WO2015008396A1 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
WO2015008396A1
WO2015008396A1 PCT/JP2013/071517 JP2013071517W WO2015008396A1 WO 2015008396 A1 WO2015008396 A1 WO 2015008396A1 JP 2013071517 W JP2013071517 W JP 2013071517W WO 2015008396 A1 WO2015008396 A1 WO 2015008396A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
motor
engine
torque
output
Prior art date
Application number
PCT/JP2013/071517
Other languages
French (fr)
Japanese (ja)
Inventor
松原 亨
健太 熊▲崎▼
達也 今村
北畑 剛
康博 日浅
田端 淳
椎葉 一之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015008396A1 publication Critical patent/WO2015008396A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid vehicle control apparatus using an engine and a motor as a driving force source, and in particular, switching between a driving mode in which driving power is output from the engine and the motor and a driving mode in which driving power is output only from the motor.
  • the present invention relates to a control device for a hybrid vehicle capable of performing the above.
  • a hybrid vehicle having an engine and a motor as a driving force source for the vehicle can travel by outputting driving force from the engine and motor, and can also travel by outputting driving force only from the motor.
  • a plurality of motors are provided, and one motor is driven as a generator using a part of the output torque of the engine, and the electric power stored in the battery or the like is supplied to the other Hybrid vehicles configured to output torque by supplying power to a motor are known.
  • the vehicle equipped with a plurality of motors travels by outputting a driving force from only the motor
  • the vehicle travels by outputting a driving force from only one motor, or outputs a driving force from a plurality of motors. And can travel.
  • Japanese Patent No. 5141802 describes a hybrid vehicle that can suppress or prevent the occurrence of such power loss.
  • the power transmission device described in Japanese Patent No. 5141802 includes a transmission unit between the engine and the power split mechanism. This transmission unit is constituted by a double pinion type planetary gear mechanism, and by engaging a clutch, the two rotating elements are connected and rotated together to set a direct coupling stage, or any one rotation The speed increasing stage is set by stopping the rotation of the element. That is, the gear position is changed by switching the clutch to be engaged.
  • the transmission unit is in a neutral state.
  • the transmission of the torque between the power split mechanism and the engine can be cut off by setting the speed change unit to the neutral state. Can be suppressed or prevented.
  • JP 2008-265600 A and JP 2008-265598 A the engine is stopped when the required driving force is smaller than a predetermined threshold or when the vehicle speed is slower than the predetermined threshold.
  • An apparatus is described that is configured to stop the rotation of the engine by engaging a clutch provided on the output shaft of the engine when a possible condition is satisfied. And when a clutch is engaged and an engine is stopped, it is comprised so that each motor may be controlled so that the efficiency of two motors may become favorable.
  • the present invention has been made paying attention to the technical problem described above, and an engagement device capable of interrupting transmission of torque acting on any rotating element of a power split mechanism having a differential action fails. Even if it is a case, it aims at providing the control apparatus of the hybrid vehicle which can crank an engine.
  • the present invention provides a first rotating element capable of transmitting engine torque, a second rotating element capable of transmitting torque of a first motor, and torque to an output shaft.
  • a power split mechanism having a differential action having a third rotating element capable of transmitting, a second motor capable of transmitting torque to the output shaft, and acting on any one of the rotating elements.
  • a control device for a hybrid vehicle including an engagement device configured to cut off transmission of torque to be engaged, the engagement control means for engaging or releasing the engagement device, wherein the engagement control means includes: The engagement device is configured to be engaged when the input command value decreases.
  • a first clutch and a second clutch the first clutch is set by engaging the first clutch and releasing the second clutch; and the second clutch is released and the second clutch is released.
  • a gear unit configured to set a second gear stage having a gear ratio smaller than a gear ratio set by the first gear stage by engaging a clutch;
  • a first clutch may be included.
  • the pattern for engaging the other clutch is changed so that torque can be transmitted between the engine and the output shaft. It may be configured as follows.
  • the transmission includes a first sun gear, a first ring gear provided concentrically with the first sun gear and connected to the first rotating element, and a first pinion gear meshing with the first sun gear and the first ring gear.
  • a first planetary gear mechanism configured by a first carrier which is held so as to be able to rotate and revolve and which is coupled to the engine; and the first clutch engages with the first sun gear.
  • the first carrier may be configured to rotate together, and the second clutch may be configured to stop the rotation of the first carrier when engaged.
  • the power split mechanism can rotate and revolve a second sun gear, a second ring gear provided concentrically with the second sun gear, and a second pinion gear meshing with the second sun gear and the second ring gear. And a second planetary gear mechanism configured by a second carrier held on the second carrier.
  • the first rotating element capable of transmitting the torque of the engine
  • the second rotating element capable of transmitting the torque of the first motor
  • the third capable of transmitting the torque to the output shaft.
  • a power split mechanism having a differential action having a rotating element, a second motor capable of transmitting torque to the output shaft, and transmission of torque acting on any one of the rotating elements in the power split mechanism.
  • an engaging device for blocking Therefore, the torque transmission between the engine and the output shaft can be interrupted by releasing the engagement device. As a result, it is possible to reduce the power loss due to the rotation of the engine when the vehicle is traveling by transmitting the torque output from the second motor to the output shaft.
  • an engagement control unit that engages or releases the engagement device
  • the engagement pressure control unit is configured to engage the engagement device as the input command value decreases. ing. Therefore, when the device that outputs the command value to the engagement pressure control means fails and the command value is not input to the engagement pressure control means, the engagement device is engaged and the torque between the engine and the output shaft is increased. Can be transmitted. As a result, the engine can be cranked and started by controlling the rotation speed of the first motor.
  • the first gear is set by engaging the first clutch and releasing the second clutch, and the first clutch is released and the second clutch is released.
  • the engagement device includes the first clutch
  • the engagement device includes a first clutch that is configured to set a second gear that is smaller in gear ratio than the first gear.
  • the pattern for engaging the other clutch is changed so that torque can be transmitted between the engine and the output shaft. Complicating clutch engagement control after detecting a failure can be suppressed or prevented.
  • FIG. 1 It is a schematic diagram for demonstrating an example of a structure of the hybrid vehicle made into object by this invention. It is a figure which shows the operation state of a clutch, a brake, and each motor generator in every driving
  • FIG. 10 is a hydraulic circuit diagram for explaining still another example of the configuration of a hydraulic control device that controls the hydraulic pressures of clutches and brakes.
  • the hybrid vehicle targeted by the present invention transmits a torque to the output shaft, a first rotating element capable of transmitting engine torque, a second rotating element capable of transmitting torque of the first motor, and the like.
  • a power dividing mechanism having a differential action and a third rotating element capable of generating Examples of the engine include a gasoline engine, a diesel engine, and a gas engine.
  • a 1st rotation element functions as an input element
  • a 2nd rotation element functions as a reaction force element. Therefore, the first motor is preferably a motor having a power generation function (that is, a motor / generator). Furthermore, it is comprised so that the torque of a 2nd motor can be transmitted to an output shaft.
  • the second motor is configured so that power running control is performed when driving force is output to the vehicle and regenerative control is performed when braking force is output to the vehicle. That is, it is preferable that the second motor is also a motor (that is, a motor / generator) having a power generation function in the same manner as the first motor.
  • the hybrid vehicle targeted by the present invention is configured to be able to select a travel mode in which the vehicle travels with the power output from the engine and a travel mode in which the vehicle travels with the power output only from the motor.
  • a travel mode in which the vehicle travels using the power output from the engine a part of the power is transmitted to the drive wheels, and the first motor is driven by the other part of the power to generate electric power.
  • a mode in which the vehicle is driven by driving, a mode in which the generator is driven by the engine to generate electric power, and the second motor is driven by the electric power may be set.
  • the mode to run with the power output from only the motor is configured to set the mode to run with one of the motors, the mode to run with both motors (or motor generators) driven, etc. May have been.
  • traveling with only the motor outputting driving force it is preferable to cut off the transmission of torque between the engine and the drive wheels in order to reduce power loss due to engine rotation.
  • an engagement device is provided so as to block transmission of torque acting on any one of the rotating elements in the power split mechanism.
  • FIG. 1 schematically shows an example of a power transmission device having the power split mechanism and mounted on a hybrid vehicle.
  • the power transmission device shown in FIG. 1 is configured such that an engine (ENG) 1 and two motor generators 2 and 3 function as a power source.
  • the power output from the engine 1 is divided into the first motor / generator (MG1) 2 side and the drive shaft 4 side, and the electric power generated by the first motor / generator 2 is divided into the second motor / generator ( This is a so-called two-motor type hybrid drive device configured to be supplied to the MG 2) 3 and apply the drive force of the second motor / generator 3 to the drive shaft 4.
  • the power split mechanism 5 used in the power transmission device shown here is constituted by a differential mechanism having three rotating elements, more specifically, a planetary gear mechanism.
  • a single pinion type planetary gear mechanism is used, and the planetary gear mechanism is disposed on the same axis as the engine 1, and the first motor / generator 2 is attached to the sun gear 6 in the planetary gear mechanism. It is connected.
  • the first motor / generator 2 is disposed on the opposite side of the engine 1 adjacent to the power split mechanism 5, and the rotor 2 ⁇ / b> R is connected to the sun gear 6.
  • a ring gear 7 is disposed concentrically with the sun gear 6, and the pinion gear 8 meshing with the sun gear 6 and the ring gear 7 is held by the carrier 9 so as to be able to rotate and revolve. It is connected to the output element of the speed change part 10 provided between the mechanisms 5.
  • a drive gear 11 is connected to the ring gear 7. The drive gear 11 is disposed between the transmission unit 10 and the power split mechanism 5.
  • the transmission unit 10 shown in FIG. 1 is configured to be switched between a direct connection stage and an acceleration stage (overdrive (O / D) stage).
  • the transmission unit 10 includes a single-pinion type planetary gear mechanism configured by a differential mechanism having three rotating elements. Specifically, the output shaft 14 of the engine 1 is connected to a carrier 13 that holds the pinion gear 12 so as to be capable of rotating and revolving, and the ring gear 15 is connected to rotate integrally with the carrier 8 in the power split mechanism 5. .
  • a clutch C0 is provided between the sun gear 16 and the carrier 13 for connecting and releasing the connection.
  • a brake B0 is provided for fixing the sun gear 16 disposed concentrically with the ring gear 15 and for releasing the fixing.
  • the clutch C0 and the brake B0 can be configured by a friction engagement mechanism that is engaged by, for example, hydraulic pressure.
  • a counter shaft 17 is disposed in parallel with the rotation center axis of the power split mechanism 5 and the first motor / generator 2, and the counter driven gear 18 meshed with the drive gear 11 is connected to the counter shaft 17. It is attached to rotate together.
  • the counter driven gear 18 is a gear having a smaller diameter than the drive gear 11. Therefore, when torque is transmitted from the power split mechanism 5 to the counter shaft 17, a deceleration action (torque amplification action) occurs.
  • the torque transmitted from the power split mechanism 5 to the drive shaft 4 is loaded with the torque of the second motor / generator 3. That is, the second motor / generator 3 is arranged in parallel with the counter shaft 17, and the reduction gear 19 connected to the rotor 3 ⁇ / b> R is engaged with the counter driven gear 12.
  • the reduction gear 19 is smaller in diameter than the counter driven gear 18, and is thus configured to amplify the torque of the second motor / generator 3 and transmit it to the counter driven gear 18 or the counter shaft 17.
  • a counter drive gear 20 is provided on the counter shaft 17 so as to rotate integrally, and the counter drive gear 20 meshes with a ring gear 22 in a differential gear 21 that is a final reduction gear.
  • the position of the differential 21 is shifted to the right side in FIG.
  • the motor generators 2 and 3 shown in FIG. 1 are connected to a power storage device such as a storage battery via a controller such as an inverter (not shown). These motor generators 2 and 3 function as motors, and currents are controlled so as to function as generators. In addition, the throttle opening and ignition timing of the engine 1 are controlled, and further automatic stop and restart control are performed. At the time of restart, torque is transmitted from the power split mechanism 5 to the engine 1 for cranking.
  • the vehicle having the power transmission device configured as described above has an engine travel mode in which the vehicle travels with the power of the engine 1 and a twin that travels with the two motor generators 2 and 3 functioning as motors, that is, with power running control.
  • the motor travel mode and the single motor travel mode that travels with the power of any one of the motor / generators can be selected. Specifically, each travel mode is selected by controlling the clutch C0 and the brake B0 and controlling the output torque of each motor / generator 2 and 3.
  • the transmission unit 10 is set to the neutral state, and transmission of torque between the engine 1 and the power split mechanism 5 is interrupted.
  • the second motor / generator 3 is subjected to power running control when the driving force is transmitted to the driving wheels, and the second motor / generator 3 is subjected to regenerative control when the braking force is applied. .
  • the clutch C0 and the brake B0 are released and the second motor / generator 3 is subjected to power running control, whereby the single motor traveling mode is set.
  • FIG. 3 shows the operating states of the rotating elements of the transmission unit 10 and the rotating elements of the power split mechanism 5 when the single motor traveling mode is set as described above.
  • the left side shows the operating state of each rotating element in the transmission unit 10
  • the right side shows the operating state of each rotating element in the power split mechanism 5.
  • the transmission unit 10 is in the neutral state.
  • the ring gear 15 that functions as an output element of the transmission unit 10 is connected to the carrier 9 in the power split mechanism 5, the ring gear 15 is rotated by the power transmitted from the power split mechanism 5. Since the inertial force (mass) and friction torque of the engine 1 are larger than the inertial force (mass) of the member connected to the sun gear 16, the engine 1 stops and the sun gear 16 idles.
  • the second motor / generator 3 when traveling with the driving force output when the transmission unit 10 is in the neutral state, the second motor / generator 3 is subjected to power running control and output from the second motor / generator 3. Travel by power.
  • the first motor / generator 2 may be idled, and is controlled so as to be maintained at a predetermined rotational speed, or controlled so as to stop the rotation by supplying a current to the first motor / generator 2 (d-axis). Lock control). In the example shown in FIG. 3, the rotation of the first motor / generator 2 is stopped.
  • the second motor / generator 3 is regeneratively controlled.
  • the transmission unit 10 When the second motor / generator 3 is regeneratively controlled and braking force is applied as described above, the transmission unit 10 is set to the neutral state to cut off the transmission of torque between the engine 1 and the power split device 5, thereby causing the engine 1. It is possible to suppress or prevent a decrease in the torque that can be regenerated by the braking force due to the pumping loss or the like. As a result, the regeneration efficiency in the single motor travel mode can be improved. Further, by stopping the rotation of the first motor / generator 2, power loss due to the rotation of the first motor / generator 2 can be reduced, so that the regeneration efficiency can be improved. During reverse travel, the rotational direction of the second motor / generator 3 and the direction of the output torque are reversed.
  • the twin motor travel mode in which each motor / generator 2 or 3 travels by outputting power can output power from the two motor / generators 2 and 3, and therefore is mainly required than the single motor travel mode.
  • the twin motor travel mode the first motor / generator 2 and the second motor / generator 3 are power-running controlled.
  • the rotation of the carrier 9 in the power split mechanism 5 is stopped.
  • the clutch C0 and the brake B0 are engaged to stop the rotation of the transmission unit 10 connected to the carrier 9.
  • FIG. 4 shows the operating states of the rotating elements of the transmission unit 10 and the power split mechanism 5 when the clutch C0 and the brake B0 are engaged.
  • the vehicle having the power transmission device shown in FIG. 1 it is possible to set an engine travel mode in which the vehicle travels mainly by the power output from the engine 1.
  • the power output from the engine 1 can be transmitted to the drive wheels by engaging the clutch C0 or the brake B0 according to the required driving force and connecting the engine 1 and the power split mechanism 5. it can.
  • the reaction force is applied to the power split mechanism 5 from the first motor / generator 2 in the process of transmitting the power output from the engine 1 to the drive wheels.
  • the direction of the torque output from the first motor / generator 2 is opposite to the direction of rotation of the first motor / generator 2, power is generated by the power transmitted to the first motor / generator 2.
  • the power transmitted from the engine 1 to the power split mechanism 5 is converted into electric power.
  • the electric power regenerated and generated by the first motor / generator 2 or the electric power charged in the power storage device is supplied to the second motor / generator 3 and transmitted to the counter driven gear 12. That is, the regenerative control of the first motor / generator 2 causes the sun gear 6 in the power split mechanism 5 to function as a reaction force element to transmit the power output from the engine 1 and the second motor / generator 3 generates torque. Is controlled to be added. Therefore, the control in this case can be said to be hybrid drive control.
  • the engine travel mode is indicated as “HV”.
  • the first motor / generator 2 can arbitrarily control the rotational speed in accordance with the current value to be energized and its frequency. Therefore, the engine speed can be arbitrarily controlled by controlling the speed of the first motor / generator 2. Specifically, the output of the engine 1 is determined in accordance with the accelerator opening, the vehicle speed, and the like, and the operating point of the engine 1 is determined from the output of the engine 1 and the optimum fuel consumption line at which the fuel consumption of the engine 1 becomes good. Then, by controlling the rotation speed of the first motor / generator 2, the engine rotation speed can be controlled on the optimum fuel consumption line where the fuel consumption is good. That is, the power split mechanism 5 can function as a continuously variable transmission that can be controlled by electric power.
  • the gear ratio of the transmission unit 10 is changed to the speed increasing stage when the vehicle speed becomes relatively high. Yes.
  • the clutch C0 is engaged to set the direct coupling stage during low-speed or medium-speed travel
  • the brake B0 is engaged to set the speed increase stage during high-speed travel.
  • FIG. 5 shows the operating state of each rotating element of the transmission unit 10 and each rotating element of the power split mechanism 5 when the transmission unit 10 is set to the speed increasing stage.
  • the clutch C0 When the vehicle travels backward in the engine travel mode, the clutch C0 is engaged so that the transmission unit 10 is in the direct coupling stage. Further, at the time of braking, either one of the clutch C0 and the brake B0 is engaged according to the required braking force, and the engine brake is applied.
  • the engine 1 is configured to be cranked by the output torque of the first motor / generator 2 when switching from the twin motor traveling mode or the single motor traveling mode to the engine traveling mode. Specifically, either one of the clutch C0 or the brake B0 is engaged and the other is released to enable torque transmission between the engine 1 and the power split mechanism 5 and to change the speed.
  • the rotational speed of the first motor / generator 2 is controlled so that the rotational speed of the carrier 13 in the unit 10 becomes the rotational speed at the time of engine start. Note that it is possible to determine which of the clutch C0 and the brake B0 is to be engaged according to the vehicle speed at the time of starting the engine or according to the required driving force.
  • the driving force is reduced by cranking the engine 1 with the output torque of the first motor / generator 2, the reduced driving force is output by the second motor / generator 3.
  • FIG. 6 shows a block diagram of the electronic control device.
  • the electronic control device shown in FIG. 6 includes a hybrid control device (HV-ECU) 23 that performs overall control for traveling, and a motor / generator control device (MG-) for controlling each motor / generator 2, 3.
  • ECU motor / generator control device
  • engine-ECU engine control device
  • Each of these control devices 23, 24, and 25 is composed mainly of a microcomputer, performs calculations using input data and data stored in advance, and outputs the calculation results as control command signals. Is configured to do.
  • the hybrid controller 23 includes the vehicle speed, the accelerator opening, the rotation speed of the first motor / generator 2, the rotation speed of the second motor / generator 3, the rotation speed of the ring gear 7 (output The rotational speed of the shaft), the charge capacity (SOC) of the power storage device, and the like are input to the hybrid drive device 23.
  • Examples of the command signal output from the hybrid drive device 23 include the torque command value of the first motor / generator 2, the torque command value of the second motor / generator 3, the torque command value of the engine 1, and the clutch C0.
  • the control hydraulic pressure value (P C0 ) and the control hydraulic pressure value (P B0 ) of the brake B 0 are output from the hybrid drive device 23.
  • the torque command value of the first motor / generator 2 and the torque command value of the second motor / generator 3 are input to the motor / generator control device 24 as control data, and the motor / generator control device 24 receives these torques. An operation is performed based on the command value, and current command signals for the first motor / generator 2 and the second motor / generator 3 are output.
  • the engine torque command signal is input as control data to the engine control device 25, and the engine control device 25 performs an operation based on the engine torque command signal to open the throttle for an electronic throttle valve (not shown). A degree signal is output, and an ignition signal for controlling the ignition timing is output.
  • the control oil pressure value of the clutch C0 (P C0) and the control oil pressure value of the brake B0 (P B0) is configured to be inputted to the first linear solenoid valve and the second linear solenoid valve will be described later.
  • the power performance or drive characteristics of the engine 1, the first motor / generator 2, and the second motor / generator 3 described above are different from each other.
  • the engine 1 can be operated in a wide operating range from a low torque and low rotational speed region to a high torque and high rotational speed region, and energy efficiency is good in a region where torque and rotational speed are somewhat high.
  • the first motor / generator 2 that controls the rotational speed of the engine 1 and the crank angle when the engine 1 is stopped and outputs the driving force has a characteristic of outputting a large torque at a low rotational speed
  • the second motor / generator 3 that outputs torque to the drive shaft 4 can be operated at a higher rotational speed than the first motor / generator 2 and has a characteristic that the maximum torque is smaller than that of the first motor / generator 2. . Therefore, the power transmission device targeted by the present invention effectively utilizes the engine 1 and the motor / generators 2 and 3 constituting the driving force source so that energy efficiency or fuel consumption is improved. Be controlled. That is, control is performed so that the engine travel mode, the twin motor travel mode, and the single motor travel mode are arbitrarily changed.
  • the engine travel mode is executed when the accelerator opening is larger than a certain level or when the vehicle speed is a high vehicle speed exceeding a certain level. That is, according to the accelerator opening degree, the vehicle speed, etc., any one of the clutch C0 and the brake B0 is engaged, and torque transmission between the engine 1 and the power transmission mechanism 5 is enabled.
  • the accelerator opening is small and the required driving force F is small, the engine 1 is stopped, the clutch C0 and the brake B0 are released, and the single motor traveling mode is executed. Further, when the required driving force F is larger than the driving force that can be output only from the second motor / generator 3 and is equal to or less than the driving force that can output torque from each motor / generator 2 or 3.
  • the engine 1 is stopped and the clutch C0 and the brake B0 are engaged to execute the twin motor traveling mode.
  • the power storage device has a sufficient charge amount
  • the second motor / generator 3 is in a state capable of outputting torque
  • the engine 1 may be stopped. It is executed when a condition such as being in a state is satisfied.
  • the accelerator operation is performed according to the road environment such as uphill / downhill road, the traffic volume or the travel environment such as the change in the regulation speed, and the vehicle speed changes accordingly.
  • the mode is switched to the twin motor driving mode or the engine driving mode, and when the accelerator opening is decreased in the engine driving mode, the twin motor driving mode is switched.
  • the mode is switched to the single motor travel mode. The control for switching these travel modes is executed by the electronic control device described above.
  • the hydraulic circuit shown in FIG. 7 has a mechanical oil pump 26 configured to rotate integrally with the output shaft 14. That is, the mechanical oil pump 26 is configured to pump up oil from the oil pan 27 and discharge it when the transmission unit 10 has set any one of the gear positions or when torque is being output from the engine 1. ing.
  • a regulator valve 28 for adjusting the hydraulic pressure of the oil discharged from the mechanical oil pump 26 to a predetermined hydraulic pressure is provided.
  • the regulator valve 28 shown in FIG. 7 is a spool type control valve, and includes an input port 29 communicating with the mechanical oil pump 26, an output port 30 communicating with the oil pan 27, and an oil passage 31 communicating with the mechanical oil pump 29.
  • the feedback port 32 to which the hydraulic pressure is supplied is formed.
  • a spring 34 is provided so that a spring force acts against a load that presses the spool 33 based on the hydraulic pressure supplied from the feedback port 32.
  • the input port 29 and the output port 30 are connected to discharge the oil in the oil passage 31.
  • the regulator valve 28 is configured to adjust the hydraulic pressure of the oil passage 31 to a hydraulic pressure corresponding to the spring force.
  • the pressure regulation level may be changed by supplying a signal pressure to the regulator valve 28 in accordance with the accelerator opening or the like.
  • the hydraulic pressure of the clutch C0 and the brake B0 is controlled using the hydraulic pressure adjusted by the regulator valve 28 (hereinafter sometimes referred to as line pressure) as a source pressure.
  • the hydraulic pressure of the clutch C0 is controlled by the first linear solenoid valve 35 provided in the oil passage 31, and the hydraulic pressure of the brake B0 is controlled by the second linear solenoid valve 36 provided in the oil passage 31. It is configured.
  • the first linear solenoid valve 35 shown in FIG. 7 is a normally open type valve configured such that the discharge pressure decreases as the supplied current increases as in the IP characteristic shown in FIG. .
  • the first linear solenoid valve 35 controls the output pressure, and the current value supplied according to the engagement pressure required for the clutch C0, that is, the hydraulic pressure required for the clutch C0, is controlled.
  • This first linear solenoid valve corresponds to the engagement pressure control means in this invention.
  • the second linear solenoid valve 36 is a normally closed type valve configured such that the discharge pressure increases as the supplied current increases as in the IP characteristic shown in FIG.
  • the second linear solenoid valve 36 controls the output pressure, and the current value supplied according to the engagement pressure required for the brake B0, that is, the hydraulic pressure required for the brake B0 is controlled. Is done. That is, as the required oil pressure increases, the value of current supplied is increased.
  • the first linear solenoid valve 35 is a normally open valve and the second linear solenoid valve 36 is a normally closed valve so that no current is passed through the linear solenoid valves 35, 36.
  • the clutch C0 can be engaged by supplying hydraulic pressure. That is, even when a failure occurs such as when no command value is output from the hybrid control device 23 to each linear solenoid valve 35, 36, or when no current is output from the battery (not shown) to each linear solenoid valve 35, 36, the clutch C0.
  • the hydraulic pressure can be supplied to and engaged. That is, the torque output from the first motor / generator 2 can be transmitted to the engine 1, specifically, the engine 1 can be cranked by the output torque of the first motor / generator 2.
  • the clutch C0 and the brake B0 are configured to be suppressed or prevented from simultaneously engaging.
  • a first failsafe valve 37 is provided between the first linear solenoid valve 35 and the clutch C0.
  • the first fail-safe valve 37 prevents the hydraulic pressure from being supplied to the clutch C0 when the hydraulic pressure is output from the first linear solenoid valve 35 for some reason when the brake B0 is engaged.
  • the first fail-safe valve 37 is a spool type valve.
  • the input port 39 communicates with the output port 38 of the first linear solenoid valve 35 and the output port 40 communicates with the clutch C0.
  • a drain port 41 communicating with the oil pan 27 is formed.
  • a feedback port 42 to which the hydraulic pressure of the clutch C0 is supplied and a first pilot port 43 to which the output pressure of the second linear solenoid valve 36 is supplied are formed.
  • the load that presses the spool 44 based on the hydraulic pressure supplied from the first pitrol port 43 and the load that presses the spool 44 based on the hydraulic pressure supplied from the feedback port 42 are configured to oppose each other.
  • a spring 45 is provided so that a spring force acts in the same direction as a load that presses the spool 44 based on the hydraulic pressure supplied from the feedback port 42.
  • the first fail safe valve 37 is formed with a second pilot port 47 to which an output pressure of a solenoid valve 46 described later is supplied.
  • the second pilot port 47 is supplied with hydraulic pressure when permitting simultaneous engagement of the clutch C0 and the brake B0, and the operation thereof will be described later.
  • the load that presses the spool 44 based on the hydraulic pressure supplied from the first pilot port 43 is greater than the resultant force of the load based on the hydraulic pressure supplied from the feedback port 42 and the spring force. If it is larger, the spool 44 moves upward in FIG. When the spool 44 moves in such a manner, the input port 39 and the output port 40 are disconnected, and the output port 40 and the drain port 41 are connected. That is, the hydraulic pressure of the clutch C0 is drained.
  • the first failsafe valve 37 is switched so as not to supply oil to the clutch C0. Even if it is output, it can be prohibited to supply oil to the clutch C0. That is, it is possible to suppress or prevent simultaneous engagement of the clutch C0 and the brake B0. Further, in a state where the clutch C0 is engaged and the brake B0 is released, the first failsafe valve 37 is switched so that the first linear solenoid valve 35 and the clutch C0 communicate with each other. In this state, even when the hydraulic pressure is discharged from the second linear solenoid valve 36 and the hydraulic pressure is supplied to the first pilot port 43, the spring of the spring 45 is prevented so that the first fail-safe valve 37 is not switched. Set the force. With this configuration, even if the hydraulic pressure is output from the second linear solenoid valve 36 when the clutch C0 is engaged, it is possible to suppress or prevent the clutch C0 and the brake B0 from engaging simultaneously. be able to.
  • the second failsafe valve 48 prevents the hydraulic pressure from being supplied to the brake when the hydraulic pressure is output from the second linear solenoid valve 36 for some reason when the clutch C0 is engaged. Yes, similar to the first fail-safe valve 37.
  • the second failsafe valve 48 is constituted by a spool type valve, and an input port 50 communicated with the output port 49 of the second linear solenoid valve 36 and an output port communicated with the brake B0. 51 and a drain port 52 communicating with the oil pan 27 is formed.
  • a feedback port 53 to which the hydraulic pressure of the brake B0 is supplied and a first pilot port 54 to which the output pressure of the first linear solenoid valve 35 is supplied are formed.
  • the second fail safe valve 48 is formed with a second pilot port 57 to which an output pressure of a solenoid valve 46 described later is supplied. The second pilot port 57 is supplied with hydraulic pressure when permitting simultaneous engagement of the clutch C0 and the brake B0, and its operation will be described later.
  • the load that presses the spool 55 based on the hydraulic pressure supplied from the first pilot port 54 is greater than the resultant force of the load based on the hydraulic pressure supplied from the feedback port 53 and the spring force. If it is larger, the spool 55 moves downward in FIG. When the spool 55 moves in such a manner, the input port 50 and the output port 51 are blocked and the output port 51 and the drain port 52 are communicated. That is, the hydraulic pressure of the brake B0 is drained.
  • the second fail-safe valve 48 is switched so as not to supply oil to the brake B0, so that the hydraulic pressure is supplied from the second linear solenoid valve 49. Even if it is output, it can be prohibited to supply oil to the brake B0. That is, it is possible to suppress or prevent simultaneous engagement of the clutch C0 and the brake B0. Further, in a state where the brake B0 is engaged and the clutch C0 is released, the second failsafe valve 48 is switched so that the second linear solenoid valve 36 and the brake B0 communicate with each other.
  • the output shaft 14 may not rotate when the single motor traveling mode or the twin motor traveling mode is set.
  • hydraulic pressure may be required to engage the clutch C0 and the brake B0. . Therefore, in the example shown in FIG. 7, an electric oil pump 58 is provided.
  • the electric oil pump 58 is driven by the output torque of the motor 59 and is configured to pump up oil from the oil pan 27 and output it.
  • the oil output from the electric oil pump 58 can be supplied to the oil passage 31 through the oil passage 60.
  • a check valve 61 is provided in the oil passage in order to suppress or prevent the line pressure from being supplied to the electric oil pump 58 when the mechanical oil pump 26 is driven.
  • the hydraulic oil pressure can be supplied from the electric oil pump 58 to the oil passage 31 when only the electric oil pump 58 is driven.
  • a relief valve 62 is provided for suppressing or preventing an excessive increase in the oil pressure of the oil passage 60.
  • each linear solenoid valve 35 is regulated based on the regulated line pressure.
  • 36 controls the hydraulic pressures of the clutch C0 and the brake B0.
  • the power transmission apparatus configured as shown in FIG. 1 transmits the output torque of the first motor / generator 2 as a driving force by engaging the clutch C0 and the brake B0 to stop the rotation of the carrier 9.
  • the twin motor travel mode is set by engaging the clutch C0 and the brake B0. Therefore, the hydraulic circuit shown in FIG. 7 is configured so that the clutch C0 and the brake B0 can be simultaneously engaged. That is, the fail-safe valves 37 and 48 are configured not to function.
  • the output pressure of the electric oil pump 58 is applied to the second pilot ports 47 and 57 of the first failsafe valve 37 and the second failsafe valve 48 via the solenoid valve 46 communicated with the oil passage 60. It is comprised so that it can supply.
  • the solenoid valve 58 shown in FIG. 7 drives the spool 64 by the electromagnetic force and the spring force of the spring 63, thereby connecting the input port 65 and the output port 66 to each fail-safe valve 37,
  • the hydraulic pressure is supplied to 48, or the output port 66 and the drain port 67 are communicated with each other so that the oil supplied to the fail-safe valves 37, 48 is discharged. That is, it is configured to switch whether or not to allow the clutch C0 and the brake B0 to be simultaneously engaged by controlling the current supplied to the solenoid valve 46. Therefore, when it is determined to switch the traveling mode to the twin motor traveling mode, the port for supplying power to the solenoid valve 46 or stopping the power supply for communication is switched.
  • FIG. 10 shows a flowchart for explaining a control example of the solenoid valve 46.
  • the motor is running, that is, whether or not the single motor running mode or the twin motor running mode is set (step S11).
  • This step S11 can be determined based on whether or not a signal for driving the engine 1 is output from the engine control device 23. If the engine running mode is determined in the negative in step S11, the power supply to the solenoid valve 46 is stopped (step S12) and the process returns.
  • FIG. 10 shows that the solenoid valve is off. On the other hand, if the motor is running and the determination in step S11 is affirmative, it is determined whether or not the mode is the twin motor running mode (step S13).
  • This step S13 can be determined from the required driving force and the vehicle speed, or whether or not the output torque required for the first motor / generator 2 is determined based on the required driving force.
  • the solenoid valve 46 is supplied with electric power during the twin motor driving mode. Therefore, when it is determined to be negative in step S13 in the single motor driving mode, power supply to the solenoid valve 46 is stopped ( Step S12) and return. On the other hand, if it is the twin motor traveling mode and the determination in step S13 is affirmative, power is supplied to the solenoid valve 46 (step S14), and the process returns. That is, hydraulic pressure is supplied from the electric oil pump 58 to the fail-safe valves 37 and 48 via the solenoid valve 46. In FIG. 10, step S14 is shown as solenoid valve ON.
  • the first linear solenoid valve 35 is a normally open type valve and the second linear solenoid valve 36 is a normally closed type valve
  • power is not supplied to the linear solenoid valves 35, 36.
  • the hydraulic pressure can be output from the first linear solenoid valve 35 to engage the clutch C0.
  • torque can be transmitted between the engine 1 and the power split mechanism 5 even when a device that feeds power to the linear solenoid valves 35, 36, for example, a battery or an inverter (not shown) fails.
  • the engine 1 can be cranked and started by the output torque of the motor / generator 2.
  • it is sufficient that either one of the clutch C0 and the brake B0 can be engaged when such a failure occurs.
  • a shift set at the time of the failure is set.
  • the gear ratio of the part 10 becomes relatively large. As a result, a relatively large driving force can be output after the engine 1 is started.
  • FIG. 11 shows a control example in which the engine 1 can be started even when those failures occur.
  • a state in which the linear solenoid valve is operating similarly to when power is supplied although the power supply signal is not output from the hybrid controller 23 is indicated as on-fail.
  • the state in which the linear solenoid valve is operating in the same manner as when power is not supplied even though the power supply signal is output from the hybrid control device is indicated as off-fail. Further, whether or not each of the linear solenoid valves 35 and 36 has failed can be determined based on whether or not there is a difference between the hydraulic value obtained from the current value to be supplied and the actual output hydraulic pressure. . Further, since the rotational speed of each rotating element of the transmission unit 10 changes when the clutch C0 and the brake B0 are engaged, each of the values to be set when the signal for engaging the clutch C0 and the brake B0 is output. This can be determined by whether or not there is a difference between the rotational speed of the rotating element and the actual rotational speed.
  • each linear solenoid valve 35, 36 is off-fail (step S201).
  • the first linear solenoid valve 35 is a normally open valve. Therefore, in the case of off-fail, the hydraulic pressure is output from the first linear solenoid valve 35.
  • the second linear solenoid valve 36 is a normally closed type valve. Therefore, in the case of off-fail, no hydraulic pressure is output from the second linear solenoid valve 36. Therefore, if each linear solenoid valve 35, 36 is off-fail and the determination in step S201 is affirmative, the transmission unit 10 sets the direct coupling stage.
  • the engine 1 and the power split mechanism 5 are coupled so as to be able to transmit power, so the engine 1 is started (step S202) and the process returns.
  • the rotational speed of the first motor / generator 2 is controlled to crank the engine 1. That is, the first motor / generator 2 is controlled so that the transmission ratio of the transmission unit 10 is “1” and the engine 1 has a predetermined rotational speed at which the engine 1 can be started. That is, the first motor / generator 2 is controlled so that the rotation speed of the carrier 9 in the power split mechanism 5 becomes the predetermined rotation speed.
  • the engine 1 is ignited and started when the rotational speed of the engine 1 reaches a predetermined rotational speed.
  • FIG. 11 shows direct start-stage engine start control.
  • step S201 If a negative determination is made in step S201 because each linear solenoid valve 35, 36 or any one of the linear solenoid valves is not off-fail, it is determined whether the first linear solenoid valve 35 is on-fail (step). S203). In FIG. 11, for convenience, the first linear solenoid valve 35 is indicated as SL1, and the second linear solenoid valve 36 is indicated as SL2. If the first linear solenoid valve 35 is on-fail and an affirmative determination is made in step S203, the hydraulic pressure is not output from the first linear solenoid valve 35 and the clutch C0 is released. In order to enable transmission of torque between the engine 1 and the power split mechanism 5, power is supplied to the second linear solenoid valve 36 so as to engage the brake B0 (step S204).
  • step S205 the engine start control in step S204 controls the rotational speed of the first motor / generator 2 in accordance with the gear ratio because the transmission 10 is in the speed increasing stage. That is, the first motor / generator 2 is controlled so that the rotation speed of the carrier 9 in the power split mechanism 5 is larger than when the transmission unit 10 is set to the direct coupling stage.
  • the engine 1 is ignited and started when the rotational speed of the engine 1 reaches a predetermined rotational speed.
  • FIG. 11 shows the engine start control at the speed increasing stage.
  • step S206 it is then determined whether or not the first linear solenoid valve 35 is off-failed. If the first linear solenoid valve 35 is off-failed and an affirmative determination is made in step S206, the hydraulic pressure is output from the first linear solenoid valve 35 and the clutch C0 is engaged, so the engine 1 is rotated. In other words, in order to avoid the rotation of the transmission unit 10 being stopped, the power supply to the second linear solenoid valve 36 is stopped (step S207). Therefore, the transmission unit 10 is set to a direct coupling stage. Therefore, the engine 1 is started as in step S202 (step S208), and the process returns.
  • step S206 determines whether or not the second linear solenoid valve 36 is on-fail. If the determination in step S209 is affirmative because the second linear solenoid valve 36 is on-fail, the hydraulic pressure is output from the second linear solenoid valve 35 and the brake B0 is engaged. In other words, in order to avoid the rotation of the transmission unit 10 being stopped, the power supply to the first linear solenoid valve 35 is stopped (step S210). Therefore, the speed increasing stage is set in the transmission unit 10. Therefore, the engine 1 is started as in step S205 (step S211), and the process returns.
  • step S212 it is determined whether or not the second linear solenoid valve 36 is off-failed.
  • step S212 the hydraulic pressure is not output from the second linear solenoid valve 36 and the brake B0 is released.
  • step S213 power supply to the first linear solenoid valve 35 is stopped. Therefore, the transmission unit 10 sets the direct coupling stage. For this reason, the engine 1 is started in the same manner as in step S202 and step S208 (step S214), and the process returns.
  • step S211 if the second linear solenoid valve 36 has not failed and a negative determination is made in step S211, each linear solenoid valve 35, 36 has not failed. Therefore, the engine 1 is started in the same manner as in the normal time (step S215), and the process returns. Specifically, the clutch C0 and the brake B0 according to the amount of change in the rotation speed of the first motor / generator 2 controlled to start the engine 1 and the driving force required after the engine 1 is started. Is engaged to crank the engine 1, and then the engine 1 is ignited and started.
  • the transmission unit 10 can set either one of the direct gear stage and the speed increasing stage to transmit torque between the power split mechanism 5 and the engine 1.
  • the engine 1 can be cranked and the engine 1 can be started. Further, as in the control example described above, it can be determined whether or not each linear solenoid valve 35, 36 has failed, or whether the failure is on-fail or off-fail.
  • the clutch C0 or the brake B0 to be engaged can be changed similarly to the control shown in FIG.
  • the clutch C0 when the first linear solenoid valve 35 is on-fail, when the vehicle is traveling at a relatively low vehicle speed in the engine travel mode, the clutch C0 is usually engaged to set the transmission unit 10 to the direct coupling stage.
  • the control can be changed to engage the brake B0. That is, the pattern for engaging the engagement device that has not failed is changed.
  • the gear ratio of the power split mechanism 5 is controlled so that the gear ratio set by the power transmission device does not change. Therefore, even when the linear solenoid valve fails, a driving force corresponding to the required driving force can be output.
  • FIG. 12 is a hydraulic circuit diagram for explaining another example of the hydraulic control device that controls the hydraulic pressures of the clutch C0 and the brake B0 shown in FIG.
  • the hydraulic circuit shown in FIG. 12 is not provided with the first failsafe valve 37. Further, the feedback port 53 is not formed in the second failsafe valve 48.
  • a hydraulic circuit may be configured as shown in FIG.
  • a mechanical oil pump 26 and an electric oil pump 59 are provided in parallel.
  • the first failsafe valve 37 is not provided.
  • a solenoid valve 46 is provided so as to switch whether or not the hydraulic pressure output from the first linear solenoid valve 35 is supplied to the second failsafe valve 48.
  • a solenoid valve 46 is provided between the first linear solenoid valve 35 and the second failsafe valve 48.
  • the same configuration is provided between the first motor / generator 2 and the power split mechanism 5, or the output side of the power split mechanism 5, more specifically, the ring gear 7 and the like.
  • a device having a similar configuration between the drive gear 11 and the drive gear 11 may be used. That is, since the power split mechanism 5 is configured by a differential mechanism, when the engagement device is released and the transmission of torque to any one of the rotating elements is interrupted, the engine is connected via the power split mechanism 5. 1 and the motor / generators 2 and 3 cannot transmit torque.
  • the engaging device that interrupts the transmission of torque with any one of the rotating elements in the power split mechanism 5 can be engaged at the time of failure.
  • the engaging device does not have to be provided with a differential action like the transmission unit 10 or provided with a plurality of clutches and brakes. That is, one clutch may be provided between the engine 1 and the carrier 13. In the case of such a configuration in which one clutch is provided, it may be configured to engage when a signal is not supplied to a valve that controls the hydraulic pressure of the clutch.
  • the power split mechanism and the transmission unit may be constituted by a double pinion type planetary gear mechanism.
  • the clutch and brake are not limited to those controlled by hydraulic pressure, but may be configured such that engagement and release are controlled by electromagnetic force or the like, and other than frictional force such as a meshing clutch. It may be configured to transmit torque by force.

Abstract

A control device for a hybrid vehicle is provided with: a power splitting mechanism (5) that has differential action and that comprises a first rotary element (9) that can be made to transmit the torque of an engine (1), a second rotary element (6) that can be made to transmit the torque of a first motor (2), and a third rotary element (7) that is capable of transmitting the torque of an output shaft (4); a second motor (3) that is capable of transmitting the torque of the output shaft (4); and an engagement device (C0) that blocks the transmission of torque that acts on one rotary element (9) among the individual rotary elements. The control device is provided with an engagement control means that causes the engagement device (C0) to engage or release. The engagement control means is configured so as to cause the engagement device (C0) to engage in conjunction with a decrease in an input command value.

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 この発明は、エンジンとモータとを駆動力源としたハイブリッド車両の制御装置に関し、特にエンジンとモータとから駆動力を出力する走行モードと、モータのみから駆動力を出力する走行モードとに切り替えることができるハイブリッド車両の制御装置に関するものである。 The present invention relates to a hybrid vehicle control apparatus using an engine and a motor as a driving force source, and in particular, switching between a driving mode in which driving power is output from the engine and the motor and a driving mode in which driving power is output only from the motor. The present invention relates to a control device for a hybrid vehicle capable of performing the above.
 車両の駆動力源としてエンジンとモータとを備えたハイブリッド車両は、エンジンとモータとから駆動力を出力して走行し、またモータのみから駆動力を出力して走行することができる。このように構成されたハイブリッド車両のうち、モータを複数備え、エンジンの出力トルクの一部を使用して一方のモータを発電機として駆動し、その電力あるいはバッテリーなどに蓄電された電力を他のモータに給電することによりトルクを出力するように構成されたハイブリッド車両が知られている。このように複数のモータを備えた車両は、モータのみから駆動力を出力して走行する場合には、一つのモータのみから駆動力を出力して走行し、もしくは複数のモータから駆動力を出力して走行することができる。 A hybrid vehicle having an engine and a motor as a driving force source for the vehicle can travel by outputting driving force from the engine and motor, and can also travel by outputting driving force only from the motor. Among the hybrid vehicles configured in this way, a plurality of motors are provided, and one motor is driven as a generator using a part of the output torque of the engine, and the electric power stored in the battery or the like is supplied to the other Hybrid vehicles configured to output torque by supplying power to a motor are known. Thus, when a vehicle equipped with a plurality of motors travels by outputting a driving force from only the motor, the vehicle travels by outputting a driving force from only one motor, or outputs a driving force from a plurality of motors. And can travel.
 一方、上記のように構成されたハイブリッド車両は、モータのみから駆動力を出力して走行するときに、エンジンが連れ回されるとエンジンのポンピングロスや摩擦損失などの動力損失が生じる場合がある。そのような動力損失が生じることを抑制もしくは防止することができるハイブリッド車両が特許第5141802号に記載されている。特許第5141802号に記載された動力伝達装置は、エンジンと動力分割機構との間に変速部を備えている。この変速部は、ダブルピニオン型の遊星歯車機構によって構成されていて、クラッチを係合させることにより二つの回転要素を連結して一体に回転させて直結段を設定し、またはいずれか一つの回転要素の回転を止めて増速段を設定するように構成されている。すなわち、係合させるクラッチを切り替えることにより変速段を変更するように構成されている。そのため、クラッチを解放させた場合には、変速部がニュートラル状態になる。そのようにモータのみから駆動力を出力する場合に変速部をニュートラル状態にすることにより、動力分割機構とエンジンとのトルクの伝達を遮断することができ、その結果、エンジンの連れ回りによる動力損失が生じることを抑制もしくは防止することができる。 On the other hand, in the hybrid vehicle configured as described above, when the driving force is output only from the motor and the engine is driven, power loss such as pumping loss or friction loss of the engine may occur. . Japanese Patent No. 5141802 describes a hybrid vehicle that can suppress or prevent the occurrence of such power loss. The power transmission device described in Japanese Patent No. 5141802 includes a transmission unit between the engine and the power split mechanism. This transmission unit is constituted by a double pinion type planetary gear mechanism, and by engaging a clutch, the two rotating elements are connected and rotated together to set a direct coupling stage, or any one rotation The speed increasing stage is set by stopping the rotation of the element. That is, the gear position is changed by switching the clutch to be engaged. Therefore, when the clutch is released, the transmission unit is in a neutral state. Thus, when the driving force is output only from the motor, the transmission of the torque between the power split mechanism and the engine can be cut off by setting the speed change unit to the neutral state. Can be suppressed or prevented.
 なお、特開2008-265600号公報および特開2008-265598号公報には、要求駆動力が所定の閾値よりも小さい場合や、車速が所定の閾値よりも遅い場合など、エンジンを停止させることができる条件が成立したときに、エンジンの出力軸に設けられたクラッチを係合させることによりエンジンの回転を止めるように構成された装置が記載されている。そして、クラッチを係合してエンジンを停止させたときには、2つのモータの効率が良好となるように各モータを制御するように構成されている。 In JP 2008-265600 A and JP 2008-265598 A, the engine is stopped when the required driving force is smaller than a predetermined threshold or when the vehicle speed is slower than the predetermined threshold. An apparatus is described that is configured to stop the rotation of the engine by engaging a clutch provided on the output shaft of the engine when a possible condition is satisfied. And when a clutch is engaged and an engine is stopped, it is comprised so that each motor may be controlled so that the efficiency of two motors may become favorable.
 特許第5141802号に記載された動力伝達装置のように動力分割機構とエンジンとの間にクラッチを設けている場合には、動力分割機構の出力側に設けられたモータのみで走行するときに、クラッチを解放させてエンジンと動力分割機構とのトルクの伝達を遮断することができる。このようにエンジンと動力分割機構とのトルクの伝達を遮断しているときにクラッチがフェールして係合することができなくなると、動力分割機構に連結されたモータによってエンジンをクランキングさせることができなくなる場合がある。そのようにクラッチがフェールしたときのためにスタータモータを設けるとすれば、動力伝達装置が大型化してしまう可能性がある。 When a clutch is provided between the power split mechanism and the engine as in the power transmission device described in Japanese Patent No. 5141802, when traveling with only the motor provided on the output side of the power split mechanism, The clutch can be released to interrupt torque transmission between the engine and the power split mechanism. If the clutch fails to engage when the torque transmission between the engine and the power split mechanism is interrupted in this way, the engine can be cranked by the motor connected to the power split mechanism. It may not be possible. If a starter motor is provided for such a time when the clutch fails, the power transmission device may be increased in size.
 この発明は上記の技術的課題に着目してなされたものであって、差動作用のある動力分割機構のいずれかの回転要素に作用するトルクの伝達を遮断することができる係合装置がフェールした場合であっても、エンジンをクランキングすることができるハイブリッド車両の制御装置を提供することを目的とするものである。 The present invention has been made paying attention to the technical problem described above, and an engagement device capable of interrupting transmission of torque acting on any rotating element of a power split mechanism having a differential action fails. Even if it is a case, it aims at providing the control apparatus of the hybrid vehicle which can crank an engine.
 上記の目的を達成するために、この発明は、エンジンのトルクを伝達させることができる第1回転要素、および第1モータのトルクを伝達させることができる第2回転要素、ならびに出力軸にトルクを伝達することができる第3回転要素を有する差動作用のある動力分割機構と、前記出力軸にトルクを伝達することができる第2モータと、前記各回転要素のいずれか一つの回転要素に作用するトルクの伝達を遮断するように構成された係合装置とを備えたハイブリッド車両の制御装置において、前記係合装置を係合または解放させる係合制御手段を備え、前記係合制御手段は、入力される指令値が低下することに伴って、前記係合装置を係合させるように構成されていることを特徴とするものである。 In order to achieve the above object, the present invention provides a first rotating element capable of transmitting engine torque, a second rotating element capable of transmitting torque of a first motor, and torque to an output shaft. A power split mechanism having a differential action having a third rotating element capable of transmitting, a second motor capable of transmitting torque to the output shaft, and acting on any one of the rotating elements. A control device for a hybrid vehicle including an engagement device configured to cut off transmission of torque to be engaged, the engagement control means for engaging or releasing the engagement device, wherein the engagement control means includes: The engagement device is configured to be engaged when the input command value decreases.
 第1クラッチと第2クラッチとを有するとともに、前記第1クラッチを係合させかつ前記第2クラッチを解放することにより第1変速段を設定し、かつ前記第1クラッチを解放させかつ前記第2クラッチを係合することにより前記第1変速段によって設定される変速比よりも小さい変速比である第2変速段を設定するように構成された変速部を更に備え、前記係合装置は、前記第1クラッチを含んでもよい。 A first clutch and a second clutch, the first clutch is set by engaging the first clutch and releasing the second clutch; and the second clutch is released and the second clutch is released. A gear unit configured to set a second gear stage having a gear ratio smaller than a gear ratio set by the first gear stage by engaging a clutch; A first clutch may be included.
 前記第1クラッチと前記第2クラッチとの一方のクラッチがフェールした場合に、前記エンジンと前記出力軸とのトルクの伝達が可能になるように、前記他方のクラッチを係合させるパターンを変更するように構成されていてもよい。 When one of the first clutch and the second clutch fails, the pattern for engaging the other clutch is changed so that torque can be transmitted between the engine and the output shaft. It may be configured as follows.
 前記変速部は、第1サンギヤと、前記第1サンギヤと同心円上に設けられかつ前記第1回転要素に連結された第1リングギヤと、前記第1サンギヤおよび前記第1リングギヤに噛み合う第1ピニオンギヤを自転および公転することができるように保持しかつ前記エンジンに連結された第1キャリヤとによって構成された第1遊星歯車機構を有し、前記第1クラッチは、係合することにより前記第1サンギヤと前記第1キャリヤとを一体に回転させるように構成され、前記第2クラッチは、係合することにより前記第1キャリヤの回転を止めるように構成されていてもよい。 The transmission includes a first sun gear, a first ring gear provided concentrically with the first sun gear and connected to the first rotating element, and a first pinion gear meshing with the first sun gear and the first ring gear. A first planetary gear mechanism configured by a first carrier which is held so as to be able to rotate and revolve and which is coupled to the engine; and the first clutch engages with the first sun gear. And the first carrier may be configured to rotate together, and the second clutch may be configured to stop the rotation of the first carrier when engaged.
 前記動力分割機構は、第2サンギヤと、前記第2サンギヤと同心円上に設けられた第2リングギヤと、前記第2サンギヤおよび前記第2リングギヤに噛み合う第2ピニオンギヤを自転および公転することができるように保持する第2キャリヤとによって構成された第2遊星歯車機構を含んでもよい。 The power split mechanism can rotate and revolve a second sun gear, a second ring gear provided concentrically with the second sun gear, and a second pinion gear meshing with the second sun gear and the second ring gear. And a second planetary gear mechanism configured by a second carrier held on the second carrier.
 この発明によれば、エンジンのトルクを伝達させることができる第1回転要素、および第1モータのトルクを伝達させることができる第2回転要素、ならびに出力軸にトルクを伝達することができる第3回転要素を有する差動作用のある動力分割機構と、出力軸にトルクを伝達することができる第2モータと、動力分割機構における各回転要素のいずれか一つの回転要素に作用するトルクの伝達を遮断する係合装置とを備えている。したがって、係合装置を解放させることによりエンジンと出力軸とのトルクの伝達を遮断させることができる。その結果、第2モータから出力されたトルクを出力軸に伝達して車両を走行させているときにおけるエンジンの連れ回りによる動力損失を低減させることができる。また、係合装置を係合または解放させる係合制御手段を備え、その係合圧制御手段は、入力される指令値が低下することに伴って、係合装置を係合させるように構成されている。そのため、係合圧制御手段に指令値を出力する装置がフェールして係合圧制御手段に指令値が入力されないときなどには、係合装置が係合させられてエンジンと出力軸とのトルクの伝達が可能になる。その結果、第1モータの回転数を制御することによりエンジンをクランキングさせて始動させることができる。 According to the present invention, the first rotating element capable of transmitting the torque of the engine, the second rotating element capable of transmitting the torque of the first motor, and the third capable of transmitting the torque to the output shaft. A power split mechanism having a differential action having a rotating element, a second motor capable of transmitting torque to the output shaft, and transmission of torque acting on any one of the rotating elements in the power split mechanism. And an engaging device for blocking. Therefore, the torque transmission between the engine and the output shaft can be interrupted by releasing the engagement device. As a result, it is possible to reduce the power loss due to the rotation of the engine when the vehicle is traveling by transmitting the torque output from the second motor to the output shaft. In addition, an engagement control unit that engages or releases the engagement device is provided, and the engagement pressure control unit is configured to engage the engagement device as the input command value decreases. ing. Therefore, when the device that outputs the command value to the engagement pressure control means fails and the command value is not input to the engagement pressure control means, the engagement device is engaged and the torque between the engine and the output shaft is increased. Can be transmitted. As a result, the engine can be cranked and started by controlling the rotation speed of the first motor.
 また、第1クラッチと第2クラッチとを有するとともに、第1クラッチを係合させかつ第2クラッチを解放させることにより第1変速段を設定し、かつ第1クラッチを解放させかつ第2クラッチを係合させることにより第1変速段よりも変速比が小さい変速比である第2変速段を設定するように構成された変速部を備え、係合装置は、その第1クラッチを含む場合には、係合装置に指令値を出力する装置がフェールして指令値が入力されないときには、変速部が比較的変速比が大きい第1変速段を設定する。そのため、フェールが生じた場合であってもエンジンと出力軸とのトルクの伝達が可能になり、第1モータの回転数を制御することによりエンジンをクランキングさせて始動させることができる。また、そのようにエンジンを始動させたときに、変速部が大きい変速比となるように設定されているので、比較的大きな駆動力を出力することができる。 In addition to having a first clutch and a second clutch, the first gear is set by engaging the first clutch and releasing the second clutch, and the first clutch is released and the second clutch is released. In the case where the engagement device includes the first clutch, and the engagement device includes a first clutch that is configured to set a second gear that is smaller in gear ratio than the first gear. When the device that outputs the command value to the engagement device fails and the command value is not input, the transmission unit sets the first gear position having a relatively large gear ratio. Therefore, even if a failure occurs, torque can be transmitted between the engine and the output shaft, and the engine can be cranked and started by controlling the rotation speed of the first motor. Further, when the engine is started in such a manner, the transmission unit is set to have a large gear ratio, so that a relatively large driving force can be output.
 さらに、第1クラッチと第2クラッチとの一方のクラッチがフェールした場合に、エンジンと出力軸とのトルクの伝達が可能になるように、他方のクラッチを係合させるパターンを変更することにより、フェールを検出した後のクラッチの係合制御が複雑になることを抑制もしくは防止することができる。 Furthermore, when one of the first clutch and the second clutch fails, the pattern for engaging the other clutch is changed so that torque can be transmitted between the engine and the output shaft. Complicating clutch engagement control after detecting a failure can be suppressed or prevented.
この発明で対象とするハイブリッド車両の構成の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of a structure of the hybrid vehicle made into object by this invention. 図2に示す動力伝達装置で設定される走行モード毎におけるクラッチ、ブレーキ、各モータ・ジェネレータの動作状態を示す図である。It is a figure which shows the operation state of a clutch, a brake, and each motor generator in every driving | running | working mode set with the power transmission device shown in FIG. シングルモータ走行モードで走行するときにおける変速部および動力分割機構の各回転要素の動作状態を説明するための共線図である。It is a collinear diagram for demonstrating the operation state of each rotation element of a transmission part and a power division mechanism when drive | working by a single motor drive mode. ツインモータ走行モードで走行するときにおける変速部および動力分割機構の各回転要素の動作状態を説明するための共線図である。It is a collinear chart for demonstrating the operation state of each rotation element of a transmission part and a power split mechanism when drive | working with a twin motor drive mode. エンジン走行モードで走行するときにおける変速部および動力分割機構の各回転要素の動作状態を説明するための共線図である。It is a collinear diagram for demonstrating the operation state of each rotation element of a transmission part and a power split device when drive | working by engine drive mode. エンジン、各モータ・ジェネレータ、クラッチ、ブレーキを制御する電子制御装置の構成の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of a structure of the electronic controller which controls an engine, each motor generator, a clutch, and a brake. クラッチおよびブレーキの油圧を制御する油圧制御装置の構成の一例を説明するための油圧回路図である。It is a hydraulic circuit diagram for demonstrating an example of a structure of the hydraulic control apparatus which controls the hydraulic pressure of a clutch and a brake. 第1リニアソレノイドバルブのI-P特性を説明するための図である。It is a figure for demonstrating the IP characteristic of a 1st linear solenoid valve. 第2リニアソレノイドバルブのI-P特性を説明するための図である。It is a figure for demonstrating the IP characteristic of a 2nd linear solenoid valve. ソレノイドバルブの制御例を説明するためのフローチャートである。It is a flowchart for demonstrating the example of control of a solenoid valve. フェール時におけるエンジン始動制御の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the engine starting control at the time of a failure. クラッチおよびブレーキの油圧を制御する油圧制御装置の構成の他の例を説明するための油圧回路図である。It is a hydraulic circuit diagram for demonstrating the other example of the structure of the hydraulic control apparatus which controls the hydraulic pressure of a clutch and a brake. クラッチおよびブレーキの油圧を制御する油圧制御装置の構成の更に他の例を説明するための油圧回路図である。FIG. 10 is a hydraulic circuit diagram for explaining still another example of the configuration of a hydraulic control device that controls the hydraulic pressures of clutches and brakes.
 この発明で対象とするハイブリッド車両は、エンジンのトルクを伝達させることができる第1回転要素と、第1モータのトルクを伝達させることができる第2回転要素と、出力軸にトルクを伝達することができる第3回転要素とを有する差動作用のある動力分割機構を備えている。そのエンジンとしては、ガソリンエンジンやディーゼルエンジン、あるいはガスエンジンなどが挙げられる。また、エンジンから駆動力を出力するときには、第1回転要素が入力要素として機能し、第2回転要素が反力要素として機能する。そのため、第1モータは、発電機能があるモータ(すなわちモータ・ジェネレータ)であることが好ましい。さらに、第2モータのトルクを出力軸に伝達させることができるように構成されている。したがって、第2モータは、車両に駆動力を出力しているときには力行制御され、車両に制動力を出力しているときには回生制御されるように構成されたものが好ましい。すなわち、第2モータも、第1モータと同様に発電機能があるモータ(すなわちモータ・ジェネレータ)であることが好ましい。 The hybrid vehicle targeted by the present invention transmits a torque to the output shaft, a first rotating element capable of transmitting engine torque, a second rotating element capable of transmitting torque of the first motor, and the like. A power dividing mechanism having a differential action and a third rotating element capable of generating Examples of the engine include a gasoline engine, a diesel engine, and a gas engine. Moreover, when outputting a driving force from an engine, a 1st rotation element functions as an input element, and a 2nd rotation element functions as a reaction force element. Therefore, the first motor is preferably a motor having a power generation function (that is, a motor / generator). Furthermore, it is comprised so that the torque of a 2nd motor can be transmitted to an output shaft. Therefore, it is preferable that the second motor is configured so that power running control is performed when driving force is output to the vehicle and regenerative control is performed when braking force is output to the vehicle. That is, it is preferable that the second motor is also a motor (that is, a motor / generator) having a power generation function in the same manner as the first motor.
 さらに、この発明で対象とするハイブリッド車両は、エンジンから出力された動力で走行する走行モードと、モータのみから出力された動力で走行する走行モードとを選択できるように構成されている。エンジンから出力された動力で走行する走行モードは、その動力の一部を駆動輪に伝達し、かつその動力の他の一部で第1モータを駆動して発電し、その電力で第2モータを駆動して走行するモードや、エンジンで発電機を駆動して発電し、その電力で第2モータを駆動して走行するモードなどを設定するように構成されていてよい。また、モータのみから出力された動力で走行するモードは、いずれか一つのモータで走行するモードや、二つのモータ(もしくはモータ・ジェネレータ)を共に駆動して走行するモードなどを設定するように構成されていてよい。なお、モータのみから駆動力を出力して走行するときには、エンジンの連れ回りによる動力損失を低減させるために、エンジンと駆動輪とのトルクの伝達を遮断することが好ましく、この発明で対象とするハイブリッド車両では、動力分割機構におけるいずれか一つの回転要素に作用するトルクの伝達を遮断するように係合装置が設けられている。 Furthermore, the hybrid vehicle targeted by the present invention is configured to be able to select a travel mode in which the vehicle travels with the power output from the engine and a travel mode in which the vehicle travels with the power output only from the motor. In the travel mode in which the vehicle travels using the power output from the engine, a part of the power is transmitted to the drive wheels, and the first motor is driven by the other part of the power to generate electric power. A mode in which the vehicle is driven by driving, a mode in which the generator is driven by the engine to generate electric power, and the second motor is driven by the electric power may be set. In addition, the mode to run with the power output from only the motor is configured to set the mode to run with one of the motors, the mode to run with both motors (or motor generators) driven, etc. May have been. When traveling with only the motor outputting driving force, it is preferable to cut off the transmission of torque between the engine and the drive wheels in order to reduce power loss due to engine rotation. In the hybrid vehicle, an engagement device is provided so as to block transmission of torque acting on any one of the rotating elements in the power split mechanism.
 上述したようにエンジンのトルクを伝達させることができる第1回転要素と、第1モータのトルクを伝達させることができる第2回転要素と、出力軸にトルクを伝達することができる第3回転要素とを有する差動作用のある動力分割機構を備えたハイブリッド車両の構成について具体的に説明する。図1は、その動力分割機構を有しかつハイブリッド車両に搭載された動力伝達装置の一例を模式的に示している。図1に示す動力伝達装置は、エンジン(ENG)1と二つのモータ・ジェネレータ2,3とが動力源として機能するように構成されている。具体的には、エンジン1が出力した動力を第1モータ・ジェネレータ(MG1)2側とドライブシャフト4側とに分割し、かつ第1モータ・ジェネレータ2で発生した電力を第2モータ・ジェネレータ(MG2)3に供給して第2モータ・ジェネレータ3の駆動力をドライブシャフト4に加えるように構成された、いわゆるツーモータ式のハイブリッド駆動装置である。 As described above, the first rotating element capable of transmitting engine torque, the second rotating element capable of transmitting torque of the first motor, and the third rotating element capable of transmitting torque to the output shaft. The structure of the hybrid vehicle provided with the power split mechanism with differential action having the following will be specifically described. FIG. 1 schematically shows an example of a power transmission device having the power split mechanism and mounted on a hybrid vehicle. The power transmission device shown in FIG. 1 is configured such that an engine (ENG) 1 and two motor generators 2 and 3 function as a power source. Specifically, the power output from the engine 1 is divided into the first motor / generator (MG1) 2 side and the drive shaft 4 side, and the electric power generated by the first motor / generator 2 is divided into the second motor / generator ( This is a so-called two-motor type hybrid drive device configured to be supplied to the MG 2) 3 and apply the drive force of the second motor / generator 3 to the drive shaft 4.
 ここに示す動力伝達装置で用いられている動力分割機構5は、三つの回転要素を有する差動機構によって構成されており、より具体的には遊星歯車機構によって構成されている。図1に示す例ではシングルピニオン型の遊星歯車機構が用いられており、その遊星歯車機構はエンジン1と同一の軸線上に配置され、その遊星歯車機構におけるサンギヤ6に第1モータ・ジェネレータ2が連結されている。なお、第1モータ・ジェネレータ2は、動力分割機構5に隣接して、エンジン1とは反対側に配置され、そのロータ2Rがサンギヤ6に連結されている。このサンギヤ6に対して同心円上にリングギヤ7が配置され、これらサンギヤ6とリングギヤ7とに噛み合っているピニオンギヤ8がキャリヤ9によって自転および公転できるように保持され、そのキャリヤ9がエンジン1と動力分割機構5との間に設けられた変速部10の出力要素に連結されている。そして、リングギヤ7にドライブギヤ11が連結されている。このドライブギヤ11は、変速部10と動力分割機構5との間に配置されている。 The power split mechanism 5 used in the power transmission device shown here is constituted by a differential mechanism having three rotating elements, more specifically, a planetary gear mechanism. In the example shown in FIG. 1, a single pinion type planetary gear mechanism is used, and the planetary gear mechanism is disposed on the same axis as the engine 1, and the first motor / generator 2 is attached to the sun gear 6 in the planetary gear mechanism. It is connected. The first motor / generator 2 is disposed on the opposite side of the engine 1 adjacent to the power split mechanism 5, and the rotor 2 </ b> R is connected to the sun gear 6. A ring gear 7 is disposed concentrically with the sun gear 6, and the pinion gear 8 meshing with the sun gear 6 and the ring gear 7 is held by the carrier 9 so as to be able to rotate and revolve. It is connected to the output element of the speed change part 10 provided between the mechanisms 5. A drive gear 11 is connected to the ring gear 7. The drive gear 11 is disposed between the transmission unit 10 and the power split mechanism 5.
 図1に示す変速部10は、直結段と増速段(オーバードライブ(O/D)段)とに切り替えられるように構成されている。この変速部10は、三つの回転要素を有する差動機構によって構成されたシングルピニオン型の遊星歯車機構を備えている。具体的には、ピニオンギヤ12を自転および公転可能に保持するキャリヤ13にエンジン1の出力軸14が連結され、またリングギヤ15が動力分割機構5におけるキャリヤ8と一体に回転するように連結されている。そして、サンギヤ16とキャリヤ13との間にこれらを連結し、またその連結を解除するクラッチC0が設けられている。また、リングギヤ15と同心円上に配置されたサンギヤ16を固定し、またその固定を解除するブレーキB0が設けられている。これらのクラッチC0およびブレーキB0は、例えば油圧によって係合する摩擦係合機構によって構成することができる。 The transmission unit 10 shown in FIG. 1 is configured to be switched between a direct connection stage and an acceleration stage (overdrive (O / D) stage). The transmission unit 10 includes a single-pinion type planetary gear mechanism configured by a differential mechanism having three rotating elements. Specifically, the output shaft 14 of the engine 1 is connected to a carrier 13 that holds the pinion gear 12 so as to be capable of rotating and revolving, and the ring gear 15 is connected to rotate integrally with the carrier 8 in the power split mechanism 5. . A clutch C0 is provided between the sun gear 16 and the carrier 13 for connecting and releasing the connection. A brake B0 is provided for fixing the sun gear 16 disposed concentrically with the ring gear 15 and for releasing the fixing. The clutch C0 and the brake B0 can be configured by a friction engagement mechanism that is engaged by, for example, hydraulic pressure.
 一方、上記の動力分割機構5や第1モータ・ジェネレータ2などの回転中心軸線と平行にカウンタシャフト17が配置されており、上記のドライブギヤ11に噛み合っているカウンタドリブンギヤ18がこのカウンタシャフト17と一体に回転するように取り付けられている。このカウンタドリブンギヤ18はドライブギヤ11より小径のギヤであり、したがって動力分割機構5からカウンタシャフト17に向けてトルクを伝達する場合に減速作用(トルクの増幅作用)が生じる。 On the other hand, a counter shaft 17 is disposed in parallel with the rotation center axis of the power split mechanism 5 and the first motor / generator 2, and the counter driven gear 18 meshed with the drive gear 11 is connected to the counter shaft 17. It is attached to rotate together. The counter driven gear 18 is a gear having a smaller diameter than the drive gear 11. Therefore, when torque is transmitted from the power split mechanism 5 to the counter shaft 17, a deceleration action (torque amplification action) occurs.
 さらに、上記の動力分割機構5からドライブシャフト4に伝達されるトルクに、第2モータ・ジェネレータ3のトルクを負荷するように構成されている。すなわち、上記のカウンタシャフト17と平行に第2モータ・ジェネレータ3が配置されており、そのロータ3Rに連結されたリダクションギヤ19が上記のカウンタドリブンギヤ12に噛み合っている。そのリダクションギヤ19はカウンタドリブンギヤ18より小径であり、したがって第2モータ・ジェネレータ3のトルクを増幅してカウンタドリブンギヤ18もしくはカウンタシャフト17に伝達するように構成されている。 Further, the torque transmitted from the power split mechanism 5 to the drive shaft 4 is loaded with the torque of the second motor / generator 3. That is, the second motor / generator 3 is arranged in parallel with the counter shaft 17, and the reduction gear 19 connected to the rotor 3 </ b> R is engaged with the counter driven gear 12. The reduction gear 19 is smaller in diameter than the counter driven gear 18, and is thus configured to amplify the torque of the second motor / generator 3 and transmit it to the counter driven gear 18 or the counter shaft 17.
 カウンタシャフト17には、更に、カウンタドライブギヤ20が一体に回転するように設けられており、このカウンタドライブギヤ20が終減速機であるデファレンシャルギヤ21におけるリングギヤ22に噛み合っている。図1では作図の都合上、デファレンシャル21の位置を図1での右側にずらして記載してある。 Further, a counter drive gear 20 is provided on the counter shaft 17 so as to rotate integrally, and the counter drive gear 20 meshes with a ring gear 22 in a differential gear 21 that is a final reduction gear. In FIG. 1, for the sake of drawing, the position of the differential 21 is shifted to the right side in FIG.
 なお、図1に示す各モータ・ジェネレータ2,3は、図示しないインバータなどのコントローラを介して蓄電池などの蓄電装置に接続されている。そして、これらのモータ・ジェネレータ2,3はモータとして機能し、また発電機として機能するように電流が制御される。また、エンジン1は、そのスロットル開度や点火時期が制御され、さらには自動停止ならびに再始動の制御が行われる。なお、再始動時には、動力分割機構5からエンジン1にトルクを伝達してクランキングするように構成されている。 The motor generators 2 and 3 shown in FIG. 1 are connected to a power storage device such as a storage battery via a controller such as an inverter (not shown). These motor generators 2 and 3 function as motors, and currents are controlled so as to function as generators. In addition, the throttle opening and ignition timing of the engine 1 are controlled, and further automatic stop and restart control are performed. At the time of restart, torque is transmitted from the power split mechanism 5 to the engine 1 for cranking.
 上述したように構成された動力伝達装置を有する車両は、エンジン1の動力で走行するエンジン走行モードと、二つのモータ・ジェネレータ2,3をモータとして機能させて、すなわち力行制御して走行するツインモータ走行モードと、いずれか一つのモータ・ジェネレータ(具体的には、第2モータ・ジェネレータ3)の動力で走行するシングルモータ走行モードとを選択することができるように構成されている。具体的には、クラッチC0およびブレーキB0を制御し、かつ各モータ・ジェネレータ2,3の出力トルクを制御することにより各走行モードを選択するように構成されている。 The vehicle having the power transmission device configured as described above has an engine travel mode in which the vehicle travels with the power of the engine 1 and a twin that travels with the two motor generators 2 and 3 functioning as motors, that is, with power running control. The motor travel mode and the single motor travel mode that travels with the power of any one of the motor / generators (specifically, the second motor / generator 3) can be selected. Specifically, each travel mode is selected by controlling the clutch C0 and the brake B0 and controlling the output torque of each motor / generator 2 and 3.
 ここで、各走行モードにおけるクラッチC0とブレーキB0との係合および解放の状態と、各モータ・ジェネレータ2,3の動作の状態とを、図2に示す作動表を参照して説明する。なお、図2には、車両が駆動力を出力して走行しているときに、クラッチC0とブレーキB0との係合および解放の状態と、各モータ・ジェネレータ2,3が主に制御される動作の状態とを示している。また、回生制御を「G」と示し、力行制御を「M」と示している。図2で「EV」はエンジン1を停止させて走行するモードを示している。図2に示すようにシングルモータ走行モードによって駆動力を出力している場合あるいは制動力を作用させている場合には、クラッチC0とブレーキB0とが解放される。すなわち、変速部10がニュートラル状態にされて、エンジン1と動力分割機構5とのトルクの伝達が遮断される。その状態で、駆動力を駆動輪に伝達して走行する場合には、第2モータ・ジェネレータ3は力行制御され、制動力を作用させる場合には、第2モータ・ジェネレータ3が回生制御される。このようにクラッチC0とブレーキB0とを解放して、第2モータ・ジェネレータ3を力行制御することによりシングルモータ走行モードが設定される。 Here, the state of engagement and disengagement between the clutch C0 and the brake B0 in each travel mode and the state of operation of the motor generators 2 and 3 will be described with reference to the operation table shown in FIG. In FIG. 2, when the vehicle is running with driving force output, the engagement and release states of the clutch C0 and the brake B0 and the motor generators 2 and 3 are mainly controlled. The state of operation is shown. Further, the regenerative control is indicated as “G”, and the power running control is indicated as “M”. In FIG. 2, “EV” indicates a mode in which the vehicle travels with the engine 1 stopped. As shown in FIG. 2, when the driving force is output in the single motor traveling mode or when the braking force is applied, the clutch C0 and the brake B0 are released. That is, the transmission unit 10 is set to the neutral state, and transmission of torque between the engine 1 and the power split mechanism 5 is interrupted. In this state, the second motor / generator 3 is subjected to power running control when the driving force is transmitted to the driving wheels, and the second motor / generator 3 is subjected to regenerative control when the braking force is applied. . In this way, the clutch C0 and the brake B0 are released and the second motor / generator 3 is subjected to power running control, whereby the single motor traveling mode is set.
 そのようにシングルモータ走行モードが設定されているときにおける変速部10の各回転要素および動力分割機構5の各回転要素の動作状態を図3に示している。図3に示す共線図は、左側が変速部10における各回転要素の動作状態を示し、右側が動力分割機構5における各回転要素の動作状態を示している。上述したようにクラッチC0とブレーキB0とが解放されていることにより変速部10がニュートラル状態となっている。また、変速部10の出力要素として機能するリングギヤ15が動力分割機構5におけるキャリヤ9に連結されているので、動力分割機構5から伝達された動力によって回転させられる。そして、エンジン1の慣性力(質量)やフリクショントルクが、サンギヤ16に連結された部材の慣性力(質量)よりも大きいので、エンジン1が停止してサンギヤ16が空転する。 FIG. 3 shows the operating states of the rotating elements of the transmission unit 10 and the rotating elements of the power split mechanism 5 when the single motor traveling mode is set as described above. In the alignment chart shown in FIG. 3, the left side shows the operating state of each rotating element in the transmission unit 10, and the right side shows the operating state of each rotating element in the power split mechanism 5. As described above, since the clutch C0 and the brake B0 are released, the transmission unit 10 is in the neutral state. Further, since the ring gear 15 that functions as an output element of the transmission unit 10 is connected to the carrier 9 in the power split mechanism 5, the ring gear 15 is rotated by the power transmitted from the power split mechanism 5. Since the inertial force (mass) and friction torque of the engine 1 are larger than the inertial force (mass) of the member connected to the sun gear 16, the engine 1 stops and the sun gear 16 idles.
 上記のように変速部10がニュートラル状態にされたときに駆動力を出力して走行する場合には、第2モータ・ジェネレータ3が力行制御されて、その第2モータ・ジェネレータ3から出力された動力によって走行する。この場合、第1モータ・ジェネレータ2は空転させていてもよく、所定の回転数に維持するように制御され、あるいは第1モータ・ジェネレータ2に電流を流して回転を止めるように制御(d軸ロック制御)していてもよい。なお、図3に示す例では、第1モータ・ジェネレータ2の回転が止められている。一方、制動力を作用させる場合には、第2モータ・ジェネレータ3を回生制御させる。そのように第2モータ・ジェネレータ3を回生制御して制動力を作用させる場合には、変速部10をニュートラル状態としてエンジン1と動力分割装置5とのトルクの伝達を遮断することにより、エンジン1のポンピングロスなどによる制動力が作用して回生することができるトルクが低下することを抑制もしくは防止することができる。その結果、シングルモータ走行モード時における回生効率を向上させることができる。さらに、第1モータ・ジェネレータ2の回転を止めることにより、第1モータ・ジェネレータ2の連れ回りによる動力損失を低減することができるので、回生効率を向上させることができる。なお、後進走行時には、第2モータ・ジェネレータ3の回転方向および出力トルクの方向が反転させられる。 As described above, when traveling with the driving force output when the transmission unit 10 is in the neutral state, the second motor / generator 3 is subjected to power running control and output from the second motor / generator 3. Travel by power. In this case, the first motor / generator 2 may be idled, and is controlled so as to be maintained at a predetermined rotational speed, or controlled so as to stop the rotation by supplying a current to the first motor / generator 2 (d-axis). Lock control). In the example shown in FIG. 3, the rotation of the first motor / generator 2 is stopped. On the other hand, when the braking force is applied, the second motor / generator 3 is regeneratively controlled. When the second motor / generator 3 is regeneratively controlled and braking force is applied as described above, the transmission unit 10 is set to the neutral state to cut off the transmission of torque between the engine 1 and the power split device 5, thereby causing the engine 1. It is possible to suppress or prevent a decrease in the torque that can be regenerated by the braking force due to the pumping loss or the like. As a result, the regeneration efficiency in the single motor travel mode can be improved. Further, by stopping the rotation of the first motor / generator 2, power loss due to the rotation of the first motor / generator 2 can be reduced, so that the regeneration efficiency can be improved. During reverse travel, the rotational direction of the second motor / generator 3 and the direction of the output torque are reversed.
 また、蓄電装置には充電量の上限があるので、その蓄電装置の充電量(State of Charge:SOC)が所定値以上のときには、シングルモータ走行モードで制動しているときであっても、過充電になることを防止するために、クラッチC0とブレーキB0とのいずれか一方が係合させられる。すなわち、エンジン1と動力分割機構5とがトルクを伝達することができるように連結されて、エンジンブレーキを作用させるように構成されている。なお、クラッチC0を係合させると変速部10は直結段になり、ブレーキB0を係合させたときよりも変速比が大きいので、要求される制動力が大きい場合には、クラッチC0が係合させられ、要求される制動力が小さい場合には、ブレーキB0が係合させられる。 In addition, since there is an upper limit of the charge amount of the power storage device, when the charge amount (State of Charge: SOC) of the power storage device is equal to or greater than a predetermined value, it is excessive even when braking in the single motor travel mode. In order to prevent charging, either the clutch C0 or the brake B0 is engaged. That is, the engine 1 and the power split mechanism 5 are connected so as to be able to transmit torque, and are configured to act on the engine brake. Note that when the clutch C0 is engaged, the transmission unit 10 is in the direct coupling stage, and the gear ratio is larger than when the brake B0 is engaged. Therefore, when the required braking force is large, the clutch C0 is engaged. When the required braking force is small, the brake B0 is engaged.
 各モータ・ジェネレータ2,3が動力を出力して走行するツインモータ走行モードは、二つのモータ・ジェネレータ2,3から動力を出力することができるので、主にシングルモータ走行モードよりも要求される駆動力が大きいときに設定される。ツインモータ走行モードは、第1モータ・ジェネレータ2と第2モータ・ジェネレータ3とが力行制御される。そして、第1モータ・ジェネレータ2から出力された動力を駆動力として伝達するために、動力分割機構5におけるキャリヤ9の回転が止められる。具体的には、キャリヤ9に連結された変速部10の回転を止めるために、クラッチC0とブレーキB0とが係合させられる。図4には、クラッチC0とブレーキB0とを係合した場合における変速部10および動力分割機構5の各回転要素の動作状態を示している。このようにクラッチC0とブレーキB0とを係合させてキャリヤ9の回転が止められると、第1モータ・ジェネレータ2から出力されたトルクと反対方向のトルクがリングギヤ7に伝達される。また、動力分割機構5におけるギヤ比に応じて減速して第1モータ・ジェネレータ2から出力されたトルクがリングギヤ7から出力される。なお、後進走行時には、それぞれのモータ・ジェネレータ2,3の回転方向およびトルクの出力方向を反転させればよい。また、制動時には、それぞれのモータ・ジェネレータ2,3のトルクの出力方向を反転させることにより、各モータ・ジェネレータ2,3によって回生することができる。 The twin motor travel mode in which each motor / generator 2 or 3 travels by outputting power can output power from the two motor / generators 2 and 3, and therefore is mainly required than the single motor travel mode. Set when the driving force is large. In the twin motor travel mode, the first motor / generator 2 and the second motor / generator 3 are power-running controlled. Then, in order to transmit the power output from the first motor / generator 2 as a driving force, the rotation of the carrier 9 in the power split mechanism 5 is stopped. Specifically, the clutch C0 and the brake B0 are engaged to stop the rotation of the transmission unit 10 connected to the carrier 9. FIG. 4 shows the operating states of the rotating elements of the transmission unit 10 and the power split mechanism 5 when the clutch C0 and the brake B0 are engaged. When the clutch C0 and the brake B0 are thus engaged and the rotation of the carrier 9 is stopped, torque in the direction opposite to the torque output from the first motor / generator 2 is transmitted to the ring gear 7. Further, the torque that is decelerated according to the gear ratio in the power split mechanism 5 and output from the first motor / generator 2 is output from the ring gear 7. During reverse travel, the rotation direction of each motor / generator 2 and 3 and the output direction of torque may be reversed. Further, at the time of braking, the motor generators 2 and 3 can be regenerated by reversing the torque output directions of the motor generators 2 and 3.
 さらに、図1に示す動力伝達装置を有する車両では、主にエンジン1から出力された動力によって走行するエンジン走行モードを設定することができる。具体的には、要求駆動力に応じてクラッチC0またはブレーキB0を係合してエンジン1と動力分割機構5とを連結することにより、エンジン1から出力された動力を駆動輪に伝達することができる。このようにエンジン1から出力された動力を駆動輪に伝達する過程で、第1モータ・ジェネレータ2から反力を動力分割機構5に作用させる。そのときに、第1モータ・ジェネレータ2が出力しているトルクの方向と、第1モータ・ジェネレータ2の回転方向が反対のときには、第1モータ・ジェネレータ2に伝達された動力によって発電される。すなわち、動力分割機構5にエンジン1から伝達された動力の一部を電力に変換する。そのように第1モータ・ジェネレータ2によって回生されて発電された電力、あるいは蓄電装置に充電された電力を第2モータ・ジェネレータ3に供給してカウンタドリブンギヤ12に伝達する。すなわち、第1モータ・ジェネレータ2を回生制御することにより、動力分割機構5におけるサンギヤ6を反力要素として機能させてエンジン1から出力された動力を伝達するとともに、第2モータ・ジェネレータ3によってトルクを加算するように制御される。したがってこの場合の制御は、ハイブリッド駆動制御と言い得る。なお、図2には、エンジン走行モードを「HV」と示している。 Furthermore, in the vehicle having the power transmission device shown in FIG. 1, it is possible to set an engine travel mode in which the vehicle travels mainly by the power output from the engine 1. Specifically, the power output from the engine 1 can be transmitted to the drive wheels by engaging the clutch C0 or the brake B0 according to the required driving force and connecting the engine 1 and the power split mechanism 5. it can. Thus, the reaction force is applied to the power split mechanism 5 from the first motor / generator 2 in the process of transmitting the power output from the engine 1 to the drive wheels. At that time, when the direction of the torque output from the first motor / generator 2 is opposite to the direction of rotation of the first motor / generator 2, power is generated by the power transmitted to the first motor / generator 2. That is, a part of the power transmitted from the engine 1 to the power split mechanism 5 is converted into electric power. The electric power regenerated and generated by the first motor / generator 2 or the electric power charged in the power storage device is supplied to the second motor / generator 3 and transmitted to the counter driven gear 12. That is, the regenerative control of the first motor / generator 2 causes the sun gear 6 in the power split mechanism 5 to function as a reaction force element to transmit the power output from the engine 1 and the second motor / generator 3 generates torque. Is controlled to be added. Therefore, the control in this case can be said to be hybrid drive control. In FIG. 2, the engine travel mode is indicated as “HV”.
 また、第1モータ・ジェネレータ2は、通電される電流値やその周波数に応じて回転数を任意に制御することができる。そのため、第1モータ・ジェネレータ2の回転数を制御して、エンジン回転数を任意に制御することができる。具体的には、アクセル開度や車速などに応じてエンジン1の出力を定め、そのエンジン1の出力とエンジン1の燃費が良好になる最適燃費線とからエンジン1の運転点を定める。そして、第1モータ・ジェネレータ2の回転数を制御することで、エンジン回転数を燃費が良好となる最適燃費線上に制御することができる。すなわち、動力分割機構5は、電力によって制御可能な無段変速部として機能することができる。 Also, the first motor / generator 2 can arbitrarily control the rotational speed in accordance with the current value to be energized and its frequency. Therefore, the engine speed can be arbitrarily controlled by controlling the speed of the first motor / generator 2. Specifically, the output of the engine 1 is determined in accordance with the accelerator opening, the vehicle speed, and the like, and the operating point of the engine 1 is determined from the output of the engine 1 and the optimum fuel consumption line at which the fuel consumption of the engine 1 becomes good. Then, by controlling the rotation speed of the first motor / generator 2, the engine rotation speed can be controlled on the optimum fuel consumption line where the fuel consumption is good. That is, the power split mechanism 5 can function as a continuously variable transmission that can be controlled by electric power.
 一方、比較的高車速になったときに、エンジン回転数を上記のように制御すると、第1モータ・ジェネレータ2が力行制御される場合がある。そのため、第1モータ・ジェネレータ2が力行制御されることを抑制もしくは防止するために、比較的高車速になったときに、変速部10の変速比を増速段に変更するように構成されている。すなわち、低速あるいは中速走行時には、クラッチC0を係合して変速部10を直結段に設定し、高速走行時には、ブレーキB0を係合して増速段に設定するように構成されている。図5には、変速部10を増速段に設定したときにおける変速部10の各回転要素および動力分割機構5の各回転要素の動作状態を示している。なお、エンジン走行モードによって後進走行する場合には、変速部10が直結段となるようにクラッチC0が係合させられる。また、制動時には、要求される制動力に応じてクラッチC0とブレーキB0とのいずれか一方が係合させられて、エンジンブレーキを作用させる。 On the other hand, if the engine speed is controlled as described above when the vehicle speed is relatively high, the first motor / generator 2 may be subjected to power running control. Therefore, in order to suppress or prevent the first motor / generator 2 from being subjected to power running control, the gear ratio of the transmission unit 10 is changed to the speed increasing stage when the vehicle speed becomes relatively high. Yes. In other words, the clutch C0 is engaged to set the direct coupling stage during low-speed or medium-speed travel, and the brake B0 is engaged to set the speed increase stage during high-speed travel. FIG. 5 shows the operating state of each rotating element of the transmission unit 10 and each rotating element of the power split mechanism 5 when the transmission unit 10 is set to the speed increasing stage. When the vehicle travels backward in the engine travel mode, the clutch C0 is engaged so that the transmission unit 10 is in the direct coupling stage. Further, at the time of braking, either one of the clutch C0 and the brake B0 is engaged according to the required braking force, and the engine brake is applied.
 また、ツインモータ走行モードあるいはシングルモータ走行モードからエンジン走行モードに切り替わるときに、第1モータ・ジェネレータ2の出力トルクによってエンジン1をクランキングさせるように構成されている。具体的には、クラッチC0またはブレーキB0のいずれか一方を係合させた状態にし、かつ他方を解放させた状態にしてエンジン1と動力分割機構5とのトルクの伝達を可能にするとともに、変速部10におけるキャリヤ13の回転数がエンジン始動時の回転数になるように第1モータ・ジェネレータ2の回転数を制御する。なお、エンジン始動時の車速に応じてあるいは要求駆動力に応じて、クラッチC0とブレーキB0とのいずれを係合させるかを定めることができる。また、第1モータ・ジェネレータ2の出力トルクによってエンジン1をクランキングさせることにより駆動力が低下する場合には、第2モータ・ジェネレータ3によってその低下した駆動力を出力する。 Further, the engine 1 is configured to be cranked by the output torque of the first motor / generator 2 when switching from the twin motor traveling mode or the single motor traveling mode to the engine traveling mode. Specifically, either one of the clutch C0 or the brake B0 is engaged and the other is released to enable torque transmission between the engine 1 and the power split mechanism 5 and to change the speed. The rotational speed of the first motor / generator 2 is controlled so that the rotational speed of the carrier 13 in the unit 10 becomes the rotational speed at the time of engine start. Note that it is possible to determine which of the clutch C0 and the brake B0 is to be engaged according to the vehicle speed at the time of starting the engine or according to the required driving force. When the driving force is reduced by cranking the engine 1 with the output torque of the first motor / generator 2, the reduced driving force is output by the second motor / generator 3.
 つぎに、上記クラッチC0、ブレーキB0、各モータ・ジェネレータ、エンジン1を制御するための電子制御装置について説明する。図6にその電子制御装置のブロック図を示している。図6に示す電子制御装置は、走行のための全体的な制御を行うハイブリッド制御装置(HV-ECU)23と、各モータ・ジェネレータ2,3を制御するためのモータ・ジェネレータ制御装置(MG-ECU)24と、エンジン1を制御するためのエンジン制御装置(エンジン-ECU)25とが設けられている。これらの各制御装置23,24,25は、マイクロコンピュータを主体にして構成され、入力されたデータおよび予め記憶させられているデータを使用して演算を行い、その演算結果を制御指令信号として出力するように構成されている。その入力データの例を挙げると、ハイブリッド制御装置23には、車速、アクセル開度、第1モータ・ジェネレータ2の回転数、第2モータ・ジェネレータ3の回転数、前記リングギヤ7の回転数(出力軸回転数)、蓄電装置の充電容量(SOC)などがハイブリッド駆動装置23に入力されている。また、ハイブリッド駆動装置23から出力される指令信号の例を挙げると、第1モータ・ジェネレータ2のトルク指令値、第2モータ・ジェネレータ3のトルク指令値、エンジン1のトルク指令値、ならびにクラッチC0の制御油圧値(PC0)、ブレーキB0の制御油圧値(PB0)などがハイブリッド駆動装置23から出力されている。 Next, an electronic control unit for controlling the clutch C0, the brake B0, each motor / generator, and the engine 1 will be described. FIG. 6 shows a block diagram of the electronic control device. The electronic control device shown in FIG. 6 includes a hybrid control device (HV-ECU) 23 that performs overall control for traveling, and a motor / generator control device (MG-) for controlling each motor / generator 2, 3. ECU) 24 and an engine control device (engine-ECU) 25 for controlling the engine 1 are provided. Each of these control devices 23, 24, and 25 is composed mainly of a microcomputer, performs calculations using input data and data stored in advance, and outputs the calculation results as control command signals. Is configured to do. As an example of the input data, the hybrid controller 23 includes the vehicle speed, the accelerator opening, the rotation speed of the first motor / generator 2, the rotation speed of the second motor / generator 3, the rotation speed of the ring gear 7 (output The rotational speed of the shaft), the charge capacity (SOC) of the power storage device, and the like are input to the hybrid drive device 23. Examples of the command signal output from the hybrid drive device 23 include the torque command value of the first motor / generator 2, the torque command value of the second motor / generator 3, the torque command value of the engine 1, and the clutch C0. The control hydraulic pressure value (P C0 ) and the control hydraulic pressure value (P B0 ) of the brake B 0 are output from the hybrid drive device 23.
 上記の第1モータ・ジェネレータ2のトルク指令値および第2モータ・ジェネレータ3のトルク指令値は、モータ・ジェネレータ制御装置24に制御データとして入力されており、モータ・ジェネレータ制御装置24はこれらのトルク指令値に基づいて演算を行って第1モータ・ジェネレータ2や第2モータ・ジェネレータ3の電流指令信号を出力するように構成されている。また、エンジントルク指令信号はエンジン制御装置25に制御データとして入力されており、エンジン制御装置25はそのエンジントルク指令信号に基づいて演算を行って電子スロットルバルブ(図示せず)に対してスロットル開度信号を出力し、また点火時期を制御する点火信号を出力するように構成されている。さらに、クラッチC0の制御油圧値(PC0)およびブレーキB0の制御油圧値(PB0)は、後述する第1リニアソレノイドバルブおよび第2リニアソレノイドバルブに入力されるように構成されている。 The torque command value of the first motor / generator 2 and the torque command value of the second motor / generator 3 are input to the motor / generator control device 24 as control data, and the motor / generator control device 24 receives these torques. An operation is performed based on the command value, and current command signals for the first motor / generator 2 and the second motor / generator 3 are output. The engine torque command signal is input as control data to the engine control device 25, and the engine control device 25 performs an operation based on the engine torque command signal to open the throttle for an electronic throttle valve (not shown). A degree signal is output, and an ignition signal for controlling the ignition timing is output. Furthermore, the control oil pressure value of the clutch C0 (P C0) and the control oil pressure value of the brake B0 (P B0) is configured to be inputted to the first linear solenoid valve and the second linear solenoid valve will be described later.
 上述したエンジン1および第1モータ・ジェネレータ2ならびに第2モータ・ジェネレータ3の動力性能もしくは駆動特性は互いに異なっている。例えばエンジン1は低トルクかつ低回転数の領域から高トルクかつ高回転数の領域までの広い運転領域で運転でき、またエネルギ効率はトルクおよび回転数がある程度高い領域で良好になる。これに対してエンジン1の回転数やエンジン1を停止させる際のクランク角度などの制御および駆動力の出力を行う第1モータ・ジェネレータ2は、低回転数で大きいトルクを出力する特性を備え、前記ドライブシャフト4にトルクを出力する第2モータ・ジェネレータ3は、第1モータ・ジェネレータ2よりも高回転数で運転でき、かつ最大トルクが第1モータ・ジェネレータ2よりも小さい特性を備えている。そこで、この発明で対象とする動力伝達装置は、駆動力源を構成している上記のエンジン1や各モータ・ジェネレータ2,3を有効に利用して、エネルギ効率あるいは燃費が良好になるように制御される。すなわち、上記エンジン走行モードと、ツインモータ走行モードと、シングルモータ走行モードとを任意に変更して走行させるように制御される。 The power performance or drive characteristics of the engine 1, the first motor / generator 2, and the second motor / generator 3 described above are different from each other. For example, the engine 1 can be operated in a wide operating range from a low torque and low rotational speed region to a high torque and high rotational speed region, and energy efficiency is good in a region where torque and rotational speed are somewhat high. On the other hand, the first motor / generator 2 that controls the rotational speed of the engine 1 and the crank angle when the engine 1 is stopped and outputs the driving force has a characteristic of outputting a large torque at a low rotational speed, The second motor / generator 3 that outputs torque to the drive shaft 4 can be operated at a higher rotational speed than the first motor / generator 2 and has a characteristic that the maximum torque is smaller than that of the first motor / generator 2. . Therefore, the power transmission device targeted by the present invention effectively utilizes the engine 1 and the motor / generators 2 and 3 constituting the driving force source so that energy efficiency or fuel consumption is improved. Be controlled. That is, control is performed so that the engine travel mode, the twin motor travel mode, and the single motor travel mode are arbitrarily changed.
 具体的には、アクセル開度がある程度以上に大きい場合、あるいは車速がある程度以上の高車速の場合には、エンジン走行モードが実行される。すなわち、アクセル開度や車速などに応じて、クラッチC0とブレーキB0とのいずれか一方を係合させて、エンジン1と動力伝達機構5とのトルクの伝達を可能にする。これに対して、アクセル開度が小さく要求駆動力Fが小さい場合には、エンジン1が停止されるとともに、クラッチC0とブレーキB0とが解放されて、シングルモータ走行モードが実行される。また、要求駆動力Fが、第2モータ・ジェネレータ3のみから出力することができる駆動力よりも大きく、かつ各モータ・ジェネレータ2,3からトルクを出力することができる駆動力以下の場合には、エンジン1が停止させられるとともに、クラッチC0とブレーキB0とが係合させられて、ツインモータ走行モードが実行される。なお、シングルモータ走行モードもしくはツインモータ走行モードは、蓄電装置に充電量が十分にあること、第2モータ・ジェネレータ3がトルクを出力できる状態になっていること、エンジン1を停止してもよい状態になっていることなどの条件が成立している場合に実行される。 Specifically, the engine travel mode is executed when the accelerator opening is larger than a certain level or when the vehicle speed is a high vehicle speed exceeding a certain level. That is, according to the accelerator opening degree, the vehicle speed, etc., any one of the clutch C0 and the brake B0 is engaged, and torque transmission between the engine 1 and the power transmission mechanism 5 is enabled. On the other hand, when the accelerator opening is small and the required driving force F is small, the engine 1 is stopped, the clutch C0 and the brake B0 are released, and the single motor traveling mode is executed. Further, when the required driving force F is larger than the driving force that can be output only from the second motor / generator 3 and is equal to or less than the driving force that can output torque from each motor / generator 2 or 3. The engine 1 is stopped and the clutch C0 and the brake B0 are engaged to execute the twin motor traveling mode. In the single motor traveling mode or the twin motor traveling mode, the power storage device has a sufficient charge amount, the second motor / generator 3 is in a state capable of outputting torque, and the engine 1 may be stopped. It is executed when a condition such as being in a state is satisfied.
 そして、車両が走行している場合、登降坂路などの道路状況や交通量あるいは規制速度の変化などの走行環境に応じてアクセル操作が行われ、また車速が変化するから、それに伴って走行モードが切り替えられる。例えば、シングルモータ走行モード時にアクセル開度が増大させられた場合には、ツインモータ走行モードあるいはエンジン走行モードに切り替えられ、エンジン走行モード時にアクセル開度が減じられた場合には、ツインモータ走行モードあるいはシングルモータ走行モードに切り替えられる。これらの走行モードの切り替えのための制御は、前述した電子制御装置によって実行される。 And when the vehicle is traveling, the accelerator operation is performed according to the road environment such as uphill / downhill road, the traffic volume or the travel environment such as the change in the regulation speed, and the vehicle speed changes accordingly. Can be switched. For example, when the accelerator opening is increased in the single motor driving mode, the mode is switched to the twin motor driving mode or the engine driving mode, and when the accelerator opening is decreased in the engine driving mode, the twin motor driving mode is switched. Alternatively, the mode is switched to the single motor travel mode. The control for switching these travel modes is executed by the electronic control device described above.
 つぎに、上述したクラッチC0およびブレーキB0に油圧を制御することができる油圧制御装置の構成の一例を図7に示す油圧回路図を参照しつつ説明する。図7に示す油圧回路は、出力軸14と一体に回転するように構成されたメカオイルポンプ26を有している。すなわち、メカオイルポンプ26は、変速部10がいずれかの変速段を設定しているとき、あるいはエンジン1からトルクを出力しているときにオイルパン27からオイルを汲み上げて吐出するように構成されている。このメカオイルポンプ26から吐出されたオイルの油圧を所定の油圧に調圧するレギュレータバルブ28が設けられている。 Next, an example of the configuration of a hydraulic control device capable of controlling the hydraulic pressure to the clutch C0 and the brake B0 described above will be described with reference to a hydraulic circuit diagram shown in FIG. The hydraulic circuit shown in FIG. 7 has a mechanical oil pump 26 configured to rotate integrally with the output shaft 14. That is, the mechanical oil pump 26 is configured to pump up oil from the oil pan 27 and discharge it when the transmission unit 10 has set any one of the gear positions or when torque is being output from the engine 1. ing. A regulator valve 28 for adjusting the hydraulic pressure of the oil discharged from the mechanical oil pump 26 to a predetermined hydraulic pressure is provided.
 図7に示すレギュレータバルブ28はスプール型の制御弁であって、メカオイルポンプ26に連通した入力ポート29と、オイルパン27に連通した出力ポート30と、メカオイルポンプ29に連通した油路31の油圧が供給されるフィードバックポート32とが形成されている。また、フィードバックポート32から供給された油圧に基づいてスプール33が押圧される荷重と対抗してバネ力が作用するようにスプリング34が設けられている。そして、図7に示す例では、油路31の油圧に基づいてスプール33を押圧する荷重がバネ力よりも大きくなると、入力ポート29と出力ポート30とを連通させて油路31のオイルを排出し、それとは反対に、油路31の油圧に基づいてスプール33を押圧する荷重がバネ力よりも小さいときには、入力ポート29と出力ポート30とを遮断するように構成されている。すなわち、レギュレータバルブ28は、油路31の油圧をバネ力に応じた油圧に調圧するように構成されている。なお、アクセル開度などに応じてレギュレータバルブ28に信号圧を供給して調圧レベルを変更することができるように構成されていてもよい。 The regulator valve 28 shown in FIG. 7 is a spool type control valve, and includes an input port 29 communicating with the mechanical oil pump 26, an output port 30 communicating with the oil pan 27, and an oil passage 31 communicating with the mechanical oil pump 29. The feedback port 32 to which the hydraulic pressure is supplied is formed. Further, a spring 34 is provided so that a spring force acts against a load that presses the spool 33 based on the hydraulic pressure supplied from the feedback port 32. In the example shown in FIG. 7, when the load that presses the spool 33 based on the oil pressure of the oil passage 31 becomes larger than the spring force, the input port 29 and the output port 30 are connected to discharge the oil in the oil passage 31. On the contrary, when the load that presses the spool 33 based on the oil pressure of the oil passage 31 is smaller than the spring force, the input port 29 and the output port 30 are blocked. That is, the regulator valve 28 is configured to adjust the hydraulic pressure of the oil passage 31 to a hydraulic pressure corresponding to the spring force. Note that the pressure regulation level may be changed by supplying a signal pressure to the regulator valve 28 in accordance with the accelerator opening or the like.
 レギュレータバルブ28によって調圧された油圧(以下、ライン圧と記す場合がある。)を元圧としてクラッチC0やブレーキB0の油圧が制御されるように構成されている。具体的には、油路31に設けられた第1リニアソレノイドバルブ35によってクラッチC0の油圧が制御され、油路31に設けられた第2リニアソレノイドバルブ36によってブレーキB0の油圧が制御されるように構成されている。図7に示す第1リニアソレノイドバルブ35は、図8に示すI-P特性のように給電される電流が増大するに連れて吐出圧が低下するように構成されたノーマルオープン型のバルブである。また、第1リニアソレノイドバルブ35は、出力圧を制御するものであり、クラッチC0に要求される係合圧に応じて、すなわちクラッチC0に要求される油圧に応じて給電される電流値が制御される。すなわち、要求される油圧が高くなるに連れて給電される電流値が低下させられる。なお、この第1リニアソレノイドバルブが、この発明における係合圧制御手段に相当する。一方、第2リニアソレノイドバルブ36は、図9に示すI-P特性のように給電される電流が増大するに連れて吐出圧が増大するように構成されたノーマルクローズ型のバルブである。また、第2リニアソレノイドバルブ36は、出力圧を制御するものであり、ブレーキB0に要求される係合圧に応じて、すなわちブレーキB0に要求される油圧に応じて給電される電流値が制御される。すなわち、要求される油圧が高くなるに連れて給電される電流値が増加させられる。 The hydraulic pressure of the clutch C0 and the brake B0 is controlled using the hydraulic pressure adjusted by the regulator valve 28 (hereinafter sometimes referred to as line pressure) as a source pressure. Specifically, the hydraulic pressure of the clutch C0 is controlled by the first linear solenoid valve 35 provided in the oil passage 31, and the hydraulic pressure of the brake B0 is controlled by the second linear solenoid valve 36 provided in the oil passage 31. It is configured. The first linear solenoid valve 35 shown in FIG. 7 is a normally open type valve configured such that the discharge pressure decreases as the supplied current increases as in the IP characteristic shown in FIG. . The first linear solenoid valve 35 controls the output pressure, and the current value supplied according to the engagement pressure required for the clutch C0, that is, the hydraulic pressure required for the clutch C0, is controlled. Is done. That is, as the required hydraulic pressure increases, the value of current supplied is reduced. This first linear solenoid valve corresponds to the engagement pressure control means in this invention. On the other hand, the second linear solenoid valve 36 is a normally closed type valve configured such that the discharge pressure increases as the supplied current increases as in the IP characteristic shown in FIG. The second linear solenoid valve 36 controls the output pressure, and the current value supplied according to the engagement pressure required for the brake B0, that is, the hydraulic pressure required for the brake B0 is controlled. Is done. That is, as the required oil pressure increases, the value of current supplied is increased.
 このように第1リニアソレノイドバルブ35をノーマルオープン型のバルブとし、かつ第2リニアソレノイドバルブ36をノーマルクローズ型のバルブとすることにより、各リニアソレノイドバルブ35,36に電流が通電されない場合であっても、クラッチC0に油圧を供給して係合させることができる。すなわち、各リニアソレノイドバルブ35,36にハイブリッド制御装置23から指令値が出力されない場合や図示しないバッテリーから各リニアソレノイドバルブ35,36に電流が出力されない場合などのフェール時であっても、クラッチC0に油圧を供給して係合させることができる。すなわち、第1モータ・ジェネレータ2から出力されたトルクをエンジン1に伝達すること、具体的には、第1モータ・ジェネレータ2の出力トルクによってエンジン1をクランキングさせることができる。 In this way, the first linear solenoid valve 35 is a normally open valve and the second linear solenoid valve 36 is a normally closed valve so that no current is passed through the linear solenoid valves 35, 36. Even in this case, the clutch C0 can be engaged by supplying hydraulic pressure. That is, even when a failure occurs such as when no command value is output from the hybrid control device 23 to each linear solenoid valve 35, 36, or when no current is output from the battery (not shown) to each linear solenoid valve 35, 36, the clutch C0. The hydraulic pressure can be supplied to and engaged. That is, the torque output from the first motor / generator 2 can be transmitted to the engine 1, specifically, the engine 1 can be cranked by the output torque of the first motor / generator 2.
 また、図7に示す例では、クラッチC0とブレーキB0とが同時に係合することを抑制もしくは防止するように構成されている。具体的には、第1リニアソレノイドバルブ35とクラッチC0との間に、第1フェールセーフバルブ37を設けている。この第1フェールセーフバルブ37は、ブレーキB0が係合しているときに何らかの要因で第1リニアソレノイドバルブ35から油圧が出力された場合に、その油圧がクラッチC0に供給されることを防止するものである。その構成について簡単に説明すると、第1フェールセーフバルブ37は、スプール型のバルブであって、第1リニアソレノイドバルブ35の出力ポート38に連通した入力ポート39と、クラッチC0に連通した出力ポート40と、オイルパン27に連通したドレーンポート41とが形成されている。また、クラッチC0の油圧が供給されるフィードバックポート42と、第2リニアソレノイドバルブ36の出力圧が供給される第1パイロットポート43とが形成されている。そして、第1パイトッロポート43から供給された油圧に基づいてスプール44が押圧される荷重と、フィードバックポート42から供給された油圧に基づいてスプール44が押圧される荷重とが対抗するように構成され、さらに、フィードバックポート42から供給された油圧に基づいてスプール44を押圧する荷重と同一方向にバネ力が作用するようにスプリング45が設けられている。なお、第1フェールセーフバルブ37には、後述するソレノイドバルブ46の出力圧が供給される第2パイロットポート47が形成されている。この第2パイロットポート47は、クラッチC0とブレーキB0とが同時に係合することを許可する場合に油圧が供給されるものであり、その作用については後述する。 Further, in the example shown in FIG. 7, the clutch C0 and the brake B0 are configured to be suppressed or prevented from simultaneously engaging. Specifically, a first failsafe valve 37 is provided between the first linear solenoid valve 35 and the clutch C0. The first fail-safe valve 37 prevents the hydraulic pressure from being supplied to the clutch C0 when the hydraulic pressure is output from the first linear solenoid valve 35 for some reason when the brake B0 is engaged. Is. The first fail-safe valve 37 is a spool type valve. The input port 39 communicates with the output port 38 of the first linear solenoid valve 35 and the output port 40 communicates with the clutch C0. And a drain port 41 communicating with the oil pan 27 is formed. A feedback port 42 to which the hydraulic pressure of the clutch C0 is supplied and a first pilot port 43 to which the output pressure of the second linear solenoid valve 36 is supplied are formed. In addition, the load that presses the spool 44 based on the hydraulic pressure supplied from the first pitrol port 43 and the load that presses the spool 44 based on the hydraulic pressure supplied from the feedback port 42 are configured to oppose each other. Further, a spring 45 is provided so that a spring force acts in the same direction as a load that presses the spool 44 based on the hydraulic pressure supplied from the feedback port 42. The first fail safe valve 37 is formed with a second pilot port 47 to which an output pressure of a solenoid valve 46 described later is supplied. The second pilot port 47 is supplied with hydraulic pressure when permitting simultaneous engagement of the clutch C0 and the brake B0, and the operation thereof will be described later.
 そして、第1フェールセーフバルブ37は、第1パイロットポート43から供給される油圧に基づいてスプール44を押圧する荷重が、フィードバックポート42から供給される油圧に基づく荷重とバネ力との合力よりも大きい場合には、スプール44が図7における上側に移動する。そのようにスプール44が移動すると、入力ポート39と出力ポート40とが遮断されかつ出力ポート40とドレーンポート41とが連通させられる。つまり、クラッチC0の油圧がドレーンされる。一方、第1パイロットポート43から供給される油圧に基づいてスプール44を押圧する荷重が、フィードバックポート42から供給される油圧に基づく荷重とバネ力との合力よりも小さい場合には、スプール44が図7における下側に移動する。そのようにスプール44が移動すると、入力ポート39と出力ポート40とが連通しかつドレーンポート41が閉じられる。つまり、第1リニアソレノイドバルブ37とクラッチC0とが連通させられる。 In the first failsafe valve 37, the load that presses the spool 44 based on the hydraulic pressure supplied from the first pilot port 43 is greater than the resultant force of the load based on the hydraulic pressure supplied from the feedback port 42 and the spring force. If it is larger, the spool 44 moves upward in FIG. When the spool 44 moves in such a manner, the input port 39 and the output port 40 are disconnected, and the output port 40 and the drain port 41 are connected. That is, the hydraulic pressure of the clutch C0 is drained. On the other hand, when the load that presses the spool 44 based on the hydraulic pressure supplied from the first pilot port 43 is smaller than the resultant force of the load based on the hydraulic pressure supplied from the feedback port 42 and the spring force, the spool 44 It moves downward in FIG. When the spool 44 moves in this manner, the input port 39 and the output port 40 communicate with each other and the drain port 41 is closed. That is, the first linear solenoid valve 37 and the clutch C0 are communicated.
 したがって、ブレーキB0が係合しかつクラッチC0が解放している状態では、第1フェールセーフバルブ37が、クラッチC0にオイルを供給させないように切り替わっているので、第1リニアソレノイドバルブ35から油圧が出力されたとしても、クラッチC0にオイルが供給されることを禁止することができる。すなわち、クラッチC0とブレーキB0とが同時に係合することを抑制もしくは防止することができる。また、クラッチC0を係合しかつブレーキB0を解放している状態では、第1リニアソレノイドバルブ35とクラッチC0とが連通するように第1フェールセーフバルブ37が切り替わる。そして、その状態で、第2リニアソレノイドバルブ36から油圧が吐出されて第1パイロットポート43に油圧が供給されたときであっても、第1フェールセーフバルブ37が切り替わらないようにスプリング45のバネ力を設定する。このように構成することにより、クラッチC0を係合しているときに第2リニアソレノイドバルブ36から油圧が出力されたとしても、クラッチC0とブレーキB0とが同時に係合することを抑制もしくは防止することができる。 Accordingly, in a state where the brake B0 is engaged and the clutch C0 is released, the first failsafe valve 37 is switched so as not to supply oil to the clutch C0. Even if it is output, it can be prohibited to supply oil to the clutch C0. That is, it is possible to suppress or prevent simultaneous engagement of the clutch C0 and the brake B0. Further, in a state where the clutch C0 is engaged and the brake B0 is released, the first failsafe valve 37 is switched so that the first linear solenoid valve 35 and the clutch C0 communicate with each other. In this state, even when the hydraulic pressure is discharged from the second linear solenoid valve 36 and the hydraulic pressure is supplied to the first pilot port 43, the spring of the spring 45 is prevented so that the first fail-safe valve 37 is not switched. Set the force. With this configuration, even if the hydraulic pressure is output from the second linear solenoid valve 36 when the clutch C0 is engaged, it is possible to suppress or prevent the clutch C0 and the brake B0 from engaging simultaneously. be able to.
 第2フェールセーフバルブ48は、クラッチC0を係合させているときに何らかの要因で第2リニアソレノイドバルブ36から油圧が出力された場合に、その油圧がブレーキに供給されることを防止するものであり、第1フェールセーフバルブ37と同様に構成されている。図7に示す例では、第2フェールセーフバルブ48は、スプール型のバルブによって構成されていて、第2リニアソレノイドバルブ36の出力ポート49に連通した入力ポート50と、ブレーキB0に連通した出力ポート51と、オイルパン27に連通したドレーンポート52とが形成されている。また、ブレーキB0の油圧が供給されるフィードバックポート53と、第1リニアソレノイドバルブ35の出力圧が供給される第1パイロットポート54とが形成されている。そして、第1パイトッロポート54から供給された油圧に基づいてスプール55が押圧される荷重と、フィードバックポート53から供給された油圧に基づいてスプール55が押圧される荷重とが対抗するように構成され、さらに、フィードバックポート53から供給された油圧に基づいてスプール55を押圧する荷重と同一方向にバネ力が作用するようにスプリング56が設けられている。なお、第2フェールセーフバルブ48には、後述するソレノイドバルブ46の出力圧が供給される第2パイロットポート57が形成されている。この第2パイロットポート57は、クラッチC0とブレーキB0とが同時に係合することを許可する場合に油圧が供給されるものであり、その作用については後述する。 The second failsafe valve 48 prevents the hydraulic pressure from being supplied to the brake when the hydraulic pressure is output from the second linear solenoid valve 36 for some reason when the clutch C0 is engaged. Yes, similar to the first fail-safe valve 37. In the example shown in FIG. 7, the second failsafe valve 48 is constituted by a spool type valve, and an input port 50 communicated with the output port 49 of the second linear solenoid valve 36 and an output port communicated with the brake B0. 51 and a drain port 52 communicating with the oil pan 27 is formed. A feedback port 53 to which the hydraulic pressure of the brake B0 is supplied and a first pilot port 54 to which the output pressure of the first linear solenoid valve 35 is supplied are formed. The load that presses the spool 55 based on the hydraulic pressure supplied from the first pitrol port 54 and the load that presses the spool 55 based on the hydraulic pressure supplied from the feedback port 53 oppose each other. Furthermore, a spring 56 is provided so that a spring force acts in the same direction as the load that presses the spool 55 based on the hydraulic pressure supplied from the feedback port 53. The second fail safe valve 48 is formed with a second pilot port 57 to which an output pressure of a solenoid valve 46 described later is supplied. The second pilot port 57 is supplied with hydraulic pressure when permitting simultaneous engagement of the clutch C0 and the brake B0, and its operation will be described later.
 そして、第2フェールセーフバルブ48は、第1パイロットポート54から供給される油圧に基づいてスプール55を押圧する荷重が、フィードバックポート53から供給される油圧に基づく荷重とバネ力との合力よりも大きい場合には、スプール55が図7における下側に移動する。そのようにスプール55が移動すると、入力ポート50と出力ポート51とが遮断されかつ出力ポート51とドレーンポート52とが連通させられる。つまり、ブレーキB0の油圧がドレーンされる。一方、第1パイロットポート54から供給される油圧に基づいてスプール55を押圧する荷重が、フィードバックポート53から供給される油圧に基づく荷重とバネ力との合力よりも小さい場合には、スプール55が図7における上側に移動する。そのようにスプール55が移動すると、入力ポート50と出力ポート51とが連通しかつドレーンポート52が閉じられる。つまり、第2リニアソレノイドバルブ49とブレーキB0とが連通させられる。 In the second failsafe valve 48, the load that presses the spool 55 based on the hydraulic pressure supplied from the first pilot port 54 is greater than the resultant force of the load based on the hydraulic pressure supplied from the feedback port 53 and the spring force. If it is larger, the spool 55 moves downward in FIG. When the spool 55 moves in such a manner, the input port 50 and the output port 51 are blocked and the output port 51 and the drain port 52 are communicated. That is, the hydraulic pressure of the brake B0 is drained. On the other hand, when the load that presses the spool 55 based on the hydraulic pressure supplied from the first pilot port 54 is smaller than the resultant force of the load based on the hydraulic pressure supplied from the feedback port 53 and the spring force, the spool 55 Move to the upper side in FIG. When the spool 55 moves in this manner, the input port 50 and the output port 51 communicate with each other and the drain port 52 is closed. That is, the second linear solenoid valve 49 and the brake B0 are communicated.
 したがって、クラッチC0が係合しかつブレーキB0が解放している状態では、第2フェールセーフバルブ48が、ブレーキB0にオイルを供給させないように切り替わっているので、第2リニアソレノイドバルブ49から油圧が出力されたとしても、ブレーキB0にオイルが供給されることを禁止することができる。すなわち、クラッチC0とブレーキB0とが同時に係合することを抑制もしくは防止することができる。また、ブレーキB0を係合しかつクラッチC0を解放している状態では、第2リニアソレノイドバルブ36とブレーキB0とが連通するように第2フェールセーフバルブ48が切り替わる。そして、その状態で、第1リニアソレノイドバルブ35から油圧が吐出されて第1パイロットポート54に油圧が供給されたときであっても、第2フェールセーフバルブ48が切り替わらないようにスプリング56のバネ力を設定する。このように構成することにより、ブレーキB0を係合しているときに第1リニアソレノイドバルブ35から油圧が出力されたとしても、クラッチC0とブレーキB0とが同時に係合することを抑制もしくは防止することができる。 Therefore, in the state where the clutch C0 is engaged and the brake B0 is released, the second fail-safe valve 48 is switched so as not to supply oil to the brake B0, so that the hydraulic pressure is supplied from the second linear solenoid valve 49. Even if it is output, it can be prohibited to supply oil to the brake B0. That is, it is possible to suppress or prevent simultaneous engagement of the clutch C0 and the brake B0. Further, in a state where the brake B0 is engaged and the clutch C0 is released, the second failsafe valve 48 is switched so that the second linear solenoid valve 36 and the brake B0 communicate with each other. In this state, even when the hydraulic pressure is discharged from the first linear solenoid valve 35 and the hydraulic pressure is supplied to the first pilot port 54, the spring of the spring 56 is prevented so that the second fail-safe valve 48 is not switched. Set the force. With this configuration, even if the hydraulic pressure is output from the first linear solenoid valve 35 when the brake B0 is engaged, it is possible to suppress or prevent the clutch C0 and the brake B0 from engaging simultaneously. be able to.
 また、図1に示すように構成された動力伝達装置は、シングルモータ走行モードやツインモータ走行モードが設定されているときには、出力軸14が回転しない場合がある。一方、出力軸14が回転しない場合であっても、エンジン1を始動させるときやツインモータ走行モードが設定されているときには、クラッチC0およびブレーキB0を係合させるために油圧が必要な場合がある。そのため、図7に示す例では、電動オイルポンプ58が設けられている。この電動オイルポンプ58は、モータ59の出力トルクによって駆動させられてオイルパン27からオイルを汲み上げて出力するように構成されている。そして、電動オイルポンプ58から出力されたオイルは、油路60を介して油路31に供給することができるように構成されている。なお、メカオイルポンプ26が駆動しているときに、電動オイルポンプ58にライン圧が供給されることを抑制もしくは防止するために逆止弁61が油路に設けられている。言い換えると、電動オイルポンプ58のみが駆動しているときに、油路31に電動オイルポンプ58から油圧を供給することができるように構成されている。また、油路60の油圧が過剰に増大することを抑制もしくは防止するためのリリーフ弁62が設けられている。 Further, in the power transmission device configured as shown in FIG. 1, the output shaft 14 may not rotate when the single motor traveling mode or the twin motor traveling mode is set. On the other hand, even when the output shaft 14 does not rotate, when the engine 1 is started or when the twin motor traveling mode is set, hydraulic pressure may be required to engage the clutch C0 and the brake B0. . Therefore, in the example shown in FIG. 7, an electric oil pump 58 is provided. The electric oil pump 58 is driven by the output torque of the motor 59 and is configured to pump up oil from the oil pan 27 and output it. The oil output from the electric oil pump 58 can be supplied to the oil passage 31 through the oil passage 60. Note that a check valve 61 is provided in the oil passage in order to suppress or prevent the line pressure from being supplied to the electric oil pump 58 when the mechanical oil pump 26 is driven. In other words, the hydraulic oil pressure can be supplied from the electric oil pump 58 to the oil passage 31 when only the electric oil pump 58 is driven. In addition, a relief valve 62 is provided for suppressing or preventing an excessive increase in the oil pressure of the oil passage 60.
 電動オイルポンプ58が駆動しているときには、逆止弁61を介して油路31にオイルが供給されてレギュレータバルブ28によって調圧され、その調圧されたライン圧に基づいて各リニアソレノイドバルブ35,36がクラッチC0およびブレーキB0の油圧を制御する。 When the electric oil pump 58 is driven, oil is supplied to the oil passage 31 via the check valve 61 and regulated by the regulator valve 28, and each linear solenoid valve 35 is regulated based on the regulated line pressure. , 36 controls the hydraulic pressures of the clutch C0 and the brake B0.
 一方、図1に示すように構成された動力伝達装置は、クラッチC0とブレーキB0とを係合させてキャリヤ9の回転を止めることにより、第1モータ・ジェネレータ2の出力トルクを駆動力として伝達するように構成されている。つまり、クラッチC0とブレーキB0とを係合させることにより、ツインモータ走行モードが設定される。そのため、図7に示す油圧回路では、クラッチC0とブレーキB0とを同時に係合させることができるように構成されている。すなわち、各フェールセーフバルブ37,48を機能させないようにすることができるように構成されている。具体的には、油路60に連通したソレノイドバルブ46を介して第1フェールセーフバルブ37と第2フェールセーフバルブ48とのそれぞれの第2パイロットポート47,57に電動オイルポンプ58の出力圧を供給することができるように構成されている。図7に示すソレノイドバルブ58は、電磁力とスプリング63のバネ力とによってスプール64を駆動させることにより、入力ポート65と出力ポート66とを連通させて電動オイルポンプ58から各フェールセーフバルブ37,48に油圧を供給し、または出力ポート66とドレーンポート67とを連通させて各フェールセーフバルブ37,48に供給されたオイルを排出するように構成されている。すなわち、ソレノイドバルブ46に給電する電流を制御することによって、クラッチC0とブレーキB0とを同時に係合させることを許可するか否かを切り替えるように構成されている。したがって、ツインモータ走行モードへの走行モードの切り替えが判断された場合などに、ソレノイドバルブ46に給電してあるいは給電を停止して連通させるポートを切り替える。 On the other hand, the power transmission apparatus configured as shown in FIG. 1 transmits the output torque of the first motor / generator 2 as a driving force by engaging the clutch C0 and the brake B0 to stop the rotation of the carrier 9. Is configured to do. That is, the twin motor travel mode is set by engaging the clutch C0 and the brake B0. Therefore, the hydraulic circuit shown in FIG. 7 is configured so that the clutch C0 and the brake B0 can be simultaneously engaged. That is, the fail- safe valves 37 and 48 are configured not to function. Specifically, the output pressure of the electric oil pump 58 is applied to the second pilot ports 47 and 57 of the first failsafe valve 37 and the second failsafe valve 48 via the solenoid valve 46 communicated with the oil passage 60. It is comprised so that it can supply. The solenoid valve 58 shown in FIG. 7 drives the spool 64 by the electromagnetic force and the spring force of the spring 63, thereby connecting the input port 65 and the output port 66 to each fail-safe valve 37, The hydraulic pressure is supplied to 48, or the output port 66 and the drain port 67 are communicated with each other so that the oil supplied to the fail- safe valves 37, 48 is discharged. That is, it is configured to switch whether or not to allow the clutch C0 and the brake B0 to be simultaneously engaged by controlling the current supplied to the solenoid valve 46. Therefore, when it is determined to switch the traveling mode to the twin motor traveling mode, the port for supplying power to the solenoid valve 46 or stopping the power supply for communication is switched.
 図10には、そのソレノイドバルブ46の制御例を説明するためのフローチャートを示している。図10に示す例では、まず、モータ走行中か否か、すなわちシングルモータ走行モードあるいはツインモータ走行モードが設定されているか否かを判断する(ステップS11)。このステップS11は、エンジン制御装置23からエンジン1を駆動させるための信号が出力されているか否かなどによって判断することができる。エンジン走行モードであってステップS11で否定的に判断された場合には、ソレノイドバルブ46への給電を停止させて(ステップS12)、リターンする。なお、図10にはソレノイドバルブオフと示している。それとは反対に、モータ走行中であってステップS11で肯定的に判断された場合には、ツインモータ走行モードか否かを判断する(ステップS13)。このステップS13は、要求駆動力や車速から判断することや第1モータ・ジェネレータ2に要求される出力トルクが要求駆動力に基づいて定められているか否かなどによって判断することができる。ソレノイドバルブ46は、ツインモータ走行モード時に給電されるものであり、したがって、シングルモータ走行モードであってステップS13で否定的に判断された場合には、ソレノイドバルブ46への給電を停止させて(ステップS12)、リターンする。一方、ツインモータ走行モードであってステップS13で肯定的に判断された場合には、ソレノイドバルブ46に給電して(ステップS14)、リターンする。すなわち、電動オイルポンプ58からソレノイドバルブ46を介して各フェールセーフバルブ37,48に油圧が供給される。なお、図10には、ステップS14をソレノイドバルブオンと示している。 FIG. 10 shows a flowchart for explaining a control example of the solenoid valve 46. In the example shown in FIG. 10, it is first determined whether or not the motor is running, that is, whether or not the single motor running mode or the twin motor running mode is set (step S11). This step S11 can be determined based on whether or not a signal for driving the engine 1 is output from the engine control device 23. If the engine running mode is determined in the negative in step S11, the power supply to the solenoid valve 46 is stopped (step S12) and the process returns. FIG. 10 shows that the solenoid valve is off. On the other hand, if the motor is running and the determination in step S11 is affirmative, it is determined whether or not the mode is the twin motor running mode (step S13). This step S13 can be determined from the required driving force and the vehicle speed, or whether or not the output torque required for the first motor / generator 2 is determined based on the required driving force. The solenoid valve 46 is supplied with electric power during the twin motor driving mode. Therefore, when it is determined to be negative in step S13 in the single motor driving mode, power supply to the solenoid valve 46 is stopped ( Step S12) and return. On the other hand, if it is the twin motor traveling mode and the determination in step S13 is affirmative, power is supplied to the solenoid valve 46 (step S14), and the process returns. That is, hydraulic pressure is supplied from the electric oil pump 58 to the fail- safe valves 37 and 48 via the solenoid valve 46. In FIG. 10, step S14 is shown as solenoid valve ON.
 上述したように第1リニアソレノイドバルブ35をノーマルオープン型のバルブとし、かつ第2リニアソレノイドバルブ36をノーマルクローズ型のバルブとすることにより、各リニアソレノイドバルブ35,36に給電されない場合であっても、第1リニアソレノイドバルブ35から油圧を出力してクラッチC0を係合させることができる。その結果、各リニアソレノイドバルブ35,36に給電する装置、例えば図示しないバッテリーやインバータがフェールした場合であっても、エンジン1と動力分割機構5とのトルクの伝達が可能になるので、第1モータ・ジェネレータ2の出力トルクによってエンジン1をクランキングさせて始動させることができる。また、そのようなフェールが生じたときにクラッチC0とブレーキB0とのいずれか一方を係合させることができればよいが、クラッチC0を係合させるように構成することによって、フェール時に設定される変速部10の変速比が比較的大きくなる。その結果、エンジン1を始動させた後に比較的大きい駆動力を出力することができる。 As described above, when the first linear solenoid valve 35 is a normally open type valve and the second linear solenoid valve 36 is a normally closed type valve, power is not supplied to the linear solenoid valves 35, 36. Also, the hydraulic pressure can be output from the first linear solenoid valve 35 to engage the clutch C0. As a result, torque can be transmitted between the engine 1 and the power split mechanism 5 even when a device that feeds power to the linear solenoid valves 35, 36, for example, a battery or an inverter (not shown) fails. The engine 1 can be cranked and started by the output torque of the motor / generator 2. In addition, it is sufficient that either one of the clutch C0 and the brake B0 can be engaged when such a failure occurs. However, by setting the clutch C0 to be engaged, a shift set at the time of the failure is set. The gear ratio of the part 10 becomes relatively large. As a result, a relatively large driving force can be output after the engine 1 is started.
 また、各リニアソレノイドバルブ35,36に給電することができないフェール以外に、いずれか一方のリニアソレノイドバルブに給電することができないフェールが生じる場合もある。さらに、スプールがスタックした場合など、給電していないにも拘わらず給電されているときと同様にリニアソレノイドバルブが作用するフェールが生じる場合がある。それらのフェールが生じた場合であっても、エンジン1を始動させることができる制御例を図11に示している。なお、図11に示すフローチャートには、給電する信号がハイブリッド制御装置23から出力されていないにも拘わらず、給電されているときと同様にリニアソレノイドバルブが作用している状態をオンフェールと示し、給電する信号がハイブリッド制御装置から出力されているにも拘わらず、給電されていないときと同様にリニアソレノイドバルブが作用している状態をオフフェールと示す。また、各リニアソレノイドバルブ35,36がフェールしているか否かの判断は、給電される電流値から求められる油圧値と、実際の出力油圧とに乖離があるか否かによって判断することができる。また、クラッチC0やブレーキB0が係合することにより変速部10の各回転要素の回転数が変化するので、クラッチC0やブレーキB0を係合させるための信号を出力したときに設定されるべき各回転要素の回転数と、実際の回転数とに乖離があるか否かによって判断することができる。 In addition to the failure that cannot supply power to each of the linear solenoid valves 35 and 36, a failure that cannot supply power to either one of the linear solenoid valves may occur. Further, there may be a failure in which the linear solenoid valve acts in the same manner as when power is supplied even when power is not supplied, such as when the spool is stacked. FIG. 11 shows a control example in which the engine 1 can be started even when those failures occur. In the flowchart shown in FIG. 11, a state in which the linear solenoid valve is operating similarly to when power is supplied although the power supply signal is not output from the hybrid controller 23 is indicated as on-fail. The state in which the linear solenoid valve is operating in the same manner as when power is not supplied even though the power supply signal is output from the hybrid control device is indicated as off-fail. Further, whether or not each of the linear solenoid valves 35 and 36 has failed can be determined based on whether or not there is a difference between the hydraulic value obtained from the current value to be supplied and the actual output hydraulic pressure. . Further, since the rotational speed of each rotating element of the transmission unit 10 changes when the clutch C0 and the brake B0 are engaged, each of the values to be set when the signal for engaging the clutch C0 and the brake B0 is output. This can be determined by whether or not there is a difference between the rotational speed of the rotating element and the actual rotational speed.
 図11に示す制御例では、まず、各リニアソレノイドバルブ35,36がオフフェールか否かを判断する(ステップS201)。第1リニアソレノイドバルブ35は、ノーマルオープン型のバルブであり、したがって、オフフェールの場合には、第1リニアソレノイドバルブ35から油圧が出力されている状態になる。また、第2リニアソレノイドバルブ36は、ノーマルクローズ型のバルブであり、したがって、オフフェールの場合には、第2リニアソレノイドバルブ36から油圧が出力されていない状態になる。そのため、各リニアソレノイドバルブ35,36がオフフェールしていてステップS201で肯定的に判断される場合には、変速部10が直結段を設定することになる。したがって、エンジン1と動力分割機構5とが動力伝達可能に連結されるので、エンジン1を始動させて(ステップS202)、リターンする。具体的には、エンジン1をクランキングさせるために第1モータ・ジェネレータ2の回転数を制御する。すなわち、変速部10の変速比が「1」として、エンジン1が始動することができる所定の回転数になるように第1モータ・ジェネレータ2が制御される。つまり、動力分割機構5におけるキャリヤ9の回転数が上記所定の回転数になるように第1モータ・ジェネレータ2が制御される。そして、エンジン1の回転数が所定の回転数になったときにエンジン1を点火させて始動させる。なお、図11には、直結段のエンジン始動制御と示している。 In the control example shown in FIG. 11, it is first determined whether or not each linear solenoid valve 35, 36 is off-fail (step S201). The first linear solenoid valve 35 is a normally open valve. Therefore, in the case of off-fail, the hydraulic pressure is output from the first linear solenoid valve 35. Further, the second linear solenoid valve 36 is a normally closed type valve. Therefore, in the case of off-fail, no hydraulic pressure is output from the second linear solenoid valve 36. Therefore, if each linear solenoid valve 35, 36 is off-fail and the determination in step S201 is affirmative, the transmission unit 10 sets the direct coupling stage. Therefore, the engine 1 and the power split mechanism 5 are coupled so as to be able to transmit power, so the engine 1 is started (step S202) and the process returns. Specifically, the rotational speed of the first motor / generator 2 is controlled to crank the engine 1. That is, the first motor / generator 2 is controlled so that the transmission ratio of the transmission unit 10 is “1” and the engine 1 has a predetermined rotational speed at which the engine 1 can be started. That is, the first motor / generator 2 is controlled so that the rotation speed of the carrier 9 in the power split mechanism 5 becomes the predetermined rotation speed. The engine 1 is ignited and started when the rotational speed of the engine 1 reaches a predetermined rotational speed. FIG. 11 shows direct start-stage engine start control.
 各リニアソレノイドバルブ35,36あるいはいずれか一方のリニアソレノイドバルブがオフフェールでないことによりステップS201で否定的に判断された場合は、第1リニアソレノイドバルブ35がオンフェールか否かを判断する(ステップS203)。なお、図11では、便宜上、第1リニアソレノイドバルブ35をSL1と示し、第2リニアソレノイドバルブ36をSL2と示している。第1リニアソレノイドバルブ35がオンフェールしていてステップS203で肯定的に判断された場合には、第1リニアソレノイドバルブ35から油圧が出力されずクラッチC0が解放させられていることとなるので、エンジン1と動力分割機構5とのトルクの伝達を可能にするために、ブレーキB0を係合させるように第2リニアソレノイドバルブ36に給電する(ステップS204)。このように第1リニアソレノイドバルブ35がオンフェールしているときに第2リニアソレノイドバルブ36に給電することにより、変速部10が増速段を設定することができる。つまり、エンジン1と動力分割機構5とのトルクの伝達が可能になる。そのため、変速部10を増速段に設定している状態で、エンジン1を始動させて(ステップS205)、リターンする。このステップS204におけるエンジン始動の制御は、ステップS202と異なり、変速部10が増速段となっているので、その変速比に応じて第1モータ・ジェネレータ2の回転数を制御する。すなわち、変速部10が直結段を設定しているときよりも、動力分割機構5におけるキャリヤ9の回転数が大きくなるように第1モータ・ジェネレータ2が制御される。そして、エンジン1の回転数が所定の回転数になったときにエンジン1を点火させて始動させる。なお、図11には、増速段のエンジン始動制御と示している。 If a negative determination is made in step S201 because each linear solenoid valve 35, 36 or any one of the linear solenoid valves is not off-fail, it is determined whether the first linear solenoid valve 35 is on-fail (step). S203). In FIG. 11, for convenience, the first linear solenoid valve 35 is indicated as SL1, and the second linear solenoid valve 36 is indicated as SL2. If the first linear solenoid valve 35 is on-fail and an affirmative determination is made in step S203, the hydraulic pressure is not output from the first linear solenoid valve 35 and the clutch C0 is released. In order to enable transmission of torque between the engine 1 and the power split mechanism 5, power is supplied to the second linear solenoid valve 36 so as to engage the brake B0 (step S204). As described above, when the first linear solenoid valve 35 is on-failed, power is supplied to the second linear solenoid valve 36, whereby the transmission unit 10 can set the speed increasing stage. That is, torque can be transmitted between the engine 1 and the power split mechanism 5. Therefore, the engine 1 is started in the state where the transmission unit 10 is set to the speed increasing stage (step S205), and the process returns. Unlike the step S202, the engine start control in step S204 controls the rotational speed of the first motor / generator 2 in accordance with the gear ratio because the transmission 10 is in the speed increasing stage. That is, the first motor / generator 2 is controlled so that the rotation speed of the carrier 9 in the power split mechanism 5 is larger than when the transmission unit 10 is set to the direct coupling stage. The engine 1 is ignited and started when the rotational speed of the engine 1 reaches a predetermined rotational speed. FIG. 11 shows the engine start control at the speed increasing stage.
 一方、第1リニアソレノイドバルブ35がオンフェールしていなくステップS203で否定的に判断された場合には、ついで、第1リニアソレノイドバルブ35がオフフェールしているか否かを判断する(ステップS206)。第1リニアソレノイドバルブ35がオフフェールしていてステップS206で肯定的に判断された場合は、第1リニアソレノイドバルブ35から油圧が出力されてクラッチC0が係合させられるので、エンジン1を回転させることができるように、言い換えると、変速部10の回転が止められることを回避するために、第2リニアソレノイドバルブ36への給電を停止させる(ステップS207)。したがって、変速部10は、直結段が設定される。そのため、上記ステップS202と同様にエンジン1を始動させて(ステップS208)、リターンする。 On the other hand, if the first linear solenoid valve 35 is not on-failed and a negative determination is made in step S203, it is then determined whether or not the first linear solenoid valve 35 is off-failed (step S206). . If the first linear solenoid valve 35 is off-failed and an affirmative determination is made in step S206, the hydraulic pressure is output from the first linear solenoid valve 35 and the clutch C0 is engaged, so the engine 1 is rotated. In other words, in order to avoid the rotation of the transmission unit 10 being stopped, the power supply to the second linear solenoid valve 36 is stopped (step S207). Therefore, the transmission unit 10 is set to a direct coupling stage. Therefore, the engine 1 is started as in step S202 (step S208), and the process returns.
 それとは反対に、第1リニアソレノイドバルブ35がフェールしてなく、ステップS206で否定的に判断された場合には、第2リニアソレノイドバルブ36がフェールしているか、あるいはそれがオンフェールであるか否かに応じて第1リニアソレノイドバルブ35の制御を変更させる。具体的には、まず、第2リニアソレノイドバルブ36がオンフェールしているか否かを判断する(ステップS209)。第2リニアソレノイドバルブ36がオンフェールしていることによりステップS209で肯定的に判断される場合には、第2リニアソレノイドバルブ35から油圧が出力されてブレーキB0が係合させられるので、エンジン1を回転させることができるように、言い換えると、変速部10の回転が止められることを回避するために、第1リニアソレノイドバルブ35への給電を停止させる(ステップS210)。したがって、変速部10は、増速段が設定される。そのため、上記ステップS205と同様にエンジン1を始動させて(ステップS211)、リターンする。 On the other hand, if the first linear solenoid valve 35 has not failed and a negative determination is made in step S206, is the second linear solenoid valve 36 failed or is it on-failed? The control of the first linear solenoid valve 35 is changed depending on whether or not. Specifically, first, it is determined whether or not the second linear solenoid valve 36 is on-fail (step S209). If the determination in step S209 is affirmative because the second linear solenoid valve 36 is on-fail, the hydraulic pressure is output from the second linear solenoid valve 35 and the brake B0 is engaged. In other words, in order to avoid the rotation of the transmission unit 10 being stopped, the power supply to the first linear solenoid valve 35 is stopped (step S210). Therefore, the speed increasing stage is set in the transmission unit 10. Therefore, the engine 1 is started as in step S205 (step S211), and the process returns.
 一方、第2リニアソレノイドバルブ36がオンフェールしてなくステップS209で否定的に判断された場合は、第2リニアソレノイドバルブ36がオフフェールしているか否かを判断する(ステップS212)。ここで、第2リニアソレノイドバルブ36がオフフェールしていてステップS212で肯定的に判断される場合は、第2リニアソレノイドバルブ36から油圧が出力されずブレーキB0が解放されることになるので、エンジン1と動力分割機構5とのトルクの伝達を可能にするために第1リニアソレノイドバルブ35への給電が停止させられる(ステップS213)。したがって、変速部10が直結段を設定する。そのため、上記ステップS202やステップS208と同様にエンジン1を始動させて(ステップS214)、リターンする。それとは反対に、第2リニアソレノイドバルブ36がフェールしてなくステップS211で否定的に判断された場合は、各リニアソレノイドバルブ35,36がフェールしていないことになる。そのため、通常時と同様にエンジン1を始動させて(ステップS215)、リターンする。具体的には、エンジン1を始動させるために制御される第1モータ・ジェネレータ2の回転数の変化量やエンジン1を始動させた後に要求される駆動力などに応じてクラッチC0とブレーキB0とのいずれか一方を係合させて、エンジン1をクランキングさせ、その後、エンジン1を点火して始動させる。 On the other hand, if the second linear solenoid valve 36 is not on-failed and a negative determination is made in step S209, it is determined whether or not the second linear solenoid valve 36 is off-failed (step S212). Here, if the second linear solenoid valve 36 is off-failed and a positive determination is made in step S212, the hydraulic pressure is not output from the second linear solenoid valve 36 and the brake B0 is released. In order to enable transmission of torque between the engine 1 and the power split mechanism 5, power supply to the first linear solenoid valve 35 is stopped (step S213). Therefore, the transmission unit 10 sets the direct coupling stage. For this reason, the engine 1 is started in the same manner as in step S202 and step S208 (step S214), and the process returns. On the other hand, if the second linear solenoid valve 36 has not failed and a negative determination is made in step S211, each linear solenoid valve 35, 36 has not failed. Therefore, the engine 1 is started in the same manner as in the normal time (step S215), and the process returns. Specifically, the clutch C0 and the brake B0 according to the amount of change in the rotation speed of the first motor / generator 2 controlled to start the engine 1 and the driving force required after the engine 1 is started. Is engaged to crank the engine 1, and then the engine 1 is ignited and started.
 上述したように制御することにより、エンジン始動時に各リニアソレノイドバルブ35,36のいずれか一方あるいは双方がフェールした場合であっても、クラッチC0とブレーキB0とのいずれか一方を係合させることができる。そのため、変速部10は直結段と増速段とのいずれか一方の変速段を設定して、動力分割機構5とエンジン1とのトルクの伝達が可能になる。その結果、第1モータ・ジェネレータ2の回転数を制御することにより、エンジン1をクランキングさせてエンジン1を始動させることができる。また、上述した制御例のように各リニアソレノイドバルブ35,36がフェールしているか否かあるいはそのフェールがオンフェールかオフフェールかを判断することができる。そのため、エンジン始動時に限らず、シングルモータ走行モードやツインモータ走行モード時にリニアソレノイドバルブのフェールの有無あるいはそのフェールの状態を判断することができる。そのように判断してフェールが生じているときには、図11に示す制御と同様に係合させるクラッチC0またはブレーキB0を変更させることができる。例えば、第1リニアソレノイドバルブ35がオンフェールしているときには、エンジン走行モードで比較的低車速で走行しているときには、通常、変速部10を直結段に設定するためにクラッチC0を係合させるが、上記のように判断された場合には、ブレーキB0を係合させるように制御を変更させることができる。すなわち、フェールしていない係合装置を係合させるパターンを変更させる。そのように係合装置を係合させるパターンを変更した場合には、動力伝達装置で設定される変速比が変化しないように動力分割機構5の変速比を制御する。したがって、リニアソレノイドバルブがフェールした場合であっても、要求駆動力に応じた駆動力を出力させることができる。 By controlling as described above, either one of the clutch C0 and the brake B0 can be engaged even when one or both of the linear solenoid valves 35 and 36 fail at the time of starting the engine. it can. Therefore, the transmission unit 10 can set either one of the direct gear stage and the speed increasing stage to transmit torque between the power split mechanism 5 and the engine 1. As a result, by controlling the rotation speed of the first motor / generator 2, the engine 1 can be cranked and the engine 1 can be started. Further, as in the control example described above, it can be determined whether or not each linear solenoid valve 35, 36 has failed, or whether the failure is on-fail or off-fail. Therefore, it is possible to determine whether or not the linear solenoid valve has failed or the state of the failure in the single motor traveling mode or the twin motor traveling mode, not only when the engine is started. When such a determination indicates that a failure has occurred, the clutch C0 or the brake B0 to be engaged can be changed similarly to the control shown in FIG. For example, when the first linear solenoid valve 35 is on-fail, when the vehicle is traveling at a relatively low vehicle speed in the engine travel mode, the clutch C0 is usually engaged to set the transmission unit 10 to the direct coupling stage. However, when it is determined as described above, the control can be changed to engage the brake B0. That is, the pattern for engaging the engagement device that has not failed is changed. When the pattern for engaging the engagement device is changed as described above, the gear ratio of the power split mechanism 5 is controlled so that the gear ratio set by the power transmission device does not change. Therefore, even when the linear solenoid valve fails, a driving force corresponding to the required driving force can be output.
 なお、クラッチC0やブレーキB0の油圧を制御する油圧制御装置は、図7に示す構成に限定されない。図12は、図1に示すクラッチC0およびブレーキB0の油圧を制御する油圧制御装置の他の例について説明するための油圧回路図である。なお、図7と同様の構成については、同一の参照符号を付してその説明を省略する。図12に示す油圧回路は、第1フェールセーフバルブ37が設けられていない。また、第2フェールセーフバルブ48には、フィードバックポート53が形成されていない。このように油圧回路を構成しても、クラッチC0を係合させるために第1リニアソレノイドバルブ35から油圧が出力されているときには、第2フェールセーフバルブ48におけるスプール55が図12における下側に位置するので、第2リニアソレノイドバルブ36から出力された油圧がブレーキB0に供給されることを抑制もしくは防止することができる。また、図12に示す例では、ブレーキB0を係合させるために第2リニアソレノイドバルブ36から油圧が出力されているときに、第1リニアソレノイドバルブ35から油圧が出力されたときには、ブレーキB0を解放するように構成されている。具体的には、第2フェールセーフバルブ48の第1パイロットポート54に第1リニアソレノイドバルブ35の出力圧が供給されて、図12に示す下側に、スプール55が移動する。その結果、クラッチC0が係合させられるとともに、ブレーキB0が解放される。なお、ツインモータ走行モードに設定するときには、ソレノイドバルブ46から油圧が出力されるので、第1リニアソレノイドバルブ35から出力された油圧が第2フェールセーフバルブ48に供給されていたとしても、第2リニアソレノイドバルブ36とブレーキB0とが連通されて油圧が供給される。 Note that the hydraulic control device that controls the hydraulic pressure of the clutch C0 and the brake B0 is not limited to the configuration shown in FIG. FIG. 12 is a hydraulic circuit diagram for explaining another example of the hydraulic control device that controls the hydraulic pressures of the clutch C0 and the brake B0 shown in FIG. In addition, about the structure similar to FIG. 7, the same referential mark is attached | subjected and the description is abbreviate | omitted. The hydraulic circuit shown in FIG. 12 is not provided with the first failsafe valve 37. Further, the feedback port 53 is not formed in the second failsafe valve 48. Even when the hydraulic circuit is configured in this manner, when the hydraulic pressure is output from the first linear solenoid valve 35 in order to engage the clutch C0, the spool 55 in the second failsafe valve 48 is moved downward in FIG. Thus, the hydraulic pressure output from the second linear solenoid valve 36 can be suppressed or prevented from being supplied to the brake B0. In the example shown in FIG. 12, when the hydraulic pressure is output from the second linear solenoid valve 36 in order to engage the brake B0, the brake B0 is applied when the hydraulic pressure is output from the first linear solenoid valve 35. Configured to release. Specifically, the output pressure of the first linear solenoid valve 35 is supplied to the first pilot port 54 of the second failsafe valve 48, and the spool 55 moves downward as shown in FIG. As a result, the clutch C0 is engaged and the brake B0 is released. Note that when setting to the twin motor travel mode, the hydraulic pressure is output from the solenoid valve 46, so even if the hydraulic pressure output from the first linear solenoid valve 35 is supplied to the second failsafe valve 48, The linear solenoid valve 36 and the brake B0 are communicated to supply hydraulic pressure.
 さらに、図13に示すように油圧回路を構成してもよい。図13に示す油圧回路は、メカオイルポンプ26と電動オイルポンプ59とが並列に設けられている。また、第1フェールセーフバルブ37は設けられていない。さらに、第1リニアソレノイドバルブ35から出力された油圧が第2フェールセーフバルブ48に供給するか否かを切り替えるようにソレノイドバルブ46が設けられている。具体的には、第1リニアソレノイドバルブ35と第2フェールセーフバルブ48との間にソレノイドバルブ46が設けられている。そして、クラッチC0とブレーキB0とを同時に係合させるとき以外は、第1リニアソレノイドバルブ35と第2フェールセーフバルブ48とが連通し、かつクラッチC0とブレーキB0とを同時に係合させるときには、第1リニアソレノイドバルブ35から出力された油圧がドレーンされるように構成されている。 Furthermore, a hydraulic circuit may be configured as shown in FIG. In the hydraulic circuit shown in FIG. 13, a mechanical oil pump 26 and an electric oil pump 59 are provided in parallel. Further, the first failsafe valve 37 is not provided. Further, a solenoid valve 46 is provided so as to switch whether or not the hydraulic pressure output from the first linear solenoid valve 35 is supplied to the second failsafe valve 48. Specifically, a solenoid valve 46 is provided between the first linear solenoid valve 35 and the second failsafe valve 48. Then, except when the clutch C0 and the brake B0 are simultaneously engaged, the first linear solenoid valve 35 and the second failsafe valve 48 are in communication and when the clutch C0 and the brake B0 are simultaneously engaged, 1 The hydraulic pressure output from the linear solenoid valve 35 is configured to be drained.
 また、上述した例では、エンジン1と動力分割機構5との間に、エンジン1と動力分割機構5とのトルクの伝達を遮断する構成、より具体的には変速部10を備えた例を挙げて説明したが、第1モータ・ジェネレータ2と動力分割機構5との間に同様の構成を備えたものを対象とすることや、動力分割機構5の出力側、より具体的にはリングギヤ7とドライブギヤ11との間に同様の構成を備えたものを対象としてもよい。すなわち、動力分割機構5は、差動機構によって構成されているので、係合装置を解放していずれか一つの回転要素とのトルクの伝達が遮断されると、動力分割機構5を介してエンジン1や各モータ・ジェネレータ2,3のトルクの伝達ができなくなる。そのため、動力分割機構5におけるいずれか一つの回転要素とのトルクの伝達を遮断する係合装置を、フェール時に係合させることができるように構成されていればよい。また、その係合装置は、変速部10のように差動作用を備えたものあるいは複数のクラッチやブレーキを備えたものでなくてもよい。つまり、エンジン1とキャリヤ13との間に一つのクラッチを設けたものであってもよい。そのように一つのクラッチを設けた構成の場合には、そのクラッチの油圧を制御するバルブに信号が供給されないときに係合するように構成されていればよい。 Moreover, in the example mentioned above, the structure which interrupts | blocks transmission of the torque of the engine 1 and the power split mechanism 5 between the engine 1 and the power split mechanism 5, More specifically, the example provided with the transmission part 10 is given. As described above, it is assumed that the same configuration is provided between the first motor / generator 2 and the power split mechanism 5, or the output side of the power split mechanism 5, more specifically, the ring gear 7 and the like. A device having a similar configuration between the drive gear 11 and the drive gear 11 may be used. That is, since the power split mechanism 5 is configured by a differential mechanism, when the engagement device is released and the transmission of torque to any one of the rotating elements is interrupted, the engine is connected via the power split mechanism 5. 1 and the motor / generators 2 and 3 cannot transmit torque. Therefore, it is only necessary that the engaging device that interrupts the transmission of torque with any one of the rotating elements in the power split mechanism 5 can be engaged at the time of failure. Further, the engaging device does not have to be provided with a differential action like the transmission unit 10 or provided with a plurality of clutches and brakes. That is, one clutch may be provided between the engine 1 and the carrier 13. In the case of such a configuration in which one clutch is provided, it may be configured to engage when a signal is not supplied to a valve that controls the hydraulic pressure of the clutch.
 さらに、動力分割機構や変速部は、ダブルピニオン型の遊星歯車機構によって構成されていてもよい。そして、クラッチやブレーキは、油圧によって制御されるものに限らず、電磁力などによって係合および解放が制御されるように構成されたものであってもよく、また、噛み合いクラッチなど摩擦力以外の力によってトルクを伝達するように構成されたものであってもよい。 Furthermore, the power split mechanism and the transmission unit may be constituted by a double pinion type planetary gear mechanism. The clutch and brake are not limited to those controlled by hydraulic pressure, but may be configured such that engagement and release are controlled by electromagnetic force or the like, and other than frictional force such as a meshing clutch. It may be configured to transmit torque by force.

Claims (5)

  1.  エンジンのトルクを伝達させることができる第1回転要素、および第1モータのトルクを伝達させることができる第2回転要素、ならびに出力軸にトルクを伝達することができる第3回転要素を有する差動作用のある動力分割機構と、前記出力軸にトルクを伝達することができる第2モータと、前記各回転要素のいずれか一つの回転要素に作用するトルクの伝達を遮断するように構成された係合装置とを備えたハイブリッド車両の制御装置において、
     前記係合装置を係合または解放させる係合制御手段を備え、
     前記係合制御手段は、入力される指令値が低下することに伴って、前記係合装置を係合させるように構成されていることを特徴とするハイブリッド車両の制御装置。
    A differential having a first rotating element capable of transmitting engine torque, a second rotating element capable of transmitting torque of a first motor, and a third rotating element capable of transmitting torque to an output shaft A power split mechanism having an action; a second motor capable of transmitting torque to the output shaft; and a mechanism configured to cut off transmission of torque acting on any one of the rotating elements. In a hybrid vehicle control device comprising a combination device,
    Engagement control means for engaging or releasing the engagement device;
    The control device for a hybrid vehicle, wherein the engagement control means is configured to engage the engagement device as an input command value decreases.
  2.  第1クラッチと第2クラッチとを有するとともに、前記第1クラッチを係合させかつ前記第2クラッチを解放することにより第1変速段を設定し、かつ前記第1クラッチを解放させかつ前記第2クラッチを係合することにより前記第1変速段によって設定される変速比よりも小さい変速比である第2変速段を設定するように構成された変速部を更に備え、
     前記係合装置は、前記第1クラッチを含む
    ことを特徴とする請求項1に記載のハイブリッド車両の制御装置。
    A first clutch and a second clutch, the first clutch is set by engaging the first clutch and releasing the second clutch; and the second clutch is released and the second clutch is released. A shift portion configured to set a second shift speed that is smaller than a speed ratio set by the first shift speed by engaging a clutch;
    The hybrid vehicle control device according to claim 1, wherein the engagement device includes the first clutch.
  3.  前記第1クラッチと前記第2クラッチとの一方のクラッチがフェールした場合に、前記エンジンと前記出力軸とのトルクの伝達が可能になるように、前記他方のクラッチを係合させるパターンを変更するように構成されていることを特徴とする請求項2に記載のハイブリッド車両の制御装置。 When one of the first clutch and the second clutch fails, the pattern for engaging the other clutch is changed so that torque can be transmitted between the engine and the output shaft. The hybrid vehicle control device according to claim 2, wherein the control device is configured as described above.
  4.  前記変速部は、第1サンギヤと、前記第1サンギヤと同心円上に設けられかつ前記第1回転要素に連結された第1リングギヤと、前記第1サンギヤおよび前記第1リングギヤに噛み合う第1ピニオンギヤを自転および公転することができるように保持しかつ前記エンジンに連結された第1キャリヤとによって構成された第1遊星歯車機構を有し、
     前記第1クラッチは、係合することにより前記第1サンギヤと前記第1キャリヤとを一体に回転させるように構成され、
     前記第2クラッチは、係合することにより前記第1キャリヤの回転を止めるように構成されている
    ことを特徴とする請求項2または3に記載のハイブリッド車両の制御装置。
    The transmission includes a first sun gear, a first ring gear provided concentrically with the first sun gear and connected to the first rotating element, and a first pinion gear meshing with the first sun gear and the first ring gear. A first planetary gear mechanism constituted by a first carrier held so as to be able to rotate and revolve and connected to the engine;
    The first clutch is configured to rotate the first sun gear and the first carrier integrally by being engaged;
    4. The control device for a hybrid vehicle according to claim 2, wherein the second clutch is configured to stop the rotation of the first carrier when engaged. 5.
  5.  前記動力分割機構は、第2サンギヤと、前記第2サンギヤと同心円上に設けられた第2リングギヤと、前記第2サンギヤおよび前記第2リングギヤに噛み合う第2ピニオンギヤを自転および公転することができるように保持する第2キャリヤとによって構成された第2遊星歯車機構を含むことを特徴とする請求項1ないし4のいずれかに記載のハイブリッド車両の制御装置。 The power split mechanism can rotate and revolve a second sun gear, a second ring gear provided concentrically with the second sun gear, and a second pinion gear meshing with the second sun gear and the second ring gear. The hybrid vehicle control device according to claim 1, further comprising: a second planetary gear mechanism configured by a second carrier held on the vehicle.
PCT/JP2013/071517 2013-07-17 2013-08-08 Control device for hybrid vehicle WO2015008396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013148303A JP2015020488A (en) 2013-07-17 2013-07-17 Control device of hybrid vehicle
JP2013-148303 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015008396A1 true WO2015008396A1 (en) 2015-01-22

Family

ID=52345885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071517 WO2015008396A1 (en) 2013-07-17 2013-08-08 Control device for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP2015020488A (en)
WO (1) WO2015008396A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020488A (en) * 2013-07-17 2015-02-02 トヨタ自動車株式会社 Control device of hybrid vehicle
CN109278523A (en) * 2018-09-28 2019-01-29 深圳兴康动力总成有限公司 A kind of hybrid electric drive system device
CN109532814A (en) * 2017-09-21 2019-03-29 丰田自动车株式会社 The control device of vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443353B2 (en) * 2016-01-15 2018-12-26 トヨタ自動車株式会社 Hybrid car
JP6819547B2 (en) * 2017-11-13 2021-01-27 トヨタ自動車株式会社 Vehicle driving force control device
JP2020040607A (en) * 2018-09-13 2020-03-19 トヨタ自動車株式会社 Hybrid-vehicular control apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346187A (en) * 1999-06-04 2000-12-12 Toyota Motor Corp Hybrid vehicle and its control method
JP2005133856A (en) * 2003-10-30 2005-05-26 Toyota Motor Corp Fail-safe hydraulic circuit
JP2010013073A (en) * 2008-07-07 2010-01-21 Daihatsu Motor Co Ltd Hybrid vehicle drive mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207920B2 (en) * 2005-04-18 2009-01-14 トヨタ自動車株式会社 Vehicle drive device
JP4341631B2 (en) * 2006-01-31 2009-10-07 トヨタ自動車株式会社 Vehicle abnormality determination device
JP2012025340A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Control device of power transmission device for vehicle
JP2015020488A (en) * 2013-07-17 2015-02-02 トヨタ自動車株式会社 Control device of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346187A (en) * 1999-06-04 2000-12-12 Toyota Motor Corp Hybrid vehicle and its control method
JP2005133856A (en) * 2003-10-30 2005-05-26 Toyota Motor Corp Fail-safe hydraulic circuit
JP2010013073A (en) * 2008-07-07 2010-01-21 Daihatsu Motor Co Ltd Hybrid vehicle drive mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020488A (en) * 2013-07-17 2015-02-02 トヨタ自動車株式会社 Control device of hybrid vehicle
CN109532814A (en) * 2017-09-21 2019-03-29 丰田自动车株式会社 The control device of vehicle
CN109532814B (en) * 2017-09-21 2021-06-15 丰田自动车株式会社 Vehicle control device
CN109278523A (en) * 2018-09-28 2019-01-29 深圳兴康动力总成有限公司 A kind of hybrid electric drive system device
CN109278523B (en) * 2018-09-28 2021-11-30 深圳兴康动力总成有限公司 Hybrid electric driving device

Also Published As

Publication number Publication date
JP2015020488A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP5060371B2 (en) Power output device and vehicle
JP4447039B2 (en) Power output device and vehicle
JP5967199B2 (en) Hybrid vehicle drive device
US9975545B2 (en) Hybrid vehicle
US10315507B2 (en) Hybrid vehicle
US11052903B2 (en) Hybrid vehicle drive system
US10112601B2 (en) Driving device for a hybrid vehicle
JP5227043B2 (en) Power output device and vehicle
WO2015008396A1 (en) Control device for hybrid vehicle
JP5884897B2 (en) Drive control apparatus for hybrid vehicle
JP2007198438A (en) Vehicle control device and vehicle
JP4113919B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP5907155B2 (en) Control device for hybrid drive
WO2013140544A1 (en) Drive control device for hybrid vehicle
JP2016150675A (en) Hybrid vehicle
JP6070451B2 (en) Control device for hybrid vehicle
US10124795B2 (en) Driving force control system for hybrid vehicle
WO2015004818A1 (en) Hybrid vehicle control device
JP6834878B2 (en) Flood control circuit of power transmission device for vehicles
JP3721352B2 (en) Internal power control device for hybrid motor
JP6519631B2 (en) Hybrid vehicle
CN112092799A (en) Control device for hybrid vehicle
JP2007016933A (en) Power output device, automobile mounted therewith, and control method for power output device
JP6801615B2 (en) Flood control circuit of power transmission device for vehicles
JP2009149179A (en) Control apparatus for power transmission apparatus for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889590

Country of ref document: EP

Kind code of ref document: A1