WO2015005372A1 - Semiconductor device using silver nanoparticles and method for manufacturing same - Google Patents

Semiconductor device using silver nanoparticles and method for manufacturing same Download PDF

Info

Publication number
WO2015005372A1
WO2015005372A1 PCT/JP2014/068270 JP2014068270W WO2015005372A1 WO 2015005372 A1 WO2015005372 A1 WO 2015005372A1 JP 2014068270 W JP2014068270 W JP 2014068270W WO 2015005372 A1 WO2015005372 A1 WO 2015005372A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
monoamine
semiconductor device
silver nanoparticles
aliphatic hydrocarbon
Prior art date
Application number
PCT/JP2014/068270
Other languages
French (fr)
Japanese (ja)
Inventor
岡本和樹
小妻宏禎
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2015005372A1 publication Critical patent/WO2015005372A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/13294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/132 - H01L2224/13291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81095Temperature settings
    • H01L2224/81096Transient conditions
    • H01L2224/81097Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Definitions

  • the present invention relates to a semiconductor device using silver nanoparticles and a manufacturing method thereof.
  • This application claims the priority of Japanese Patent Application No. 2013-143478 for which it applied to Japan on July 9, 2013, and uses the content here.
  • a method for joining a semiconductor element and a substrate in a semiconductor device a method using metal particles such as Au, Ag, and Cu can be given.
  • the particle size of the metal particles is very small, it can be sintered at a low temperature of about 150 to 350 ° C.
  • this method is suitable for a semiconductor device used for an application requiring heat resistance.
  • Patent Document 1 discloses a mounting structure using metal nanoparticles as a bonding material.
  • metal nanoparticles are interposed between a bump provided on a terminal of a semiconductor element and an electrode of the substrate, and the metal nanoparticle is sintered to sinter the terminal of the semiconductor element and the substrate.
  • the electrode is joined.
  • Patent Document 2 a sintered body obtained by sintering metal particles is arranged around a bump made of a bulk metal material, and the bump and the sintered body are each independently connected to a terminal of the semiconductor element.
  • a mounting structure that electrically connects the electrodes of the substrate is disclosed. This structure achieves high heat dissipation from the semiconductor element to the substrate and strong bondability while suppressing damage to the semiconductor element when the semiconductor element is bonded to the substrate.
  • each invention disclosed in the above-mentioned prior art documents has the following problems.
  • the joining portion (joining portion) obtained by sintering the metal nanoparticles has a low thermal conductivity, and thus efficiently dissipates heat generated by the semiconductor element to the substrate. This may cause problems such as unstable operation of the semiconductor device.
  • the semiconductor element is an LED (light emitting diode) element, there is a possibility that problems such as a decrease in light emission efficiency may occur.
  • Patent Document 2 it is necessary to prepare the bump and the sintered body separately, and it is necessary to adjust the thickness and arrangement of the sintered body with respect to the bump. There may be problems with manufacturing efficiency and accuracy.
  • the sintering temperature of the metal particles is not yet satisfactory for suppressing damage to the semiconductor element, and there is no disclosure of specific embodiments and conductivity of the metal particles.
  • a silver nanoparticle is mentioned as a typical example of the metal particle with a small particle diameter.
  • Silver nanoparticles are usually stabilized by being mixed with an organic stabilizer and used in the form of a silver coating composition (silver ink, silver paste).
  • a silver coating composition silver ink, silver paste.
  • sintering is possible at as low a temperature as possible.
  • removal of the organic stabilizer is insufficient.
  • the organic stabilizer present on the surface of the silver nanoparticles contributes to the stabilization of the silver nanoparticles, but on the other hand, tends to hinder the sintering of the silver nanoparticles.
  • the stabilization of the silver nanoparticles and the development of electrical conductivity particularly when sintering at a low temperature.
  • an object of the present invention is to suppress damage to the semiconductor element when the semiconductor element is bonded to the substrate, to have high heat dissipation from the semiconductor element to the substrate, and to be strong in bonding between the semiconductor element and the substrate.
  • An object of the present invention is to provide a highly accurate semiconductor device having high conductivity between a terminal of an element and an electrode of a substrate, high manufacturing efficiency, and a manufacturing method thereof.
  • the inventors of the present invention have found a method of joining a terminal of a semiconductor element and an electrode of a substrate using silver nanoparticles that can be sintered at a low temperature and in a short time and have excellent conductivity and thermal conductivity. Further, in the semiconductor device obtained using the silver nanoparticles, damage to the semiconductor element during bonding of the semiconductor element and the substrate is suppressed, heat dissipation from the semiconductor element to the substrate is high, and the semiconductor element and the substrate It has been found that the semiconductor device is a highly accurate semiconductor device with strong bonding, high conductivity between the terminal of the semiconductor element and the electrode of the substrate, high manufacturing efficiency. The present invention has been completed based on these findings.
  • the present invention is a semiconductor device including a semiconductor element and a substrate, wherein the terminal of the semiconductor element and the electrode of the substrate are opposed to each other, and the terminal and the electrode are joined by one or more joining portions.
  • At least one of the joints is a sintered body obtained by sintering silver nanoparticles
  • the silver nanoparticles are silver nanoparticles obtained by thermally decomposing a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group and a silver compound (B). To do.
  • the mixture is an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, the aliphatic hydrocarbon group and one amino group as the amine (A).
  • the aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms and the aliphatic hydrocarbon diamine (A3) having 8 or less carbon atoms consisting of an aliphatic hydrocarbon group and two amino groups.
  • the mixture may include, as the amine (A), an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, and an aliphatic hydrocarbon group and one amino group.
  • An aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms and a group Based on the total of the monoamine (A1) and the monoamine (A2), the monoamine (A1) is 5 mol% or more and less than 20 mol%, and the monoamine (A2) is more than 80 mol% and 95 mol% or less.
  • a semiconductor device comprising the above-mentioned ratio.
  • the semiconductor device is provided, wherein the mixture includes, as the amine (A), a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group. .
  • the semiconductor device is provided in which the silver compound (B) is silver oxalate.
  • the semiconductor device is provided in which the silver nanoparticles are silver nanoparticles having an average particle diameter of 0.5 nm to 100 nm.
  • the semiconductor device is provided in which the joint portions are formed so as to form a plurality of rows arranged in parallel with each other at a predetermined interval.
  • the semiconductor device is provided in which the semiconductor element is an optical semiconductor element.
  • the present invention also provides a method for manufacturing the semiconductor device described above, A step of supplying a composition containing silver nanoparticles to at least one of a terminal of the semiconductor element and an electrode of the substrate, a step of allowing the terminal of the semiconductor element and the electrode of the substrate to face each other (b), and the semiconductor element A step (c) of forming a bonded portion by bonding the terminal of the substrate and the electrode of the substrate with the composition containing the silver nanoparticles, and heating the composition containing the silver nanoparticles to Provided is a method of manufacturing a semiconductor device including a step (d) of forming a sintered body.
  • the semiconductor device manufacturing method is provided in which the step (a) is a step (a1) of supplying the composition containing the silver nanoparticles to both the terminal of the semiconductor element and the electrode of the substrate.
  • a semiconductor device including a semiconductor element and a substrate, wherein a terminal of the semiconductor element and an electrode of the substrate are opposed to each other, and the terminal and the electrode are bonded by one or more bonding portions. At least one of the parts is a sintered body formed by sintering silver nanoparticles, A semiconductor device, wherein the silver nanoparticles are silver nanoparticles obtained by thermally decomposing a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group and a silver compound (B).
  • the mixture is an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, an aliphatic hydrocarbon group and one amino as the amine (A). And an aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms composed of a group and an aliphatic hydrocarbon diamine (A3) having 8 or less carbon atoms composed of an aliphatic hydrocarbon group and two amino groups [1] ]
  • the semiconductor device as described in. [3]
  • the content of the monoamine (A1) in the mixture is 10 mol% to 65 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3). 2].
  • the content of the monoamine (A2) in the mixture is 5 mol% to 50 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3). [2] or [3].
  • the content of the diamine (A3) in the mixture is 15 mol% to 50 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3).
  • the semiconductor device according to any one of [2] to [4].
  • the total amount of the monoamine (A1), the monoamine (A2), and the diamine (A3) is 1 to 20 moles with respect to 1 mole of silver atoms in the silver compound (B).
  • the semiconductor device includes, as the amine (A), an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, and an aliphatic hydrocarbon group and one amine.
  • An aliphatic hydrocarbon monoamine (A2) composed of an amino group and having 5 or less carbon atoms, Based on the total of the monoamine (A1) and the monoamine (A2), the monoamine (A1) is 5 mol% or more and less than 20 mol%, and the monoamine (A2) is more than 80 mol% and 95 mol% or less.
  • a method for manufacturing a semiconductor device according to any one of [1] to [17], A step of supplying a composition containing silver nanoparticles to at least one of a terminal of the semiconductor element and an electrode of the substrate, a step of allowing the terminal of the semiconductor element and the electrode of the substrate to face each other (b), and the semiconductor element A step (c) of forming a bonded portion by bonding the terminal of the substrate and the electrode of the substrate with the composition containing the silver nanoparticles, and heating the composition containing the silver nanoparticles to A method for manufacturing a semiconductor device, comprising a step (d) of forming a sintered body.
  • the step (a) is a step (a1) of supplying a composition containing the silver nanoparticles to both a terminal of a semiconductor element and an electrode of a substrate.
  • the semiconductor device of the present invention can be sintered at a low temperature in a short time, and is obtained by bonding the terminals of a semiconductor element and the electrodes of a substrate using a composition containing silver nanoparticles having excellent conductivity and thermal conductivity. Therefore, damage to the semiconductor element at the time of bonding the semiconductor element and the substrate is suppressed, heat dissipation from the semiconductor element to the substrate is high, the bonding between the semiconductor element and the substrate is strong, and the terminal of the semiconductor element is The semiconductor device has high conductivity with the electrode of the substrate, high manufacturing efficiency, and high accuracy.
  • the semiconductor device of the present invention includes at least a semiconductor element and a substrate, the terminal of the semiconductor element and the electrode of the substrate are opposed (arranged so as to be opposed), and the terminal and the electrode are one or more. It has the structure joined by the junction part.
  • An example of the semiconductor device of the present invention is shown in the cross-sectional view of FIG. 1, but the present invention is not limited to this.
  • the semiconductor device 1 of FIG. 1 includes a semiconductor element 4, a terminal 5 formed on the semiconductor element 4, a substrate 2, an electrode 3 formed on the substrate 2, and a junction 6.
  • the terminal 5 and the electrode 3 are disposed so as to face each other, and the terminal 5 and the electrode 3 are joined by a joint portion 6. In this way, the semiconductor element 4 is mounted on the substrate 2.
  • the semiconductor device of the present invention may further include a member other than the semiconductor element and the substrate (for example, a sealing material for the semiconductor element).
  • At least one of the above-described joint portions is a sintered body obtained by sintering silver nanoparticles, and the silver nanoparticles are amines having an aliphatic hydrocarbon group and an amino group (A ) And a silver nanoparticle obtained by thermally decomposing a mixture containing the silver compound (B) as an essential component (sometimes referred to as “silver nanoparticle of the present invention”).
  • the semiconductor element (4 in FIGS. 1 to 5) in the semiconductor device of the present invention is not particularly limited.
  • a power semiconductor element or an optical semiconductor element such as an LED (Light Emitting Diode) element can be used.
  • the semiconductor element is bonded to an electrode on the substrate through the bonding portion by a terminal.
  • the substrate (2 in FIGS. 1 to 5) in the semiconductor device of the present invention is not particularly limited, but is preferably made of a material excellent in heat dissipation or thermal conductivity, such as alumina or aluminum nitride. Alternatively, a substrate with high heat dissipation such as a metal core substrate or a metal base substrate is preferable.
  • the silver nanoparticles of the present invention used in the semiconductor device of the present invention can be sintered at a low temperature and in a short time, as will be described later.
  • a heat-resistant plastic substrate such as a polyimide film, a polyester film such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film, a polypropylene film, etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a general-purpose plastic substrate having low heat resistance such as a polyolefin film can also be suitably used.
  • the substrate in the semiconductor device of the present invention has an electrode for energizing the semiconductor element.
  • the material for forming the terminal of the semiconductor element (5 in FIGS. 1 to 5) and the electrode of the substrate (3 in FIGS. 1 to 5) is not particularly limited.
  • the shape and the like of the terminal and the electrode are not particularly limited, and are appropriately selected from well-known and usual modes.
  • the bonding portion in the semiconductor device of the present invention is a portion that physically bonds the terminal of the semiconductor element and the electrode of the substrate.
  • the bonding portion plays a role of electrically and / or thermally bonding the terminal of the semiconductor element and the electrode of the substrate.
  • the semiconductor device of the present invention may have only one junction or may have two or more. Especially, it is preferable that the semiconductor device of this invention has 2 or more of the said junction parts from a viewpoint of electroconductivity and thermal conductivity.
  • the semiconductor device of the present invention is a semiconductor device in which at least one of the joints is a sintered body formed by sintering the silver nanoparticles of the present invention. Therefore, in the semiconductor device of the present invention, damage to the semiconductor element at the time of manufacture is suppressed, heat dissipation from the semiconductor element to the substrate is high, the bonding between the semiconductor element and the substrate is strong, and the terminal of the semiconductor element And a substrate with high conductivity, high manufacturing efficiency, and high accuracy.
  • the semiconductor device of the present invention has two or more of the junctions, at least one of them may be a sintered body formed by sintering the silver nanoparticles of the present invention.
  • 50% or more (for example, 50 to 100%) of the total number (100%) of the joined bodies is a sintered body obtained by sintering the silver nanoparticles of the present invention.
  • a part of the joined body may be a joined body formed of a material other than a sintered body obtained by sintering the silver nanoparticles of the present invention.
  • a general-purpose metal material for example, gold , Silver, copper, aluminum, or an alloy thereof).
  • the arrangement of the junctions is not particularly limited, and a well-known and commonly used arrangement of junctions in the semiconductor device can be applied.
  • the bonding portion is a bonding surface of the terminal of the semiconductor element (surface bonded to the electrode via the bonding portion) and / or a bonding surface of the electrode of the substrate (surface bonded to the terminal via the bonding portion).
  • Is formed so as to form a plurality of rows arranged in parallel with each other at a predetermined interval specifically, two or more rows formed by arranging a plurality of joint portions at a predetermined interval ( Preferably, two or more rows are arranged in parallel with each other at a predetermined interval.
  • the semiconductor device shown in FIG. 1 is a schematic diagram (cross-sectional view) showing an example of a semiconductor device (semiconductor device of the present invention) in which all of the joints are sintered bodies obtained by sintering the silver nanoparticles of the present invention.
  • It is. 1 is a sintered body formed by sintering a composition containing silver nanoparticles (specifically, a sintered body formed by sintering silver nanoparticles in the composition by heating).
  • the joining part 6 is a conductor having high conductivity and thermal conductivity by sintering silver nanoparticles, and as a result of being in contact with the terminal 5 and the electrode 3, the terminal 5 and the electrode 3 are joined.
  • the part 6 is in a state of being electrically and thermally well connected.
  • composition containing silver nanoparticles used in the semiconductor device of the present invention include, for example, a large number of silver nanoparticles (silver nanoparticles of the present invention) that are components that exhibit conductivity and thermal conductivity, and the silver.
  • maintaining a nanoparticle in the dispersed state is mentioned.
  • the composition is not particularly limited and can take various forms.
  • a silver coating composition called a so-called silver ink can be prepared by dispersing the silver nanoparticles of the present invention in a suspended state in a suitable organic solvent (dispersion medium).
  • a silver coating composition called a so-called silver paste can be produced by dispersing the silver nanoparticles of the present invention in a state of being kneaded in an organic solvent.
  • the organic solvent for obtaining the coating composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; toluene, xylene, Aromatic hydrocarbon solvents such as mesitylene; alcohol solvents such as methanol, ethanol, propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, terpineol, etc. Is mentioned.
  • the average particle diameter of the silver nanoparticles of the present invention is not particularly limited, but is preferably 0.5 nm to 100 nm, more preferably 0.5 nm to 50 nm, and further preferably 0.5 nm to 25 nm. It is preferably 0.5 nm to 10 nm.
  • the silver nanoparticles of the present invention comprise an amine (A) having an aliphatic hydrocarbon group and an amino group (sometimes referred to simply as “amine (A)”), and a mixture containing a silver compound (B) (simply “a mixture”).
  • amine (A) having an aliphatic hydrocarbon group and an amino group
  • B a mixture containing a silver compound
  • the silver nanoparticles of the present invention are in a state where the surface is coated with a protective agent containing an amine (A), have excellent stability, and have a low temperature of less than 200 ° C. (eg, 150 ° C. or less, preferably 120 ° C. or less).
  • the composition containing the silver nanoparticles can be obtained by a well-known and conventional method using silver nanoparticles (silver nanoparticles of the present invention) obtained by pyrolyzing the mixture, and is not particularly limited.
  • the silver nanoparticles obtained above can be obtained by suspending, dispersing or the like in an organic solvent by a conventional method after washing or the like as necessary.
  • Amine (A) As the amine (A) used in forming the silver nanoparticles of the present invention, any known and commonly used amine (amine compound) can be used as long as it has an aliphatic hydrocarbon group and an amino group.
  • the aliphatic hydrocarbon group includes a linear or branched aliphatic hydrocarbon group and a cyclic aliphatic hydrocarbon group. Each aliphatic hydrocarbon group includes a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group.
  • the amino group includes a primary amino group, a secondary amino group, and a tertiary amino group.
  • specific embodiments of the amine (A) used in forming the silver nanoparticles of the present invention will be exemplified as amine embodiments 1 to 3, but the amine (A) is not limited to these embodiments. Absent.
  • Examples of the amine (A) include aliphatic hydrocarbon monoamines (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group (sometimes simply referred to as “monoamine (A1)”), fatty acid An aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms composed of an aromatic hydrocarbon group and one amino group (sometimes simply referred to as “monoamine (A2)”), and an aliphatic hydrocarbon group and two
  • the aspect using at least C8 or less aliphatic hydrocarbon diamine (A3) (it may only be called "diamine (A3)" which consists of an amino group is mentioned. That is, as one aspect of the above mixture, a mixture containing at least a monoamine (A1), a monoamine (A2), and a diamine (A3) as the amine (A) can be mentioned.
  • amine other than the said monoamine (A1), the said monoamine (A2), the said diamine (A3), etc. may be used. it can.
  • the monoamine (A1) is a monoamine in which the total number of carbon atoms (carbon number) constituting the monoamine (A1) is 6 or more.
  • the monoamine (A1) has a high function as a protective agent (stabilizer) on the surface of the silver nanoparticles produced by the hydrocarbon chain.
  • the monoamine (A1) is preferably an alkyl monoamine having 6 to 12 carbon atoms.
  • the monoamine (A1) includes a primary amine, a secondary amine, and a tertiary amine.
  • Examples of the primary amine monoamine (A1) include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine. , Saturated aliphatic hydrocarbon monoamines (that is, alkyl monoamines) such as heptadecylamine and octadecylamine.
  • saturated aliphatic hydrocarbon monoamine in addition to the above linear aliphatic hydrocarbon monoamine, for example, branched (branched) aliphatic hydrocarbon monoamines such as isohexylamine, 2-ethylhexylamine, tert-octylamine and the like Can be mentioned. Also included are cycloalkyl monoamines such as cyclohexylamine. Furthermore, unsaturated aliphatic hydrocarbon monoamines (that is, alkenyl monoamines) such as oleylamine can be mentioned.
  • Examples of the secondary amine monoamine (A1) include N, N-dipropylamine, N, N-dibutylamine, N, N-dipentylamine, N, N-dihexylamine, N, N-dipeptylamine, Examples thereof include dialkyl monoamines such as N, N-dioctylamine, N, N-dinonylamine, N, N-didecylamine, N, N-diundecylamine, N, N-didodecylamine, and N-propyl-N-butylamine.
  • Examples of the monoamine (A1) that is a tertiary amine include tributylamine and trihexylamine.
  • the monoamine (A1) a saturated aliphatic hydrocarbon monoamine having 6 or more carbon atoms is preferable.
  • the number of carbon atoms is not particularly defined, but saturated aliphatic hydrocarbon monoamines having up to 18 carbon atoms are usually preferred in consideration of availability, ease of removal during sintering, and the like.
  • alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used.
  • the monoamine (A1) may be used alone or in combination of two or more.
  • the monoamine (A1) is not particularly limited, but is 10 mol% to 65 mol based on the total (100 mol%) of the monoamine (A1), the monoamine (A2) and the diamine (A3). % Is preferably included.
  • the monoamine (A2) is an aliphatic hydrocarbon monoamine having 5 or less carbon atoms composed of an aliphatic hydrocarbon group and one amino group. That is, the monoamine (A2) is a monoamine having a total number of carbon atoms (carbon number) constituting the monoamine (A2) of 5 or less. Since the carbon chain length is shorter than that of the monoamine (A1), the function as a protective agent (stabilizer) itself is considered to be low. However, since the polarity is higher than that of the monoamine (A1), the silver compound ( It is considered that B) has a high coordination ability to silver and is effective in promoting complex formation.
  • the carbon chain length since the carbon chain length is short, it can be removed from the surface of the silver nanoparticles in a short time of 30 minutes or less or 20 minutes or less even when sintering at a low temperature of 120 ° C. or lower, or about 100 ° C. or lower. This is effective for low-temperature sintering of the obtained silver nanoparticles.
  • the monoamine (A2) includes a primary amine, a secondary amine, and a tertiary amine.
  • Examples of the monoamine (A2) include ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, n-pentylamine, isopentylamine, tert-pentylamine and the like.
  • Examples thereof include saturated aliphatic hydrocarbon monoamines having 2 to 5 carbon atoms (that is, alkyl monoamines).
  • dialkyl monoamines such as N, N-dimethylamine, N, N-diethylamine, N-methyl-N-propylamine, N-ethyl-N-propylamine and the like can be mentioned.
  • n-butylamine isobutylamine, sec-butylamine, tert-butylamine, n-pentylamine, isopentylamine, tert-pentylamine and the like are preferable, and the above butylamines are particularly preferable.
  • the monoamine (A2) may be used alone or in combination of two or more.
  • the monoamine (A2) is not particularly limited, but is 5 mol% to 50 mol based on the total (100 mol%) of the monoamine (A1), the monoamine (A2), and the diamine (A3). It is preferable that it is contained in mol%.
  • the diamine (A3) is a diamine having a total number (carbon number) of carbon atoms constituting the diamine (A3) of 8 or less.
  • the diamine (A3) has a high coordination ability to the silver of the silver compound (B), and is effective in promoting complex formation.
  • the aliphatic hydrocarbon diamine generally has a higher polarity than the aliphatic hydrocarbon monoamine, and the coordination ability of the silver compound (B) to silver is high. Further, the diamine (A3) has an effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition step of the complex compound, and silver nanoparticles can be produced more efficiently.
  • the protective film of the silver nanoparticles containing the diamine (A3) has a high polarity, the dispersion stability of the silver nanoparticles in a dispersion medium containing a highly polar solvent is improved. Furthermore, since the diamine (A3) has a short carbon chain length, even in sintering at a low temperature of, for example, 120 ° C. or less, or about 100 ° C. or less, the silver nanoparticle can be obtained in a short time of 30 minutes or less or 20 minutes or less. Since it can be removed from the particle surface, it is effective in sintering the obtained silver nanoparticles at a low temperature in a short time.
  • the diamine (A3) is preferably an alkyl diamine having 2 to 8 carbon atoms. More specifically, the diamine (A3) is, for example, ethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1, 3-propanediamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N′-dimethyl-1,3-propanediamine, N, N-diethyl -1,3-propanediamine, N, N′-diethyl-1,3-propanediamine, 1,4-butanediamine, N, N-dimethyl-1,4-butanediamine, N, N′-dimethyl-1 , 4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N′-diethyl-1
  • alkylenediamines having 8 or less carbon atoms (total number of carbon atoms) in which at least one of the two amino groups is a primary amino group or a secondary amino group, and the silver of the silver compound (B) Is highly effective in promoting complex formation.
  • N N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propane
  • diamine (A3) N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propane
  • One of two amino groups such as diamine, N, N-dimethyl-1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N-dimethyl-1,6-hexanediamine, etc.
  • R 1 and R 2 may be the same or different and each represents an alkyl group. However, the total number of carbon atoms of R, R 1 and R 2 is 8 or less.
  • the alkylene group does not contain a hetero atom such as an oxygen atom or a nitrogen atom.
  • the alkyl group does not contain a hetero atom such as an oxygen atom or a nitrogen atom.
  • a diamine having 6 or less carbon atoms is preferable, and a diamine having 5 or less carbon atoms (total number of carbon atoms) is more preferable from the viewpoint of being able to be removed from the silver nanoparticle surface in a short time even in low-temperature sintering.
  • the diamine (A3) may be used alone or in combination of two or more.
  • the diamine (A3) is not particularly limited, but 15 mol% to 50 mol based on the total (100 mol%) of the monoamine (A1), the monoamine (A2) and the diamine (A3). % Is preferably included.
  • the total amount of the monoamine (A1), the monoamine (A2), and the diamine (A3) used in this aspect (amine embodiment 1) in the present invention is not particularly limited.
  • the total amount of these amine components [(A1) + (A2) + (A3)] per mole of silver atom B) is preferably about 1 to 20 moles.
  • the total amount of the amine component is less than 1 mole relative to 1 mole of the silver atom, a silver compound that is not converted into a complex compound in the step of producing a complex compound of the amine (A) and the silver compound (B) ( B) may remain.
  • the uniformity of the silver nanoparticles may be impaired, and the particles may be enlarged, or the silver compound (B) may remain without being thermally decomposed.
  • the total amount of the amine component is preferably about 2 mol or more, for example.
  • the complex compound generation step and the thermal decomposition step can be performed satisfactorily.
  • About the minimum of the total amount of the said amine component, 2 mol or more is preferable with respect to 1 mol of silver atoms of the said silver compound (B), and 6 mol or more is more preferable.
  • an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, an aliphatic hydrocarbon group and one amino group At least an aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms and 5 mol of the monoamine (A1) based on the total (100 mol%) of the monoamine (A1) and the monoamine (A2). % To less than 20 mol% (for example, 5 mol% to 19 mol%), and the monoamine (A2) in a proportion of more than 80 mol% to 95 mol% (for example, 81 mol% to 95 mol%) The aspect used by is mentioned.
  • the amine (A) includes the monoamine (A1) and the monoamine (A2), and the monoamine (A1) and the monoamine (A2) are based on the total (100 mol%) of the monoamine. And a mixture containing (A1) in a proportion of 5 mol% or more and less than 20 mol% and monoamine (A2) in a proportion of more than 80 mol% and 95 mol% or less.
  • the use ratio of the monoamine (A1) and the monoamine (A2) is based on the total (100 mol%) of the monoamine (A1) and the monoamine (A2). Less than mol% (for example, 5 mol% or more and 19 mol% or less), and the monoamine (A2): more than 80 mol% and 95 mol% or less (for example, 81 mol% or more and 95 mol% or less).
  • amine other than the said monoamine (A1) and the said monoamine (A2) etc. can be used in the range which does not inhibit the effect by this invention.
  • a protective and stabilizing function of the surface of the silver nanoparticles to be produced can be obtained by the carbon chain of the monoamine (A1).
  • the expression of the protective stabilization function may be weak.
  • the content of the monoamine (A1) is 20 mol% or more, the protective stabilization function is sufficient, but the monoamine (A1) is formed by low-temperature sintering when forming a relatively thick sintered film. Is difficult to remove.
  • About the minimum of content of the said monoamine (A1), 10 mol% or more, for example, 13 mol% or more is preferable.
  • About the upper limit of content of the said monoamine (A1), 19 mol% or less, for example, 17 mol% or less is preferable.
  • the content of the monoamine (A2) is more than 80 mol% and 95 mol% or less, a complex formation accelerating effect can be easily obtained, and itself can contribute to low temperature and short time sintering.
  • the content of the monoamine (A2) is 80 mol% or less, the effect of promoting complex formation is weak, or the monoamine (A1) contains silver nano-particles during sintering when forming a relatively thick sintered film. It may be difficult to remove from the particle surface.
  • the content of the monoamine (A2) exceeds 95 mol%, the effect of promoting complex formation is obtained, but the content of the monoamine (A1) is relatively reduced, and the surface of the silver nanoparticles to be produced It is difficult to achieve stable protection.
  • the monoamine (A2) having a high coordination ability to the silver of the silver compound (B) is used in the above proportion, so that the silver nanoparticles of the monoamine (A1) are used. Less adhesion on the surface. Therefore, even in the case of sintering at a low temperature and a short time, these amines are easily removed from the surface of the silver nanoparticles, and the silver nanoparticles are sufficiently sintered.
  • the total amount of the monoamine (A1) and the monoamine (A2) used in this aspect of the present invention is not particularly limited, but is 1 mol of silver atom of the silver compound (B).
  • the amount of the amine [(A1) + (A2)] is preferably about 1 to 72 mol.
  • the silver compound (B) that is not converted into the complex compound remains in the complex compound formation step. In the subsequent pyrolysis step, the uniformity of the silver nanoparticles may be impaired and the particles may be enlarged, or the silver compound (B) may remain without being pyrolyzed.
  • the amount of the amine [(A1) + (A2)] exceeds about 72 mol with respect to 1 mol of the silver atom.
  • the amount of the amine [(A1) + (A2)] is preferably about 2 mol or more, for example.
  • the diamine (A3) can also be used.
  • a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group (simply referred to as “monoamine (A4)”)
  • monoamine (A4) a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group
  • A4 a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group
  • the steric factor of the branched aliphatic hydrocarbon group reduces the amount on the surface of the silver nanoparticle.
  • a larger area of the surface of the silver nanoparticle can be covered with the amount of adhesion. Therefore, moderate stabilization of the silver nanoparticles can be obtained with a smaller amount of adhesion on the surface of the silver nanoparticles. Since the amount of the protective agent (organic stabilizer) to be removed at the time of sintering is small, the organic stabilizer can be efficiently removed even when sintering at a low temperature of 200 ° C. or less, and the silver nanoparticles are sintered. Proceed sufficiently.
  • the number of carbon atoms of the branched aliphatic hydrocarbon group in the monoamine (A4) is 4 or more, for example, 4 to 16. In order to obtain the steric factor of the branched aliphatic hydrocarbon group, 4 or more carbon atoms are required.
  • the monoamine (A4) include 4 to 16 carbon atoms such as isobutylamine, sec-butylamine, tert-butylamine, isopentylamine, tert-pentylamine, isohexylamine, 2-ethylhexylamine, tert-octylamine and the like.
  • Preferred examples include primary amines having 4 to 8 carbon atoms.
  • Examples of the monoamine (A4) include N, N-diisobutylamine, N, N-diisopentylamine, N, N-diisohexylamine, and N, N-di (2-ethylhexyl) amine. Secondary amines are mentioned. Further, for example, tertiary amines such as triisobutylamine, triisopentylamine, triisohexylamine, tri (2-ethylhexyl) amine and the like can be mentioned.
  • N N-di (2-ethylhexyl) amine
  • the carbon number of the 2-ethylhexyl group is 8, but the total number of carbons contained in the monoamine (A4) is 16.
  • the total number of carbons contained in the monoamine (A4) is 24.
  • the monoamine (A4) is preferably a branched alkyl monoamine compound having 4 to 6 carbon atoms in the main chain, such as isopentylamine, isohexylamine, 2-ethylhexylamine and the like.
  • the “main chain” means a chain (chain composed of carbon-carbon bonds) having the longest length in the branched aliphatic hydrocarbon group. When the carbon number of the main chain is 4 to 6, moderate stabilization of the silver nanoparticles can be easily obtained. From the viewpoint of the steric factor of the branched aliphatic hydrocarbon group, it is effective that the second carbon atom is branched from the N atom side.
  • the monoamine (A4) may be used alone or in combination of two or more.
  • the amount of the monoamine (A4) used in the embodiment (amine embodiment 3) in the present invention is not particularly limited, but is 1 mol with respect to 1 mol of silver atoms of the starting silver compound (B). About 15 mol is preferable.
  • the amount of the monoamine (A4) is less than 1 mole relative to 1 mole of the silver atom, a silver compound (not converted into a complex compound) in the complex compound production step of the amine (A) and the silver compound (B) ( B) may remain. Further, in the subsequent pyrolysis step, the uniformity of the silver nanoparticles may be impaired, the particles may be enlarged, or the silver compound (B) may remain without being pyrolyzed.
  • the amount of the monoamine (A4) is preferably about 2 mol or more, for example.
  • the amount of the monoamine (A4) is preferably about 2 mol or more, for example.
  • the complex compound generation step and the thermal decomposition step can be performed satisfactorily.
  • About the minimum of the quantity of the said monoamine (A4), 2 mol or more is preferable with respect to 1 mol of silver atoms of the said silver compound (B), and 6 mol or more is more preferable.
  • the ratio of the monoamine (A4) to the total amount (100 mol%) of the amine (A) used in this aspect (amine embodiment 3) of the present invention is not particularly limited, but is 80 mol to 100 mol%. Preferably, it is 90 to 100 mol% (for example, 90 to 98 mol%). By controlling the ratio within such a numerical range, it is possible to efficiently produce silver nanoparticles having excellent dispersion stability in a dispersion medium, and to efficiently sinter silver nanoparticles. There is a tendency to be able to.
  • the monoamine (A4) in addition to the monoamine (A4), the monoamine ( An aliphatic hydrocarbon amine compound selected from A1), the monoamine (A2), and the diamine (A3) can be used independently.
  • the monoamine (A2) and the diamine (A3) are effective in promoting complex formation.
  • Silver compound (B) As the silver compound (B), a silver compound that is easily decomposed by heating to form metallic silver is used. Examples of such silver compounds include silver formate, silver acetate, silver oxalate, silver malonate, silver benzoate, silver phthalate and the like; silver fluoride, silver chloride, silver bromide, silver iodide, etc. Silver sulfate; silver sulfate, silver nitrate, silver carbonate and the like can be used, but silver oxalate is preferably used from the viewpoint that metal silver is easily generated by decomposition and impurities other than silver are hardly generated. Silver oxalate is advantageous in that it has a high silver content and does not require a reducing agent, so that metallic silver can be obtained by thermal decomposition as it is, and impurities derived from the reducing agent do not easily remain.
  • the composition containing the silver nanoparticles includes nanoparticles of metals other than silver (sometimes referred to as “other metals”), composites of silver and other metals.
  • Other nanoparticles such as nanoparticles may be included.
  • other metal compounds metal compounds
  • metal compounds may be used in place of the silver compound (B) in the method for producing silver nanoparticles of the present invention, or other compounds may be used together with the silver compound (B). It can manufacture by using a metal compound together.
  • a metal compound that is easily decomposed by heating to produce the other metal is used instead of the silver compound (B).
  • metal compounds include metal salts corresponding to the above silver compound (B), such as metal carboxylates; metal halides; metal salts such as metal sulfates, metal nitrates, and metal carbonates. Compounds can be used. Of these, metal oxalate is preferably used from the viewpoint of easily generating metal by decomposition and hardly generating impurities other than metal.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the above silver compound (B) and other than the above silver A metal compound may be used in combination.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the silver composite is composed of silver and one or more other metals, and examples thereof include Au—Ag, Ag—Cu, Au—Ag—Cu, and Au—Ag—Pd.
  • the silver composite is not particularly limited, but based on the total metal, silver is at least 20% by weight (ie, 20% by weight or more), usually 50% by weight (ie, 50% by weight or more), for example, 80% by weight. % (That is, 80% by weight or more).
  • the silver nanoparticles used in the semiconductor device of the present invention are obtained by heating the above mixture (a mixture containing at least the amine (A) and the silver compound (B)) (specifically, thermally decomposing the silver compound (B) by heating). Can be generated).
  • the preparation method of the said mixture is not specifically limited, For example, when using 2 or more types of amines (A), these mixtures (amine mixture liquid) are prepared, and silver compound (B) is added here after that.
  • the said mixture can be prepared by adding and mixing.
  • the addition of the silver compound (B) can be performed all at once or sequentially. When adding silver compound (B) sequentially, you may carry out continuously and can also carry out intermittently. Although it is not clear, it is presumed that complex formation of both proceeds at the stage of mixing the amine (A) and the silver compound (B).
  • the heating temperature (thermal decomposition temperature) of the above mixture for producing silver nanoparticles is not particularly limited, but can be appropriately set within a range of 60 to 150 ° C., for example.
  • the thermal decomposition can be efficiently advanced by heating at 80 to 120 ° C., so that silver nanoparticles are produced with high productivity. be able to.
  • the heating temperature can be constant, or can be controlled so as to change continuously or intermittently.
  • the time for heating the mixture (heating time) is not particularly limited, and can be appropriately set within a range of, for example, 5 to 360 minutes. Thereby, the composition containing silver nanoparticles is obtained.
  • Aliphatic carboxylic acid (C) when preparing silver nanoparticles, an aliphatic carboxylic acid (C) may be further used as a stabilizer in order to further improve the dispersibility of the silver nanoparticles in the dispersion medium.
  • the aliphatic carboxylic acid (C) can be used by being included in the amine mixed solution.
  • aliphatic carboxylic acid (C) a saturated or unsaturated aliphatic carboxylic acid is used.
  • aliphatic carboxylic acid a saturated or unsaturated aliphatic carboxylic acid is used.
  • saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid
  • unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid
  • the aliphatic carboxylic acid (C) is preferably a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 18 carbon atoms.
  • the number of carbon atoms By setting the number of carbon atoms to 8 or more, an interval between the silver nanoparticles can be secured when the carboxylic acid group is adsorbed on the surface of the silver nanoparticles, thereby improving the effect of preventing aggregation of the silver nanoparticles.
  • saturated or unsaturated aliphatic monocarboxylic acids having up to 18 carbon atoms are usually preferred.
  • octanoic acid, oleic acid and the like are preferably used.
  • the aliphatic carboxylic acid (C) may be used alone or in combination of two or more.
  • the amount of the aliphatic carboxylic acid (C) used is not particularly limited, but is preferably 0.05 mol to 10 mol, for example, 0.1 mol with respect to 1 mol of silver atoms of the starting silver compound (B). ⁇ 5 mol is more preferable, and 0.5 mol to 2 mol is more preferable.
  • the amount of the aliphatic carboxylic acid (C) is less than 0.05 mol with respect to 1 mol of the silver atom, the stability improving effect in the dispersed state by the addition of the aliphatic carboxylic acid (C) is weak.
  • At least one of the joints in the semiconductor device of the present invention is a sintered body obtained by sintering the silver nanoparticles of the present invention.
  • the method for sintering the silver nanoparticles include well-known and commonly used methods for forming metal structures (sintered bodies) by sintering metal nanoparticles, and are not particularly limited.
  • a composition containing silver nanoparticles is supplied to the terminal and / or the electrode (either or both of the terminal and the electrode) by a desired thickness, shape, etc., by printing, etc.
  • the method of heating, after joining a terminal and the said electrode with the said composition is mentioned.
  • the heating conditions are not particularly limited, but by using the silver nanoparticles of the present invention, a low temperature of less than 200 ° C.
  • the joint part which is a sintered body obtained by sintering the silver nanoparticles of the present invention, is obtained. More specifically, the junction can be formed by a method in a semiconductor device manufacturing method described below.
  • the method for manufacturing a semiconductor device of the present invention is not particularly limited, and can be performed according to a well-known and commonly used method for manufacturing a semiconductor device. Specifically, as the manufacturing method, for example, the following steps (a) to (d) (step (a), step (b), step (c), and step (d)) are essential steps. The method of including is mentioned.
  • the method for performing each of the above-described steps (a) to (d) is not particularly limited, and can be performed according to a well-known and commonly used method. Further, the order in which the above-described steps (a) to (d) are performed is not particularly limited. For example, the steps (a), (b), (c), and (d) are performed in this order. Can do. Specifically, for example, it can be performed according to the method of performing each step in the description of the manufacturing method of the semiconductor device shown in FIGS. In particular, from the viewpoint of electrical conductivity and thermal conductivity between the terminal of the semiconductor element and the electrode of the substrate, the step (a) includes both the terminal of the semiconductor element and the electrode of the substrate according to the present invention. A step of supplying a composition containing silver nanoparticles (sometimes referred to as “step (a1)”) is preferable. Although it does not specifically limit as an aspect which supplies the said composition, For example, application
  • each step can be performed only once or twice or more.
  • the above-described steps (a) to (d) can be performed sequentially, or two or more steps can be performed simultaneously.
  • the semiconductor device manufacturing method of the present invention may include other steps in addition to the above-described steps (a) to (d).
  • FIGS. 2 to 4 show an example of a method of manufacturing a semiconductor device (semiconductor device of the present invention) in which all of the joints are sintered bodies obtained by sintering the silver nanoparticles of the present invention.
  • FIGS. 2 (a), 3 (a), and 4 (a) show an LED element as an example of the semiconductor element 4.
  • a semiconductor element 4 having terminals 5 is prepared.
  • a junction 6a may be formed on the terminal 5 of the semiconductor element 4 by a composition containing silver nanoparticles, as shown in FIG. As shown in a), the joint 6a may not be formed.
  • the joint 6a can be formed by applying or printing a composition containing silver nanoparticles on the terminal 5.
  • coating or printing For example, spin coating, inkjet printing, screen printing, dispenser printing, relief printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), intaglio Examples thereof include printing (gravure printing), contact printing, and micro contact printing.
  • coating or printing For example, spin coating, inkjet printing, screen printing, dispenser printing, relief printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), intaglio Examples thereof include printing (gravure printing), contact printing, and micro contact printing.
  • coating or printing For example, spin coating, inkjet printing, screen printing, dispenser printing, relief printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), intaglio Examples thereof include printing (gravure printing), contact printing, and micro contact printing.
  • the patterned joint 6a can be formed by coating or printing.
  • the area of the terminal 5 is relatively large, it is preferable to form a plurality of the joint portions 6 a on one terminal 5 of the semiconductor element 4. As a result, the heat generated by the semiconductor element 4 can be radiated to the substrate 2 more effectively via the terminal 5 and the joint 6. Even when the semiconductor element 4 is an LED element, it is possible to suppress a decrease in light emission efficiency of the LED element due to its effective heat dissipation.
  • junction part 6 sintered body
  • the junction part 6a which consists of a composition containing a silver nanoparticle. It is not necessary to sinter yet.
  • a substrate 2 provided with electrodes 3 is prepared.
  • the bonding portion 6 b may be formed on the electrode 3 with a composition containing silver nanoparticles. Formation of the joining part 6b by the composition containing silver nanoparticles can be performed by coating or printing, as in the formation of the joining part 6a described above.
  • the composition containing the silver nanoparticles may be sintered to form a sintered body, or may not be sintered at this stage.
  • the bonding portion 6 is not a composition containing silver nanoparticles but a general-purpose one. It can comprise only the bump which consists of metal materials. Thereby, the usage-amount of the composition containing a silver nanoparticle can be saved.
  • the terminal 5 of the semiconductor element 4 and the electrode 3 of the substrate 2 are opposed to each other.
  • the bonding part 6a or the bonding part 6b is a sintered body of silver nanoparticles (that is, when it is 6)
  • the semiconductor element 4 is placed on the substrate while applying ultrasonic vibration to the semiconductor element 4. You may press toward 2. Thereby, the terminal 5 of the semiconductor element 4 and the electrode 3 of the board
  • the bonded portion 6a or the bonded portion 6b made of the composition containing silver nanoparticles is heated by heating through the substrate 2.
  • Sintering is less than 200 ° C. (eg 150 ° C. or less, preferably 120 ° C. or less, more preferably 100 ° C. or less, more preferably 80 ° C. or less) and 2 hours or less (eg 1 hour or less, preferably 30 minutes or less, more It is preferably 15 minutes or less, more preferably 10 minutes or less.
  • the sintering of silver nanoparticles sufficiently proceeds even by sintering at a low temperature and in a short time as described above. As a result, a sintered body having excellent conductivity (low resistance value, for example, 15 ⁇ cm or less) is formed.
  • the sintering may be performed simultaneously when the terminal 5 and the electrode 3 are joined. Thereby, the number of processes can be reduced. Moreover, it is not restricted to the method of heating through the board
  • energy such as an ultrasonic wave and electromagnetic waves
  • the joint portion 6 when the joint portion 6 is provided in a dot shape, it is preferable that a predetermined interval is provided between the dots so that the rows of the dots are parallel to each other. Thereby, the gas generated at the time of sintering can be efficiently released to the outside, and voids inside the joint portion 6 (sintered body) can be reduced, so that heat dissipation is improved. Furthermore, the bonding between the semiconductor element 4 and the substrate 2 can be further stabilized by regularly providing the plurality of bonding portions 6.
  • composition containing silver nanoparticles is applied or printed on the terminals 5 of the semiconductor element 4, in addition to being applied or printed in a dot shape as shown in FIG. A joint portion 6 having a large area can be formed. In that case, coating or printing may be performed so that the bonding portion 6 is provided on almost the entire surface of the terminal 5 of the semiconductor element 4. As a result, the conductivity and heat dissipation can be further improved.
  • the composition containing silver nanoparticles may be supplied to only one of the terminal 5 and the electrode 3 (for example, coating, printing, etc.). You may supply.
  • terminals 5 of the semiconductor element 4 it is not necessary for all the terminals 5 of the semiconductor element 4 to face the electrode 3 of the substrate 2.
  • at least one of the plurality of terminals 5 is provided on the substrate 2. As long as it is facing.
  • the obtained silver sintered film was measured using a four-terminal method (Loresta GP MCP-T610).
  • the measuring range limit of this device is 10 7 ⁇ cm.
  • N N-dimethyl-1,3-propanediamine
  • 2-ethylhexylamine MW: 129.25
  • Wako Pure Chemical Industries, Ltd. n-butylamine (MW: 73. 14): Reagent n-hexylamine (MW: 101.19) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Reagent n-octylamine MW: 129.25
  • Reagent oleic acid MW: 282.47 manufactured by Tokyo Chemical Industry Co., Ltd.
  • Methanol Reagents manufactured by Wako Pure Chemical Industries, Ltd. 1-Butanol: Reagents manufactured by Tokyo Chemical Industry Co., Ltd. Octanes: Reagents manufactured by Wako Pure Chemical Industries, Ltd. Dihydroxyterpineol: Silver oxalate manufactured by Nippon Terpene Co., Ltd. (MW: 303. 78): synthesized from silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • Example 1 (Preparation of silver nanoparticles) In a 50 mL flask, 1.28 g (12.5 mmol) of N, N-dimethyl-1,3-propanediamine, 0.91 g (12.5 mmol) of n-butylamine, 3.24 g (32.0 mmol) of n-hexylamine, n-Octylamine 0.39 g (3.0 mmol) and oleic acid 0.09 g (0.33 mmol) were added and stirred at room temperature to prepare a uniform mixed solution (amine-carboxylic acid mixed solution).
  • reaction mixture was heated and stirred at 105 ° C. to 110 ° C.
  • the reaction with the generation of carbon dioxide started immediately after the start of stirring, and then the stirring was continued until the generation of carbon dioxide was completed.
  • a suspension in which silver nanoparticles exhibiting a blue luster were suspended was obtained. .
  • the coating film was formed, it was immediately sintered at 120 ° C. for 15 minutes in a blow drying furnace to form a silver sintered film having a thickness of about 1 ⁇ m.
  • the specific resistance value of the obtained silver sintered film was measured by a four-terminal method and found to be 8.4 ⁇ cm.
  • [1] initial stage dispersibility evaluation and [2] storage stability evaluation were performed as follows. [1] When the silver nanoparticle dispersion immediately after preparation was filtered through a 0.2 ⁇ m filter, the filter was not clogged. That is, the silver nanoparticle dispersion liquid maintained a good dispersion state. [2] The silver nanoparticle dispersion liquid immediately after preparation was put in a transparent glass sample bottle, sealed, and stored in the dark at 25 ° C. for 7 days. No silver mirror was observed. When the silver nanoparticle dispersion after storage was filtered with a 0.2 ⁇ m filter, the filter was not clogged. That is, the silver nanoparticle dispersion after storage maintained a good dispersion state.
  • the viscous white substance obtained during the preparation of the silver nanoparticles is a combination of silver oxalate and alkylamine, and is based on the silver atoms of silver oxalate. It was speculated that this was a silver oxalate-amine complex in which the amino group of the alkylamine was coordinated.
  • the DSC measurement conditions were as follows. Apparatus: DSC 6220-ASD2 (manufactured by SII Nanotechnology) Sample container: 15 ⁇ L gold-plated sealed cell (manufactured by SII Nanotechnology) Temperature increase rate: 10 ° C / min (room temperature to 600 ° C) Atmospheric gas: Atmospheric pressure in the cell Air confinement Outside nitrogen flow
  • the white material with a viscous obtained during the preparation of the silver nanoparticles was subjected to IR spectrum measurement, absorption derived from the alkyl group of the alkyl amine (2900 cm around -1, around 1000 cm -1) was observed It was done. This also shows that the viscous white substance obtained during the preparation of the silver nanoparticles is formed by the combination of silver oxalate and alkylamine, and the silver oxalate has silver atoms. On the other hand, it was presumed to be a silver oxalate-amine complex in which the amino group was coordinated.
  • Example 2 In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.28 g (12.5 mmol) of N, N-dimethyl-1,3-propanediamine, 0.91 g (12.5 mmol) of n-butylamine, Example 1 was repeated except that n-hexylamine was changed to 3.24 g (32.0 mmol), n-octylamine 0.39 g (3.0 mmol), and oleic acid 0.13 g (0.45 mmol). Then, a silver nanoparticle dispersion was prepared, and a coating film was formed and sintered.
  • the obtained silver sintered film had a thickness of about 1 ⁇ m and a specific resistance value of 11.3 ⁇ cm.
  • Example 3 In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.53 g (15.0 mmol) of N, N-dimethyl-1,3-propanediamine, 0.73 g (10.0 mmol) of n-butylamine, Example 1 was repeated except that n-hexylamine was changed to 3.24 g (32.0 mmol), n-octylamine 0.39 g (3.0 mmol), and oleic acid 0.13 g (0.45 mmol). Then, a silver nanoparticle dispersion was prepared, and a coating film was formed and sintered.
  • the obtained silver sintered film had a thickness of about 1 ⁇ m and a specific resistance value of 14.2 ⁇ cm.
  • Example 4 In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.02 g (10 mmol) of N, N-dimethyl-1,3-propanediamine, 1.10 g (15.0 mmol) of n-butylamine, n- Except for changing to 3.24 g (32.0 mmol) of hexylamine, 0.39 g (3.0 mmol) of n-octylamine, and 0.13 g (0.45 mmol) of oleic acid, the same as in Example 1, A silver nanoparticle dispersion was prepared, and a coating film was formed and sintered.
  • the obtained silver sintered film had a thickness of about 1 ⁇ m and a specific resistance value of 14.5 ⁇ cm.
  • Example 5 (Preparation of silver nanoparticles) To a 50 mL flask, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were added and stirred at room temperature to prepare a uniform mixed solution (amine mixed solution).
  • reaction mixture was heated and stirred at 85 ° C. to 90 ° C.
  • the color gradually changed to brown, and by stirring for 2 hours, a suspension in which silver nanoparticles were suspended was obtained.
  • the coating film was sintered in a blow drying oven under the following conditions to form a silver sintered film of each thickness.
  • the specific resistance value of the obtained silver sintered film was measured by a four-terminal method.
  • Example 6 A silver nanoparticle-containing paste was prepared in the same manner as in Example 5 except that n-hexylamine 3.00 g (30 mmol) was changed to n-octylamine 3.88 g (30 mmol) in the composition of the amine mixed solution. The coating film was formed and sintered under the following conditions.
  • the thickness of the obtained silver sintered film was about 1 ⁇ m, and the specific resistance value was about 2.0E + 08 ⁇ cm.
  • the silver nanoparticles used in the semiconductor device of the present invention have good dispersibility and storage stability in the dispersion, and have a relatively thick film of, for example, 1 ⁇ m or more. Even when the silver sintered film is formed by sintering at a low temperature for a short time, good conductivity can be imparted. Moreover, since a dense silver sintered body with high purity can be obtained at a low temperature and in a short time, it is possible to impart both good heat dissipation and high strength.
  • the semiconductor device and the manufacturing method thereof according to the present invention are particularly useful as a semiconductor device including a power semiconductor having high heat generation, an optical semiconductor element, etc. and requiring heat dissipation, and a manufacturing method thereof.
  • the electrical conductivity of the junction is excellent, the energy efficiency is high, so that it is useful as a semiconductor device that contributes to energy saving and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 The purpose of the present invention is to provide: a highly accurate semiconductor device in which the semiconductor is inhibited from being damaged when the semiconductor element and a substrate are bonded, the heat dissipation performance from the semiconductor element to the substrate is high, the bonding between the semiconductor element and the substrate is firm, the electroconductivity from the terminal of the semiconductor element and the electrode of the substrate is high, and the manufacturing efficiency is high; and a method for manufacturing the semiconductor device. The present invention is a semiconductor device provided with a semiconductor element and a substrate, the semiconductor device being characterized in that the terminal of the semiconductor element and the electrode of the substrate face each other, the terminal and the electrode are bonded by one or more bond parts, at least one of the bond parts is a sintered body obtained by sintering silver nanoparticles, and the silver nanoparticles are obtained by thermal decomposition of a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group, and a silver compound (B); and a method for manufacturing the semiconductor device.

Description

銀ナノ粒子を用いた半導体装置及びその製造方法Semiconductor device using silver nanoparticles and method for manufacturing the same
 本発明は、銀ナノ粒子を用いた半導体装置及びその製造方法に関する。本願は、2013年7月9日に日本に出願した特願2013-143478号の優先権を主張し、その内容をここに援用する。 The present invention relates to a semiconductor device using silver nanoparticles and a manufacturing method thereof. This application claims the priority of Japanese Patent Application No. 2013-143478 for which it applied to Japan on July 9, 2013, and uses the content here.
 半導体装置において、半導体素子と基板を接合する方法として、Au、Ag、Cu等の金属粒子を用いる方法が挙げられる。金属粒子の粒子径が微小である場合、150~350℃程度の低温で焼結することが可能である。また、焼結後においては高い融点を有するため、この方法は、耐熱性が要求される用途に用いられる半導体装置において好適である。 As a method for joining a semiconductor element and a substrate in a semiconductor device, a method using metal particles such as Au, Ag, and Cu can be given. When the particle size of the metal particles is very small, it can be sintered at a low temperature of about 150 to 350 ° C. Moreover, since it has a high melting point after sintering, this method is suitable for a semiconductor device used for an application requiring heat resistance.
 特許文献1には、金属ナノ粒子を接合材料として使用した実装構造が開示されている。特許文献1の実装構造においては、半導体素子の端子に設けられたバンプと、基板の電極との間に金属ナノ粒子を介在させ、その金属ナノ粒子を焼結して半導体素子の端子と基板の電極とを接合している。また、特許文献2には、バルク金属材料よりなるバンプの周囲に、金属粒子を焼結した焼結体を配し、前記バンプと前記焼結体とがそれぞれ独立に、前記半導体素子の端子と前記基板の電極とを電気的に接続している実装構造体が開示されている。この構造により、半導体素子を基板に接合する際の半導体素子の損傷を抑えながら、半導体素子から基板への高い放熱性と、強固な接合性とを達成している。 Patent Document 1 discloses a mounting structure using metal nanoparticles as a bonding material. In the mounting structure of Patent Document 1, metal nanoparticles are interposed between a bump provided on a terminal of a semiconductor element and an electrode of the substrate, and the metal nanoparticle is sintered to sinter the terminal of the semiconductor element and the substrate. The electrode is joined. Further, in Patent Document 2, a sintered body obtained by sintering metal particles is arranged around a bump made of a bulk metal material, and the bump and the sintered body are each independently connected to a terminal of the semiconductor element. A mounting structure that electrically connects the electrodes of the substrate is disclosed. This structure achieves high heat dissipation from the semiconductor element to the substrate and strong bondability while suppressing damage to the semiconductor element when the semiconductor element is bonded to the substrate.
特開2007-208082号公報JP 2007-208082 A 特開2010-272818号公報JP 2010-272818 A
 しかしながら、前述の先行技術文献に開示された各発明は、以下の問題点を有している。特許文献1に開示された発明において金属ナノ粒子を焼結して得られる接合部分(接合部)は、熱伝導率が小さいため、半導体素子が発生した熱を基板に対して効率的に放熱することが困難であり、半導体装置の動作が不安定になる等の不具合が生じる可能性がある。例えば、半導体素子がLED(発光ダイオード)素子である場合には、発光効率が低下する等の不具合が生じる可能性がある。 However, each invention disclosed in the above-mentioned prior art documents has the following problems. In the invention disclosed in Patent Document 1, the joining portion (joining portion) obtained by sintering the metal nanoparticles has a low thermal conductivity, and thus efficiently dissipates heat generated by the semiconductor element to the substrate. This may cause problems such as unstable operation of the semiconductor device. For example, when the semiconductor element is an LED (light emitting diode) element, there is a possibility that problems such as a decrease in light emission efficiency may occur.
 また、半導体素子から基板に対する放熱効率を高めるには、半導体素子の端子または基板の電極と、これらを接合する接合部(バンプ等)との接触面積を大きくする方法が挙げられる。しかし、大きな接触面積を得るためには、大きな荷重を掛けたり、高い温度で加熱したりする必要があり、半導体素子を損傷する危険性が高い。 Further, in order to increase the heat radiation efficiency from the semiconductor element to the substrate, there is a method of increasing the contact area between the terminal of the semiconductor element or the electrode of the substrate and a joint (bump or the like) for joining them. However, in order to obtain a large contact area, it is necessary to apply a large load or heat at a high temperature, and there is a high risk of damaging the semiconductor element.
 さらに、特許文献2に開示された発明においては、バンプと焼結体を別々に準備する必要があり、また、バンプに対する焼結体の厚みや配置を調整する必要があることから、半導体装置の製造効率や精度に問題が生じる可能性がある。また、金属粒子の焼結温度は、半導体素子の損傷を抑制するためには未だ満足できる水準にはなく、金属粒子の具体的な実施態様や導電性についても開示が無い。 Furthermore, in the invention disclosed in Patent Document 2, it is necessary to prepare the bump and the sintered body separately, and it is necessary to adjust the thickness and arrangement of the sintered body with respect to the bump. There may be problems with manufacturing efficiency and accuracy. In addition, the sintering temperature of the metal particles is not yet satisfactory for suppressing damage to the semiconductor element, and there is no disclosure of specific embodiments and conductivity of the metal particles.
 ところで、粒子径が微小である金属粒子の代表例として、銀ナノ粒子が挙げられる。銀ナノ粒子は通常、有機安定剤と混合されることにより安定化され、銀塗料組成物(銀インク、銀ペースト)の形態で使用される。このような銀塗料組成物について導電性を発現させるためには、銀ナノ粒子の焼結時において、銀ナノ粒子を被覆している有機安定剤を除去する必要がある。ここで、半導体装置の製造効率や半導体素子等の部材の劣化防止の観点では、できるだけ低温で焼結できることが求められるが、焼結温度を低くした場合には、有機安定剤の除去が不十分となり、銀ナノ粒子の焼結が不十分となる結果、十分な導電性が得られない。即ち、銀ナノ粒子の表面に存在する有機安定剤は、銀ナノ粒子の安定化に寄与するが、一方で、銀ナノ粒子の焼結を妨げる傾向がある。このように、銀ナノ粒子の安定化と、特に低温における焼結での導電性の発現とは、トレードオフの関係にある。 By the way, a silver nanoparticle is mentioned as a typical example of the metal particle with a small particle diameter. Silver nanoparticles are usually stabilized by being mixed with an organic stabilizer and used in the form of a silver coating composition (silver ink, silver paste). In order to develop conductivity for such a silver coating composition, it is necessary to remove the organic stabilizer covering the silver nanoparticles during the sintering of the silver nanoparticles. Here, from the viewpoint of manufacturing efficiency of semiconductor devices and prevention of deterioration of members such as semiconductor elements, it is required that sintering is possible at as low a temperature as possible. However, when the sintering temperature is lowered, removal of the organic stabilizer is insufficient. Therefore, as a result of insufficient sintering of the silver nanoparticles, sufficient conductivity cannot be obtained. That is, the organic stabilizer present on the surface of the silver nanoparticles contributes to the stabilization of the silver nanoparticles, but on the other hand, tends to hinder the sintering of the silver nanoparticles. Thus, there is a trade-off relationship between the stabilization of the silver nanoparticles and the development of electrical conductivity particularly when sintering at a low temperature.
 従って、本発明の目的は、半導体素子と基板の接合時の半導体素子の損傷が抑制されており、半導体素子から基板への放熱性が高く、半導体素子と基板との接合が強固であり、半導体素子の端子と基板の電極との導電性が高く、製造効率が高く、精度の高い半導体装置及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to suppress damage to the semiconductor element when the semiconductor element is bonded to the substrate, to have high heat dissipation from the semiconductor element to the substrate, and to be strong in bonding between the semiconductor element and the substrate. An object of the present invention is to provide a highly accurate semiconductor device having high conductivity between a terminal of an element and an electrode of a substrate, high manufacturing efficiency, and a manufacturing method thereof.
 本発明者らは、低温且つ短時間で焼結させることができ、導電性及び熱伝導性に優れた銀ナノ粒子を用いて、半導体素子の端子及び基板の電極を接合する方法を見出した。また、前記銀ナノ粒子を用いて得られる半導体装置は、半導体素子と基板の接合時の半導体素子の損傷が抑制されており、半導体素子から基板への放熱性が高く、半導体素子と基板との接合が強固であり、半導体素子の端子と基板の電極との導電性が高く、製造効率が高く、精度の高い半導体装置であることを見出した。本発明は、これらの知見に基づいて完成されたものである。 The inventors of the present invention have found a method of joining a terminal of a semiconductor element and an electrode of a substrate using silver nanoparticles that can be sintered at a low temperature and in a short time and have excellent conductivity and thermal conductivity. Further, in the semiconductor device obtained using the silver nanoparticles, damage to the semiconductor element during bonding of the semiconductor element and the substrate is suppressed, heat dissipation from the semiconductor element to the substrate is high, and the semiconductor element and the substrate It has been found that the semiconductor device is a highly accurate semiconductor device with strong bonding, high conductivity between the terminal of the semiconductor element and the electrode of the substrate, high manufacturing efficiency. The present invention has been completed based on these findings.
 即ち、本発明は、半導体素子と基板とを備える半導体装置であって、前記半導体素子の端子と前記基板の電極が対向しており、前記端子と前記電極が1つ以上の接合部により接合され、前記接合部の少なくとも1つが、銀ナノ粒子を焼結してなる焼結体であり、
 前記銀ナノ粒子が、脂肪族炭化水素基及びアミノ基を有するアミン(A)並びに銀化合物(B)を含む混合物を熱分解して得られる銀ナノ粒子であることを特徴とする半導体装置を提供する。
That is, the present invention is a semiconductor device including a semiconductor element and a substrate, wherein the terminal of the semiconductor element and the electrode of the substrate are opposed to each other, and the terminal and the electrode are joined by one or more joining portions. , At least one of the joints is a sintered body obtained by sintering silver nanoparticles,
Provided is a semiconductor device wherein the silver nanoparticles are silver nanoparticles obtained by thermally decomposing a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group and a silver compound (B). To do.
 さらに、前記混合物が、前記アミン(A)として、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)、脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)、及び、脂肪族炭化水素基と2つのアミノ基とからなる炭素数8以下の脂肪族炭化水素ジアミン(A3)を含む前記の半導体装置を提供する。 Further, the mixture is an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, the aliphatic hydrocarbon group and one amino group as the amine (A). And the aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms and the aliphatic hydrocarbon diamine (A3) having 8 or less carbon atoms consisting of an aliphatic hydrocarbon group and two amino groups. Providing the device.
 さらに、前記混合物が、前記アミン(A)として、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)、及び脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)を含み、
 前記モノアミン(A1)と前記モノアミン(A2)の合計を基準として、前記モノアミン(A1)を5モル%以上20モル%未満、及び前記モノアミン(A2)を80モル%を超えて95モル%以下の割合で含む前記の半導体装置を提供する。
Further, the mixture may include, as the amine (A), an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, and an aliphatic hydrocarbon group and one amino group. An aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms and a group,
Based on the total of the monoamine (A1) and the monoamine (A2), the monoamine (A1) is 5 mol% or more and less than 20 mol%, and the monoamine (A2) is more than 80 mol% and 95 mol% or less. Provided is a semiconductor device comprising the above-mentioned ratio.
 さらに、前記混合物が、前記アミン(A)として、炭素数4以上の分岐脂肪族炭化水素基と1つのアミノ基とからなる分岐脂肪族炭化水素モノアミン(A4)を含む前記の半導体装置を提供する。 Furthermore, the semiconductor device is provided, wherein the mixture includes, as the amine (A), a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group. .
 さらに、前記銀化合物(B)が、シュウ酸銀である前記の半導体装置を提供する。 Furthermore, the semiconductor device is provided in which the silver compound (B) is silver oxalate.
 さらに、前記銀ナノ粒子が、平均粒径が0.5nm~100nmの銀ナノ粒子である前記の半導体装置を提供する。 Furthermore, the semiconductor device is provided in which the silver nanoparticles are silver nanoparticles having an average particle diameter of 0.5 nm to 100 nm.
 さらに、前記接合部が所定の間隔をおいて互いに平行に並ぶ複数の列をなすように形成されている前記の半導体装置を提供する。 Furthermore, the semiconductor device is provided in which the joint portions are formed so as to form a plurality of rows arranged in parallel with each other at a predetermined interval.
 さらに、前記半導体素子が光半導体素子である前記の半導体装置を提供する。 Furthermore, the semiconductor device is provided in which the semiconductor element is an optical semiconductor element.
 また、本発明は、前記の半導体装置の製造方法であって、
 半導体素子の端子及び基板の電極の少なくとも一方に、銀ナノ粒子を含む組成物を供給する工程(a)、前記半導体素子の端子と前記基板の電極とを対向させる工程(b)、前記半導体素子の端子と前記基板の電極とを前記銀ナノ粒子を含む組成物により接合して接合部を形成する工程(c)、及び、前記銀ナノ粒子を含む組成物を加熱して前記銀ナノ粒子の焼結体を形成する工程(d)を含む半導体装置の製造方法を提供する。
The present invention also provides a method for manufacturing the semiconductor device described above,
A step of supplying a composition containing silver nanoparticles to at least one of a terminal of the semiconductor element and an electrode of the substrate, a step of allowing the terminal of the semiconductor element and the electrode of the substrate to face each other (b), and the semiconductor element A step (c) of forming a bonded portion by bonding the terminal of the substrate and the electrode of the substrate with the composition containing the silver nanoparticles, and heating the composition containing the silver nanoparticles to Provided is a method of manufacturing a semiconductor device including a step (d) of forming a sintered body.
 さらに、前記工程(a)が、半導体素子の端子及び基板の電極の両方に前記銀ナノ粒子を含む組成物を供給する工程(a1)である前記の半導体装置の製造方法を提供する。 Furthermore, the semiconductor device manufacturing method is provided in which the step (a) is a step (a1) of supplying the composition containing the silver nanoparticles to both the terminal of the semiconductor element and the electrode of the substrate.
 より詳しくは、本発明は、以下に関する。
 [1]半導体素子と基板とを備える半導体装置であって、前記半導体素子の端子と前記基板の電極が対向しており、前記端子と前記電極が1つ以上の接合部により接合され、前記接合部の少なくとも1つが、銀ナノ粒子を焼結してなる焼結体であり、
 前記銀ナノ粒子が、脂肪族炭化水素基及びアミノ基を有するアミン(A)並びに銀化合物(B)を含む混合物を熱分解して得られる銀ナノ粒子であることを特徴とする半導体装置。
 [2]前記混合物が、前記アミン(A)として、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)、脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)、及び、脂肪族炭化水素基と2つのアミノ基とからなる炭素数8以下の脂肪族炭化水素ジアミン(A3)を含む[1]に記載の半導体装置。
 [3]前記混合物における前記モノアミン(A1)の含有量が、前記モノアミン(A1)、前記モノアミン(A2)、及び前記ジアミン(A3)の合計を基準として、10モル%~65モル%である[2]に記載の半導体装置。
 [4]前記混合物における前記モノアミン(A2)の含有量が、前記モノアミン(A1)、前記モノアミン(A2)、及び前記ジアミン(A3)の合計を基準として、5モル%~50モル%である[2]又は[3]に記載の半導体装置。
 [5]前記混合物における前記ジアミン(A3)の含有量が、前記モノアミン(A1)、前記モノアミン(A2)、及び前記ジアミン(A3)の合計を基準として、15モル%~50モル%である[2]~[4]のいずれか1つに記載の半導体装置。
 [6]前記モノアミン(A1)、前記モノアミン(A2)、及び前記ジアミン(A3)の合計量が、前記銀化合物(B)の銀原子1モルに対して、1モル~20モルである[2]~[5]のいずれか1つに記載の半導体装置。
 [7]前記混合物が、前記アミン(A)として、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)、及び脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)を含み、
 前記モノアミン(A1)と前記モノアミン(A2)の合計を基準として、前記モノアミン(A1)を5モル%以上20モル%未満、及び前記モノアミン(A2)を80モル%を超えて95モル%以下の割合で含む[1]に記載の半導体装置。
 [8]前記モノアミン(A1)と前記モノアミン(A2)の合計量が、前記銀化合物(B)の銀原子1モルに対して、1モル~72モルである[7]に記載の半導体装置。
 [9]前記混合物が、前記アミン(A)として、炭素数4以上の分岐脂肪族炭化水素基と1つのアミノ基とからなる分岐脂肪族炭化水素モノアミン(A4)を含む[1]に記載の半導体装置。
 [10]前記モノアミン(A4)の量が、前記銀化合物(B)の銀原子1モルに対して、1モル~15モルである[9]に記載の半導体装置。
 [11]アミン(A)の全量(100モル%)に対するモノアミン(A4)の割合が、80モル~100モル%である[9]又は[10]に記載の半導体装置。
 [12]前記銀化合物(B)が、シュウ酸銀である[1]~[11]のいずれか1つに記載の半導体装置。
 [13]前記混合物が、更に脂肪族カルボン酸(C)を含む[1]~[12]のいずれか1つに記載の半導体装置。
 [14]前記脂肪族カルボン酸(C)の使用量が、前記銀化合物(B)の銀原子1モルに対して、0.05モル~10モルである[13]に記載の半導体装置。
 [15]前記銀ナノ粒子が、平均粒径が0.5nm~100nmの銀ナノ粒子である[1]~[14]のいずれか1つに記載の半導体装置。
 [16]前記接合部が所定の間隔をおいて互いに平行に並ぶ複数の列をなすように形成されている[1]~[15]のいずれか1つに記載の半導体装置。
 [17]前記半導体素子が光半導体素子である[1]~[16]のいずれか1つに記載の半導体装置。
 [18][1]~[17]のいずれか1つに記載の半導体装置の製造方法であって、
 半導体素子の端子及び基板の電極の少なくとも一方に、銀ナノ粒子を含む組成物を供給する工程(a)、前記半導体素子の端子と前記基板の電極とを対向させる工程(b)、前記半導体素子の端子と前記基板の電極とを前記銀ナノ粒子を含む組成物により接合して接合部を形成する工程(c)、及び、前記銀ナノ粒子を含む組成物を加熱して前記銀ナノ粒子の焼結体を形成する工程(d)を含む半導体装置の製造方法。
 [19]前記工程(a)が、半導体素子の端子及び基板の電極の両方に前記銀ナノ粒子を含む組成物を供給する工程(a1)である[18]に記載の半導体装置の製造方法。
More specifically, the present invention relates to the following.
[1] A semiconductor device including a semiconductor element and a substrate, wherein a terminal of the semiconductor element and an electrode of the substrate are opposed to each other, and the terminal and the electrode are bonded by one or more bonding portions. At least one of the parts is a sintered body formed by sintering silver nanoparticles,
A semiconductor device, wherein the silver nanoparticles are silver nanoparticles obtained by thermally decomposing a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group and a silver compound (B).
[2] The mixture is an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, an aliphatic hydrocarbon group and one amino as the amine (A). And an aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms composed of a group and an aliphatic hydrocarbon diamine (A3) having 8 or less carbon atoms composed of an aliphatic hydrocarbon group and two amino groups [1] ] The semiconductor device as described in.
[3] The content of the monoamine (A1) in the mixture is 10 mol% to 65 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3). 2].
[4] The content of the monoamine (A2) in the mixture is 5 mol% to 50 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3). [2] or [3].
[5] The content of the diamine (A3) in the mixture is 15 mol% to 50 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3). The semiconductor device according to any one of [2] to [4].
[6] The total amount of the monoamine (A1), the monoamine (A2), and the diamine (A3) is 1 to 20 moles with respect to 1 mole of silver atoms in the silver compound (B). ] The semiconductor device according to any one of [5].
[7] The mixture includes, as the amine (A), an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, and an aliphatic hydrocarbon group and one amine. An aliphatic hydrocarbon monoamine (A2) composed of an amino group and having 5 or less carbon atoms,
Based on the total of the monoamine (A1) and the monoamine (A2), the monoamine (A1) is 5 mol% or more and less than 20 mol%, and the monoamine (A2) is more than 80 mol% and 95 mol% or less. [1] The semiconductor device according to [1].
[8] The semiconductor device according to [7], wherein the total amount of the monoamine (A1) and the monoamine (A2) is 1 mol to 72 mol with respect to 1 mol of silver atoms of the silver compound (B).
[9] The mixture according to [1], wherein the amine (A) includes a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group. Semiconductor device.
[10] The semiconductor device according to [9], wherein the amount of the monoamine (A4) is 1 mol to 15 mol with respect to 1 mol of silver atoms of the silver compound (B).
[11] The semiconductor device according to [9] or [10], wherein the ratio of monoamine (A4) to the total amount (100 mol%) of amine (A) is from 80 mol% to 100 mol%.
[12] The semiconductor device according to any one of [1] to [11], wherein the silver compound (B) is silver oxalate.
[13] The semiconductor device according to any one of [1] to [12], wherein the mixture further includes an aliphatic carboxylic acid (C).
[14] The semiconductor device according to [13], wherein the amount of the aliphatic carboxylic acid (C) used is 0.05 mol to 10 mol with respect to 1 mol of silver atoms of the silver compound (B).
[15] The semiconductor device according to any one of [1] to [14], wherein the silver nanoparticles are silver nanoparticles having an average particle diameter of 0.5 nm to 100 nm.
[16] The semiconductor device according to any one of [1] to [15], wherein the joint portions are formed in a plurality of rows arranged in parallel with each other at a predetermined interval.
[17] The semiconductor device according to any one of [1] to [16], wherein the semiconductor element is an optical semiconductor element.
[18] A method for manufacturing a semiconductor device according to any one of [1] to [17],
A step of supplying a composition containing silver nanoparticles to at least one of a terminal of the semiconductor element and an electrode of the substrate, a step of allowing the terminal of the semiconductor element and the electrode of the substrate to face each other (b), and the semiconductor element A step (c) of forming a bonded portion by bonding the terminal of the substrate and the electrode of the substrate with the composition containing the silver nanoparticles, and heating the composition containing the silver nanoparticles to A method for manufacturing a semiconductor device, comprising a step (d) of forming a sintered body.
[19] The method for manufacturing a semiconductor device according to [18], wherein the step (a) is a step (a1) of supplying a composition containing the silver nanoparticles to both a terminal of a semiconductor element and an electrode of a substrate.
 本発明の半導体装置は、低温且つ短時間で焼結させることができ、導電性及び熱伝導性に優れた銀ナノ粒子を含む組成物を用いて半導体素子の端子及び基板の電極を接合したものであるため、半導体素子と基板の接合時の半導体素子の損傷が抑制されており、半導体素子から基板への放熱性が高く、半導体素子と基板との接合が強固であり、半導体素子の端子と基板の電極との導電性が高く、製造効率が高く、精度の高い半導体装置である。 The semiconductor device of the present invention can be sintered at a low temperature in a short time, and is obtained by bonding the terminals of a semiconductor element and the electrodes of a substrate using a composition containing silver nanoparticles having excellent conductivity and thermal conductivity. Therefore, damage to the semiconductor element at the time of bonding the semiconductor element and the substrate is suppressed, heat dissipation from the semiconductor element to the substrate is high, the bonding between the semiconductor element and the substrate is strong, and the terminal of the semiconductor element is The semiconductor device has high conductivity with the electrode of the substrate, high manufacturing efficiency, and high accuracy.
本発明の半導体装置の一例を示す断面図(概略断面図)である。It is sectional drawing (schematic sectional drawing) which shows an example of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一例を示す断面図(概略断面図)である。It is sectional drawing (schematic sectional drawing) which shows an example of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一例を示す断面図(概略断面図)である。It is sectional drawing (schematic sectional drawing) which shows an example of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一例を示す断面図(概略断面図)である。It is sectional drawing (schematic sectional drawing) which shows an example of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の一例を示す断面図(概略断面図)である。It is sectional drawing (schematic sectional drawing) which shows an example of the semiconductor device of this invention.
<半導体装置>
 本発明の半導体装置は、半導体素子と基板とを少なくとも備え、前記半導体素子の端子と前記基板の電極が対向しており(対向するように配置され)、前記端子と前記電極が1つ以上の接合部により接合されている構成を有する。本発明の半導体装置の一例を、図1の断面図にて示すが、本発明はこれに限られるものではない。図1の半導体装置1は、半導体素子4、半導体素子4に形成された端子5、基板2、基板2に形成された電極3、及び、接合部6からなる。端子5と電極3は対向した状態で配置されており、端子5と電極3は接合部6により接合されている。このようにして、半導体素子4は基板2に実装されている。なお、本発明の半導体装置は、さらに前記半導体素子及び前記基板以外の部材(例えば、前記半導体素子の封止材等)を備えていてもよい。
<Semiconductor device>
The semiconductor device of the present invention includes at least a semiconductor element and a substrate, the terminal of the semiconductor element and the electrode of the substrate are opposed (arranged so as to be opposed), and the terminal and the electrode are one or more. It has the structure joined by the junction part. An example of the semiconductor device of the present invention is shown in the cross-sectional view of FIG. 1, but the present invention is not limited to this. The semiconductor device 1 of FIG. 1 includes a semiconductor element 4, a terminal 5 formed on the semiconductor element 4, a substrate 2, an electrode 3 formed on the substrate 2, and a junction 6. The terminal 5 and the electrode 3 are disposed so as to face each other, and the terminal 5 and the electrode 3 are joined by a joint portion 6. In this way, the semiconductor element 4 is mounted on the substrate 2. The semiconductor device of the present invention may further include a member other than the semiconductor element and the substrate (for example, a sealing material for the semiconductor element).
 本発明の半導体装置は、前述の接合部の少なくとも1つが、銀ナノ粒子を焼結してなる焼結体であり、前記銀ナノ粒子が、脂肪族炭化水素基及びアミノ基を有するアミン(A)並びに銀化合物(B)を必須成分として含む混合物を熱分解して得られる銀ナノ粒子(「本発明の銀ナノ粒子」と称する場合がある)であることを特徴とする。 In the semiconductor device of the present invention, at least one of the above-described joint portions is a sintered body obtained by sintering silver nanoparticles, and the silver nanoparticles are amines having an aliphatic hydrocarbon group and an amino group (A ) And a silver nanoparticle obtained by thermally decomposing a mixture containing the silver compound (B) as an essential component (sometimes referred to as “silver nanoparticle of the present invention”).
[半導体素子]
 本発明の半導体装置における半導体素子(図1~5の4)は、特に限定されず、例えば、パワー半導体素子や、LED(Light Emitting Diode)素子等の光半導体素子を用いることができる。前記半導体素子は、その端子によって前記接合部を介して基板上の電極に接合されている。
[Semiconductor element]
The semiconductor element (4 in FIGS. 1 to 5) in the semiconductor device of the present invention is not particularly limited. For example, a power semiconductor element or an optical semiconductor element such as an LED (Light Emitting Diode) element can be used. The semiconductor element is bonded to an electrode on the substrate through the bonding portion by a terminal.
[基板]
 本発明の半導体装置における基板(図1~5の2)は、特に限定されないが、例えば、アルミナや窒化アルミニウム等、放熱性又は熱伝導性に優れた素材から構成されていることが好ましい。又は、メタルコア基板やメタルベース基板のような放熱性の高い基板であることが好ましい。
[substrate]
The substrate (2 in FIGS. 1 to 5) in the semiconductor device of the present invention is not particularly limited, but is preferably made of a material excellent in heat dissipation or thermal conductivity, such as alumina or aluminum nitride. Alternatively, a substrate with high heat dissipation such as a metal core substrate or a metal base substrate is preferable.
 一方、本発明の半導体装置において使用される本発明の銀ナノ粒子(詳しくは、銀ナノ粒子を含む組成物の態様で使用される)は、後述する通り、低温且つ短時間での焼結が可能であるため、基板としては、ガラス製基板、ポリイミド系フィルムのような耐熱性プラスチック基板の他に、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板をも好適に用いることができる。 On the other hand, the silver nanoparticles of the present invention used in the semiconductor device of the present invention (specifically, used in the form of a composition containing silver nanoparticles) can be sintered at a low temperature and in a short time, as will be described later. Since it is possible, as a substrate, in addition to a glass substrate, a heat-resistant plastic substrate such as a polyimide film, a polyester film such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film, a polypropylene film, etc. A general-purpose plastic substrate having low heat resistance such as a polyolefin film can also be suitably used.
 前述のように、本発明の半導体装置における基板は、半導体素子に通電するための電極を有している。 As described above, the substrate in the semiconductor device of the present invention has an electrode for energizing the semiconductor element.
[端子及び電極]
 前記半導体素子の端子(図1~5の5)及び前記基板の電極(図1~5の3)を形成する材料としては、特に限定されないが、例えば、金、銀、銅、若しくはアルミニウム、又はそれらの合金から選択することが好ましく、中でも、接合性や耐酸化性の観点からは、金若しくは金合金、又は、表面を金若しくは金合金により被覆した金属がより好ましい。前記端子及び電極の形状等は、特に限定されず、周知慣用の態様から適宜選択される。
[Terminals and electrodes]
The material for forming the terminal of the semiconductor element (5 in FIGS. 1 to 5) and the electrode of the substrate (3 in FIGS. 1 to 5) is not particularly limited. For example, gold, silver, copper, aluminum, or It is preferable to select from these alloys, and among them, gold or a gold alloy, or a metal whose surface is coated with gold or a gold alloy is more preferable from the viewpoint of bondability and oxidation resistance. The shape and the like of the terminal and the electrode are not particularly limited, and are appropriately selected from well-known and usual modes.
[接合部]
 本発明の半導体装置における接合部は、前述のように、前記半導体素子の端子と前記基板の電極とを物理的に接合する部分である。そして、前記接合部は、前記半導体素子の端子と前記基板の電極とを、電気的及び/又は熱的にも接合する役割を果たす。本発明の半導体装置は、前記接合部を1つのみ有するものであってもよいし、2つ以上有するものであってもよい。中でも、導電性、熱伝導性の観点で、本発明の半導体装置は、前記接合部を2つ以上有するものであることが好ましい。
[Joint part]
As described above, the bonding portion in the semiconductor device of the present invention is a portion that physically bonds the terminal of the semiconductor element and the electrode of the substrate. The bonding portion plays a role of electrically and / or thermally bonding the terminal of the semiconductor element and the electrode of the substrate. The semiconductor device of the present invention may have only one junction or may have two or more. Especially, it is preferable that the semiconductor device of this invention has 2 or more of the said junction parts from a viewpoint of electroconductivity and thermal conductivity.
 本発明の半導体装置は、前記接合部の少なくとも1つが、本発明の銀ナノ粒子を焼結してなる焼結体である半導体装置である。このため、本発明の半導体装置は、製造時の半導体素子の損傷が抑制されており、半導体素子から基板への放熱性が高く、半導体素子と基板との接合が強固であり、半導体素子の端子と基板との導電性が高く、製造効率が高く、精度の高い半導体装置である。本発明の半導体装置が前記接合部を2つ以上有するものである場合、これらの少なくとも1つが本発明の銀ナノ粒子を焼結してなる焼結体であればよいが、導電性、熱伝導性の観点からは、前記接合体の総個数(100%)に対して、50%以上(例えば、50~100%)が本発明の銀ナノ粒子を焼結してなる焼結体であることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上である。特に、前記接合体の全てが本発明の銀ナノ粒子を焼結してなる焼結体である場合には、極めて高品質な半導体装置が得られる。一方、前記接合体の一部を本発明の銀ナノ粒子を焼結してなる焼結体以外の材料により形成された接合体としてもよく、当該材料としては、汎用の金属材料(例えば、金、銀、銅、若しくはアルミニウム、又はそれらの合金等)が用いられる。 The semiconductor device of the present invention is a semiconductor device in which at least one of the joints is a sintered body formed by sintering the silver nanoparticles of the present invention. Therefore, in the semiconductor device of the present invention, damage to the semiconductor element at the time of manufacture is suppressed, heat dissipation from the semiconductor element to the substrate is high, the bonding between the semiconductor element and the substrate is strong, and the terminal of the semiconductor element And a substrate with high conductivity, high manufacturing efficiency, and high accuracy. When the semiconductor device of the present invention has two or more of the junctions, at least one of them may be a sintered body formed by sintering the silver nanoparticles of the present invention. From the viewpoint of properties, 50% or more (for example, 50 to 100%) of the total number (100%) of the joined bodies is a sintered body obtained by sintering the silver nanoparticles of the present invention. Is preferable, more preferably 70% or more, and still more preferably 90% or more. In particular, when all of the joined bodies are sintered bodies obtained by sintering the silver nanoparticles of the present invention, an extremely high quality semiconductor device can be obtained. On the other hand, a part of the joined body may be a joined body formed of a material other than a sintered body obtained by sintering the silver nanoparticles of the present invention. As the material, a general-purpose metal material (for example, gold , Silver, copper, aluminum, or an alloy thereof).
 本発明の半導体装置において前記接合部が2つ以上存在する場合、前記接合部(複数の接合部)の配置は、特に限定されず、半導体装置における周知慣用の接合部の配置を適用できる。中でも、前記接合部は、前記半導体素子の端子の接合面(接合部を介して電極と接合される面)及び/又は前記基板の電極の接合面(接合部を介して端子と接合される面)の表面において、所定の間隔をおいて互いに平行に並ぶ複数の列をなすように形成されている(詳しくは、複数の接合部が所定の間隔で配置されて形成された列の2以上(2列以上)が、所定の間隔をおいて互いに平行に並ぶように配置されている)ことが好ましい。 When there are two or more junctions in the semiconductor device of the present invention, the arrangement of the junctions (a plurality of junctions) is not particularly limited, and a well-known and commonly used arrangement of junctions in the semiconductor device can be applied. Among them, the bonding portion is a bonding surface of the terminal of the semiconductor element (surface bonded to the electrode via the bonding portion) and / or a bonding surface of the electrode of the substrate (surface bonded to the terminal via the bonding portion). ) Is formed so as to form a plurality of rows arranged in parallel with each other at a predetermined interval (specifically, two or more rows formed by arranging a plurality of joint portions at a predetermined interval ( Preferably, two or more rows are arranged in parallel with each other at a predetermined interval.
 図1に示す半導体装置は、前記接合部の全てが本発明の銀ナノ粒子を焼結してなる焼結体である半導体装置(本発明の半導体装置)の一例を示す概略図(断面図)である。図1における接合部6は、銀ナノ粒子を含む組成物を焼結してなる焼結体(詳しくは、加熱により前記組成物における銀ナノ粒子を焼結してなる焼結体)である。接合部6は、銀ナノ粒子を焼結してなることにより、導電性や熱伝導性が高い導体となっており、端子5及び電極3と接触している結果、端子5と電極3は接合部6により、電気的及び熱的に良好に接続された状態となっている。 The semiconductor device shown in FIG. 1 is a schematic diagram (cross-sectional view) showing an example of a semiconductor device (semiconductor device of the present invention) in which all of the joints are sintered bodies obtained by sintering the silver nanoparticles of the present invention. It is. 1 is a sintered body formed by sintering a composition containing silver nanoparticles (specifically, a sintered body formed by sintering silver nanoparticles in the composition by heating). The joining part 6 is a conductor having high conductivity and thermal conductivity by sintering silver nanoparticles, and as a result of being in contact with the terminal 5 and the electrode 3, the terminal 5 and the electrode 3 are joined. The part 6 is in a state of being electrically and thermally well connected.
(銀ナノ粒子を含む組成物)
 本発明の半導体装置において使用される銀ナノ粒子を含む組成物としては、例えば、導電性や熱伝導性を発揮する成分である多数の銀ナノ粒子(本発明の銀ナノ粒子)と、該銀ナノ粒子を分散した状態に保持するための有機溶剤や分散剤とからなる構成が挙げられる。前記組成物は、特に制限されることなく、種々の形態をとり得る。例えば、本発明の銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができる。あるいは、本発明の銀ナノ粒子を有機溶剤中に混練された状態で分散させることにより、いわゆる銀ペーストと呼ばれる銀塗料組成物を作製することができる。塗料組成物を得るための有機溶剤としては、特に限定されないが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; トルエン、キシレン、メシチレン等の芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、テルピネオール等のアルコール溶剤等が挙げられる。所望の銀塗料組成物の濃度や粘性に応じて、有機溶剤の種類や量を適宜定めると良い。後述するその他の金属のナノ粒子、銀複合物のナノ粒子等を併用する場合についても同様である。
(Composition containing silver nanoparticles)
Examples of the composition containing silver nanoparticles used in the semiconductor device of the present invention include, for example, a large number of silver nanoparticles (silver nanoparticles of the present invention) that are components that exhibit conductivity and thermal conductivity, and the silver. The structure which consists of an organic solvent and a dispersing agent for hold | maintaining a nanoparticle in the dispersed state is mentioned. The composition is not particularly limited and can take various forms. For example, a silver coating composition called a so-called silver ink can be prepared by dispersing the silver nanoparticles of the present invention in a suspended state in a suitable organic solvent (dispersion medium). Alternatively, a silver coating composition called a so-called silver paste can be produced by dispersing the silver nanoparticles of the present invention in a state of being kneaded in an organic solvent. The organic solvent for obtaining the coating composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; toluene, xylene, Aromatic hydrocarbon solvents such as mesitylene; alcohol solvents such as methanol, ethanol, propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, terpineol, etc. Is mentioned. The type and amount of the organic solvent may be appropriately determined according to the concentration and viscosity of the desired silver coating composition. The same applies to the case of using other metal nanoparticles, silver composite nanoparticles, etc., which will be described later.
 本発明の銀ナノ粒子の平均粒径は、特に限定されないが、0.5nm~100nmであることが好ましく、0.5nm~50nmであることがより好ましく、0.5nm~25nmであることが更に好ましく、0.5nm~10nmであることが特に好ましい。 The average particle diameter of the silver nanoparticles of the present invention is not particularly limited, but is preferably 0.5 nm to 100 nm, more preferably 0.5 nm to 50 nm, and further preferably 0.5 nm to 25 nm. It is preferably 0.5 nm to 10 nm.
 本発明の銀ナノ粒子は、脂肪族炭化水素基及びアミノ基を有するアミン(A)(単に「アミン(A)」と称する場合がある)、並びに銀化合物(B)を含む混合物(単に「混合物」と称する場合がある)を熱分解(具体的には、該混合物中の銀化合物(B)を熱分解)して得られる銀ナノ粒子である。本発明の銀ナノ粒子は、アミン(A)を含む保護剤によって表面が被覆された状態となっており、安定性に優れ、200℃未満(例えば150℃以下、好ましくは120℃以下)の低温且つ2時間以下(例えば1時間以下、好ましくは30分間以下)の短い時間での焼結によって、例えば1μm以上の比較的厚膜である銀被膜を形成した場合でも優れた導電性(低い抵抗値)を発現させる銀ナノ粒子である。 The silver nanoparticles of the present invention comprise an amine (A) having an aliphatic hydrocarbon group and an amino group (sometimes referred to simply as “amine (A)”), and a mixture containing a silver compound (B) (simply “a mixture”). Is a silver nanoparticle obtained by thermal decomposition (specifically, thermal decomposition of the silver compound (B) in the mixture). The silver nanoparticles of the present invention are in a state where the surface is coated with a protective agent containing an amine (A), have excellent stability, and have a low temperature of less than 200 ° C. (eg, 150 ° C. or less, preferably 120 ° C. or less). Moreover, even when a silver film having a relatively thick film of, for example, 1 μm or more is formed by sintering in a short time of 2 hours or less (for example, 1 hour or less, preferably 30 minutes or less), excellent conductivity (low resistance value) ) Is a silver nanoparticle.
 前記銀ナノ粒子を含む組成物は、前記混合物を熱分解して得られた銀ナノ粒子(本発明の銀ナノ粒子)を用いて周知慣用の方法によって得ることができ、特に限定されないが、例えば、上記で得られた銀ナノ粒子を必要に応じて洗浄等を行った上で、慣用の方法で有機溶媒中に懸濁、分散等させることによって、得ることができる。 The composition containing the silver nanoparticles can be obtained by a well-known and conventional method using silver nanoparticles (silver nanoparticles of the present invention) obtained by pyrolyzing the mixture, and is not particularly limited. The silver nanoparticles obtained above can be obtained by suspending, dispersing or the like in an organic solvent by a conventional method after washing or the like as necessary.
1.アミン(A)
 本発明の銀ナノ粒子を形成する際に使用するアミン(A)としては、脂肪族炭化水素基及びアミノ基を有するものであれば、周知慣用のアミン(アミン化合物)を使用することができる。前記脂肪族炭化水素基には、直鎖又は分岐鎖状の脂肪族炭化水素基、及び、環状の脂肪族炭化水素基が含まれる。また、前記各脂肪族炭化水素基には、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基が含まれる。さらに、前記アミノ基には、第一級アミノ基、第二級アミノ基、第三級アミノ基が含まれる。以下、本発明の銀ナノ粒子を形成する際に使用するアミン(A)の具体的態様をアミンの実施態様1~3として例示するが、アミン(A)はこれらの態様に限定されるものではない。
1. Amine (A)
As the amine (A) used in forming the silver nanoparticles of the present invention, any known and commonly used amine (amine compound) can be used as long as it has an aliphatic hydrocarbon group and an amino group. The aliphatic hydrocarbon group includes a linear or branched aliphatic hydrocarbon group and a cyclic aliphatic hydrocarbon group. Each aliphatic hydrocarbon group includes a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group. Furthermore, the amino group includes a primary amino group, a secondary amino group, and a tertiary amino group. Hereinafter, specific embodiments of the amine (A) used in forming the silver nanoparticles of the present invention will be exemplified as amine embodiments 1 to 3, but the amine (A) is not limited to these embodiments. Absent.
[アミンの実施態様1]
 前記アミン(A)としては、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)(単に「モノアミン(A1)」と称する場合がある)、脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)(単に「モノアミン(A2)」と称する場合がある)、及び、脂肪族炭化水素基と2つのアミノ基とからなる炭素数8以下の脂肪族炭化水素ジアミン(A3)(単に「ジアミン(A3)」と称する場合がある)を少なくとも用いる態様が挙げられる。即ち、上記混合物の一態様としては、前記アミン(A)として、モノアミン(A1)、モノアミン(A2)、及びジアミン(A3)を少なくとも含む混合物が挙げられる。
[Amine embodiment 1]
Examples of the amine (A) include aliphatic hydrocarbon monoamines (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group (sometimes simply referred to as “monoamine (A1)”), fatty acid An aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms composed of an aromatic hydrocarbon group and one amino group (sometimes simply referred to as “monoamine (A2)”), and an aliphatic hydrocarbon group and two The aspect using at least C8 or less aliphatic hydrocarbon diamine (A3) (it may only be called "diamine (A3)") which consists of an amino group is mentioned. That is, as one aspect of the above mixture, a mixture containing at least a monoamine (A1), a monoamine (A2), and a diamine (A3) as the amine (A) can be mentioned.
 なお、本発明による効果を阻害しない範囲で、当該態様(アミンの実施態様1)においては、前記モノアミン(A1)、前記モノアミン(A2)、前記ジアミン(A3)以外のアミン等を使用することができる。 In addition, within the range which does not inhibit the effect by this invention, in the said aspect (amine embodiment 1), amine other than the said monoamine (A1), the said monoamine (A2), the said diamine (A3), etc. may be used. it can.
 前記モノアミン(A1)は、該モノアミン(A1)を構成する炭素原子の総数(炭素数)が6以上のモノアミンである。前記モノアミン(A1)は、その炭化水素鎖によって、生成する銀ナノ粒子表面への保護剤(安定化剤)としての高い機能を有する。前記モノアミン(A1)としては、好ましくは、炭素数6~12のアルキルモノアミンが挙げられる。前記モノアミン(A1)には、第一級アミン、第二級アミン、及び第三級アミンが含まれる。 The monoamine (A1) is a monoamine in which the total number of carbon atoms (carbon number) constituting the monoamine (A1) is 6 or more. The monoamine (A1) has a high function as a protective agent (stabilizer) on the surface of the silver nanoparticles produced by the hydrocarbon chain. The monoamine (A1) is preferably an alkyl monoamine having 6 to 12 carbon atoms. The monoamine (A1) includes a primary amine, a secondary amine, and a tertiary amine.
 第一級アミンであるモノアミン(A1)としては、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の飽和脂肪族炭化水素モノアミン(即ち、アルキルモノアミン)が挙げられる。飽和脂肪族炭化水素モノアミンとしては、上記の直鎖脂肪族炭化水素モノアミンの他に、例えば、イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の分岐(分枝)脂肪族炭化水素モノアミンが挙げられる。また、シクロヘキシルアミン等のシクロアルキルモノアミンも挙げられる。さらに、オレイルアミン等の不飽和脂肪族炭化水素モノアミン(即ち、アルケニルモノアミン)が挙げられる。 Examples of the primary amine monoamine (A1) include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine. , Saturated aliphatic hydrocarbon monoamines (that is, alkyl monoamines) such as heptadecylamine and octadecylamine. As the saturated aliphatic hydrocarbon monoamine, in addition to the above linear aliphatic hydrocarbon monoamine, for example, branched (branched) aliphatic hydrocarbon monoamines such as isohexylamine, 2-ethylhexylamine, tert-octylamine and the like Can be mentioned. Also included are cycloalkyl monoamines such as cyclohexylamine. Furthermore, unsaturated aliphatic hydrocarbon monoamines (that is, alkenyl monoamines) such as oleylamine can be mentioned.
 第二級アミンであるモノアミン(A1)としては、例えば、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N-プロピル-N-ブチルアミン等のジアルキルモノアミンが挙げられる。第三級アミンであるモノアミン(A1)としては、例えば、トリブチルアミン、トリヘキシルアミン等が挙げられる。 Examples of the secondary amine monoamine (A1) include N, N-dipropylamine, N, N-dibutylamine, N, N-dipentylamine, N, N-dihexylamine, N, N-dipeptylamine, Examples thereof include dialkyl monoamines such as N, N-dioctylamine, N, N-dinonylamine, N, N-didecylamine, N, N-diundecylamine, N, N-didodecylamine, and N-propyl-N-butylamine. Examples of the monoamine (A1) that is a tertiary amine include tributylamine and trihexylamine.
 これらの内でも、モノアミン(A1)としては、炭素数6以上の飽和脂肪族炭化水素モノアミンが好ましい。炭素数を6以上とすることにより、アミノ基が銀ナノ粒子表面に吸着した際に他の銀ナノ粒子との間隔を確保できるため、銀ナノ粒子同士の凝集を防ぐ作用が向上する。炭素数の上限は特に定められないが、入手のし易さ、焼結時の除去のし易さ等を考慮して、通常、炭素数18までの飽和脂肪族炭化水素モノアミンが好ましい。特に、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等の炭素数6~12のアルキルモノアミンが好ましく用いられる。前記モノアミン(A1)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Among these, as the monoamine (A1), a saturated aliphatic hydrocarbon monoamine having 6 or more carbon atoms is preferable. By setting the number of carbon atoms to 6 or more, when the amino group is adsorbed on the surface of the silver nanoparticle, the distance from the other silver nanoparticle can be secured, so that the action of preventing aggregation of the silver nanoparticles is improved. The upper limit of the number of carbon atoms is not particularly defined, but saturated aliphatic hydrocarbon monoamines having up to 18 carbon atoms are usually preferred in consideration of availability, ease of removal during sintering, and the like. In particular, alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used. The monoamine (A1) may be used alone or in combination of two or more.
 前記混合物において、前記モノアミン(A1)は、特に限定されないが、前記モノアミン(A1)、前記モノアミン(A2)及び前記ジアミン(A3)の合計(100モル%)を基準として、10モル%~65モル%含まれることが好ましい。 In the mixture, the monoamine (A1) is not particularly limited, but is 10 mol% to 65 mol based on the total (100 mol%) of the monoamine (A1), the monoamine (A2) and the diamine (A3). % Is preferably included.
 前記モノアミン(A2)は、脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミンである。即ち、前記モノアミン(A2)は、該モノアミン(A2)を構成する炭素原子の総数(炭素数)が5以下のモノアミンである。前記モノアミン(A1)に比べると炭素鎖長が短いのでそれ自体は保護剤(安定化剤)としての機能は低いと考えられるが、前記モノアミン(A1)に比べると極性が高いため、銀化合物(B)の銀への配位能が高く、錯体形成促進に効果があると考えられる。また、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温における焼結の際でも、30分間以下、あるいは20分間以下の短時間で銀ナノ粒子表面から除去され得るので、得られた銀ナノ粒子の低温焼結に効果がある。前記モノアミン(A2)には、第一級アミン、第二級アミン、及び第三級アミンが含まれる。 The monoamine (A2) is an aliphatic hydrocarbon monoamine having 5 or less carbon atoms composed of an aliphatic hydrocarbon group and one amino group. That is, the monoamine (A2) is a monoamine having a total number of carbon atoms (carbon number) constituting the monoamine (A2) of 5 or less. Since the carbon chain length is shorter than that of the monoamine (A1), the function as a protective agent (stabilizer) itself is considered to be low. However, since the polarity is higher than that of the monoamine (A1), the silver compound ( It is considered that B) has a high coordination ability to silver and is effective in promoting complex formation. In addition, since the carbon chain length is short, it can be removed from the surface of the silver nanoparticles in a short time of 30 minutes or less or 20 minutes or less even when sintering at a low temperature of 120 ° C. or lower, or about 100 ° C. or lower. This is effective for low-temperature sintering of the obtained silver nanoparticles. The monoamine (A2) includes a primary amine, a secondary amine, and a tertiary amine.
 前記モノアミン(A2)としては、例えば、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、n-ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の炭素数2~5の飽和脂肪族炭化水素モノアミン(即ち、アルキルモノアミン)が挙げられる。また、例えば、N,N-ジメチルアミン、N,N-ジエチルアミン、N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン等のジアルキルモノアミンが挙げられる。 Examples of the monoamine (A2) include ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, n-pentylamine, isopentylamine, tert-pentylamine and the like. Examples thereof include saturated aliphatic hydrocarbon monoamines having 2 to 5 carbon atoms (that is, alkyl monoamines). Moreover, for example, dialkyl monoamines such as N, N-dimethylamine, N, N-diethylamine, N-methyl-N-propylamine, N-ethyl-N-propylamine and the like can be mentioned.
 これらの内でも、モノアミン(A2)としては、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、n-ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等が好ましく、上記ブチルアミン類が特に好ましい。前記モノアミン(A2)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Among these, as the monoamine (A2), n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, n-pentylamine, isopentylamine, tert-pentylamine and the like are preferable, and the above butylamines are particularly preferable. . The monoamine (A2) may be used alone or in combination of two or more.
 前記混合物において、前記モノアミン(A2)は、特に限定されないが、前記モノアミン(A1)、前記モノアミン(A2)、及び前記ジアミン(A3)の合計(100モル%)を基準として、5モル%~50モル%含まれることが好ましい。 In the mixture, the monoamine (A2) is not particularly limited, but is 5 mol% to 50 mol based on the total (100 mol%) of the monoamine (A1), the monoamine (A2), and the diamine (A3). It is preferable that it is contained in mol%.
 前記ジアミン(A3)は、該ジアミン(A3)を構成する炭素原子の総数(炭素数)が8以下のジアミンである。前記ジアミン(A3)は、銀化合物(B)の銀への配位能が高く、錯体形成促進に効果がある。脂肪族炭化水素ジアミンは、一般に、脂肪族炭化水素モノアミンと比べて極性が高く、銀化合物(B)の銀への配位能が高い。また、前記ジアミン(A3)は、錯化合物の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、銀ナノ粒子製造をより効率的に行うことができる。さらに、前記ジアミン(A3)を含む銀ナノ粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀ナノ粒子の分散安定性が向上する。さらに、前記ジアミン(A3)は、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温での焼結においても、30分間以下、あるいは20分間以下の短い時間で銀ナノ粒子表面から除去され得るので、得られた銀ナノ粒子の低温且つ短時間での焼結に効果がある。 The diamine (A3) is a diamine having a total number (carbon number) of carbon atoms constituting the diamine (A3) of 8 or less. The diamine (A3) has a high coordination ability to the silver of the silver compound (B), and is effective in promoting complex formation. The aliphatic hydrocarbon diamine generally has a higher polarity than the aliphatic hydrocarbon monoamine, and the coordination ability of the silver compound (B) to silver is high. Further, the diamine (A3) has an effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition step of the complex compound, and silver nanoparticles can be produced more efficiently. Furthermore, since the protective film of the silver nanoparticles containing the diamine (A3) has a high polarity, the dispersion stability of the silver nanoparticles in a dispersion medium containing a highly polar solvent is improved. Furthermore, since the diamine (A3) has a short carbon chain length, even in sintering at a low temperature of, for example, 120 ° C. or less, or about 100 ° C. or less, the silver nanoparticle can be obtained in a short time of 30 minutes or less or 20 minutes or less. Since it can be removed from the particle surface, it is effective in sintering the obtained silver nanoparticles at a low temperature in a short time.
 前記ジアミン(A3)としては、好ましくは、炭素数2~8のアルキルジアミンが挙げられる。前記ジアミン(A3)としては、より具体的には、例えば、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、1,4-ブタンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N’-ジエチル-1,4-ブタンジアミン、1,5-ペンタンジアミン、1,5-ジアミノ-2-メチルペンタン、1,6-ヘキサンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン等が挙げられる。これらはいずれも、2つのアミノ基のうちの少なくとも1つが第一級アミノ基又は第二級アミノ基である炭素数(炭素総数)8以下のアルキレンジアミンであり、銀化合物(B)の銀への配位能が高く、錯体形成促進に効果がある。 The diamine (A3) is preferably an alkyl diamine having 2 to 8 carbon atoms. More specifically, the diamine (A3) is, for example, ethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1, 3-propanediamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N′-dimethyl-1,3-propanediamine, N, N-diethyl -1,3-propanediamine, N, N′-diethyl-1,3-propanediamine, 1,4-butanediamine, N, N-dimethyl-1,4-butanediamine, N, N′-dimethyl-1 , 4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N′-diethyl-1,4-butanediamine, 1,5- Nthanediamine, 1,5-diamino-2-methylpentane, 1,6-hexanediamine, N, N-dimethyl-1,6-hexanediamine, N, N′-dimethyl-1,6-hexanediamine, 1,7 -Heptanediamine, 1,8-octanediamine and the like. These are all alkylenediamines having 8 or less carbon atoms (total number of carbon atoms) in which at least one of the two amino groups is a primary amino group or a secondary amino group, and the silver of the silver compound (B) Is highly effective in promoting complex formation.
 これらの内でも、ジアミン(A3)としては、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン等の2つのアミノ基のうちの1つが第一級アミノ基(-NH2)であり、他の1つが第三級アミノ基(-NR12)である炭素数(炭素総数)8以下のアルキレンジアミンが好ましい。好ましいアルキレンジアミンは、下記構造式で表される。
   R12N-R-NH2
 ここで、Rは、アルキレン基を表し、R1及びR2は、同一又は異なっていてもよく、アルキル基を表す。ただし、R、R1及びR2の炭素数の総和は8以下である。該アルキレン基は、酸素原子又は窒素原子等のヘテロ原子を含まない。また、該アルキル基は、酸素原子又は窒素原子等のヘテロ原子を含まない。
Among these, as the diamine (A3), N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propane One of two amino groups such as diamine, N, N-dimethyl-1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N-dimethyl-1,6-hexanediamine, etc. One is a primary amino group (—NH 2 ), and the other is a tertiary amino group (—NR 1 R 2 ), and an alkylenediamine having 8 or less carbon atoms (total number of carbon atoms) is preferred. A preferred alkylenediamine is represented by the following structural formula.
R 1 R 2 N—R—NH 2
Here, R represents an alkylene group, R 1 and R 2 may be the same or different and each represents an alkyl group. However, the total number of carbon atoms of R, R 1 and R 2 is 8 or less. The alkylene group does not contain a hetero atom such as an oxygen atom or a nitrogen atom. The alkyl group does not contain a hetero atom such as an oxygen atom or a nitrogen atom.
 これらの内でも、低温焼結においても短時間で銀ナノ粒子表面から除去され得るという観点から、炭素数(炭素総数)6以下のジアミンが好ましく、炭素数(炭素総数)5以下のジアミンがより好ましい。前記ジアミン(A3)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Among these, a diamine having 6 or less carbon atoms (total number of carbon atoms) is preferable, and a diamine having 5 or less carbon atoms (total number of carbon atoms) is more preferable from the viewpoint of being able to be removed from the silver nanoparticle surface in a short time even in low-temperature sintering. preferable. The diamine (A3) may be used alone or in combination of two or more.
 前記混合物において、前記ジアミン(A3)は、特に限定されないが、前記モノアミン(A1)、前記モノアミン(A2)及び前記ジアミン(A3)の合計(100モル%)を基準として、15モル%~50モル%含まれることが好ましい。 In the mixture, the diamine (A3) is not particularly limited, but 15 mol% to 50 mol based on the total (100 mol%) of the monoamine (A1), the monoamine (A2) and the diamine (A3). % Is preferably included.
 本発明における当該態様(アミンの実施態様1)で使用される、前記モノアミン(A1)、前記モノアミン(A2)及び前記ジアミン(A3)の合計量は、特に限定されないが、原料の前記銀化合物(B)の銀原子1モルに対して、それらアミン成分の合計量[(A1)+(A2)+(A3)]として1モル~20モル程度が好ましい。前記アミン成分の合計量が、前記銀原子1モルに対して、1モル未満であると、アミン(A)と銀化合物(B)の錯化合物の生成工程において、錯化合物に変換されない銀化合物(B)が残存する可能性がある。その後の熱分解工程において、銀ナノ粒子の均一性が損なわれ、粒子の肥大化が起こったり、熱分解せずに銀化合物(B)が残存する可能性がある。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン成分の合計量を例えば2モル程度以上とすることが好ましい。前記アミン成分の合計量を2モル程度以上とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記アミン成分の合計量の下限については、前記銀化合物(B)の銀原子1モルに対して、2モル以上が好ましく、6モル以上がより好ましい。 The total amount of the monoamine (A1), the monoamine (A2), and the diamine (A3) used in this aspect (amine embodiment 1) in the present invention is not particularly limited. The total amount of these amine components [(A1) + (A2) + (A3)] per mole of silver atom B) is preferably about 1 to 20 moles. When the total amount of the amine component is less than 1 mole relative to 1 mole of the silver atom, a silver compound that is not converted into a complex compound in the step of producing a complex compound of the amine (A) and the silver compound (B) ( B) may remain. In the subsequent thermal decomposition step, the uniformity of the silver nanoparticles may be impaired, and the particles may be enlarged, or the silver compound (B) may remain without being thermally decomposed. In order to produce a dispersion of silver nanoparticles substantially in the absence of a solvent, the total amount of the amine component is preferably about 2 mol or more, for example. By setting the total amount of the amine component to about 2 mol or more, the complex compound generation step and the thermal decomposition step can be performed satisfactorily. About the minimum of the total amount of the said amine component, 2 mol or more is preferable with respect to 1 mol of silver atoms of the said silver compound (B), and 6 mol or more is more preferable.
[アミンの実施態様2]
 前記アミン(A)の別の実施態様としては、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)、脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)を少なくとも用い、前記モノアミン(A1)と前記モノアミン(A2)の合計(100モル%)を基準として、前記モノアミン(A1)を5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)、及び前記モノアミン(A2)を80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)の割合で用いる態様が挙げられる。即ち、前記混合物の一態様としては、前記アミン(A)として、モノアミン(A1)及びモノアミン(A2)を含み、モノアミン(A1)とモノアミン(A2)の合計(100モル%)を基準として、モノアミン(A1)を5モル%以上20モル%未満、及びモノアミン(A2)を80モル%を超えて95モル%以下の割合で含む混合物が挙げられる。
[Amine Embodiment 2]
As another embodiment of the amine (A), an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, an aliphatic hydrocarbon group and one amino group At least an aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms and 5 mol of the monoamine (A1) based on the total (100 mol%) of the monoamine (A1) and the monoamine (A2). % To less than 20 mol% (for example, 5 mol% to 19 mol%), and the monoamine (A2) in a proportion of more than 80 mol% to 95 mol% (for example, 81 mol% to 95 mol%) The aspect used by is mentioned. That is, as one aspect of the mixture, the amine (A) includes the monoamine (A1) and the monoamine (A2), and the monoamine (A1) and the monoamine (A2) are based on the total (100 mol%) of the monoamine. And a mixture containing (A1) in a proportion of 5 mol% or more and less than 20 mol% and monoamine (A2) in a proportion of more than 80 mol% and 95 mol% or less.
 前記モノアミン(A1)、及び前記モノアミン(A2)の使用割合は、前記モノアミン(A1)と前記モノアミン(A2)の合計(100モル%)を基準として、前記モノアミン(A1):5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)、及び前記モノアミン(A2):80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)である。なお、本発明による効果を阻害しない範囲で、当該態様(アミンの実施態様2)においては、前記モノアミン(A1)や前記モノアミン(A2)以外のアミン等を使用することができる。 The use ratio of the monoamine (A1) and the monoamine (A2) is based on the total (100 mol%) of the monoamine (A1) and the monoamine (A2). Less than mol% (for example, 5 mol% or more and 19 mol% or less), and the monoamine (A2): more than 80 mol% and 95 mol% or less (for example, 81 mol% or more and 95 mol% or less). In addition, in the said aspect (amine embodiment 2), amine other than the said monoamine (A1) and the said monoamine (A2) etc. can be used in the range which does not inhibit the effect by this invention.
 前記モノアミン(A1)の含有量を5モル%以上20モル%未満とすることによって、該モノアミン(A1)の炭素鎖によって、生成する銀ナノ粒子表面の保護安定化機能が得られる。前記モノアミン(A1)の含有量が5モル%未満では、保護安定化機能の発現が弱いことがある。一方、前記モノアミン(A1)の含有量が20モル%以上となると、保護安定化機能は十分であるが、膜厚が比較的厚い焼結膜を形成する際の低温焼結によって該モノアミン(A1)が除去され難くなる。前記モノアミン(A1)の含有量の下限については、10モル%以上、例えば13モル%以上が好ましい。前記モノアミン(A1)の含有量の上限については、19モル%以下、例えば17モル%以下が好ましい。 By setting the content of the monoamine (A1) to 5 mol% or more and less than 20 mol%, a protective and stabilizing function of the surface of the silver nanoparticles to be produced can be obtained by the carbon chain of the monoamine (A1). When the content of the monoamine (A1) is less than 5 mol%, the expression of the protective stabilization function may be weak. On the other hand, when the content of the monoamine (A1) is 20 mol% or more, the protective stabilization function is sufficient, but the monoamine (A1) is formed by low-temperature sintering when forming a relatively thick sintered film. Is difficult to remove. About the minimum of content of the said monoamine (A1), 10 mol% or more, for example, 13 mol% or more is preferable. About the upper limit of content of the said monoamine (A1), 19 mol% or less, for example, 17 mol% or less is preferable.
 前記モノアミン(A2)の含有量を80モル%を超えて95モル%以下とすることによって、錯体形成促進効果が得られやすく、また、それ自体で低温且つ短時間焼結に寄与できる。前記モノアミン(A2)の含有量が80モル%以下では、錯体形成促進効果が弱かったり、あるいは、膜厚が比較的厚い焼結膜を形成する際の焼結時において前記モノアミン(A1)が銀ナノ粒子表面から除去されにくいことがある。一方、前記モノアミン(A2)の含有量が95モル%を超えると、錯体形成促進効果は得られるが、相対的に前記モノアミン(A1)の含有量が少なくなってしまい、生成する銀ナノ粒子表面の保護安定化が得られ難い。前記モノアミン(A2)の含有量の下限については、81モル%以上、例えば83モル%以上が好ましい。前記モノアミン(A2)の含有量の上限については、90モル%以下、例えば87モル%以下が好ましい。 When the content of the monoamine (A2) is more than 80 mol% and 95 mol% or less, a complex formation accelerating effect can be easily obtained, and itself can contribute to low temperature and short time sintering. When the content of the monoamine (A2) is 80 mol% or less, the effect of promoting complex formation is weak, or the monoamine (A1) contains silver nano-particles during sintering when forming a relatively thick sintered film. It may be difficult to remove from the particle surface. On the other hand, when the content of the monoamine (A2) exceeds 95 mol%, the effect of promoting complex formation is obtained, but the content of the monoamine (A1) is relatively reduced, and the surface of the silver nanoparticles to be produced It is difficult to achieve stable protection. About the minimum of content of the said monoamine (A2), 81 mol% or more, for example, 83 mol% or more is preferable. About the upper limit of content of the said monoamine (A2), 90 mol% or less, for example, 87 mol% or less is preferable.
 本発明における当該態様(アミンの実施態様2)は、銀化合物(B)の銀への配位能が高い前記モノアミン(A2)を前記の割合で用いるので、前記モノアミン(A1)の銀ナノ粒子表面上への付着量は少なくて済む。従って、前記低温短時間での焼結の場合にも、これらアミン類は銀ナノ粒子表面から除去されやすく、銀ナノ粒子の焼結が十分に進行する。 In this embodiment (amine embodiment 2) in the present invention, the monoamine (A2) having a high coordination ability to the silver of the silver compound (B) is used in the above proportion, so that the silver nanoparticles of the monoamine (A1) are used. Less adhesion on the surface. Therefore, even in the case of sintering at a low temperature and a short time, these amines are easily removed from the surface of the silver nanoparticles, and the silver nanoparticles are sufficiently sintered.
 本発明における当該態様(アミンの実施態様2)で使用される、前記モノアミン(A1)と前記モノアミン(A2)の合計量としては、特に限定されないが、前記銀化合物(B)の銀原子1モルに対して、前記アミン[(A1)+(A2)]の量を1モル~72モル程度とすると良い。前記アミン[(A1)+(A2)]の量が、前記銀原子1モルに対して、1モル未満であると、錯化合物の生成工程において、錯化合物に変換されない銀化合物(B)が残存する可能性があり、その後の熱分解工程において、銀ナノ粒子の均一性が損なわれ粒子の肥大化が起こったり、熱分解せずに銀化合物(B)が残存する可能性がある。一方、前記アミン[(A1)+(A2)]の量が、前記銀原子1モルに対して、72モル程度を超えてもあまりメリットはないと考えられる。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン[(A1)+(A2)]の量を例えば2モル程度以上とするとよい。前記アミン[(A1)+(A2)]の量を2~72モル程度とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記アミン[(A1)+(A2)]の量の下限については、前記銀化合物の銀原子1モルに対して、2モル以上が好ましく、6モル以上がより好ましく、10モル以上がさらに好ましい。 The total amount of the monoamine (A1) and the monoamine (A2) used in this aspect of the present invention (amine embodiment 2) is not particularly limited, but is 1 mol of silver atom of the silver compound (B). On the other hand, the amount of the amine [(A1) + (A2)] is preferably about 1 to 72 mol. When the amount of the amine [(A1) + (A2)] is less than 1 mol with respect to 1 mol of the silver atom, the silver compound (B) that is not converted into the complex compound remains in the complex compound formation step. In the subsequent pyrolysis step, the uniformity of the silver nanoparticles may be impaired and the particles may be enlarged, or the silver compound (B) may remain without being pyrolyzed. On the other hand, it is considered that there is not much merit even if the amount of the amine [(A1) + (A2)] exceeds about 72 mol with respect to 1 mol of the silver atom. In order to produce a dispersion of silver nanoparticles substantially in the absence of a solvent, the amount of the amine [(A1) + (A2)] is preferably about 2 mol or more, for example. By setting the amount of the amine [(A1) + (A2)] to about 2 to 72 mol, the complex compound formation step and the thermal decomposition step can be performed satisfactorily. About the minimum of the quantity of the said amine [(A1) + (A2)], 2 mol or more is preferable with respect to 1 mol of silver atoms of the said silver compound, 6 mol or more is more preferable, and 10 mol or more is further more preferable.
 本発明における当該態様(アミンの実施態様2)では、更に、前記ジアミン(A3)を使用することもできる。 In the embodiment (amine embodiment 2) in the present invention, the diamine (A3) can also be used.
[アミンの実施態様3]
 前記アミン(A)の別の実施態様としては、炭素数4以上の分岐脂肪族炭化水素基と1つのアミノ基とからなる分岐脂肪族炭化水素モノアミン(A4)(単に「モノアミン(A4)」と称する場合がある)を少なくとも用いる態様が挙げられる。即ち、前記混合物の一態様としては、前記アミン(A)として、モノアミン(A4)を含む混合物が挙げられる。分岐脂肪族炭化水素アミン化合物を用いると、同じ炭素数の直鎖脂肪族炭化水素アミン化合物を用いた場合と比べ、分岐脂肪族炭化水素基の立体的因子により銀ナノ粒子表面上へのより少ない付着量で銀ナノ粒子表面のより大きな面積を被覆することができる。そのため、銀ナノ粒子表面上へのより少ない付着量で、銀ナノ粒子の適度な安定化が得られる。焼結時において除去すべき保護剤(有機安定剤)の量が少ないので、200℃以下の低温での焼結の場合にも、有機安定剤を効率よく除去でき、銀ナノ粒子の焼結が十分に進行する。
[Embodiment 3 of amine]
As another embodiment of the amine (A), a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group (simply referred to as “monoamine (A4)”) In some cases, at least a case in which the above is used) is used. That is, as one aspect of the mixture, a mixture containing a monoamine (A4) as the amine (A) can be mentioned. When using a branched aliphatic hydrocarbon amine compound, compared to using a straight aliphatic hydrocarbon amine compound with the same number of carbon atoms, the steric factor of the branched aliphatic hydrocarbon group reduces the amount on the surface of the silver nanoparticle. A larger area of the surface of the silver nanoparticle can be covered with the amount of adhesion. Therefore, moderate stabilization of the silver nanoparticles can be obtained with a smaller amount of adhesion on the surface of the silver nanoparticles. Since the amount of the protective agent (organic stabilizer) to be removed at the time of sintering is small, the organic stabilizer can be efficiently removed even when sintering at a low temperature of 200 ° C. or less, and the silver nanoparticles are sintered. Proceed sufficiently.
 前記モノアミン(A4)における分岐脂肪族炭化水素基の炭素数は、4以上であり、例えば4~16である。分岐脂肪族炭化水素基の立体的因子を得るためには、炭素数4以上が必要である。前記モノアミン(A4)としては、例えば、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、イソペンチルアミン、tert-ペンチルアミン、イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の炭素数4~16、好ましくは炭素数4~8の第一級アミンが挙げられる。 The number of carbon atoms of the branched aliphatic hydrocarbon group in the monoamine (A4) is 4 or more, for example, 4 to 16. In order to obtain the steric factor of the branched aliphatic hydrocarbon group, 4 or more carbon atoms are required. Examples of the monoamine (A4) include 4 to 16 carbon atoms such as isobutylamine, sec-butylamine, tert-butylamine, isopentylamine, tert-pentylamine, isohexylamine, 2-ethylhexylamine, tert-octylamine and the like. Preferred examples include primary amines having 4 to 8 carbon atoms.
 また、前記モノアミン(A4)としては、例えば、N,N-ジイソブチルアミン、N,N-ジイソペンチルアミン、N,N-ジイソヘキシルアミン、N,N-ジ(2-エチルヘキシル)アミン等の第二級アミンが挙げられる。また、例えば、トリイソブチルアミン、トリイソペンチルアミン、トリイソヘキシルアミン、トリ(2-エチルヘキシル)アミン等の第三級アミンが挙げられる。N,N-ジ(2-エチルヘキシル)アミンの場合、2-エチルヘキシル基の炭素数は8であるが、前記モノアミン(A4)に含まれる炭素の総数は16となる。トリ(2-エチルヘキシル)アミンの場合、前記モノアミン(A4)に含まれる炭素の総数は24となる。 Examples of the monoamine (A4) include N, N-diisobutylamine, N, N-diisopentylamine, N, N-diisohexylamine, and N, N-di (2-ethylhexyl) amine. Secondary amines are mentioned. Further, for example, tertiary amines such as triisobutylamine, triisopentylamine, triisohexylamine, tri (2-ethylhexyl) amine and the like can be mentioned. In the case of N, N-di (2-ethylhexyl) amine, the carbon number of the 2-ethylhexyl group is 8, but the total number of carbons contained in the monoamine (A4) is 16. In the case of tri (2-ethylhexyl) amine, the total number of carbons contained in the monoamine (A4) is 24.
 これらの分岐脂肪族炭化水素モノアミンの内でも、モノアミン(A4)としては、イソペンチルアミン、イソヘキシルアミン、2-エチルヘキシルアミン等の主鎖の炭素数4~6の分岐アルキルモノアミン化合物が好ましい。なお、前記「主鎖」とは、前記分岐脂肪族炭化水素基においてその長さが最も長くなる鎖(炭素-炭素結合により構成された鎖)を意味する。主鎖の炭素数が4~6であると、銀ナノ粒子の適度な安定化が得られ易い。また、分岐脂肪族炭化水素基の立体的因子の観点からは、N原子側から2番目の炭素原子において枝分かれしていることが有効である。前記モノアミン(A4)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Among these branched aliphatic hydrocarbon monoamines, the monoamine (A4) is preferably a branched alkyl monoamine compound having 4 to 6 carbon atoms in the main chain, such as isopentylamine, isohexylamine, 2-ethylhexylamine and the like. The “main chain” means a chain (chain composed of carbon-carbon bonds) having the longest length in the branched aliphatic hydrocarbon group. When the carbon number of the main chain is 4 to 6, moderate stabilization of the silver nanoparticles can be easily obtained. From the viewpoint of the steric factor of the branched aliphatic hydrocarbon group, it is effective that the second carbon atom is branched from the N atom side. The monoamine (A4) may be used alone or in combination of two or more.
 本発明における当該態様(アミンの実施態様3)で使用される、前記モノアミン(A4)の量は、特に限定されないが、原料の前記銀化合物(B)の銀原子1モルに対して、1モル~15モル程度が好ましい。前記モノアミン(A4)の量が、前記銀原子1モルに対して1モル未満であると、アミン(A)と銀化合物(B)の錯化合物の生成工程において、錯化合物に変換されない銀化合物(B)が残存する可能性がある。また、その後の熱分解工程において、銀ナノ粒子の均一性が損なわれ、粒子の肥大化が起こったり、熱分解せずに銀化合物(B)が残存する可能性がある。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記モノアミン(A4)の量を例えば2モル程度以上とすることが好ましい。前記モノアミン(A4)の量を2モル程度以上とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記モノアミン(A4)の量の下限については、前記銀化合物(B)の銀原子1モルに対して、2モル以上が好ましく、6モル以上がより好ましい。 The amount of the monoamine (A4) used in the embodiment (amine embodiment 3) in the present invention is not particularly limited, but is 1 mol with respect to 1 mol of silver atoms of the starting silver compound (B). About 15 mol is preferable. When the amount of the monoamine (A4) is less than 1 mole relative to 1 mole of the silver atom, a silver compound (not converted into a complex compound) in the complex compound production step of the amine (A) and the silver compound (B) ( B) may remain. Further, in the subsequent pyrolysis step, the uniformity of the silver nanoparticles may be impaired, the particles may be enlarged, or the silver compound (B) may remain without being pyrolyzed. In order to produce a dispersion of silver nanoparticles substantially in the absence of a solvent, the amount of the monoamine (A4) is preferably about 2 mol or more, for example. By setting the amount of the monoamine (A4) to about 2 mol or more, the complex compound generation step and the thermal decomposition step can be performed satisfactorily. About the minimum of the quantity of the said monoamine (A4), 2 mol or more is preferable with respect to 1 mol of silver atoms of the said silver compound (B), and 6 mol or more is more preferable.
 本発明における当該態様(アミンの実施態様3)で使用される、アミン(A)の全量(100モル%)に対する前記モノアミン(A4)の割合は、特に限定されないが、80モル~100モル%が好ましく、より好ましくは90モル~100モル%(例えば、90モル~98モル%)である。前記割合をこのような数値範囲に制御することにより、分散媒中の分散安定性に優れた銀ナノ粒子を効率的に製造することができ、銀ナノ粒子の焼結を効率的に進行させることができる傾向がある。 The ratio of the monoamine (A4) to the total amount (100 mol%) of the amine (A) used in this aspect (amine embodiment 3) of the present invention is not particularly limited, but is 80 mol to 100 mol%. Preferably, it is 90 to 100 mol% (for example, 90 to 98 mol%). By controlling the ratio within such a numerical range, it is possible to efficiently produce silver nanoparticles having excellent dispersion stability in a dispersion medium, and to efficiently sinter silver nanoparticles. There is a tendency to be able to.
 本発明における当該態様(アミンの実施態様3)で使用される、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミン化合物として、前記モノアミン(A4)の他に、更に、前記モノアミン(A1)、前記モノアミン(A2)、及び前記ジアミン(A3)から選ばれる脂肪族炭化水素アミン化合物をそれぞれ別個独立に用いることができる。前記モノアミン(A2)、及び前記ジアミン(A3)は、錯体形成促進に効果がある。 As the aliphatic hydrocarbon amine compound that functions as a complexing agent and / or a protective agent used in this aspect of the present invention (amine embodiment 3), in addition to the monoamine (A4), the monoamine ( An aliphatic hydrocarbon amine compound selected from A1), the monoamine (A2), and the diamine (A3) can be used independently. The monoamine (A2) and the diamine (A3) are effective in promoting complex formation.
2.銀化合物(B)
 前記銀化合物(B)としては、加熱により容易に分解して、金属銀を生成する銀化合物を用いる。このような銀化合物としては、ギ酸銀、酢酸銀、シュウ酸銀、マロン酸銀、安息香酸銀、フタル酸銀等のカルボン酸銀;フッ化銀、塩化銀、臭化銀、ヨウ化銀等のハロゲン化銀;硫酸塩、硝酸銀、炭酸銀等を用いることができるが、分解により容易に金属銀を生成し且つ銀以外の不純物を生じ難いという観点から、シュウ酸銀が好ましく用いられる。シュウ酸銀は、銀含有率が高く、且つ、還元剤を必要とせず熱分解により金属銀がそのまま得られ、還元剤に由来する不純物が残留し難い点で有利である。
2. Silver compound (B)
As the silver compound (B), a silver compound that is easily decomposed by heating to form metallic silver is used. Examples of such silver compounds include silver formate, silver acetate, silver oxalate, silver malonate, silver benzoate, silver phthalate and the like; silver fluoride, silver chloride, silver bromide, silver iodide, etc. Silver sulfate; silver sulfate, silver nitrate, silver carbonate and the like can be used, but silver oxalate is preferably used from the viewpoint that metal silver is easily generated by decomposition and impurities other than silver are hardly generated. Silver oxalate is advantageous in that it has a high silver content and does not require a reducing agent, so that metallic silver can be obtained by thermal decomposition as it is, and impurities derived from the reducing agent do not easily remain.
 なお、前記銀ナノ粒子を含む組成物は、本発明の銀ナノ粒子に加えて、銀以外の金属(「その他の金属」と称する場合がある)のナノ粒子、銀とその他の金属の複合物のナノ粒子等のその他のナノ粒子を含んでいてもよい。これらのその他のナノ粒子は、例えば、本発明の銀ナノ粒子の製造方法における銀化合物(B)の代わりにその他の金属の化合物(金属化合物)を使用したり、銀化合物(B)とともにその他の金属の化合物を併用することによって、製造することができる。 In addition to the silver nanoparticles of the present invention, the composition containing the silver nanoparticles includes nanoparticles of metals other than silver (sometimes referred to as “other metals”), composites of silver and other metals. Other nanoparticles such as nanoparticles may be included. For these other nanoparticles, for example, other metal compounds (metal compounds) may be used in place of the silver compound (B) in the method for producing silver nanoparticles of the present invention, or other compounds may be used together with the silver compound (B). It can manufacture by using a metal compound together.
 例えば、前述のその他の金属のナノ粒子を製造する場合には、上記の銀化合物(B)に代えて、加熱により容易に分解して、目的とするその他の金属を生成する金属化合物を用いる。このような金属化合物としては、上記の銀化合物(B)に対応するような金属の塩、例えば、金属のカルボン酸塩;金属ハロゲン化物;金属硫酸塩、金属硝酸塩、金属炭酸塩等の金属塩化合物を用いることができる。これらのうち、分解により容易に金属を生成し且つ金属以外の不純物を生じにくいという観点から、金属のシュウ酸塩が好ましく用いられる。その他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。 For example, in the case of producing the above-mentioned other metal nanoparticles, a metal compound that is easily decomposed by heating to produce the other metal is used instead of the silver compound (B). Examples of such metal compounds include metal salts corresponding to the above silver compound (B), such as metal carboxylates; metal halides; metal salts such as metal sulfates, metal nitrates, and metal carbonates. Compounds can be used. Of these, metal oxalate is preferably used from the viewpoint of easily generating metal by decomposition and hardly generating impurities other than metal. Examples of other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
 また、例えば、前述の銀とその他の金属の複合物(「銀複合物」と称する場合がある)のナノ粒子を得るために、上記の銀化合物(B)と、上記の銀以外の他の金属化合物を併用してもよい。その他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。前記銀複合物は、銀と1又は2以上のその他の金属からなるものであり、Au-Ag、Ag-Cu、Au-Ag-Cu、Au-Ag-Pd等が例示される。前記銀複合物においては、特に限定されないが、金属全体を基準として、銀が少なくとも20重量%(即ち、20重量%以上)、通常は50重量%(即ち、50重量%以上)、例えば80重量%(即ち、80重量%以上)を占める。 In addition, for example, in order to obtain nanoparticles of a composite of the above-described silver and other metal (sometimes referred to as “silver composite”), the above silver compound (B) and other than the above silver A metal compound may be used in combination. Examples of other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni. The silver composite is composed of silver and one or more other metals, and examples thereof include Au—Ag, Ag—Cu, Au—Ag—Cu, and Au—Ag—Pd. The silver composite is not particularly limited, but based on the total metal, silver is at least 20% by weight (ie, 20% by weight or more), usually 50% by weight (ie, 50% by weight or more), for example, 80% by weight. % (That is, 80% by weight or more).
 本発明の半導体装置において用いる銀ナノ粒子は、上記混合物(アミン(A)及び銀化合物(B)を少なくとも含む混合物)を加熱することによって(詳しくは、加熱によって銀化合物(B)を熱分解することによって)、生成させることができる。上記混合物の調製方法は、特に限定されないが、例えば、2種以上のアミン(A)を使用する場合にはこれらの混合物(アミン混合液)を調製し、その後、ここに銀化合物(B)を添加、混合することによって、上記混合物を調製することができる。銀化合物(B)の添加は、一括で行うこともできるし、逐次行うこともできる。銀化合物(B)の添加を逐次行う場合は、連続的に行ってもよいし、断続的に行うこともできる。明らかではないが、アミン(A)と銀化合物(B)とを混合した段階で、両者の錯形成が進行するものと推測される。 The silver nanoparticles used in the semiconductor device of the present invention are obtained by heating the above mixture (a mixture containing at least the amine (A) and the silver compound (B)) (specifically, thermally decomposing the silver compound (B) by heating). Can be generated). Although the preparation method of the said mixture is not specifically limited, For example, when using 2 or more types of amines (A), these mixtures (amine mixture liquid) are prepared, and silver compound (B) is added here after that. The said mixture can be prepared by adding and mixing. The addition of the silver compound (B) can be performed all at once or sequentially. When adding silver compound (B) sequentially, you may carry out continuously and can also carry out intermittently. Although it is not clear, it is presumed that complex formation of both proceeds at the stage of mixing the amine (A) and the silver compound (B).
 銀ナノ粒子を生成させる際の上記混合物の加熱温度(熱分解温度)は、特に限定されないが、例えば、60~150℃の範囲で適宜設定できる。例えば、銀化合物(B)としてシュウ酸銀を使用する場合には、80~120℃で加熱することによって熱分解を効率的に進行させることができるため、銀ナノ粒子を高い生産性で製造することができる。なお、加熱温度は一定とすることもできるし、連続的又は断続的に変化するように制御することもできる。また、上記混合物を加熱する時間(加熱時間)は、特に限定されず、例えば、5~360分の範囲で適宜設定できる。これにより、銀ナノ粒子を含む組成物が得られる。 The heating temperature (thermal decomposition temperature) of the above mixture for producing silver nanoparticles is not particularly limited, but can be appropriately set within a range of 60 to 150 ° C., for example. For example, when silver oxalate is used as the silver compound (B), the thermal decomposition can be efficiently advanced by heating at 80 to 120 ° C., so that silver nanoparticles are produced with high productivity. be able to. The heating temperature can be constant, or can be controlled so as to change continuously or intermittently. Further, the time for heating the mixture (heating time) is not particularly limited, and can be appropriately set within a range of, for example, 5 to 360 minutes. Thereby, the composition containing silver nanoparticles is obtained.
3.脂肪族カルボン酸(C)
 本発明において、銀ナノ粒子を調製するに際しては、銀ナノ粒子の分散媒への分散性をさらに向上させるため、安定剤として、さらに脂肪族カルボン酸(C)を用いてもよい。前記脂肪族カルボン酸(C)は、前記アミン混合液中に含ませて用いることができる。前記脂肪族カルボン酸(C)を用いることにより、銀ナノ粒子の安定性、特に有機溶剤中に分散された塗料状態での安定性が向上することがある。
3. Aliphatic carboxylic acid (C)
In the present invention, when preparing silver nanoparticles, an aliphatic carboxylic acid (C) may be further used as a stabilizer in order to further improve the dispersibility of the silver nanoparticles in the dispersion medium. The aliphatic carboxylic acid (C) can be used by being included in the amine mixed solution. By using the aliphatic carboxylic acid (C), the stability of silver nanoparticles, particularly the stability in a paint state dispersed in an organic solvent may be improved.
 前記脂肪族カルボン酸(C)としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸等が挙げられる。 As the aliphatic carboxylic acid (C), a saturated or unsaturated aliphatic carboxylic acid is used. For example, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, Examples thereof include saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid; unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid, elaidic acid, linoleic acid, and palmitoleic acid.
 これらの内でも、前記脂肪族カルボン酸(C)としては、炭素数8~18の飽和又は不飽和脂肪族モノカルボン酸が好ましい。炭素数を8以上とすることにより、カルボン酸基が銀ナノ粒子表面に吸着した際に他の銀ナノ粒子との間隔を確保できるため、銀ナノ粒子同士の凝集を防ぐ作用が向上する。入手のし易さ、焼結時の除去のし易さ等を考慮して、通常、炭素数18までの飽和又は不飽和脂肪族モノカルボン酸が好ましい。特に、オクタン酸、オレイン酸等が好ましく用いられる。前記脂肪族カルボン酸(C)は、1種のみを用いても良く、2種以上を組み合わせて用いても良い。 Among these, the aliphatic carboxylic acid (C) is preferably a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 18 carbon atoms. By setting the number of carbon atoms to 8 or more, an interval between the silver nanoparticles can be secured when the carboxylic acid group is adsorbed on the surface of the silver nanoparticles, thereby improving the effect of preventing aggregation of the silver nanoparticles. In view of easy availability, ease of removal during sintering, and the like, saturated or unsaturated aliphatic monocarboxylic acids having up to 18 carbon atoms are usually preferred. In particular, octanoic acid, oleic acid and the like are preferably used. The aliphatic carboxylic acid (C) may be used alone or in combination of two or more.
 前記脂肪族カルボン酸(C)の使用量は、特に限定されないが、原料の前記銀化合物(B)の銀原子1モルに対して、例えば0.05モル~10モルが好ましく、0.1モル~5モルがより好ましく、0.5モル~2モルが更に好ましい。前記脂肪族カルボン酸(C)の量が、前記銀原子1モルに対して、0.05モルよりも少ないと、前記脂肪族カルボン酸(C)の添加による分散状態での安定性向上効果は弱い。一方、前記脂肪族カルボン酸(C)の量が10モルを超えると、分散状態での安定性向上効果が飽和するし、また、低温焼結での前記脂肪族カルボン酸(C)の除去がされ難くなる。 The amount of the aliphatic carboxylic acid (C) used is not particularly limited, but is preferably 0.05 mol to 10 mol, for example, 0.1 mol with respect to 1 mol of silver atoms of the starting silver compound (B). ˜5 mol is more preferable, and 0.5 mol to 2 mol is more preferable. When the amount of the aliphatic carboxylic acid (C) is less than 0.05 mol with respect to 1 mol of the silver atom, the stability improving effect in the dispersed state by the addition of the aliphatic carboxylic acid (C) is weak. On the other hand, when the amount of the aliphatic carboxylic acid (C) exceeds 10 mol, the effect of improving the stability in the dispersed state is saturated, and the removal of the aliphatic carboxylic acid (C) by low-temperature sintering can be achieved. It becomes difficult to be done.
 本発明の半導体装置における前記接合部の少なくとも1つは、本発明の銀ナノ粒子を焼結させてなる焼結体である。前記銀ナノ粒子を焼結させる方法としては、金属ナノ粒子を焼結させて金属の構造体(焼結体)を形成する周知慣用の方法が挙げられ、特に限定されないが、例えば、本発明の銀ナノ粒子を含む組成物を所望の厚み、形状等で、前記端子及び/又は前記電極(前記端子及び前記電極のいずれか一方又は両方)に塗布、印刷等により供給し、必要に応じて前記端子と前記電極とを前記組成物により接合した上で、加熱する方法が挙げられる。加熱条件は、特に限定されないが、本発明の銀ナノ粒子を用いることによって、200℃未満(例えば150℃以下、好ましくは120℃以下)の低温且つ2時間以下(例えば1時間以下、好ましくは30分以下)の短い時間での加熱による焼結が可能である。このような焼結によって、本発明の銀ナノ粒子を焼結させてなる焼結体である前記接合部が得られる。より具体的には、以下に説明する半導体装置の製造方法における方法によって、前記接合部を形成することができる。 At least one of the joints in the semiconductor device of the present invention is a sintered body obtained by sintering the silver nanoparticles of the present invention. Examples of the method for sintering the silver nanoparticles include well-known and commonly used methods for forming metal structures (sintered bodies) by sintering metal nanoparticles, and are not particularly limited. A composition containing silver nanoparticles is supplied to the terminal and / or the electrode (either or both of the terminal and the electrode) by a desired thickness, shape, etc., by printing, etc. The method of heating, after joining a terminal and the said electrode with the said composition is mentioned. The heating conditions are not particularly limited, but by using the silver nanoparticles of the present invention, a low temperature of less than 200 ° C. (eg, 150 ° C. or less, preferably 120 ° C. or less) and 2 hours or less (eg, 1 hour or less, preferably 30). Sintering by heating in a short time (min. Or less) is possible. By such sintering, the joint part, which is a sintered body obtained by sintering the silver nanoparticles of the present invention, is obtained. More specifically, the junction can be formed by a method in a semiconductor device manufacturing method described below.
<半導体装置の製造方法>
 本発明の半導体装置の製造方法は、特に限定されず、周知慣用の半導体装置の製造方法に準じて実施することができる。前記製造方法としては、具体的には、例えば、下記工程(a)~工程(d)(工程(a)、工程(b)、工程(c)、及び工程(d))を必須の工程として含む方法等が挙げられる。
 工程(a):半導体素子の端子及び基板の電極の少なくとも一方に、銀ナノ粒子を含む組成物を供給する工程
 工程(b):前記半導体素子の端子と前記基板の電極とを対向させる工程
 工程(c):前記半導体素子の端子と前記基板の電極とを前記銀ナノ粒子を含む組成物により接合して接合部を形成する工程
 工程(d):前記銀ナノ粒子を含む組成物を加熱して前記銀ナノ粒子の焼結体を形成する工程
<Method for Manufacturing Semiconductor Device>
The method for manufacturing a semiconductor device of the present invention is not particularly limited, and can be performed according to a well-known and commonly used method for manufacturing a semiconductor device. Specifically, as the manufacturing method, for example, the following steps (a) to (d) (step (a), step (b), step (c), and step (d)) are essential steps. The method of including is mentioned.
Step (a): Step of supplying a composition containing silver nanoparticles to at least one of the terminal of the semiconductor element and the electrode of the substrate Step (b): Step of making the terminal of the semiconductor element and the electrode of the substrate face each other (C): A step of joining the terminal of the semiconductor element and the electrode of the substrate with the composition containing the silver nanoparticles to form a joint Step (d): heating the composition containing the silver nanoparticles And forming a sintered body of the silver nanoparticles
 前述の工程(a)~工程(d)の各工程の実施方法は、特に限定されず、周知慣用の方法に準じて実施することができる。また、前述の工程(a)~工程(d)を実施する順番は特に限定されないが、例えば、工程(a)、工程(b)、工程(c)、工程(d)の順番で実施することができる。具体的には、例えば、下記の図2~4に示す半導体装置の製造方法の説明における各工程の実施方法に従って、実施することができる。特に、前記半導体素子の端子と前記基板の電極との間の導電性、熱伝導性の観点で、前記工程(a)は、前記半導体素子の端子及び前記基板の電極の両方に、本発明の銀ナノ粒子を含む組成物を供給する工程(「工程(a1)」と称する場合がある)であることが好ましい。前記組成物を供給する態様としては、特に限定されないが、例えば後述のように、塗布や印刷等が挙げられる。 The method for performing each of the above-described steps (a) to (d) is not particularly limited, and can be performed according to a well-known and commonly used method. Further, the order in which the above-described steps (a) to (d) are performed is not particularly limited. For example, the steps (a), (b), (c), and (d) are performed in this order. Can do. Specifically, for example, it can be performed according to the method of performing each step in the description of the manufacturing method of the semiconductor device shown in FIGS. In particular, from the viewpoint of electrical conductivity and thermal conductivity between the terminal of the semiconductor element and the electrode of the substrate, the step (a) includes both the terminal of the semiconductor element and the electrode of the substrate according to the present invention. A step of supplying a composition containing silver nanoparticles (sometimes referred to as “step (a1)”) is preferable. Although it does not specifically limit as an aspect which supplies the said composition, For example, application | coating, printing, etc. are mentioned as mentioned later.
 本発明の半導体装置の製造方法において各々の工程は、1回のみ又は2回以上実施することができる。また、前述の工程(a)~工程(d)はそれぞれ順次行うこともできるし、2以上の工程を同時に行うこともできる。 In the method for manufacturing a semiconductor device of the present invention, each step can be performed only once or twice or more. In addition, the above-described steps (a) to (d) can be performed sequentially, or two or more steps can be performed simultaneously.
 本発明の半導体装置の製造方法は、前述の工程(a)~工程(d)以外にも、その他の工程を含んでいてもよい。 The semiconductor device manufacturing method of the present invention may include other steps in addition to the above-described steps (a) to (d).
 本発明の半導体装置の製造方法の一例を、図2~4に示す断面図を用いて説明するが、本発明はこれらに限られるものではない。なお、図2~4は、前記接合部の全部が本発明の銀ナノ粒子を焼結してなる焼結体である半導体装置(本発明の半導体装置)を製造する方法の例である。 An example of a method for manufacturing a semiconductor device of the present invention will be described with reference to cross-sectional views shown in FIGS. 2 to 4, but the present invention is not limited to these. 2 to 4 show an example of a method of manufacturing a semiconductor device (semiconductor device of the present invention) in which all of the joints are sintered bodies obtained by sintering the silver nanoparticles of the present invention.
 図2~4には、半導体素子4の一例としてLED素子を表している。まず、図2(a)、図3(a)、及び図4(a)に示すように、端子5を備えた半導体素子4を準備する。その際、図2(a)及び図3(a)に示すように、半導体素子4の端子5の上に、銀ナノ粒子を含む組成物により接合部6aを形成しても良く、図4(a)に示すように、接合部6aを形成しないでも良い。接合部6aを形成した場合、接合部6aの高さに差があれば、接合部6aの高さを一定とするようにレベリングを行うことが好ましい。接合部6aは、銀ナノ粒子を含む組成物を端子5に対して塗布又は印刷することにより形成することができる。塗布又は印刷の方法としては、特に限定されないが、例えば、スピンコート、インクジェット印刷、スクリーン印刷、ディスペンサ印刷、凸版印刷(フレキソ印刷)、昇華型印刷、オフセット印刷、レーザープリンタ印刷(トナー印刷)、凹版印刷(グラビア印刷)、コンタクト印刷、マイクロコンタクト印刷等が挙げられる。塗布又は印刷により、パターン化された接合部6aを形成することができる。 2 to 4 show an LED element as an example of the semiconductor element 4. First, as shown in FIGS. 2 (a), 3 (a), and 4 (a), a semiconductor element 4 having terminals 5 is prepared. At that time, as shown in FIG. 2A and FIG. 3A, a junction 6a may be formed on the terminal 5 of the semiconductor element 4 by a composition containing silver nanoparticles, as shown in FIG. As shown in a), the joint 6a may not be formed. When the joint portion 6a is formed, if there is a difference in the height of the joint portion 6a, it is preferable to perform leveling so that the height of the joint portion 6a is constant. The joint 6a can be formed by applying or printing a composition containing silver nanoparticles on the terminal 5. Although it does not specifically limit as a method of application | coating or printing, For example, spin coating, inkjet printing, screen printing, dispenser printing, relief printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), intaglio Examples thereof include printing (gravure printing), contact printing, and micro contact printing. The patterned joint 6a can be formed by coating or printing.
 また、接合部6aは、端子5の面積が比較的大きい場合には、半導体素子4の1つの端子5の上に複数個形成することが好ましい。これにより、半導体素子4が発生した熱を端子5及び接合部6を介して、より効果的に基板2へ放熱することができる。半導体素子4がLED素子である場合にも、その効果的な放熱により、LED素子の発光効率の低下を抑制することができる。 Further, when the area of the terminal 5 is relatively large, it is preferable to form a plurality of the joint portions 6 a on one terminal 5 of the semiconductor element 4. As a result, the heat generated by the semiconductor element 4 can be radiated to the substrate 2 more effectively via the terminal 5 and the joint 6. Even when the semiconductor element 4 is an LED element, it is possible to suppress a decrease in light emission efficiency of the LED element due to its effective heat dissipation.
 なお、図2(a)又は図3(a)の段階において、銀ナノ粒子を含む組成物からなる接合部6aを焼結して接合部6(焼結体)としても良いし、この段階ではまだ焼結しなくとも良い。 In addition, in the stage of Fig.2 (a) or FIG.3 (a), it is good also as the junction part 6 (sintered body) by sintering the junction part 6a which consists of a composition containing a silver nanoparticle. It is not necessary to sinter yet.
 次に、図2(b)、図3(b)、及び図4(b)に示すように、電極3を備えた基板2を準備する。その際、図3(b)及び図4(b)に示すように、電極3の上に、銀ナノ粒子を含む組成物により接合部6bを形成しても良い。銀ナノ粒子を含む組成物による接合部6bの形成は、前述した接合部6aの形成と同様、塗布又は印刷により行うことができる。図3(b)又は図4(b)の段階において、前記銀ナノ粒子を含む組成物を焼結して焼結体としても良いし、この段階ではまだ焼結しなくとも良い。 Next, as shown in FIG. 2B, FIG. 3B, and FIG. 4B, a substrate 2 provided with electrodes 3 is prepared. At that time, as shown in FIG. 3B and FIG. 4B, the bonding portion 6 b may be formed on the electrode 3 with a composition containing silver nanoparticles. Formation of the joining part 6b by the composition containing silver nanoparticles can be performed by coating or printing, as in the formation of the joining part 6a described above. In the step of FIG. 3B or FIG. 4B, the composition containing the silver nanoparticles may be sintered to form a sintered body, or may not be sintered at this stage.
 なお、半導体素子4がLED素子の場合には、発熱性を有しないN極端子においては特に伝熱性を上げる必要がないので、接合部6を、銀ナノ粒子を含む組成物ではなく、汎用の金属材料からなるバンプのみから構成することができる。これにより、銀ナノ粒子を含む組成物の使用量を節約することができる。 In the case where the semiconductor element 4 is an LED element, it is not particularly necessary to increase the heat conductivity in the N-pole terminal that does not have exothermic properties. Therefore, the bonding portion 6 is not a composition containing silver nanoparticles but a general-purpose one. It can comprise only the bump which consists of metal materials. Thereby, the usage-amount of the composition containing a silver nanoparticle can be saved.
 次に、図2(c)、図3(c)、及び図4(c)に示すように、半導体素子4の端子5と、基板2の電極3とを対向させる。 Next, as shown in FIGS. 2C, 3C, and 4C, the terminal 5 of the semiconductor element 4 and the electrode 3 of the substrate 2 are opposed to each other.
 この段階で、接合部6a又は接合部6bが銀ナノ粒子の焼結体(即ち、6である場合)となっている場合、半導体素子4に超音波振動を印加しながら、半導体素子4を基板2に向かって押圧しても良い。これにより、半導体素子4の端子5と基板2の電極3とが、接合部6(焼結体)により強固に接合される。また、超音波振動を印加しない場合、半導体素子4を基板2に向かって押圧するだけで接合しても良い。その際、加熱しながら押圧しても良い。超音波振動を印加しないことにより、半導体素子4に対する負荷や損傷を抑制することができる。 At this stage, when the bonding part 6a or the bonding part 6b is a sintered body of silver nanoparticles (that is, when it is 6), the semiconductor element 4 is placed on the substrate while applying ultrasonic vibration to the semiconductor element 4. You may press toward 2. Thereby, the terminal 5 of the semiconductor element 4 and the electrode 3 of the board | substrate 2 are firmly joined by the junction part 6 (sintered body). Further, when no ultrasonic vibration is applied, the semiconductor element 4 may be bonded by simply pressing it toward the substrate 2. In that case, you may press, heating. By not applying ultrasonic vibration, the load and damage to the semiconductor element 4 can be suppressed.
 次に、接合部が未だ焼結体となっていない場合(6a又は6bである場合)には、基板2を通して加熱することにより、銀ナノ粒子を含む組成物からなる接合部6a又は接合部6bを焼結し、接合部6(焼結体)を形成する。焼結は、200℃未満(例えば150℃以下、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは80℃以下)且つ2時間以下(例えば1時間以下、好ましくは30分間以下、より好ましくは15分間以下、更に好ましくは10分間以下)とすることができる。 Next, when the bonded portion is not yet a sintered body (in the case of 6a or 6b), the bonded portion 6a or the bonded portion 6b made of the composition containing silver nanoparticles is heated by heating through the substrate 2. Are sintered to form the joint 6 (sintered body). Sintering is less than 200 ° C. (eg 150 ° C. or less, preferably 120 ° C. or less, more preferably 100 ° C. or less, more preferably 80 ° C. or less) and 2 hours or less (eg 1 hour or less, preferably 30 minutes or less, more It is preferably 15 minutes or less, more preferably 10 minutes or less.
 本発明の銀ナノ粒子を含む組成物は、前記のような低温且つ短時間での焼結によっても、銀ナノ粒子の焼結が十分に進行する。その結果、優れた導電性(低い抵抗値、例えば15μΩcm以下)を有する焼結体が形成される。 In the composition containing silver nanoparticles of the present invention, the sintering of silver nanoparticles sufficiently proceeds even by sintering at a low temperature and in a short time as described above. As a result, a sintered body having excellent conductivity (low resistance value, for example, 15 μΩcm or less) is formed.
 ここで、焼結は、端子5と電極3とを接合する際に同時に行ってもよい。これにより、工程数を削減することができる。また、基板2を通して加熱する方法に限らず、例えば超音波や、電磁波等のエネルギーを、銀ナノ粒子を含む組成物からなる接合部6a又は接合部6bに加えることにより焼結しても良い。 Here, the sintering may be performed simultaneously when the terminal 5 and the electrode 3 are joined. Thereby, the number of processes can be reduced. Moreover, it is not restricted to the method of heating through the board | substrate 2, For example, you may sinter by adding energy, such as an ultrasonic wave and electromagnetic waves, to the junction part 6a or the junction part 6b which consists of a composition containing a silver nanoparticle.
 図5に示すように、接合部6をドット状に設ける場合は、各ドット間に所定の間隔を設けて、各ドットの列が平行になるように形成することが好ましい。これにより、焼結の際に発生する気体を外部へ効率よく逃がすことができ、接合部6(焼結体)内部の空隙を低減することができるため、放熱性が向上する。更に、複数の接合部6を規則正しく設けることにより、半導体素子4と基板2との接合をより安定させることができる。 As shown in FIG. 5, when the joint portion 6 is provided in a dot shape, it is preferable that a predetermined interval is provided between the dots so that the rows of the dots are parallel to each other. Thereby, the gas generated at the time of sintering can be efficiently released to the outside, and voids inside the joint portion 6 (sintered body) can be reduced, so that heat dissipation is improved. Furthermore, the bonding between the semiconductor element 4 and the substrate 2 can be further stabilized by regularly providing the plurality of bonding portions 6.
 また、比較的面積の大きい1つの端子5に接合部6を複数個設ける場合には、端子5の周辺部よりも中央部により多くの接合部6を設けることが好ましい。これにより、端子5の周辺部よりも中央部の熱伝導性がより大きくなり、接合部6の焼結は、端子5の中央部が周辺部よりも先に完了する。その結果、焼結の際に発生する気体を外部へ効率よく逃がすことができ、接合部6(焼結体)内部の空隙を低減することができるため、放熱性が向上する。 Further, when a plurality of joints 6 are provided in one terminal 5 having a relatively large area, it is preferable to provide more joints 6 in the central part than in the peripheral part of the terminals 5. Thereby, the thermal conductivity of the central portion is greater than that of the peripheral portion of the terminal 5, and the sintering of the joint portion 6 is completed before the peripheral portion of the central portion of the terminal 5. As a result, the gas generated during sintering can be efficiently released to the outside, and voids inside the joint 6 (sintered body) can be reduced, so that heat dissipation is improved.
 また、銀ナノ粒子を含む組成物を、半導体素子4の端子5に対して塗布又は印刷する際、図5のようなドット状に塗布又は印刷する他、平面状に塗布又は印刷することにより、面積の大きな接合部6を形成することができる。その場合、半導体素子4の端子5のほぼ全面に接合部6を設けるように塗布又は印刷しても良い。その結果、より導電性や放熱性をより高めることができる。 In addition, when the composition containing silver nanoparticles is applied or printed on the terminals 5 of the semiconductor element 4, in addition to being applied or printed in a dot shape as shown in FIG. A joint portion 6 having a large area can be formed. In that case, coating or printing may be performed so that the bonding portion 6 is provided on almost the entire surface of the terminal 5 of the semiconductor element 4. As a result, the conductivity and heat dissipation can be further improved.
 本発明においては、前述のように、銀ナノ粒子を含む組成物を、端子5と電極3の一方だけに供給(例えば、塗布、印刷等)しても良く、端子5と電極3の両方に供給しても良い。 In the present invention, as described above, the composition containing silver nanoparticles may be supplied to only one of the terminal 5 and the electrode 3 (for example, coating, printing, etc.). You may supply.
 なお、半導体素子4の端子5の全てが基板2の電極3と対向している必要はなく、端子が複数設けられている場合には、複数設けられた端子5の中の少なくとも1つが基板2と対向していれば良い。 Note that it is not necessary for all the terminals 5 of the semiconductor element 4 to face the electrode 3 of the substrate 2. When a plurality of terminals are provided, at least one of the plurality of terminals 5 is provided on the substrate 2. As long as it is facing.
 以下に、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[銀焼結膜の比抵抗値]
 得られた銀焼結膜について、4端子法(ロレスタGP MCP-T610)を用いて測定した。この装置の測定範囲限界は、107Ωcmである。
[Specific resistance of sintered silver film]
The obtained silver sintered film was measured using a four-terminal method (Loresta GP MCP-T610). The measuring range limit of this device is 10 7 Ωcm.
 以下の試薬を各実施例及び比較例で用いた。
 N,N-ジメチル-1,3-プロパンジアミン(MW:102.18):東京化成社製
 2-エチルヘキシルアミン(MW:129.25):和光純薬社製試薬
 n-ブチルアミン(MW:73.14):東京化成社製試薬
 n-ヘキシルアミン(MW:101.19):東京化成社製試薬
 n-オクチルアミン(MW:129.25):東京化成社製試薬
 オレイン酸(MW:282.47):東京化成社製試薬
 メタノール:和光純薬社製試薬特級
 1-ブタノール:東京化成社製試薬
 オクタン:和光純薬社製試薬特級
 ジヒドロキシターピネオール:日本テルペン株式会社製
 シュウ酸銀(MW:303.78):硝酸銀(和光純薬社製)とシュウ酸二水和物(和光純薬社製)とから合成したもの
The following reagents were used in each example and comparative example.
N, N-dimethyl-1,3-propanediamine (MW: 102.18): Tokyo Chemical Industry Co., Ltd. 2-ethylhexylamine (MW: 129.25): Wako Pure Chemical Industries, Ltd. n-butylamine (MW: 73. 14): Reagent n-hexylamine (MW: 101.19) manufactured by Tokyo Chemical Industry Co., Ltd. Reagent n-octylamine (MW: 129.25) manufactured by Tokyo Chemical Industry Co., Ltd. Reagent oleic acid (MW: 282.47 manufactured by Tokyo Chemical Industry Co., Ltd.) ): Reagents manufactured by Tokyo Kasei Co., Ltd. Methanol: Reagents manufactured by Wako Pure Chemical Industries, Ltd. 1-Butanol: Reagents manufactured by Tokyo Chemical Industry Co., Ltd. Octanes: Reagents manufactured by Wako Pure Chemical Industries, Ltd. Dihydroxyterpineol: Silver oxalate manufactured by Nippon Terpene Co., Ltd. (MW: 303. 78): synthesized from silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.)
[実施例1]
(銀ナノ粒子の調製)
 50mLフラスコに、N,N-ジメチル-1,3-プロパンジアミン1.28g(12.5mmol)、n-ブチルアミン0.91g(12.5mmol)、n-ヘキシルアミン3.24g(32.0mmol)、n-オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.09g(0.33mmol)を加えて室温で攪拌し、均一な混合溶液(アミン-カルボン酸混合溶液)を調製した。
[Example 1]
(Preparation of silver nanoparticles)
In a 50 mL flask, 1.28 g (12.5 mmol) of N, N-dimethyl-1,3-propanediamine, 0.91 g (12.5 mmol) of n-butylamine, 3.24 g (32.0 mmol) of n-hexylamine, n-Octylamine 0.39 g (3.0 mmol) and oleic acid 0.09 g (0.33 mmol) were added and stirred at room temperature to prepare a uniform mixed solution (amine-carboxylic acid mixed solution).
 調製した混合溶液にシュウ酸銀3.04g(10mmol)を加え、室温で攪拌して、粘性のある白色の物質への変化が、外見的に終了したと認められる時点で攪拌を終了した。 To the prepared mixed solution, 3.04 g (10 mmol) of silver oxalate was added and stirred at room temperature, and stirring was terminated when it was recognized that the change to a viscous white substance was apparently finished.
 次に、得られた反応混合物を105℃~110℃に加熱攪拌した。攪拌の開始後すぐに二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで攪拌を続けたところ、青色光沢を呈する銀ナノ粒子が懸濁した懸濁液を得た。 Next, the obtained reaction mixture was heated and stirred at 105 ° C. to 110 ° C. The reaction with the generation of carbon dioxide started immediately after the start of stirring, and then the stirring was continued until the generation of carbon dioxide was completed. As a result, a suspension in which silver nanoparticles exhibiting a blue luster were suspended was obtained. .
 次に、得られた懸濁液にメタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。得られた銀ナノ粒子に対して、再度、メタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。 Next, 10 mL of methanol was added to the obtained suspension and stirred, and then silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. To the obtained silver nanoparticles, 10 mL of methanol was added again and stirred, and then the silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. In this way, wet silver nanoparticles were obtained.
(銀ナノ塗料の調製と焼結)
 次に、湿った銀ナノ粒子に、1-ブタノール/オクタン混合溶剤(体積比=1/4)を銀濃度50wt%となるように加えて攪拌し、銀ナノ粒子分散液(銀ナノ塗料)を調製した。この銀ナノ粒子分散液を、焼結後の膜厚が1μm程度になるようにスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。
(Preparation and sintering of silver nano-paint)
Next, a 1-butanol / octane mixed solvent (volume ratio = 1/4) is added to the wet silver nanoparticles so that the silver concentration becomes 50 wt%, and the mixture is stirred to prepare a silver nanoparticle dispersion (silver nanopaint). Prepared. This silver nanoparticle dispersion was applied on a non-alkali glass plate by a spin coating method so that the film thickness after sintering was about 1 μm to form a coating film.
 塗膜の形成後、速やかに120℃にて15分間の条件で、送風乾燥炉にて焼結し、約1μmの厚みの銀焼結膜を形成した。得られた銀焼結膜の比抵抗値を4端子法により測定したところ、8.4μΩcmであった。 After the coating film was formed, it was immediately sintered at 120 ° C. for 15 minutes in a blow drying furnace to form a silver sintered film having a thickness of about 1 μm. The specific resistance value of the obtained silver sintered film was measured by a four-terminal method and found to be 8.4 μΩcm.
 また、上記銀ナノ粒子分散液について、次のように[1]初期分散性評価、[2]保存安定性評価を行った。
 [1]調製直後の上記銀ナノ粒子分散液を0.2μmフィルターにてろ過したところ、フィルター目詰まりを起こさなかった。つまり、上記銀ナノ粒子分散液は良好な分散状態を保っていた。
 [2]調製直後の上記銀ナノ粒子分散液を透明ガラス製サンプル瓶中に入れ密閉し、これを暗所において25℃にて7日間保存したところ、銀鏡は認められなかった。保存後の銀ナノ粒子分散液を0.2μmフィルターにてろ過したところ、フィルター目詰まりを起こさなかった。つまり、保存後の銀ナノ粒子分散液は良好な分散状態を保っていた。
Moreover, about the said silver nanoparticle dispersion liquid, [1] initial stage dispersibility evaluation and [2] storage stability evaluation were performed as follows.
[1] When the silver nanoparticle dispersion immediately after preparation was filtered through a 0.2 μm filter, the filter was not clogged. That is, the silver nanoparticle dispersion liquid maintained a good dispersion state.
[2] The silver nanoparticle dispersion liquid immediately after preparation was put in a transparent glass sample bottle, sealed, and stored in the dark at 25 ° C. for 7 days. No silver mirror was observed. When the silver nanoparticle dispersion after storage was filtered with a 0.2 μm filter, the filter was not clogged. That is, the silver nanoparticle dispersion after storage maintained a good dispersion state.
(シュウ酸銀-アミン錯体について)
 上記銀ナノ粒子の調製中に得られた粘性のある白色物質について、DSC(示差走査熱量計)測定を行ったところ、熱分解による発熱開始平均温度値は102.5℃であった。一方、原料のシュウ酸銀について、同様に、DSC測定を行ったところ、熱分解による発熱開始平均温度値は218℃であった。このように、上記銀ナノ粒子の調製中に得られた粘性のある白色物質は、原料のシュウ酸銀に比べて、熱分解温度が低下していた。このことから、上記銀ナノ粒子の調製中に得られた粘性のある白色物質は、シュウ酸銀とアルキルアミンとが結合してなるものであることが示され、シュウ酸銀の銀原子に対してアルキルアミンのアミノ基が配位結合しているシュウ酸銀-アミン錯体であると推察された。
(About silver oxalate-amine complex)
When the viscous white substance obtained during the preparation of the silver nanoparticles was subjected to DSC (Differential Scanning Calorimetry) measurement, the heat generation starting average temperature value due to thermal decomposition was 102.5 ° C. On the other hand, when the DSC measurement was similarly performed on the raw material silver oxalate, the heat generation starting average temperature value due to thermal decomposition was 218 ° C. Thus, the viscous white substance obtained during the preparation of the silver nanoparticles had a lower thermal decomposition temperature than the raw material silver oxalate. This indicates that the viscous white substance obtained during the preparation of the silver nanoparticles is a combination of silver oxalate and alkylamine, and is based on the silver atoms of silver oxalate. It was speculated that this was a silver oxalate-amine complex in which the amino group of the alkylamine was coordinated.
 DSC測定条件は以下のとおりであった。
装置:DSC 6220-ASD2(エスアイアイ・ナノテクノロジー社製)
試料容器:15μL 金メッキ密封セル(エスアイアイ・ナノテクノロジー社製)
昇温速度:10℃/min (室温~600℃)
雰囲気ガス:セル内 大気圧 空気封じ込み
      セル外 窒素気流(50mL/min)
The DSC measurement conditions were as follows.
Apparatus: DSC 6220-ASD2 (manufactured by SII Nanotechnology)
Sample container: 15 μL gold-plated sealed cell (manufactured by SII Nanotechnology)
Temperature increase rate: 10 ° C / min (room temperature to 600 ° C)
Atmospheric gas: Atmospheric pressure in the cell Air confinement Outside nitrogen flow
 また、上記銀ナノ粒子の調製中に得られた粘性のある白色物質について、IRスペクトル測定を行ったところ、アルキルアミンのアルキル基に由来する吸収(2900cm-1付近、1000cm-1付近)が観察された。このことからも、上記銀ナノ粒子の調製中に得られた粘性のある白色物質は、シュウ酸銀とアルキルアミンとが結合してなるものであることが示され、シュウ酸銀の銀原子に対してアミノ基が配位結合しているシュウ酸銀-アミン錯体であると推察された。 Also, the white material with a viscous obtained during the preparation of the silver nanoparticles was subjected to IR spectrum measurement, absorption derived from the alkyl group of the alkyl amine (2900 cm around -1, around 1000 cm -1) was observed It was done. This also shows that the viscous white substance obtained during the preparation of the silver nanoparticles is formed by the combination of silver oxalate and alkylamine, and the silver oxalate has silver atoms. On the other hand, it was presumed to be a silver oxalate-amine complex in which the amino group was coordinated.
[実施例2]
 銀ナノ粒子の調製において、アミン-カルボン酸混合溶液の組成を、N,N-ジメチル-1,3-プロパンジアミン1.28g(12.5mmol)、n-ブチルアミン0.91g(12.5mmol)、n-ヘキシルアミン3.24g(32.0mmol)、n-オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更したこと以外は、実施例1と同様にして、銀ナノ粒子分散液を調製し、塗膜の形成、焼結を行った。
[Example 2]
In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.28 g (12.5 mmol) of N, N-dimethyl-1,3-propanediamine, 0.91 g (12.5 mmol) of n-butylamine, Example 1 was repeated except that n-hexylamine was changed to 3.24 g (32.0 mmol), n-octylamine 0.39 g (3.0 mmol), and oleic acid 0.13 g (0.45 mmol). Then, a silver nanoparticle dispersion was prepared, and a coating film was formed and sintered.
 得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は11.3μΩcmであった。 The obtained silver sintered film had a thickness of about 1 μm and a specific resistance value of 11.3 μΩcm.
[実施例3]
 銀ナノ粒子の調製において、アミン-カルボン酸混合溶液の組成を、N,N-ジメチル-1,3-プロパンジアミン1.53g(15.0mmol)、n-ブチルアミン0.73g(10.0mmol)、n-ヘキシルアミン3.24g(32.0mmol)、n-オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更したこと以外は、実施例1と同様にして、銀ナノ粒子分散液を調製し、塗膜の形成、焼結を行った。
[Example 3]
In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.53 g (15.0 mmol) of N, N-dimethyl-1,3-propanediamine, 0.73 g (10.0 mmol) of n-butylamine, Example 1 was repeated except that n-hexylamine was changed to 3.24 g (32.0 mmol), n-octylamine 0.39 g (3.0 mmol), and oleic acid 0.13 g (0.45 mmol). Then, a silver nanoparticle dispersion was prepared, and a coating film was formed and sintered.
 得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は14.2μΩcmであった。 The obtained silver sintered film had a thickness of about 1 μm and a specific resistance value of 14.2 μΩcm.
[実施例4]
 銀ナノ粒子の調製において、アミン-カルボン酸混合溶液の組成を、N,N-ジメチル-1,3-プロパンジアミン1.02g(10mmol)、n-ブチルアミン1.10g(15.0mmol)、n-ヘキシルアミン3.24g(32.0mmol)、n-オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更したこと以外は、実施例1と同様にして、銀ナノ粒子分散液を調製し、塗膜の形成、焼結を行った。
[Example 4]
In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.02 g (10 mmol) of N, N-dimethyl-1,3-propanediamine, 1.10 g (15.0 mmol) of n-butylamine, n- Except for changing to 3.24 g (32.0 mmol) of hexylamine, 0.39 g (3.0 mmol) of n-octylamine, and 0.13 g (0.45 mmol) of oleic acid, the same as in Example 1, A silver nanoparticle dispersion was prepared, and a coating film was formed and sintered.
 得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は14.5μΩcmであった。 The obtained silver sintered film had a thickness of about 1 μm and a specific resistance value of 14.5 μΩcm.
[実施例5]
(銀ナノ粒子の調製)
 50mLフラスコに、n-ブチルアミン10.84g(150mmol)、及びn-ヘキシルアミン3.00g(30mmol)を加えて室温で攪拌し、均一な混合溶液(アミン混合溶液)を調製した。
[Example 5]
(Preparation of silver nanoparticles)
To a 50 mL flask, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were added and stirred at room temperature to prepare a uniform mixed solution (amine mixed solution).
 調製した混合溶液にシュウ酸銀3.04g(10mmol)を加え、室温で攪拌して、粘性のある白色の物質への変化が、外見的に終了したと認められる時点で攪拌を終了した。 To the prepared mixed solution, 3.04 g (10 mmol) of silver oxalate was added and stirred at room temperature, and stirring was terminated when it was recognized that the change to a viscous white substance was apparently finished.
 次に、得られた反応混合物を85℃~90℃に加熱攪拌した。加熱攪拌を開始したところ、徐々に茶色へと変色し、2時間加熱攪拌することで、銀ナノ粒子が懸濁した懸濁液を得た。 Next, the obtained reaction mixture was heated and stirred at 85 ° C. to 90 ° C. When heating and stirring were started, the color gradually changed to brown, and by stirring for 2 hours, a suspension in which silver nanoparticles were suspended was obtained.
 次に、得られた懸濁液にメタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。得られた銀ナノ粒子に対して、再度、メタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。 Next, 10 mL of methanol was added to the obtained suspension and stirred, and then silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. To the obtained silver nanoparticles, 10 mL of methanol was added again and stirred, and then the silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. In this way, wet silver nanoparticles were obtained.
(銀ナノ塗料の調製と焼結)
 次に、湿った銀ナノ粒子に、ジヒドロキシターピネオールを銀濃度70wt%となるように加えて攪拌し、銀ナノ粒子含有ペースト(銀ナノ塗料)を調製した。この銀ナノ粒子含有ペーストをアプリケーターにより無アルカリガラス板上に塗布し、塗膜を形成した。
(Preparation and sintering of silver nano-paint)
Next, dihydroxyterpineol was added to the wet silver nanoparticles so as to have a silver concentration of 70 wt% and stirred to prepare a silver nanoparticle-containing paste (silver nanopaint). This silver nanoparticle-containing paste was applied onto an alkali-free glass plate with an applicator to form a coating film.
 塗膜を次に示す各条件で、送風乾燥炉にて焼結し、各厚みの銀焼結膜を形成した。得られた銀焼結膜の比抵抗値を4端子法により測定した。 The coating film was sintered in a blow drying oven under the following conditions to form a silver sintered film of each thickness. The specific resistance value of the obtained silver sintered film was measured by a four-terminal method.
[1]焼結条件:80℃、30分間
   焼結後膜厚:6.77μm
   焼結膜の比抵抗値:1.70E-05Ωcm(即ち、17μΩcm)
[2]焼結条件:80℃、60分間
   焼結後膜厚:4.96μm
   焼結膜の比抵抗値:1.00E-05Ωcm
[3]焼結条件:120℃、15分間
   焼結後膜厚:5.42μm
   焼結膜の比抵抗値:6.03E-06Ωcm
[1] Sintering condition: 80 ° C., 30 minutes Film thickness after sintering: 6.77 μm
Specific resistance of sintered film: 1.70E-05 Ωcm (ie, 17 μΩcm)
[2] Sintering condition: 80 ° C., 60 minutes Film thickness after sintering: 4.96 μm
Specific resistance of sintered film: 1.00E-05Ωcm
[3] Sintering condition: 120 ° C., 15 minutes Film thickness after sintering: 5.42 μm
Specific resistance of sintered film: 6.03E-06Ωcm
[実施例6]
 アミン混合溶液の組成において、n-ヘキシルアミン3.00g(30mmol)をn-オクチルアミン3.88g(30mmol)に変更したこと以外は、実施例5と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、次に示す条件での焼結を行った。
[Example 6]
A silver nanoparticle-containing paste was prepared in the same manner as in Example 5 except that n-hexylamine 3.00 g (30 mmol) was changed to n-octylamine 3.88 g (30 mmol) in the composition of the amine mixed solution. The coating film was formed and sintered under the following conditions.
[1]焼結条件:80℃、30分間
   焼結後膜厚:6.38μm
   焼結膜の比抵抗値:6.23E-05Ωcm
[2]焼結条件:80℃、60分間
   焼結後膜厚:4.70μm
   焼結膜の比抵抗値:2.21E-05Ωcm
[3]焼結条件:120℃、15分間
   焼結後膜厚:4.73μm
   焼結膜の比抵抗値:8.34E-06Ωcm
[1] Sintering condition: 80 ° C., 30 minutes Film thickness after sintering: 6.38 μm
Specific resistance of sintered film: 6.23E-05 Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 4.70 μm
Specific resistance of sintered film: 2.21E-05Ωcm
[3] Sintering condition: 120 ° C., 15 minutes Film thickness after sintering: 4.73 μm
Specific resistance of sintered film: 8.34E-06Ωcm
[参考例1]
 銀ナノ粒子の調製において、アミン-カルボン酸混合溶液の組成を、N,N-ジメチル-1,3-プロパンジアミン2.55g(25.0mmol)、n-ヘキシルアミン3.24g(32.0mmol)、n-オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更したこと以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。そして、実施例1と同様にして、焼結後の膜厚が1μm程度となるように、塗膜の形成、焼結を行った。
[Reference Example 1]
In preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 2.55 g (25.0 mmol) of N, N-dimethyl-1,3-propanediamine and 3.24 g (32.0 mmol) of n-hexylamine. A silver nanoparticle dispersion was prepared in the same manner as in Example 1 except that 0.39 g (3.0 mmol) of n-octylamine and 0.13 g (0.45 mmol) of oleic acid were changed. Then, in the same manner as in Example 1, the coating film was formed and sintered so that the film thickness after sintering was about 1 μm.
 得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は2.0E+08μΩcm程度であった。 The thickness of the obtained silver sintered film was about 1 μm, and the specific resistance value was about 2.0E + 08 μΩcm.
[参考例2]
 アミン混合溶液の組成において、n-ブチルアミン10.84g(150mmol)及びn-ヘキシルアミン3.00g(30mmol)を、n-ブチルアミン8.67g(120mmol)及びn-ヘキシルアミン6.00g(60mmol)にそれぞれ変更したこと以外は、実施例5と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、次に示す条件での焼結を行った。
[Reference Example 2]
In the composition of the amine mixed solution, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were converted into 8.67 g (120 mmol) of n-butylamine and 6.00 g (60 mmol) of n-hexylamine. A silver nanoparticle-containing paste was prepared in the same manner as in Example 5 except that each was changed, and a coating film was formed and sintered under the following conditions.
[1]焼結条件:80℃、30分間
   焼結後膜厚:6.14μm
   焼結膜の比抵抗値:3.21E-05Ωcm
[2]焼結条件:80℃、60分間
   焼結後膜厚:5.11μm
   焼結膜の比抵抗値:1.72E-05Ωcm
[3]焼結条件:120℃、15分間
   焼結後膜厚:4.63μm
   焼結膜の比抵抗値:7.42E-06Ωcm
[1] Sintering condition: 80 ° C., 30 minutes Film thickness after sintering: 6.14 μm
Specific resistance of sintered film: 3.21E-05 Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 5.11 μm
Specific resistance of sintered film: 1.72E-05Ωcm
[3] Sintering conditions: 120 ° C., 15 minutes Film thickness after sintering: 4.63 μm
Specific resistance of sintered film: 7.42E-06Ωcm
[参考例3]
 アミン混合溶液の組成において、n-ブチルアミン10.84g(150mmol)及びn-オクチルアミン3.88g(30mmol)を、n-ブチルアミン8.67g(120mmol)及びn-オクチルアミン7.66g(60mmol)にそれぞれ変更したこと以外は、実施例6と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、次に示す条件での焼結を行った。
[Reference Example 3]
In the composition of the amine mixed solution, 10.84 g (150 mmol) of n-butylamine and 3.88 g (30 mmol) of n-octylamine were converted into 8.67 g (120 mmol) of n-butylamine and 7.66 g (60 mmol) of n-octylamine. A silver nanoparticle-containing paste was prepared in the same manner as in Example 6 except that each was changed, and a coating film was formed and sintered under the following conditions.
[1]焼結条件:80℃、30分間
   焼結後膜厚:6.04μm
   焼結膜の比抵抗値:2.17E-02Ωcm
[2]焼結条件:80℃、60分間
   焼結後膜厚:6.45μm
   焼結膜の比抵抗値:2.88E-04Ωcm
[3]焼結条件:120℃、15分間
   焼結後膜厚:7.15μm
   焼結膜の比抵抗値:1.10E-04Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.04 μm
Specific resistance of sintered film: 2.17E-02Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 6.45 μm
Specific resistance of sintered film: 2.88E-04Ωcm
[3] Sintering conditions: 120 ° C., 15 minutes Film thickness after sintering: 7.15 μm
Specific resistance of sintered film: 1.10E-04Ωcm
 以上より、本発明の半導体装置において使用される銀ナノ粒子(本発明の銀ナノ粒子)は、分散液中において良好な分散性、保存安定性を持つと共に、例えば1μm以上の比較的厚膜の銀焼結膜を低温且つ短時間で焼結して形成した場合であっても、良好な導電性を付与することができる。また、低温且つ短時間で純度の高い緻密な銀焼結体が得られることから、良好な放熱性と高い強度をも併せて付与することができる。このため、前記銀ナノ粒子を用いることにより、半導体素子の損傷が抑制されており、半導体素子から基板への放熱性が高く、半導体素子と基板との接合が強固であり、半導体素子の端子と基板の電極との導電性が高く、製造効率が高く、精度の高い半導体装置が得られる。 As described above, the silver nanoparticles used in the semiconductor device of the present invention (silver nanoparticles of the present invention) have good dispersibility and storage stability in the dispersion, and have a relatively thick film of, for example, 1 μm or more. Even when the silver sintered film is formed by sintering at a low temperature for a short time, good conductivity can be imparted. Moreover, since a dense silver sintered body with high purity can be obtained at a low temperature and in a short time, it is possible to impart both good heat dissipation and high strength. For this reason, by using the silver nanoparticles, damage to the semiconductor element is suppressed, heat dissipation from the semiconductor element to the substrate is high, the bonding between the semiconductor element and the substrate is strong, and the terminals of the semiconductor element A semiconductor device having high conductivity with the electrode of the substrate, high manufacturing efficiency, and high accuracy can be obtained.
 本発明の半導体装置及びその製造方法は、特に、発熱量の高いパワー半導体や光半導体素子等を備えた、放熱性が要求される半導体装置及びその製造方法として有用である。それに加えて、前記接合部の導電性に優れることから、エネルギー効率が高いため、省エネルギーに寄与する半導体装置及びその製造方法として有用である。 The semiconductor device and the manufacturing method thereof according to the present invention are particularly useful as a semiconductor device including a power semiconductor having high heat generation, an optical semiconductor element, etc. and requiring heat dissipation, and a manufacturing method thereof. In addition, since the electrical conductivity of the junction is excellent, the energy efficiency is high, so that it is useful as a semiconductor device that contributes to energy saving and a manufacturing method thereof.
 1  半導体装置
 2  基板
 3  電極
 4  半導体素子
 5  端子
 6a 接合部(未焼結)
 6b 接合部(未焼結)
 6  接合部(焼結体)
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Board | substrate 3 Electrode 4 Semiconductor element 5 Terminal 6a Joint part (unsintered)
6b Joint (unsintered)
6 Joint (sintered body)

Claims (10)

  1.  半導体素子と基板とを備える半導体装置であって、前記半導体素子の端子と前記基板の電極が対向しており、前記端子と前記電極が1つ以上の接合部により接合され、前記接合部の少なくとも1つが、銀ナノ粒子を焼結してなる焼結体であり、
     前記銀ナノ粒子が、脂肪族炭化水素基及びアミノ基を有するアミン(A)並びに銀化合物(B)を含む混合物を熱分解して得られる銀ナノ粒子であることを特徴とする半導体装置。
    A semiconductor device comprising a semiconductor element and a substrate, wherein a terminal of the semiconductor element and an electrode of the substrate are opposed to each other, and the terminal and the electrode are bonded by one or more bonding portions, and at least of the bonding portions One is a sintered body formed by sintering silver nanoparticles,
    A semiconductor device, wherein the silver nanoparticles are silver nanoparticles obtained by thermally decomposing a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group and a silver compound (B).
  2.  前記混合物が、前記アミン(A)として、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)、脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)、及び、脂肪族炭化水素基と2つのアミノ基とからなる炭素数8以下の脂肪族炭化水素ジアミン(A3)を含む請求項1に記載の半導体装置。 The mixture comprises, as the amine (A), an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, an aliphatic hydrocarbon group and one amino group. The aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms and the aliphatic hydrocarbon diamine (A3) having 8 or less carbon atoms composed of an aliphatic hydrocarbon group and two amino groups. Semiconductor device.
  3.  前記混合物が、前記アミン(A)として、脂肪族炭化水素基と1つのアミノ基とからなる炭素数6以上の脂肪族炭化水素モノアミン(A1)、及び脂肪族炭化水素基と1つのアミノ基とからなる炭素数5以下の脂肪族炭化水素モノアミン(A2)を含み、
     前記モノアミン(A1)と前記モノアミン(A2)の合計を基準として、前記モノアミン(A1)を5モル%以上20モル%未満、及び前記モノアミン(A2)を80モル%を超えて95モル%以下の割合で含む請求項1に記載の半導体装置。
    The mixture includes, as the amine (A), an aliphatic hydrocarbon monoamine (A1) having 6 or more carbon atoms composed of an aliphatic hydrocarbon group and one amino group, and an aliphatic hydrocarbon group and one amino group. An aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms consisting of
    Based on the total of the monoamine (A1) and the monoamine (A2), the monoamine (A1) is 5 mol% or more and less than 20 mol%, and the monoamine (A2) is more than 80 mol% and 95 mol% or less. The semiconductor device according to claim 1, which is included in proportion.
  4.  前記混合物が、前記アミン(A)として、炭素数4以上の分岐脂肪族炭化水素基と1つのアミノ基とからなる分岐脂肪族炭化水素モノアミン(A4)を含む請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the mixture includes a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group as the amine (A).
  5.  前記銀化合物(B)が、シュウ酸銀である請求項1~4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the silver compound (B) is silver oxalate.
  6.  前記銀ナノ粒子が、平均粒径が0.5nm~100nmの銀ナノ粒子である請求項1~5のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 5, wherein the silver nanoparticles are silver nanoparticles having an average particle diameter of 0.5 nm to 100 nm.
  7.  前記接合部が所定の間隔をおいて互いに平行に並ぶ複数の列をなすように形成されている請求項1~6のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein the joint portions are formed in a plurality of rows arranged in parallel with each other at a predetermined interval.
  8.  前記半導体素子が光半導体素子である請求項1~7のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 7, wherein the semiconductor element is an optical semiconductor element.
  9.  請求項1~8のいずれか1項に記載の半導体装置の製造方法であって、
     半導体素子の端子及び基板の電極の少なくとも一方に、銀ナノ粒子を含む組成物を供給する工程(a)、前記半導体素子の端子と前記基板の電極とを対向させる工程(b)、前記半導体素子の端子と前記基板の電極とを前記銀ナノ粒子を含む組成物により接合して接合部を形成する工程(c)、及び、前記銀ナノ粒子を含む組成物を加熱して前記銀ナノ粒子の焼結体を形成する工程(d)を含む半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 1 to 8,
    A step of supplying a composition containing silver nanoparticles to at least one of a terminal of the semiconductor element and an electrode of the substrate, a step of allowing the terminal of the semiconductor element and the electrode of the substrate to face each other (b), and the semiconductor element A step (c) of forming a bonded portion by bonding the terminal of the substrate and the electrode of the substrate with the composition containing the silver nanoparticles, and heating the composition containing the silver nanoparticles to A method for manufacturing a semiconductor device, comprising a step (d) of forming a sintered body.
  10.  前記工程(a)が、半導体素子の端子及び基板の電極の両方に前記銀ナノ粒子を含む組成物を供給する工程(a1)である請求項9に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 9, wherein the step (a) is a step (a1) of supplying the composition containing the silver nanoparticles to both the terminal of the semiconductor element and the electrode of the substrate.
PCT/JP2014/068270 2013-07-09 2014-07-09 Semiconductor device using silver nanoparticles and method for manufacturing same WO2015005372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-143478 2013-07-09
JP2013143478A JP2016167471A (en) 2013-07-09 2013-07-09 Semiconductor device using silver nanoparticles and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2015005372A1 true WO2015005372A1 (en) 2015-01-15

Family

ID=52280050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068270 WO2015005372A1 (en) 2013-07-09 2014-07-09 Semiconductor device using silver nanoparticles and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2016167471A (en)
TW (1) TW201513132A (en)
WO (1) WO2015005372A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009234A (en) * 2017-06-22 2019-01-17 スタンレー電気株式会社 Method of manufacturing electronic device and, apparatus for manufacturing electronic device
TWI695389B (en) * 2015-02-06 2020-06-01 國立大學法人北海道大學 Composite microparticles and dispersions, and their manufacturing methods and uses
WO2021256040A1 (en) * 2020-06-15 2021-12-23 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652052B2 (en) 2021-03-29 2023-05-16 Tpk Advanced Solutions Inc. Contact structure and electronic device having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332259A (en) * 2006-06-14 2007-12-27 Nichia Chem Ind Ltd Tablet for transfer molding, method for producing the same, light-emitting device and method for producing the same
JP2010140928A (en) * 2008-12-09 2010-06-24 Shinkawa Ltd Semiconductor device and method of mounting semiconductor die
JP2012207049A (en) * 2011-03-11 2012-10-25 Bando Chemical Industries Ltd Colloidal dispersion liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332259A (en) * 2006-06-14 2007-12-27 Nichia Chem Ind Ltd Tablet for transfer molding, method for producing the same, light-emitting device and method for producing the same
JP2010140928A (en) * 2008-12-09 2010-06-24 Shinkawa Ltd Semiconductor device and method of mounting semiconductor die
JP2012207049A (en) * 2011-03-11 2012-10-25 Bando Chemical Industries Ltd Colloidal dispersion liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695389B (en) * 2015-02-06 2020-06-01 國立大學法人北海道大學 Composite microparticles and dispersions, and their manufacturing methods and uses
JP2019009234A (en) * 2017-06-22 2019-01-17 スタンレー電気株式会社 Method of manufacturing electronic device and, apparatus for manufacturing electronic device
JP7002230B2 (en) 2017-06-22 2022-01-20 スタンレー電気株式会社 Manufacturing method of electronic device
WO2021256040A1 (en) * 2020-06-15 2021-12-23 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and method for producing same
EP4167274A4 (en) * 2020-06-15 2024-01-03 Sony Semiconductor Solutions Corp Semiconductor device and method for producing same

Also Published As

Publication number Publication date
TW201513132A (en) 2015-04-01
JP2016167471A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6001861B2 (en) Silver nanoparticle production method, silver nanoparticle, and silver coating composition
KR102100289B1 (en) Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
JP6037494B2 (en) Silver nanoparticle production method, silver nanoparticle, and silver coating composition
JP5923608B2 (en) Method for producing ink containing silver nanoparticles and ink containing silver nanoparticles
JP5986636B2 (en) Method for producing silver nanoparticles, method for producing silver coating composition, and method for producing silver conductive material
JP6026565B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP6151893B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP6664373B2 (en) Silver particle paint composition
WO2015005372A1 (en) Semiconductor device using silver nanoparticles and method for manufacturing same
JP2012144796A (en) Method of manufacturing silver nanoparticle, silver nanoparticle and silver ink
TWI744372B (en) Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle
JP6370936B2 (en) Method for producing silver nanoparticles and silver nanoparticles
WO2015005373A1 (en) Light-emitting device using silver nanoparticles and method for producing same
JP7474122B2 (en) Silver nanoparticles and their manufacturing method
JP6378880B2 (en) Method for producing silver nanoparticles and silver nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP