WO2015006859A1 - Dual motor device with application to power cinch and latch mechanism - Google Patents

Dual motor device with application to power cinch and latch mechanism Download PDF

Info

Publication number
WO2015006859A1
WO2015006859A1 PCT/CA2014/000572 CA2014000572W WO2015006859A1 WO 2015006859 A1 WO2015006859 A1 WO 2015006859A1 CA 2014000572 W CA2014000572 W CA 2014000572W WO 2015006859 A1 WO2015006859 A1 WO 2015006859A1
Authority
WO
WIPO (PCT)
Prior art keywords
latch
cinch
output shaft
rotary drive
actuation system
Prior art date
Application number
PCT/CA2014/000572
Other languages
French (fr)
Inventor
Loan Dorin ILEA
Original Assignee
Magna Closures Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna Closures Inc. filed Critical Magna Closures Inc.
Priority to DE112014003306.5T priority Critical patent/DE112014003306T5/en
Priority to CN201480040178.7A priority patent/CN105378200B/en
Publication of WO2015006859A1 publication Critical patent/WO2015006859A1/en
Priority to US14/996,537 priority patent/US11306517B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/02Power-actuated vehicle locks characterised by the type of actuators used
    • E05B81/04Electrical
    • E05B81/06Electrical using rotary motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/005Arrangement or mounting of seats in vehicles, e.g. dismountable auxiliary seats
    • B60N2/015Attaching seats directly to vehicle chassis
    • B60N2/01508Attaching seats directly to vehicle chassis using quick release attachments
    • B60N2/01516Attaching seats directly to vehicle chassis using quick release attachments with locking mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/0224Non-manual adjustments, e.g. with electrical operation
    • B60N2/02246Electric motors therefor
    • B60N2/02253Electric motors therefor characterised by the transmission between the electric motor and the seat or seat parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/32Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles convertible for other use
    • B60N2/36Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles convertible for other use into a loading platform
    • B60N2/366Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles convertible for other use into a loading platform characterised by the locking device
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B79/00Mounting or connecting vehicle locks or parts thereof
    • E05B79/02Mounting of vehicle locks or parts thereof
    • E05B79/04Mounting of lock casings to the vehicle, e.g. to the wing
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B79/00Mounting or connecting vehicle locks or parts thereof
    • E05B79/10Connections between movable lock parts
    • E05B79/20Connections between movable lock parts using flexible connections, e.g. Bowden cables
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/12Power-actuated vehicle locks characterised by the function or purpose of the powered actuators
    • E05B81/14Power-actuated vehicle locks characterised by the function or purpose of the powered actuators operating on bolt detents, e.g. for unlatching the bolt
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/12Power-actuated vehicle locks characterised by the function or purpose of the powered actuators
    • E05B81/20Power-actuated vehicle locks characterised by the function or purpose of the powered actuators for assisting final closing or for initiating opening
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/24Power-actuated vehicle locks characterised by constructional features of the actuator or the power transmission
    • E05B81/32Details of the actuator transmission
    • E05B81/34Details of the actuator transmission of geared transmissions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/24Power-actuated vehicle locks characterised by constructional features of the actuator or the power transmission
    • E05B81/32Details of the actuator transmission
    • E05B81/42Cams
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B83/00Vehicle locks specially adapted for particular types of wing or vehicle
    • E05B83/16Locks for luggage compartments, car boot lids or car bonnets
    • E05B83/18Locks for luggage compartments, car boot lids or car bonnets for car boot lids or rear luggage compartments
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B83/00Vehicle locks specially adapted for particular types of wing or vehicle
    • E05B83/16Locks for luggage compartments, car boot lids or car bonnets
    • E05B83/24Locks for luggage compartments, car boot lids or car bonnets for car bonnets
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C3/00Fastening devices with bolts moving pivotally or rotatively
    • E05C3/12Fastening devices with bolts moving pivotally or rotatively with latching action
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B47/0012Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with rotary electromotors
    • E05B2047/0013Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with rotary electromotors more than one motor for the same function, e.g. for redundancy or increased power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S292/00Closure fasteners
    • Y10S292/23Vehicle door latches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S292/00Closure fasteners
    • Y10S292/65Emergency or safety
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/0801Multiple
    • Y10T292/0825Hooked end
    • Y10T292/0826Operating means
    • Y10T292/083Flexible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/0801Multiple
    • Y10T292/0848Swinging
    • Y10T292/0849Operating means
    • Y10T292/0854Cam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/0801Multiple
    • Y10T292/0848Swinging
    • Y10T292/0849Operating means
    • Y10T292/0855Flexible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/0801Multiple
    • Y10T292/0848Swinging
    • Y10T292/0849Operating means
    • Y10T292/0856Gear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/0911Hooked end
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/0911Hooked end
    • Y10T292/0945Operating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • Y10T292/1044Multiple head
    • Y10T292/1045Operating means
    • Y10T292/1047Closure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • Y10T292/1063Gravity actuated
    • Y10T292/1064Operating means
    • Y10T292/1069Flexible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • Y10T292/1063Gravity actuated
    • Y10T292/1064Operating means
    • Y10T292/1071Push or pull rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • Y10T292/1075Operating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • Y10T292/1075Operating means
    • Y10T292/1082Motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • Y10T292/1075Operating means
    • Y10T292/1083Rigid
    • Y10T292/1092Swinging catch

