WO2015007512A1 - Rotor für eine thermische strömungsmaschine - Google Patents

Rotor für eine thermische strömungsmaschine Download PDF

Info

Publication number
WO2015007512A1
WO2015007512A1 PCT/EP2014/063914 EP2014063914W WO2015007512A1 WO 2015007512 A1 WO2015007512 A1 WO 2015007512A1 EP 2014063914 W EP2014063914 W EP 2014063914W WO 2015007512 A1 WO2015007512 A1 WO 2015007512A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
impeller
ribs
disk
disc
Prior art date
Application number
PCT/EP2014/063914
Other languages
English (en)
French (fr)
Inventor
Karsten Kolk
Peter Schröder
Vyacheslav Veitsman
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN201480040579.2A priority Critical patent/CN105408585B/zh
Priority to JP2016526499A priority patent/JP6110035B2/ja
Priority to US14/904,500 priority patent/US10077662B2/en
Priority to EP14734806.4A priority patent/EP2994615B1/de
Publication of WO2015007512A1 publication Critical patent/WO2015007512A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a rotor for a thermal turbomachine, which is formed in the interior for guiding a medium.
  • Rotors for thermal turbomachines such as axial compressor and gas turbine are known from the extensive existing state of the art in different designs.
  • gas turbines welded rotors are known in which different width drums are welded together to form a monolithic rotor.
  • the object of the present invention is to provide an alternative solution in which, on the one hand, the pressure and flow losses in the interior of the rotor are further reduced and, on the other hand, a solution which is easy to produce and thus cost-effective.
  • the inventors have recognized that flow losses in the area of the radial ribs can occur in the prior art, since they are relatively far apart in the circumferential direction and thus larger flow cross sections for the medium removed from the turbomachine are present at this point. This is all the more true since the flow passages between the known ribs also have a comparatively large axial extent. To overcome this disadvantage, it is proposed to limit the flow cross section of the flow passages between the ribs also axially.
  • the axial boundary should preferably form at least over a large part of the radial extent of the ribs.
  • the invention thus proposes for the first time that the ribs are not monolithic part of one of the two rotor disks, but instead
  • Part of an impeller, which as a rib support comprises a plate-shaped ring to which the ribs are attached.
  • the aforementioned embodiment can be much simpler and cheaper to produce than rotor disks, in which the ribs are an integral part of the rotor disk.
  • the impeller may be made of a different material than the rotor disk itself, since the boundary conditions, such as the maximum operating temperatures, may be different.
  • the relatively complex geometry of the ribs of a rotor disk is separated from the latter, since it has been recognized by the inventors that the ribs can also be arranged on a separate component - the impeller.
  • the impeller can be made mechanically from a full ring.
  • the impeller can also be assembled from individual parts - a ring and several ribs - by welding. With a complex geometry of the rib, there is also a casting method for producing the impeller.
  • axial and “radial” and “outside” and “inside” always refer to the axis of rotation of the rotor disk or the rotor.
  • Under the interior of the rotor is also the cavity in the interior of the rotor understood den, which is bounded by the rotor disks. In other words: The holes of the first rotor disc do not count towards the rotor interior.
  • the outer edge of the rib carrier lies on a larger radius than the outer ends of the ribs, so that in the installed state, when the impeller between the Nabenberei- surfaces of the respective rotor discs is mounted, the medium emerging from the bores can be conducted better inward because of the radially outward led ribbed carrier. Turbulences in the inflow regions of the flow passages can thus be avoided, which reduces pressure losses during the guidance of the medium.
  • each of the ribs on one of the first rotor disc facing edge whose radial contour corresponds to the radial contour of the first rotor disc in the hub region is kept comparatively small over the entire radial rib extension, which enables an efficient guidance of the medium along the rib, without the transverse flows occurring through a gap formed by the rib and the hub region ,
  • the impeller is secured relative to the second rotor disk against a relative movement in the circumferential direction.
  • the impeller in the rib carrier may have one or more holes in which a bolt is seated, which engages in the adjacent second rotor disk in a groove.
  • the impeller may also be screwed to the second rotor disk.
  • the impeller is shrunk on the second rotor disk.
  • the impeller on its side facing the second rotor disk on an annular bead which projects laterally.
  • the page is then no longer completely flat, but at least ribless.
  • the shrinkage Sitting provides a simple and reliable attachment.
  • cams may be arranged on the one of the two components involved in the shrink fit, which engage largely in a form-fitting manner in recesses arranged on the other of the two components of the shrink fit.
  • a safety screw instead of the positive cam-recess pairing other fuses against relative movements, such as a safety screw can be used.
  • the impeller is formed on the second side radially inwardly between the ribs in the shape of a gutter for deflecting a flow. This reduces the aerodynamic losses in the medium when it has to be deflected from a mainly radially directed flow in a mainly axially directed flow direction. Of course, this also applies to a reverse flow direction.
  • the invention provides several advantages: First, the simplification of manufacturing, i. indicate the reduction of potential manufacturing errors by reducing component complexity.
  • the complex geometries are no longer arranged on the comparatively more expensive components - the rotor disks - but are realized on a separately manufactured component - the impeller.
  • the separation of the complex geometries also leads to a cost reduction of that rotor disk, with which the removal of the medium from the main flow path is realized.
  • the second rotor disk can be made classical, since the impeller takes over the function of improved flow guidance inside the rotor. Due to the structural separation, different materials can be used and combined.
  • the invention thus relates generally to a rotor for a thermal turbomachine, in particular a gas turbine, which is configured to lead in its interior a medium, such as compressor air.
  • a medium such as compressor air.
  • a separately manufactured impeller is arranged between the adjacent hub areas of the two rotor disks, whose flat, first side on the Hub region of the second rotor disk is applied and its first side opposite the second side has a number of ribs extending from outside to inside.
  • FIG. 1 shows a longitudinal section through a runner of a
  • FIG. 2 shows a detail through the longitudinal section of a rotor according to the invention of a turbomachine with an impeller arranged between two rotor disks
  • Figure 4 shows a shrink fit of the impeller on the
  • Figure 5 shows a section of the hub region of
  • Figure 1 shows the basic schematic structure of a rotor 10 of a thermal fluid machine, which is rotatably mounted in the assembled state about its axis of rotation 13.
  • the rotor 10 of a stationary gas turbine In the embodiment shown is the rotor 10 of a stationary gas turbine.
  • the rotor 10 could also be used in an aircraft gas turbine. Due to its use in a gas turbine, the rotor 10 comprises a compressor section 12 and a turbine section 14.
  • a pipe 16 is provided between the two sections 12, 14. Both the compressor section 12 and the turbine section 14 are disk-type.
  • compressor section 12 comprises sixteen rotor disks 18 and turbine section 14 four rotor disks 18.
  • a tie rod 20 at both ends of which a so-called front hollow shaft 22 and a so-called rear hollow shaft 24 are screwed .
  • the two hollow shafts 22, 24 clamp all the rotor discs 18 and the tube 16 with each other, so that relative movements in the circumferential direction are largely avoided.
  • this is arranged by the contact surfaces 23 Hirth gears. However, these are not shown further.
  • FIG. 2 shows a section of two arbitrary, but one disk pair 25 forming rotor disks 18 of the compressor section 12 of FIG. 1 enlarged.
  • Each rotor disk 18 has a disk web 26 which revolves endlessly about the axis of rotation 13.
  • the disk web 26 has at its radially inner end a hub region 28 with a concentric with the axis of rotation central opening 30 and at its radially outer end a rim portion 32.
  • the rim area serves for fastening rotor blades 31 (FIG. 1) and comprises collars 33 arranged on both sides, against which the adjacent rotor disks 18 adjoin one another.
  • the first rotor disk 34 which is illustrated on the left as the second rotor disk 42.
  • the first rotor disk 34 also has bores extending inwardly from the rim region through the disk web 26 and extending along the circumference of the rim Disk web 26 are evenly distributed. Of the holes only one is shown and labeled with the reference numeral 36.
  • the bores 36 are inclined relative to the radial direction in such a way that they penetrate the disk web 26 from one side to the other side.
  • the holes 36 open with their radially inner end in an annular surface 38, which is arranged obliquely to the radial direction of the rotor disk 34.
  • the impeller 50 comprises a plate-shaped rib support 52 having a first side 54 which is designed almost flat, and with a first side 54 opposite the second side 56.
  • the impeller 50 sits, as shown in Figure 4, on a cylindrical portion 37 of Hub region 28 of the second rotor disk 42.
  • the impeller 50 comprises on its first side 54 an annular bead 39, which is completely shown in Figure 6.
  • On the inside of the annular bead 39 four circumferentially uniformly distributed cam 41 are provided according to the embodiment shown.
  • ribs 40 are distributed uniformly along the circumference. These serve as guide elements for emerging from the holes 36 air. You can thereby rectilinear or slightly curved extending from outside to inside in the radial direction or slightly inclined thereto.
  • Each edge 43 of the ribs 40 facing the hub region 28 of the first rotor disk 34 is contoured such that its radial contour corresponds to the radial contour of the first rotor disk 34. Nevertheless, there is a slight gap between the edges 43 and the hub portion 28 to prevent wear.
  • the impeller 50 has a central opening 58 through which the tie rod 20 can extend.
  • the ribs 40 are formed so that they end radially outward directly within the annular surface 38.
  • the outer edge 60 of the rib carrier 52 is located on a larger radius than the outer ends of the ribs 40 - with respect to the rotation axis thirteenth
  • the ribs 40 serve for flow guidance and for unwinding the air flowing out of the bores 36, which are intended to flow into the interior of the rotor 10.
  • a second rotor disk 42 adjoins.
  • the second rotor disk 42 in the hub portion 28 may be conventional.
  • Tie rod 20 through which the tension arm 20 guided air in the axial direction along the tie rod 20 from
  • Compressor section 12 can be performed to the turbine section 14 can.
  • disk pair 25 described above with the intermediate impeller 50 can also be used to guide the guided along the tie rod 20 air to the outside, as required for rotor disks 18 in the turbine section 14.

Abstract

Die Erfindung betrifft somit insgesamt einen Rotor (10) für eine thermische Strömungsmaschine, insbesondere eine Gasturbine, der ausgestaltet ist, in seinem Inneren ein Medium, beispielsweise Verdichterluft, zu führen. Um dieses Medium strömungsverlustarm im Inneren zu führen und um gleichzeitig einen vergleichsweisen einfach sowie kostengünstig herstellbaren Rotor (10) anzugeben, ist vorgesehen, dass zwischen den einander benachbarten Nabenbereichen der beiden Rotorscheiben (34, 42) ein separat gefertigtes Flügelrad (50) angeordnet ist, dessen erste Seite (54) an dem Nabenbereich (28) der zweiten Rotorscheibe (42) anliegt und dessen der ersten Seite (54) gegenüberliegende zweite Seite (56) eine Anzahl von Rippen (40) aufweist, die sich von radial außen nach radial innen erstrecken.

Description

Beschreibung
Rotor für eine thermische Strömungsmaschine
Die Erfindung betrifft einen Rotor für eine thermische Strömungsmaschine, welcher im Inneren zur Führung eines Mediums ausgebildet ist. Rotoren für thermische Strömungsmaschinen wie Axialverdichter und Gasturbinen sind aus dem umfangreich vorhandenen Stand der Technik in unterschiedlichen Bauformen bekannt. Beispielsweise sind für Gasturbinen geschweißte Rotoren bekannt, bei denen unterschiedlich breite Trommeln miteinander zu ei- nem monolithischen Rotor verschweißt sind. Andererseits ist es bekannt, mehrere scheibenförmige Elemente - bekannt auch als Rotorscheiben - zu stapeln und diese mit Hilfe einer oder mehrerer Zuganker zu einem festen Gebilde zu verspannen.
Selbst Kombinationen dieser Bauformen sind bekannt. An allen Rotoren sind außen Laufschaufei montiert, die bei Gasturbinen beispielsweise entweder dem Verdichter oder der Turbineneinheit zuzuordnen sind. Unabhängig von der Bauform kann über im Rotormantel angeordnete Löcher ein Medium in das Innere der Rotoren eingeleitet werden, um dieses Medium von der Einspei- se-Position zu einer zweiten axialen Position zu führen, wo das Medium dem Rotor wieder entnommen wird. Diese Methode wird insbesondere bei Gasturbinen eingesetzt, um Kühlluft dem Hauptströmungspfad des Verdichters einer Gasturbine rotorsei- tig zu entnehmen und zur Turbineneinheit zu führen, wo sie dann wieder aus dem Rotorinneren herausgeführt zu Kühlluftzwecken und/oder Sperrluftzwecken verwendet werden kann.
Um eine aerodynamisch effiziente Entnahme von Luft aus dem Verdichter einer Gasturbine und eine effiziente Führung der Luft im Rotorinneren zu ermöglichen, sind unterschiedliche Konstruktionen bekannt. Beispielsweise ist es aus der DE 196 17 539 AI bekannt, die wegen der Drehung des Rotors mit Drall in den Rotorhohlraum einströmende Luft über sich radial erstreckende Rippen zur Rotormitte zu führen. Die Führung bewirkt, dass die Umfangs- geschwindigkeit der aus den Bohrungen austretenden Luft sich mit kleiner werdendem Radius verringert, was eine unzulässig große Drallbildung verhindert. Aus diesem Grunde werden die Rippen als „Deswirler" bezeichnet, was aus dem Englischen abgeleitet ist.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung einer alternativen Lösung, bei der einerseits die Druck- und Strömungsverluste im Rotorinneren weiter reduziert sind und die andererseits eine einfach herzustellende und somit kos- tengünstige Lösung ist.
Die auf die Erfindung gerichtete Aufgabe wird mit einem Rotor gemäß den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben, de- ren Merkmale gemäß den Rückverweisen miteinander kombiniert werden können .
Die Erfinder haben erkannt, dass im Stand der Technik Strömungsverluste im Bereich der radialen Rippen auftreten kön- nen, da diese in Umfangsrichtung eher vergleichsweise weit auseinander stehen und somit an dieser Stelle größere Strömungsquerschnitte für das der Strömungsmaschine entnommene Medium vorhanden sind. Dies gilt umso mehr, da die Strömungspassagen zwischen den bekannten Rippen auch eine vergleichs- weise große axiale Ausdehnung aufweisen. Um diesen Nachteil auszuräumen, wird vorgeschlagen, den Strömungsquerschnitt der Strömungspassagen zwischen den Rippen auch axial zu begrenzen. Die axiale Begrenzung soll sich vorzugsweise zumindest über einen Großteil der radialen Ausdehnung der Rippen aus- bilden.
Aus diesem Grunde ist ein separat gefertigtes Flügelrad zwischen den Nabenbereichen einander benachbarter Rotorscheiben angeordnet, von denen eine der beiden Rotorscheiben Bohrungen zur Einleitung eines Mediums in das Rotorinnere aufweist, wobei das Flügelrad mit einer ersten Seite an dem Nabenbereich der zweiten Rotorscheibe anliegt und dessen der ersten Seite gegenüberliegende zweite Seite eine Anzahl von Rippen aufweist, die sich von außen nach innen erstrecken.
Im Gegensatz zu den bekannten Lösungen wird mit der Erfindung somit erstmalig vorgeschlagen, dass die Rippen nicht monoli- thischer Teil eines der beiden Rotorscheiben sind, sondern
Teil eines Flügelrades, welches als Rippenträger einen plat- tenförmigen Ring umfasst, an dem die Rippen befestigt sind.
Mithin lässt sich die vorgenannte Ausgestaltung wesentlich einfacher und kostengünstiger herstellen als Rotorscheiben, bei denen die Rippen integraler Bestandteilt der Rotorscheibe sind. Zudem kann das Flügelrad aus einem anderen Werkstoff hergestellt sein als die Rotorscheibe selber, da die Randbedingungen, beispielsweise die maximalen Einsatztemperaturen, unterschiedlich sein können. Mithin wird die relativ komplexe Geometrie der Rippen einer Rotorscheibe von letzterer getrennt, da von den Erfindern erkannt worden ist, dass die Rippen auch an einem separaten Bauteil - dem Flügelrad - angeordnet sein können. Das Flügelrad kann aus einem vollen Ring mechanisch hergestellt werden. Alternativ kann das Flügelrad auch aus Einzelteilen - einem Ring und mehrere Rippen - durch Schweißen gefügt werden. Bei einer komplexen Geometrie der Rippe bietet sich auch ein Gussverfahren zur Herstellung des Flügelrades an.
Es sei bemerkt, dass sich die Begriffe „axial" und „radial" sowie „außen" und „innen" stets auf die Rotationsachse der Rotorscheibe bzw. des Rotors beziehen. Unter dem Rotorinneren ist zudem derjenige Hohlraum im Inneren des Rotors verstan- den, den von den Rotorscheiben begrenzt ist. Mit anderen Worten: Die Bohrungen der ersten Rotorscheibe zählen nicht zum Rotorinneren . Gemäß einer ersten vorteilhaften Weiterbildung des Flügelrades liegt die äußere Kante des Rippenträgers auf einem größeren Radius als die äußeren Enden der Rippen, so dass im verbauten Zustand, wenn das Flügelrad zwischen den Nabenberei- chen der betreffenden Rotorscheiben montiert ist, das aus den Bohrungen austretende Medium wegen des radial weiter nach außen geführten Rippenträgers besser nach innen geleitet werden kann. Verwirbelungen in den Einströmbereichen der Strömungspassagen können somit vermieden werden, was Druckverluste bei der Führung des Mediums verringert.
Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung weist jede der Rippen eine der ersten Rotorscheibe zugewandte Kante auf, deren radiale Kontur zur radialen Kontur der ers- ten Rotorscheibe im Nabenbereich korrespondiert. Hierdurch kann der Spalt zwischen den Kanten der Rippen und der Nabenkontur der ersten Rotorscheibe über die gesamte radiale Rippenausdehnung vergleichsweise klein gehalten werden, was eine effiziente Führung des Mediums entlang der Rippe ermöglicht, ohne das Querströmungen durch einen von der Rippe und dem Nabenbereich gebildeten Spalt auftreten.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist das Flügelrad gegenüber der zweiten Rotorscheibe gegen eine Relativ- bewegung in Umfangsrichtung gesichert. Dazu kann das Flügelrad im Rippenträger ein oder mehrere Löcher aufweisen, in denen ein Bolzen sitzt, der in die benachbarte zweite Rotorscheibe in eine Nut eingreift. Alternativ kann das Flügelrad auch mit der zweiten Rotorscheibe verschraubt sein.
Vorzugsweise ist das Flügelrad auf der zweiten Rotorscheibe aufgeschrumpft. Dazu weist das Flügelrad an seiner der zweiten Rotorscheibe zugewandten Seiten einen Ringwulst auf, der seitlich absteht. Insofern ist die Seite dann zwar nicht mehr vollständig eben, aber immerhin rippenlos. Korrespondierend zu dem Ringwulst weist die zweite Rotorscheibe im Nabenbereich einen zylindrischen, nach außen weisenden Sitz auf, auf den der Ringwulst aufgeschrumpft werden kann. Der Schrumpf- sitzt bietet eine einfache und zuverlässige Befestigung. Um eine Verschleiß hervorrufende Relativbewegung zwischen zweiter Rotorscheibe und Flügelrad zu vermeiden, können an dem einen der beiden am Schrumpfsitz beteiligten Bauteile Nocken angeordnet sein, die in an den anderen der beiden Bauteile des Schrumpfsitzes angeordneten Ausnehmungen weitestgehend formschlüssig eingreifen. Anstelle der formschlüssigen Nocken-Ausnehmungs-Paarung können auch andere Sicherungen gegen Relativbewegungen, wie beispielsweise eine Sicherungsschrau- be, verwendet werden.
Besonders bevorzugt ist die Weiterbildung, bei der das Flügelrad an der zweiten Seite radial innen zwischen den Rippen hohlkehlartig zur Umlenkung einer Strömung ausgebildet ist. Dies verringert die aerodynamischen Verluste im Medium, wenn dieses aus einer hauptsächlich radial gerichteten Strömung in eine in hauptsächlich axial gerichtete Strömungsrichtung umgelenkt werden muss . Dies gilt selbstverständlich auch für eine umgekehrte Strömungsrichtung.
Insgesamt ergeben sich mit der Erfindung mehrere Vorteile: Zuerst ist die Vereinfachung der Fertigung, d.h. die Reduzierung potentieller Fertigungsfehler durch Verringerung der Bauteilkomplexität anzugeben. Zudem sind die komplexen Geo- metrien nicht mehr an den vergleichsweise teureren Bauteilen - den Rotorscheiben - angeordnet, sondern werden an einem separat gefertigten Bauteil - dem Flügelrad - realisiert. Die Trennung der komplexen Geometrien führt zudem zu einer Kostenreduzierung derjenigen Rotorscheibe, mit der die Entnahme des Mediums aus dem Hauptströmungspfad realisiert ist. Die andere, die zweite Rotorscheibe kann klassisch ausgeführt werden, da das Flügelrad die Funktion der verbesserten Strömungsführung im Inneren des Rotors übernimmt. Durch die strukturelle Trennung können unterschiedliche Werkstoffe ein- gesetzt und kombiniert werden.
Die Erfindung betrifft somit insgesamt einen Rotor für eine thermische Strömungsmaschine, insbesondere eine Gasturbine, der ausgestaltet ist, in seinem Inneren ein Medium, beispielsweise Verdichterluft, zu führen. Um dieses Medium strö- mungsverlustarm im Inneren zu führen und um gleichzeitig einen vergleichsweisen einfach sowie kostengünstig herstellba- ren Rotor anzugeben, ist vorgesehen, dass zwischen den einander benachbarten Nabenbereichen der beiden Rotorscheiben ein separat gefertigtes Flügelrad angeordnet ist, dessen ebene, erste Seite an dem Nabenbereich der zweiten Rotorscheibe anliegt und dessen der ersten Seite gegenüberliegende zweite Seite eine Anzahl von Rippen aufweist, die sich von außen nach innen erstrecken.
Weitere Vorteile und Merkmale der Erfindung werden anhand eines einzigen Ausführungsbeispieles erläutert.
Es zeigen:
Figur 1 einen Längsschnitt durch einen Läufer einer
Strömungsmaschine ,
Figur 2 einen Ausschnitt durch den Längsschnitt eines erfindungsgemäßen Rotors einer Strömungsmaschine mit einem zwischen zwei Rotorscheiben angeordneten Flügelrad
Figur 3 das Flügelrad in perspektivischer Darstellung
Figur 4 einen Schrumpfsitz des Flügelrades auf der
zweiten Rotorscheibe im Querschnitt,
Figur 5 einen Ausschnitt aus dem Nabenbereich der
zweiten Rotorscheibe in geschnittener, per spektivischer Darstellung und Figur 6 die Rückseite des Flügelrads in perspektivischer Darstellung. In allen Figuren sind identische Merkmale mit den gleichen Bezugszeichen versehen.
Figur 1 zeigt den prinzipiellen schematischen Aufbau eines Rotors 10 einer thermischen Strömungsmaschine, die im montierten zustand um ihre Rotationsachse 13 drehbar gelagert ist. Im gezeigten Ausführungsbeispiel handelt es sich um den Rotor 10 einer stationären Gasturbine. Der Rotor 10 könnte auch in einer Flugzeug-Gasturbine Verwendung finden. Aufgrund des Einsatzes in einer Gasturbine umfasst der Rotor 10 einen Verdichterabschnitt 12 und einen Turbinenabschnitt 14. Zwischen den beiden Abschnitten 12, 14 ist ein Rohr 16 vorgesehen. Sowohl der Verdichterabschnitt 12 als auch der Turbinenabschnitt 14 sind in Scheibenbauart ausgeführt. Der
Verdichterabschnitt 12 umfasst im gezeigten Ausführungsbei- spiel sechzehn Rotorscheiben 18 und der Turbinenabschnitt 14 vier Rotorscheiben 18. Durch alle Rotorscheiben 18 und das Rohr 16 erstreckt sich ein Zuganker 20, an dessen beiden Enden eine sogenannte vordere Hohlwelle 22 und eine sogenannte hintere Hohlwelle 24 aufgeschraubt sind. Die beiden Hohlwellen 22, 24 verspannen sämtliche Rotorscheiben 18 und das Rohr 16 miteinander, so dass Relativbewegungen in Umfangsrichtung weitestgehend vermieden werden. Im Detail wird dieses durch an den Kontaktflächen 23 angeordnete Hirth-Verzahnungen . Die- se sind jedoch nicht weiter dargestellt.
Die erfindungsgemäßen Merkmale sind in Figur 1 nicht dargestellt. Hierzu wird auf Figur 2 verwiesen, die einen Ausschnitt von zwei beliebigen, jedoch ein Scheibenpaar 25 bil- dende Rotorscheiben 18 des Verdichterabschnitts 12 aus Figur 1 vergrößert darstellen.
Außerhalb des Rotors 10 strömt im Betriebszustand in einem nicht weiter dargestellten Hauptströmungspfad als Medium Luft in Pfeilrichtung 27, die vom Verdichter währenddessen komprimiert wird. Jede Rotorscheibe 18 weist einen sich um die Rotationsachse 13 endlos umlaufenden Scheibensteg 26 auf. Der Scheibensteg 26 weist an seinem radial inneren Ende einen Nabenbereich 28 mit einer zur Rotationsachse konzentrischen zentralen Öffnung 30 und an seinem radial äußeren Ende einen Kranzbereich 32 auf. Der Kranzbereich dient zur Befestigung von Laufschaufeln 31 (Figur 1) und umfasst beidseitig angeordnete Kragen 33, an denen die benachbarten Rotorscheiben 18 aneinander liegen. Die in Figur 2 rechts dargestellte Rotorscheibe 18 wird nach- folgend als erste Rotorscheibe 34 bezeichnet, die links dargestellte als zweite Rotorscheibe 42. Die erste Rotorscheibe 34 weist zudem sich durch den Scheibensteg 26 vom Kranzbereich nach innen erstreckende Bohrungen auf, die entlang des Umfangs des Scheibenstegs 26 gleichmäßig verteilt sind. Von den Bohrungen ist lediglich eine dargestellt und mit dem Bezugszeichen 36 beschriftet. Die Bohrungen 36 sind derartig gegenüber der Radialrichtung geneigt, dass sie den Scheibensteg 26 von der einen Seite zu der anderen Seite durchdringen. Die Bohrungen 36 münden mit ihrem radial inneren Ende in einer Ringfläche 38, welche schräg zur Radialrichtung der Rotorscheibe 34 angeordnet ist.
Zwischen den beiden Nabenbereichen 28 der unmittelbar benachbarten Rotorscheiben 34, 42 ist ein Flügelrad 50 angeordnet. Das Flügelrad 50 umfasst einen plattenförmigen Rippenträger 52 mit einer ersten Seite 54, die nahezu eben ausgestaltet ist, und mit einer der ersten Seite 54 gegenüber liegenden zweiten Seite 56. Das Flügelrad 50 sitzt, wie in Figur 4 dargestellt, auf einem zylindrischen Abschnitt 37 des Nabenbereichs 28 der zweiten Rotorscheibe 42. Dazu umfasst das Flügelrad 50 auf seiner ersten Seite 54 einen Ringwulst 39, welcher in Figur 6 vollständig dargestellt ist. An der Innenseite der Ringwulst 39 sind gemäß dem gezeigten Ausführungsbeispiel vier entlang des Umfangs gleichmäßig verteilte Nocken 41 vorgesehen. Diese greifen bei aufgeschrumpftem Flügelrad 50 in Ausnehmungen 43 (Figur 5) ein, welche im Nabenbereich 28 der zweiten Rotor- Scheibe 42 sowohl radial nach außen als auch seitlich, nicht aber in Umfangsrichtung geöffnet sind. Gleichzeitig liegt die innerhalb der Ringwulst 39 angeordnete Fläche der ersten Seite 54 flächig am seitlichen Nabenbereich 28 an. Somit ist das Flügelrad 50 nur teilweise aufgeschrumpft.
An der zweiten Seite 56 sind entlang des Umfangs gleichmäßig Rippen 40 (Figur 3) verteilt. Diese dienen als Leitelemente für aus den Bohrungen 36 austretende Luft. Sie können dabei geradlinig oder auch leicht gewölbt sich von außen nach innen in Radialrichtung oder auch geringfügig dazu geneigt erstrecken. Jede dem Nabenbereich 28 der ersten Rotorscheibe 34 zugewandte Kante 43 der Rippen 40 ist so konturiert, dass deren radiale Kontur zur radialen Kontur der ersten Rotorscheibe 34 korrespondiert. Dennoch befindet sich jeweils ein geringfügiger Spalt zwischen den Kanten 43 und dem Nabenbereich 28, um Verschleiß zu verhindern. Ebenso wie die anderen Rotorscheiben 18 weist auch das Flügelrad 50 eine zentrale Öffnung 58 auf, durch die sich der Zuganker 20 erstrecken kann.
Die Rippen 40 sind so ausgebildet, dass diese radial außen unmittelbar innerhalb der Ringfläche 38 enden. Um eine zuverlässige und strömungsverlustarme Einströmung der aus den Bohrungen 36 austretenden Luft in die zwischen den Rippen 40 vorhandenen Strömungpassagen zu gewährleisten, liegt die äußere Kante 60 des Rippenträgers 52 auf einem größeren Radius als die äußeren Enden der Rippen 40 - bezogen auf die Rotationsachse 13. Die Rippen 40 dienen zur Strömungsführung und zur Entdrallung der aus den Bohrungen 36 strömenden Luft, die in das Innere des Rotors 10 einströmen sollen. An derjenigen Seite der ersten Rotorscheibe 34, an der die Rippen 40 vorgesehen sind, grenzt eine zweite Rotorscheibe 42 an. Wegen der Verwendung des Flügelrads 50 kann die zweite Rotorscheibe 42 im Nabenbereich 28 konventionell ausgeführt sein. Durch die Verwendung des Flügelrads 50 können die Strömungspassagen über die gesamte radiale Ausdehnung der Rippen 40, in der die aus den Bohrungen 36 austretende Kühlluft eintritt und bis zum Zuganker 20 geführt wird, axial begrenzt werden. Dies vermeidet Verwirbelungen der Luft am Eintritt jeder
Strömungspassage, was die Effizient der Luftführung verbessert .
Da die zentralen Öffnungen 30 der Rotorscheiben 18 größer sind als der Durchmesser des Zugankers 20, bilden sich Ringräume zwischen den jeweiligen Nabenbereichen 28 und dem
Zuganker 20 aus, durch die die zum Zuganker 20 geführte Luft in axialer Richtung entlang des Zugankers 20 vom
Verdichterabschnitt 12 zum Turbinenabschnitt 14 geführt wer- den kann .
Selbstverständlich kann das voran beschriebene Scheibenpaar 25 mit dem zwischengeschalteten Flügelrad 50 auch genutzt werden, um die entlang des Zugankers 20 geführte Luft nach außen zu führen, wie es bei Rotorscheiben 18 im Turbinenabschnitt 14 erforderlich ist.

Claims

Patentansprüche
Rotor (10) für eine thermische Strömungsmaschine,
mit zumindest einem Paar (25) unmittelbar benachbarter
Rotorscheiben (18),
wobei jede Rotorscheibe (18) einen um ihre Rotationsachse endlos umlaufenden Scheibensteg (26) aufweist, der an seinem - bezogen auf die Rotationsachse (13) - radial inneren Ende einen gegenüber dem Scheibensteg (26) axial verbreiterten Nabenbereich (28) mit einer zur Rotationsachse (13) konzentrischen zentralen Öffnung (30) und der an seinem radial äußeren Ende einen axial verbreiterten Kranzbereich (32) zur Anlage an der benachbarten Rotorscheibe (18, 34, 42) und zur Aufnahme von Laufschaufeln
(31) aufweist,
wobei die erste (34) der beiden Rotorscheiben eine Vielzahl von entlang des Umfangs verteilten, vom Kranzbereich
(32) aus sich nach innen erstreckende, den Scheibensteg (26) durchdringende Bohrungen (36) aufweist, die in einer schräg zur Radialrichtung angeordneten Ringfläche (38) der Rotorscheibe (34) münden,
dadurch gekennzeichnet, dass
zwischen den einander benachbarten Nabenbereichen (28) der beiden Rotorscheiben (34, 42) ein Flügelrad (50) angeordnet ist, dessen erste Seite (54) an dem Nabenbereich (28) der zweiten Rotorscheibe (34) anliegt und dessen der ersten Seite (54) gegenüberliegenden zweiten Seite (56) eine Anzahl von Rippen (40) aufweist, die sich von radial außen nach radial innen erstrecken.
Rotor (10) nach Anspruch 1,
bei dem das Flügelrad (50) einen plattförmigen Rippenträger (52) umfasst, dessen äußere Kante (60) auf einem größeren Radius liegt als die äußeren Enden der Rippen (40) . Rotor (10) nach Anspruch 1 oder 2,
bei dem jede der Rippen (40) eine der ersten Rotorscheibe (18) zugewandte Kante (43) aufweist, deren radiale Kontur zur radialen Kontur der ersten Rotorscheibe (34) korrespondiert .
4. Rotor (10) nach Anspruch 1, 2 oder 3,
bei dem das Flügelrad (50) an der zweiten Rotorscheibe (42) befestigt ist.
5. Rotor (10) nach Anspruch 4,
bei dem das Flügelrad über einen Schrumpfsitz an der zweiten Rotorscheibe befestigt ist. 6. Rotor nach Anspruch 4 oder 5,
bei dem das Flügelrad (50) gegenüber der zweiten Rotorscheibe (42) gegen eine Relativbewegung in Umfangsrich- tung gesichert ist.
Rotor nach Anspruch 6 ,
bei dem die zweite Rotorscheibe im Nabenbereich zumindest eine umfangsseitig begrenzte Ausnehmung aufweist, in die ein dazu korrespondierender, am Flügelrad angeordneter Nocken eingreift.
Rotor (10) nach einem der vorangehenden Ansprüche, bei dem das Flügelrad (50) an der zweiten Seite (56) radial innen zwischen den Rippen (40) hohlkehlartig zur Um- lenkung einer Strömung ausgebildet ist.
PCT/EP2014/063914 2013-07-17 2014-07-01 Rotor für eine thermische strömungsmaschine WO2015007512A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480040579.2A CN105408585B (zh) 2013-07-17 2014-07-01 用于热力涡轮机的转子
JP2016526499A JP6110035B2 (ja) 2013-07-17 2014-07-01 熱ターボ機械のロータ
US14/904,500 US10077662B2 (en) 2013-07-17 2014-07-01 Rotor for a thermal turbomachine
EP14734806.4A EP2994615B1 (de) 2013-07-17 2014-07-01 Rotor für eine thermische strömungsmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13176860.8 2013-07-17
EP13176860.8A EP2826957A1 (de) 2013-07-17 2013-07-17 Rotor für eine thermische Strömungsmaschine

Publications (1)

Publication Number Publication Date
WO2015007512A1 true WO2015007512A1 (de) 2015-01-22

Family

ID=48803410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/063914 WO2015007512A1 (de) 2013-07-17 2014-07-01 Rotor für eine thermische strömungsmaschine

Country Status (6)

Country Link
US (1) US10077662B2 (de)
EP (2) EP2826957A1 (de)
JP (1) JP6110035B2 (de)
CN (1) CN105408585B (de)
TW (1) TW201516236A (de)
WO (1) WO2015007512A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402028B (zh) * 2015-04-30 2017-05-03 中国科学院工程热物理研究所 肋板控涡结构、旋转盘腔系统、燃气轮机
EP3199755A1 (de) * 2016-01-27 2017-08-02 Ansaldo Energia Switzerland AG Antiwirbelstruktur für eine gasturbine
US11525400B2 (en) 2020-07-08 2022-12-13 General Electric Company System for rotor assembly thermal gradient reduction
CN111927561A (zh) * 2020-07-31 2020-11-13 中国航发贵阳发动机设计研究所 一种用于涡轮叶片冷却的旋转增压结构
CN112360761A (zh) * 2021-01-12 2021-02-12 中国航发上海商用航空发动机制造有限责任公司 向心增压引气装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617539A1 (de) 1996-05-02 1997-11-13 Asea Brown Boveri Rotor für eine thermische Turbomaschine
DE19852604A1 (de) * 1998-11-14 2000-05-18 Abb Research Ltd Rotor für eine Gasturbine
EP1329591A1 (de) * 2002-01-17 2003-07-23 Snecma Moteurs Scheibe eines Axialverdichters einer Turbomachine mit zentripetaler Abblasvorrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2207465B (en) * 1987-07-18 1992-02-19 Rolls Royce Plc A compressor and air bleed arrangement
EP1970530A1 (de) * 2007-03-12 2008-09-17 Siemens Aktiengesellschaft Läufer einer thermischen Strömungsmaschine sowie thermische Strömungsmaschine
FR2930588B1 (fr) 2008-04-24 2010-06-04 Snecma Rotor de compresseur d'une turbomachine comportant des moyens de prelevement d'air centripete
US8465252B2 (en) * 2009-04-17 2013-06-18 United Technologies Corporation Turbine engine rotating cavity anti-vortex cascade
US9145771B2 (en) 2010-07-28 2015-09-29 United Technologies Corporation Rotor assembly disk spacer for a gas turbine engine
US20130199207A1 (en) * 2012-02-03 2013-08-08 General Electric Company Gas turbine system
EP2826956A1 (de) 2013-07-17 2015-01-21 Siemens Aktiengesellschaft Rotor für eine thermische Strömungsmaschine
EP2826958A1 (de) 2013-07-17 2015-01-21 Siemens Aktiengesellschaft Rotor für eine thermische Strömungsmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617539A1 (de) 1996-05-02 1997-11-13 Asea Brown Boveri Rotor für eine thermische Turbomaschine
DE19852604A1 (de) * 1998-11-14 2000-05-18 Abb Research Ltd Rotor für eine Gasturbine
EP1329591A1 (de) * 2002-01-17 2003-07-23 Snecma Moteurs Scheibe eines Axialverdichters einer Turbomachine mit zentripetaler Abblasvorrichtung

Also Published As

Publication number Publication date
JP2016530436A (ja) 2016-09-29
TW201516236A (zh) 2015-05-01
EP2994615B1 (de) 2017-08-30
US10077662B2 (en) 2018-09-18
US20160194963A1 (en) 2016-07-07
CN105408585B (zh) 2017-03-15
JP6110035B2 (ja) 2017-04-05
EP2994615A1 (de) 2016-03-16
EP2826957A1 (de) 2015-01-21
CN105408585A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
EP1766192B1 (de) Schaufelrad einer turbine mit einer schaufel und mindestens einem kühlkanal
EP2994615B1 (de) Rotor für eine thermische strömungsmaschine
EP3135864B1 (de) Verdichter und verfahren zur montage eines verdichters
EP1944472A1 (de) Axialer Rotorabschnitt für einen Rotor einer Turbine, Dichtelement für einen mit Laufschaufeln bestückten Rotor einer Turbine und Rotor für eine Turbine
WO2015007443A1 (de) Rotor für eine thermische strömungsmaschine
DE102008011644A1 (de) Gehäusestrukturierung für Axialverdichter im Nabenbereich
WO2008122507A1 (de) Shiplap-anordnung
EP2173972B1 (de) Rotor für eine axial durchströmbare strömungsmaschine
EP3022393B1 (de) Rotor für eine thermische strömungsmaschine
EP2771581A1 (de) Axialventilatorrad
EP2788583B1 (de) Turbinenleitschaufel mit einem drosselelement
EP3287608B1 (de) Innenring für einen leitschaufelkranz einer strömungsmaschine
EP3309359B1 (de) Laufschaufelbaugruppe für ein triebwerk
EP2716874B1 (de) Leitschaufelkranz, Montageverfahren und Strömungsmaschine
DE102012215413B4 (de) Baugruppe einer Axialturbomaschine
WO2018206306A1 (de) Verfahren zum instandhalten einer strömungsmaschine
EP3109520B1 (de) Dichtungsträger, leitschaufelkranz und strömungsmaschine
EP2840230A1 (de) Rotor für eine thermische Strömungsmaschine
EP3159483A1 (de) Schaufelträger zur befestigung von laufschaufeln einer thermischen strömungsmaschine
EP2886799A1 (de) Schaufelkranz für eine Strömungsmaschine und Verfahren zum Montieren von Schaufeln eines Schaufelkranzes einer Strömungsmaschine
EP3183430A1 (de) Turbinenlaufschaufel
EP2884052B1 (de) Rotor für eine strömungsmaschine mit geschlossenem strömungskonturring und verfahren zur herstellung desselben
EP2787169A1 (de) Rotor für eine Strömungsmaschine
EP3406860B1 (de) Turbofantriebwerk
EP3431749B1 (de) Extender zum befestigen eines rotorblatts an einem rotornabengehäuse einer windenergieanlage, verfahren zur herstellung eines extenders und verfahren zur montage eines extenders

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040579.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14734806

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014734806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014734806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14904500

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016526499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE