WO2015006846A1 - Toolholder with internal system for heat transfer with phase-change fluid - Google Patents

Toolholder with internal system for heat transfer with phase-change fluid Download PDF

Info

Publication number
WO2015006846A1
WO2015006846A1 PCT/BR2014/000239 BR2014000239W WO2015006846A1 WO 2015006846 A1 WO2015006846 A1 WO 2015006846A1 BR 2014000239 W BR2014000239 W BR 2014000239W WO 2015006846 A1 WO2015006846 A1 WO 2015006846A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool holder
tool
tools
machining
fluid
Prior art date
Application number
PCT/BR2014/000239
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2015006846A8 (en
Inventor
Arthur Alves FIOCCHI
Luiz Eduardo de ÂNGELO SANCHEZ
Rubens Roberto INGRACI NETO
Vicente Luiz SCALON
Original Assignee
Universidade Estadual Paulista "Julio De Mesquita Filjho"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual Paulista "Julio De Mesquita Filjho" filed Critical Universidade Estadual Paulista "Julio De Mesquita Filjho"
Publication of WO2015006846A1 publication Critical patent/WO2015006846A1/en
Publication of WO2015006846A8 publication Critical patent/WO2015006846A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • B23Q11/1061Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using cutting liquids with specially selected composition or state of aggregation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/10Cutting tools with special provision for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • B23Q11/141Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating

Definitions

  • the present invention relates to a tool holder with internal phase-shifting fluid heat transfer system comprising a cutting tool holder acting as a heat exchanger to assist in dissipating the thermal energy generated in machining processes.
  • the mechanical industry uses the material removal machining process to shape the parts, that is, to manufacture them to precise measurements.
  • the cutting tool is usually fixed to a holder known as a tool holder which in turn is attached to the machining machine tool.
  • the tool used for this removal or cutting process is generally made of a more mechanically resistant material than the part material. Even so, the tool suffers wear, mainly due to heating during the removal process, causing it to deteriorate and lose the cutting capacity, leading to its destruction; This characterizes the critical situation commonly referred to as "end of life”.
  • cutting fluid a coolant, known as cutting fluid
  • This cutting fluid consists essentially of water, but also chemicals, to minimize part and machine tool oxidation, improve lubricity and cooling capacity, and bactericides, to prevent proliferation of living agents, among other types. of additives.
  • heat generation in the ZCP affects distribution throughout the system. It can be said that the increase in temperature at the tool outlet surface is due to the combined effect of heat generated on the ZCP and ZCS, not each one individually.
  • thermal properties of the tool and workpiece thermal conductivity
  • mechanical properties of the material mechanical properties of the material
  • the tribological conditions the length of the chip contact and the cutting parameters are also key parameters in the heat dissipation distribution. generated.
  • heating in the machining process basically leads to four undesirable operating results: deformation of the part; coloration on machined surface; falsification of workpiece measurements, where there is a discrepancy between measurements made during and after the tool action due to the heat generated; and difficulty for the operator to handle the machined part, ie remove it from the machine, transport it etc.
  • Document PI0901570-1 features a tool holder provided with a damping means that eliminates the vibratory effects due to cutting forces and machining speeds.
  • this invention does not address the issue of heat transfer, or cooling, required for the machining operation.
  • a rotary tool holder is described in document PI0507046-5, which allows the tool to rotate at its end.
  • the patent does not address the influence of refrigeration on the machining operation.
  • CA2645860 deals with a tool holder with internal cavities allowing the insertion of a cartridge-like device into it as well as the circulation of cutting fluid.
  • This cartridge is used as a container for monitoring sensors such as vibration, stress and temperature measurement as well as damping system for the cutting tool.
  • the internal cavities have the function of accommodating the cartridge and, unlike the common devices that use damping system, allow the cutting fluid to pass through the body of the tool holder.
  • This cutting fluid is therefore applied in a manner conventional, that is, it is sprayed through a jet-shaped nozzle over the cutting interface.
  • This invention does not deal with the extraction of heat conducted by the cutting tool by evaporation of the coolant within the tool holder.
  • the technique described in this document allows the construction of a structural and functional device to support one or more cutting tools and which has internal channels for fluid circulation, promoting heat removal by fluid phase change.
  • the object of the present invention is, in particular, to reduce the temperature in the cutting region by removing heat through the cutting tool with the aid of a phase-shifting fluid-circulating tool holder. This minimizes the application of cutting fluid to the machining process as hydrocarbon-based ones are deteriorated and should not be disposed of in the environment as it is a chemical harmful to human health. action considered an environmental crime if it is done.
  • the invention relates to a tool holder with an internal phase-shifting fluid heat transfer system composed of a structural body, called a tool holder, which has internal channels near or within the cutting tool for refrigerant circulation.
  • the body of the tool holder may be made of ceramic, cast iron, stainless steel, high speed steel, mechanical steel, hard metal, carbon steel, whether or not heat treated, or other metallic, ceramic, polymeric, composite materials, among others;
  • an interface between the tool and the holder cavity tools can be introduced to aid heat transfer, made of electrolytic copper, hardened or not, aluminum, silver, gold, graphene, superconducting ceramics or other good heat conducting material;
  • the tool When the tool has a clamping hole, it can be filled with a cylindrical pin of conductive material to increase heat removal, and its fixation in the tool holder by interfering adjustment, welding or mechanical compression;
  • phenolic polymeric resin, epoxy, polyethylene or the like may be used, a welded joint with or without addition material, interfering fit, sealing rings or joints or threaded joints;
  • connection channels between the tool holder internal circuit, the pressurization system and the heat exchanger may be made of polymeric resin, metal ducts or other materials inert to the fluid used.
  • Figure 1 shows the technical drawing in section of the tool holder (1), with the cutting tool (2) coupled by the clamp (5), and the external connections through which the fluid circulates.
  • Figure 2 shows schematically the cooling system comprising the tool holder (1), the heat exchanger (12), the pump (13) and the connection channels.
  • Figure 3 represents the thermal flux generated in a thermal operation. machining through the cutting tool and the conductive interface, leading the fluid to the phase change.
  • the tool holder (1) has below the cutting tool (2) a chamber (3) in which the heat generated by the cutting process causes the internally circulating refrigerant to evaporate. Steam leaves the tool holder through the inner channel (4).
  • the cutting tool (2) is fixed by a clamp (5) which has its tightening torque given by a screw (6) attached to the tool holder (1).
  • an interface (7) of material with high thermal conductivity such as copper can be included in order to promote heat exchange. between cutting tool (2) and fluid.
  • Fluid enters the chamber (3) through the fitting (8) and leaves the tool holder through the fitting (10). Connections can be threaded, welded, inserted by interfering fit, or even glued to the toolholder frame (1).
  • the fluid flows through the external heat transfer and pressurization systems and enters the tool holder (1) through the connection channel (9), and exits the tool holder (1) through the connection channel (11).
  • the refrigerant after its total or partial evaporation, due to the transfer of heat generated in the machining process, leaves the tool holder (1) through the connection (10) and goes through the connection channel (1). to the heat exchanger (12) within which it is condensed.
  • the fluid in the liquid phase flows to the pump (13), which forces its circulation into the tool holder (1) through the connection channel (9).
  • the refrigeration system operates in a steady state, with continuous flow of fluid through the interior of the tool holder, heat exchanger and pressurization system.
  • Figure 3 shows the working principle of the tool holder internal cooling system (1).
  • the thermal energy generated during the cutting process of the part (14) forming the chip (15) is transferred through the cutting tool (2) and the conductive interface (7) to the coolant inside the chamber (3), absorbing this thermal energy vaporizes partially or totally.
  • the heated fluid leaves the tool holder, circulating through the inner channel (4), to the connection channel (11), from where it goes to the heat exchange and pressurization system shown in figure (2).
  • the tool holder or the tool itself may be manufactured to utilize heat exchange enhancing technologies such as ultrasonic agitation, micro-channel flow, fin surfaces and porous media in coil-shaped geometries and any other techniques to the same end. Also, during its manufacture characteristics can be inserted that allow changes in the system pressure - such as variations in the diameter of the channel (4) - so that the refrigerant changes phase in different temperatures, favoring the heat exchange. Differentiated geometries are used to make the evaporation chamber in order to direct and regulate the flow of the fluid jet that enters the tool holder. At the outlet of said chamber of the tool holder, other differentiated geometries ensure the steam output towards the heat transfer system.
  • heat exchange enhancing technologies such as ultrasonic agitation, micro-channel flow, fin surfaces and porous media in coil-shaped geometries and any other techniques to the same end.
  • characteristics can be inserted that allow changes in the system pressure - such as variations in the diameter of the channel (4) - so that the refrigerant changes phase
  • the circulation of fluid within the tool holder or the tool itself may be forced or natural convection based and therefore utilize the effects of density variation with evaporation and / or heating for fluid movement in the system.
  • the thermal contact resistance between the tool and the tool holder can be reduced by applying thermal paste, increased flatness, decreased roughness or any surface treatment for this purpose.
  • An example of application is the machining of automotive and aeronautical parts of difficult-to-alloy alloy steels. This is due to the large thermal energy generation, high shear stresses, low thermal conductivity of these materials and high tool wear rate, as well as the intrinsic need to maintain design criteria such as dimensions and surface finish.

Abstract

The patent of invention relates to a toolholder with a structural body containing an internal system of channels through which flows a fluid that changes phase on receiving the thermal energy, generated during machining, which is transmitted through the tool; the aim is to extract the heat generated in the process, thereby extending the life of the cutting tool and promoting the maintenance of the quality of the component produced.

Description

PORTA-FERRAMENTAS COM SISTEMA INTERNO DE  INTERNAL SYSTEM TOOL HOLDERS
TRANSFERÊNCIA DE CALOR COM FLUIDO EM MUDANÇA DE FASE CAMPO DA INVENÇÃO FIELD HEAT TRANSFER IN CHANGE OF INVENTION FIELD
A presente invenção refere-se a um porta-ferramentas com sistema interno de transferência de calor com fluido em mudança de fase, composto por um suporte para as ferramentas de corte, que atua como um trocador de calor para auxiliar na dissipação da energia térmica gerada nos processos de usinagem.  The present invention relates to a tool holder with internal phase-shifting fluid heat transfer system comprising a cutting tool holder acting as a heat exchanger to assist in dissipating the thermal energy generated in machining processes.
ANTECEDENTES DA INVENÇÃO BACKGROUND OF THE INVENTION
A indústria mecânica utiliza o processo de usinagem para remoção de material para dar forma às peças, ou seja, fabricá-las com medidas precisas. A ferramenta de corte é geralmente fixada em um suporte, conhecido por porta-ferramentas que, por sua vez, é preso na máquina- ferramenta de usinagem. A ferramenta utilizada para este processo de remoção, ou corte, é feita geralmente de um material mais resistente mecanicamente que o material da peça. Mesmo assim, a ferramenta sofre desgaste, principalmente devido ao aquecimento durante o processo de remoção, fazendo com que ela sofra deterioração e perda da capacidade de corte, levando a sua inutilização; o que caracteriza a situação crítica comumente referida por "fim de vida".  The mechanical industry uses the material removal machining process to shape the parts, that is, to manufacture them to precise measurements. The cutting tool is usually fixed to a holder known as a tool holder which in turn is attached to the machining machine tool. The tool used for this removal or cutting process is generally made of a more mechanically resistant material than the part material. Even so, the tool suffers wear, mainly due to heating during the removal process, causing it to deteriorate and lose the cutting capacity, leading to its destruction; This characterizes the critical situation commonly referred to as "end of life".
Para minimizar a temperatura na ferramenta de corte, a fim de prolongar sua vida, é comum a aplicação de um fluido refrigerante, conhecido como fluido de corte, sobre a região de corte compreendida entre o contato da peça e a ferramenta. Este fluido de corte é composto essencialmente por água, mas também por produtos químicos, para minimizar a oxidação da peça e máquina-ferramenta, para melhorar a capacidade de lubrificação e refrigeração, e bactericidas, para impedir a proliferação de agentes vivos, entre outros tipos de aditivos.  To minimize the temperature on the cutting tool in order to extend its life, it is common to apply a coolant, known as cutting fluid, over the cutting region between the contact of the workpiece and the tool. This cutting fluid consists essentially of water, but also chemicals, to minimize part and machine tool oxidation, improve lubricity and cooling capacity, and bactericides, to prevent proliferation of living agents, among other types. of additives.
Também é possível a usinagem com a ausência de fluido de corte com a utilização de materiais de ferramentas mais resistentes ao calor, entretanto o custo destas ferramentas de corte é consideravelmente mais alto. Machining is also possible in the absence of cutting fluid. With the use of more heat resistant tool materials, however, the cost of these cutting tools is considerably higher.
Alternativa conhecida para o prolongamento da vida de ferramentas de corte é a refrigeração da região de corte utilizando fluidos com temperatura de mudança de fase abaixo da temperatura ambiente, como o nitrogénio líquido (N2 nqUido)> técnica chamada de "usinagem criogênica". Alternative known for the extension of the cutting tool life is the cooling of the cutting zone using fluid phase change temperature below room temperature such as liquid nitrogen (N 2 n acid qu)> technique called "cryogenic milling" .
Com o intuito de remover o calor da ferramenta de corte, foi divulgado em artigo internacional no International Journal of Machine Tools & Manufacture, no trabalho intitulado Investigation of the effects of cooling in hard turning operations, por A. Noorul Haq e T. Tamizharasan, em 2006, um tubo de calor preenchido por água foi anexado na base da ferramenta de corte. O fluido ao entrar em contato com a região mais aquecida do tubo sofre vaporização, removendo parte do calor produzido no processo de usinagem. Após a evaporação, por efeito de capilaridade, a água migra para regiões mais frias condensando-se novamente. No entanto, ao contrário do nitrogénio líquido, a mudança de fase da água ocorre em temperaturas bem mais elevadas, em torno de 100 °C.  In order to remove heat from the cutting tool, it was published in an international article in the International Journal of Machine Tools & Manufacture, in the paper entitled Investigation of the effects of cooling in hard turning operations, by A. Noorul Haq and T. Tamizharasan, In 2006, a water-filled heat pipe was attached to the base of the cutting tool. The fluid coming into contact with the warmer region of the tube vaporizes, removing some of the heat produced in the machining process. After evaporation, by capillary effect, the water migrates to colder regions condensing again. However, unlike liquid nitrogen, the water phase change occurs at much higher temperatures, around 100 ° C.
Em qualquer processo de usinagem ocorre intensa geração de calor oriundo da formação do cavaco. Esta energia é proveniente, basicamente, de três fontes: da deformação plástica do material no plano de cisalhamento primário (Zona de Cisalhamento Primária - ZCP); da deformação do cavaco e atrito na região da interface cavaco-ferramenta, onde se localiza o plano de cisalhamento secundário (Zona de Cisalhamento Secundária - ZCS); e do atrito entre a ferramenta e a peça, produzido por seus contatos (Zona de Cisalhamento Terciária - ZCT). Cada uma destas zonas contribui para o aumento da temperatura na região de corte de maneira distinta. A maioria dos estudos foca apenas a zona de cisalhamento primaria (ZCP) e a zona de cisalhamento secundária (ZCS), uma vez que a zona de cisalhamento terciária é significativa, em termos de geração de calor, apenas em elevados desgastes de flanco. Abordagens recentes mostram que o aumento da temperatura na ferramenta de corte ocorre, principalmente, devido à ZCS; embora se ressalte que a ZCP também contribui para este aquecimento e, indiretamente, afete a distribuição de temperatura na superfície de saída. Durante a remoção de material, o fluxo de cavaco tem um efeito convectivo, carregando consigo a energia gerada na ZCP, que ao passar pela interface cavaco-ferramenta troca calor por condução com a superfície de saída, aquecendo a ferramenta. In any machining process there is intense heat generation from chip formation. This energy comes basically from three sources: plastic deformation of the material in the primary shear plane (Primary Shear Zone - ZCP); chip deformation and friction in the region of the chip-tool interface, where the secondary shear plane (Secondary Shear Zone - ZCS) is located; and the friction between the tool and the part produced by their contacts (Tertiary Shear Zone - ZCT). Each of these zones contributes to the temperature rise in the cutting region in a different way. Most studies focus only on the primary shear zone (ZCP) and the secondary shear zone (ZCS), as the tertiary shear zone is significant in heat generation only in high flank wear. Recent approaches show that the temperature increase in the cutting tool occurs mainly due to ZCS; although it is noteworthy that the ZCP also contributes to this heating and indirectly affects the temperature distribution on the outlet surface. During material removal, the chip flow has a convective effect, carrying with it the energy generated in the ZCP, which when passing through the chip-tool interface exchanges heat by conduction with the outlet surface, heating the tool.
Desta forma, fica claro que a geração de calor na ZCP afeta a distribuição por todo o sistema. É possível afirmar que o aumento da temperatura na superfície de saída da ferramenta é devido ao efeito combinado do calor gerado na ZCP e ZCS, não a cada um deles individualmente. Além disto, as propriedades térmicas da ferramenta e da peça (condutividade térmica), as propriedades mecânicas do material, as condições tribológicas, o comprimento do contato cavaco-ferramenta e os parâmetros de corte são, também, parâmetros fundamentais na distribuição da dissipação do calor gerado.  Thus, it is clear that heat generation in the ZCP affects distribution throughout the system. It can be said that the increase in temperature at the tool outlet surface is due to the combined effect of heat generated on the ZCP and ZCS, not each one individually. In addition, the thermal properties of the tool and workpiece (thermal conductivity), the mechanical properties of the material, the tribological conditions, the length of the chip contact and the cutting parameters are also key parameters in the heat dissipation distribution. generated.
Como mostram diversos estudos, o maior problema com a geração de energia térmica é que a geração de calor durante o processo é prejudicial à operação de usinagem. Foi comprovado cientificamente que em altas temperaturas o desgaste da ferramenta é mais acentuado, implicando na diminuição de sua vida e tornando muito difícil a manutenção das tolerâncias dimensionais especificadas para a peça e a rugosidade.  As several studies show, the biggest problem with thermal power generation is that heat generation during the process is detrimental to the machining operation. It has been scientifically proven that at higher temperatures tool wear is more pronounced, resulting in a shorter tool life and making it difficult to maintain the specified dimensional tolerances for workpiece and roughness.
Em linhas gerais, o aquecimento no processo de usinagem conduz, basicamente, a quatro resultados indesejáveis na operação: deformação da peça; coloração na superfície usinada; falseamento das medidas da peça em trabalho, onde ocorre uma discordância entre as medidas feitas durante a ação da ferramenta e após essa ação devido ao calor gerado; e dificuldade para o operador manusear a peça usinada, ou seja, retirá-la da máquina, transportá-la etc. Estas características negativas acerca do aquecimento nos processos de usinagem tornam premente a necessidade de manter a ferramenta em temperaturas baixas através do uso de tecnologias para a dissipação deste calor gerado. Os processos tradicionalmente utilizados para refrigeração destas operações são aqueles descritos anteriormente. In general, heating in the machining process basically leads to four undesirable operating results: deformation of the part; coloration on machined surface; falsification of workpiece measurements, where there is a discrepancy between measurements made during and after the tool action due to the heat generated; and difficulty for the operator to handle the machined part, ie remove it from the machine, transport it etc. These negative characteristics about heating in machining processes make it urgent to keep the tool at low temperatures through the use of technologies to dissipate this heat generated. The processes traditionally used for cooling these operations are those described above.
O documento PI0901570-1 apresenta um porta-ferramentas provido com um meio de amortecimento que permite eliminar os efeitos vibratórios devidos aos esforços de corte e às velocidades de usinagem. No entanto, esta invenção não se ocupa da questão da transferência de calor, ou refrigeração, necessária para a operação de usinagem.  Document PI0901570-1 features a tool holder provided with a damping means that eliminates the vibratory effects due to cutting forces and machining speeds. However, this invention does not address the issue of heat transfer, or cooling, required for the machining operation.
Um porta-ferramentas rotativo é descrito no documento PI0507046-5, o qual permite a ferramenta rotacionar em sua extremidade. Entretanto, a patente não aborda a influência da refrigeração na operação de usinagem.  A rotary tool holder is described in document PI0507046-5, which allows the tool to rotate at its end. However, the patent does not address the influence of refrigeration on the machining operation.
O documento CA2645860 trata de um porta-ferramentas com cavidades internas que permitem a inserção de um dispositivo tipo cartucho em seu interior, bem como a circulação de fluido de corte. Este cartucho é utilizado como recipiente para sensores de monitoramento, como de medição de vibração, esforços e temperatura, bem como sistema de amortecimento para a ferramenta de corte. Contudo, neste dispositivo as cavidades internas têm a função de acomodar o cartucho e, diferentemente dos dispositivos comuns que utilizam sistema de amortecimento, permitir a passagem de fluido de corte pelo corpo do porta-ferramentas. Este fluido de corte, portanto, é aplicado de maneira convencional, ou seja, sua aspersão se dá através de um bico sobre a forma de jato sobre a interface de corte. Esta invenção não trata da extração do calor conduzido pela ferramenta de corte através da evaporação do líquido refrigerante no interior do porta-ferramentas. CA2645860 deals with a tool holder with internal cavities allowing the insertion of a cartridge-like device into it as well as the circulation of cutting fluid. This cartridge is used as a container for monitoring sensors such as vibration, stress and temperature measurement as well as damping system for the cutting tool. However, in this device the internal cavities have the function of accommodating the cartridge and, unlike the common devices that use damping system, allow the cutting fluid to pass through the body of the tool holder. This cutting fluid is therefore applied in a manner conventional, that is, it is sprayed through a jet-shaped nozzle over the cutting interface. This invention does not deal with the extraction of heat conducted by the cutting tool by evaporation of the coolant within the tool holder.
A técnica descrita nesse documento permite a realização de um dispositivo estrutural e funcional para suportar uma ou mais ferramentas de corte e que possui canais internos para circulação de fluido, promovendo a remoção de calor por meio da mudança de fase do fluido.  The technique described in this document allows the construction of a structural and functional device to support one or more cutting tools and which has internal channels for fluid circulation, promoting heat removal by fluid phase change.
A presente invenção tem como objetivo, notadamente, a diminuição da temperatura na região de corte, por intermédio da remoção de calor através da ferramenta de corte, com o auxílio de um porta- ferramentas com circulação interna de fluido que sofre mudança de fase. Deste modo, minimiza-se a aplicação do fluido de corte no processo de usinagem, uma vez que os de base de hidrocarbonetos sofrem deterioração, e não devem ser descartados no ambiente, pois se trata de um produto químico nocivo à saúde humana, sendo essa ação considerada crime ambiental se assim for feito.  The object of the present invention is, in particular, to reduce the temperature in the cutting region by removing heat through the cutting tool with the aid of a phase-shifting fluid-circulating tool holder. This minimizes the application of cutting fluid to the machining process as hydrocarbon-based ones are deteriorated and should not be disposed of in the environment as it is a chemical harmful to human health. action considered an environmental crime if it is done.
SUMÁRIO DA INVENÇÃO SUMMARY OF THE INVENTION
A invenção tem como objeto um porta-ferramentas com sistema interno de transferência de calor com fluido em mudança de fase, composto por um corpo estrutural, denominado de porta-ferramentas, que possui canais internos próximos à ferramenta de corte, ou dentro dela, para circulação de fluido refrigerante.  The invention relates to a tool holder with an internal phase-shifting fluid heat transfer system composed of a structural body, called a tool holder, which has internal channels near or within the cutting tool for refrigerant circulation.
As outras características da invenção são:  The other features of the invention are:
- o corpo do porta-ferramentas pode ser feito de cerâmica, ferro fundido, aço inoxidável, aço rápido, aço para construção mecânica, metal duro, aço carbono, tratado ou não termicamente, ou de outros materiais metálicos, cerâmicos, poliméricos, compósitos, dentre outros;  - The body of the tool holder may be made of ceramic, cast iron, stainless steel, high speed steel, mechanical steel, hard metal, carbon steel, whether or not heat treated, or other metallic, ceramic, polymeric, composite materials, among others;
- uma interface entre a ferramenta e a cavidade do porta- ferramentas pode ser introduzida para auxiliar a transferência de calor, feita em cobre eletrolítico, encruado ou não, alumínio, prata, ouro, grafeno, cerâmica supercondutora ou outro material bom condutor de calor; - an interface between the tool and the holder cavity tools can be introduced to aid heat transfer, made of electrolytic copper, hardened or not, aluminum, silver, gold, graphene, superconducting ceramics or other good heat conducting material;
- quando a ferramenta possuir furo de fixação, este poderá ser preenchido com um pino cilíndrico de material condutor para aumentar a remoção de calor, sendo a sua fixação no porta-ferramentas por ajuste interferente, soldagem ou por compressão mecânica;  - When the tool has a clamping hole, it can be filled with a cylindrical pin of conductive material to increase heat removal, and its fixation in the tool holder by interfering adjustment, welding or mechanical compression;
- para ferramentas de corte comercial sem furo, não haverá pino cilíndrico para fixação, podendo ser utilizada uma presilha para pressionar a ferramenta de corte contra o porta-ferramentas e a interface condutora;  - for commercial cutting tools without a hole there will be no cylindrical pin for clamping and a clip can be used to press the cutting tool against the tool holder and the conductive interface;
- na vedação entre a interface condutora e o porta-ferramentas pode ser usado resina polimérica fenólica, epóxi, polietileno ou similar, uma junta soldada com ou sem material de adição, ajuste interferente, anéis ou juntas de vedação ou união por rosca; e  - For sealing between the conductive interface and the tool holder, phenolic polymeric resin, epoxy, polyethylene or the like may be used, a welded joint with or without addition material, interfering fit, sealing rings or joints or threaded joints; and
- os canais de ligação entre o circuito interno do porta-ferramentas, sistema de pressurização e trocador de calor podem ser feitos de resina polimérica, dutos metálicos ou outros materiais inertes ao fluido utilizado. BREVE DESCRIÇÃO DAS FIGURAS  The connection channels between the tool holder internal circuit, the pressurization system and the heat exchanger may be made of polymeric resin, metal ducts or other materials inert to the fluid used. BRIEF DESCRIPTION OF THE FIGURES
A descrição que se segue e as figuras associadas, tudo dado a exemplo não limitativo, farão compreender bem a invenção.  The following description and associated figures, all given by way of non-limiting example, will make the invention well understood.
A figura 1 apresenta o desenho técnico em corte do porta- ferramentas (1 ), com a ferramenta de corte (2) acoplada por presilha de fixação (5), e com as conexões externas, pelas quais circulam o fluido.  Figure 1 shows the technical drawing in section of the tool holder (1), with the cutting tool (2) coupled by the clamp (5), and the external connections through which the fluid circulates.
A figura 2 apresenta esquematicamente o sistema de refrigeração, compreendendo o porta-ferramentas (1 ), o trocador de calor (12), a bomba (13) e os canais de ligação.  Figure 2 shows schematically the cooling system comprising the tool holder (1), the heat exchanger (12), the pump (13) and the connection channels.
A figura 3 representa o fluxo térmico gerado em uma operação de usinagem atravessando a ferramenta de corte e a interface condutora, levando o fluido à mudança de fase. Figure 3 represents the thermal flux generated in a thermal operation. machining through the cutting tool and the conductive interface, leading the fluid to the phase change.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
Como apresentado na figura 1 , o porta-ferramentas (1 ) possui, abaixo da ferramenta de corte (2), uma câmara (3), na qual o calor gerado pelo processo de corte faz o fluido refrigerante que circula internamente evaporar. O vapor deixa o porta-ferramentas pelo canal interno (4). A ferramenta de corte (2) é fixada por uma presilha (5) que tem seu torque de aperto dado por um parafuso (6) ligado ao porta- ferramentas (1). Abaixo da ferramenta de corte (2), entre a ferramenta de corte (2) e a câmara (3), pode ser incluída uma interface (7) de material com elevada condutividade térmica, como cobre, a fim de favorecer a troca de calor entre ferramenta de corte (2) e fluido. O fluido entra na câmara (3) através da conexão (8) e deixa o porta-ferramentas pela conexão (10). As conexões podem ser com rosca, soldadas, inseridas por ajuste interferente, ou mesmo coladas à estrutura do porta- ferramentas (1 ). O fluido circula pelos sistemas externos de transferência de calor e pressurização e entra no porta-ferramentas (1 ) através do canal de ligação (9), e sai do porta-ferramentas (1 ) através do canal de ligação (11).  As shown in Figure 1, the tool holder (1) has below the cutting tool (2) a chamber (3) in which the heat generated by the cutting process causes the internally circulating refrigerant to evaporate. Steam leaves the tool holder through the inner channel (4). The cutting tool (2) is fixed by a clamp (5) which has its tightening torque given by a screw (6) attached to the tool holder (1). Below the cutting tool (2), between the cutting tool (2) and the chamber (3), an interface (7) of material with high thermal conductivity such as copper can be included in order to promote heat exchange. between cutting tool (2) and fluid. Fluid enters the chamber (3) through the fitting (8) and leaves the tool holder through the fitting (10). Connections can be threaded, welded, inserted by interfering fit, or even glued to the toolholder frame (1). The fluid flows through the external heat transfer and pressurization systems and enters the tool holder (1) through the connection channel (9), and exits the tool holder (1) through the connection channel (11).
Como descrito na figura 2, o fluido refrigerante, após sua evaporação total ou parcial, devido à transferência do calor gerado no processo de usinagem, deixa o porta-ferramentas (1) pela conexão (10) e segue pelo canal de ligação ( 1) até o trocador de calor (12), no interior do qual é condensado. O fluido na fase líquida segue para a bomba (13), que força sua circulação até o interior do porta-ferramentas (1 ), através do canal de ligação (9). O sistema de refrigeração opera em regime permanente, com fluxo contínuo de fluido pelo interior do porta- ferramentas, trocador de calor e sistema de pressurização. A figura 3 expõe o princípio de funcionamento do sistema interno de refrigeração do porta-ferramentas (1 ). A energia térmica gerada durante o processo de corte da peça (14), formando o cavaco (15), é transferida através da ferramenta de corte (2) e da interface condutora (7) ao fluido refrigerante no interior da câmara (3), que ao absorver esta energia térmica vaporiza-se parcialmente ou totalmente. O fluido aquecido deixa o porta-ferramentas, circulando pelo canal interno (4), até o canal de ligação (11 ), de onde segue para o sistema de troca de calor e pressurização, apresentado na figura (2). As described in figure 2, the refrigerant, after its total or partial evaporation, due to the transfer of heat generated in the machining process, leaves the tool holder (1) through the connection (10) and goes through the connection channel (1). to the heat exchanger (12) within which it is condensed. The fluid in the liquid phase flows to the pump (13), which forces its circulation into the tool holder (1) through the connection channel (9). The refrigeration system operates in a steady state, with continuous flow of fluid through the interior of the tool holder, heat exchanger and pressurization system. Figure 3 shows the working principle of the tool holder internal cooling system (1). The thermal energy generated during the cutting process of the part (14) forming the chip (15) is transferred through the cutting tool (2) and the conductive interface (7) to the coolant inside the chamber (3), absorbing this thermal energy vaporizes partially or totally. The heated fluid leaves the tool holder, circulating through the inner channel (4), to the connection channel (11), from where it goes to the heat exchange and pressurization system shown in figure (2).
O porta-ferramentas ou a própria ferramenta podem ser manufaturados de modo a se utilizar de tecnologias de intensificação de troca de calor, como agitação por ultra som, escoamentos por micro- canais, superfícies aletadas e meios porosos, em geometrias com forma de serpentina e outras técnicas quaisquer com o mesmo fim. Ainda, durante sua fabricação podem ser inseridas características que permitam alterações na pressão do sistema - como variações no diâmetro do canal (4) - de modo que o fluido refrigerante mude de fase em temperaturas diferentes, favorecendo a troca de calor. Geometrias diferenciadas são utilizadas na confecção da câmara de evaporação, de modo a direcionarem e regularem a vazão do jato de fluido que entra no porta- ferramentas. Na saída da dita câmara do porta-ferramentas, outras geometrias diferenciadas garantem a saída do vapor em direção ao sistema de transferência de calor.  The tool holder or the tool itself may be manufactured to utilize heat exchange enhancing technologies such as ultrasonic agitation, micro-channel flow, fin surfaces and porous media in coil-shaped geometries and any other techniques to the same end. Also, during its manufacture characteristics can be inserted that allow changes in the system pressure - such as variations in the diameter of the channel (4) - so that the refrigerant changes phase in different temperatures, favoring the heat exchange. Differentiated geometries are used to make the evaporation chamber in order to direct and regulate the flow of the fluid jet that enters the tool holder. At the outlet of said chamber of the tool holder, other differentiated geometries ensure the steam output towards the heat transfer system.
A circulação do fluido no interior do porta-ferramentas ou da própria ferramenta pode ser forçada ou baseada em convecção natural e, portanto, utilizar dos efeitos de variação da densidade, com a evaporação e/ou aquecimento para movimentação do fluido no sistema.  The circulation of fluid within the tool holder or the tool itself may be forced or natural convection based and therefore utilize the effects of density variation with evaporation and / or heating for fluid movement in the system.
A resistência térmica de contato entre a ferramenta e o porta- ferramentas pode ser diminuída por meio da aplicação de pasta térmica, aumento da planeza, diminuição da rugosidade ou qualquer tratamento superficial com esse fim. The thermal contact resistance between the tool and the tool holder can be reduced by applying thermal paste, increased flatness, decreased roughness or any surface treatment for this purpose.
Um exemplo de aplicação é a usinagem de peças automobilísticas e aeronáuticas de aços liga de difícil usinagem. Isso se deve pela grande geração de energia térmica, elevados esforços de corte, reduzida condutividade térmica desses materiais e elevada taxa de desgaste da ferramenta, além da intrínseca necessidade em manter os critérios de projeto, como dimensões e acabamento superficial. Utilizando-se uma ferramenta de corte com ou sem revestimento superficial, conectada ao porta-ferramentas com sistema interno de transferência de calor com fluido em mudança de fase; a presente tecnologia objetiva prolongar a vida da ferramenta de corte, diminuindo o tempo não produtivo sustentando a qualidade desejada das peças produzidas por mais tempo.  An example of application is the machining of automotive and aeronautical parts of difficult-to-alloy alloy steels. This is due to the large thermal energy generation, high shear stresses, low thermal conductivity of these materials and high tool wear rate, as well as the intrinsic need to maintain design criteria such as dimensions and surface finish. Using a surface-coated or uncoated cutting tool, connected to the tool holder with internal phase-shifting fluid heat transfer system; The present technology aims to extend the life of the cutting tool by reducing non-productive time by sustaining the desired quality of longer produced parts.

Claims

REIVINDICAÇÕES
1. DISPOSITIVO REFRIGERADO PARA USINAGEM DE MATERIAIS caracterizado pela transferência de calor da ferramenta de corte dar-se pela circulação forçada, ou convecção natural, em seu interior ou da própria ferramenta, de um fluido em mudança de fase em função da temperatura alcançada na operação de usinagem.  1. MATERIAL COOLING DEVICE characterized by the heat transfer of the cutting tool by the forced circulation, or natural convection inside or of the tool itself, of a phase changing fluid as a function of the temperature reached in the operation. Machining
2. DISPOSITIVO REFRIGERADO PARA USINAGEM DE MATERIAIS caracterizado por utilizar como fluido água, dióxido de carbono, amónia, fluidos refrigerantes, ou outros fluidos que, sob diferentes pressões, evaporem-se preferencialmente na faixa de temperaturas de -50 °C a 200 °C, preferencialmente entre 0 °C e 50 °C.  2. MATERIAL COOLING DEVICE characterized by the use of water, carbon dioxide, ammonia, refrigerants or other fluids which, under different pressures, preferably evaporate in the temperature range from -50 ° C to 200 ° C. preferably between 0 ° C and 50 ° C.
3. DISPOSITIVO REFRIGERADO PARA USINAGEM DE MATERIAIS caracterizado por compreender, no mínimo, um porta- ferramentas, um meio para troca de calor e um elemento para circulação forçada de fluidos ou convecção natural.  3. COOLED MACHINE MACHINE DEVICE characterized in that it comprises at least one tool holder, a means for heat exchange and an element for forced circulation of fluid or natural convection.
4. DISPOSITIVO REFRIGERADO PARA USINAGEM DE MATERIAIS, de acordo com as reivindicações de 1 a 3, caracterizado por utilizar um elemento trocador de calor, ou o próprio meio ambiente, para condensar novamente as fases vaporizadas, permitindo ao dispositivo refrigerado operar em ciclo fechado.  Cooled material machining device according to one of Claims 1 to 3, characterized in that it uses a heat exchanger element or the environment itself to condense the vaporized phases again, allowing the refrigerated device to operate in a closed loop.
5. DISPOSITIVO REFRIGERADO PARA USINAGEM DE MATERIAIS, de acordo com as reivindicações de 1 a 4, caracterizado por utilizar um sistema de circulação de fluido, externo ou interno ao porta- ferramentas, baseado em circulação forçada utilizando-se bombas, compressores ou outros dispositivos para este fim.  Cooled material machining device according to one of Claims 1 to 4, characterized in that a fluid circulation system, external or internal to the tool holder, based on forced circulation using pumps, compressors or other devices. to this end.
6. PORTA-FERRAMENTAS OU FERRAMENTAS PARA USINAGEM DE MATERIAIS caracterizados por um corpo estrutural dotado de canais internos e um sistema interno de transferência de calor que utilize tecnologias de intensificação de troca de calor como ultra som, escoamentos em micro-canais, superfícies aletadas e meios porosos, em geometrias com forma de serpentina e outras técnicas quaisquer com o mesmo fim, sejam elas aplicadas separadamente ou aplicadas em conjunto. 6. MATERIAL MACHINING TOOLS OR TOOLS characterized by a structural body provided with internal channels and an internal heat transfer system using heat exchange intensification technologies such as ultrasound, micro-channel flows, fin surfaces and porous media, coil-shaped geometries and any other techniques to the same end, whether applied separately or applied together.
7. PORTA-FERRAMENTAS OU FERRAMENTAS PARA 7. TOOL HOLDER OR TOOLS FOR
USINAGEM DE MATERIAIS, de acordo com as reivindicações de 1 a 6, caracterizados pelo fato de que a resistência térmica de contato entre a ferramenta e o porta-ferramentas pode ser diminuída por meio da aplicação de pasta térmica, aumento da planeza, diminuição da rugosidade ou qualquer tratamento superficial com esse fim, sejam elas aplicadas separadamente ou aplicadas em conjunto. MACHINING MATERIALS according to claims 1 to 6, characterized in that the thermal contact resistance between the tool and the tool holder can be reduced by the application of thermal paste, increased flatness, decreased roughness. or any surface treatment for this purpose, whether applied separately or applied together.
8. PORTA-FERRAMENTAS OU FERRAMENTAS PARA USINAGEM DE MATERIAIS, de acordo com as reivindicações de 1 a 7, caracterizados por conduzir as fases oriundas da câmara de evaporação diretamente para a atmosfera ou sobre peça que está sendo usinada.  8. MACHINE TOOL HOLDER OR TOOL HOLDER according to any of claims 1 to 7, characterized in that it conducts the phases from the evaporation chamber directly into the atmosphere or on the part being machined.
9. PORTA-FERRAMENTAS OU FERRAMENTAS PARA USINAGEM DE MATERIAIS, de acordo com as reivindicação de 1 a 8, caracterizado por ser confeccionado com um ou mais materiais de elevada condutividade térmica, bem como os outros elementos integrantes do sistema, preferencialmente, cerâmica, ferro fundido, aço inoxidável, aço rápido, aço para construção mecânica, metal duro, cermets, aço carbono, tratado ou não termicamente, cobre, alumínio, prata, ouro, grafeno, cerâmica supercondutora, compósitos, polímeros ou de outros materiais.  MATERIAL TOOL HOLDER OR TOOL HOLDER according to any of claims 1 to 8, characterized in that it is made of one or more materials of high thermal conductivity, as well as the other elements of the system, preferably ceramic, iron. cast, stainless steel, high speed steel, mechanical steel, carbide, cermets, carbon steel, whether or not heat treated, copper, aluminum, silver, gold, graphene, superconducting ceramics, composites, polymers or other materials.
10. PORTA-FERRAMENTAS OU FERRAMENTAS PARA 10. TOOL HOLDER OR TOOLS FOR
USINAGEM DE MATERIAIS, de acordo com as reivindicações de 1 a 9, caracterizado pelo fato de que o dito porta-ferramentas pode trabalhar com uma ou mais ferramentas. MACHINING MATERIALS according to claims 1 to 9, characterized in that said tool holder can work with one or more tools.
11. PORTA-FERRAMENTAS OU FERRAMENTAS PARA USINAGEM DE MATERIAIS, de acordo com as reivindicações de 1 a 10, caracterizado por canais construídos no interior do porta-ferramentas ou no interior da própria ferramenta caracterizados por geometrias que regulem a vazão, pressão, direção e sentido do escoamento do fluído. 11. TOOL HOLDER OR TOOLS FOR MACHINING MATERIALS according to any one of claims 1 to 10, characterized by channels constructed within the tool holder or within the tool itself characterized by geometries regulating the flow, pressure, direction and flow direction of the fluid.
12. PORTA-FERRAMENTAS OU FERRAMENTAS PARA 12. TOOL HOLDER OR TOOLS FOR
USINAGEM DE MATERIAIS, de acordo com as reivindicações de 1 a 11 , caracterizado por aplicações em remoção de material que utilizam ferramentas de geometria definida ou não definida em diferentes áreas não limitado exclusivamente à indústria automobilística, aeronáutica, mineração, cerâmica, química, perfuração, energia, naval, madeireira, metal-mecânica, odontológica, médica, de processamento de materiais condutores, semicondutores, ópticos e produtos da indústria eletroeletrônica. MACHINING MATERIALS according to Claims 1 to 11, characterized by material removal applications using defined or undefined geometry tools in different areas not limited exclusively to the automotive, aeronautics, mining, ceramics, chemistry, drilling, energy, marine, logging, metal-mechanical, dental, medical, conductive materials processing, semiconductor, optical and electronics products.
PCT/BR2014/000239 2013-07-17 2014-07-16 Toolholder with internal system for heat transfer with phase-change fluid WO2015006846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020130181897 2013-07-17
BR102013018189-7A BR102013018189B1 (en) 2013-07-17 2013-07-17 tool holder with internal heat transfer system with phase change fluid for cutting tool cooling

Publications (2)

Publication Number Publication Date
WO2015006846A1 true WO2015006846A1 (en) 2015-01-22
WO2015006846A8 WO2015006846A8 (en) 2015-03-19

Family

ID=52345639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000239 WO2015006846A1 (en) 2013-07-17 2014-07-16 Toolholder with internal system for heat transfer with phase-change fluid

Country Status (2)

Country Link
BR (1) BR102013018189B1 (en)
WO (1) WO2015006846A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117059A1 (en) 2016-09-12 2018-03-15 H&H Gerätebau Gmbh Cutting tool, tool assembly and cutting element tempering
WO2018095468A1 (en) * 2016-11-25 2018-05-31 Schaeffler Technologies AG & Co. KG Tool arrangement having a cutting body, method for cooling the cutting body, and use of the cutting body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111648113B (en) * 2020-05-25 2021-08-27 安徽工业大学 Self-cooling anti-melting cut-off knife

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1173190A (en) * 1956-11-28 1959-02-20 Cold and hot metal machining with internally cooled tools and its applications
US3664412A (en) * 1968-04-04 1972-05-23 Neal P Jeffries Cooling system for cutting tool and the like
US5799553A (en) * 1995-02-08 1998-09-01 University Of Connecticut Apparatus for environmentally safe cooling of cutting tools
DE19730539C1 (en) * 1997-07-16 1999-04-08 Fraunhofer Ges Forschung Lathe tool
EP1199126A1 (en) * 2000-03-03 2002-04-24 Masao Murakawa Heat absorbing throw-away tip and heat absorbing throw-away tool using the throw-away tip
US20080279644A1 (en) * 2007-05-09 2008-11-13 Board Of Control Of Michigan Technologycal University Cutting tool insert having internal microduct for coolant
US20100254772A1 (en) * 2009-04-06 2010-10-07 Jay Christopher Rozzi Indirect Cooling of a Cutting Tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1173190A (en) * 1956-11-28 1959-02-20 Cold and hot metal machining with internally cooled tools and its applications
US3664412A (en) * 1968-04-04 1972-05-23 Neal P Jeffries Cooling system for cutting tool and the like
US5799553A (en) * 1995-02-08 1998-09-01 University Of Connecticut Apparatus for environmentally safe cooling of cutting tools
DE19730539C1 (en) * 1997-07-16 1999-04-08 Fraunhofer Ges Forschung Lathe tool
EP1199126A1 (en) * 2000-03-03 2002-04-24 Masao Murakawa Heat absorbing throw-away tip and heat absorbing throw-away tool using the throw-away tip
US20080279644A1 (en) * 2007-05-09 2008-11-13 Board Of Control Of Michigan Technologycal University Cutting tool insert having internal microduct for coolant
US20100254772A1 (en) * 2009-04-06 2010-10-07 Jay Christopher Rozzi Indirect Cooling of a Cutting Tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117059A1 (en) 2016-09-12 2018-03-15 H&H Gerätebau Gmbh Cutting tool, tool assembly and cutting element tempering
WO2018095468A1 (en) * 2016-11-25 2018-05-31 Schaeffler Technologies AG & Co. KG Tool arrangement having a cutting body, method for cooling the cutting body, and use of the cutting body

Also Published As

Publication number Publication date
BR102013018189A2 (en) 2016-09-27
BR102013018189B1 (en) 2021-02-23
WO2015006846A8 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5745503B2 (en) Indirect cooling of rotary cutting tools
Busch et al. Investigation of cooling and lubrication strategies for machining high-temperature alloys
Rubio et al. Cooling systems based on cold compressed air: A review of the applications in machining processes
WO2015006846A1 (en) Toolholder with internal system for heat transfer with phase-change fluid
Blau et al. Flushing strategies for high performance, efficient and environmentally friendly cutting
CN101885077A (en) Heat pipe cutter and method for improving radiation of cutting tool by using heat pipe
US20150034229A1 (en) Sonotrode tool having an integrated cooling device
EP2353779B1 (en) Cutting tool holder arrangement
Taha et al. Vortex tube air cooling: The effect on surface roughness and power consumption in dry turning
CN201711551U (en) Heat tube cutter
Ramachandran et al. State of art of cooling method for dry machining
KR20090068030A (en) End mill cutting tool
Senevirathne et al. Effect of cryogenic cooling on machining performance on hard to cut metals-a literature review
Elshwain et al. Effect of cooling/lubrication using cooled air, MQL+ cooled Air, N2 and CO2 gases on tool life and surface finish in machining–A review
Neto et al. Toolholder internally cooled by a phase change fluid in turning of SAE
Kantharaj et al. U-drill embedded with phase change heat transfer device for machining applications
Li et al. Plough-extrusion Forming for Making Micro-groove Heat Pipes on Hydrostatic Thrust Bearings of Heavy Machinery.
US20240075540A1 (en) Rotating Cutting Tool with a Heat Pipe
RU2797232C1 (en) Cutter for boring out through holes
BR102019023346A2 (en) tool holder internally cooled by means of a fluid under electrohydrodynamic effect or magnetic field for cooling the cutting tool
Jen et al. Investigation of thermosyphon cooling for drilling operation: an experimental study
BR102020025949A2 (en) LUBRICATION-REFRIGERATION APPARATUS WITH COMPRESSED AIR BY MICRO CHANNEL IN TEXTURIZED CUTTING TOOL
Li et al. Study on inner micro-grooves of heat pipe spinning process and multi-tooth mandrel
BR102022010215A2 (en) DEVICE FOR CIRCULATION OF INTERNAL FLUIDS IN CLOSED CYCLE FOR ROTARY TOOLS
Billatos et al. Design and analysis of fluidless cooling devices for high speed machining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14827133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14827133

Country of ref document: EP

Kind code of ref document: A1