集約結果を示すトラフィック集約情報(経路集約情報)を電源制御部113に送出する。電源制御部113は、トラフィック集約部112から受信したトラフィック集約情報に基づいて、各ノード21内の電気バッファ211の電源OFF制御、またはノード21全体の電源OFF制御を行う。
<第2の実施形態の動作>
 次に、第2の実施形態の動作例について説明する。図8は、第2の実施形態に係るノード制御装置11の動作を示すフローチャートである。
 まず、ノード制御装置11のトラフィック管理部111は、ネットワーク200全体のトラフィック状況をモニタする(S2010)。トラフィック管理部111は、各ノード21から転送情報格納部213の転送情報を受信し、受信した転送情報によってネットワーク200全体のトラフィック状況を把握する。トラフィック管理部111は、把握したトラフィック状況を示すトラフィック情報(転送情報)をトラフィック集約部112へ送出する。
 続いて、ノード制御装置11のトラフィック集約部112は、ネットワーク200全体のトラフィック状況からトラフィックの経路集約が可能かどうかを確認する(S2020)。トラフィック集約部112は、トラフィック管理部111から受信したトラフィック情報に基づいてトラフィックの経路を特定し、特定したトラフィックの経路を集約可能かどうか判定する。例えば、トラフィック集約部112は、任意のノード21のトラフィックが無くなるように、経路の集約が可能かどうか判定する。また、トラフィック集約部112は、経路長を維持したまま、もしくは、最短経路を維持したまま経路集約可能かどうか判定する。トラフィック集約部112は、ノード21が伝送可能な帯域に基づいて経路集約可能かどうか判定してもよい。
 トラフィックの経路集約が可能な場合(S2020/Yes)、ノード制御装置11のトラフィック集約部112は、トラフィックの経路集約を行う(S2021)。トラフィック集約部112は、任意のノード21のトラフィックが無くなるように、トラフィックの経路を集約する。これにより、トラフィックの無いノード21全体の電源OFF制御が可能となる。また、トラフィック集約部112は、経路長を維持するように、もしくは、最短経路を維持するようにトラフィックの経路を集約する。これにより、経路集約後においても、経路長が長くなることがないため、トラフィックの伝送に影響を与えることがない。トラフィック集約部112は、経路集約を行うと、集約した経路が構成されるように各ノード21内の転送情報格納部213の転送情報を更新し、集約した経路を示す経路集約情報(経路集約後の更新した転送情報)を電源制御部113に送出する。
 図9及び図10に、S2021で行われる経路集約の例を示す。図9及び図10は、サーバ31のアプリケーション間で、ノード21-1~21-9を含むネットワーク200を介して、パケットが伝送されている様子を示している。図9は、トラフィックの経路集約前の状態を示し、図10は、トラフィックの経路集約後の状態を示している。図9及び図10では、ノード21-1~21-3にそれぞれサーバ31-1~31-3が接続され、ノード21-7~21-9にそれぞれサーバ31-4~31-6が接続されている。
 図9の経路集約前では、サーバ31-1のアプリケーションAPL1とサーバ31-4のアプリケーションAPL1とは、ノード21-1、21-4、21-7を経由する経路32-1を介してパケットを送受信している。サーバ31-1のアプリケーションAPL2とサーバ31-6のアプリケーションAPL2とは、ノード21-1、21-2、21-3、21-6、21-9を経由する経路32-2を介してパケットを送受信している。サーバ31-2のアプリケーションAPL3とサーバ31-5のアプリケーションAPL3とは、ノード21-2、21-5、21-8を経由する経路32-3を介してパケットを送受信している。サーバ31-3のアプリケーションAPL4とサーバ31-5のアプリケーションAPL4とは、ノード21-3、21-6、21-5、21-8を経由する経路32-4を介してパケットを送受信している。図9では、ノード21-4~21-6は、サーバ31等に接続されていないため、電気バッファ211を流れるトラフィックがないことから、電気バッファ211の電源OFF制御が可能である。
 トラフィック集約部112は、図9のようなトラフィックの経路を、図10のように集約する。具体的には、図10に示すように、アプリケーションAPL2の経路32-2についてはノード21-1、21-4、21-7、21-8、21-9を経由する経路に切り替え、アプリケーションAPL4の経路32-4についてはノード21-3、21-2、21-5、21-8を経由する経路に切り替える。すなわち、トラフィック集約部112は、アプリケーションAPL1の経路32-1とアプリケーションAPL2の経路32-2についてはノード21-4を経由するように集約し、アプリケーションAPL3の経路32-3とアプリケーションAPL4の経路32-4についてはノード21-5を経由するように集約する。すなわち、トラフィック集約部112は、ノード21-6のトラフィックが無くなるように経路を集約し、また、切り替える経路32-2、32-4の経路長(最短経路)を維持するように集約する。
 図10のように、アプリケーションAPL2とアプリケーションAPL4の経路を切り替えて集約することで、ノード21-6を経由するトラフィックを無くすることができるため、1つのノード21-6に対しノード全体の電源OFF制御が可能となる。また、図9と同様に、ノード21-4、21-5に対し電気バッファ211の電源OFF制御が可能である。
 図8において、トラフィックの経路集約(S2021)の後、またはトラフィックの経路集約ができない場合(S2020/No)、ノード制御装置11の電源制御部113は、各ノード21の電気バッファ211に流れるトラフィックがあるかどうかを確認する(S2030)。S2030におけるトラフィックの確認は、トラフィック集約部112から受信した転送情報(経路集約情報)に、各ノード21からサーバ群30または外部ネットワーク40あての転送情報が含まれるかどうかで行う。電源制御部113は、トラフィック集約部112から転送情報を受信し、受信した転送情報にノード21からサーバ群30または外部ネットワーク40あての転送情報が含まれる場合、該当するノード21の電気バッファ211に流れるトラフィックがあると判定し、また、受信した転送情報にノード21からサーバ群30または外部ネットワーク40あての転送情報が含まれない場合、該当するノード21の電気バッファ211に流れるトラフィックはないと判定する。
 電気バッファ211に流れるトラフィックがある場合(S2030/Yes)、ノード制御装置11の電源制御部113は、該当するノード21に対し、ノード関係の電源OFF制御を実施しない(S2031)。電源制御部113は、全てのノード21について電気バッファ211のトラフィックの有無を判定し、電気バッファ211に流れるトラフィックがあるノード21に対しては、サーバ群30または外部ネットワーク40あてのパケットの転送処理を可能とするため、電気バッファ211の電源OFF制御、およびノード21全体の電源OFFを行わない。
 一方、電気バッファ211に流れるトラフィックがない場合(S2030/No)、ノード制御装置11の電源制御部113は、各ノード21のパケット転送部212を流れるトラフィックがあるかどうかを確認する(S2040)。S2040におけるトラフィックの確認は、トラフィック集約部112から受信した転送情報にノード21の転送情報が含まれているか否か、すなわち、ノード21の転送情報格納部213に転送情報が格納されているか否かで行う。電源制御部113は、トラフィック集約部112からノード21の転送情報を受信した場合(経路集約情報にノード21の転送情報が含まれる場合)、すなわち、ノード21の転送情報格納部213に転送情報が格納されている場合、該当するノード21のパケット転送部212を流れるトラフィックがあると判定し、また、トラフィック集約部112からノード21の転送情報を受信しない場合(経路集約情報にノード21の転送情報が含まれない場合)、すなわち、ノード21の転送情報格納部213に転送情報が格納されていない場合、該当するノード21のパケット転送部212を流れるトラフィックがないと判定する。
 パケット転送部212を流れるトラフィックがある場合(S2040/Yes)、ノード制御装置11の電源制御部113は、該当するノード21内の電気バッファ211の電源をOFFにするように制御する(S2041)。電源制御部113は、電気バッファ211に流れるトラフィックがあると判定された全てのノード21について、パケット転送部212のトラフィックの有無を判定し、パケット転送部212に流れるトラフィックがあるノード21に対しては、他のノード21あてのパケットの転送処理のみ可能とするため、ノード21全体の電源OFF制御は行わず、電気バッファ211の電源OFF制御を行う。例えば、図10では、電源制御部113は、ノード21-4、21-5に対し電気バッファ211の電源OFF制御を行う。
 一方、パケット転送部212を流れるトラフィックがない場合(S2040/No)、ノード制御装置11の電源制御部113は、該当するノード21の全体の電源をOFFにするように制御する(S2042)。電源制御部113は、電気バッファ211に流れるトラフィックがあると判定された全てのノード21について、パケット転送部212のトラフィックの有無を判定し、パケット転送部212に流れるトラフィックがないノード21に対しては、ノード21全体の電源OFF制御を行う。例えば、図10では、電源制御部113は、ノード21-6に対しノード21全体の電源OFF制御を行う。
<第2の実施形態の効果>
 第2の実施形態の効果について説明する。本実施形態では、トラフィックの経路集約を実現することで、ノード全体またはノード内にある電気バッファの電力制御がより可能になるため、さらにネットワークの低エネルギー化を実現することができる。すなわち、トラフィックの集約結果に応じて、ノード全体の電力およびノードが保持する電気バッファの電力を制御するため、さらにネットワーク全体の低エネルギー化を図ることができる。
(第3の実施形態)
 以下、図面を参照して第3の実施形態について説明する。第3の実施形態ではトラフィックの経路集約に加えてサーバ機能を集約することで、さらなる低エネルギー化を実現する。
<第3の実施形態の概要>
 まず、第3の実施形態の特徴についてその概要を説明する。図11は、本実施形態に係るネットワーク送システムの主要な構成の一例を示している。
 図11に示すように、本実施形態に係るネットワークシステムは、ネットワークを構成する複数のノード51と、複数のノード51を制御する制御装置50とを備えている。複数のノード51は、パケット転送部1、電気バッファ2を備えている。パケット転送部1は、第1の経路(ノード51間の経路)と第2の経路(ノード51以外との経路)との間でパケットを転送する。電気バッファ2は、パケット転送部1と第2の経路との間でパケットを電気的に保持し転送する。
 制御装置50は、サーバ機能集約部6、電源制御部3を備えている。サーバ機能集約部6は、複数のノード51の配下に収容されたサーバ52の稼働状況に応じて、複数のサーバ52におけるトラフィックに関連するサーバ機能を集約する。電源制御部3は、集約したサーバ機能によるトラフィックの経路に応じて、電気バッファ2の電源またはノード51全体の電源のいずれかを選択して制御する。
 このように、本実施形態では、複数のサーバ機能を集約し、集約したサーバ機能によるトラフィックに応じて、電気バッファまたはノード全体の電源を制御することとした。サーバ機能を集約することにより、電源制御可能な電気バッファまたはノードを増やすことが可能となるため、さらに低エネルギー化を図ることができる。
<第3の実施形態の構成>
 次に、第2の実施形態の構成例について説明する。本実施形態に係るネットワークシステムの構成は、図3で示した第1の実施形態と同様である。すなわち、本実施形態に係るネットワークシステムは、ネットワーク200を構成する複数のノード(本実施形態ではノード22と称する)と、複数のノード22を制御するノード制御装置(本実施形態ではノード制御装置12と称する)を備えている。また、複数のノード22には、サーバ群30や外部ネットワーク40などの接続システム41が接続されている。さらに、本実施形態では、ノード制御装置12は、複数のサーバ群30(サーバ31)を制御するために、それぞれのサーバ群30(サーバ31)と通信可能に接続されている。
 図12は、第3の実施形態に係るノード制御装置12及びノード22の構成例を示している。図12は、図3と同様のネットワークシステムに含まれるノード制御装置12と1つのノード22を示している。ここでノード制御装置12は、ノード22の外部の装置であるものとし、複数のノード22の転送情報格納部223から転送情報を受信し、さらに、複数のサーバ群30(サーバ31)からサーバ情報を受信する。
 図12に示すように、ノード22は、電気バッファ221、パケット転送部222、および転送情報格納部223を備えている。本実施形態に係るノード22は、第1の実施形態に係るノード20と同様の構成であり、例えば、光パケットルータなどの光伝送装置である。
 すなわち、転送情報格納部223は、パケットの転送情報(転送先情報、転送テーブル)を格納しており、パケット転送部222から参照される。また、転送情報格納部223は、ノード制御装置12に対して転送情報格納部223に格納されている転送情報を送出する。
 パケット転送部222は、他のノード22からパケットを受信し、転送情報格納部223の転送情報に基づいてパケットの宛先情報等に対応した送出先を決定し、決定した送出先へパケットを送出する。例えば、パケット転送部222は、送出先がノード22で構成されるネットワーク200の場合、他のノード22へパケットを送出し、送出先がそれ以外の場合、電気バッファ221を通じてサーバ群30または外部ネットワーク40へ、パケットを送出する。
 電気バッファ221は、他のノード22からパケット転送部222を介して入力されたデータ(パケット)を、ノード22の配下に収容されたサーバ群30または外部ネットワーク40へ送出する。また、電気バッファ221は、サーバ群30または外部ネットワーク40から入力されたデータ(パケット)を、パケット転送部222を介して他のノード22へ送出する。
 本実施形態に係るノード制御装置12は、第2の実施形態に係るノード制御装置11の構成に加えて、さらにサーバ管理部及びサーバ機能集約部を備えている。すなわち、図12に示すように、ノード制御装置12は、サーバ管理部121、サーバ機能集約部122、トラフィック管理部123、トラフィック集約部124、および電源制御部125を備えている。
 サーバ管理部121は、各ノード22の配下に収容されたサーバ群30の稼働状況を把握(検出)し、把握した稼働状況(サーバ稼働状況)をサーバ機能集約部122に送出する。サーバ機能集約部122は、サーバ管理部121から受信したサーバ稼働状況に基づいてサーバ機能集約を行い、サーバ機能の移動(集約)を行う。さらに、サーバ機能集約部122は、サーバ機能集約結果に基づいてトラフィック経路設定を行い、トラフィック管理部123に経路設定結果(経路設定情報)を通知する。
 トラフィック管理部123は、サーバ機能集約部122から経路設定情報を受信し、さらに各ノード22から転送情報格納部223の転送情報を受信し、受信した経路設定情報及び転送情報に基づいて、ネットワーク200におけるトラフィック状況を把握(検出)する。トラフィック管理部123が把握したトラフィック状況を示すトラフィック情報は、トラフィック集約部124が受信する。
 トラフィック集約部124は、トラフィック管理部123から受信したトラフィック情報に基づいてトラフィックの集約を行う。さらに、トラフィック集約部124は、トラフィック集約結果を示すトラフィック集約情報(経路集約情報)を電源制御部125に送出する。電源制御部125は、トラフィック集約部124から受信したトラフィック集約情報に基づいて、各ノード22内の電気バッファ221の電源OFF制御、またはノード22全体の電源OFF制御を行う。
<第3の実施形態の動作>
 次に、第3の実施形態の動作例について説明する。図13は、第3の実施形態に係るノード制御装置12の動作を示すフローチャートである。
 まず、ノード制御装置12のサーバ管理部121は、ネットワーク200全体のサーバ群30をモニタする(S3010)。サーバ管理部121は、各サーバ群30(サーバ31)の稼働状況を収集(受信)し、収集した稼働状況(サーバ稼働状況)をサーバ機能集約部122に送出する。
 続いて、ノード制御装置12のサーバ機能集約部122は、サーバ機能の集約が可能かどうかを確認する(S3020)。サーバ機能集約部122は、サーバ管理部121から受信したサーバ稼働状況に基づいて、サーバ群30(サーバ31)で実行されているサーバ機能(アプリケーション)を特定し、特定したサーバ機能を集約可能かどうか判定する。例えば、サーバ機能集約部122は、異なるサーバ群30(サーバ31)の間でサーバ機能を集約可能かどうか判定する。また、サーバ機能集約部122は、任意のノード22のトラフィックが無くなるように、サーバ機能を集約可能かどうか判定する。サーバ機能集約部122は、サーバ群30(サーバ31)が実行可能な性能等に基づいてサーバ機能を集約可能かどうか判定してもよい。
 サーバ機能の集約が可能な場合(S3020/Yes)、ノード制御装置12のサーバ機能集約部122は、サーバ機能の集約を行う(S3021)。サーバ機能集約部122が、対象のサーバ群30(サーバ31)に対してサーバ機能の移動を行い、移動先のサーバ群30(サーバ31)にサーバ機能を集約する。サーバ機能集約部122は、異なるサーバ群30(サーバ31)の間でサーバ機能を移動させ、サーバ機能を集約する。また、サーバ機能集約部122は、任意のノード22のトラフィックが無くなるように、サーバ機能を集約する。これにより、トラフィックの無いノード22全体の電源OFF制御が可能となる。
 サーバ機能集約(S3021)の実施後、ノード制御装置12のサーバ機能集約部122は、サーバ機能集約に応じたトラフィックの経路設定を行う(S3022)。この場合、サーバ機能集約部122は、集約したサーバ機能間の経路が構成されるように各ノード22内の転送情報格納部223の転送情報を更新し、経路設定結果を示す経路設定情報をトラフィック管理部123に通知する。
 図14及び図15に、S3021及びS3022で行われるサーバ機能集約の例を示す。図14及び図15は、サーバ31のアプリケーション(サーバ機能)間で、ノード22-1~22-9を含むネットワーク200を介して、パケットが伝送されている様子を示している。図14は、サーバ機能の集約前の状態を示し、図15は、サーバ機能の集約後の状態を示している。図14及び図15では、ノード22-1~22-3にそれぞれサーバ31-1~31-3が接続され、ノード22-7~22-9にそれぞれサーバ31-4~31-6が接続されている。
 図14のサーバ機能集約前では、図10と同様の構成となっている。すなわち、サーバ31-1のアプリケーションAPL1とサーバ31-4のアプリケーションAPL1が経路32-1を介してパケットを送受信し、サーバ31-1のアプリケーションAPL2とサーバ31-6のアプリケーションAPL2が経路32-2を介してパケットを送受信し、サーバ31-2のアプリケーションAPL3とサーバ31-5のアプリケーションAPL3が経路32-3を介してパケットを送受信し、サーバ31-3のアプリケーションAPL4とサーバ31-5のアプリケーションAPL4が経路32-4を介してパケットを送受信している。図14では、図10と同様に、ノード22-6に対しノード全体の電源OFF制御が可能であり、ノード22-4、22-5に対し電気バッファ221の電源OFF制御が可能である。
 サーバ機能集約部122は、図14のようなサーバ機能(アプリケーション)の構成を、図15のように集約する。具体的には、図15に示すように、サーバ31-1、31-4に、それぞれアプリケーションAPL1~APL4を集約する。アプリケーションAPL1~APL4の集約に応じて、サーバ機能集約部122は、アプリケーションAPL1~APL4の経路32-1~32-4を、ノード22-1、22-4、22-7を経由するように切り替える。すなわち、サーバ機能集約部122は、ノード22-2、22-3、22-5、22-8、22-9のトラフィックが無くなるようにサーバ機能を集約する。
 図15のように、各アプリケーションをすべて同じサーバ間で実現するようにサーバ機能を集約し、経路を設定することで、ノード22-2、22-3、22-5、22-8、22-9を経由するトラフィックを無くすることができるため、さらに5つのノード22(22-2、22-3、22-5、22-8、22-9)に対しノード全体の電源OFF制御が可能となる。すなわち、図15では、ノード22-2、22-3、22-5、22-6、22-8、22-9に対しノード全体の電源OFF制御が可能であり、ノード22-4に対し電気バッファ221の電源OFF制御が可能である。
 図13において、サーバ機能集約に応じた経路設定(S3022)の後、またはサーバ機能集約ができない場合(S3020/No)、ノード制御装置12のトラフィック管理部123は、ネットワーク全体のトラフィック状況をモニタする(S3030)。トラフィック管理部123は、サーバ機能集約部122から経路設定情報を受信し、さらに、各ノード22から転送情報格納部223の転送情報を受信し、受信した経路設定情報及び転送情報によってネットワーク200全体のトラフィック状況を把握する。トラフィック管理部123は、把握したトラフィック状況を示すトラフィック情報(転送情報)をトラフィック集約部124へ送出する。
 以下、S3040~S3062の処理は、図8で示した第2の実施形態のS2020~S2042と同様である。
 すなわち、S3030に続いて、ノード制御装置12のトラフィック集約部124は、ネットワーク200全体のトラフィック状況からトラフィックの経路集約が可能かどうかを確認する(S3040)。
 トラフィックの経路集約が可能な場合(S3040/Yes)、ノード制御装置12のトラフィック集約部124は、トラフィックの経路集約を行う(S3041)。この場合、トラフィック集約部124は、集約した経路が構成されるように各ノード22内の転送情報格納部223の転送情報を更新し、集約した経路を示す経路集約情報(経路集約後の更新した転送情報)を電源制御部125に送出する。
 トラフィックの経路集約(S3041)の後、またはトラフィックの経路集約ができない場合(S3040/No)、ノード制御装置12の電源制御部125は、各ノード22の電気バッファ221に流れるトラフィックがあるかどうかを確認する(S3050)。S3050におけるトラフィックの確認は、トラフィック集約部124から受信した転送情報(経路集約情報)に、各ノード22からサーバ群30または外部ネットワーク40あての転送情報が含まれるかどうかで行う。なお、サーバ機能集約の後、トラフィックの経路集約を行わずに、電源制御を行ってもよい。例えば、トラフィック管理部123が、ネットワーク全体の転送情報を取得し(S3030)、電源制御部125が、転送情報に基づいて、電気バッファ221またはノード22全体の電源OFFを行ってもよい(S3050~S3062)。
 電気バッファ221に流れるトラフィックがある場合(S3050/Yes)、ノード制御装置12の電源制御部125は、該当するノード22に対し、ノード関係の電源OFF制御を実施しない(S3051)。電源制御部125は、全てのノード22について電気バッファ221のトラフィックの有無を判定し、電気バッファ221に流れるトラフィックがあるノード22に対しては、電気バッファ221の電源OFF制御、およびノード22全体の電源OFFを行わない。
 一方、電気バッファ221に流れるトラフィックがない場合(S3050/No)、ノード制御装置12の電源制御部125は、各ノード22のパケット転送部222を流れるトラフィックがあるかどうかを確認する(S3060)。S3060におけるトラフィックの確認は、トラフィック集約部124から受信した転送情報にノード22の転送情報が含まれているか否か、すなわち、ノード22の転送情報格納部223に転送情報が格納されているか否かで行う。
 パケット転送部222を流れるトラフィックがある場合(S3060/Yes)、ノード制御装置12の電源制御部125は、該当するノード22内の電気バッファ221の電源をOFFにするように制御する(S3061)。電源制御部125は、電気バッファ221に流れるトラフィックがあると判定された全てのノード22について、パケット転送部222のトラフィックの有無を判定し、パケット転送部222に流れるトラフィックがあるノード22に対しては、電気バッファ221の電源OFF制御を行う。例えば、図15では、電源制御部125は、ノード22-4に対し電気バッファ221の電源OFF制御を行う。
 一方、パケット転送部222を流れるトラフィックがない場合(S3060/No)、ノード制御装置12の電源制御部125は、ノード22の全体の電源をOFFにするように制御する(S3062)。電源制御部125は、電気バッファ221に流れるトラフィックがあると判定された全てのノード22について、パケット転送部222のトラフィックの有無を判定し、パケット転送部222に流れるトラフィックがないノード22に対しては、ノード22全体の電源OFF制御を行う。例えば、図15では、電源制御部125は、ノード22-2、22-3、22-5、22-6、22-8、22-9に対しノード22全体の電源OFF制御を行う。
<第3の実施形態の効果>
 第3の実施形態の効果について説明する。本実施形態では、トラフィックの経路集約に加えてサーバ機能集約を実現することで、ノード全体またはノード内にある電気バッファの電力制御がさらに可能になるため、さらなるネットワークの低エネルギー化を実現することができる。すなわち、サーバ機能の集約結果に応じて、ノード全体の電力およびノードが保持する電気バッファの電力を制御するため、さらにネットワーク全体の低エネルギー化を図ることができる。
 なお、本発明は上記の実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 上述の実施形態における各構成は、ハードウェア又はソフトウェア、もしくはその両方によって構成され、1つのハードウェア又はソフトウェアから構成してもよいし、複数のハードウェア又はソフトウェアから構成してもよい。ノードやノード制御装置の各機能(各処理)を、CPUやメモリ等を有するコンピュータにより実現してもよい。例えば、記憶装置に実施形態におけるパケット転送方法(パケット転送処理)や制御方法(制御処理)を行うためのパケット転送プログラムや制御プログラムを格納し、各機能を、記憶装置に格納されたパケット転送プログラムや制御プログラムをCPUで実行することにより実現してもよい。
 これらのプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 上記の実施形態の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 複数のノードで構成されるネットワーク内で伝送されるトラフィックの状況を把握するトラフィック管理手段と、
 前記トラフィック管理手段が把握したトラフィックの伝送状況に応じて、前記ネットワーク内のトラフィックを集約するトラフィック集約手段と、
 前記トラフィック集約手段に基づいて前記ノードの電気バッファの電源をオフまたは前記ノード全体の電源をオフに制御する電源制御手段と、
 を備えたことを特徴とするノード制御システム。
(付記2)
 前記ネットワーク内にあるサーバ群の稼働状況を管理するサーバ管理手段と、
 前記サーバ管理手段にもとづいて前記ネットワーク内のサーバ機能を集約するサーバ機能集約手段と、
 を備えたことを特徴とする付記1記載のノード制御システム。
(付記3)
 複数のノードで構成されるネットワーク内で伝送されるトラフィックの状況を把握するトラフィック管理機能と、
 前記トラフィック管理手段が把握したトラフィックの伝送状況に応じて、前記ネットワーク内のトラフィックを集約するトラフィック集約機能と、
 前記トラフィック集約手段に基づいて前記ノードの電気バッファの電源をオフまたは前記ノード全体の電源をオフに制御する電源制御機能と、
 を備えたことを特徴とするノード制御装置。
(付記4)
 前記ネットワーク内にあるサーバ群の稼働状況を管理するサーバ管理機能と、
 前記サーバ管理手段にもとづいて前記ネットワーク内のサーバ機能を集約するサーバ機能集約機能と、
 を備えたことを特徴とする付記3記載のノード制御装置。
(付記5)
 複数のノードで構成されるネットワーク内で伝送されるトラフィックの状況を把握するトラフィック管理ステップと、
 前記トラフィック管理手段が把握したトラフィックの伝送状況に応じて、前記ネットワーク内のトラフィックを集約するトラフィック集約ステップと、
 前記トラフィック集約手段に基づいて前記ノードの電気バッファの電源をオフまたは前記ノード全体の電源をオフに制御する電源制御ステップと、
 を備えたことを特徴とするノード制御方法。
(付記6)
 前記ネットワーク内にあるサーバ群の稼働状況を管理するサーバ管理ステップと、
 前記サーバ管理手段にもとづいて前記ネットワーク内のサーバ機能を集約するサーバ機能集約ステップと、
 を備えたことを特徴とする付記5記載のノード制御方法。
(付記7)
 複数のノードで構成されるネットワーク内で伝送されるトラフィックの状況を把握するトラフィック管理処理と、
 前記トラフィック管理手段が把握したトラフィックの伝送状況に応じて、前記ネットワーク内のトラフィックを集約するトラフィック集約処理と、
 前記トラフィック集約手段に基づいて前記ノードの電気バッファの電源をオフまたは前記ノード全体の電源をオフに制御する電源制御処理と、
 をコンピュータに実行させるためのノード制御用プログラム。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2013年7月19日に出願された日本出願特願2013-150612を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1   パケット転送部
2   電気バッファ
3   電源制御部
4   トラフィック検出部
5   トラフィック集約部
6   サーバ機能集約部
10、11、12 ノード制御装置
20、21、22 ノード
30  サーバ群
31  サーバ
40  外部ネットワーク
41  接続システム
50  制御装置
51  ノード
52  サーバ
101、111、123 トラフィック管理部
102、113、125 電源制御部
112、124 トラフィック集約部
121 サーバ管理部
122 サーバ機能集約部
200 ネットワーク
201、211、221 電気バッファ
202、212、222 パケット転送部
203、213、223 転送情報格納部

Claims (10)

  1.  ネットワークを構成する複数のノードと、前記複数のノードを制御する制御装置とを備えるネットワークシステムであって、
     前記複数のノードは、
      第1の経路と第2の経路との間でパケットを転送するパケット転送手段と、
      前記パケット転送手段と前記第2の経路との間で前記パケットを電気的に保持し転送する電気バッファと、を備え、
     前記制御装置は、
      前記ネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約するトラフィック集約手段と、
      前記集約したトラフィックの経路に応じて、前記電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御する電源制御手段と、
     を備えるネットワークシステム。
  2.  前記パケット転送手段は、前記パケットに対応する光信号を送受信し、
     前記電気バッファは、前記パケットに対応する電気信号を保持する、
     請求項1に記載のネットワークシステム。
  3.  前記トラフィック集約手段は、前記トラフィックの最短経路を維持するように、前記トラフィックの経路を集約する、
     請求項1または2に記載のネットワークシステム。
  4.  前記複数のノードは、前記パケット転送手段が前記パケットを転送するための転送情報を格納する転送情報格納手段を備え、
     前記トラフィック集約手段は、前記格納された転送情報に基づいて前記トラフィックの経路を集約する、
     請求項1乃至3のいずれか一項に記載のネットワークシステム。
  5.  前記ネットワークシステムは、前記複数のノードの配下に収容される複数のサーバを備え、
     前記制御装置は、前記複数のサーバの稼働状況に応じて、前記複数のサーバにおける前記トラフィックに関連するサーバ機能を集約するサーバ機能集約手段を備える、
     請求項1乃至4のいずれか一項に記載のネットワークシステム。
  6.  前記サーバ機能集約手段は、前記複数のサーバのうち、異なる前記ノードの配下に収容されるサーバにおける前記サーバ機能を集約する、
     請求項5に記載のネットワークシステム。
  7.  前記トラフィック集約手段は、前記サーバ機能集約手段が前記サーバ機能を集約した後、前記トラフィックの経路を集約する、
     請求項5または6に記載のネットワークシステム。
  8.  複数のノードを含むネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約するトラフィック集約手段と、
     前記集約したトラフィックの経路に応じて、前記ノード内で転送するパケットを電気的に保持する電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御する電源制御手段と、
     を備える制御装置。
  9.  複数のノードを含むネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約し、
     前記集約したトラフィックの経路に応じて、前記ノード内で転送するパケットを電気的に保持する電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御する、
     制御方法。
  10.  複数のノードを含むネットワーク内を流れるトラフィックに応じて、前記複数のノードを経由する前記トラフィックの経路を集約し、
     前記集約したトラフィックの経路に応じて、前記ノード内で転送するパケットを電気的に保持する電気バッファの電源または前記ノード全体の電源のいずれかを選択して制御する、
     制御処理をコンピュータに実行させるための制御プログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2014/001166 2013-07-19 2014-03-04 ネットワークシステム、制御装置、制御方法、および非一時的なコンピュータ可読媒体 WO2015008410A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/904,459 US20160197817A1 (en) 2013-07-19 2014-03-04 Network system, control device, control method, and non-transitory computer-readable medium
JP2015527145A JPWO2015008410A1 (ja) 2013-07-19 2014-03-04 ネットワークシステム、制御装置、制御方法、および制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150612 2013-07-19
JP2013-150612 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008410A1 true WO2015008410A1 (ja) 2015-01-22

Family

ID=52345896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001166 WO2015008410A1 (ja) 2013-07-19 2014-03-04 ネットワークシステム、制御装置、制御方法、および非一時的なコンピュータ可読媒体

Country Status (3)

Country Link
US (1) US20160197817A1 (ja)
JP (1) JPWO2015008410A1 (ja)
WO (1) WO2015008410A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10353457B1 (en) * 2015-03-04 2019-07-16 Altera Corporation Systems and methods for sleep mode power savings in integrated circuit devices
JP6637059B2 (ja) * 2015-09-29 2020-01-29 株式会社ソラコム 移動体通信システムのゲートウェイの制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244980A (ja) * 2000-02-28 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> 超高速光パケット転送リングネットワーク、光挿入分岐型多重分離ノード装置及び光挿入分岐型多重分離ノード装置の動作方法
JP2009071564A (ja) * 2007-09-13 2009-04-02 Meidensha Corp 無線ネットワーク通信システム、通信方法およびプログラム
WO2011142087A1 (ja) * 2010-05-12 2011-11-17 パナソニック株式会社 中継器およびチップ回路
JP2012213121A (ja) * 2011-03-31 2012-11-01 Nec Corp 通信システムにおける局側装置および通信制御方法
JP2013110771A (ja) * 2013-03-14 2013-06-06 Mitsubishi Electric Corp 子局装置、光通信システムの通信方法、光通信システムおよび制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241913A1 (en) * 2001-03-16 2002-09-18 Alcatel Optical packet node and optical packet add drop multiplexer
US6879806B2 (en) * 2001-06-01 2005-04-12 Zensys A/S System and a method for building routing tables and for routing signals in an automation system
US20030074554A1 (en) * 2001-10-17 2003-04-17 Roach Wayne C. Broadband interface unit and associated method
US7212742B2 (en) * 2002-04-12 2007-05-01 Fujitsu Limited Power level management in optical networks
EP1512234A1 (en) * 2002-06-03 2005-03-09 Omnilux Inc. Wireless infrared network transceiver and methods and systems for operating same
US6940863B2 (en) * 2003-01-13 2005-09-06 The Regents Of The University Of California Edge router for optical label switched network
US7724733B2 (en) * 2005-03-31 2010-05-25 International Business Machines Corporation Interconnecting network for switching data packets and method for switching data packets
GB2481579B (en) * 2010-06-25 2014-11-26 Enmodus Ltd Monitoring of power-consumption
WO2012041403A1 (en) * 2010-09-29 2012-04-05 Telefonaktiebolaget L M Ericsson (Publ) Free space optical communications link node, network and method of transmitting traffic
WO2012077327A1 (ja) * 2010-12-06 2012-06-14 日本電気株式会社 光通信ネットワークシステムにおける省電力制御方法およびノード装置
JP5411195B2 (ja) * 2011-03-30 2014-02-12 富士通テレコムネットワークス株式会社 光パケット交換システム
US8867915B1 (en) * 2012-01-03 2014-10-21 Google Inc. Dynamic data center network with optical circuit switch
JP5811005B2 (ja) * 2012-03-29 2015-11-11 富士通株式会社 ネットワーク制御装置
US8792787B1 (en) * 2012-07-19 2014-07-29 Google Inc. Optoelectronic packet switch/routers
EP2693769B1 (en) * 2012-07-30 2014-10-08 Alcatel Lucent High capacity network node
US9331946B2 (en) * 2013-01-08 2016-05-03 Hitachi, Ltd. Method and apparatus to distribute data center network traffic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244980A (ja) * 2000-02-28 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> 超高速光パケット転送リングネットワーク、光挿入分岐型多重分離ノード装置及び光挿入分岐型多重分離ノード装置の動作方法
JP2009071564A (ja) * 2007-09-13 2009-04-02 Meidensha Corp 無線ネットワーク通信システム、通信方法およびプログラム
WO2011142087A1 (ja) * 2010-05-12 2011-11-17 パナソニック株式会社 中継器およびチップ回路
JP2012213121A (ja) * 2011-03-31 2012-11-01 Nec Corp 通信システムにおける局側装置および通信制御方法
JP2013110771A (ja) * 2013-03-14 2013-06-06 Mitsubishi Electric Corp 子局装置、光通信システムの通信方法、光通信システムおよび制御装置

Also Published As

Publication number Publication date
JPWO2015008410A1 (ja) 2017-03-02
US20160197817A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US10148554B2 (en) System and methods for load placement in data centers
US8787373B2 (en) Multicast miss notification for a distributed network switch
WO2013099080A1 (en) Communication system, controller, communication method, and program
JP5173084B2 (ja) エネルギー効率を考慮したルーティング
JP5049902B2 (ja) ネットワークシステム
US20160006583A1 (en) Control apparatus, communication system, switch control method and program
WO2012101689A1 (en) Communication system, forwarding node, control device, communication control method, and program
Lee et al. Software-based fast failure recovery for resilient OpenFlow networks
KR20150111908A (ko) 수동 상호 연결 및 분산 스위치리스 스위칭의 라우터
WO2015008410A1 (ja) ネットワークシステム、制御装置、制御方法、および非一時的なコンピュータ可読媒体
WO2019065353A1 (ja) 制御装置、通信システム、通信方法
JP6428102B2 (ja) 局側終端装置及び経路切替方法
JP6225990B2 (ja) パケット転送システム、制御装置、制御方法、および制御プログラム
Zhang et al. Performance evaluation of optical multicast protection approaches for combined node and link failure recovery
Fiorani et al. Large data center interconnects employing hybrid optical switching
Garg et al. A novel optical burst switching architecture for high speed networks
JP5681138B2 (ja) 管理装置、通信システム、中継装置、通信方法、およびプログラム
KR20150066063A (ko) 전송망의 자원 관리 방법 및 장치
CN115053502A (zh) 通信控制方法以及通信控制装置
JP6418167B2 (ja) ネットワーク制御装置、ネットワークシステム、ネットワーク制御方法、および、プログラム
Shekhawat et al. Design and characterization of a modified WDM ring network–An analytical approach
JP2007325171A (ja) パケット処理システム、パケット処理方法、およびプログラム
JP2016143900A (ja) 伝送装置およびトラフィック分散方法
Garg An optimal protection and restoration scheme (OPARS) for optical networks
WO2015050197A1 (ja) 通信システム、制御装置、通信方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527145

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904459

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825956

Country of ref document: EP

Kind code of ref document: A1