WO2015008376A1 - Power controller and power controlling method - Google Patents

Power controller and power controlling method Download PDF

Info

Publication number
WO2015008376A1
WO2015008376A1 PCT/JP2013/069618 JP2013069618W WO2015008376A1 WO 2015008376 A1 WO2015008376 A1 WO 2015008376A1 JP 2013069618 W JP2013069618 W JP 2013069618W WO 2015008376 A1 WO2015008376 A1 WO 2015008376A1
Authority
WO
WIPO (PCT)
Prior art keywords
trigger angle
current
control
target
abnormality
Prior art date
Application number
PCT/JP2013/069618
Other languages
French (fr)
Japanese (ja)
Inventor
茂文 後藤
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to PCT/JP2013/069618 priority Critical patent/WO2015008376A1/en
Priority to JP2015527123A priority patent/JP6128217B2/en
Priority to CN201380077123.9A priority patent/CN105264731B/en
Priority to KR1020157032111A priority patent/KR101666768B1/en
Publication of WO2015008376A1 publication Critical patent/WO2015008376A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Definitions

  • the present invention relates to a power controller and a power control method for controlling power supplied to a primary side of a transformer (transformer) having a heater connected to a secondary side.
  • the timing for turning on (igniting) the thyristor connected to the primary side of the transformer is controlled.
  • a phase control method is often used.
  • the trigger angle (phase angle) indicating the timing at which the thyristor is turned on is increased, but at the start of phase control such as when the power is turned on.
  • the thyristor is turned on with a large trigger angle, a large inrush current flows through the transformer.
  • a method of gradually increasing the trigger angle by turning on the thyristor with a small trigger angle may be used at the start of phase control (for example, (See Patent Document 1).
  • the soft start method the power supply voltage and the voltage on the primary side of the transformer are monitored, and when the voltage changes from zero to a predetermined value, the trigger angle gradually changes from a small trigger angle to the target trigger angle. To turn on the thyristor.
  • the conventional power controller is configured as described above, if the power supply voltage or the voltage on the primary side of the transformer is monitored and it is detected that the voltage has changed from a zero value to a predetermined value, the power controller is small. By turning on the thyristor at the trigger angle, inrush current can be prevented. However, a device for monitoring the power supply voltage and the voltage on the primary side of the transformer is required, which causes a problem that the device configuration becomes complicated.
  • the present invention has been made to solve the above-described problems, and can control the occurrence of inrush current without mounting a device for monitoring the power supply voltage or the voltage on the primary side of the transformer. It is an object to obtain a measuring device and a power control method.
  • the power controller according to the present invention is supplied to the primary side of the transformer from the target signal output from the controller that calculates the target value of the power supplied to the load connected to the secondary side of the transformer.
  • the target trigger angle calculating means for calculating the target trigger angle indicating the timing of firing the switching element for adjusting the power to be switched, and the switching element is fired at the timing indicated by the target trigger angle calculated by the target trigger angle calculating means.
  • the current estimation means for estimating the current flowing through the switching element, the current measurement means for measuring the current actually flowing through the switching element, and the current measured by the current measurement means is estimated by the current estimation means.
  • the abnormality recognition that identifies the abnormality of the current flowing through the switching element If the current abnormality is recognized by the means and the abnormality recognition means, the preset standby trigger angle is determined as the control trigger angle, and the control trigger angle is output and the control If an abnormality in current is not recognized by the abnormality recognition means while the trigger angle is being output, the trigger angle for control is the target trigger angle calculated by the target trigger angle calculation means from the standby trigger angle.
  • the control trigger angle determining means for outputting the trigger angle while gradually increasing the control trigger angle until the control element reaches the trigger angle, and the switching element control means outputs the trigger output from the control trigger angle determining means.
  • the switching element is ignited at the timing indicated by the corner.
  • the control trigger angle determining means determines that the abnormality of the current is not recognized by the abnormality recognition means
  • the switching element with the target trigger angle calculated by the target trigger angle calculation means as the control trigger angle is output to the control means.
  • the inrush current flowing through the transformer is a predetermined value.
  • the trigger angle that is smaller than the allowable current and larger than the minimum current measurable by the current measuring means is set in the control trigger angle determining means as the standby trigger angle.
  • the target trigger angle calculating means is configured to convert the transformer from a target signal output from a controller that calculates a target value of power supplied to a load connected to the secondary side of the transformer.
  • a target trigger angle calculation processing step for calculating a target trigger angle indicating the timing of ignition of the switching element that adjusts the power supplied to the primary side, and a target estimated by the current estimation means calculated in the target trigger angle calculation processing step.
  • a current estimation processing step for estimating a current flowing through the switching element and a current measurement unit for measuring a current actually flowing through the switching element
  • the processing step and the abnormality recognition means are configured in advance so that the current measured in the current measurement processing step is greater than the current estimated in the current estimation processing step.
  • the abnormality recognition processing step for certifying abnormality of the current flowing through the switching element and the control trigger angle determination means are recognized as abnormal in the current in the abnormality qualification processing step. If the trigger angle for standby is set as the trigger angle for control, the trigger angle for control is output, and the trigger angle for control is output, the abnormality is recognized. If no current abnormality is recognized in the processing step, the control trigger angle is gradually increased until the control trigger angle reaches the target trigger angle calculated by the target trigger angle calculation means from the standby trigger angle. And a control trigger angle determination processing step for outputting the trigger angle.
  • the present invention it is possible to prevent the occurrence of an inrush current without mounting a device for monitoring the power supply voltage or the voltage on the primary side of the transformer.
  • FIG. 1 is a block diagram showing a power controller according to Embodiment 1 of the present invention.
  • a power controller 3 is connected to an AC power source 1 via a switch 2 (for example, a relay or a breaker), and supplies power from the AC power source 1 when the switch 2 is closed.
  • a thyristor 12 that is a switching element that adjusts the power supplied to the primary side of the transformer 4 by phase control is mounted.
  • a fuse 11 is connected to the primary side of the thyristor 12.
  • the thyristor 12 is mounted as a switching element is shown.
  • the present invention is not limited to this.
  • a triac or the like may be mounted as a switching element.
  • the transformer 4 is a transformer that receives power from the power controller 3 connected to the primary side and supplies power to the heater 5 connected to the secondary side.
  • the heater 5 as a load is a heat source for heating the controlled object 6, and a temperature sensor 7 is attached to the controlled object 6.
  • the temperature sensor 7 is a measuring instrument that measures the temperature of the controlled object 6 and outputs a sensor signal indicating the temperature to the temperature controller 8.
  • the temperature controller 8 calculates a target signal for output that matches the temperature indicated by the sensor signal output from the temperature sensor 7 with a preset target temperature, and outputs the target signal to the power controller 3. carry out.
  • the zero point detection unit 18 performs processing for detecting the zero point of the power supply voltage.
  • the output target value trigger angle conversion unit 13 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer, and the thyristor 12 is turned on (point-on) from the target signal output from the temperature controller 8.
  • the process of calculating the target trigger angle ⁇ n indicating the timing of arcing is performed at every zero point detection timing.
  • the output target value trigger angle conversion unit 13 includes, for example, a table indicating the correspondence between the power value and the target trigger angle ⁇ n using the target signal output from the temperature controller 8 as the target value of power. Referring to the table, a process of outputting the target trigger angle ⁇ n corresponding to the target signal is performed.
  • the output target value trigger angle converter 13 constitutes a target trigger angle calculation unit.
  • the output current estimation unit 14 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and the thyristor 12 is turned on at the timing of the control trigger angle output from the trigger angle increment control unit 20. In such a case, a process of calculating an estimated value Ie nm of the output current that is a current flowing through the thyristor 12 is performed at each output current monitoring timing.
  • the output current monitoring timing is a plurality of times during the half cycle period of the power supply cycle. In the first embodiment, the output current monitoring timing is generated every time when the half cycle period is divided into 20 equal parts. .
  • the output current estimation unit 14 constitutes current estimation means.
  • the current detector 15 is composed of, for example, a CT (Current Transformer) and the like, detects a current actually flowing through the thyristor 12, and outputs a sensor signal proportional to the current.
  • the output current measuring unit 16 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and actually flows to the thyristor 12 from the sensor signal output from the current detector 15. A process for measuring the output current Inm , which is a current, is performed at each output current monitoring timing.
  • the current detector 15 and the output current measuring unit 16 constitute current measuring means.
  • the output current monitoring unit 17 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer.
  • predetermined coefficient estimates Ie nm e.g., 0.5
  • the output current monitoring unit 17 constitutes an abnormality recognition unit.
  • the output current monitoring unit 17 calculates an abnormality determination current I ⁇ e nm by multiplying the estimated value Ie nm of the output current calculated by the output current estimation unit 14 by a predetermined coefficient, and outputs the thyristor 12.
  • the trigger angle determination unit 19 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer. Every time the zero point of the power supply voltage is detected by the zero point detection unit 18, the trigger angle determination unit 19 is used for temporary control. Processing for determining the trigger angle ⁇ ⁇ n is performed. That is, when the output current monitoring unit 17 determines that the output current is normal in the first half cycle, the trigger angle determination unit 19 uses the target trigger angle ⁇ n calculated by the output target value trigger angle conversion unit 13 as a temporary provision. While the control trigger angle ⁇ ⁇ n is determined, if the output current monitoring unit 17 recognizes an abnormality in the output current in the first half cycle, the preset standby trigger angle ⁇ e is set for the provisional control.
  • the standby trigger angle ⁇ e is measured by the output current measuring unit 16 when the inrush current at the start of phase control flowing through the transformer 4 becomes smaller than a predetermined allowable current (for example, the rated current of the transformer 4).
  • the trigger angle is greater than the minimum possible current.
  • the trigger angle increment control unit 20 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, or a one-chip microcomputer, and the provisional control trigger angle ⁇ ⁇ n output from the trigger angle determination unit 19
  • the trigger angle ⁇ n ⁇ 1 of the first half cycle is compared with a value obtained by adding a predetermined increment ⁇ set in advance ( ⁇ n ⁇ 1 + ⁇ ), and the trigger angle ⁇ ⁇ n is compared with the added value ( ⁇ n ⁇ 1 + ⁇ ), the added value ( ⁇ n ⁇ 1 + ⁇ ) is set as the trigger angle ⁇ n for control, and the added value ( ⁇ n ⁇ 1 + ⁇ ) is output to the thyristor control unit 21.
  • the trigger angle ⁇ ⁇ n is set as the control trigger angle ⁇ n and the trigger angle ⁇ ⁇ n is set as the thyristor control unit 21.
  • the zero point detection unit 18, the trigger angle determination unit 19, and the trigger angle increment control unit 20 constitute a control trigger angle determination means.
  • Thyristor control unit 21 by supplying a current to the gate of the thyristor 12 at the timing indicated by the trigger angle phi n output from the trigger angle increment controller 20 is a control circuit for turning on the thyristor 12.
  • the thyristor control unit 21 constitutes switching element control means.
  • a part of the power controller for example, output target value trigger angle conversion unit 13, output current estimation unit 14, output current measurement unit 16, output current monitoring unit 17, zero point detection unit 18, trigger angle determination unit 19, trigger
  • a program describing the processing contents of the trigger angle determination unit 19, the trigger angle increment control unit 20, and the thyristor control unit 21 is stored in the memory of a computer, and the CPU of the computer executes the program stored in the memory. What should I do?
  • FIG. 2 is a flowchart showing the contents of processing in which the power controller according to Embodiment 1 of the present invention detects an abnormality in the output current, and is processed at every output current monitoring timing.
  • FIG. 3 is a flowchart showing the processing contents for determining the control trigger angle by the power controller according to the first embodiment of the present invention, which is processed at each zero point detection timing.
  • 4, 5 and 6 are explanatory diagrams showing the processing timing of the power controller.
  • FIG. 4 shows the processing timing when the output current monitoring unit 17 does not detect an abnormality in the output current
  • FIG. The processing timing when an output current abnormality is detected by the output current monitoring unit 17 is shown.
  • FIG. 6 shows the processing timing when the output current returns from normal to normal and soft start begins.
  • the temperature sensor 7 measures the temperature of the controlled object 6 and outputs a sensor signal indicating the temperature to the temperature controller 8.
  • the temperature controller 8 calculates a target signal such that the temperature indicated by the sensor signal matches a preset target temperature, and uses the target signal as the power controller 3. Output to.
  • the temperature controller 8 has a built-in PID controller (Proportional Integral Derivative Controller)
  • the PID controller of the temperature controller 8 is preset with the temperature indicated by the sensor signal output from the temperature sensor 7.
  • a deviation from the target temperature is input, PID calculation is performed on the deviation, and the calculation result is output to the power controller 3 as a target signal.
  • the output target value trigger angle conversion unit 13 calculates the target trigger angle ⁇ n indicating the timing at which the thyristor 12 is turned on in the nth phase control cycle from the target signal.
  • the target trigger angle ⁇ n is output to the trigger angle determination unit 19.
  • the output target value trigger angle conversion unit 13 has a built-in table indicating the correspondence relationship between the target signal (target value of power) and the target trigger angle ⁇ n in advance, output from the temperature controller 8 from the table.
  • the target trigger angle ⁇ n corresponding to the received target signal is read, and the target trigger angle ⁇ n is output to the trigger angle determination unit 19.
  • the output target value trigger angle conversion unit 13 calculates the target trigger angle ⁇ n every 10 milliseconds.
  • the subscript n of ⁇ is a variable indicating what phase control cycle it is. 4 and 5 show an example in which 51% is calculated as the target trigger angle ⁇ n of the nth phase control cycle. The 51% represents a period during which the thyristor 12 is turned on in one phase control cycle.
  • the position is the trigger timing.
  • the abnormality detection process of FIG. 2 is performed every 0.5 milliseconds. Since the phase control cycle is 10 milliseconds, the abnormality detection process of FIG. 2 is performed 19 times in total in one phase control cycle. 4 and 5, the abnormality detection process is performed at the timing of the phase angle marked with ⁇ or ⁇ .
  • phase angle at the zero point position at the beginning of the nth phase control cycle is 0 degree and the phase angle at the zero point position at the beginning of the n + 1th phase control cycle is 180 degrees
  • the phase angle of m 1 Is 9 degrees
  • the phase angle at the zero point position at the beginning of the nth phase control cycle is defined as 0 degree
  • the phase angle at the zero point position at the beginning of the n + 1th phase control cycle is defined as 180 degrees.
  • the output current estimation unit 14 estimates a current Ie nm that is an instantaneous current flowing through the thyristor 12 at the timing of monitoring the mth output current in the nth phase control cycle. Under the condition that the heater 5 is not disconnected and the transformer 4 is in a steady state, the waveform of the current (instantaneous current) that flows through the thyristor 12 is a sine wave. Therefore, the current Ie nm that flows through the thyristor 12 is It is estimated as shown in equation (1).
  • Ie nm I peak ⁇ sin ( ⁇ nm ) (1)
  • ⁇ nm is the phase angle (trigger angle) at the timing of monitoring the m-th output current
  • I peak is the peak value of the output current when the current continues to flow for half a cycle, This is a known value calculated from the power supply voltage and the resistance value of the load.
  • the peak value I peak of the output current is a square root of 2 times the effective value Irms, where Irms is the effective value of the output current when the target trigger angle is 100%.
  • the current detector 15 detects the output current (instantaneous current) of the thyristor 12 and outputs a sensor signal proportional to the output current to the output current measuring unit 16.
  • the output current measurement unit 16 actually flows to the thyristor 12 from the sensor signal output from the current detector 15 at the timing when the timing of the m-th abnormality detection process is reached in the n-th phase control cycle.
  • the output current I nm (instantaneous current), which is the current that is being calculated, is calculated (measured).
  • the output current monitoring unit 17 causes the output current measuring unit 16 to perform the timing.
  • the measured output current I nm of the thyristor 12 is acquired (step ST2), the estimated value Ie nm of the current flowing through the thyristor 12 estimated by the output current estimation unit 14 at that timing is acquired, and the estimated current
  • An abnormality determination current K ⁇ Ie nm is calculated by multiplying Ie nm by a certain appropriate coefficient K (step ST3).
  • This coefficient K is a value in the range of “0 ⁇ K ⁇ 1”.
  • K 0.5 will be described.
  • the output current I nm can be regarded as the measurement value at the timing indicated by the target trigger angle [Phi n.
  • step ST3 the abnormality determination current 0.5 ⁇ Ie nm calculated by the output current monitoring unit 17 is obtained when the thyristor 12 is turned on at the timing indicated by the target trigger angle ⁇ n.
  • the estimated value of the current flowing through the thyristor 12 is assumed to be 0.5 times.
  • the output current monitoring unit 17 compares the abnormality determination current 0.5 ⁇ Ie nm calculated in step ST3 with the output current I nm of the thyristor 12 measured by the output current measurement unit 16 (step ST4).
  • the output current I nm of the thyristor 12 is smaller than the abnormality determination current 0.5 ⁇ Ie nm (I nm ⁇ 0.5 ⁇ Ie nm )
  • the abnormality of the output current of the thyristor 12 is recognized and the output current abnormality flag is turned on.
  • (Flag 1) is set (step ST5).
  • the secondary load of the transformer 4 decreases, the output current I nm of the thyristor 12 becomes almost 0 A, and the abnormality determination current 0.5 ⁇ Ie smaller than nm . Even if the switch 2 is opened or the fuse 11 is disconnected, the output current I nm of the thyristor 12 becomes smaller than the abnormality determination current 0.5 ⁇ Ie nm .
  • the trigger angle determination unit 19 executes a control trigger angle ⁇ n determination process every time the zero point detection unit 18 detects the zero point of the power supply voltage. It will be specifically described below determination processing of the trigger angle phi n for control.
  • the trigger angle determination unit 19 detects the nth phase control cycle calculated by the output target value trigger angle conversion unit 13.
  • the target trigger angle ⁇ n is acquired (step ST11 in FIG. 3).
  • the trigger angle determining unit 19 determines the target trigger angle ⁇ n acquired from the output target value trigger angle converting unit 13 as the temporary control trigger angle ⁇ ⁇ n.
  • the trigger angle ⁇ ⁇ n is output to the trigger angle increment control unit 20 (step ST13).
  • the trigger angle determination unit 19 uses a preset small standby trigger angle ⁇ e as a temporary control trigger to prevent the occurrence of an inrush current.
  • the angle ⁇ ⁇ n is determined, and the trigger angle ⁇ ⁇ n is output to the trigger angle increment control unit 20 (step ST14).
  • the standby trigger angle ⁇ e is a trigger angle at which the inrush current flowing through the transformer 4 is smaller than a predetermined allowable current and larger than the minimum current that can be measured by the output current measuring unit 16. (in the angle notation, 19.8 degrees) 11% as a standby trigger angle phi e is set.
  • the trigger angle increment control unit 20 receives the provisional control trigger angle ⁇ ⁇ n from the trigger angle determination unit 19, the preset upper limit value ⁇ (upper limit value for increasing the trigger angle every half cycle) is set. Is compared with the trigger angle ⁇ n ⁇ 1 for control in the first half cycle ( ⁇ n ⁇ 1 + ⁇ ) and the provisional control trigger angle ⁇ ⁇ n received from the trigger angle determination unit 19, It is confirmed whether or not the added value ( ⁇ n ⁇ 1 + ⁇ ) is larger than the provisional control trigger angle ⁇ ⁇ n received from the trigger angle determination unit 19 (step ST15).
  • the trigger angle increment control unit 20 determines the trigger angle phi n for controlling the trigger angle phi ⁇ n for control of the provisional, but outputs the trigger angle phi n thyristor control unit 21 (step ST16), the added value (phi n If ⁇ 1 + ⁇ ) is smaller than the provisional control trigger angle ⁇ ⁇ n received from the trigger angle determination unit 19, the soft start has not yet been completed, so the added value ( ⁇ n ⁇ 1 + ⁇ ) is used as it is. It outputs to the thyristor control part 21 (step ST17).
  • ⁇ n ⁇ n-1 + ⁇
  • the thyristor control unit 21 When receiving the control trigger angle ⁇ n from the trigger angle increment control unit 20, the thyristor control unit 21 turns on the thyristor 12 by causing a current to flow through the gate of the thyristor 12 at the timing indicated by the trigger angle ⁇ n . .
  • the output current I nm of the thyristor 12 is the abnormality determination current 0.5 ⁇ Ie.
  • the output current of the thyristor 12 is recognized as abnormal because it is smaller than nm .
  • the trigger angle ⁇ n for control in the next half cycle (the right half cycle in FIG.
  • the trigger angle determination process for control is repeatedly executed, and when the zero point detection unit 18 detects the zero point of the next power supply voltage (the beginning of the nth phase control cycle), the trigger angle determination unit 19 outputs the output target value trigger.
  • the target trigger angle ⁇ n in the nth phase control cycle calculated by the angle conversion unit 13 is acquired (step ST11).
  • the thyristor control unit 21 When receiving the control trigger angle ⁇ n from the trigger angle increment control unit 20, the thyristor control unit 21 turns on the thyristor 12 by causing a current to flow through the gate of the thyristor 12 at the timing indicated by the trigger angle ⁇ n . .
  • standby trigger angle phi e is 11%
  • the 5% trigger angle ⁇ of the increase is because the trigger angle phi n for control is 16%
  • the target trigger angle ⁇ n is determined to be the temporary control trigger angle ⁇ ⁇ n and the trigger angle ⁇ ⁇ n is output.
  • the output current monitoring unit 17 recognizes an abnormality in the output current.
  • the trigger angle determination unit 19 outputs the trigger angle phi ⁇ n provided
  • the trigger angle increment Control unit 20 triggers Trigger angle phi ⁇ n for control of the provisional output from the determination unit 19, a value obtained by adding the upper limit value ⁇ increase trigger angle relative to the trigger angle phi n-1 for control of the first half cycle ( ⁇ n-1 If it is larger than + ⁇ ), the added value ( ⁇ n ⁇ 1 + ⁇ ) is output as a control trigger angle ⁇ n to the thyristor control unit 21, and the provisional control trigger angle ⁇ ⁇ n is added to the added value ( ⁇ n-1 + ⁇ ), the provisional control trigger angle ⁇ ⁇ n is output to the thyristor control unit 21 as the control trigger angle ⁇ n , so that the primary voltage of the power supply voltage or transformer There is an effect that it is possible to prevent the occurrence of an
  • the power supply state is monitored by accrediting the disconnection of the heater 5 as a load (acknowledging an abnormality in the output current), so the power supply voltage and the voltage on the primary side of the transformer It is possible to prevent an inrush current from being generated in the transformer 4 without mounting a device for monitoring the above. Even if the control object is the transformer 4, it is possible to prevent an inrush current from being generated in the transformer 4 when the AC power supply 1 is turned on or when an instantaneous power failure occurs. Further, even when the AC power supply 1 is continuously turned on and power is supplied only to the transformer 4, it is possible to prevent an inrush current from being generated in the transformer 4.
  • the control trigger angle ⁇ n is set to a small standby angle (standby trigger angle ⁇ e ), there is a possibility that the heater 5 connected to the secondary side of the transformer 4 may be disconnected. It is also possible to prevent the generation of a certain large excitation current.
  • the magnetic flux density at the rated voltage of the transformer 4 is designed to be low.
  • in form 1 since the inrush current to the transformer 4 can be suppressed to a small value in any situation, it becomes possible to use the transformer 4 having a higher magnetic flux density than the conventional one. Miniaturization can be achieved. Moreover, after cutting the wiring between the AC power supply 1 and the power controller 3 with the switch 2, the effect of suppressing the inrush current when reconnected with the switch 2 can be expected.
  • FIG. 7 an example in which the heater 5 is connected to the secondary side of the transformer 4 is shown.
  • the heater 5 is connected via a switch 30 such as a relay or a breaker. 5 may be connected to the secondary side of the transformer 4.
  • the power controller 3 detects a decrease in the output current of the thyristor 12 as in the first embodiment, and sets the control trigger angle ⁇ n to the standby state.
  • the trigger angle standby trigger angle ⁇ e
  • the processing content itself of the power controller 3 is the same as that in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Transformers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)
  • Control Of Electrical Variables (AREA)
  • Rectifiers (AREA)

Abstract

A power controller is provided with a trigger angle determination unit (19), which determines a preliminarily-set standby trigger angle (φe) as a provisional control trigger angle (φˆn), and outputs the trigger angle (φˆn), when an output current monitoring unit (17) recognizes the abnormality of an output current. The trigger angle determination unit (19) determines a target trigger angle (Φn) calculated by an output-target trigger angle convertor (13) as a provisional control trigger angle (φˆn), and outputs the trigger angle (φˆn), when the output current monitoring unit (17) does not recognize the abnormality of the output current. A trigger-angle increment regulator (20) determines a control trigger angle (φn), for which a rapid increase in trigger angle has been prevented, on the basis of the provisional control trigger angle (φˆn) output from the trigger angle determination unit (19), and outputs the trigger angle (φn) to a thyristor control unit (21).

Description

電力制御器及び電力制御方法Power controller and power control method
 この発明は、2次側にヒーターが接続されているトランス(変圧器)の1次側に供給する電力を制御する電力制御器及び電力制御方法に関するものである。 The present invention relates to a power controller and a power control method for controlling power supplied to a primary side of a transformer (transformer) having a heater connected to a secondary side.
 2次側にヒーターが接続されているトランスの1次側に供給する電力を制御する電力制御器では、そのトランスの1次側に接続されているサイリスタがターンオン(点弧)するタイミングを制御する位相制御方式が用いられることが多い。
 このような電力制御器では、多くの電力をトランスの1次側に供給する場合、サイリスタがターンオンするタイミングを示すトリガ角(位相角)を大きくするが、電源投入時などの位相制御の開始時に、大きなトリガ角でサイリスタをターンオンさせると、大きな突入電流がトランスに流れる。
In the power controller that controls the power supplied to the primary side of the transformer whose heater is connected to the secondary side, the timing for turning on (igniting) the thyristor connected to the primary side of the transformer is controlled. A phase control method is often used.
In such a power controller, when a large amount of power is supplied to the primary side of the transformer, the trigger angle (phase angle) indicating the timing at which the thyristor is turned on is increased, but at the start of phase control such as when the power is turned on. When the thyristor is turned on with a large trigger angle, a large inrush current flows through the transformer.
 このような突入電流の発生を防止するため、位相制御の開始時には、小さなトリガ角でサイリスタをターンオンさせて、徐々にトリガ角を大きくする方法(ソフトスタート方式)が用いられることがある(例えば、特許文献1を参照)。
 なお、ソフトスタート方式を用いる場合、電源電圧やトランスの1次側の電圧を監視し、その電圧が零値から所定値に変化すると、小さなトリガ角から目標のトリガ角まで徐々にトリガ角を変化させてサイリスタをターンオンさせるようにする。
In order to prevent the occurrence of such inrush current, a method (soft start method) of gradually increasing the trigger angle by turning on the thyristor with a small trigger angle may be used at the start of phase control (for example, (See Patent Document 1).
When using the soft start method, the power supply voltage and the voltage on the primary side of the transformer are monitored, and when the voltage changes from zero to a predetermined value, the trigger angle gradually changes from a small trigger angle to the target trigger angle. To turn on the thyristor.
特開平6-165366号公報JP-A-6-165366
 従来の電力制御器は以上のように構成されているので、電源電圧やトランスの1次側の電圧を監視し、その電圧が零値から所定値に変化していることを検知すれば、小さなトリガ角でサイリスタをターンオンさせることで、突入電流の発生を防止することができる。しかし、電源電圧やトランスの1次側の電圧を監視する機器が必要になり、装置構成が複雑になるという課題があった。 Since the conventional power controller is configured as described above, if the power supply voltage or the voltage on the primary side of the transformer is monitored and it is detected that the voltage has changed from a zero value to a predetermined value, the power controller is small. By turning on the thyristor at the trigger angle, inrush current can be prevented. However, a device for monitoring the power supply voltage and the voltage on the primary side of the transformer is required, which causes a problem that the device configuration becomes complicated.
 この発明は上記のような課題を解決するためになされたもので、電源電圧やトランスの1次側の電圧を監視する機器を搭載することなく、突入電流の発生を防止することができる電力制御器及び電力制御方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and can control the occurrence of inrush current without mounting a device for monitoring the power supply voltage or the voltage on the primary side of the transformer. It is an object to obtain a measuring device and a power control method.
 この発明に係る電力制御器は、変圧器の2次側に接続されている負荷に供給する電力の目標値を算出する調節計より出力される目標信号から、その変圧器の1次側に供給する電力を調整するスイッチング素子の点弧のタイミングを示す目標トリガ角を算出する目標トリガ角算出手段と、目標トリガ角算出手段により算出された目標トリガ角が示すタイミングでスイッチング素子が点弧された場合に、そのスイッチング素子に流れる電流を推定する電流推定手段と、スイッチング素子に実際に流れている電流を測定する電流測定手段と、電流測定手段により測定された電流が電流推定手段により推定された電流よりも予め設定された所定の値または所定の割合以上小さい場合、そのスイッチング素子に流れている電流の異常を認定する異常認定手段と、異常認定手段により電流の異常が認定された場合、予め設定されている待機時トリガ角を制御用のトリガ角に決定して、その制御用のトリガ角を出力するとともに、その制御用のトリガ角を出力している状態で、異常認定手段により電流の異常が認定されなくなれば、その制御用のトリガ角が、その待機時トリガ角から目標トリガ角算出手段により算出された目標トリガ角に到達するまで、制御用のトリガ角を徐々に大きくしながら、そのトリガ角を出力する制御用トリガ角決定手段とを設け、スイッチング素子制御手段が、制御用トリガ角決定手段から出力されたトリガ角が示すタイミングでスイッチング素子を点弧するようにしたものである。 The power controller according to the present invention is supplied to the primary side of the transformer from the target signal output from the controller that calculates the target value of the power supplied to the load connected to the secondary side of the transformer. The target trigger angle calculating means for calculating the target trigger angle indicating the timing of firing the switching element for adjusting the power to be switched, and the switching element is fired at the timing indicated by the target trigger angle calculated by the target trigger angle calculating means. The current estimation means for estimating the current flowing through the switching element, the current measurement means for measuring the current actually flowing through the switching element, and the current measured by the current measurement means is estimated by the current estimation means. If the current is smaller than the current by a predetermined value or a predetermined ratio, the abnormality recognition that identifies the abnormality of the current flowing through the switching element If the current abnormality is recognized by the means and the abnormality recognition means, the preset standby trigger angle is determined as the control trigger angle, and the control trigger angle is output and the control If an abnormality in current is not recognized by the abnormality recognition means while the trigger angle is being output, the trigger angle for control is the target trigger angle calculated by the target trigger angle calculation means from the standby trigger angle. The control trigger angle determining means for outputting the trigger angle while gradually increasing the control trigger angle until the control element reaches the trigger angle, and the switching element control means outputs the trigger output from the control trigger angle determining means. The switching element is ignited at the timing indicated by the corner.
 この発明に係る電力制御器は、制御用トリガ角決定手段が、異常認定手段により電流の異常が認定されない場合、目標トリガ角算出手段により算出された目標トリガ角を制御用のトリガ角としてスイッチング素子制御手段に出力するようにしたものである。 In the power controller according to the present invention, when the control trigger angle determining means determines that the abnormality of the current is not recognized by the abnormality recognition means, the switching element with the target trigger angle calculated by the target trigger angle calculation means as the control trigger angle. This is output to the control means.
 この発明に係る電力制御器は、異常認定手段により電流の異常が認定されて、スイッチング素子制御手段によりスイッチング素子が待機時トリガ角で点弧された際に、変圧器に流れる突入電流が、所定の許容電流よりも小さくなり、かつ、電流測定手段により測定可能な最小電流よりも大きくなるトリガ角が、待機時トリガ角として、制御用トリガ角決定手段に設定されているようにしたものである。 In the power controller according to the present invention, when the abnormality of the current is recognized by the abnormality recognition unit and the switching element is ignited at the standby trigger angle by the switching element control unit, the inrush current flowing through the transformer is a predetermined value. The trigger angle that is smaller than the allowable current and larger than the minimum current measurable by the current measuring means is set in the control trigger angle determining means as the standby trigger angle. .
 この発明に係る電力制御方法は、目標トリガ角算出手段が、変圧器の2次側に接続されている負荷に供給する電力の目標値を算出する調節計より出力される目標信号から、変圧器の1次側に供給する電力を調整するスイッチング素子の点弧のタイミングを示す目標トリガ角を算出する目標トリガ角算出処理ステップと、電流推定手段が、目標トリガ角算出処理ステップで算出された目標トリガ角が示すタイミングでスイッチング素子が点弧された場合に、そのスイッチング素子に流れる電流を推定する電流推定処理ステップと、電流測定手段が、スイッチング素子に実際に流れている電流を測定する電流測定処理ステップと、異常認定手段が、電流測定処理ステップで測定された電流が電流推定処理ステップで推定された電流よりも予め設定された所定の値または所定の割合以上小さい場合、スイッチング素子に流れている電流の異常を認定する異常認定処理ステップと、制御用トリガ角決定手段が、異常認定処理ステップで電流の異常が認定された場合、予め設定されている待機時トリガ角を制御用のトリガ角に決定して、その制御用のトリガ角を出力するとともに、その制御用のトリガ角を出力している状態で、異常認定処理ステップで電流の異常が認定されなくなれば、その制御用のトリガ角が、その待機時トリガ角から目標トリガ角算出手段により算出された目標トリガ角に到達するまで、制御用のトリガ角を徐々に大きくしながら、そのトリガ角を出力する制御用トリガ角決定処理ステップとを備えるようにしたものである。 According to the power control method of the present invention, the target trigger angle calculating means is configured to convert the transformer from a target signal output from a controller that calculates a target value of power supplied to a load connected to the secondary side of the transformer. A target trigger angle calculation processing step for calculating a target trigger angle indicating the timing of ignition of the switching element that adjusts the power supplied to the primary side, and a target estimated by the current estimation means calculated in the target trigger angle calculation processing step. When a switching element is ignited at the timing indicated by the trigger angle, a current estimation processing step for estimating a current flowing through the switching element and a current measurement unit for measuring a current actually flowing through the switching element The processing step and the abnormality recognition means are configured in advance so that the current measured in the current measurement processing step is greater than the current estimated in the current estimation processing step. When the measured value is smaller than a predetermined value or a predetermined ratio, the abnormality recognition processing step for certifying abnormality of the current flowing through the switching element and the control trigger angle determination means are recognized as abnormal in the current in the abnormality qualification processing step. If the trigger angle for standby is set as the trigger angle for control, the trigger angle for control is output, and the trigger angle for control is output, the abnormality is recognized. If no current abnormality is recognized in the processing step, the control trigger angle is gradually increased until the control trigger angle reaches the target trigger angle calculated by the target trigger angle calculation means from the standby trigger angle. And a control trigger angle determination processing step for outputting the trigger angle.
 この発明によれば、電源電圧やトランスの1次側の電圧を監視する機器を搭載することなく、突入電流の発生を防止することができる効果がある。 According to the present invention, it is possible to prevent the occurrence of an inrush current without mounting a device for monitoring the power supply voltage or the voltage on the primary side of the transformer.
この発明の実施の形態1による電力制御器を示す構成図である。It is a block diagram which shows the power controller by Embodiment 1 of this invention. この発明の実施の形態1による電力制御器が出力電流の異常を検知する処理内容を示すフローチャートである。It is a flowchart which shows the processing content in which the electric power controller by Embodiment 1 of this invention detects abnormality of an output current. この発明の実施の形態1による電力制御器が制御用のトリガ角を決定する処理内容を示すフローチャートである。It is a flowchart which shows the processing content which the electric power controller by Embodiment 1 of this invention determines the trigger angle for control. 出力電流の異常が検知されない場合の電力制御器の処理タイミングを示す説明図である。It is explanatory drawing which shows the process timing of the electric power controller when the abnormality of an output current is not detected. 出力電流の異常が検知された場合の電力制御器の処理タイミングを示す説明図である。It is explanatory drawing which shows the process timing of a power controller when abnormality of an output current is detected. 出力電流が異常から正常に戻り、ソフトスタートが始まった場合の処理タイミングを示す説明図である。It is explanatory drawing which shows the process timing when an output current returns from abnormality to normal and a soft start begins. この発明の実施の形態2による電力制御器を示す構成図である。It is a block diagram which shows the power controller by Embodiment 2 of this invention.
実施の形態1.
 図1はこの発明の実施の形態1による電力制御器を示す構成図である。
 図1において、電力制御器3は交流電源1と開閉器2(例えば、リレーやブレーカーなど)を介して接続されており、開閉器2が閉じている状態のとき交流電源1から電力の供給を受けて、トランス4の1次側に供給する電力を位相制御によって調整するスイッチング素子であるサイリスタ12を実装している。サイリスタ12の1次側にはヒューズ11が接続されている。
 この実施の形態1では、スイッチング素子としてサイリスタ12が実装されている例を示しているが、これに限るものではなく、例えば、スイッチング素子としてトライアックなどが実装されていてもよい。
Embodiment 1 FIG.
1 is a block diagram showing a power controller according to Embodiment 1 of the present invention.
In FIG. 1, a power controller 3 is connected to an AC power source 1 via a switch 2 (for example, a relay or a breaker), and supplies power from the AC power source 1 when the switch 2 is closed. In response, a thyristor 12 that is a switching element that adjusts the power supplied to the primary side of the transformer 4 by phase control is mounted. A fuse 11 is connected to the primary side of the thyristor 12.
In the first embodiment, an example in which the thyristor 12 is mounted as a switching element is shown. However, the present invention is not limited to this. For example, a triac or the like may be mounted as a switching element.
 トランス4は1次側に接続されている電力制御器3から電力の供給を受けて、2次側に接続されているヒーター5に電力を供給する変圧器である。
 負荷であるヒーター5は被制御対象6を加熱する熱源であり、被制御対象6には温度センサ7が取り付けられている。
The transformer 4 is a transformer that receives power from the power controller 3 connected to the primary side and supplies power to the heater 5 connected to the secondary side.
The heater 5 as a load is a heat source for heating the controlled object 6, and a temperature sensor 7 is attached to the controlled object 6.
 温度センサ7は被制御対象6の温度を測定し、その温度を示すセンサ信号を温度調節計8に出力する計測器である。
 温度調節計8は温度センサ7から出力されたセンサ信号が示す温度を予め設定されている目標温度と一致させる出力の目標信号を算出して、その目標信号を電力制御器3に出力する処理を実施する。
The temperature sensor 7 is a measuring instrument that measures the temperature of the controlled object 6 and outputs a sensor signal indicating the temperature to the temperature controller 8.
The temperature controller 8 calculates a target signal for output that matches the temperature indicated by the sensor signal output from the temperature sensor 7 with a preset target temperature, and outputs the target signal to the power controller 3. carry out.
 零点検出部18は電源電圧の零点を検出する処理を実施する。
 出力目標値トリガ角変換部13は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、温度調節計8から出力された目標信号から、サイリスタ12がターンオン(点弧)するタイミングを示す目標トリガ角Φを算出する処理をゼロ点検出タイミング毎に実施する。
 具体的には、出力目標値トリガ角変換部13は、例えば、温度調節計8から出力される目標信号を電力の目標値として、電力値と目標トリガ角Φの対応関係を示すテーブルを内蔵しており、そのテーブルを参照して、その目標信号に対応する目標トリガ角Φを出力する処理を実施する。なお、出力目標値トリガ角変換部13は目標トリガ角算出手段を構成している。
The zero point detection unit 18 performs processing for detecting the zero point of the power supply voltage.
The output target value trigger angle conversion unit 13 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer, and the thyristor 12 is turned on (point-on) from the target signal output from the temperature controller 8. The process of calculating the target trigger angle Φ n indicating the timing of arcing is performed at every zero point detection timing.
Specifically, the output target value trigger angle conversion unit 13 includes, for example, a table indicating the correspondence between the power value and the target trigger angle Φ n using the target signal output from the temperature controller 8 as the target value of power. Referring to the table, a process of outputting the target trigger angle Φ n corresponding to the target signal is performed. The output target value trigger angle converter 13 constitutes a target trigger angle calculation unit.
 出力電流推定部14は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、トリガ角増分制御部20から出力される制御用トリガ角のタイミングでサイリスタ12がターンオンされた場合に、そのサイリスタ12に流れる電流である出力電流の推定値Ienmを出力電流監視のタイミング毎に算出する処理を実施する。出力電流監視のタイミングは、電源サイクルの半サイクルの期間中に複数回あり、この実施の形態1では、半サイクルの期間を20等分した時間毎に出力電流監視のタイミングが発生するものとする。なお、出力電流推定部14は電流推定手段を構成している。 The output current estimation unit 14 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and the thyristor 12 is turned on at the timing of the control trigger angle output from the trigger angle increment control unit 20. In such a case, a process of calculating an estimated value Ie nm of the output current that is a current flowing through the thyristor 12 is performed at each output current monitoring timing. The output current monitoring timing is a plurality of times during the half cycle period of the power supply cycle. In the first embodiment, the output current monitoring timing is generated every time when the half cycle period is divided into 20 equal parts. . The output current estimation unit 14 constitutes current estimation means.
 電流検出器15は例えばCT(Current Transformer)などから構成されており、サイリスタ12に実際に流れている電流を検出し、その電流に比例するセンサ信号を出力する。
 出力電流測定部16は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、電流検出器15から出力されたセンサ信号から、実際に、サイリスタ12に流れている電流である出力電流Inmを測定する処理を出力電流監視のタイミング毎に実施する。なお、電流検出器15及び出力電流測定部16から電流測定手段が構成されている。
The current detector 15 is composed of, for example, a CT (Current Transformer) and the like, detects a current actually flowing through the thyristor 12, and outputs a sensor signal proportional to the current.
The output current measuring unit 16 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and actually flows to the thyristor 12 from the sensor signal output from the current detector 15. A process for measuring the output current Inm , which is a current, is performed at each output current monitoring timing. The current detector 15 and the output current measuring unit 16 constitute current measuring means.
 出力電流監視部17は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、出力電流推定部14により算出された出力電流の推定値Ienmを受け取ると、その推定値Ienmに所定の係数(例えば、0.5)を乗算することで、サイリスタ12に流れる電流の異常を認定する際の異常判断電流I^enm(I^enm=Ienm×所定の係数)を算出する処理を実施する。 また、出力電流監視部17は算出した異常判断電流I^enmと、出力電流測定部16により測定されたサイリスタ12の出力電流Inmを比較し、測定値であるサイリスタ12の出力電流Inmが異常判断電流I^enmよりも小さい場合(Inm<I^enm)、サイリスタ12の出力電流の異常を認定する処理を出力電流監視のタイミング毎に実施する。なお、出力電流監視部17は異常認定手段を構成している。
 ここでは、出力電流監視部17が、出力電流推定部14により算出された出力電流の推定値Ienmに所定の係数を乗算することで異常判断電流I^enmを算出し、サイリスタ12の出力電流Inmが異常判断電流I^enmよりも小さい場合(測定値であるサイリスタ12の出力電流Inmが出力電流の推定値Ienmよりも所定の割合以上小さい場合)、サイリスタ12の出力電流の異常を認定する例を説明するが、出力電流推定部14により算出された出力電流の推定値Ienmに所定の定数を加算することで異常判断電流I^enm(I^enm=Ienm+所定の定数)を算出し、サイリスタ12の出力電流Inmが異常判断電流I^enmよりも小さい場合(測定値であるサイリスタ12の出力電流Inmが出力電流の推定値Ienmよりも所定の値以上小さい場合)、サイリスタ12の出力電流の異常を認定するようにしてもよい。
The output current monitoring unit 17 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer. When the output current estimation unit Ie nm calculated by the output current estimation unit 14 is received, predetermined coefficient estimates Ie nm (e.g., 0.5) by multiplying the abnormality determination current when qualifying the abnormality of current flowing through the thyristor 12 I ^ e nm (I ^ e nm = Ie nm × predetermined The coefficient is calculated. Also, it compared the output current monitor section 17 and the abnormality determination current I ^ e nm calculated, the output current I nm the measured thyristor 12 by the output current measuring unit 16, the output current I nm of the thyristor 12 is a measure Is smaller than the abnormality determination current I ^ e nm (I nm <I ^ e nm ), the process for identifying the abnormality of the output current of the thyristor 12 is performed at each output current monitoring timing. The output current monitoring unit 17 constitutes an abnormality recognition unit.
Here, the output current monitoring unit 17 calculates an abnormality determination current I ^ e nm by multiplying the estimated value Ie nm of the output current calculated by the output current estimation unit 14 by a predetermined coefficient, and outputs the thyristor 12. When the current I nm is smaller than the abnormality determination current I ^ e nm (when the output current I nm of the thyristor 12 as a measured value is smaller than the estimated value Ie nm of the output current by a predetermined ratio or more), the output current of the thyristor 12 an example will be described to certify the abnormality, by adding a predetermined constant to estimate Ie nm output current calculated by the output current estimation unit 14 abnormality determination current I ^ e nm (I ^ e nm = Ie nm + predetermined constant) and when the output current I nm of the thyristor 12 is smaller than the abnormality determination current I ^ e nm (the measured value of the output current I nm of the thyristor 12 is the output current). When the current value is smaller than the estimated value Ie nm by a predetermined value or more), an abnormality in the output current of the thyristor 12 may be recognized.
 トリガ角判定部19は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、零点検出部18により電源電圧の零点が検出される毎に、暫定の制御用のトリガ角φ^を決定する処理を実施する。
 即ち、トリガ角判定部19は前半サイクルにおいて、出力電流監視部17により出力電流が正常であると認定された場合、出力目標値トリガ角変換部13で算出された目標トリガ角Φを暫定の制御用のトリガ角φ^に決定する一方、前半サイクルにおいて、出力電流監視部17により出力電流の異常が認定された場合、予め設定されている待機時トリガ角φを暫定の制御用のトリガ角φ^に決定する処理を実施する。
 なお、待機時トリガ角φは、トランス4に流れる位相制御開始時の突入電流が、所定の許容電流(例えば、トランス4の定格電流)よりも小さくなり、かつ、出力電流測定部16により測定可能な最小電流よりも大きくなるトリガ角である。
The trigger angle determination unit 19 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer. Every time the zero point of the power supply voltage is detected by the zero point detection unit 18, the trigger angle determination unit 19 is used for temporary control. Processing for determining the trigger angle φ ^ n is performed.
That is, when the output current monitoring unit 17 determines that the output current is normal in the first half cycle, the trigger angle determination unit 19 uses the target trigger angle Φ n calculated by the output target value trigger angle conversion unit 13 as a temporary provision. While the control trigger angle φ ^ n is determined, if the output current monitoring unit 17 recognizes an abnormality in the output current in the first half cycle, the preset standby trigger angle φ e is set for the provisional control. Processing to determine the trigger angle φ ^ n is performed.
The standby trigger angle φ e is measured by the output current measuring unit 16 when the inrush current at the start of phase control flowing through the transformer 4 becomes smaller than a predetermined allowable current (for example, the rated current of the transformer 4). The trigger angle is greater than the minimum possible current.
 トリガ角増分制御部20は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、トリガ角判定部19から出力された暫定の制御用のトリガ角φ^と、前半サイクルのトリガ角φn-1に対して予め設定された所定の増分Δφを加算した値(φn-1+Δφ)とを比較し、そのトリガ角φ^が当該加算値(φn-1+Δφ)より大きい場合には、その加算値(φn-1+Δφ)を制御用のトリガ角φとして、その加算値(φn-1+Δφ)をサイリスタ制御部21に出力し、そのトリガ角φ^が当該加算値(φn-1+Δφ)より大きくない場合には、そのトリガ角φ^を制御用のトリガ角φとして、そのトリガ角φ^をサイリスタ制御部21に出力する処理をゼロ点検出タイミング毎に実施する。
 なお、零点検出部18、トリガ角判定部19及びトリガ角増分制御部20から制御用トリガ角決定手段が構成されている。
The trigger angle increment control unit 20 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, or a one-chip microcomputer, and the provisional control trigger angle φ ^ n output from the trigger angle determination unit 19 The trigger angle φ n−1 of the first half cycle is compared with a value obtained by adding a predetermined increment Δφ set in advance (φ n−1 + Δφ), and the trigger angle φ ^ n is compared with the added value (φ n −1 + Δφ), the added value (φ n−1 + Δφ) is set as the trigger angle φ n for control, and the added value (φ n−1 + Δφ) is output to the thyristor control unit 21. When the trigger angle φ ^ n is not larger than the added value (φ n-1 + Δφ), the trigger angle φ ^ n is set as the control trigger angle φ n and the trigger angle φ ^ n is set as the thyristor control unit 21. Process to output to zero point detection timing Implementation to each.
The zero point detection unit 18, the trigger angle determination unit 19, and the trigger angle increment control unit 20 constitute a control trigger angle determination means.
 サイリスタ制御部21はトリガ角増分制御部20から出力されたトリガ角φが示すタイミングでサイリスタ12のゲートに電流を流すことで、そのサイリスタ12をターンオンさせる制御回路である。なお、サイリスタ制御部21はスイッチング素子制御手段を構成している。 Thyristor control unit 21 by supplying a current to the gate of the thyristor 12 at the timing indicated by the trigger angle phi n output from the trigger angle increment controller 20 is a control circuit for turning on the thyristor 12. The thyristor control unit 21 constitutes switching element control means.
 図1の例では、電力制御器の構成要素であるヒューズ11、サイリスタ12、出力目標値トリガ角変換部13、出力電流推定部14、電流検出器15、出力電流測定部16、出力電流監視部17、零点検出部18、トリガ角判定部19、トリガ角増分制御部20及びサイリスタ制御部21のそれぞれが専用のハードウェアで構成されているものを想定しているが、電力制御器の全部又は一部がコンピュータで構成されていてもよい。
 例えば、電力制御器の一部(例えば、出力目標値トリガ角変換部13、出力電流推定部14、出力電流測定部16、出力電流監視部17、零点検出部18、トリガ角判定部19、トリガ角増分制御部20、サイリスタ制御部21)をコンピュータで構成する場合、出力目標値トリガ角変換部13、出力電流推定部14、出力電流測定部16、出力電流監視部17、零点検出部18、トリガ角判定部19、トリガ角増分制御部20及びサイリスタ制御部21の処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
In the example of FIG. 1, the fuse 11, the thyristor 12, the output target value trigger angle conversion unit 13, the output current estimation unit 14, the current detector 15, the output current measurement unit 16, and the output current monitoring unit, which are components of the power controller. 17, the zero point detection unit 18, the trigger angle determination unit 19, the trigger angle increment control unit 20, and the thyristor control unit 21 are assumed to be configured by dedicated hardware. A part may be composed of a computer.
For example, a part of the power controller (for example, output target value trigger angle conversion unit 13, output current estimation unit 14, output current measurement unit 16, output current monitoring unit 17, zero point detection unit 18, trigger angle determination unit 19, trigger When the angle increment control unit 20 and the thyristor control unit 21) are configured by a computer, the output target value trigger angle conversion unit 13, the output current estimation unit 14, the output current measurement unit 16, the output current monitoring unit 17, the zero point detection unit 18, A program describing the processing contents of the trigger angle determination unit 19, the trigger angle increment control unit 20, and the thyristor control unit 21 is stored in the memory of a computer, and the CPU of the computer executes the program stored in the memory. What should I do?
 図2はこの発明の実施の形態1による電力制御器が出力電流の異常を検知する処理内容を示すフローチャートであり、出力電流監視のタイミング毎に処理される。
 また、図3はこの発明の実施の形態1による電力制御器が制御用のトリガ角を決定する処理内容を示すフローチャートであり、ゼロ点検出タイミング毎に処理される。
 図4、図5及び図6は電力制御器の処理タイミングを示す説明図であり、特に、図4は出力電流監視部17により出力電流の異常が検知されない場合の処理タイミングを示し、図5は出力電流監視部17により出力電流の異常が検知された場合の処理タイミングを示している。また、図6は出力電流が異常から正常に戻り、ソフトスタートが始まった場合の処理タイミングを示している。
FIG. 2 is a flowchart showing the contents of processing in which the power controller according to Embodiment 1 of the present invention detects an abnormality in the output current, and is processed at every output current monitoring timing.
FIG. 3 is a flowchart showing the processing contents for determining the control trigger angle by the power controller according to the first embodiment of the present invention, which is processed at each zero point detection timing.
4, 5 and 6 are explanatory diagrams showing the processing timing of the power controller. In particular, FIG. 4 shows the processing timing when the output current monitoring unit 17 does not detect an abnormality in the output current, and FIG. The processing timing when an output current abnormality is detected by the output current monitoring unit 17 is shown. FIG. 6 shows the processing timing when the output current returns from normal to normal and soft start begins.
 次に動作について説明する。
 温度センサ7は、被制御対象6の温度を測定し、その温度を示すセンサ信号を温度調節計8に出力する。
 温度調節計8は、温度センサ7からセンサ信号を受けると、そのセンサ信号が示す温度が予め設定されている目標温度と一致するような目標信号を算出して、その目標信号を電力制御器3に出力する。
 例えば、温度調節計8がPIDコントローラ(Proportional Integral Derivative Controller)を内蔵している調節計であれば、温度調節計8のPIDコントローラが、温度センサ7から出力されたセンサ信号が示す温度と予め設定されている目標温度との偏差を入力して、その偏差に対するPID演算を実施し、その演算結果を目標信号として電力制御器3に出力する。
Next, the operation will be described.
The temperature sensor 7 measures the temperature of the controlled object 6 and outputs a sensor signal indicating the temperature to the temperature controller 8.
When the temperature controller 8 receives the sensor signal from the temperature sensor 7, the temperature controller 8 calculates a target signal such that the temperature indicated by the sensor signal matches a preset target temperature, and uses the target signal as the power controller 3. Output to.
For example, if the temperature controller 8 has a built-in PID controller (Proportional Integral Derivative Controller), the PID controller of the temperature controller 8 is preset with the temperature indicated by the sensor signal output from the temperature sensor 7. A deviation from the target temperature is input, PID calculation is performed on the deviation, and the calculation result is output to the power controller 3 as a target signal.
 出力目標値トリガ角変換部13は、温度調節計8から目標信号を受けると、その目標信号から、n番目の位相制御サイクルで、サイリスタ12がターンオンするタイミングを示す目標トリガ角Φを算出し、その目標トリガ角Φをトリガ角判定部19に出力する。
 例えば、出力目標値トリガ角変換部13が、予め目標信号(電力の目標値)と目標トリガ角Φの対応関係を示すテーブルを内蔵している場合、そのテーブルから、温度調節計8から出力された目標信号に対応する目標トリガ角Φを読み出し、その目標トリガ角Φをトリガ角判定部19に出力する。
When receiving the target signal from the temperature controller 8, the output target value trigger angle conversion unit 13 calculates the target trigger angle Φ n indicating the timing at which the thyristor 12 is turned on in the nth phase control cycle from the target signal. The target trigger angle Φ n is output to the trigger angle determination unit 19.
For example, when the output target value trigger angle conversion unit 13 has a built-in table indicating the correspondence relationship between the target signal (target value of power) and the target trigger angle Φ n in advance, output from the temperature controller 8 from the table. The target trigger angle Φ n corresponding to the received target signal is read, and the target trigger angle Φ n is output to the trigger angle determination unit 19.
 この実施の形態1では、交流電源1の電源半サイクルが位相制御サイクルであり、電源周波数が50Hzである場合、電源半サイクルが10m秒であるため、位相制御周期は、10m秒である。
 このため、出力目標値トリガ角変換部13は、10m秒毎に、目標トリガ角Φを算出する。Φの添え字であるnは何番目の位相制御サイクルであるかを示す変数である。
 図4及び図5では、n番目の位相制御サイクルの目標トリガ角Φとして、51%が算出されている例を示している。この51%は、1つの位相制御サイクル内で、サイリスタ12がオンする期間を百分率で表している。
 なお、この実施の形態1では、制御用のトリガ角φ(=目標トリガ角Φ)はサイリスタがオンの期間の角度を現す形式とするために、トリガタイミングからその位相制御サイクルの終了時のゼロ点までの角度の値としている。よって、制御用のトリガ角φが、例えば、51%の場合は、位相制御サイクルの開始時のゼロ点からトリガタイミングまでの角度は49%となる。
 図4、図5及び図6の横軸の目盛は、最初のゼロ点位置の角度を0%としているため、制御用のトリガ角φが51%の場合は横軸の目盛の49%の位置がトリガタイミングになっている。
In the first embodiment, when the power supply half cycle of the AC power supply 1 is a phase control cycle and the power supply frequency is 50 Hz, the power supply half cycle is 10 milliseconds, so the phase control period is 10 milliseconds.
For this reason, the output target value trigger angle conversion unit 13 calculates the target trigger angle Φ n every 10 milliseconds. The subscript n of Φ is a variable indicating what phase control cycle it is.
4 and 5 show an example in which 51% is calculated as the target trigger angle Φ n of the nth phase control cycle. The 51% represents a period during which the thyristor 12 is turned on in one phase control cycle.
In the first embodiment, the control trigger angle φ n (= target trigger angle Φ n ) has a form in which the thyristor is turned on, and therefore, from the trigger timing to the end of the phase control cycle. The value of the angle up to the zero point. Therefore, when the control trigger angle φ n is 51%, for example, the angle from the zero point at the start of the phase control cycle to the trigger timing is 49%.
4, 5, and 6, the angle of the first zero point position is set to 0%. Therefore, when the control trigger angle φ n is 51%, the horizontal scale is 49% of the scale of the horizontal axis. The position is the trigger timing.
 また、この実施の形態1では、図2の異常検知処理を0.5m秒毎に実施するものとする。
 位相制御周期が10m秒であるため、図2の異常検知処理は、1つの位相制御サイクルの中で、合計、19回の異常検知処理が実施される。図4及び図5では、↑又は↓が付記されている位相角のタイミングで異常検知処理が実施される。
 以下、n番目の位相制御サイクルの中で、何番目の異常検知処理であるかを示す変数として、「m」を用いるものとする。m=1,2,3,・・・,19である。
 例えば、n番目の位相制御サイクルの冒頭における零点の位置での位相角を0度、n+1番目の位相制御サイクルの冒頭における零点の位置での位相角を180度とすると、m=1の位相角は9度、m=2の位相角は18度、・・・、m=10の位相角は90度、・・・、m=19の位相角は171度である。
 目標トリガ角Φ(=51%)を百分率ではなく、上記の位相角と同様に角度で表すと、目標トリガ角Φは、88.2度(=(100-51)×180/100))になる。
In the first embodiment, the abnormality detection process of FIG. 2 is performed every 0.5 milliseconds.
Since the phase control cycle is 10 milliseconds, the abnormality detection process of FIG. 2 is performed 19 times in total in one phase control cycle. 4 and 5, the abnormality detection process is performed at the timing of the phase angle marked with ↑ or ↓.
Hereinafter, “m” is used as a variable indicating what number abnormality detection process is in the n-th phase control cycle. m = 1, 2, 3,...
For example, when the phase angle at the zero point position at the beginning of the nth phase control cycle is 0 degree and the phase angle at the zero point position at the beginning of the n + 1th phase control cycle is 180 degrees, the phase angle of m = 1 Is 9 degrees, m = 2 has a phase angle of 18 degrees,..., M = 10 has a phase angle of 90 degrees, and m = 19 has a phase angle of 171 degrees.
When the target trigger angle Φ n (= 51%) is expressed not in percentage but in the same manner as the above phase angle, the target trigger angle Φ n is 88.2 degrees (= (100−51) × 180/100). )become.
 この実施の形態1では、n番目の位相制御サイクルの冒頭における零点の位置での位相角が0度、n+1番目の位相制御サイクルの冒頭における零点の位置での位相角が180度であると定義して、以下の説明を行う。
 ただし、この位相角の定義の仕方は一例に過ぎず、n番目の位相制御サイクルの冒頭における零点の位置での位相角が180度、n+1番目の位相制御サイクルの冒頭における零点の位置での位相角が0度であると定義すれば、m=1の位相角は171度、m=2の位相角は162度、・・・、m=10の位相角は90度、・・・、m=19の位相角は9度となる。
In the first embodiment, the phase angle at the zero point position at the beginning of the nth phase control cycle is defined as 0 degree, and the phase angle at the zero point position at the beginning of the n + 1th phase control cycle is defined as 180 degrees. Then, the following explanation will be given.
However, this definition of the phase angle is merely an example, and the phase angle at the zero point position at the beginning of the nth phase control cycle is 180 degrees, and the phase at the zero point position at the beginning of the (n + 1) th phase control cycle. If the angle is defined as 0 degree, the phase angle of m = 1 is 171 degrees, the phase angle of m = 2 is 162 degrees,..., M = 10 is 90 degrees,. = 19, the phase angle is 9 degrees.
 出力電流推定部14は、n番目の位相制御サイクル内のm番目の出力電流監視のタイミングで、そのサイリスタ12に流れる瞬時電流である電流Ienmを推定する。
 ヒーター5が断線しておらず、トランス4が定常状態である条件の下では、サイリスタ12に流れる電流(瞬時電流)の波形は正弦波になるため、サイリスタ12に流れる電流Ienmは、下記の式(1)に示すように推定される。
   Ienm=Ipeak・sin(φnm)          (1)
 式(1)において、φnmはm番目の出力電流監視のタイミングでの位相角(トリガ角)であり、Ipeakは半サイクル間電流が流れ続けたときの出力電流のピーク値であり、定格の電源電圧と負荷の抵抗値から算出される既知の値である。
 出力電流のピーク値Ipeakは、目標トリガ角が100%のときの出力電流の実効値をIrmsとすると、その実効値Irmsの2の平方根倍である。
The output current estimation unit 14 estimates a current Ie nm that is an instantaneous current flowing through the thyristor 12 at the timing of monitoring the mth output current in the nth phase control cycle.
Under the condition that the heater 5 is not disconnected and the transformer 4 is in a steady state, the waveform of the current (instantaneous current) that flows through the thyristor 12 is a sine wave. Therefore, the current Ie nm that flows through the thyristor 12 is It is estimated as shown in equation (1).
Ie nm = I peak · sin (φ nm ) (1)
In Equation (1), φ nm is the phase angle (trigger angle) at the timing of monitoring the m-th output current, I peak is the peak value of the output current when the current continues to flow for half a cycle, This is a known value calculated from the power supply voltage and the resistance value of the load.
The peak value I peak of the output current is a square root of 2 times the effective value Irms, where Irms is the effective value of the output current when the target trigger angle is 100%.
Figure JPOXMLDOC01-appb-M000001
 なお、図4、図5及び図6のグラフの縦軸(電流軸)は、出力電流のピーク値Ipeakで正規化している。
Figure JPOXMLDOC01-appb-M000001
Note that the vertical axis (current axis) of the graphs of FIGS. 4, 5, and 6 is normalized by the peak value I peak of the output current.
 電流検出器15は、サイリスタ12の出力電流(瞬時電流)を検出し、その出力電流に比例するセンサ信号を出力電流測定部16に出力する。
 出力電流測定部16は、n番目の位相制御サイクル内で、m番目の異常検知処理のタイミングになると、そのタイミングで電流検出器15から出力されたセンサ信号から、実際に、サイリスタ12に流れている電流である出力電流Inm(瞬時電流)を算出(測定)する。
The current detector 15 detects the output current (instantaneous current) of the thyristor 12 and outputs a sensor signal proportional to the output current to the output current measuring unit 16.
The output current measurement unit 16 actually flows to the thyristor 12 from the sensor signal output from the current detector 15 at the timing when the timing of the m-th abnormality detection process is reached in the n-th phase control cycle. The output current I nm (instantaneous current), which is the current that is being calculated, is calculated (measured).
 出力電流監視部17は、n番目の位相制御サイクル内で、m番目の異常検知処理のタイミングになると、そのタイミングでの位相角φnmと、出力目標値トリガ角変換部13から出力された目標トリガ角Φを比較し、その位相角φnmが目標トリガ角Φよりも大きければ(図2のステップST1)、後述する異常検知処理を実施する。
 目標トリガ角Φ(=51%)の角度は、88.2度であるため、m=10,11,12,・・・,19のとき、位相角φnmが目標トリガ角Φよりも大きくなる。
Output current monitoring unit 17, in the n-th phase control cycle, at the timing of the m-th abnormality detection process, the phase angle phi nm at the timing, which is output from the output target value trigger angle conversion section 13 target The trigger angle Φ n is compared, and if the phase angle φ nm is larger than the target trigger angle Φ n (step ST1 in FIG. 2), an abnormality detection process described later is performed.
Since the angle of the target trigger angle Φ n (= 51%) is 88.2 degrees, the phase angle φ nm is larger than the target trigger angle Φ n when m = 10, 11, 12,. growing.
 即ち、出力電流監視部17は、m番目の出力電流監視のタイミングでの位相角φnmが目標トリガ角Φよりも大きければ(φnm>Φ)、そのタイミングで出力電流測定部16により測定されたサイリスタ12の出力電流Inmを取得するとともに(ステップST2)、そのタイミングで出力電流推定部14により推定されたサイリスタ12に流れる電流の推定値Ienmを取得し、また、その推定電流Ienmに対して予め設定されている或る適切な係数Kをかけて、異常判断電流K×Ienmを算出する(ステップST3)。
 この係数Kは、「0<K<1」の範囲の値であり、出力電流監視部17で測定された出力電流Inmが異常判断電流K×Ienm以下であれば、明らかに電源電圧や負荷に異常があると判定できる適切な異常判断電流K×Ienmを算出するための係数であり、この実施の形態1では、K=0.5として説明する。
 特に、m=10の出力電流監視のタイミングでは、位相角=90度であって、目標トリガ角Φ(88.2度)と近いため、概ね、出力電流監視部17により取得されるサイリスタ12の出力電流Inmは、目標トリガ角Φが示すタイミングでの測定値とみなせる。
 また、この実施の形態1では、ステップST3で、出力電流監視部17により算出された異常判断電流0.5×Ienmは、目標トリガ角Φが示すタイミングでサイリスタ12がターンオンされた場合に、そのサイリスタ12に流れる電流の推定値の0.5倍とみなさせる。
That is, if the phase angle φ nm at the m-th output current monitoring timing is larger than the target trigger angle Φ nnm > Φ n ), the output current monitoring unit 17 causes the output current measuring unit 16 to perform the timing. The measured output current I nm of the thyristor 12 is acquired (step ST2), the estimated value Ie nm of the current flowing through the thyristor 12 estimated by the output current estimation unit 14 at that timing is acquired, and the estimated current An abnormality determination current K × Ie nm is calculated by multiplying Ie nm by a certain appropriate coefficient K (step ST3).
This coefficient K is a value in the range of “0 <K <1”. If the output current I nm measured by the output current monitoring unit 17 is equal to or less than the abnormality determination current K × Ie nm , the power supply voltage or This is a coefficient for calculating an appropriate abnormality determination current K × Ie nm that can be determined that there is an abnormality in the load. In the first embodiment, K = 0.5 will be described.
In particular, at the output current monitoring timing of m = 10, since the phase angle is 90 degrees and is close to the target trigger angle Φ n (88.2 degrees), the thyristor 12 generally acquired by the output current monitoring unit 17 is used. the output current I nm can be regarded as the measurement value at the timing indicated by the target trigger angle [Phi n.
In the first embodiment, in step ST3, the abnormality determination current 0.5 × Ie nm calculated by the output current monitoring unit 17 is obtained when the thyristor 12 is turned on at the timing indicated by the target trigger angle Φ n. The estimated value of the current flowing through the thyristor 12 is assumed to be 0.5 times.
 次に、出力電流監視部17は、ステップST3で算出した異常判断電流0.5×Ienmと、出力電流測定部16により測定されたサイリスタ12の出力電流Inmを比較し(ステップST4)、サイリスタ12の出力電流Inmが異常判断電流0.5×Ienmよりも小さい場合(Inm<0.5×Ienm)、サイリスタ12の出力電流の異常を認定し、出力電流異常フラグをオン(flag=1)に設定する(ステップST5)。
 例えば、トランス4の2次側に接続されているヒーター5が断線すると、トランス4の2次負荷が減少して、サイリスタ12の出力電流Inmがほぼ0Aとなり、異常判断電流0.5×Ienmよりも小さくなる。
 また、開閉器2が開いたり、ヒューズ11が断線したりしても、サイリスタ12の出力電流Inmが異常判断電流0.5×Ienmよりも小さくなる。
Next, the output current monitoring unit 17 compares the abnormality determination current 0.5 × Ie nm calculated in step ST3 with the output current I nm of the thyristor 12 measured by the output current measurement unit 16 (step ST4). When the output current I nm of the thyristor 12 is smaller than the abnormality determination current 0.5 × Ie nm (I nm <0.5 × Ie nm ), the abnormality of the output current of the thyristor 12 is recognized and the output current abnormality flag is turned on. (Flag = 1) is set (step ST5).
For example, when the heater 5 connected to the secondary side of the transformer 4 is disconnected, the secondary load of the transformer 4 decreases, the output current I nm of the thyristor 12 becomes almost 0 A, and the abnormality determination current 0.5 × Ie smaller than nm .
Even if the switch 2 is opened or the fuse 11 is disconnected, the output current I nm of the thyristor 12 becomes smaller than the abnormality determination current 0.5 × Ie nm .
 トリガ角判定部19は、零点検出部18が電源電圧の零点を検出する毎に、制御用のトリガ角φの決定処理を実行する。
 以下、制御用のトリガ角φの決定処理を具体的に説明する。
The trigger angle determination unit 19 executes a control trigger angle φ n determination process every time the zero point detection unit 18 detects the zero point of the power supply voltage.
It will be specifically described below determination processing of the trigger angle phi n for control.
 トリガ角判定部19は、零点検出部18が電源電圧の零点(n番目の位相制御サイクルの冒頭)を検出すると、出力目標値トリガ角変換部13により算出されたn番目の位相制御サイクルでの目標トリガ角Φを取得する(図3のステップST11)。
 次に、トリガ角判定部19は、出力電流異常フラグを参照して、出力電流監視部17により出力電流の異常が認定されているか否かを確認する(ステップST12)。
 即ち、トリガ角判定部19は、出力電流異常フラグがオン(flag=1)であれば、出力電流の異常が認定されていると判断し、出力電流異常フラグがオフ(flag=0)であれば、出力電流の異常が認定されていないと判断する。
When the zero point detection unit 18 detects the zero point of the power supply voltage (at the beginning of the nth phase control cycle), the trigger angle determination unit 19 detects the nth phase control cycle calculated by the output target value trigger angle conversion unit 13. The target trigger angle Φ n is acquired (step ST11 in FIG. 3).
Next, the trigger angle determination unit 19 refers to the output current abnormality flag and confirms whether or not the output current monitoring unit 17 recognizes the output current abnormality (step ST12).
That is, if the output current abnormality flag is on (flag = 1), the trigger angle determination unit 19 determines that the abnormality of the output current is recognized, and if the output current abnormality flag is off (flag = 0). In this case, it is determined that the output current abnormality is not certified.
 トリガ角判定部19は、出力電流の異常が認定されていないと判断すると、出力目標値トリガ角変換部13から取得した目標トリガ角Φを暫定の制御用のトリガ角φ^に決定して、そのトリガ角φ^をトリガ角増分制御部20に出力する(ステップST13)。
 また、トリガ角判定部19は、出力電流の異常が認定されていると判断すると、突入電流の発生を防止するため、予め設定されている小さな待機時トリガ角φを暫定の制御用のトリガ角φ^に決定して、そのトリガ角φ^をトリガ角増分制御部20に出力する(ステップST14)。
 なお、待機時トリガ角φは、トランス4に流れる突入電流が、所定の許容電流よりも小さくなり、かつ、出力電流測定部16により測定可能な最小電流よりも大きくなるトリガ角であり、例えば、待機時トリガ角φとして11%(角度表記では、19.8度)が設定される。
When the trigger angle determining unit 19 determines that the abnormality of the output current is not certified, the trigger angle determining unit 19 determines the target trigger angle Φ n acquired from the output target value trigger angle converting unit 13 as the temporary control trigger angle φ ^ n. The trigger angle φ ^ n is output to the trigger angle increment control unit 20 (step ST13).
When the trigger angle determination unit 19 determines that the abnormality of the output current has been certified, the trigger angle determination unit 19 uses a preset small standby trigger angle φ e as a temporary control trigger to prevent the occurrence of an inrush current. The angle φ ^ n is determined, and the trigger angle φ ^ n is output to the trigger angle increment control unit 20 (step ST14).
The standby trigger angle φ e is a trigger angle at which the inrush current flowing through the transformer 4 is smaller than a predetermined allowable current and larger than the minimum current that can be measured by the output current measuring unit 16. (in the angle notation, 19.8 degrees) 11% as a standby trigger angle phi e is set.
 トリガ角増分制御部20は、トリガ角判定部19から暫定の制御用のトリガ角φ^を受けると、予め設定された上限値Δφ(半サイクル毎にトリガ角が増加する値の上限値)を前半サイクルの制御用のトリガ角φn-1に加算した値(φn-1+Δφ)と、トリガ角判定部19から受け取った暫定の制御用のトリガ角φ^とを比較して、その加算値(φn-1+Δφ)がトリガ角判定部19から受け取った暫定の制御用のトリガ角φ^よりも大きいか否かを確認する(ステップST15)。
 トリガ角増分制御部20は、その加算値(φn-1+Δφ)がトリガ角判定部19から受け取った暫定の制御用のトリガ角φ^よりも大きければ、既にソフトスタートが完了しているため、暫定の制御用のトリガ角φ^を制御用のトリガ角φに決定して、そのトリガ角φをサイリスタ制御部21に出力するが(ステップST16)、その加算値(φn-1+Δφ)がトリガ角判定部19から受け取った暫定の制御用のトリガ角φ^よりも小さければ、未だソフトスタートが完了していないため、その加算値(φn-1+Δφ)をそのままサイリスタ制御部21に出力する(ステップST17)。
  φ=φn-1+Δφ
 トリガ角増分制御部20は、制御用のトリガ角φをサイリスタ制御部21に出力すると、出力電流異常フラグをオフ(flag=0)に設定する(ステップST18)。
When the trigger angle increment control unit 20 receives the provisional control trigger angle φ ^ n from the trigger angle determination unit 19, the preset upper limit value Δφ (upper limit value for increasing the trigger angle every half cycle) is set. Is compared with the trigger angle φ n−1 for control in the first half cycle (φ n−1 + Δφ) and the provisional control trigger angle φ ^ n received from the trigger angle determination unit 19, It is confirmed whether or not the added value (φ n−1 + Δφ) is larger than the provisional control trigger angle φ ^ n received from the trigger angle determination unit 19 (step ST15).
If the added value (φ n−1 + Δφ) is larger than the provisional control trigger angle φ ^ n received from the trigger angle determination unit 19, the trigger angle increment control unit 20 has already completed the soft start. Therefore, to determine the trigger angle phi n for controlling the trigger angle phi ^ n for control of the provisional, but outputs the trigger angle phi n thyristor control unit 21 (step ST16), the added value (phi n If −1 + Δφ) is smaller than the provisional control trigger angle φ ^ n received from the trigger angle determination unit 19, the soft start has not yet been completed, so the added value (φ n−1 + Δφ) is used as it is. It outputs to the thyristor control part 21 (step ST17).
φ n = φ n-1 + Δφ
Trigger angle increment control section 20 outputs a trigger angle phi n for controlling the thyristor control unit 21 sets the output current abnormality flag to OFF (flag = 0) (step ST18).
 サイリスタ制御部21は、トリガ角増分制御部20から制御用のトリガ角φを受けると、そのトリガ角φが示すタイミングでサイリスタ12のゲートに電流を流すことで、そのサイリスタ12をターンオンさせる。
 図5では、左側の半サイクルにおいて、制御用のトリガ角φ(=51%)でサイリスタ12をターンオンさせたにもかかわらず、サイリスタ12の出力電流Inmが異常判断電流0.5×Ienmよりも小さいため、サイリスタ12の出力電流を異常と認定している例を示している。次の半サイクル(図5の右側の半サイクル)の制御用のトリガ角φが待機時トリガ角φ(=11%)であり、トリガ角φ(=11%)のタイミングでサイリスタ12をターンオンさせている。
 角度表記では、160.2度(=180-19.8度)のタイミングでサイリスタ12をターンオンさせて、180度のタイミングでサイリスタ12をターンオフされている。
 また、図6では、左側の前回の半サイクルで制御用のトリガ角φn-1を待機時トリガ角φ(=11%)としてサイリスタ12をターンオンさせた時に、サイリスタ12の出力電流In-1mが異常判断電流0.5×Ien-1mよりも大きいため、サイリスタ12の出力電流を異常と認定していない例を示している。今回の半サイクル(図5の右側の半サイクル)の制御用のトリガ角φが、前半サイクルの制御用のトリガ角φn-1(=11%)に対して半サイクル毎に上限値Δφ(=5%)を加算したトリガ角を制御用のトリガ角φ(=16%)とした場合であり、トリガ角φ(=16%)のタイミングでサイリスタ12をターンオンさせている。
When receiving the control trigger angle φ n from the trigger angle increment control unit 20, the thyristor control unit 21 turns on the thyristor 12 by causing a current to flow through the gate of the thyristor 12 at the timing indicated by the trigger angle φ n . .
In FIG. 5, in the left half cycle, although the thyristor 12 is turned on at the control trigger angle φ n (= 51%), the output current I nm of the thyristor 12 is the abnormality determination current 0.5 × Ie. In this example, the output current of the thyristor 12 is recognized as abnormal because it is smaller than nm . The trigger angle φ n for control in the next half cycle (the right half cycle in FIG. 5) is the standby trigger angle φ e (= 11%), and the thyristor 12 at the timing of the trigger angle φ n (= 11%). Is turned on.
In the angle notation, the thyristor 12 is turned on at a timing of 160.2 degrees (= 180-19.8 degrees), and the thyristor 12 is turned off at a timing of 180 degrees.
In FIG. 6, when the thyristor 12 is turned on with the control trigger angle φ n−1 set as the standby trigger angle φ e (= 11%) in the previous half cycle on the left side, the output current I n of the thyristor 12 is turned on. Since −1m is larger than the abnormality determination current 0.5 × Ien −1m, an example in which the output current of the thyristor 12 is not recognized as abnormal is shown. The control trigger angle φ n of the current half cycle (the right half cycle in FIG. 5) is the upper limit value Δφ for each half cycle with respect to the control trigger angle φ n−1 (= 11%) of the first half cycle. (= 5%) and when a where a trigger angle phi n for controlling the trigger angle obtained by adding (= 16%), and turns on the thyristor 12 at the timing of the trigger angle phi n (= 16%).
 制御用のトリガ角の決定処理は繰り返し実行され、零点検出部18が、次の電源電圧の零点(n番目の位相制御サイクルの冒頭)を検出すると、トリガ角判定部19は、出力目標値トリガ角変換部13により算出されたn番目の位相制御サイクルでの目標トリガ角Φを取得する(ステップST11)。
 次に、トリガ角判定部19は、出力電流異常フラグを参照して、出力電流監視部17により出力電流の異常が認定されているか否かを確認する(ステップST12)。
 即ち、トリガ角判定部19は、出力電流異常フラグがオン(flag=1)であれば、出力電流の異常が認定されていると判断し、出力電流異常フラグがオフ(flag=0)であれば、出力電流の異常が認定されていないと判断する。
 ただし、この段階では、n-1番目の位相制御サイクルで、トリガ角増分制御部20により出力電流異常フラグがオフ(flag=0)に設定されているので、出力電流の異常が認定されていないと判断する。
The trigger angle determination process for control is repeatedly executed, and when the zero point detection unit 18 detects the zero point of the next power supply voltage (the beginning of the nth phase control cycle), the trigger angle determination unit 19 outputs the output target value trigger. The target trigger angle Φ n in the nth phase control cycle calculated by the angle conversion unit 13 is acquired (step ST11).
Next, the trigger angle determination unit 19 refers to the output current abnormality flag and confirms whether or not the output current monitoring unit 17 recognizes the output current abnormality (step ST12).
That is, if the output current abnormality flag is on (flag = 1), the trigger angle determination unit 19 determines that the abnormality of the output current is recognized, and if the output current abnormality flag is off (flag = 0). In this case, it is determined that the output current abnormality is not certified.
However, at this stage, since the output current abnormality flag is set to OFF (flag = 0) by the trigger angle increment control unit 20 in the (n−1) th phase control cycle, the abnormality in the output current is not recognized. Judge.
 トリガ角増分制御部20は、出力電流の異常が認定されていない場合でも、先に出力した制御用のトリガ角φをいきなり大きくすると、突入電流が発生してしまうため、例えば、5%程度(角度表記で18度程度)の小さなトリガ角Δφを先に出力した制御用のトリガ角φn-1に加算して、その加算結果を制御用のトリガ角φに決定する(ステップST17)。
 トリガ角増分制御部20は、制御用のトリガ角φをサイリスタ制御部21に出力すると、出力電流異常フラグをオフ(flag=0)に設定する(ステップST18)。
Trigger angle increment controller 20, even if the abnormality of the output current is not certified, the suddenly increasing the trigger angle phi n for control outputted previously, because the inrush current is generated, for example, about 5% A small trigger angle Δφ (about 18 degrees in angle notation) is added to the control trigger angle φ n−1 previously output, and the addition result is determined as the control trigger angle φ n (step ST17). .
Trigger angle increment control section 20 outputs a trigger angle phi n for controlling the thyristor control unit 21 sets the output current abnormality flag to OFF (flag = 0) (step ST18).
 サイリスタ制御部21は、トリガ角増分制御部20から制御用のトリガ角φを受けると、そのトリガ角φが示すタイミングでサイリスタ12のゲートに電流を流すことで、そのサイリスタ12をターンオンさせる。
 例えば、待機時トリガ角φが11%であり、増加分のトリガ角Δφが5%であれば、制御用のトリガ角φが16%になるため、トリガ角φ(=16%)のタイミングでサイリスタ12がターンオンされる。
 角度表記では、151.2度(=180-19.8-9度)のタイミングでサイリスタ12がターンオンさせて、180度のタイミングでサイリスタ12がターンオフされる。
When receiving the control trigger angle φ n from the trigger angle increment control unit 20, the thyristor control unit 21 turns on the thyristor 12 by causing a current to flow through the gate of the thyristor 12 at the timing indicated by the trigger angle φ n . .
For example, standby trigger angle phi e is 11%, if the 5% trigger angle Δφ of the increase is because the trigger angle phi n for control is 16%, the trigger angle phi n (= 16%) At this timing, the thyristor 12 is turned on.
In the angle notation, the thyristor 12 is turned on at a timing of 151.2 degrees (= 180-19.8-9 degrees), and the thyristor 12 is turned off at a timing of 180 degrees.
 以上で明らかなように、この実施の形態1によれば、前出力サイクルにおいて、出力電流監視部17により出力電流の異常が認定された場合、予め設定されている待機時トリガ角φを制御用のトリガ角φに決定して、そのトリガ角φを出力し、前出力サイクルにおいて、出力電流が異常と認識されなかった場合には、出力目標値トリガ角変換部13で算出された目標トリガ角Φを暫定の制御用のトリガ角φ^に決定して、そのトリガ角φ^を出力する一方、前出力サイクルにおいて、出力電流監視部17により出力電流の異常が認定された場合、予め設定されている待機時トリガ角φを暫定の制御用のトリガ角φ^に決定して、そのトリガ角φ^を出力するトリガ角判定部19を設け、トリガ角増分制御部20が、トリガ角判定部19から出力された暫定の制御用のトリガ角φ^が、前半サイクルの制御用のトリガ角φn-1に対してトリガ角増加の上限値Δφを加算した値(φn-1+Δφ)より大きい場合には、その加算値(φn-1+Δφ)を制御用のトリガ角φとしてサイリスタ制御部21に出力し、暫定の制御用のトリガ角φ^が加算値(φn-1+Δφ)より小さい場合には、暫定の制御用のトリガ角φ^を制御用のトリガ角φとしてサイリスタ制御部21に出力するように構成したので、電源電圧やトランスの1次側の電圧を監視する機器を搭載することなく、突入電流の発生を防止することができる効果を奏する。 As can be seen from the above description, according to the first embodiment, before the output cycle, output current if the abnormality in the output current has been certified by the monitoring unit 17, controls the standby trigger angle phi e, which is set in advance determine the trigger angle phi n of use, and outputs the trigger angle phi n, before the output cycle, when the output current is not recognized as abnormal, calculated by the target output value trigger angle conversion section 13 The target trigger angle Φ n is determined to be the temporary control trigger angle φ ^ n and the trigger angle φ ^ n is output. On the other hand, in the previous output cycle, the output current monitoring unit 17 recognizes an abnormality in the output current. and if determines a standby trigger angle phi e that is set in advance in the trigger angle phi ^ n for controlling the interim, the trigger angle determination unit 19 outputs the trigger angle phi ^ n provided, the trigger angle increment Control unit 20 triggers Trigger angle phi ^ n for control of the provisional output from the determination unit 19, a value obtained by adding the upper limit value Δφ increase trigger angle relative to the trigger angle phi n-1 for control of the first half cycle (φ n-1 If it is larger than + Δφ), the added value (φ n−1 + Δφ) is output as a control trigger angle φ n to the thyristor control unit 21, and the provisional control trigger angle φ ^ n is added to the added value (φ n-1 + Δφ), the provisional control trigger angle φ ^ n is output to the thyristor control unit 21 as the control trigger angle φ n , so that the primary voltage of the power supply voltage or transformer There is an effect that it is possible to prevent the occurrence of an inrush current without mounting a device for monitoring the side voltage.
 即ち、この実施の形態1によれば、負荷であるヒーター5の断線を認定(出力電流の異常を認定)することで電源状態を監視しているため、電源電圧やトランスの1次側の電圧を監視する機器を搭載することなく、トランス4に対する突入電流の発生を防止することができる。
 また、制御対象がトランス4であっても、交流電源1の投入時や瞬時停電が発生したときに、トランス4に対する突入電流の発生を防止することができる。また、交流電源1が継続的にオンしている状態で、トランス4だけに電力を供給している状態でも、トランス4に対する突入電流の発生を防止することができる。
In other words, according to the first embodiment, the power supply state is monitored by accrediting the disconnection of the heater 5 as a load (acknowledging an abnormality in the output current), so the power supply voltage and the voltage on the primary side of the transformer It is possible to prevent an inrush current from being generated in the transformer 4 without mounting a device for monitoring the above.
Even if the control object is the transformer 4, it is possible to prevent an inrush current from being generated in the transformer 4 when the AC power supply 1 is turned on or when an instantaneous power failure occurs. Further, even when the AC power supply 1 is continuously turned on and power is supplied only to the transformer 4, it is possible to prevent an inrush current from being generated in the transformer 4.
 また、この実施の形態1によれば、トランス4の2次側に接続されているヒーター5が断線して、サイリスタ12の出力電流が減少している場合にも、その出力電流の減少を検知して、制御用のトリガ角φを待機状態の小さなトリガ角(待機時トリガ角φ)にするため、トランス4の2次側に接続されているヒーター5が断線した時に起こる可能性がある大きな励磁電流の発生を防止することもできる。
 また、一般的には、トランス4の1次巻き線を位相制御する場合の突入電流を低減するために、トランス4の定格電圧における磁束密度が低くなるような設計が行われるが、この実施の形態1では、どの様な状況でも、トランス4に対する突入電流を小さな値に抑制することができるため、従来に比して、磁束密度が高いトランス4を使用することができるようになり、トランスの小型化を図ることができる。
 また、交流電源1と電力制御器3の間の配線を開閉器2で切断したのち、その開閉器2で再接続された場合の突入電流の抑制効果も期待することができる。
Further, according to the first embodiment, even when the heater 5 connected to the secondary side of the transformer 4 is disconnected and the output current of the thyristor 12 is decreased, the decrease in the output current is detected. Then, since the control trigger angle φ n is set to a small standby angle (standby trigger angle φ e ), there is a possibility that the heater 5 connected to the secondary side of the transformer 4 may be disconnected. It is also possible to prevent the generation of a certain large excitation current.
In general, in order to reduce the inrush current when the phase of the primary winding of the transformer 4 is controlled, the magnetic flux density at the rated voltage of the transformer 4 is designed to be low. In form 1, since the inrush current to the transformer 4 can be suppressed to a small value in any situation, it becomes possible to use the transformer 4 having a higher magnetic flux density than the conventional one. Miniaturization can be achieved.
Moreover, after cutting the wiring between the AC power supply 1 and the power controller 3 with the switch 2, the effect of suppressing the inrush current when reconnected with the switch 2 can be expected.
実施の形態2.
 上記実施の形態1では、トランス4の2次側にヒーター5が接続されている例を示しているが、図7に示すように、例えば、リレーやブレーカーなどの開閉器30を介して、ヒーター5がトランス4の2次側に接続されていてもよい。
 この場合、開閉器30が開いている状態では、電力制御器3が上記実施の形態1と同様に、サイリスタ12の出力電流の減少を検知して、制御用のトリガ角φを待機状態の小さなトリガ角(待機時トリガ角φ)にするため、トランス4の2次側に接続されている開閉器30の開閉操作よって起こる可能性がある大きな励磁電流の発生を防止することもできる。
 なお、電力制御器3の処理内容自体は上記実施の形態1と同様である。
Embodiment 2. FIG.
In the first embodiment, an example in which the heater 5 is connected to the secondary side of the transformer 4 is shown. As shown in FIG. 7, for example, the heater 5 is connected via a switch 30 such as a relay or a breaker. 5 may be connected to the secondary side of the transformer 4.
In this case, when the switch 30 is open, the power controller 3 detects a decrease in the output current of the thyristor 12 as in the first embodiment, and sets the control trigger angle φ n to the standby state. In order to reduce the trigger angle (standby trigger angle φ e ), it is possible to prevent the generation of a large excitation current that may be caused by the opening / closing operation of the switch 30 connected to the secondary side of the transformer 4.
The processing content itself of the power controller 3 is the same as that in the first embodiment.
 1 交流電源、2 開閉器、3 電力制御器、4 トランス(変圧器)、5 ヒーター、6 被制御対象、7 温度センサ、8 温度調節計、11 ヒューズ、12 サイリスタ(スイッチング素子)、13 出力目標値トリガ角変換部(目標トリガ角算出手段)、14 出力電流推定部(電流推定手段)、15 電流検出器(電流測定手段)、16 出力電流測定部(電流測定手段)、17 出力電流監視部(異常認定手段)、18 零点検出部(制御用トリガ角決定手段)、19 トリガ角判定部(制御用トリガ角決定手段)、20 トリガ角増分制御部(制御用トリガ角決定手段)、21 サイリスタ制御部(スイッチング素子制御手段)、30 開閉器。 1 AC power supply, 2 switch, 3 power controller, 4 transformer (transformer), 5 heater, 6 controlled object, 7 temperature sensor, 8 temperature controller, 11 fuse, 12 thyristor (switching element), 13 output target Value trigger angle conversion unit (target trigger angle calculation means), 14 output current estimation unit (current estimation means), 15 current detector (current measurement means), 16 output current measurement unit (current measurement means), 17 output current monitoring unit (Abnormality recognition means), 18 zero point detection part (control trigger angle determination means), 19 trigger angle determination part (control trigger angle determination means), 20 trigger angle increment control part (control trigger angle determination means), 21 thyristor Control unit (switching element control means), 30 switch.

Claims (4)

  1.  変圧器の2次側に接続されている負荷に供給する電力の目標値を算出する調節計より出力される目標信号から、前記変圧器の1次側に供給する電力を調整するスイッチング素子の点弧のタイミングを示す目標トリガ角を算出する目標トリガ角算出手段と、
     前記目標トリガ角算出手段により算出された目標トリガ角が示すタイミングで前記スイッチング素子が点弧された場合に、前記スイッチング素子に流れる電流を推定する電流推定手段と、
     前記スイッチング素子に実際に流れている電流を測定する電流測定手段と、
     前記電流測定手段により測定された電流が前記電流推定手段により推定された電流よりも予め設定された所定の値または所定の割合以上小さい場合、前記スイッチング素子に流れている電流の異常を認定する異常認定手段と、
     前記異常認定手段により電流の異常が認定された場合、予め設定されている待機時トリガ角を制御用のトリガ角に決定して、前記制御用のトリガ角を出力するとともに、前記制御用のトリガ角を出力している状態で、前記異常認定手段により電流の異常が認定されなくなれば、前記制御用のトリガ角が、前記待機時トリガ角から前記目標トリガ角算出手段により算出された目標トリガ角に到達するまで、前記制御用のトリガ角を徐々に大きくしながら、前記トリガ角を出力する制御用トリガ角決定手段と、
     前記制御用トリガ角決定手段から出力されたトリガ角が示すタイミングで前記スイッチング素子を点弧するスイッチング素子制御手段と
     を備えた電力制御器。
    Points of the switching element for adjusting the power supplied to the primary side of the transformer from the target signal output from the controller for calculating the target value of the power supplied to the load connected to the secondary side of the transformer Target trigger angle calculating means for calculating a target trigger angle indicating the timing of the arc;
    Current estimating means for estimating a current flowing through the switching element when the switching element is ignited at a timing indicated by the target trigger angle calculated by the target trigger angle calculating means;
    Current measuring means for measuring a current actually flowing through the switching element;
    An abnormality that qualifies an abnormality of the current flowing through the switching element when the current measured by the current measuring unit is smaller than a current estimated by the current estimating unit by a predetermined value or a predetermined ratio. Authorization means,
    When a current abnormality is recognized by the abnormality recognition means, a preset standby trigger angle is determined as a control trigger angle, the control trigger angle is output, and the control trigger If a current abnormality is no longer recognized by the abnormality recognition means in the state of outputting a corner, the control trigger angle is calculated from the standby trigger angle by the target trigger angle calculation means calculated by the target trigger angle calculation means. Until reaching the control trigger angle determining means for outputting the trigger angle while gradually increasing the control trigger angle,
    A switching element control means for igniting the switching element at a timing indicated by the trigger angle output from the control trigger angle determination means.
  2.  前記制御用トリガ角決定手段は、前記異常認定手段により電流の異常が認定されない場合、前記目標トリガ角算出手段により算出された目標トリガ角を制御用のトリガ角として前記スイッチング素子制御手段に出力することを特徴とする請求項1記載の電力制御器。 The control trigger angle determination means outputs the target trigger angle calculated by the target trigger angle calculation means to the switching element control means as a control trigger angle when no abnormality of current is recognized by the abnormality recognition means. The power controller according to claim 1.
  3.  前記制御用トリガ角決定手段には、前記異常認定手段により電流の異常が認定されて、前記スイッチング素子制御手段により前記スイッチング素子が前記待機時トリガ角で点弧された際に、前記変圧器に流れる突入電流が、所定の許容電流よりも小さくなり、かつ、前記電流測定手段により測定可能な最小電流よりも大きくなるトリガ角が、前記待機時トリガ角として設定されていることを特徴とする請求項1記載の電力制御器。 In the control trigger angle determining means, when the abnormality is recognized by the abnormality recognition means and the switching element is ignited at the standby trigger angle by the switching element control means, The trigger angle at which a flowing inrush current becomes smaller than a predetermined allowable current and becomes larger than a minimum current measurable by the current measuring means is set as the standby trigger angle. Item 1. The power controller according to Item 1.
  4.  目標トリガ角算出手段が、変圧器の2次側に接続されている負荷に供給する電力の目標値を算出する調節計より出力される目標信号から、前記変圧器の1次側に供給する電力を調整するスイッチング素子の点弧のタイミングを示す目標トリガ角を算出する目標トリガ角算出処理ステップと、
     電流推定手段が、前記目標トリガ角算出処理ステップで算出された目標トリガ角が示すタイミングで前記スイッチング素子が点弧された場合に、前記スイッチング素子に流れる電流を推定する電流推定処理ステップと、
     電流測定手段が、前記スイッチング素子に実際に流れている電流を測定する電流測定処理ステップと、
     異常認定手段が、前記電流測定処理ステップで測定された電流が前記電流推定処理ステップで推定された電流よりも予め設定された所定の値または所定の割合以上小さい場合、前記スイッチング素子に流れている電流の異常を認定する異常認定処理ステップと、
     制御用トリガ角決定手段が、前記異常認定処理ステップで電流の異常が認定された場合、予め設定されている待機時トリガ角を制御用のトリガ角に決定して、前記制御用のトリガ角を出力するとともに、前記制御用のトリガ角を出力している状態で、前記異常認定処理ステップで電流の異常が認定されなくなれば、前記制御用のトリガ角が、前記待機時トリガ角から前記目標トリガ角算出手段により算出された目標トリガ角に到達するまで、前記制御用のトリガ角を徐々に大きくしながら、前記トリガ角を出力する制御用トリガ角決定処理ステップと、
     スイッチング素子制御手段が、前記制御用トリガ角決定処理ステップで出力されたトリガ角が示すタイミングで前記スイッチング素子を点弧するスイッチング素子制御処理ステップと
     を備えた電力制御方法。
    The power supplied to the primary side of the transformer from the target signal output from the controller for calculating the target value of the power supplied to the load connected to the secondary side of the transformer by the target trigger angle calculating means A target trigger angle calculation processing step for calculating a target trigger angle indicating the timing of ignition of the switching element for adjusting
    A current estimation processing step for estimating a current flowing through the switching element when the switching element is ignited at a timing indicated by the target trigger angle calculated in the target trigger angle calculation processing step;
    A current measuring step in which a current measuring means measures a current actually flowing through the switching element;
    The abnormality recognition means flows to the switching element when the current measured in the current measurement processing step is smaller than a current estimated in the current estimation processing step by a predetermined value or a predetermined ratio. Anomaly certification processing step to authorize current anomalies;
    When the control trigger angle determining means determines that the current abnormality is recognized in the abnormality recognition processing step, the control trigger angle is determined as a control trigger angle, and the control trigger angle is set as the control trigger angle. And outputting the control trigger angle, and if the current abnormality is not recognized in the abnormality recognition processing step, the control trigger angle is changed from the standby trigger angle to the target trigger. A control trigger angle determination processing step for outputting the trigger angle while gradually increasing the control trigger angle until the target trigger angle calculated by the angle calculation means is reached;
    And a switching element control processing step in which the switching element control means ignites the switching element at a timing indicated by the trigger angle output in the control trigger angle determination processing step.
PCT/JP2013/069618 2013-07-19 2013-07-19 Power controller and power controlling method WO2015008376A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/069618 WO2015008376A1 (en) 2013-07-19 2013-07-19 Power controller and power controlling method
JP2015527123A JP6128217B2 (en) 2013-07-19 2013-07-19 Power controller and power control method
CN201380077123.9A CN105264731B (en) 2013-07-19 2013-07-19 Electric power controller and electrical control method
KR1020157032111A KR101666768B1 (en) 2013-07-19 2013-07-19 Power controller and power controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069618 WO2015008376A1 (en) 2013-07-19 2013-07-19 Power controller and power controlling method

Publications (1)

Publication Number Publication Date
WO2015008376A1 true WO2015008376A1 (en) 2015-01-22

Family

ID=52345868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069618 WO2015008376A1 (en) 2013-07-19 2013-07-19 Power controller and power controlling method

Country Status (4)

Country Link
JP (1) JP6128217B2 (en)
KR (1) KR101666768B1 (en)
CN (1) CN105264731B (en)
WO (1) WO2015008376A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168680A1 (en) * 2016-03-31 2017-10-05 理化工業株式会社 Ac power regulator and ac power control method
CN109921717B (en) * 2017-12-12 2021-01-26 日立楼宇技术(广州)有限公司 Method and system for adjusting variable working frequency switching compensation angle of escalator
CN113067467B (en) * 2021-04-09 2022-07-01 湖南科瑞变流电气股份有限公司 Control method and device of rectification system and related components
CN115441772B (en) * 2022-11-07 2023-02-07 希望森兰科技股份有限公司 Triggering angle control method for soft starter of asynchronous motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242644A (en) * 1993-02-15 1994-09-02 Ricoh Co Ltd Image forming device and its heater current control method
JPH08275532A (en) * 1995-03-28 1996-10-18 Shin Kobe Electric Mach Co Ltd Thyristor rectifier
JPH10210657A (en) * 1997-01-17 1998-08-07 Sansha Electric Mfg Co Ltd Cycle control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165366A (en) 1992-11-17 1994-06-10 Toshiba Corp Transformer and breaker controller
CN101192747A (en) * 2006-11-23 2008-06-04 张铮震 No contact long life soft start energy-saving distribution box
CN101075498B (en) * 2007-04-13 2011-05-25 中国南车集团株洲电力机车研究所 Method and device for inhibiting transformer no-load switch-on surge
CN202978225U (en) * 2012-12-27 2013-06-05 保定天威集团有限公司 Magnetizing inrush current research device for three-phase transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242644A (en) * 1993-02-15 1994-09-02 Ricoh Co Ltd Image forming device and its heater current control method
JPH08275532A (en) * 1995-03-28 1996-10-18 Shin Kobe Electric Mach Co Ltd Thyristor rectifier
JPH10210657A (en) * 1997-01-17 1998-08-07 Sansha Electric Mfg Co Ltd Cycle control method

Also Published As

Publication number Publication date
KR101666768B1 (en) 2016-10-14
CN105264731A (en) 2016-01-20
KR20150139614A (en) 2015-12-11
CN105264731B (en) 2017-12-22
JP6128217B2 (en) 2017-05-17
JPWO2015008376A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6128217B2 (en) Power controller and power control method
US9658256B2 (en) Portable spa monitoring and control circuitry
CN102439842A (en) System and method for determining stator winding resistance in an AC motor using motor drives
US20160173008A1 (en) System and method for soft starting and stopping of a motor
WO2015056326A1 (en) Power-switchgear control device and pole-opening control method
JP2011128041A (en) Property monitoring apparatus for current transformer or electric transformer
AU2013310606A1 (en) Converter control device, method and program, and air conditioner
JP4532547B2 (en) Operation method of three-phase power regulator
WO2018023909A1 (en) Voltage integral-based method for determining saturation of transformer core
KR20170014358A (en) Temperature-rise test automation system and method for electric power equipment using prediction algorithm
US10033298B1 (en) Automatic short circuit protection switching device systems and methods
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
EP1571886A2 (en) Control circuit and power control apparatus having the control circuit
KR101663486B1 (en) Temperature control apparatus of load
WO2019093100A1 (en) Magnetizing inrush current suppression device
CN105006998A (en) Method and means for progressive motor start based on current derivative synchronisation
JP5128883B2 (en) Excitation control device
JP6521174B2 (en) AC power regulator and AC power control method
JP4674118B2 (en) Power detection device
JP2016220409A (en) Isolated operation detection device
KR101026404B1 (en) SCR Power Supply with Data based PID controller
JP2017099056A (en) Power Conditioner
JP6429504B2 (en) Combustion device
WO2017109942A1 (en) Ac power regulator and ac power control method
Zhao et al. Research on Automatic Regulating for Distribution Transformer by Solid-State Relays

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077123.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527123

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032111

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889685

Country of ref document: EP

Kind code of ref document: A1