Definitions

  • This present invention relates to a latch assembly for securing and unsecuring vehicle components such as seats and closure panels.
  • a typical motor vehicle door is mounted in a door frame on the vehicle and is movable between open and closed positions.
  • the door is held in a closed position by the latching engagement between a spring-biased ratchet pivotally mounted inside the door latch and a U-shaped striker secured to the door frame.
  • the ratchet is most often spring-biased toward the unlatched position to release the striker and is maintained in the latched position to hold the striker by a spring-biased pawl or other mechanical structure. The ratchet cannot pivot to release the striker until the pawl is moved.
  • Power assisted door latch assemblies have been developed to overcome the problems associated with latching doors with lightweight construction and hard door seals. Power assisted door latch assemblies allow low internal energy or soft closure of the lightweight doors without the need to slam the door even with the increased seal pressure that results from relatively hard door seals.
  • power assisted seat latch assemblies are needed to overcome problems associated with latching seats.
  • power assisted seat latch assemblies can allow for release of the seats from a secure locking position.
  • the rotary drive actuation system can have a back drive biasing element coupled to the output shaft, such that back drive biasing element biases the output shaft in second rotary direction opposite the first rotary direction.
  • the back drive biasing element is coupled to the output shaft by a gear and the back drive biasing element is a spring.
  • the rotary drive actuation system wherein the common drive element is a common drive gear affixed to the output shaft and each of the plurality of motors is coupled independently to the common drive gear by a respective gear attached to a respective drive shaft of the motor.
  • the plurality of motors are mounted side by side in a common housing.
  • the rotary drive actuation system wherein the cinch member is affixed to the output shaft for corotation of the cinch member and the output shaft when driven by the plurality of motors.
  • the cinch member has a plurality of arms.
  • the rotary drive actuation system further comprises a cinch cam coupled to the one end of the output shaft, such that rotation of the cinch member causes rotation of the cinch cam about the output shaft due to contact with at least one of a plurality of arms.
  • the cinch cam is configured to rotate about the output shaft independently of the rotation of the cinch member and the output shaft.
  • the cinch cam has a mounting portion for coupling a cable thereto, the cable part of the power cinch linkage system coupled to a latch component of the latch.
  • the actuated cinch mechanism wherein the second frame portion extends from the first frame portion at an acute angle as measured between the mounting surfaces, such that the frame is an angled frame.
  • the actuated cinch mechanism further comprises a pulley mounted to the frame, the pulley guiding the cable in an indirect path between the cinch cam and the cinch lever.
  • the second frame portion extends from the first frame portion at an acute angle as measured between the mounting surfaces, such that the frame is an angled frame and the pulley is mounted on the first frame portion.
  • a first cable portion of the cable is between the cinch cam and the pulley and a second cable portion of the cable is between the pulley and the cinch lever, such that the first cable portion of the cable and the second cable portion of the cable are non-parallel with respect to one another.
  • a first cable portion of the cable is between the cinch cam and the pulley and a second cable portion of the cable is between the pulley and the cinch lever, such that the first cable portion of the cable and the second cable portion of the cable are non-coplanar.
  • the actuated cinch mechanism wherein the cinch cam is mounted on the output shaft to provide for relative rotational movement between the output shaft and the cinch cam.
  • the cinch lever is connected to the cable by an intermediary cinch arm.
  • the intermediary cinch arm is in-line between an end of the cable adjacent to the latch and the cinch lever, such that the cinch arm is pivotally connected to the cinch lever.
  • the actuated cinch mechanism further comprises the first frame portion defining the first mounting surface as an actuator plane and the second frame portion defining the second mounting surface as a latch plane, such that the motorized actuation system, cinch cam, and pulley associated with the actuator plane are compatible with different versions of the angled frame having a different said angle.
  • Each of the different versions of the angled frame has a corresponding respective latch configuration such that each of the respective latch configurations includes at least one of the plurality of latch components having an angled body compatible with the respective different said angle.
  • At least one of the plurality of latch components is a pawl having an angled body with a first pawl portion and a second pawl portion, such that the first pawl portion lies in the actuator plane and the second pawl portion lies in the actuator plane.
  • the first frame portion is integral with the second frame portion.
  • the actuated cinch mechanism further comprises a cinch member coupled to the output shaft and configured for rotation about the longitudinal axis, the cinch member having a first lever arm for contacting and manipulating
  • the actuated cinch mechanism further comprises a slot in the cinch cam, the second lever arm configured for translational movement within the slot, such that movement of the cinch member about the longitudinal axis can be performed independently of movement of the cinch cam about the longitudinal axis.
  • the actuated cinch mechanism further comprising a cinch member coupled to the output shaft and configured for rotation about the longitudinal axis, the cinch member having a first lever arm for contacting and manipulating movement of at least one of the plurality of latch components and a second lever arm for contacting and manipulating movement of the cinch cam about the longitudinal axis.
  • the cinch member is affixed to the output shaft such that the output shaft and the cinch member simultaneously rotate together about the longitudinal axis in both the first direction and the second direction.
  • the cinch cam is mounted on the output shaft to provide for relative rotational movement between the output shaft and the cinch cam.
  • the cinch lever is mounted on a shaft facilitating pivotal movement of the cinch lever between a first position representing the partially closed latch position and a second position representing the fully closed and cinched position, such that the shaft is connected to the second frame portion and shared by at least another component of the plurality of latch components.
  • Other elements of the cinch mechanism can include: the at least another component is a pawl mounted on the shaft; a biasing element coupled to the output shaft, the biasing element for providing a bias to the cinch lever towards a position associated with the partially closed latch position; material of the first frame portion is integral with material of the second frame portion; and/or the first frame portion is connected to the second frame portion via mechanical fastening.
  • a fifth aspect provided is a rotary drive actuation system for actuating a latch including: an output shaft having a member affixed at one end of the output shaft for coupling to a component of the latch; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the latch.
  • a sixth aspect provided is a power latch system including: a frame; a latch mounted on the frame and including a plurality of latch components; a rotary drive actuation system mounted on the frame, the rotary drive actuation system for actuating at least one of the plurality of latch components and including: an output shaft having a member affixed at one end of the output shaft for coupling to a component of the plurality of latch components; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the component of the latch.
  • Figure 1a is a perspective view of an example vehicle
  • Figure 1 b is a perspective view of a further example of a vehicle;
  • Figure 2 shows an example powered cinch latch mechanism in an unlatched configuration for the vehicle of Figure 1a;
  • Figure 2a shows a further embodiment of the latch system of Figure 1 a
  • Figure 3 shows details of the latch and cinch linkage assembly of the mechanism of Figure 2;
  • Figure 4 is an exploded view of the powered cinch latch mechanism of Figure 2;
  • Figure 5 shows the powered cinch latch mechanism of Figure 2 in a primary latch position
  • Figure 6 shows an alternative view of the powered cinch latch mechanism of Figure 2 in a primary latch position
  • Figure 7 shows an alternative embodiment of the cinched latch mechanism of Figure 2 having a plurality of electronic motors
  • Figure 8 shows the powered cinch latch mechanism of Figure 2 in a secondary latch position
  • Figures 9a and 9b show alternative configurations of the frame of the powered cinched latch mechanism of Figure 2;
  • Figure 10 shows an alternative view of the powered cinch latch mechanism of Figure 2 in the secondary latch position
  • Figure 11 shows operation of the cinch components of the latch of Figure
  • Figure 12 shows a top view of an alternative embodiment of the rotary actuator system of Figure 2;
  • Figure 13 shows an alternative application of the powered cinch latch mechanism of Figures 2 or 12;
  • Figure 14 shows a bottom view of the alternative embodiment of the rotary actuator system of Figure 12;
  • Figure 15 shows a further top view of the alternative embodiment of the rotary actuator system of Figure 12.
  • FIG. 1a shown is a vehicle 4 with a vehicle body 5 having one or more closure panels 6 coupled to the vehicle body 5.
  • the closure panel 6 is connected to the vehicle body 5 via one or more hinges 8 and a latch 10 (e.g. for retaining the closure panel 6 in a closed position once closed).
  • the hinge 8 can be configured as a biased hinge 8 to bias the closure panel 6 towards an open position and/or towards the closed position.
  • the hinge 8 can also incorporate one or more actuated struts to assist in opening and closing of the closure panel 6, as desired.
  • the closure panel 6 has a mating latch component 7 (e.g. striker) mounted thereon for coupling with the latch 10 mounted on the vehicle body 5.
  • latch 10 can be mounted on the closure panel 6 and the mating latch component 7 mounted on the body 5 (not shown).
  • FIG. 1b shown is the vehicle 4 with the vehicle body 5 having an alternative embodiment of the one or more closure panels 6 coupled to the vehicle body 5.
  • the closure panel 6 is connected to the vehicle body 5 via one or more hinges 8 and latch 10 (e.g. for retaining the closure panel 6 in a closed position once closed).
  • latch 10 e.g. for retaining the closure panel 6 in a closed position once closed.
  • the closure panel can include a hood panel, a door panel, a hatch panel and other panels as desired.
  • the hinges 8 provide for movement of the closure panel 6 between a closed panel position (shown in dashed outline) and an open panel position (shown in solid outline), such that the hinges 8 can be involved during the movement of the closure panel 6 between the open panel position and the closed panel position, can be involved in driving the movement of the closure panel 6 towards the open panel position (e.g. as a biased hinge 8 or strut - not shown), or can be involved in driving the movement of the closure panel 6 towards the closed panel position.
  • the closure panel 6 pivots between the open panel position and the closed panel position about a pivot axis 9 (e.g. of the hinge 8), which can be configured as horizontal or otherwise parallel to a support surface 11 of the vehicle 4.
  • the pivot axis 9 may have some other orientation such as vertical or otherwise extending at an angle outwards from the support surface 11 of the vehicle 4.
  • the closure panel 6 may move in a manner other than pivoting, for example, the closure panel 6 may translate along a predefined track or may undergo a combination of translation and rotation between the open and closed panel positions, such that the hinge 8 includes both pivot and translational components (not shown).
  • the closure panel 6 can be embodied, for example, as a hood, passenger door, or lift gate (otherwise referred to as a hatch) of the vehicle 4.
  • a power latch system 12 (also referred to as latch system 12) coupled to the latch 10, as further described below.
  • the power latch system 12 is configured for actuating the operation of the latch 10. In this manner, the power latch system 12 can be used to forcefully provide, during deployment, some form of force assisted open operation (e.g. full open, partial open, etc.) of the closure panel 6 and/or some form of force assisted close operation (e.g. full open, partial open, etc.) of the closure panel 6.
  • the closure panel 6 can be referred to as a partition or door, typically hinged, but sometimes attached by other mechanisms such as tracks, in front of an opening 13 which can be used for entering and exiting the vehicle 4 interior by people and/or cargo. It is also recognized that the closure panel 6 can be used as an access panel for vehicle 4 systems such as engine compartments and also for traditional trunk compartments of automotive type vehicles 4. The closure panel 6 can be opened to provide access to opening, or closed to secure or otherwise restrict access to the opening 13. It is also recognized that there can be one or more
  • the power latch system 12 can be used to provide an opening force (or torque) and/or a closing force (or torque) for the closure panel 6.
  • Movement of the closure panel 6 can be electronically and/or manually operated, where power assisted closure panels 6 can be found on minivans, high-end cars, or sport utility vehicles (SUVs) and the like.
  • movement of the closure panel 6 can be manual or power assisted during operation of the closure panel 6 at, for example: between fully closed (e.g. locked or latched) and fully open (e.g. unlocked or unlatched); between locked/latched and partially open (e.g. unlocked or unlatched); and/or between partially open (e.g. unlocked or unlatched) and fully open (e.g. unlocked or unlatched).
  • the partially open configuration of the closure panel 6 can also include a secondary lock (e.g. closure panel 6 has a primary lock configuration at fully closed and a secondary lock configuration at partially open - for example for latches 0 associated with vehicle hoods).
  • the closure panel 6 may be a hood, a lift gate, or it may be some other kind of closure panel 6, such as an upward-swinging vehicle door (i.e. what is sometimes referred to as a gull-wing door) or a conventional type of door that is hinged at a front-facing or back-facing edge of the door, and so allows the door to swing (or slide) away from (or towards) the opening 3 in the body 5 of the vehicle 4.
  • an upward-swinging vehicle door i.e. what is sometimes referred to as a gull-wing door
  • a conventional type of door that is hinged at a front-facing or back-facing edge of the door, and so allows the door to swing (or slide) away from (or towards) the opening 3 in the body 5 of the vehicle 4.
  • sliding doors can be a type of door that open by sliding horizontally or vertically, whereby the door is either mounted on, or suspended from a track that provides for a larger opening 13 for equipment to be loaded and unloaded through the opening 13 without obstructing access.
  • Canopy doors are a type of door that sits on top of the vehicle 4 and lifts up in some way, to provide access for vehicle passengers via the opening 13 (e.g. car canopy, aircraft canopy, etc.).
  • Canopy doors can be connected (e.g. hinged at a defined pivot axis and/or connected for travel along a track) to the body 5 of the vehicle at the front, side or back of the door, as the application permits.
  • the body 5 can be represented as a body panel of the vehicle 4, a frame of the vehicle 4, and/or a combination frame and body panel assembly, as desired.
  • a power latch assembly 12 having a frame 14, a rotary actuator system 16 mounted on the frame 14 and the latch 10 mounted on the frame 14.
  • the power latch assembly 12 can be coupled to the body 5 via frame mounting portions 18 (e.g. mounting holes, mounting pins, etc.)
  • the latch 10 is oriented on the frame 14 so as to be aligned to engage the mating latch component 7 (e.g. striker 7).
  • the rotary actuator system 16 is coupled to a member 20 (e.g. cinch arm) 20 via a cinch linkage 22 (e.g. pulley and cable system as further described below) and also to one or more latch components 23 (e.g.
  • the member 20 can be actuated (e.g. pulled) by the cinch linkage 22 to operate the closure panel 6 from a partially closed position to a fully closed position, as further described below, as the member 20 can be coupled to the ratchet 24 via a cinch lever arm 21 (see Figure 5).
  • the cinch linkage 22, see figure 2a can be provided as a rigid linkage rather than as a flexible linkage involving cables.
  • the cinch linkage 22 can be embodied as a sector gear (or other series of rigid members) connected to the member 20 and/or the cinch lever 21 at one end of the cinch linkage 22.
  • a gear e.g. an alternative version of the cinch member 101
  • the output shaft 74 that thus drives the sector gear to move the member 20 in order to cinch the latch 10 as described.
  • the latch 0 includes a number of latch elements 23 (e.g. ratchet 24, cinch linkage 22, cinch lever 21 and pawl 25) that are configured to cooperate with the mating latch component 7 in order to retain the mating latch component 7 within a slot 3 when the closure panel 6 (see Figure 1a,b) is in the closed position (e.g. locked), or otherwise to drive the mating latch component 7 out of the slot 3 when the closure panel 6 is in the open position.
  • the fish mouth or slot 3 is sized for receiving the mating latch component 7 therein, in other words the slot 3 of the latch 10 is configured for receiving a keeper (e.g. striker) of the mating latch component 7.
  • the slot 3 has an open top end and a closed bottom end as shown.
  • the latch elements 23 of the ratchet 24 and pawl 25 are pivotally secured to the frame plate 14 via respective shafts 28,26.
  • the ratchet 24 includes an arm 30 and an arm 32 spaced apart to define a generally u-shaped slot 103 there between (e.g. a hook of arm 30 and a lip of arm 32 that extends laterally beyond the hook).
  • the latch 10 with associated ratchet 24 are shown in the fully or primary closed position (e.g. facilitating the retention of the mating latch component 7 within the slots 3, 103). It is recognized that the latch 10 can also be of a non-cinch version (e.g.
  • the cinch lever 21 may be absent and instead the member 20 (e.g. release member in the case of the seat 100) is coupled to the pawl 25, as desired.
  • the latch 10 does not have the ability to cinch the striker into the slot 3 of the ratchet 24 during closure of the latch 10, rather the latch 10 operates (under influence of the actuation mechanism 16) the ratchet 24 and pawl 25 to effect release or detainment of the matching latch component 7 in the slot 3.
  • the latch components 23 can include a number of biasing elements (for example springs), such as ratchet biasing element 40 that biases rotation of the ratchet 24 about the shaft 28 to drive the mating latch component 7 out of the slot 3 (thus moving the closure panel 6 towards the open position), pawl biasing element 42 that biases rotation of the pawl 25 about the shaft 26 to retain the ratchet 24 in the closed position (i.e.
  • biasing elements for example springs
  • a plurality of detents can be employed to retain the latch components 23 in position until acted upon.
  • the ratchet 25 has a detent 50 (or shoulder stop) that mates with detent 52 (or shoulder stop) of the ratchet 24, thus retaining the ratchet 24 in the closed position.
  • rotational movement 60 of the pawl 25 about shaft 26 removes detent 50 from contact with detent 52, against the bias of pawl biasing element 44, thus allowing for rotational movement 62 of the ratchet 24 about the shaft 28 (e.g.
  • the rotary actuation system 16 includes one or more motors 70 positioned in a housing 72 and coupled to a drive shaft 74.
  • the drive shaft 74 is coupled to a back drive biasing element 48, which can be connected to the driveshaft 74 via a back drive element 76 (e.g. gear).
  • the back drive biasing element 48 biases the cinch lever 21 (and thereby the ratchet 24) towards the un- cinched position, while operation of the motor(s) 70 actuate(s) the position of the ratchet 24 towards the cinched position due to corotation of the cinch lever 21 and ratchet 24 about the shaft 28, as further described below.
  • a coupling element 78 such as splines, on the shaft 74 cooperate with a mating coupling element 80, such as gear teeth, on the back drive element 76, such that rotation of the back drive element 76 as driven by the bias of the back drive biasing element 76 causes rotation of the drive shaft 74 and thus return of the ratchet 24 to the un-cinched position via the cinch linkage system 22.
  • the rotary actuation system 16 (for example for use in the power latch system 12 coupled to the linkage system 22 as a cinch linkage system 22 or as a linkage system 22 for release of the vehicle seat 100) including a plurality of motors 70 (e.g. dual motor).
  • the rotary actuation system 16 includes two electric motors 90 and 92.
  • a control circuit 94 controls energization of the motors 90,92.
  • the control circuit 94 can include, for example, a simple switch, or more complex arrangement providing pinch resistance, express open/close, etc.
  • Motor 90 has a first rotary drive element 91 (e.g.
  • the output shaft 74 is provided in a driving relationship to the mechanism to be driven, e.g. the linkage system 22.
  • the linkage system 22 can include, for example, a cable and pulley mechanism as further described below.
  • Motor 92 has a second rotary drive element 95 (e.g. worm gear) disposed about its output shaft 97 which engages the common rotary drive element 96 (e.g. spur gear) attached to the drive shaft 74.
  • the linkage system 22 can include a pulley 120 and cable 122, such that the cable 122 couples rotation of cinch cam 110 to movement of cinch lever 21. It is recognized that the linkage system 22 could optionally include the pulley 120, as desired.
  • the cable 122 could be connected directly between the cinch cam 110 and the cinch lever 21 without an intermediate pulley or, the cable 122 could be connected indirectly between the cinch cam 110 and the cinch lever 21 via an intermediate pin or series of cable guides as is known in the art (not shown).
  • each of the motors 90,92 has their own drive respective element 91 , 95), the motors 90,92 can be controlled on different circuits of the control circuit 94 and can produce variable speed and torque rotary output or other power distribution arrangements.
  • the motors 90,92 can be configured so that the inherent torque ripple of the motors 90,92 is out of phase with one another. This can reduce or cancel actuator vibration and hum inherent in a single motor 90,92. Meaningful variations can be achieved by combining multiple motors 90,92 on either parallel drive trains or connecting the motors in series, along with any combination of clutch devices, as desired.
  • multiple motors 90,92 on a common drive shaft 74 can provide a soft failure mode in the event that one motor fails.
  • the remaining motor(s) can provide basic function at a reduced performance level until service can be performed.
  • a further advantage of using multiple motors 90,92 coupled to a common drive shaft 74 is that a more compact design of the housing 72 (see Figure 4) can be achieved due to the smaller footprint of the side by side motor 90,92 arrangement over that of a
  • the drive shaft 74 is coupled at one end to the common drive element 96 (as driven independently by the motors 90,92) and is coupled at the other end one or more components of the cinch linkage system 22.
  • the rotary drive actuation system 16 for actuating a power linkage system 22 can have: an output shaft 74 for driving the power cinch linkage system via a cinch member affixed to one end of the drive shaft; an output drive element 96 coupled to the output shaft 74 at the other end of the output shaft 74; and a plurality of motors 90,92 coupled to the drive element for simultaneously driving the drive element 96 and the output shaft 74 in a first rotary direction 99 to effect actuation of the power cinch linkage system 22.
  • the rotary drive actuation system 16 can have the back drive biasing element 48 coupled to the output shaft 74, such that back drive biasing element 48 biases the output shaft 74 in second rotary direction 99 opposite the first rotary direction 99.
  • the drive shaft 74 is coupled at one end to the common drive element 96 (as driven independently by the motors 90,92) and is coupled at the other end one or more components of the linkage system 22.
  • the linkage system 22 couples the drive shaft 74 to the ratchet 24, thus rotation (under influence of the motor(s) 90,92) of the drive shaft 74 can drive rotation of the ratchet 24 towards the cinched position shown in Figure 3.
  • rotation (under influence of the back drive biasing element 48 - see Figure 4) of the drive shaft 74 can allow for rotation of the ratchet 24 away from the cinched position under influence of the ratchet biasing element 40.
  • a cinch member 101 (e.g. an auxiliary lever) affixed to the drive shaft 74, such that rotation of the drive shaft 74 causes corotation 99 of the cinch member 100.
  • the cinch member 101 has a first arm 102 having an abutment surface 104 for contact with an abutment surface 106 of the pawl 22. Rotation of the first arm 102 towards the pawl 22 causes surfaces 102,104 to contact and thus cause rotation 60 of the pawl 22 about the shaft 26 (see Figure 6).
  • the cinch member 01 also has a second arm 108 that is coupled to a cinch cam 1 0, such that rotation of the cinch member 101 causes abutment surface 112 of the second arm 108 to contact abutment surface 1 4 of the cinch cam 0 and thus cause rotation of the cinch cam 110 about the drive shaft 74.
  • the cinch cam 110 can be configured to rotate about the output shaft 74 independently of the rotation of the cinch member 101 and the output shaft 74, for example under the influence of the biasing element(s) 44, 46 (see Figure 4).
  • the cinch member 101 also has an abutment surfacel 12 configured for contact with a shoulder stop 114 mounted to the housing 72 of the rotary actuation system 6, such that contact of the abutment surface 1 2 with the shoulder stop 114 restricts further rotation of the output shaft 74 and cinch member 101 in the first direction 99 as driven by the motor(s) 90,92.
  • FIG. 1a,b shown is an example actuated cinch mechanism 12 for the latch 10 for the closure panel of the vehicle 4 (see Figure 1a,b).
  • the cinch mechanism 12 can have the frame 14 configured for mounting to either the body 5 or the closure panel 6 of the vehicle 4, the frame 14 having a first frame portion 14a with a first mounting surface 17a and a second frame portion 14b with a second mounting surface 17b, the second frame portion 14b extending from the first frame portion 14a.
  • the motorized actuation system 16 is mounted on the first mounting surface 17a and it is recognized that the motorized actuation system 16 can have one or more motors 90,92 coupled to an output shaft 74 having a longitudinal axis.
  • the cinch cam 1 10 is coupled to the output shaft 74 and configured to rotate about the longitudinal axis in a first direction 99 and in a second direction 99 opposite the first direction 99.
  • the latch 10 is mounted on the second mounting surface 17b, the latch has a plurality of latch components 23 including the cinch lever 21 for operating the latch 10 from a partially closed latch position (see Figure 8) to a fully closed and cinched position (see Figure 5).
  • the cable 122 extends between the cinch cam 110 and the cinch lever 21 , the cable 122 coupling rotational movement of the cinch cam 110 to movement of the cinch lever 21.
  • the cinch cam 110 can be mounted on the output shaft 74 to provide for relative rotational movement between the output shaft and the cinch cam 110, such that the cinch cam 110 can rotate independently about the longitudinal axis from rotation of the output shaft 74 about the longitudinal axis.
  • the cinch cam 110 can be affixed to the output shaft 74, such that both the output shaft 74 and the cinch cam 1 10 rotate simultaneously in both rotational directions 99.
  • the actuated cinch mechanism 12 can have an optional pulley120 mounted to the frame 14, for example on the frame portion 14a as shown in Figure 2.
  • the pulley 120 is positioned so as to facilitate guiding of the cable 122 in an indirect path between the cinch cam 110 and the cinch lever 21.
  • the second frame portion 14b extends from the first frame portion 14a at an acute angle A (see Figures 9a, 9b) as measured between the mounting surfaces 17a,17b, such that the frame 14 is an angled frame 14 and the pulley 122 is mounted on the first frame portion 14a.
  • This configuration of the angled frame 14 provides for advantages of non-parallel and/or non-coplanar orientations of different portions 122a and 122b of the cable 122.
  • the first cable portion 122a of the cable 122 is between the cinch cam 110 and the pulley 120 and the second cable portion122b of the cable 122 is between the pulley 120 and the cinch lever 21 , such that the first cable portion 122a of the cable 122 and the second cable portion 122b of the cable 120 are non-parallel with respect to one another.
  • the cable portions 122a,b could be non-parallel with respect to one another while at the same time being coplanar with respect to one another. It is also recognized that the configuration of the angled frame 14 can provide for advantages of parallel and/or coplanar orientations of different portions 122a and 122b of the cable 122.
  • first frame potion 14a can define the first mounting surface 17a as an actuator plane and the second frame portion 14b can define the second mounting surface 17b as a latch plane, such that the motorized actuation system 16, cinch cam 110, and pulley120 associated with the actuator plane 17a are compatible with different versions of the angled frame 14 having a different angle A, as shown in Figures 9A,9B.
  • each of the different versions of the angled frame 14 can have a corresponding respective latch 10 configuration such that each of the respective latch 10 configurations includes at least one of the plurality of latch components 23 (see Figure 4) having an angled body compatible with the respective different angle A for the angled frame 14 version.
  • the pawl 25 can have an angled body 126 with a first pawl portion 128 and a second pawl portion 130, such that the first pawl portion 128 lies in the actuator plane 17a and the second pawl portion 130 lies in the latch plane 17b.
  • the angled frame 14 can be manufactured such that the first frame portion 14a is materially integral with the second frame portion 14b (see Figure 2).
  • an advantage of the differently angled versions of the frame portions 14a,b is that the first cable portion 122a of the cable 122 between the cinch cam 110 and the pulley 120 and the second cable portion 122b of the cable 122 between the pulley 120 and the cinch lever 21 can facilitate the first cable portion 122a and the second cable portion 122b being non-coplanar.
  • the cinch lever 21 can be connected to the cable 122 by the intermediary member 20 - see Figure 2.
  • the intermediary member 20 is in-line between an end of the cable 122 adjacent to the latchI O and the cinch lever 21 , such that the member 20 is pivotally connected to the cinch lever 21 at pivot connection 34.
  • a further advantage of the example actuated cinch mechanisms 12 is provision for a common or single shaft coupled to both the cinch cable 122 (via the cinch cam 110) and to the cinch member 101 (e.g. auxiliary lever), which provides for independent operation of the latch 10 operation for manipulation of the pawl 25 and ratchet 24 from the operation of the cinch lever 21 with the ratchet 24. As such, the operation of the cinch lever 21 and the pawl 25 can be disconnected from one another.
  • the cinch member 101 is coupled to the output shaft 74 and configured for rotation about the longitudinal axis, such that the cinch member has a first lever arm 102 for contacting and manipulating movement of at least one of the plurality of latch components 23 (e.g. pawl 25) and a second lever arm 108 for contacting the cinch cam 110, wherein movement of the cinch member 100 about the longitudinal axis can be performed independently of movement of the cinch cam 110 about the longitudinal axis.
  • One example configuration is where there is a slot 136 in the cinch cam 110, such that the second lever arm 108 is configured for translational movement within the slot 137, such that movement of the cinch member 100 about the longitudinal axis can be performed independently of movement of the cinch cam 110 about the longitudinal axis. It is realized that there can be different versions of the configuration of cinch cam 110 and cinch member 101 coupling to the output shaft 74.
  • the cinch member 101 can be affixed to the output shaft 74
  • the cinch cam 1 10 can be coupled so as to freely rotate about the output shaft 74.
  • the cinch member 101 that drives rotation of the cinch cam 110 about the longitudinal axis.
  • the cinch member 101 drives movement of the cinch cam 110 via slot 137 in the cinch cam 110.
  • the cinch member 101 is coupled to the output shaft and configured for rotation about the longitudinal axis, the cinch member 101 having the first lever arm 102 for contacting and manipulating movement of at least one of the plurality of latch components 23 and the second lever arm 108 for contacting and manipulating movement of the cinch cam 110 about the longitudinal axis.
  • the cinch member 101 is affixed to the output shaft 74 such that the output shaft 74 and the cinch member 101 simultaneously rotate together about the longitudinal axis in both the first direction 99 and the second direction 99.
  • the cinch cam 110 is mounted on the output shaft 74 to provide for relative rotational movement between the output shaft 74 and the cinch cam 110.
  • the cinch cam 110 can be affixed to the output shaft 74 (thereby providing for simultaneous ration of the cinch cam 110 and the output shaft 74) and the cinch member 101 can be coupled so as to freely rotate about the output shaft 74. In this manner it is the cinch cam 110 that drives rotation of the cinch member 101 about the longitudinal axis.
  • actuated cinch latch mechanism 12 can include the cinch lever 21 mounted on a shaft of the latch 10 facilitating pivotal movement of the cinch lever 21 between a first position representing the partially closed latch position (see Figure 8) and a second position representing the fully closed and cinched position (see Figure 5), such that the shaft is connected to the second frame portion 14b and shared by at least another component of the plurality of latch components 23.
  • the at least another component 23 is the pawl 25 mounted on the shaft 26.
  • the biasing element e.g. element 48
  • material of the first frame portion 14a can be integral with material of the second frame portion 14b.
  • first frame portion 14a can be connected to the second frame portion 14b via mechanical fastening (not shown).
  • the latch 10 in a fully open position, such that the mating latch component 7 is released from the ratchet 24 and thus out of the slot 3.
  • the mating latch component 7 can be travelling away 138 from the slot 3 thus signifying further opening of the closure panel 6 (see Figure 1a,b).
  • the mating latch component 7 can be travelling towards 140 the slot 3 thus signifying closing of the closure panel 6 (see Figure 1a,b).
  • FIG. 1 1 shown is the mating latch component 7 travelling towards the cinched or primary latch position due to the continued tension T acting on the cinch lever 21 via the optional intermediate member 20.
  • the cinch lever 21 could also be referred to as the member 20 if the optional member 20 is absent.
  • the tension T causes the member 20 to pull the cinch lever at pivot connection 134, thus causing movement 146 of the cinch lever 21 (e.g. pivot about shaft 26) and therefore further rotation of the ratchet 24 (e.g. via detents 54,56 - see Figure 5) to force the mating latch component 7 further into the slot 3 towards the primary latch position.
  • FIG. 12 is a further embodiment of the rotary actuation system 16 of the power latch system 12 (e.g. including the linkage 22 coupling the rotary actuator system 16 to the latch 10 - for example see Figure 2).
  • the embodiment of Figure 12 does not include frame 14, as is shown in the alternative embodiment of figure 2.
  • the rotary actuator system 16 of Figure 12 can be provided as an individual component of a generic power latch system 12, as desired.
  • the power latch system 12, as actuated by the rotary actuator system 16, is configured for actuating the operation of the latch 10. In this manner, the power latch system 12 can be used to forcefully provide, during
  • the power latch system 12 can also be used to forcefully provide, during deployment, some form of force assisted recline operation of a seat 100 shown in Figure 13.
  • the rotary actuator system 16 having the housing 73.
  • the rotary actuator system 16 can be coupled to the body 5 (or to the seat 100 - see figure 13) via frame mounting portions 18 (e.g. mounting holes, mounting pins, etc.).
  • the rotary actuator system 16 of Figure 12 can be coupled to the member 20 of the latch 10 (e.g. as shown in Figure 2) via the linkage 22 (e.g. pulley and cable system as shown in Figures 2 and 3) and also to one or more latch components 23 (e.g. ratchet 24 and/or pawl 25 as further described below - see Figure 3).
  • the member 20 can be actuated (e.g.
  • the latch 10 can be mounted to the rotary actuator system 16 using frame 4 as shown or the latch 10 can be mounted stationary and spaced apart from the rotary actuator system 16 by mounting both the latch 10 and the rotary actuator system 16 to a common component (e.g. body 5 see Figure 1a or seat 100 see Figure 13) of the vehicle. As such it is recognized that the rotary actuator system 16 and the latch 10 can be assembled on the vehicle without use of the frame 14 as shown in Figure 2.
  • the rotary actuation system 16 includes one or more motors 70 positioned in the housing 73 and coupled to the drive shaft 74.
  • the drive shaft 74 is coupled to a back drive biasing element 48 (see Figure 15), which can be connected to the driveshaft 74 via the back drive element 76 (e.g. gear).
  • the back drive biasing element 48 biases the cinch lever 21 (and thereby the ratchet 24 - see Figure 5 as an example) towards the un-cinched position 102 (see Figure 15 with biasing element 48 in regular view), while operation of the motor(s) 70 actuate(s) the position of the ratchet 24 towards the cinched position 104 (see Figure 15 with biasing element 48 extended in tension in ghosted view) due to corotation of the cinch lever 21 and ratchet 24 about the shaft 28.
  • a coupling element 78 such as splines (see Figure 4)
  • the mating coupling element 80 such as gear teeth
  • rotation of the back drive element 76 as driven by the bias of the back drive biasing element 48 causes rotation of the drive shaft 74 and thus return of the ratchet 24 to the un-cinched position via the cinch linkage system 22.
  • the rotary actuator system 16 including a plurality of motors 70 (e.g. dual motor). As shown, the rotary actuator system 16 includes two electric motors 90 and 92. A control circuit 94 (see Figure 15) controls energization of the motors 90,92.
  • the control circuit 94 can include, for example, a simple switch, or more complex arrangement providing pinch resistance, express open/close, etc.
  • Motor 90 has the first rotary drive elemental (e.g. worm gear) disposed about its output shaft 93 which engages the common rotary drive element 96 (e.g.
  • the drive shaft 74 is provided in a driving relationship to the mechanism to be driven, e.g. the linkage system 22 (see Figure 2).
  • the linkage system 22 can include, for example, a cable and pulley mechanism as described.
  • Motor 92 has the second rotary drive element 95 (e.g.
  • the linkage system 22 can include a pulley 120 and cable 122, such that the cable 122 couples rotation of cinch cam 110 to movement of cinch lever 21. It is recognized that the linkage system 22 could optionally include the pulley 120, as desired.
  • the cable 122 could be connected directly between the cinch cam 110 and the cinch lever 21 without an intermediate pulley or, the cable 122 could be connected indirectly between the cinch cam 110 and the cinch lever 21 via an intermediate pin or series of cable guides as is known in the art (not shown). It is recognized that an embodiment of the cinch cam 110 is shown in Figure 15 connected to the drive shaft 74.
  • the power folding seat 00 can be disposed within an automobile, for example.
  • the power folding seat 100 comprises a seat cushion 06 and a seat back 108.
  • the seat back 108 has a base which is disposed above the seat cushion 106 and is pivotally coupled at its base to the seat cushion 106 to allow the seat back portion 108 to rotate about its base between an upright position and a folded position overlying the seat cushion 106 as shown in phantom.
  • the seat back 108 preferably can include an adjustable head restraint which can be vertically movable between an extended position and a retracted position.
  • the seat back portion 104 can also includes a mounted rotary actuator system 16 disposed between frame members and coupled to the latch 10 (e.g. non cinch version) by the linkage system 22.
  • the motors 90,92 can be configured so that the inherent torque ripple of the motors 90,92 is out of phase with one another. This can reduce or cancel actuator vibration and hum inherent in a single motor 90,92. Meaningful variations can be achieved by combining multiple motors 90,92 on either parallel drive trains or connecting the motors in series, along with any combination of clutch devices, as desired.
  • multiple motors 90,92 on a common drive shaft 74 can provide a soft failure mode in the event that one motor fails. The remaining motor(s) can provide basic function at a reduced performance level until service can be performed.
  • a further advantage of using multiple motors 90,92 coupled to a common drive shaft 74 is that a more compact design of the housing 72 (see Figure 4) can be achieved due to the smaller footprint of the side by side motor 90,92 arrangement over that of a
  • the drive shaft 74 is coupled at one end to the common drive element 96 (as driven independently by the motors 90,92) and is coupled at the other end one or more components of the linkage system 22.
  • the rotary actuator system 16 can be configured to rotate the seat back 108 between the upright position and the folded position. However, as the rotary actuator system 16 is disposed within the seat back 108, the power folding seat 100 can be easily installed into an automobile without occupying space assigned to other automobile components.
  • the latch 0 non-cinch latch version components of ratchet and pawl of the power latch system 12 of Figure 13 is shown in example detail FIGS. 3 and 5.
  • the latch 10 has the rotary actuator system 16 mechanically coupled to it via the linkage system 22, and is interoperable with the latching post or striker 7 secured to the body 5 of the automobile.
  • the mechanical seat latch 10 can be of the type commonly found in automobiles and can comprise a spring-actuated latch mechanism and a release pawl (see Figure 5), e.g. non-cinch version.
  • the mechanical seat latch 10 is configured to release the striker 7 (under influence of the pawl actuated by the rotary actuator system 16 to release the striker 7 upon influence of rotary actuator system 16 operation via linkage 22.
  • the rotary actuator system 16 is powered by the electrical system of the automobile.
  • the rotary actuator system 16 can be coupled to the release pawl of the mechanical seat latch 10 via the release linkage system 22. Consequently, when the rotary actuator system 16 is activated, the release pawl can be rotated away from the spring-actuated latch 10 mechanism, thereby causing the mechanical seat latch 10 to release the latching post 7 and to allow the seat back 108 to be rotated from the upright position to the folded position via a seat recliner mechanism (not shown).
  • the power latch system 12 (and/or any individual components 10,16,22 thereof either alone or in combination with each other) of Figure 13 can be used as a latch actuation mechanism for seats 100.
  • the power latch system 12 (and/or any individual components 10,16,22 thereof either alone or in combination with each other) of Figure 13 can be used as a latch actuation mechanism for seats 100.
  • the power latch system 12 (and/or any individual components 10,16,22 thereof either alone or in combination with each other) of Figure 13 can be used as a latch actuation mechanism for seats 100.
  • the power latch system 12 (and/or any individual
  • components 10,16,22 thereof either alone or in combination with each other) of Figure 2 can be used as a cinch latch actuation mechanism for closure panels 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Lock And Its Accessories (AREA)

Abstract

A rotary drive actuation system for actuating a latch including: an output shaft having a member affixed at one end of the output shaft for coupling to a component of the latch; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the latch.

Description

DUAL MOTOR DEVICE WITH APPLICATION TO POWER CINCH AND LATCH
MECHANISM
FIELD OF THE INVENTION
[0001] This present invention relates to a latch assembly for securing and unsecuring vehicle components such as seats and closure panels.
BACKGROUND
[0002] A typical motor vehicle door is mounted in a door frame on the vehicle and is movable between open and closed positions. Usually the door is held in a closed position by the latching engagement between a spring-biased ratchet pivotally mounted inside the door latch and a U-shaped striker secured to the door frame. The ratchet is most often spring-biased toward the unlatched position to release the striker and is maintained in the latched position to hold the striker by a spring-biased pawl or other mechanical structure. The ratchet cannot pivot to release the striker until the pawl is moved.
[0003] The majority of these door latches are exclusively manually operated both to unlatch the door and to relatch the door. Typically, the manual release handles are provided on the inside and outside of the door to release the ratchet from the striker by moving the pawl so that the door can be opened. The door is closed and relatched by manually pivoting the door so that the ratchet impacts the striker with sufficient force to pivot the ratchet to the latched position against the spring force exerted by the ratchet spring.
[0004] It is often difficult, however, to completely close and latch manually latching vehicle doors on current model vehicles because the desire to reduce vehicle weight and to improve fuel economy has led engineers to design vehicles with relatively thin and lightweight doors. Often relatively hard door seals are used with these thin, lightweight doors to improve sealing around the door, particulary at high driving speeds. Because many vehicle doors are relatively lightweight and have relatively hard door seals, many vehicles doors often have insufficient internal energy when pushed closed to compress these hard door seals and fully pivot the ratchet to the latched position to latch the door.
[0005] Power assisted door latch assemblies have been developed to overcome the problems associated with latching doors with lightweight construction and hard door seals. Power assisted door latch assemblies allow low internal energy or soft closure of the lightweight doors without the need to slam the door even with the increased seal pressure that results from relatively hard door seals.
[0006] It is also recognized that power assisted seat latch assemblies are needed to overcome problems associated with latching seats. For example, power assisted seat latch assemblies can allow for release of the seats from a secure locking position.
[0007] Current problems exist with powered latch assemblies, including complicated latch component configurations and large and inconvenient assembly footprints. Further, single motor configurations used as actuators for the powered latch assemblies are inconvenient due to their larger footprint and cost/maintenance issues. These include applications for both seat and closure panel assemblies.
SUMMARY
[0008] It is an object to the present invention to provide a powered latch assembly to obviate or mitigate at least one of the above-mentioned problems.
[0009] A first aspect provided is a power cinch linkage system having a rotary drive actuation system for actuating the power cinch linkage system of a latch, the rotary drive actuation system including: an output shaft for driving the power cinch linkage system via a cinch member affixed at one end of the output shaft; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the power cinch linkage system. [0010] An aspect provided is a power latch release system having a rotary drive actuation system for actuating the release of a latch, the rotary drive actuation system including: an output shaft for driving the release system via a release member affixed at one end of the output shaft; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the release system.
[0011] A second aspect provided is a cinch linkage system of a latch having a rotary drive actuation system for actuation, the rotary drive actuation system including: an output shaft for driving the power cinch linkage system via a cinch member affixed at one end of the output shaft; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the power cinch linkage system.
[0012] A third aspect provided is a latch having a rotary drive actuation system for use in actuating a power cinch linkage system of the latch, the rotary drive actuation system including: an output shaft for driving the power cinch linkage system via a cinch member affixed at one end of the output shaft; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the power cinch linkage system.
[0013] A fourth aspect provided is an actuated cinch mechanism for a latch for a closure panel of a vehicle, the cinch mechanism comprising: a frame configured for mounting to either a body or the closure panel of the vehicle, the frame having a first frame portion with a first mounting surface and a second frame portion with a second mounting surface, the second frame portion extending from the first frame portion; a motorized actuation system mounted on the first mounting surface, the motorized actuation system having at least one motor with an output shaft having a longitudinal axis; a cinch cam coupled to the output shaft and configured to rotate about the longitudinal axis in a first direction and in a second direction opposite the first direction; a latch mounted on the second mounting surface, the latch having a plurality of latch components including a cinch lever for operating the latch from a partially closed latch position to a fully closed and cinched position; and a cable extending between the cinch cam and the cinch lever, the cable coupling rotational movement of the cinch cam to movement of the cinch lever.
[0014] The rotary drive actuation system can have a back drive biasing element coupled to the output shaft, such that back drive biasing element biases the output shaft in second rotary direction opposite the first rotary direction. The back drive biasing element is coupled to the output shaft by a gear and the back drive biasing element is a spring.
[0015] The rotary drive actuation system, wherein the common drive element is a common drive gear affixed to the output shaft and each of the plurality of motors is coupled independently to the common drive gear by a respective gear attached to a respective drive shaft of the motor. Each of the plurality of motors are mounted side by side in a common housing.
[0016] The rotary drive actuation system, wherein the cinch member is affixed to the output shaft for corotation of the cinch member and the output shaft when driven by the plurality of motors. The cinch member has a plurality of arms.
[0017] The rotary drive actuation system further comprises a cinch cam coupled to the one end of the output shaft, such that rotation of the cinch member causes rotation of the cinch cam about the output shaft due to contact with at least one of a plurality of arms. The cinch cam is configured to rotate about the output shaft independently of the rotation of the cinch member and the output shaft. The cinch cam has a mounting portion for coupling a cable thereto, the cable part of the power cinch linkage system coupled to a latch component of the latch.
[0018] The actuated cinch mechanism, wherein the second frame portion extends from the first frame portion at an acute angle as measured between the mounting surfaces, such that the frame is an angled frame. The actuated cinch mechanism further comprises a pulley mounted to the frame, the pulley guiding the cable in an indirect path between the cinch cam and the cinch lever. The second frame portion extends from the first frame portion at an acute angle as measured between the mounting surfaces, such that the frame is an angled frame and the pulley is mounted on the first frame portion. A first cable portion of the cable is between the cinch cam and the pulley and a second cable portion of the cable is between the pulley and the cinch lever, such that the first cable portion of the cable and the second cable portion of the cable are non-parallel with respect to one another. A first cable portion of the cable is between the cinch cam and the pulley and a second cable portion of the cable is between the pulley and the cinch lever, such that the first cable portion of the cable and the second cable portion of the cable are non-coplanar.
[0019] The actuated cinch mechanism, wherein the cinch cam is mounted on the output shaft to provide for relative rotational movement between the output shaft and the cinch cam. The cinch lever is connected to the cable by an intermediary cinch arm. The intermediary cinch arm is in-line between an end of the cable adjacent to the latch and the cinch lever, such that the cinch arm is pivotally connected to the cinch lever.
[0020] The actuated cinch mechanism further comprises the first frame portion defining the first mounting surface as an actuator plane and the second frame portion defining the second mounting surface as a latch plane, such that the motorized actuation system, cinch cam, and pulley associated with the actuator plane are compatible with different versions of the angled frame having a different said angle. Each of the different versions of the angled frame has a corresponding respective latch configuration such that each of the respective latch configurations includes at least one of the plurality of latch components having an angled body compatible with the respective different said angle. At least one of the plurality of latch components is a pawl having an angled body with a first pawl portion and a second pawl portion, such that the first pawl portion lies in the actuator plane and the second pawl portion lies in the actuator plane. The first frame portion is integral with the second frame portion.
[0021] The actuated cinch mechanism further comprises a cinch member coupled to the output shaft and configured for rotation about the longitudinal axis, the cinch member having a first lever arm for contacting and manipulating
movement of at least one of the plurality of latch components and a second lever arm for contacting the cinch cam, wherein movement of the cinch member about the longitudinal axis can be performed independently of movement of the cinch cam about the longitudinal axis. The actuated cinch mechanism further comprises a slot in the cinch cam, the second lever arm configured for translational movement within the slot, such that movement of the cinch member about the longitudinal axis can be performed independently of movement of the cinch cam about the longitudinal axis. The actuated cinch mechanism further comprising a cinch member coupled to the output shaft and configured for rotation about the longitudinal axis, the cinch member having a first lever arm for contacting and manipulating movement of at least one of the plurality of latch components and a second lever arm for contacting and manipulating movement of the cinch cam about the longitudinal axis. The cinch member is affixed to the output shaft such that the output shaft and the cinch member simultaneously rotate together about the longitudinal axis in both the first direction and the second direction. The cinch cam is mounted on the output shaft to provide for relative rotational movement between the output shaft and the cinch cam. The cinch lever is mounted on a shaft facilitating pivotal movement of the cinch lever between a first position representing the partially closed latch position and a second position representing the fully closed and cinched position, such that the shaft is connected to the second frame portion and shared by at least another component of the plurality of latch components.
[0022] Other elements of the cinch mechanism can include: the at least another component is a pawl mounted on the shaft; a biasing element coupled to the output shaft, the biasing element for providing a bias to the cinch lever towards a position associated with the partially closed latch position; material of the first frame portion is integral with material of the second frame portion; and/or the first frame portion is connected to the second frame portion via mechanical fastening.
[0023] A fifth aspect provided is a rotary drive actuation system for actuating a latch including: an output shaft having a member affixed at one end of the output shaft for coupling to a component of the latch; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the latch.
[0024] A sixth aspect provided is a power latch system including: a frame; a latch mounted on the frame and including a plurality of latch components; a rotary drive actuation system mounted on the frame, the rotary drive actuation system for actuating at least one of the plurality of latch components and including: an output shaft having a member affixed at one end of the output shaft for coupling to a component of the plurality of latch components; a common drive element affixed to the output shaft at the other end of the output shaft; and a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the component of the latch.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] The foregoing and other aspects will be more readily appreciated having reference to the drawings, wherein:
[0026] Figure 1a is a perspective view of an example vehicle;
[0027] Figure 1 b is a perspective view of a further example of a vehicle; [0028] Figure 2 shows an example powered cinch latch mechanism in an unlatched configuration for the vehicle of Figure 1a;
[0029] Figure 2a shows a further embodiment of the latch system of Figure 1 a;
[0030] Figure 3 shows details of the latch and cinch linkage assembly of the mechanism of Figure 2;
[0031] Figure 4 is an exploded view of the powered cinch latch mechanism of Figure 2;
[0032] Figure 5 shows the powered cinch latch mechanism of Figure 2 in a primary latch position;
[0033] Figure 6 shows an alternative view of the powered cinch latch mechanism of Figure 2 in a primary latch position;
[0034] Figure 7 shows an alternative embodiment of the cinched latch mechanism of Figure 2 having a plurality of electronic motors;
[0035] Figure 8 shows the powered cinch latch mechanism of Figure 2 in a secondary latch position;
[0036] Figures 9a and 9b show alternative configurations of the frame of the powered cinched latch mechanism of Figure 2;
[0037] Figure 10 shows an alternative view of the powered cinch latch mechanism of Figure 2 in the secondary latch position;
[0038] Figure 11 shows operation of the cinch components of the latch of Figure
2;
[0039] Figure 12 shows a top view of an alternative embodiment of the rotary actuator system of Figure 2;
[0040] Figure 13 shows an alternative application of the powered cinch latch mechanism of Figures 2 or 12; [0041] Figure 14 shows a bottom view of the alternative embodiment of the rotary actuator system of Figure 12; and
[0042] Figure 15 shows a further top view of the alternative embodiment of the rotary actuator system of Figure 12.
DESCRIPTION
[0043] Referring to Figure 1a, shown is a vehicle 4 with a vehicle body 5 having one or more closure panels 6 coupled to the vehicle body 5. The closure panel 6 is connected to the vehicle body 5 via one or more hinges 8 and a latch 10 (e.g. for retaining the closure panel 6 in a closed position once closed). It is also recognized that the hinge 8 can be configured as a biased hinge 8 to bias the closure panel 6 towards an open position and/or towards the closed position. As such, the hinge 8 can also incorporate one or more actuated struts to assist in opening and closing of the closure panel 6, as desired. The closure panel 6 has a mating latch component 7 (e.g. striker) mounted thereon for coupling with the latch 10 mounted on the vehicle body 5.
Alternatively, latch 10 can be mounted on the closure panel 6 and the mating latch component 7 mounted on the body 5 (not shown).
[0044] Referring to Figure 1b, shown is the vehicle 4 with the vehicle body 5 having an alternative embodiment of the one or more closure panels 6 coupled to the vehicle body 5. The closure panel 6 is connected to the vehicle body 5 via one or more hinges 8 and latch 10 (e.g. for retaining the closure panel 6 in a closed position once closed). It is recognized that examples of the closure panel can include a hood panel, a door panel, a hatch panel and other panels as desired.
[0045] The hinges 8 provide for movement of the closure panel 6 between a closed panel position (shown in dashed outline) and an open panel position (shown in solid outline), such that the hinges 8 can be involved during the movement of the closure panel 6 between the open panel position and the closed panel position, can be involved in driving the movement of the closure panel 6 towards the open panel position (e.g. as a biased hinge 8 or strut - not shown), or can be involved in driving the movement of the closure panel 6 towards the closed panel position. In the embodiment shown, the closure panel 6 pivots between the open panel position and the closed panel position about a pivot axis 9 (e.g. of the hinge 8), which can be configured as horizontal or otherwise parallel to a support surface 11 of the vehicle 4. In other embodiments, the pivot axis 9 may have some other orientation such as vertical or otherwise extending at an angle outwards from the support surface 11 of the vehicle 4. In still other
embodiments, the closure panel 6 may move in a manner other than pivoting, for example, the closure panel 6 may translate along a predefined track or may undergo a combination of translation and rotation between the open and closed panel positions, such that the hinge 8 includes both pivot and translational components (not shown). As can be appreciated, the closure panel 6 can be embodied, for example, as a hood, passenger door, or lift gate (otherwise referred to as a hatch) of the vehicle 4.
[0046] Also provided is a power latch system 12 (also referred to as latch system 12) coupled to the latch 10, as further described below. The power latch system 12 is configured for actuating the operation of the latch 10. In this manner, the power latch system 12 can be used to forcefully provide, during deployment, some form of force assisted open operation (e.g. full open, partial open, etc.) of the closure panel 6 and/or some form of force assisted close operation (e.g. full open, partial open, etc.) of the closure panel 6.
[0047] For vehicles 4, the closure panel 6 can be referred to as a partition or door, typically hinged, but sometimes attached by other mechanisms such as tracks, in front of an opening 13 which can be used for entering and exiting the vehicle 4 interior by people and/or cargo. It is also recognized that the closure panel 6 can be used as an access panel for vehicle 4 systems such as engine compartments and also for traditional trunk compartments of automotive type vehicles 4. The closure panel 6 can be opened to provide access to opening, or closed to secure or otherwise restrict access to the opening 13. It is also recognized that there can be one or more
intermediate open positions (e.g. unlatched position) of the closure panel 6 between a fully open panel position (e.g. unlatched position) and fully closed panel position (e.g. latched position), as provided at least in part by the hinges 8 and latch 10, as assisted by the power latch system 12. For example, the power latch system 12 can be used to provide an opening force (or torque) and/or a closing force (or torque) for the closure panel 6.
[0048] Movement of the closure panel 6 (e.g. between the open and closed panel positions) can be electronically and/or manually operated, where power assisted closure panels 6 can be found on minivans, high-end cars, or sport utility vehicles (SUVs) and the like. As such, it is recognized that movement of the closure panel 6 can be manual or power assisted during operation of the closure panel 6 at, for example: between fully closed (e.g. locked or latched) and fully open (e.g. unlocked or unlatched); between locked/latched and partially open (e.g. unlocked or unlatched); and/or between partially open (e.g. unlocked or unlatched) and fully open (e.g. unlocked or unlatched). It is recognized that the partially open configuration of the closure panel 6 can also include a secondary lock (e.g. closure panel 6 has a primary lock configuration at fully closed and a secondary lock configuration at partially open - for example for latches 0 associated with vehicle hoods).
[0049] In terms of vehicles 4, the closure panel 6 may be a hood, a lift gate, or it may be some other kind of closure panel 6, such as an upward-swinging vehicle door (i.e. what is sometimes referred to as a gull-wing door) or a conventional type of door that is hinged at a front-facing or back-facing edge of the door, and so allows the door to swing (or slide) away from (or towards) the opening 3 in the body 5 of the vehicle 4. Also contemplated are sliding door embodiments of the closure panel 6 and canopy door embodiments of the closure panel 6, such that sliding doors can be a type of door that open by sliding horizontally or vertically, whereby the door is either mounted on, or suspended from a track that provides for a larger opening 13 for equipment to be loaded and unloaded through the opening 13 without obstructing access. Canopy doors are a type of door that sits on top of the vehicle 4 and lifts up in some way, to provide access for vehicle passengers via the opening 13 (e.g. car canopy, aircraft canopy, etc.).
Canopy doors can be connected (e.g. hinged at a defined pivot axis and/or connected for travel along a track) to the body 5 of the vehicle at the front, side or back of the door, as the application permits. It is recognized that the body 5 can be represented as a body panel of the vehicle 4, a frame of the vehicle 4, and/or a combination frame and body panel assembly, as desired.
[0050] Referring to Figure 2, shown is a power latch assembly 12 having a frame 14, a rotary actuator system 16 mounted on the frame 14 and the latch 10 mounted on the frame 14. The power latch assembly 12 can be coupled to the body 5 via frame mounting portions 18 (e.g. mounting holes, mounting pins, etc.) The latch 10 is oriented on the frame 14 so as to be aligned to engage the mating latch component 7 (e.g. striker 7). The rotary actuator system 16 is coupled to a member 20 (e.g. cinch arm) 20 via a cinch linkage 22 (e.g. pulley and cable system as further described below) and also to one or more latch components 23 (e.g. ratchet 24 and/or pawl 25 as further described below - see Figure 3). As such, the member 20 can be actuated (e.g. pulled) by the cinch linkage 22 to operate the closure panel 6 from a partially closed position to a fully closed position, as further described below, as the member 20 can be coupled to the ratchet 24 via a cinch lever arm 21 (see Figure 5). It is also recognized that the cinch linkage 22, see figure 2a, can be provided as a rigid linkage rather than as a flexible linkage involving cables. For example, the cinch linkage 22 can be embodied as a sector gear (or other series of rigid members) connected to the member 20 and/or the cinch lever 21 at one end of the cinch linkage 22. At the other end of the cinch linkage 22, a gear (e.g. an alternative version of the cinch member 101) is connected to the output shaft 74 that thus drives the sector gear to move the member 20 in order to cinch the latch 10 as described.
[0051] Referring to Figures 3, 4, 5, the latch 0 includes a number of latch elements 23 (e.g. ratchet 24, cinch linkage 22, cinch lever 21 and pawl 25) that are configured to cooperate with the mating latch component 7 in order to retain the mating latch component 7 within a slot 3 when the closure panel 6 (see Figure 1a,b) is in the closed position (e.g. locked), or otherwise to drive the mating latch component 7 out of the slot 3 when the closure panel 6 is in the open position. The fish mouth or slot 3 is sized for receiving the mating latch component 7 therein, in other words the slot 3 of the latch 10 is configured for receiving a keeper (e.g. striker) of the mating latch component 7. The slot 3 has an open top end and a closed bottom end as shown. The latch elements 23 of the ratchet 24 and pawl 25 are pivotally secured to the frame plate 14 via respective shafts 28,26. The ratchet 24 includes an arm 30 and an arm 32 spaced apart to define a generally u-shaped slot 103 there between (e.g. a hook of arm 30 and a lip of arm 32 that extends laterally beyond the hook). Note that in Figure 3 the latch 10 with associated ratchet 24 are shown in the fully or primary closed position (e.g. facilitating the retention of the mating latch component 7 within the slots 3, 103). It is recognized that the latch 10 can also be of a non-cinch version (e.g. as applied to a vehicle seat 100 see Figure 13), meaning that the cinch lever 21 may be absent and instead the member 20 (e.g. release member in the case of the seat 100) is coupled to the pawl 25, as desired. In the non-cinch latch version, the latch 10 does not have the ability to cinch the striker into the slot 3 of the ratchet 24 during closure of the latch 10, rather the latch 10 operates (under influence of the actuation mechanism 16) the ratchet 24 and pawl 25 to effect release or detainment of the matching latch component 7 in the slot 3.
[0052] Referring to Figure 4, the latch components 23 can include a number of biasing elements (for example springs), such as ratchet biasing element 40 that biases rotation of the ratchet 24 about the shaft 28 to drive the mating latch component 7 out of the slot 3 (thus moving the closure panel 6 towards the open position), pawl biasing element 42 that biases rotation of the pawl 25 about the shaft 26 to retain the ratchet 24 in the closed position (i.e. restrict rotation of the ratchet 24 about the shaft 28 under the influence of the ratchet biasing element 40), cinch biasing element 44 that can bias rotation of the cinch lever 21 towards an un-cinched position for the ratchet 24 about shaft 28 and linkage biasing element 46 that biases return of the cinch linkage 22 towards an un-cinched position of the ratchet 24.
[0053] In terms of cooperation of the various latch components 23 with one another, a plurality of detents (also referred to as shoulder stops) can be employed to retain the latch components 23 in position until acted upon. For example, as can be seen in Figure 3, the ratchet 25 has a detent 50 (or shoulder stop) that mates with detent 52 (or shoulder stop) of the ratchet 24, thus retaining the ratchet 24 in the closed position. As shown in Figure 6, rotational movement 60 of the pawl 25 about shaft 26 removes detent 50 from contact with detent 52, against the bias of pawl biasing element 44, thus allowing for rotational movement 62 of the ratchet 24 about the shaft 28 (e.g. under the influence of the ratchet biasing element 42 - see Figure 4). Rotational movement 62 results in movement of the mating latch component 7 towards the open end of the slot 3 and therefore out of the slot 103. Referring to Figure 5, shown is detent 54 (or shoulder stop) positioned on the cinch arm lever 21 in contact with detent 56 (or shoulder stop) positioned on the ratchet 24. As such, contact between the detents 54,56 provides for corotation of the cinch lever 21 and the ratchet 24 about the shaft 28, as further described below in relation to the cinching operation of the latch 10.
[0054] Referring again to Figure 4, the rotary actuation system 16 includes one or more motors 70 positioned in a housing 72 and coupled to a drive shaft 74. The drive shaft 74 is coupled to a back drive biasing element 48, which can be connected to the driveshaft 74 via a back drive element 76 (e.g. gear). The back drive biasing element 48 biases the cinch lever 21 (and thereby the ratchet 24) towards the un- cinched position, while operation of the motor(s) 70 actuate(s) the position of the ratchet 24 towards the cinched position due to corotation of the cinch lever 21 and ratchet 24 about the shaft 28, as further described below. For example, a coupling element 78, such as splines, on the shaft 74 cooperate with a mating coupling element 80, such as gear teeth, on the back drive element 76, such that rotation of the back drive element 76 as driven by the bias of the back drive biasing element 76 causes rotation of the drive shaft 74 and thus return of the ratchet 24 to the un-cinched position via the cinch linkage system 22.
[0055] Referring to Figure 7, shown is an embodiment of the rotary actuation system 16(for example for use in the power latch system 12 coupled to the linkage system 22 as a cinch linkage system 22 or as a linkage system 22 for release of the vehicle seat 100) including a plurality of motors 70 (e.g. dual motor). As shown, the rotary actuation system 16 includes two electric motors 90 and 92. A control circuit 94 controls energization of the motors 90,92. The control circuit 94 can include, for example, a simple switch, or more complex arrangement providing pinch resistance, express open/close, etc. Motor 90 has a first rotary drive element 91 (e.g. worm gear) disposed about its output shaft 93 which engages a common rotary drive element 96 (e.g. spur gear) attached to the drive shaft 74, such that the common rotary drive element 96 drives the output shaft 74 under influence of driven rotation of one or more of the motors 90,92. It is recognized that in the event of failure of one of the motors 90,92, the other operational motor 90,92 can be used to drive the drive shaft 74 while the failed motor 90,92 remains coupled to the drive shaft 74. The output shaft 74 is provided in a driving relationship to the mechanism to be driven, e.g. the linkage system 22. The linkage system 22 can include, for example, a cable and pulley mechanism as further described below. Motor 92 has a second rotary drive element 95 (e.g. worm gear) disposed about its output shaft 97 which engages the common rotary drive element 96 (e.g. spur gear) attached to the drive shaft 74. For example, as shown in Figures 3 and 4, the linkage system 22 can include a pulley 120 and cable 122, such that the cable 122 couples rotation of cinch cam 110 to movement of cinch lever 21. It is recognized that the linkage system 22 could optionally include the pulley 120, as desired. For example, the cable 122 could be connected directly between the cinch cam 110 and the cinch lever 21 without an intermediate pulley or, the cable 122 could be connected indirectly between the cinch cam 110 and the cinch lever 21 via an intermediate pin or series of cable guides as is known in the art (not shown).
[0056] Referring again to Figure 7, when both the electric motors 90 and 92 are energized via control circuit 94, drive elements 91 ,95 both independently drive the common drive element 96 and thus the drive shaft 74, thus causing the linkage system 22 to be operated and thus manipulate the attached cinch lever 21 and attached member 20. As further discussed below, manipulation of the cinch lever 21 provides for rotation of the ratchet 24 about the shaft 28 towards and into the cinched position, thus positioning the mating latch component 7 in the fully closed position in the slot 3 of the latch 10 (see Figure 5). Since the two motors 90 and 92 do not share the same drive elements 91 ,95 (i.e. each of the motors 90,92 has their own drive respective element 91 , 95), the motors 90,92 can be controlled on different circuits of the control circuit 94 and can produce variable speed and torque rotary output or other power distribution arrangements. For example, the motors 90,92 can be configured so that the inherent torque ripple of the motors 90,92 is out of phase with one another. This can reduce or cancel actuator vibration and hum inherent in a single motor 90,92. Meaningful variations can be achieved by combining multiple motors 90,92 on either parallel drive trains or connecting the motors in series, along with any combination of clutch devices, as desired. In addition, multiple motors 90,92 on a common drive shaft 74 can provide a soft failure mode in the event that one motor fails. The remaining motor(s) can provide basic function at a reduced performance level until service can be performed. A further advantage of using multiple motors 90,92 coupled to a common drive shaft 74 is that a more compact design of the housing 72 (see Figure 4) can be achieved due to the smaller footprint of the side by side motor 90,92 arrangement over that of a
conventional single larger motor. Further, coupling of the motors 90,92 to a single drive shaft 74 provides for a single back drive biasing element 48 and back drive element 76 arrangement, via the common drive element 96, thus advantageously providing for efficiencies in back drive system component usages and packaging (e.g. simpler footprint). The drive shaft 74 is coupled at one end to the common drive element 96 (as driven independently by the motors 90,92) and is coupled at the other end one or more components of the cinch linkage system 22.
[0057] In view of the above, the rotary drive actuation system 16 for actuating a power linkage system 22 can have: an output shaft 74 for driving the power cinch linkage system via a cinch member affixed to one end of the drive shaft; an output drive element 96 coupled to the output shaft 74 at the other end of the output shaft 74; and a plurality of motors 90,92 coupled to the drive element for simultaneously driving the drive element 96 and the output shaft 74 in a first rotary direction 99 to effect actuation of the power cinch linkage system 22. Further, the rotary drive actuation system 16 can have the back drive biasing element 48 coupled to the output shaft 74, such that back drive biasing element 48 biases the output shaft 74 in second rotary direction 99 opposite the first rotary direction 99.
[0058] Referring again to Figures 3, 4 and 7, the drive shaft 74 is coupled at one end to the common drive element 96 (as driven independently by the motors 90,92) and is coupled at the other end one or more components of the linkage system 22. As noted, the linkage system 22 couples the drive shaft 74 to the ratchet 24, thus rotation (under influence of the motor(s) 90,92) of the drive shaft 74 can drive rotation of the ratchet 24 towards the cinched position shown in Figure 3. Alternatively, rotation (under influence of the back drive biasing element 48 - see Figure 4) of the drive shaft 74 can allow for rotation of the ratchet 24 away from the cinched position under influence of the ratchet biasing element 40. For example, in Figure 3, shown as part of the linkage system 22 is a cinch member 101 (e.g. an auxiliary lever) affixed to the drive shaft 74, such that rotation of the drive shaft 74 causes corotation 99 of the cinch member 100. The cinch member 101 has a first arm 102 having an abutment surface 104 for contact with an abutment surface 106 of the pawl 22. Rotation of the first arm 102 towards the pawl 22 causes surfaces 102,104 to contact and thus cause rotation 60 of the pawl 22 about the shaft 26 (see Figure 6). The cinch member 01 also has a second arm 108 that is coupled to a cinch cam 1 0, such that rotation of the cinch member 101 causes abutment surface 112 of the second arm 108 to contact abutment surface 1 4 of the cinch cam 0 and thus cause rotation of the cinch cam 110 about the drive shaft 74.
[0059] Accordingly, as discussed below, the cinch cam 110 can be configured to rotate about the output shaft 74 independently of the rotation of the cinch member 101 and the output shaft 74, for example under the influence of the biasing element(s) 44, 46 (see Figure 4). The cinch member 101 also has an abutment surfacel 12 configured for contact with a shoulder stop 114 mounted to the housing 72 of the rotary actuation system 6, such that contact of the abutment surface 1 2 with the shoulder stop 114 restricts further rotation of the output shaft 74 and cinch member 101 in the first direction 99 as driven by the motor(s) 90,92.
[0060] Referring to Figures 2 and 3, shown is an example actuated cinch mechanism 12 for the latch 10 for the closure panel of the vehicle 4 (see Figure 1a,b). The cinch mechanism 12 can have the frame 14 configured for mounting to either the body 5 or the closure panel 6 of the vehicle 4, the frame 14 having a first frame portion 14a with a first mounting surface 17a and a second frame portion 14b with a second mounting surface 17b, the second frame portion 14b extending from the first frame portion 14a. The motorized actuation system 16 is mounted on the first mounting surface 17a and it is recognized that the motorized actuation system 16 can have one or more motors 90,92 coupled to an output shaft 74 having a longitudinal axis. The cinch cam 1 10 is coupled to the output shaft 74 and configured to rotate about the longitudinal axis in a first direction 99 and in a second direction 99 opposite the first direction 99. The latch 10 is mounted on the second mounting surface 17b, the latch has a plurality of latch components 23 including the cinch lever 21 for operating the latch 10 from a partially closed latch position (see Figure 8) to a fully closed and cinched position (see Figure 5). The cable 122 extends between the cinch cam 110 and the cinch lever 21 , the cable 122 coupling rotational movement of the cinch cam 110 to movement of the cinch lever 21.
[0061] The cinch cam 110 can be mounted on the output shaft 74 to provide for relative rotational movement between the output shaft and the cinch cam 110, such that the cinch cam 110 can rotate independently about the longitudinal axis from rotation of the output shaft 74 about the longitudinal axis. Alternatively, the cinch cam 110 can be affixed to the output shaft 74, such that both the output shaft 74 and the cinch cam 1 10 rotate simultaneously in both rotational directions 99.
[0062] Referring to Figure 2 and 3, in terms of cable 122, cinch cam 110 and pulley 120 interaction, the actuated cinch mechanism 12 can have an optional pulley120 mounted to the frame 14, for example on the frame portion 14a as shown in Figure 2. As such, the pulley 120 is positioned so as to facilitate guiding of the cable 122 in an indirect path between the cinch cam 110 and the cinch lever 21. For example, one configuration is where the second frame portion 14b extends from the first frame portion 14a at an acute angle A (see Figures 9a, 9b) as measured between the mounting surfaces 17a,17b, such that the frame 14 is an angled frame 14 and the pulley 122 is mounted on the first frame portion 14a. This configuration of the angled frame 14 provides for advantages of non-parallel and/or non-coplanar orientations of different portions 122a and 122b of the cable 122. For example, the first cable portion 122a of the cable 122 is between the cinch cam 110 and the pulley 120 and the second cable portion122b of the cable 122 is between the pulley 120 and the cinch lever 21 , such that the first cable portion 122a of the cable 122 and the second cable portion 122b of the cable 120 are non-parallel with respect to one another. It is recognized that in certain configurations of the frame portions 14a, b and orientations of the pulley 120 and latch 10, the cable portions 122a,b could be non-parallel with respect to one another while at the same time being coplanar with respect to one another. It is also recognized that the configuration of the angled frame 14 can provide for advantages of parallel and/or coplanar orientations of different portions 122a and 122b of the cable 122.
[0063] In terms of allowance for multiple latch and actuator planes, it is
recognized that the first frame potion 14a can define the first mounting surface 17a as an actuator plane and the second frame portion 14b can define the second mounting surface 17b as a latch plane, such that the motorized actuation system 16, cinch cam 110, and pulley120 associated with the actuator plane 17a are compatible with different versions of the angled frame 14 having a different angle A, as shown in Figures 9A,9B.
[0064] Further, in the actuated cinch mechanism 12, each of the different versions of the angled frame 14 can have a corresponding respective latch 10 configuration such that each of the respective latch 10 configurations includes at least one of the plurality of latch components 23 (see Figure 4) having an angled body compatible with the respective different angle A for the angled frame 14 version. For example, as shown in Figure 4, the pawl 25 can have an angled body 126 with a first pawl portion 128 and a second pawl portion 130, such that the first pawl portion 128 lies in the actuator plane 17a and the second pawl portion 130 lies in the latch plane 17b. It is recognized that the angled frame 14 can be manufactured such that the first frame portion 14a is materially integral with the second frame portion 14b (see Figure 2).
[0065] As discussed above, an advantage of the differently angled versions of the frame portions 14a,b is that the first cable portion 122a of the cable 122 between the cinch cam 110 and the pulley 120 and the second cable portion 122b of the cable 122 between the pulley 120 and the cinch lever 21 can facilitate the first cable portion 122a and the second cable portion 122b being non-coplanar.
[0066] In terms of connection between the cable 122 and the cinch lever 21 , the cinch lever 21 can be connected to the cable 122 by the intermediary member 20 - see Figure 2. For example, the intermediary member 20 is in-line between an end of the cable 122 adjacent to the latchI O and the cinch lever 21 , such that the member 20 is pivotally connected to the cinch lever 21 at pivot connection 34.
[0067] A further advantage of the example actuated cinch mechanisms 12 is provision for a common or single shaft coupled to both the cinch cable 122 (via the cinch cam 110) and to the cinch member 101 (e.g. auxiliary lever), which provides for independent operation of the latch 10 operation for manipulation of the pawl 25 and ratchet 24 from the operation of the cinch lever 21 with the ratchet 24. As such, the operation of the cinch lever 21 and the pawl 25 can be disconnected from one another. For example, as shown in Figure 3 and 4, the cinch member 101 is coupled to the output shaft 74 and configured for rotation about the longitudinal axis, such that the cinch member has a first lever arm 102 for contacting and manipulating movement of at least one of the plurality of latch components 23 (e.g. pawl 25) and a second lever arm 108 for contacting the cinch cam 110, wherein movement of the cinch member 100 about the longitudinal axis can be performed independently of movement of the cinch cam 110 about the longitudinal axis. One example configuration is where there is a slot 136 in the cinch cam 110, such that the second lever arm 108 is configured for translational movement within the slot 137, such that movement of the cinch member 100 about the longitudinal axis can be performed independently of movement of the cinch cam 110 about the longitudinal axis. It is realized that there can be different versions of the configuration of cinch cam 110 and cinch member 101 coupling to the output shaft 74.
[0068] For example, the cinch member 101 can be affixed to the output shaft 74
(thereby providing for simultaneous ration of the cinch member 101 and the output shaft 74) and the cinch cam 1 10 can be coupled so as to freely rotate about the output shaft 74. In this manner it is the cinch member 101 that drives rotation of the cinch cam 110 about the longitudinal axis. As such, the cinch member 101 drives movement of the cinch cam 110 via slot 137 in the cinch cam 110. The cinch member 101 is coupled to the output shaft and configured for rotation about the longitudinal axis, the cinch member 101 having the first lever arm 102 for contacting and manipulating movement of at least one of the plurality of latch components 23 and the second lever arm 108 for contacting and manipulating movement of the cinch cam 110 about the longitudinal axis. In this example the cinch member 101 is affixed to the output shaft 74 such that the output shaft 74 and the cinch member 101 simultaneously rotate together about the longitudinal axis in both the first direction 99 and the second direction 99. Further, the cinch cam 110 is mounted on the output shaft 74 to provide for relative rotational movement between the output shaft 74 and the cinch cam 110.
[0069] Alternatively, for example, the cinch cam 110 can be affixed to the output shaft 74 (thereby providing for simultaneous ration of the cinch cam 110 and the output shaft 74) and the cinch member 101 can be coupled so as to freely rotate about the output shaft 74. In this manner it is the cinch cam 110 that drives rotation of the cinch member 101 about the longitudinal axis.
[0070] Other features of the actuated cinch latch mechanism 12 can include the cinch lever 21 mounted on a shaft of the latch 10 facilitating pivotal movement of the cinch lever 21 between a first position representing the partially closed latch position (see Figure 8) and a second position representing the fully closed and cinched position (see Figure 5), such that the shaft is connected to the second frame portion 14b and shared by at least another component of the plurality of latch components 23. One example of this is where the at least another component 23 is the pawl 25 mounted on the shaft 26. Further, the biasing element ( e.g. element 48) can be coupled to the output shaft 74, the biasing element for providing a bias to the cinch lever 21 towards a position associated with the partially closed latch position. Further, material of the first frame portion 14a can be integral with material of the second frame portion 14b.
Alternatively, the first frame portion 14a can be connected to the second frame portion 14b via mechanical fastening (not shown).
[0071] Referring to Figure 7, shown is the latch 10 in a fully open position, such that the mating latch component 7 is released from the ratchet 24 and thus out of the slot 3. In this diagram, the mating latch component 7 can be travelling away 138 from the slot 3 thus signifying further opening of the closure panel 6 (see Figure 1a,b). Alternatively, the mating latch component 7 can be travelling towards 140 the slot 3 thus signifying closing of the closure panel 6 (see Figure 1a,b).
[0072] Referring to Figure 8 and Figure 10. The cinch lever 21 is in the uncinched position, and the mating latch component 7 is in the partially closed (or open depending on travel direction of the mating latch component 7 in the slot 3) latch position, also referred to as secondary latched position of the latch 10. As the cinch cam 110 is rotated 99 about the longitudinal axis of the output shaft 74, via force F of lever arm 108 against slot 137, tension T in the cable 122 causes pulley 120 to rotate 142, which causes movement of the cinch lever 21 and therefore rotation 144 of the ratchet 24 causing the mating latch component 7 to be forced in direction D towards the fully closed and cinched position, also referred to as primary latch position (i.e. whereby the closure panel 6 is fully closed and any seals about the opening 13 - see Figure 1a,b - are sandwiched between the closure panel 6 and the body 5 of the vehicle 4). For an example of the primary position, see Figures 5 or 6.
[0073] Referring to Figure 1 1 , shown is the mating latch component 7 travelling towards the cinched or primary latch position due to the continued tension T acting on the cinch lever 21 via the optional intermediate member 20. It is recognized that the cinch lever 21 could also be referred to as the member 20 if the optional member 20 is absent. As such, the tension T causes the member 20 to pull the cinch lever at pivot connection 134, thus causing movement 146 of the cinch lever 21 (e.g. pivot about shaft 26) and therefore further rotation of the ratchet 24 (e.g. via detents 54,56 - see Figure 5) to force the mating latch component 7 further into the slot 3 towards the primary latch position.
[0074] Referring to Figure 12 is a further embodiment of the rotary actuation system 16 of the power latch system 12 (e.g. including the linkage 22 coupling the rotary actuator system 16 to the latch 10 - for example see Figure 2). It is recognized that the embodiment of Figure 12 does not include frame 14, as is shown in the alternative embodiment of figure 2. As such, it is recognized that the rotary actuator system 16 of Figure 12 can be provided as an individual component of a generic power latch system 12, as desired. The power latch system 12, as actuated by the rotary actuator system 16, is configured for actuating the operation of the latch 10. In this manner, the power latch system 12 can be used to forcefully provide, during
deployment, some form of force assisted open operation (e.g. full open, partial open, etc.) of the closure panel 6 and/or some form of force assisted close operation (e.g. full open, partial open, etc.) of the closure panel 6 shown in Figure 1a. Alternatively, the power latch system 12 can also be used to forcefully provide, during deployment, some form of force assisted recline operation of a seat 100 shown in Figure 13.
[0075] Referring to Figures 1a and 12, shown is the rotary actuator system 16 having the housing 73. The rotary actuator system 16 can be coupled to the body 5 (or to the seat 100 - see figure 13) via frame mounting portions 18 (e.g. mounting holes, mounting pins, etc.). The rotary actuator system 16 of Figure 12 can be coupled to the member 20 of the latch 10 (e.g. as shown in Figure 2) via the linkage 22 (e.g. pulley and cable system as shown in Figures 2 and 3) and also to one or more latch components 23 (e.g. ratchet 24 and/or pawl 25 as further described below - see Figure 3). As such, the member 20 can be actuated (e.g. pulled) by the linkage 22 to operate the closure panel 6, seat 100, etc. from a partially closed position to a fully closed position, as the cinch arm 20 can be coupled to the ratchet 24 via a cinch lever arm 21 (see Figure 5). It should be recognized that the latch 10 can be mounted to the rotary actuator system 16 using frame 4 as shown or the latch 10 can be mounted stationary and spaced apart from the rotary actuator system 16 by mounting both the latch 10 and the rotary actuator system 16 to a common component (e.g. body 5 see Figure 1a or seat 100 see Figure 13) of the vehicle. As such it is recognized that the rotary actuator system 16 and the latch 10 can be assembled on the vehicle without use of the frame 14 as shown in Figure 2.
[0076] Referring Figure 14, the rotary actuation system 16 includes one or more motors 70 positioned in the housing 73 and coupled to the drive shaft 74. The drive shaft 74 is coupled to a back drive biasing element 48 (see Figure 15), which can be connected to the driveshaft 74 via the back drive element 76 (e.g. gear). The back drive biasing element 48 biases the cinch lever 21 (and thereby the ratchet 24 - see Figure 5 as an example) towards the un-cinched position 102 (see Figure 15 with biasing element 48 in regular view), while operation of the motor(s) 70 actuate(s) the position of the ratchet 24 towards the cinched position 104 (see Figure 15 with biasing element 48 extended in tension in ghosted view) due to corotation of the cinch lever 21 and ratchet 24 about the shaft 28. For example, a coupling element 78, such as splines (see Figure 4), on the shaft 74 cooperate with the mating coupling element 80, such as gear teeth, on the back drive element 76, such that rotation of the back drive element 76 as driven by the bias of the back drive biasing element 48 causes rotation of the drive shaft 74 and thus return of the ratchet 24 to the un-cinched position via the cinch linkage system 22.
[0077] Referring to Figure 14, shown is the embodiment of the rotary actuator system 16 including a plurality of motors 70 (e.g. dual motor). As shown, the rotary actuator system 16 includes two electric motors 90 and 92. A control circuit 94 (see Figure 15) controls energization of the motors 90,92. The control circuit 94 can include, for example, a simple switch, or more complex arrangement providing pinch resistance, express open/close, etc. Motor 90 has the first rotary drive elemental (e.g. worm gear) disposed about its output shaft 93 which engages the common rotary drive element 96 (e.g. spur gear) attached to the drive shaft 74, such that the common rotary drive element 96 drives the drive shaft 74 under influence of driven rotation of one or more of the motors 90,92. It is recognized that in the event of failure of one of the motors 90,92, the other operational motor 90,92 can be used to drive the drive shaft 74 while the failed motor 90,92 remains coupled to the drive shaft 74. The drive shaft 74 is provided in a driving relationship to the mechanism to be driven, e.g. the linkage system 22 (see Figure 2). The linkage system 22 can include, for example, a cable and pulley mechanism as described. Motor 92 has the second rotary drive element 95 (e.g. worm gear) disposed about its output shaft 97 which engages the common rotary drive element 76 (e.g. spur gear) attached to the drive shaft 74. For example, as shown in Figures 3 and 4, the linkage system 22 can include a pulley 120 and cable 122, such that the cable 122 couples rotation of cinch cam 110 to movement of cinch lever 21. It is recognized that the linkage system 22 could optionally include the pulley 120, as desired. For example, the cable 122 could be connected directly between the cinch cam 110 and the cinch lever 21 without an intermediate pulley or, the cable 122 could be connected indirectly between the cinch cam 110 and the cinch lever 21 via an intermediate pin or series of cable guides as is known in the art (not shown). It is recognized that an embodiment of the cinch cam 110 is shown in Figure 15 connected to the drive shaft 74.
[0078] Referring to Figure 13, shown is the vehicle seat 100 as an example application of the power latch system 2. The power folding seat 00 can be disposed within an automobile, for example. The power folding seat 100 comprises a seat cushion 06 and a seat back 108. The seat back 108 has a base which is disposed above the seat cushion 106 and is pivotally coupled at its base to the seat cushion 106 to allow the seat back portion 108 to rotate about its base between an upright position and a folded position overlying the seat cushion 106 as shown in phantom. The seat back 108 preferably can include an adjustable head restraint which can be vertically movable between an extended position and a retracted position. The seat back portion 104 can also includes a mounted rotary actuator system 16 disposed between frame members and coupled to the latch 10 (e.g. non cinch version) by the linkage system 22.
[0079] Referring again to Figure 13 and 14, when both the electric motors 90 and 92 are energized via control circuit 94, drive elements 91 ,95 both independently drive the common drive element 96 and thus the drive shaft 74, thus causing the linkage system 22 to be operated and thus manipulate the attached release member 20. As further discussed below, manipulation of the release member 20 provides for rotation of the ratchet 24 about the shaft 28 towards and into the open position, thus positioning the mating latch component 7 in the fully open position in the slot 3 of the latch 10 (see Figure 5). Since the two motors 90 and 92 do not share the same drive elements 91 ,95 (i.e. each of the motors 90,92 has their own drive respective element 91 , 95), the motors 90,92 can be controlled on different circuits of the control circuit 94 and can produce variable speed and torque rotary output or other power distribution
arrangements. For example, the motors 90,92 can be configured so that the inherent torque ripple of the motors 90,92 is out of phase with one another. This can reduce or cancel actuator vibration and hum inherent in a single motor 90,92. Meaningful variations can be achieved by combining multiple motors 90,92 on either parallel drive trains or connecting the motors in series, along with any combination of clutch devices, as desired. In addition, multiple motors 90,92 on a common drive shaft 74 can provide a soft failure mode in the event that one motor fails. The remaining motor(s) can provide basic function at a reduced performance level until service can be performed. A further advantage of using multiple motors 90,92 coupled to a common drive shaft 74 is that a more compact design of the housing 72 (see Figure 4) can be achieved due to the smaller footprint of the side by side motor 90,92 arrangement over that of a
conventional single larger motor. Further, coupling of the motors 90,92 to a single drive shaft 74 provides for a single back drive biasing element 48 and back drive element 76 arrangement, via the common drive element 96, thus advantageously providing for efficiencies in back drive system component usages and packaging (e.g. simpler footprint). The drive shaft 74 is coupled at one end to the common drive element 96 (as driven independently by the motors 90,92) and is coupled at the other end one or more components of the linkage system 22.
[0080] Referring to Figures 13, 14, an aspect provided is a power latch release system 12 for a vehicle seat 100 having a rotary drive actuation system 16 for actuating the release of a latch 10, the rotary drive actuation system 16 including: an output shaft 74 for driving the release linkage system 22 via a release member 20 affixed at one end of the output shaft 74; a common drive element 96 affixed to the output shaft 74 at the other end of the output shaft 74; and a plurality of motors 90,92 coupled to the common drive element 96 for simultaneously driving the common drive element 96 and the output shaft 74 in a first rotary direction 99 to effect actuation of the release linkage system 22.
[0081] As discussed, the rotary actuator system 16 can be configured to rotate the seat back 108 between the upright position and the folded position. However, as the rotary actuator system 16 is disposed within the seat back 108, the power folding seat 100 can be easily installed into an automobile without occupying space assigned to other automobile components.
[0082] The latch 0 (non-cinch latch version components of ratchet and pawl) of the power latch system 12 of Figure 13 is shown in example detail FIGS. 3 and 5. As shown, the latch 10 has the rotary actuator system 16 mechanically coupled to it via the linkage system 22, and is interoperable with the latching post or striker 7 secured to the body 5 of the automobile. The mechanical seat latch 10 can be of the type commonly found in automobiles and can comprise a spring-actuated latch mechanism and a release pawl (see Figure 5), e.g. non-cinch version. The mechanical seat latch 10 is configured to release the striker 7 (under influence of the pawl actuated by the rotary actuator system 16 to release the striker 7 upon influence of rotary actuator system 16 operation via linkage 22. Preferably, the rotary actuator system 16 is powered by the electrical system of the automobile.
[0083] For example, the rotary actuator system 16 can be coupled to the release pawl of the mechanical seat latch 10 via the release linkage system 22. Consequently, when the rotary actuator system 16 is activated, the release pawl can be rotated away from the spring-actuated latch 10 mechanism, thereby causing the mechanical seat latch 10 to release the latching post 7 and to allow the seat back 108 to be rotated from the upright position to the folded position via a seat recliner mechanism (not shown).
[0084] Therefore, it is recognized that the power latch system 12 (and/or any individual components 10,16,22 thereof either alone or in combination with each other) of Figure 13 can be used as a latch actuation mechanism for seats 100. Alternatively as an example application, the power latch system 12 (and/or any individual
components 10,16,22 thereof either alone or in combination with each other) of Figure 2 can be used as a cinch latch actuation mechanism for closure panels 6.

Claims

We claim:
1. A rotary drive actuation system for actuating a latch including:
an output shaft having a member affixed at one end of the output shaft for coupling to a component of the latch;
a common drive element affixed to the output shaft at the other end of the output shaft; and
a plurality of motors coupled to the common drive element for
simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the latch.
2. The rotary drive actuation system of claim 1 further comprising a linkage system connecting the member to the component of the latch.
3. The rotary drive actuation system of claim 2, wherein the linkage system includes a cable.
4. The rotary drive actuation system of claim 1 , wherein the common drive element is a common drive gear affixed to the output shaft and each of the plurality of motors is coupled independently to the common drive gear by a respective gear attached to a respective drive shaft of each of the plurality of motors.
5. The rotary drive actuation system of claim 4, wherein the plurality of motors are mounted side by side in a common housing.
6. The rotary drive actuation system of claim 1 further comprising a biasing element coupled to the output shaft, the biasing element for providing a bias to the member towards a position associated with a partially closed latch position.
7. The rotary drive actuation system of claim 1 , wherein said actuating is a cinching operation of the latch for a closure panel of a vehicle.
8. The rotary drive actuation system of claim 1 further comprising a cinch cam coupled to the one end of the output shaft, such that rotation of the member causes rotation of the cinch cam about the output shaft due to contact with at least one of a plurality of arms.
9. The rotary drive actuation system of claim 8, wherein the cinch cam is configured to rotate about the output shaft independently of the rotation of the member and the output shaft.
10. The rotary drive actuation system of claim 8, wherein the cinch cam has a mounting portion for coupling a cable thereto, the cable is part of a linkage system coupled to the component of the latch.
11. The rotary drive actuation system of claim 1 further comprising:
a frame configured for mounting to either a body or a closure panel of a vehicle, the frame having a first frame portion with a first mounting surface and a second frame portion with a second mounting surface, the second frame portion extending from the first frame portion, the rotary drive actuation system being mounted on the first mounting surface;
the latch being mounted on the second mounting surface, the latch having the latch component and a cinch lever for operating the latch from a partially closed latch position to a fully closed and cinched position; and
a linkage system extending between the member and the cinch lever, the linkage system coupling rotational movement of the member to movement of the cinch lever.
12. The rotary drive actuation system of claim 11 , wherein the second frame portion extends from the first frame portion at an acute angle as measured between the mounting surfaces, such that the frame is an angled frame.
13. The rotary drive actuation system of claim 1 , wherein said actuating is a release operation of the latch such that the latch is for retaining a seat assembly of a vehicle in a locked position.
14. The rotary drive actuation system of claim 13 further comprising a linkage system connecting the member to the component of the latch.
15. The rotary drive actuation system of claim 14, wherein the linkage system includes a cable.
16. A power latch system including:
a frame;
a latch mounted on the frame and including a plurality of latch components; a rotary drive actuation system mounted on the frame, the rotary drive actuation system for actuating at least one of the plurality of latch components and including:
an output shaft having a member affixed at one end of the output shaft for coupling to a component of the plurality of latch components;
a common drive element affixed to the output shaft at the other end of the output shaft; and
a plurality of motors coupled to the common drive element for simultaneously driving the common drive element and the output shaft in a first rotary direction to effect actuation of the component of the latch.
17. The power latch system of claim 16 further comprising a linkage system connecting the member to the component of the latch.
18. The power latch system of claim 16, wherein said actuating is a cinching operation of the latch for a closure panel of a vehicle.
19. The power latch system of claim 16, wherein said actuating is a release operation of the latch such that the latch is for retaining a seat assembly of a vehicle in a locked position.
PCT/CA2014/000572 2013-07-17 2014-07-17 Dual motor device with application to power cinch and latch mechanism WO2015006859A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014003306.5T DE112014003306T5 (en) 2013-07-17 2014-07-17 Double motor unit with application in force-tightening and lock mechanism
CN201480040178.7A CN105378200B (en) 2013-07-17 2014-07-17 The double motor device with bolt lock mechanism is drawn applied to dynamical system
US14/996,537 US11306517B2 (en) 2013-07-17 2016-01-15 Dual motor device with application to power cinch and latch mechanism

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361847249P 2013-07-17 2013-07-17
US61/847,249 2013-07-17
US201461949647P 2014-03-07 2014-03-07
US61/949,647 2014-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/996,537 Continuation US11306517B2 (en) 2013-07-17 2016-01-15 Dual motor device with application to power cinch and latch mechanism

Publications (1)

Publication Number Publication Date
WO2015006859A1 true WO2015006859A1 (en) 2015-01-22

Family

ID=52345649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2014/000572 WO2015006859A1 (en) 2013-07-17 2014-07-17 Dual motor device with application to power cinch and latch mechanism

Country Status (4)

Country Link
US (1) US11306517B2 (en)
CN (1) CN105378200B (en)
DE (1) DE112014003306T5 (en)
WO (1) WO2015006859A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170089105A1 (en) * 2015-09-29 2017-03-30 Magna Closures S.P.A. Automotive latch with pulley for flexible cable routing
CN106917560A (en) * 2015-12-25 2017-07-04 德昌电机(深圳)有限公司 Drive mechanism and the vehicle using the drive mechanism
EP3444419A1 (en) 2017-08-17 2019-02-20 Gecom Corporation Door lock apparatus
WO2020018987A1 (en) * 2018-07-20 2020-01-23 Magna Seating Inc. Power drive coupling mechanism

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378252B2 (en) 2015-02-25 2019-08-13 Magna Closures S.P.A. Dual motor latch assembly with power cinch and power release having soft opening function
JP6651710B2 (en) * 2015-05-08 2020-02-19 三井金属アクト株式会社 Door lock device for automobile
US10941592B2 (en) * 2015-05-21 2021-03-09 Magna Closures Inc. Latch with double actuation and method of construction thereof
DE102015111149A1 (en) * 2015-07-09 2017-01-12 Kiekert Ag Safety device for front hoods with electric drive
DE102016218299A1 (en) * 2015-09-29 2017-03-30 Magna Closures S.P.A. One-motor locking arrangement with power-tightening and power-unlocking with a soft opening function
US10895095B2 (en) * 2016-10-06 2021-01-19 Magna Closures S.P.A. Power closure latch assembly with cinch mechanism having ratchet retention function
US10076978B2 (en) * 2016-10-20 2018-09-18 Ford Global Technologies, Llc Power lift and recliner release/fold device
DE202016106308U1 (en) * 2016-11-10 2018-02-14 BROSE SCHLIEßSYSTEME GMBH & CO. KG Motor vehicle lock
CN110234826B (en) * 2017-01-30 2022-03-04 开开特股份公司 Lock with a tensioning device for a motor vehicle
KR102397308B1 (en) * 2017-06-02 2022-05-13 현대자동차주식회사 Switchger of luggage room for vehicle
US11525289B2 (en) 2017-07-17 2022-12-13 Magna Closures Inc. Vehicular closure latch assembly with roller-type latch mechanism and cinch mechanism
JP6867250B2 (en) * 2017-07-19 2021-04-28 三井金属アクト株式会社 Vehicle door latch device
US11542730B2 (en) * 2018-09-20 2023-01-03 Magna Closures (Kunshan) Co. Ltd. Closure latch assembly with a power release mechanism and motor control system
US11098504B2 (en) * 2018-10-19 2021-08-24 Brose Schliesssysteme Gmbh & Co. Kommanditgesellschaft, Wuppertal Vehicle closure linear cinching system
US11885158B2 (en) 2018-12-19 2024-01-30 Magna Mirrors Of America, Inc. Deployable handle system using remote actuator
CZ201937A3 (en) * 2019-01-22 2020-04-01 Brano A.S. Lock latch operating mechanism
US11339591B2 (en) * 2019-02-12 2022-05-24 GM Global Technology Operations LLC Latch assembly having self re-latching feature
US10822842B2 (en) 2019-02-28 2020-11-03 Ford Global Technologies, Llc Adaptive door sealing using power cinching latch
DE102020109147A1 (en) 2019-04-02 2020-10-08 Magna BÖCO GmbH POWER ACTUATOR WITH CAM DRIVEN DOUBLE CABLE ACTUATOR MECHANISM FOR USE WITH A VEHICLE LATCH LOCKING ARRANGEMENT
DE112020003487A5 (en) * 2019-07-22 2022-05-05 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Coburg Fixation device for the power-operated fixation of an object in a vehicle
DE102021103622A1 (en) 2020-03-13 2021-09-16 Magna Closures Inc. ROTARY GEAR ARRANGEMENT TO INCREASE THE HARD STOP MOTOR TRAVEL

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2576211A1 (en) * 2004-08-10 2006-02-16 Magna Closures Inc. Power release double-locking latch
US7270029B1 (en) * 2006-07-27 2007-09-18 Ford Global Technologies, Llc Passive entry side door latch release system
US20110316293A1 (en) * 2010-06-23 2011-12-29 Witte Automotive Gmbh Rotary latch lock with belt drive
EP2431558A2 (en) * 2010-09-21 2012-03-21 Gebr. Bode GmbH & Co. KG Locking and unlocking system

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843175A (en) * 1970-03-21 1974-10-22 Volkswagenwerk Ag Spring actuated lock for use with motor vehicle door
US4575138A (en) * 1982-09-22 1986-03-11 Ohi Seisakusho Co., Ltd. Door latching device
US4702117A (en) * 1986-03-31 1987-10-27 Kokusan Kinzoku Kogyo Kabushiki Kaisha Lock actuator for a pair of locks
FR2604472B1 (en) * 1986-09-26 1992-06-12 Peugeot Aciers Et Outillage LOCK, ESPECIALLY FOR A MOTOR VEHICLE
US4885954A (en) * 1987-12-09 1989-12-12 Wanlass Bert R Door lock actuator
US4907474A (en) * 1988-10-07 1990-03-13 Inductran Corporation Mechanical torque converter
US5316365A (en) * 1993-01-25 1994-05-31 General Motors Corporation Sliding door closed loop cable closure system with balanced cable tension and varying diameter pulleys
US5618068A (en) * 1993-04-07 1997-04-08 Mitsui Kinzoku Kogyo Kabushiki Kaisha Door lock apparatus with automatic door closing mechanism
US5549337A (en) * 1994-10-07 1996-08-27 Thomas Loeff Motor actuated latch mechanism
GB2305228B (en) * 1995-09-12 1998-06-10 Mitsui Mining & Smelting Co A gear train selector mechanism for vehicle sliding doors
DE19535065C2 (en) 1995-09-21 1999-07-22 Friedrich Schmid Electromechanical locking device, in particular electromechanical lock
US5833301A (en) * 1996-04-04 1998-11-10 Mitsui Kinzoku Kogyo Kabushiki Kaisha Powered sliding device for vehicle sliding door
GB2315807B (en) * 1996-07-30 1998-09-02 Mitsui Mining & Smelting Co A vehicle sliding door assembly for slidable attachment to a vehicle body
JPH1171950A (en) * 1997-08-29 1999-03-16 Honda Motor Co Ltd Automotive door lock
DE19804516B4 (en) 1998-02-05 2014-10-30 Ewald Witte Gmbh & Co. Kg Motorized tailgate closure
CA2328887A1 (en) * 1998-04-23 1999-10-28 Omnific International, Ltd. Specialized actuators driven by oscillatory transducers
US6026705A (en) * 1998-05-19 2000-02-22 Nagle Industries, Inc. Cable assembly for rear seat release lock-out system
US6053542A (en) * 1998-06-26 2000-04-25 General Motors Corporation Vehicle door latch with cinching mechanism
DE19831260A1 (en) * 1998-07-11 2000-01-13 Mannesmann Vdo Ag Locking device, in particular for motor vehicle doors
JP3428470B2 (en) * 1998-11-30 2003-07-22 アイシン精機株式会社 Automatic opening and closing device
DE29912439U1 (en) * 1999-07-16 2000-11-30 Johnson Controls Gmbh Locking device and anchoring system
DE10008497B4 (en) * 2000-02-24 2006-08-17 Siemens Ag Locking mechanism for sliding door
DE10041498B4 (en) * 2000-08-11 2005-10-27 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Locking device for a vehicle door
DE10064914B4 (en) * 2000-12-23 2005-06-02 Siemens Ag Door lock with closing aid
US6779372B2 (en) * 2001-10-16 2004-08-24 Robert Bosch Gmbh Motor vehicle door lock with a lock unit and a control unit which are separate from one another
AU2002347142A1 (en) * 2001-11-29 2003-06-10 Intier Automotive Closures Inc. Drive assembly for a power closure panel
DE10242830B4 (en) 2002-06-01 2019-06-27 Magna BÖCO GmbH Motor vehicle lock
JP3694493B2 (en) * 2002-06-28 2005-09-14 三井金属鉱業株式会社 Power device for vehicle sliding door
JP3876207B2 (en) * 2002-09-06 2007-01-31 三井金属鉱業株式会社 Closer device for door body
JP3550141B2 (en) * 2002-09-13 2004-08-04 三井金属鉱業株式会社 Drives and door closers
DE10344244B4 (en) * 2002-09-28 2008-04-24 Witte-Velbert Gmbh & Co. Kg Ratchet closure
US20040189016A1 (en) * 2002-12-24 2004-09-30 Aisin Seiki Kabushiki Kaisha Torque transmitting member and door lock device
CN1751164A (en) * 2003-02-21 2006-03-22 麦格纳覆盖件有限公司 Hood latch assembly
JP4300858B2 (en) * 2003-04-22 2009-07-22 アイシン精機株式会社 Vehicle door control device
US6988749B2 (en) * 2003-06-09 2006-01-24 Shiroki Corporation Door locking system for motor vehicle
US20050184533A1 (en) * 2003-06-20 2005-08-25 Hebenstreit Joseph J. Shape memory alloy-actuated release mechanisms for drive systems
DE10356306B4 (en) * 2003-11-28 2020-12-17 BROSE SCHLIEßSYSTEME GMBH & CO. KG Motor vehicle lock
GB2411708A (en) * 2004-03-06 2005-09-07 Arvinmeritor Light Vehicle Sys An actuator assembly for use in conjunction with a latch assembly
WO2005089188A2 (en) * 2004-03-12 2005-09-29 General Motors Corporation Variable resistance strut assemblies and articles containing the same
JP4405312B2 (en) * 2004-04-27 2010-01-27 株式会社ホンダロック Sliding door locking device
DE102004027420A1 (en) * 2004-06-04 2005-12-22 Brose Schließsysteme GmbH & Co.KG Motor vehicle component
DE102004040157B3 (en) * 2004-08-19 2006-07-13 Huf Hülsbeck & Fürst Gmbh & Co. Kg Lock for doors or flaps on vehicles
JP4364814B2 (en) * 2005-02-04 2009-11-18 三井金属鉱業株式会社 Opening and closing device for vehicle sliding door
JP4566037B2 (en) * 2005-03-14 2010-10-20 三井金属鉱業株式会社 Door latch device
DE102006024203B4 (en) * 2005-05-24 2013-08-29 Mitsui Kinzoku Act Corp. Locking device and device for controlling a door opening / closing
US7671719B2 (en) * 2005-06-29 2010-03-02 Asian Integration Co., Ltd. Electronic storage box, opening and closing method of electronic storage box, and computer program product thereof
GB2428644B (en) * 2005-08-02 2009-04-29 Ford Global Tech Llc A motor vehicle
GB0524856D0 (en) * 2005-12-06 2006-01-11 Arvinmeritor Light Vehicle Sys Power drive
US20070138802A1 (en) * 2005-12-07 2007-06-21 Brose Schliesssysteme Gmbh & Co. Kg Motor vehicle lock
KR101055971B1 (en) * 2005-12-07 2011-08-11 주식회사 만도 Electric parking brake
JP4754413B2 (en) * 2006-06-01 2011-08-24 三井金属アクト株式会社 Actuator unit
EP2076648B1 (en) * 2006-09-26 2017-01-25 Witte Automotive GmbH Apparatus and method for providing a sliding door mechanism
WO2008039922A2 (en) 2006-09-27 2008-04-03 Strattec Power Access Llc Dual output jackscrew cinching latch
US8444189B2 (en) * 2006-12-07 2013-05-21 Yazaki Corporation Door open/close system for a vehicle
EP2130715B1 (en) * 2007-03-02 2012-05-30 Toyota Boshoku Kabushiki Kaisha Locking device
US7823933B2 (en) * 2007-08-01 2010-11-02 International Truck Intellectual Property Company, Llc Rotating disk system for a vehicle door latch assembly
US7575270B2 (en) * 2007-10-26 2009-08-18 Mitsuba Corporation Opening/closing apparatus for vehicle
JP4962283B2 (en) * 2007-11-22 2012-06-27 アイシン精機株式会社 Vehicle door opening and closing device
DE202008007719U1 (en) * 2007-12-03 2009-04-16 BROSE SCHLIEßSYSTEME GMBH & CO. KG Closing auxiliary drive for a motor vehicle lock
JP2009161959A (en) * 2007-12-28 2009-07-23 Yazaki Corp Vehicular door opening/closing system
DE102008009506A1 (en) * 2008-02-15 2009-08-20 Kiekert Ag Motor vehicle door lock
JP2009228306A (en) * 2008-03-24 2009-10-08 Aisin Kiko Co Ltd Electric door latch device
DE102008048772A1 (en) * 2008-09-24 2010-03-25 Kiekert Ag Motor vehicle door lock
US9260882B2 (en) * 2009-03-12 2016-02-16 Ford Global Technologies, Llc Universal global latch system
JP4802347B2 (en) * 2009-07-16 2011-10-26 三井金属アクト株式会社 Control device for vehicle door latch
WO2011066480A1 (en) * 2009-11-27 2011-06-03 Stoneridge Control Devices, Inc. Shift-by-wire transmission range selector system and actuator for the same
US8757680B2 (en) * 2010-03-04 2014-06-24 Leehan Door Corporation Door lock assembly
JP5682004B2 (en) * 2010-05-11 2015-03-11 三井金属アクト株式会社 Latch device for vehicle
JP5766189B2 (en) * 2010-06-07 2015-08-19 株式会社ミツバ Driving device for vehicle opening / closing body
KR101154803B1 (en) * 2010-09-30 2012-06-18 현대자동차주식회사 Seat latch structure
US9194163B2 (en) * 2011-01-14 2015-11-24 Magna Closures S.P.A. Door latch with opening memory feature
US9512651B2 (en) * 2011-05-27 2016-12-06 Magna Closures S.P.A. Double ratchet, double pawl vehicular latch with soft stop on reset
BR112013032243B1 (en) * 2011-06-17 2021-02-09 Ts Tech Co., Ltd. vehicle locking device
US10280653B2 (en) * 2011-07-14 2019-05-07 Inteva Products, Llc Vehicle door latch with electronic override
DE202012004789U1 (en) * 2012-05-15 2013-08-20 BROSE SCHLIEßSYSTEME GMBH & CO. KG Closing auxiliary drive for a motor vehicle lock
DE102012025172A1 (en) * 2012-12-23 2014-06-26 BROSE SCHLIEßSYSTEME GMBH & CO. KG Closing system component
US8555684B1 (en) * 2013-01-21 2013-10-15 Jie-Fu Chen Electronic lock
JP6056603B2 (en) * 2013-03-28 2017-01-11 アイシン精機株式会社 Feeding structure
EP2860336A3 (en) * 2013-10-14 2018-01-03 IMS Gear GmbH Powered panel assembly for a motor vehicle
DE102014107986A1 (en) * 2014-06-05 2015-12-17 Huf Hülsbeck & Fürst Gmbh & Co. Kg Lock system for a motor vehicle
DE102014016787A1 (en) * 2014-11-14 2016-05-19 BROSE SCHLIEßSYSTEME GMBH & CO. KG Motor vehicle lock
DE202014106158U1 (en) * 2014-12-18 2016-03-21 BROSE SCHLIEßSYSTEME GMBH & CO. KG Closing auxiliary drive for a motor vehicle lock
WO2016132464A1 (en) * 2015-02-17 2016-08-25 ジーコム コーポレイション Automobile door latch apparatus
KR101664676B1 (en) * 2015-03-27 2016-10-10 현대자동차주식회사 Apparatus for opening/closing tail gate of cars
DE102015113222A1 (en) * 2015-08-11 2017-02-16 Kiekert Ag Safety device with a front hood and a bayonet lock system
DE102015113359A1 (en) * 2015-08-13 2017-02-16 Kiekert Ag Electric lock with actuating device for a motor vehicle lock
DE202015106323U1 (en) * 2015-11-19 2017-02-22 BROSE SCHLIEßSYSTEME GMBH & CO. KG Auxiliary closing drive
US10815700B2 (en) * 2015-12-30 2020-10-27 Inteva Products, Llc Release actuator for latch
US10017978B2 (en) * 2016-03-16 2018-07-10 Honda Motor Co., Ltd. Methods and apparatus for overriding powered vehicle door
US10227810B2 (en) * 2016-08-03 2019-03-12 Ford Global Technologies, Llc Priority driven power side door open/close operations
US10458171B2 (en) * 2016-09-19 2019-10-29 Ford Global Technologies, Llc Anti-pinch logic for door opening actuator
DE202016106308U1 (en) * 2016-11-10 2018-02-14 BROSE SCHLIEßSYSTEME GMBH & CO. KG Motor vehicle lock
KR102453588B1 (en) * 2016-11-18 2022-10-11 현대자동차주식회사 Release actuator of seat for vehicle
US10518618B2 (en) * 2016-11-28 2019-12-31 Dumore Corporation Tarp motor assembly
DE102017108345A1 (en) * 2017-03-13 2018-09-13 BROSE SCHLIEßSYSTEME GMBH & CO. KG Auxiliary closing drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2576211A1 (en) * 2004-08-10 2006-02-16 Magna Closures Inc. Power release double-locking latch
US7270029B1 (en) * 2006-07-27 2007-09-18 Ford Global Technologies, Llc Passive entry side door latch release system
US20110316293A1 (en) * 2010-06-23 2011-12-29 Witte Automotive Gmbh Rotary latch lock with belt drive
EP2431558A2 (en) * 2010-09-21 2012-03-21 Gebr. Bode GmbH & Co. KG Locking and unlocking system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170089105A1 (en) * 2015-09-29 2017-03-30 Magna Closures S.P.A. Automotive latch with pulley for flexible cable routing
US11220850B2 (en) * 2015-09-29 2022-01-11 Magna Closures S.P.A. Automotive latch with pulley for flexible cable routing
CN106917560A (en) * 2015-12-25 2017-07-04 德昌电机(深圳)有限公司 Drive mechanism and the vehicle using the drive mechanism
EP3444419A1 (en) 2017-08-17 2019-02-20 Gecom Corporation Door lock apparatus
US10570649B2 (en) 2017-08-17 2020-02-25 Gecom Corporation Door lock apparatus
WO2020018987A1 (en) * 2018-07-20 2020-01-23 Magna Seating Inc. Power drive coupling mechanism

Also Published As

Publication number Publication date
CN105378200A (en) 2016-03-02
US20160186468A1 (en) 2016-06-30
CN105378200B (en) 2018-05-15
US11306517B2 (en) 2022-04-19
DE112014003306T5 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
US11306517B2 (en) Dual motor device with application to power cinch and latch mechanism
US9745773B2 (en) Double latch assembly for a motor vehicle
US10472869B2 (en) Powered latch mechanism with manual release
US11072949B2 (en) Powered latch mechanism with manual release
CN107023228B (en) Single motor latch assembly with power release and power cinch with soft open function
US10214945B2 (en) Door latch assembly for motor vehicles
CN101184900B (en) Global side door latch
US7377557B2 (en) Scissor mechanism for a latch assembly
EP1748130A2 (en) Vehicle door latch
CN114412304B (en) System for controlling movement of closure member and method of operating load balancing mechanism
US20220282532A1 (en) Latch assembly for motor vehicle closure system having power release mechanism with override/reset
US20200131836A1 (en) Power actuation mechanism for operation of closure panel of a vehicle
CN109072637B (en) Locking system for locking a movable panel
US11220850B2 (en) Automotive latch with pulley for flexible cable routing
US20130214543A1 (en) Linear rotating link switch actuation
CN112177448B (en) Dual actuation latch mechanism for a vehicle
US20110133492A1 (en) Vehicle door latch
US11680435B2 (en) Single drive system for driving multiple driven assemblies
US11959312B2 (en) Vehicular latch bushing with cable interface
EP3299558B1 (en) Liftgate latch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003306

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825805

Country of ref document: EP

Kind code of ref document: A1