WO2015005283A1 - Modified resin and resin composition - Google Patents

Modified resin and resin composition Download PDF

Info

Publication number
WO2015005283A1
WO2015005283A1 PCT/JP2014/068056 JP2014068056W WO2015005283A1 WO 2015005283 A1 WO2015005283 A1 WO 2015005283A1 JP 2014068056 W JP2014068056 W JP 2014068056W WO 2015005283 A1 WO2015005283 A1 WO 2015005283A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
compound
represented
atom
Prior art date
Application number
PCT/JP2014/068056
Other languages
French (fr)
Japanese (ja)
Inventor
篠畑 雅亮
裕士 小杉
信寿 三宅
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN202010115257.7A priority Critical patent/CN111205424B/en
Priority to KR1020167000412A priority patent/KR101875294B1/en
Priority to JP2015526326A priority patent/JP6005285B2/en
Priority to CN201480038533.7A priority patent/CN105358602B/en
Priority to CN202111368897.XA priority patent/CN113929866B/en
Publication of WO2015005283A1 publication Critical patent/WO2015005283A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • C08G18/3231Hydrazine or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to a modified resin and a resin composition.
  • Isocyanate is known as a raw material for polyurethane and polyurea.
  • Polyurethane is produced by the reaction of isocyanate groups and hydroxyl groups, has excellent tensile strength, wear resistance, and oil resistance, and is used in paints, adhesives, automobile parts, and the like.
  • Patent Document 1 discloses a two-component polyurethane paint for a packing film.
  • Polyurea is produced by a reaction between an isocyanate group and an amino group, has excellent heat resistance, mechanical strength, and chemical resistance, and is processed and used for injection molded products, films, fibers, and the like.
  • Patent Document 2 discloses an adhesive using polyurea.
  • polyurethane and polyurea based on the reaction of isocyanate groups are applied to the surface of metals, glass and plastics as paints and adhesives, and give functions to the surface. Must be sufficient.
  • Patent Document 3 discloses a method for controlling the adhesion of urethane by an organic film treatment on the surface of a steel sheet.
  • Patent Document 4 discloses a composition containing an acid-modified polyolefin resin dispersion and a polymer containing sulfur element.
  • the polyisocyanate composition containing a polyfunctional isocyanate compound is used for a wide range of applications such as a coating composition.
  • Such polyisocyanate compositions are listed as, for example, one-pack or two-pack polyurethane coating compositions.
  • the two-component polyurethane coating composition is capable of forming a dense cross-linked coating film and has a good finished appearance, so that it has a high-quality appearance such as a top coat application for automobiles, information appliances, etc. It is highly evaluated for applications that require excellent weather resistance and durability.
  • Top coats for automobiles, information appliances, and the like are required to have scratch resistance and higher hardness in addition to high-quality appearance. Moreover, good extensibility is desired for the coating composition for forming the top coat.
  • composition containing polyisocyanate examples include a polyisocyanate composition containing isocyanurate groups and having a phosphorus concentration of 0.1 to 20 ppm (Patent Document 5), and a coating composition containing polyisocyanates having allophanate groups.
  • Patent Literature 6, Patent Literature 7 a coating composition (Patent Literature 8) containing a polyisocyanate composition having an allophanate group and a polyol, etc. have been proposed, and its use is being studied together with its production method.
  • Epoxy resins are used in a wide range of materials such as paints, adhesives, molding materials, composite materials, laminates, and sealing materials because of their excellent balance of heat resistance and chemical resistance.
  • Polyurethanes and polyureas based on the reaction of isocyanate groups are applied as paints or adhesives to the surfaces of metals, glass, and plastics, and give functions to the surfaces, but further improvements in heat resistance are required.
  • an object of the present invention is to provide a modified resin composition having high heat resistance.
  • Patent Document 3 On the other hand, the method of performing surface treatment as in Patent Document 3 is often difficult to apply depending on the surface shape and surface material. Moreover, in the resin mixture like patent document 4, adhesiveness falls on the contrary by phase separation of resin, and the function of the coating film itself may be impaired.
  • an object of the present invention is to provide a modified resin composition having high adhesion.
  • an object of the present invention is to provide a polyisothiocyanate having good adhesion to an adherend and a method for producing the same.
  • the present invention provides a modified epoxy resin having good adhesion to an adherend while maintaining the properties of a compound such as an epoxy resin and an episulfide resin, and a modification having good adhesion to an adherend. It is an object of the present invention to provide compounds such as episulfide resins and methods for producing these compounds.
  • the present inventors solved the above problems with a resin containing a compound having a specific structure in the molecule and a compound obtained by reacting a compound having a specific functional group.
  • the present inventors have found that the present invention can be accomplished and have completed the present invention.
  • the present invention relates to the following.
  • It is composed of a nitrogen atom, a carbon atom and a sulfur atom, which are bonded in this order, and at least one of the bond between the carbon atom and the sulfur atom and the bond between the carbon atom and the nitrogen atom is a single bond
  • Mn is 500 or more
  • Mn / n 1 is 50 or more and 300 or less
  • R 5 represents an organic group.
  • R 5 may be an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic compound, or an aromatic group having 6 to 25 carbon atoms.
  • the group containing the cyclic structure has two or more structural units (groups) selected from the group consisting of divalent groups represented by the following formula (6), (7) or (8).
  • Y 1 represents an organic group, and a plurality of Y 1 in the same molecule may be the same or different.
  • Y 1 may be a —NH— group.
  • Resin which has 2 or more of at least 1 type of structural unit (group) chosen from the group which consists of a bivalent group represented by following formula (6), (7) or (8).
  • Y 1 represents an organic group
  • a plurality of Y 1 in the same molecule may be the same or different.
  • Y 1 may be a —NH— group.
  • R 6 represents an organic group, a represents an integer of 2 to 1000.
  • the polyisothiocyanate includes a polymer having two or more repeating units represented by the following formula (33), or is the polymer, according to any one of [3] to [7] and [10] resin.
  • R 7 represents an organic group
  • R 8 represents an organic group or a single bond
  • b represents an integer of 1 or more
  • g represents 1 or 2
  • a plurality of R 7 , R 8 , b and g in the same molecule may be the same or different.
  • the polyisothiocyanate has two or more structural units represented by the following formula (40) and the following formulas (41), (42), (43), (44), (45), (46) or (47). And at least one structural unit selected from the group consisting of monovalent, divalent or trivalent groups (units) represented by the formula: wherein the nitrogen atom in the compound is a carbon atom;
  • the resin according to any one of [3] to [7] and [10], which is bound, contains a compound, or is the compound.
  • R 3 represents an organic group
  • R 4 represents an aliphatic group or an aromatic group, or an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • X 3 represents an oxygen atom or a sulfur atom, and a plurality of them in the same molecule R 3 , R 4 and X 3 may be the same or different.
  • R 3 in the structural units represented by formulas (41) to (47) may be directly bonded to an isothiocyanate group to form the structural unit of formula (40).
  • R 3 represents an organic group
  • R 4 represents an aliphatic group or an aromatic group
  • X 3 represents an oxygen atom or a sulfur atom
  • a plurality of R 3 , R 4 and X 3 in the same molecule may be the same or different.
  • a resin composition comprising the resin according to any one of [1] to [15] and [17] to [19].
  • [21] [20] A coating material formed from the resin composition according to [20] or formed using the resin composition.
  • P 1 represents an aliphatic group and / or an aromatic group
  • Q 1 is selected from the group consisting of divalent groups represented by the following formula (11), (12), (13) or (14). It represents one or more structural units (groups), and a plurality of P 1 and Q 1 may be the same or different, and n represents an integer of 2 or more.
  • R 1 represents an aliphatic group or an aromatic group
  • X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom
  • a plurality of R 1 , X 2 and Y 2 in the same molecule may be the same or different.
  • One or more of X 2 and Y 2 in one Q 1 is a sulfur atom.
  • R 1 is a residue obtained by removing two isocyanate groups (—NCO) constituting the polyisocyanate from polyisocyanate, or two isothiocyanate groups (—NCS) constituting the polyisothiocyanate from polyisothiocyanate.
  • —NCO isocyanate groups
  • NCS isothiocyanate groups
  • Y 2 represents an oxygen atom or a sulfur atom.
  • Plural Y 2 in one unit may be the same or different.
  • R 1 represents an aliphatic group or an aromatic group
  • X represents an oxygen atom or a sulfur atom.
  • At least one of X and Y 2 in one unit may be a sulfur atom.
  • R 1 is an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group (aromatic compound), or an aromatic group having 6 to 25 carbon atoms [23 ]
  • the resin according to any one of [27] to [27].
  • R 1 is a hydrocarbon group selected from the group consisting of hydrocarbon groups represented by the following formula (301), (302), (303), (304), (305) or (306), [23] The resin according to any one of [27].
  • a curable composition comprising the resin according to any one of [30] and a curing agent.
  • a modified resin composition having high heat resistance can be provided. According to the present invention, it is possible to provide a modified resin composition having high adhesion.
  • ADVANTAGE OF THE INVENTION the polyisothiocyanate with favorable adhesiveness to a to-be-adhered body and its manufacturing method can be provided.
  • a modified epoxy resin having good adhesion to an adherend, a modified episulfide resin having good adhesion to an adherend and the like while retaining the properties of a compound such as an epoxy resin and an episulfide resin. Compounds and methods for producing these compounds can be provided.
  • FIG. 3 is a 1 H-NMR spectrum of the solid obtained in Example 17.
  • FIG. 3 is a diagram showing a 1 H-NMR chart of polyisothiocyanate.
  • FIG. 3 is a diagram showing a 1 H-NMR chart of a compound containing an oxazolidine-2-thione ring.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist thereof.
  • aliphatic and “aromatic” are frequently used. According to the above IUPAC rules, it is described that organic compounds are classified into aliphatic compounds and aromatic compounds.
  • An aliphatic compound is a definition of a group in line with an aliphatic compound based on the 1995 IUPAC recommendation. The recommendation defines an aliphatic compound as “Acyclic or cyclic, saturated or unsaturated carbon compounds, and excluded aromatic compounds”.
  • the aliphatic compound and the aliphatic group used in the description of this embodiment include both saturated and unsaturated, chain and cyclic, and the above-described H (hydrogen atom); C (carbon atom); N (nitrogen) Atoms); O (oxygen atoms); S (sulfur atoms); Si (silicon atoms); halogen atoms selected from Cl (chlorine atoms), Br (bromine atoms) and I (iodine atoms); Can be done.
  • a group having an aromatic group bonded to an aliphatic group such as an “aralkyl group” is an “aliphatic group substituted with an aromatic group”, “aromatic aliphatic group” or “an aliphatic group bonded to an aromatic group”. Often referred to as a “group consisting of a group”. This is based on the reactivity in the present embodiment, and the property related to the reaction of a group such as an aralkyl group is very similar to the reactivity of aliphatic rather than aromatic.
  • non-aromatic reactive groups including aralkyl groups, alkyl groups, etc. are often referred to as “aliphatic groups optionally substituted with aromatics”, “aliphatic groups substituted with aromatics”, “aromatic groups May be included in the “aliphatic group”.
  • the resin composition contains a resin having a nitrogen-carbon-sulfur bond and / or a nitrogen-carbon-oxygen bond.
  • the nitrogen-carbon-sulfur bond refers to a structure in which a nitrogen atom, a carbon atom, and a sulfur atom are bonded in this order.
  • the nitrogen-carbon bond and the carbon-sulfur bond in the bond are a single bond. Or an unsaturated bond.
  • at least one of the nitrogen-carbon bond and the carbon-sulfur bond may be a single bond.
  • the nitrogen atom and sulfur atom that form the bond may be bonded to other atoms such as a carbon atom, a nitrogen atom, an oxygen atom, or a silicon atom. Nitrogen-carbon-oxygen bonds are defined similarly.
  • Preferred examples of the group containing a nitrogen-carbon-sulfur bond and / or nitrogen-carbon-oxygen bond include structural units represented by the following formulae.
  • R 1 is a residue obtained by removing two isocyanate groups (—NCO) constituting the polyisocyanate from polyisocyanate, or two isothiocyanate groups (—NCS) constituting the polyisothiocyanate from polyisothiocyanate.
  • —NCO isocyanate groups
  • NCS isothiocyanate groups
  • R 3 and R 4 each independently represent an aliphatic group or an aromatic group, and a plurality of R 3 and R 4 may be the same or different, X 3 represents an oxygen atom or a sulfur atom.
  • a resin composition containing a resin having such a structural unit in the molecule has an effect of greatly improving the adhesion with a metal.
  • the refractive index is high, it is effective for improving the physical properties of paint such as gloss.
  • heat resistance is one of the important characteristics.
  • it may be a resin composition containing a resin having a 5% thermal weight loss temperature of 250 ° C. or higher or 300 ° C. or higher.
  • the 5% thermogravimetric decrease temperature refers to room temperature (20 ° C. to 20 ° C.) when the resin is heated in a furnace whose temperature rises at 10 ° C./min in an inert gas atmosphere such as nitrogen, helium or argon. This is the temperature of the furnace when a 5% weight loss is observed with respect to the resin weight at 30 ° C., and is generally measured using a device commercially available as a thermogravimetric analyzer. Can do.
  • the resin composition exhibiting the heat resistance effect varies depending on the main chain skeleton, the bonding mode, the molecular weight, the content of bonds contributing to the expression of heat resistance, and the like. From the viewpoint of the binding mode, among the above, it is represented by the above formulas (6) to (8), (11) to (14), (41), (42), (45), (46) or (47). A resin composition containing a resin having a structural unit is preferred.
  • the number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components)
  • the number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less.
  • the number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
  • the content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above.
  • Nitrogen contained per one molecule - carbon - number of sulfur atoms and nitrogen constituting the sulfur bonds - carbon - the value obtained by dividing the number average molecular weight of the resin by the number n 1 of oxygen atoms constituting the oxygen binding (Mn / n 1 ) Is preferably 300 or less, more preferably 200 or less, still more preferably 150 or less.
  • the resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have.
  • Mn / n 1 is preferably 50 or more, more preferably 70 or more.
  • n 1 is the total number of sulfur atoms and oxygen atoms constituting each bond.
  • the resin contained in the resin composition of the present embodiment is characterized by the bonds (structural units) constituting the molecular chain as described above, and the skeleton structure between the bonds is not particularly limited. Specifically, a skeleton structure derived from a raw material compound used in the method for producing a resin composition of the present embodiment exemplified below is preferably used.
  • a preferred first resin in the present embodiment is a resin having two or more structural units selected from the group consisting of monovalent groups represented by the above formulas (6) to (8).
  • the resin having the structural units represented by the above formulas (6) to (8) is surprisingly high in heat resistance and excellent in adhesion, particularly adhesion to the metal surface.
  • the present inventors have found that a ring structure having a conjugated system contributes to heat resistance, and sulfur atoms contained in the structural unit, particularly the above formula (6). It is speculated that the thiol group (—SH group) possessed by the structural unit may have the effect of improving the adhesion. From such a viewpoint, a resin containing the structural unit represented by the above formula (6) and / or the structural unit represented by the above formula (7) is preferable.
  • the resin of the present embodiment is characterized by the bonding mode contained in the molecule, and the skeletal structure other than the bonding is not particularly limited, but more preferable forms are as follows.
  • the number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components)
  • the number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less.
  • the number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
  • the content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above.
  • Nitrogen contained per one molecule - carbon - number of sulfur atoms and nitrogen constituting the sulfur bonds - carbon - the value obtained by dividing the number average molecular weight of the resin by the number n 1 of oxygen atoms constituting the oxygen binding (Mn / n 1 ) Is preferably 300 or less, more preferably 200 or less, still more preferably 150 or less.
  • the resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have.
  • the resin when the resin has too many of the above bonds, in particular, the resin has the above formulas (6) to (8), (11) to (14), (41), (42), (45) , (46) or (47), the flexibility, which is one of the coating film performances, may be impaired.
  • (Mn / n 1 is preferably 50 or more, more preferably 70 or more.
  • n 1 is the number of bonds per unit weight (1 g) of the resin X 1 (unit mol / g).
  • n 1 Mn ⁇ X 1.
  • the resin is a nitrogen-carbon-sulfur bond.
  • N 1 is the total number of sulfur atoms and oxygen atoms constituting each bond
  • the structure provided between the structural units is not particularly limited, but is preferably an aliphatic group having 1 to 25 carbon atoms and an aromatic group having 6 to 25 carbon atoms.
  • resins having a structure represented by the following formulas (301) to (306) are preferable.
  • i represents an integer of 1 to 12, and may be 1 to 10.
  • the preferred first resin of the present embodiment is preferably a compound having at least one functional group selected from the group consisting of monovalent groups represented by the following formulas (1) to (5): At least one compound selected from monoisocyanate, polyisocyanate, monoisothiocyanate and polyisothiocyanate; It is resin obtained by the method including making this react.
  • the group represented by the above formula (1) is a hydroxyl group
  • the group represented by the above formula (2) is an amino group
  • the group represented by the above formula (3) is a hydrazide group
  • the above formula (4) May be referred to as a semicarbazide group
  • the group represented by the above formula (5) may be referred to as a thiosemicarbazide group.
  • the group of formula (2) is defined as a group different from the groups of formulas (3) to (5).
  • the compound having at least two groups selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group, and a thiosemicarbazide group is not particularly limited, and a hydroxyl group (—OH), amino group (—NH 2 ) , Hydrazide group (—C ( ⁇ O) —NH—NH 2 ), semicarbazide group (—NH—C ( ⁇ O) —NH—NH 2 ), thiosemicarbazide group (—NH—C ( ⁇ S) —NH— It suffices if it contains at least one group selected from the group consisting of NH 2 ).
  • a compound represented by the following formula (70) or formula (71) may be used.
  • R 12 , R 13 and R 14 each independently represents an organic group
  • R 15 represents an organic group or a single bond
  • a 1 and E 1 each independently represent a hydroxyl group, amino group, hydrazide group, semicarbazide group, thiol
  • B 1 and D 1 are each independently a group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group, and a thiosemicarbazide group
  • F 1 represents a hydrogen atom or an organic group
  • d represents an integer of 2 to 1000
  • e represents an integer of 1 to 3
  • x represents an integer of 1 or more
  • y represents 0 or 1 or more of Represents an integer.
  • a plurality of R 12 , R 13 , R 14 , A 1 , E 1 , B 1 , D 1 , F 1 represents a hydrogen atom or an organic group
  • d
  • R 12 is preferably an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group (aromatic compound), or a group having 6 to 25 carbon atoms. It is an aromatic group.
  • R 12 are methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyl.
  • the “C7-25 aliphatic group substituted with an aromatic group” is a group composed of a combination of an aromatic group and an aliphatic group, and the aromatic group and the aliphatic group are oxygen This means a group that may contain heteroatoms such as atoms, nitrogen atoms, sulfur atoms, etc., and the total number of carbon atoms contained in the group is 7 to 25. Other similar terms are defined similarly.
  • R 13 and R 14 are preferably an aliphatic group having 2 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group, or an aromatic group having 8 to 25 carbon atoms. It is.
  • R 13 and R 14 are ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylethane, ethylbenzene.
  • R 15 represents an organic group or a single bond.
  • R 15 is an alkylene group having 1 to 25 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, or the following formula (72) Or it is group represented by Formula (73).
  • R 16 , R 17 and R 18 each independently represents an alkylene group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a single bond, and z represents an integer of 1 to 10.
  • R 15 is an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms
  • R 15 is methane, ethane, propane, butane, propane, hexane, octane, 2 from decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, etc.
  • R 15 is a single bond
  • E 1 is bonded to R 13 .
  • single bond in this specification is defined and used in the same manner.
  • R 16 , R 17 and R 18 are preferably methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, A residue obtained by removing two hydrogen atoms from dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, etc. . When an isomer exists, the isomer is also included.
  • the organic group is preferably an alkyl group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms. Or a group represented by the following formulas (74) to (76).
  • R 19 , R 20 and R 21 each independently represents an alkylene group having 1 to 10 carbon atoms or an aromatic group having 6 to 10 carbon atoms, and z represents an integer of 1 to 10.
  • R 19 , R 20 and R 21 are preferably an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms.
  • R 19 , R 20 and R 21 are specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethyl A residue obtained by removing two hydrogen atoms from ethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, t
  • the compound containing at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group are shown below.
  • Examples of the compound having a hydroxyl group include polyhydric alcohols such as ethylene glycol, propylene glycol and openaerythritol, and polyols having repeating units.
  • polyol examples include acrylic polyol, polyolefin polyol, polyvinyl alcohol and the like.
  • Acrylic polyol is obtained by copolymerizing an ethylenically unsaturated bond-containing monomer having a hydroxyl group alone or a mixture thereof with another ethylenically unsaturated bond-containing monomer copolymerizable therewith. Is obtained.
  • Examples of the ethylenically unsaturated bond-containing monomer having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate. It is done. Preferred are hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • ethylenically unsaturated bond-containing monomers copolymerizable with the above monomers include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, acrylate-n-butyl, isobutyl acrylate, Acrylic acid esters such as acrylic acid-n-hexyl, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, benzyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate Methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-n-hexyl, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, phen
  • Unsaturated carboxylic acids such as acid esters, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, methacrylamide, N, N-methylenebisacrylamide, diacetone acrylamide, diacetone methacrylamide, maleic amide, maleimide, etc.
  • Unsaturated amides vinyl monomers such as glycidyl methacrylate, styrene, vinyl toluene, vinyl acetate, acrylonitrile, dibutyl fumarate, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ - (meth) acryloxypropyltrimethoxy Examples thereof include vinyl monomers having hydrolyzable silyl groups such as silane.
  • polystyrene resin examples include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene.
  • the number of hydroxyl groups (hereinafter, the average number of hydroxyl groups) possessed by one statistical molecule of polyol is preferably 2 or more. When the average number of hydroxyl groups of the polyol is 2 or more, a decrease in the crosslinking density of the obtained coating film can be suppressed.
  • polyvinyl alcohol polyvinyl alcohol obtained by saponifying polyvinyl ester obtained by polymerizing vinyl ester; modified polyvinyl alcohol obtained by graft copolymerization of a comonomer on the main chain of polyvinyl alcohol; copolymerizing vinyl ester and comonomer Modified polyvinyl alcohol produced by saponification of the modified polyvinyl ester; so-called polyvinyl acetal resin obtained by crosslinking a part of hydroxyl groups of unmodified polyvinyl alcohol or modified polyvinyl alcohol with aldehydes such as formalin, butyraldehyde, benzaldehyde, etc. Is mentioned.
  • aldehydes such as formalin, butyraldehyde, benzaldehyde, etc.
  • Examples of the vinyl ester used in the production of polyvinyl alcohol include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, and vinyl benzoate. Is mentioned. Among these, vinyl acetate is preferable from the viewpoint of ease of production, availability, and cost of polyvinyl alcohol.
  • the above-mentioned comonomer used for the production of the modified polyvinyl alcohol is copolymerized mainly for the purpose of modifying the polyvinyl alcohol, and is used within a range not impairing the gist of the present invention.
  • Examples of such comonomer include olefins such as ethylene, propylene, 1-butene, and isobutene; acrylic acid or a salt thereof; methyl acrylate, ethyl acrylate, propyl acrylate (including isomers), butyl acrylate ( Acrylic esters such as isomers), octyl acrylate (including isomers), dodecyl acrylate (including isomers); methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, propyl methacrylate (including isomers) ), Butyl methacrylate (including isomers), octyl methacrylate (including isomers), dodecyl methacrylate (including isomers), octadecyl methacrylate (including isomers) and the like; acrylamide, N-methylacrylamide N-ethylacrylamide, N, N-di Acrylamide derivatives
  • Vinyl amides methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether vinyl ethers such as i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether and stearyl vinyl ether; nitriles such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; Examples include allyl compounds such as allyl acetate and allyl chloride; maleic acid or salts or esters thereof; itaconic acid or salts or esters thereof; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like.
  • ⁇ -olefins for example, ⁇ -olefins having 2 to 30 carbon atoms
  • unsaturated carboxylic acids or derivatives thereof, unsaturated sulfonic acids or derivatives thereof are preferable
  • ⁇ -olefins are more preferable
  • ethylene is particularly preferable.
  • the amount of modification by the comonomer is preferably 15 mol% or less, more preferably 5 mol% or less, based on the number of moles of all structural units constituting the modified polyvinyl alcohol.
  • acrylic polyols and polyester polyols are preferred.
  • (B) Specific examples of the compound having an amino group include ethylenediamine, propylenediamine, butylenediamine, triethylenediamine, hexamethylenediamine, 4,4′-diaminodicyclohexylmethane, piperazine, 2-methylpiperazine, isophoronediamine, norbornanediamine.
  • Diamines such as phenylenediamine, 4,4′-diaminodiphenyl, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diaminodiphenylsulfone, diethyltoluenediamine, bisaniline, bishexamethylenetriamine, diethylenetriamine Chain polyamines having three or more amino groups, such as triethylenetetramine, tetraethylenepentamine, pentamethylenehexamine, tetrapropylenepentamine, , 10,13,16-hexaazacyclooctadecane, 1,4,7,10-tetraazacyclodecane, 1,4,8,12-tetraazacyclopentadecane, 1,4,8,11-tetraazacyclotetradecane
  • cyclic polyamines such as polyallylamine, polyvinylamine, and polymeric polyamines such as polyamines represented by the following formulas (77) to (80).
  • polyallylamine and polyvinylamine are preferable.
  • polyallylamine and polyvinylamine any of those conventionally produced by known methods can be used, and the degree of polymerization is not particularly limited. Moreover, the copolymer with another monomer may be sufficient.
  • h ′ represents an integer of 2 to 40
  • i ′ and j ′ each represent an integer of 1 to 6, and the sum of i ′ and j ′ is an integer of 2 to 7.
  • R 35 represents a group selected from the group consisting of a hydrogen atom, a methyl group and an ethyl group, s represents an integer of 0 or 1, r, t and u each represents 0 or an integer of 1 or more; The sum of r, t and u is 5 to 90. )
  • Examples of the compound having a hydrazide group include saturated dicarboxylic acids having 2 to 18 carbon atoms such as oxalic acid dihydrazide, malonic acid dihydrazide, glutaric acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, and sebacic acid dihydrazide.
  • Dihydrazide monoolefinic unsaturated dicarboxylic acid dihydrazide such as maleic acid dihydrazide, fumaric acid dihydrazide, itaconic acid dihydrazide; poly obtained by reacting a low polymer having a carboxylic acid lower alkyl ester group with hydrazine or hydrazine hydrate And hydrazide.
  • Polymerization of ethylenically unsaturated bond-containing monomers having a hydroxyl group such as hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, etc.
  • It may be a polymer obtained by reacting a product (which may be a copolymer) with hydrazine, or a vinyl ester (for example, vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, It may be a polymer obtained by reacting hydrazine with a polymer (which may be a copolymer) of vinyl tickate, vinyl laurate, vinyl stearate, vinyl benzoate and the like.
  • Examples of the compound having a semicarbazide group include bissemicarbazide; diisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate or polyisocyanate compounds derived therefrom, N, N-substituted hydrazines such as N, N-dimethylhydrazine, and the above. Examples thereof include polyfunctional semicarbazide obtained by reacting the exemplified hydrazine.
  • Examples of the compound having a thiosemicarbazide group include bisthiosemicarbazide; diisothiocyanates such as hexamethylene diisothiocyanate and isophorone diisothiocyanate, or polyisothiocyanate compounds derived therefrom, N, N-dimethylhydrazine, etc. N, N-substituted hydrazine and polyfunctional thiosemicarbazide obtained by reacting the above-exemplified hydrazine.
  • the polyol mentioned as an example of the compound having a hydroxyl group may be a polyester polyol, a polyether polyol, a fluorine polyol, a polycarbonate polyol, or a polyurethane polyol.
  • polyester polyol for example, a dibasic acid selected from the group of carboxylic acids such as succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, or a mixture thereof
  • Polyester polyol obtained by a condensation reaction with a single or mixture of polyhydric alcohols selected from the group of ethylene glycol, propylene glycol, diethylene glycol, neopentyl glycol, trimethylolpropane, glycerin, and the like, and for example, polyhydric alcohol And polycaprolactones obtained by ring-opening polymerization of ⁇ -caprolactone.
  • polyether polyol a polybasic hydroxy compound alone or in a mixture, for example, a hydroxide such as lithium, sodium or potassium, a strongly basic catalyst such as alcoholate or alkylamine, ethylene oxide, propylene oxide, Polyether polyols obtained by adding a single or mixture of alkylene oxides such as butylene oxide, cyclohexene oxide and styrene oxide, polyether polyols obtained by reacting alkylene oxide with a polyfunctional compound such as ethylenediamine, and So-called polymer polyols obtained by polymerizing acrylamide or the like using these polyethers as a medium are included.
  • a hydroxide such as lithium, sodium or potassium
  • a strongly basic catalyst such as alcoholate or alkylamine
  • ethylene oxide propylene oxide
  • the fluorine polyol is a polyol containing fluorine in the molecule.
  • fluoroolefin, cyclovinyl ether, hydroxyalkyl vinyl ether, monocarboxylic acid disclosed in JP-A-57-34107 and JP-A-61-275311 There are copolymers such as vinyl esters.
  • Polycarbonate polyols are polycondensation of low-molecular carbonate compounds such as dialkyl carbonates such as dimethyl carbonate, alkylene carbonates such as ethylene carbonate, diaryl carbonates such as diphenyl carbonate, and low-molecular polyols used in the aforementioned polyester polyols. Can be obtained.
  • Polyurethane polyol can be obtained by a conventional method, for example, by reacting polyol and polyisocyanate.
  • Examples of the polyol having no carboxyl group include ethylene glycol and propylene glycol as low molecular weights, and examples of the high molecular weight include acrylic polyol, polyester polyol, and polyether polyol.
  • the compound having one repeating unit containing one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group is a compound represented by the following formula (81). is there.
  • a 1 represents a group defined by the above formula (70).
  • R 22 is preferably an aliphatic group having 1 to 25 carbon atoms, an aliphatic group substituted with an aromatic group having 7 to 25 carbon atoms, or an aromatic group having 6 to 25 carbon atoms.
  • R 22 is specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetra
  • Specific examples of the compound represented by the above formula (81) include methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, octadecanol, cyclohexanol, cyclooctanol, and dimethylcyclohexanol.
  • the compound represented by the above formula (81) may be a compound represented by the following formula (82).
  • R 23 represents an unsaturated aliphatic hydrocarbon group having 1 to 25 carbon atoms
  • R 15 and E 1 represent a group defined by the above formula (71).
  • the compound represented by the above formula (82) is more preferably a compound represented by the following formulas (83) to (85).
  • R 24 , R 25 and R 26 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms
  • R 27 , R 28 , R 29 and R 30 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms
  • R 31 represents a saturated hydrocarbon group having 1 to 6 carbon atoms or a single bond
  • E 1 represents a group defined by the above formula (71)
  • w represents an integer of 1 to 3.
  • An isothiocyanate compound is a compound having one or more isothiocyanate groups in one molecule, and is classified into a monoisothiocyanate and a polyisothiocyanate.
  • monoisothiocyanate is a compound having one isothiocyanate group in one molecule, and preferably a compound represented by the following formula (30).
  • R 5 is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms.
  • R 5 may be an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group.
  • R 5 is specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, It is a residue obtained by removing one hydrogen atom from tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenyl
  • Specific examples of the compound represented by the above formula (1) include methane isothiocyanate, ethane isothiocyanate, propane isothiocyanate, butane isothiocyanate, pentane isothiocyanate, hexane isothiocyanate, octane isothiocyanate, decane isothiocyanate, dodecane isothiocyanate.
  • the compound represented by the above formula (30) may be a compound represented by the following formula (86).
  • the compound represented by the above formula (30) is more preferably a compound represented by the following formulas (87) to (89).
  • R 24 , R 25 and R 26 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms;
  • R 27 , R 28 , R 29 and R 30 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms,
  • R 31 represents a saturated hydrocarbon group having 1 to 6 carbon atoms or a single bond,
  • w represents an integer of 1 to 3.
  • Specific examples of the compounds represented by formulas (87) to (89) include isothiocyanatomethyl acrylate, isothiocyanatomethyl methacrylate, acrylic acid (2-isothiocyanatoethyl), methacrylic acid (2-isothiocyana Toethyl), acrylic acid (3-isothiocyanatopropyl), methacrylic acid (3-isothiocyanatopropyl), 2-isothiocyanatoethyl vinyl ether, 4-isothiocyanatobutyl vinyl ether, p- (isocyanatomethyl) styrene , P- (isocyanatoethylstyrene) and the like.
  • polyisothiocyanate is a compound having two or more isothiocyanate groups in one molecule, for example, a compound represented by the following formula (32).
  • R 6 represents an organic group, a represents an integer of 2 to 1000.
  • a preferred first embodiment of such a polyisothiocyanate is a polymer containing at least two repeating units represented by the following formula (33).
  • R 7 represents an organic group
  • R 7 represents an organic group or a single bond
  • b represents an integer of 1 or more
  • g represents 1 or 2
  • a plurality of R 7 , R 8 , b and g in the same molecule may be the same or different.
  • the polymer as a preferable first aspect of the polyisothiocyanate described herein may have one or more kinds of repeating units other than the repeating unit represented by the above formula (33).
  • the terminal of the polymer is a group derived from a polymerization initiator, a polymerization terminator, and a terminal modifier, and varies depending on the production method, but is not particularly limited as long as it does not contradict the gist of the present embodiment. That is, the preferable first aspect of the polyisothiocyanate is more preferably a compound represented by the following formula (90).
  • R 32 represents an organic group
  • R 33 represents an organic group or a single bond
  • B 2 and D 2 each independently represent at least one group selected from the group consisting of an isothiocyanate group, an organic group other than an isothiocyanate group, and a hydrogen atom
  • G 1 ⁇ G x represents an organic group or may not include isothiocyanate group
  • x is an integer of 1 or more
  • n x represents an integer of 1 or more
  • g represents 1 or 2
  • f represents an integer of 1 or more
  • m represents an integer of 2 or more.
  • a plurality of R 32 , R 33 , f and g in the same molecule may be the same or different.
  • G 1 to G x represent a repeating unit other than the repeating unit represented by the above formula (33). Further, n x represents the number of repeating units of G x. For example, in addition to the repeating unit represented by the above formula (43), when there are n 1 , n 2 , and n 3 of G 1 , G 2 , and G 3 , respectively, G 1 n 1 G 2 n 2 G 3 n 3 .
  • R 32 is preferably an aliphatic group having 2 to 25 carbon atoms, an aliphatic group substituted with an aromatic compound having 7 to 25 carbon atoms, or an aromatic group having 8 to 25 carbon atoms. is there.
  • R 32 include ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylethane, ethylbenzene, diethylbenzene, Diphenylethane, tetramethyldiphenylethane, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, octadecanol, cyclohexanol, cyclooctanol, dimethylcyclohexanol, diethylcyclohexanol, tri
  • R 33 represents an organic group or a single bond.
  • R 33 represents an alkylene group having 1 to 25 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, or It is group represented by Formula (91) or Formula (92).
  • R 34 , R 36 and R 37 each independently represents an alkylene group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a single bond, l represents an integer of 1 to 10.
  • R 34 is an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms, specifically, methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, 2 hydrogen atoms from octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, etc. It is a residue excluding.
  • R 34 , R 36 and R 37 are preferably methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane.
  • the organic group is preferably an alkyl group having 1 to 25 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, or And groups represented by formulas (93) to (95).
  • R 38 , R 39 and R 40 each independently represents an alkylene group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms, p represents an integer of 1 to 10.
  • R 38 , R 39 and R 40 are preferably an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms.
  • the first aspect of the polyisothiocyanate shown above may be, for example, a polymer of monoisothiocyanate represented by the above formula (41), and the polymer is a copolymer with other monomers. May be.
  • isothiocyanatomethyl acrylate is a copolymer of methyl acrylate, a copolymer of isothiocyanatomethyl methacrylate and methyl methacrylate, acrylic acid (2-isothiocyanatoethyl) and methyl acrylate.
  • Copolymer copolymer of methacrylic acid (2-isothiocyanatoethyl) and methyl methacrylate, copolymer of acrylic acid (3-isothiocyanatopropyl) and methyl acrylate, methacrylic acid (3-isothiocyanato Propyl) and methyl methacrylate copolymer.
  • methacrylic acid (2-isothiocyanatoethyl) and methyl methacrylate
  • acrylic acid (3-isothiocyanatopropyl) and methyl acrylate
  • methacrylic acid (3-isothiocyanato Propyl) and methyl methacrylate copolymer.
  • the second aspect of the polyisothiocyanate is a group consisting of a structural unit represented by the following formula (40) and units represented by the following formulas (41) to (47). And a polyisothiocyanate in which a nitrogen atom constituting the polyisothiocyanate is bonded to a carbon atom.
  • R 3 independently represents an organic group
  • R 4 represents an aliphatic group or an aromatic group, an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • a plurality of R 3 and R 4 may be the same or different
  • X 3 represents an oxygen atom or a sulfur atom.
  • R 3 is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms.
  • R 3 is specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, It is a residue obtained by removing two hydrogen atoms from tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane,
  • an N, N′-disubstituted dithioalophanoic acid bond represented by the above formula (43) or an N-substitution represented by the above formula (45) is used.
  • an —O-substituted thiocarbamate group when X 3 is an oxygen atom
  • an N-substituted —S-substituted dithiocarbamate group when X 3 is a sulfur atom
  • a hydroxy compound or thiol Use a kind.
  • the group —X 3 —R 4 is a group derived from this hydroxy compound or thiols.
  • R 4 may be a hydrocarbon group.
  • the hydrocarbon group has at least one of an aliphatic group and an aromatic group, and may contain an oxygen atom, a nitrogen atom, or the like in addition to a carbon atom.
  • R 4 is an aliphatic group or an aromatic group, preferably an aliphatic group or an aromatic group having 6 to 22 carbon atoms having 1 to 22 carbon atoms, more preferably, fats having 1 to 22 carbon atoms And a group having 7 to 22 carbon atoms in which an aliphatic group having 1 to 22 carbon atoms and an aromatic group having 6 to 22 carbon atoms are bonded.
  • R 4 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, cyclopentyl group, cyclohexyl group, cyclohexane Heptyl group, cyclooctyl group, methylcyclopentyl group, ethylcyclopentyl group, methylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group, butylcyclohexyl group, pentylcyclohexyl group, hexylcyclohexyl group, dimethylcyclohexyl group, diethylcyclohexyl group, dibutylcyclohexyl group , Phenyl group,
  • the polyisothiocyanate in the present embodiment may be a polyisothiocyanate obtained by further polymerizing a compound represented by the following formula (33), which is one type of the polyisothiocyanate of the present embodiment.
  • R 3 in the above formula (33) is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms.
  • R 3 are methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyl.
  • R 3 is more preferably a group represented by the following formulas (300) to (306).
  • i represents an integer of 1 to 12, and may be 1 to 10.
  • the compound represented by the above formula (33) is hexamethylene diisothiocyanate, isophorone diisothiocyanate, 4,4′-dicyclohexylmethane diisothiocyanate, 4,4′-diphenylmethane diisothiocyanate, toluene diene.
  • examples include isothiocyanate (each isomer) and naphthalene dithiocyanate (each isomer).
  • Examples of the compound represented by the above formula (33) include phenylene diisothiocyanate, 4,4′-diisothiocyanatodiphenyl ether, 1,3-bis (3-isothiocyanatophenoxy) benzene, 3,3′-diisothione. There can also be mentioned, for example, oocyanatodiphenylsulfone, diethyltoluene diisothiocyanate.
  • the resin (polyisothiocyanate) obtained by polymerizing the compound represented by the above formula (33) will be described.
  • the compound represented by the formula (33) may be described as a “monomer” in the sense of a compound before polymerization.
  • the polyisothiocyanate produced by the polymerization of the “monomer” represented by the above formula (33) can use a hydroxy compound and / or a thiol as an auxiliary material in the production.
  • Hydroxy compounds include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, decanol, dodecanol, cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, methylcyclopentanol, ethylcyclopentanol, Methylcyclohexanol, ethylcyclohexanol, propylcyclohexanol, butylcyclohexanol, pentylcyclohexanol, hexylcyclohexanol, dimethylcyclohexanol, diethylcyclohexanol, dibutylcyclohexanol, phenol, methylphenol, ethylphenol, propylphenol, butylphenol, pentyl Pheno
  • Thiols include methanethiol, ethanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, decanethiol, dodecanethiol, cyclopentanethiol, cyclohexanethiol, cycloheptanethiol, cyclooctanethiol, Methylcyclopentanethiol, ethylcyclopentanethiol, methylcyclohexanethiol, ethylcyclohexanethiol, propylcyclohexanethiol, butylcyclohexanethiol, pentylcyclohexanethiol, hexylcyclohexanethiol, dimethylcyclohexanethiol, diethylcyclo
  • the isothiocyanate group / hydroxyl group equivalent ratio of the above-mentioned hydroxy compound and the “monomer” represented by the above formula (33) is selected from a value of about 10 to 100 according to the purpose.
  • the isothiocyanate group / thiol group equivalent ratio is selected from a value of about 10 to 100 according to the purpose.
  • An isothiocyanurate group represented by the formula (41) can be formed by the polymerization reaction of the monomer of the formula (33).
  • the isothiocyanurate-forming catalyst for forming the isothiocyanurate group represented by the formula (41) is preferably a quaternary ammonium salt, more preferably a quaternary ammonium hydroxide, a quaternary ammonium carboxylic acid, More preferred is quaternary ammonium carboxylic acid.
  • tetraalkylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide
  • weak organic acids such as tetramethylammonium acetate, tetraethylammonium acetate, and tetrabutylammonium acetate.
  • salt include metal salts of alkyl carboxylic acids such as acetic acid, valeric acid, isovaleric acid, caproic acid, octylic acid, and myristic acid can be used, organic weak acid salts and the like are preferable from the viewpoint of reducing the amount used.
  • Examples of the hydroxy compound for diluting the isothiocyanurate-forming catalyst include methanol, ethanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1,2-propylene glycol, 1,3-propylene glycol, Examples thereof include alcoholic hydroxy compounds such as 1,3-butylene glycol, 1,4-butylene glycol, 2,3-butylene glycol, glycerin and cyclohexanol, and phenolic hydroxy compounds such as phenol, cresol, xylenol and trimethylphenol.
  • alcohols having side chains such as 2-butanol, 2-methyl-1-propanol, 1,3-butanediol, and 2,3-butanediol are preferred. Two or more types may be mixed. Thiols may be used in place of the hydroxy compound.
  • the concentration of the diluted isothiocyanurate catalyst is 1 to 20% by mass.
  • the concentration is preferably 1 to 10% by mass. If the concentration is 1% by mass or more, the amount of the hydroxy compound accompanying the isothiocyanurate-forming catalyst does not increase excessively, and the physical properties of the resulting polyisothiocyanate and the coating film formed thereby are unlikely to deteriorate.
  • the concentration is 20% by mass or less, the cocatalyst effect of the accompanying hydroxy compound does not decrease, and as a result, the amount of the isothiocyanurate-forming catalyst used is increased and the polyisothiocyanate is not easily colored.
  • the amount of the isothiocyanuration catalyst used is the monomer It is 1 ppm to 10%, preferably 10 ppm to 5%, based on the weight of diisothiocyanate. If this amount is 1 ppm or more, the function as an isothiocyanurate-forming catalyst can be sufficiently exhibited. If this amount is 3% or less, the amount of acidic phosphoric acid compound and acidic phosphoric acid ester compound (described later) added to deactivate the isothiocyanurate-forming catalyst is reduced.
  • a solvent may or may not be used, but the use of a solvent having no reaction activity with the isothiocyanate group makes it easier to control the reaction.
  • solvents examples include esters or ethers such as ethyl acetate, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, etc. Is possible. Of course, a mixture of two or more solvents can be used.
  • the isothiocyanuration reaction is performed at 30 ° C to 120 ° C, preferably 50 ° C to 100 ° C.
  • the progress of the reaction can be confirmed by 1 H-NMR analysis of the reaction solution.
  • the reaction When the reaction reaches the desired conversion rate, the reaction is stopped by deactivating the catalyst by adding a reaction terminator.
  • the conversion rate is suitably selected in the range of 10 to 60%, preferably 10 to 30%. With a low conversion rate, it is possible to obtain a polyisothiocyanate having a lower viscosity, but a conversion rate of 10% or more is preferable from the viewpoint of productivity. On the other hand, if the conversion is 60% or less, the viscosity of the polyisothiocyanate does not become too high, which is preferable.
  • the conversion rate can be obtained by the following formula.
  • one or more compounds of an acidic phosphate compound and an acidic phosphate compound are used.
  • the acidic phosphoric acid compound is an inorganic acid, and examples thereof include phosphoric acid, phosphorous acid, hypophosphorous acid, diphosphorous acid, hypophosphoric acid, pyrophosphoric acid, and peroxophosphoric acid.
  • the acidic phosphoric acid compound is preferably phosphoric acid.
  • the acidic phosphate ester compound is a compound having an acidic group and an ester group.
  • dilauryl phosphate, diphenyl phosphate, monolauryl phosphate, monophenyl phosphate, dilauryl phosphite, diphenyl phosphite, monolauryl phosphite, monophenyl phosphite and the like can be mentioned.
  • the acidic phosphate ester compound is preferably a monoalkyl phosphate having 3 to 8 carbon atoms, or a dialkyl phosphate having 6 to 16 carbon atoms, more preferably dioctyl phosphate or monooctyl phosphate.
  • an acidic phosphoric acid compound it is preferable to use an acidic phosphoric acid compound.
  • the addition amount of the acidic phosphoric acid compound is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, relative to the stoichiometric amount of the isothiocyanuration catalyst. If the addition amount is 1 equivalent or more, the isothiocyanuration catalyst can be sufficiently deactivated. If the addition amount is 10 equivalents or less, it is preferable without filtering the insoluble matter generated.
  • the polyisothiocyanate of this embodiment may be a compound represented by the following formulas (96) to (99).
  • h ′ represents an integer of 2 to 40
  • i ′ and j ′ each represent an integer of 1 to 6, and the sum of i ′ and j ′ is an integer of 2 to 7.
  • R 35 represents a group selected from the group consisting of a hydrogen atom, a methyl group, and an ethyl group
  • s represents an integer of 0 or 1
  • r, t and u each represents 0 or an integer of 1 or more
  • the sum of r, t and u is 5 to 90.
  • reaction method A compound having at least one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group, and an isothiocyanate (monoisothiocyanate or polyisothiocyanate may be used). The method of reacting with the above may be described.
  • the resin composition of the present embodiment is 1.
  • a resin obtained by reacting a compound having at least one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group with a monoisothiocyanate 2.
  • reaction formula is shown for easy understanding of the reaction, and the reaction formula describes a monofunctional compound as an example, but it goes without saying that the same reaction proceeds even in a polyfunctional compound.
  • reaction with a compound having a hydroxyl group The reaction between the compound having a hydroxyl group and isothiocyanate is represented by the following formula (100).
  • R 41 and R 42 each independently represents an organic group.
  • the reaction can be carried out in the presence or absence of a solvent.
  • the solvent used in the presence of a solvent is preferably a solvent inert to the hydroxyl group and the isothiocyanate group, or a solvent that reacts with the isothiocyanate group but has a very slow rate for the intended reaction.
  • Preferred solvents include hydrocarbon compounds such as pentane, hexane, heptane, octane, nonane, decane, dodecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane; ethyl ether, tetrahydrofuran, octyl ether, nonyl ether, decyl ether, dodecyl ether, Ethers in which hydrocarbon compounds such as tetradecyl ether, pentadecyl ether, hexadecyl ether, octadecyl ether and tetraethylene glycol dimethyl ether are bonded via an ether bond; dimethyl sulfide, diethyl sulfide, dibutyl sulfide, dihexyl sulfide, octyl sulfide
  • the reaction temperature is not particularly limited, but it can be carried out in the range of 0 ° C to 300 ° C. Any reaction time can be set as the reaction time.
  • the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
  • a catalyst may be used.
  • the catalyst include Lewis acids and transition metal compounds that generate Lewis acids, organotin compounds, copper group metals, zinc, and iron group metal compounds.
  • reaction with a compound having an amino group The reaction between the compound having an amino group and isothiocyanate is represented by the following formula (101).
  • R 41, R 42 is a group as defined by formula (100).
  • the reaction can be carried out in the presence or absence of a solvent.
  • the solvent used in the presence of a solvent is preferably a solvent inert to the amino group and the isothiocyanate group, or a solvent that reacts with the isothiocyanate group but has a very slow rate for the intended reaction.
  • Preferred solvents include hydrocarbon compounds such as pentane, hexane, heptane, octane, nonane, decane, dodecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane; ethyl ether, tetrahydrofuran, octyl ether, nonyl ether, decyl ether, dodecyl ether, Ethers in which hydrocarbon compounds such as tetradecyl ether, pentadecyl ether, hexadecyl ether, octadecyl ether and tetraethylene glycol dimethyl ether are bonded via an ether bond; dimethyl sulfide, diethyl sulfide, dibutyl sulfide, dihexyl sulfide, octyl sulfide
  • the reaction temperature is not particularly limited, but it can be carried out in the range of ⁇ 50 ° C. to 250 ° C. Any reaction time can be set as the reaction time.
  • the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
  • reaction with a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group Various reactions may occur in the reaction of a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group with an isothiocyanate, depending on the compound used, for example, a reaction represented by the following formula (102).
  • R 41 and R 42 are groups defined by the above formula (100), Y represents an —NH— group or a CH 2 — group, Z represents an oxygen atom or a sulfur atom. )
  • the reaction between a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group and an isothiocyanate can be carried out in the presence or absence of a solvent.
  • Solvents used in the presence of a solvent include, in addition to the solvents mentioned in [Reaction with a compound having a hydroxyl group], alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol; methyl acetate, ethyl acetate, Esters such as propyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, methyl lactate, ethyl lactate, and butyl lactate can also be used.
  • the reaction temperature is not particularly limited, but it can be carried out in the range of 0 ° C to 300 ° C. Any reaction time can be set as the reaction time.
  • the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
  • the reaction may be performed in the presence or absence of a catalyst.
  • a catalyst the catalyst mentioned in the above [Reaction with a compound having a hydroxyl group] can be used.
  • the heat treatment may have an effect of improving mechanical properties such as rigidity, hardness, workability, impact resistance, and bending fatigue resistance of the resin composition.
  • the mechanism that exerts such an effect is not clear, the present inventors have performed heat treatment, for example, by a reaction in which the bond on the right side of the formula (102) is represented by the following formula (103) or formula (104). It is speculated that this may be due to the formation of a ring structure in the molecular chain.
  • R 41 , R 42 , Y, and Z are groups defined by the above formula (102).
  • One preferred aspect of the resin of the present embodiment is a resin having two or more structural units selected from the group consisting of divalent groups represented by the following formulas (6) to (8).
  • Y 1 represents an organic group and may be an —NH— group.
  • Y 1 is preferably an aliphatic group having 1 to 12 carbon atoms or an aromatic group having 6 to 12 carbon atoms.
  • the aliphatic group having 1 to 12 carbon atoms include divalent groups derived from hydrocarbon compounds such as methane, ethane, propane, butane, pentane, hexane, octane, decane, cyclohexane, cyclooctane, cyclodecane, and methylcyclohexane.
  • a compound having a cyclic hydrocarbon group such as ethylcyclohexane, butylcyclohexane and dimethylcyclohexane
  • an aromatic hydrocarbon compound such as benzene, methylbenzene, ethylbenzene, butylbenzene and hexylbenzene And a divalent group.
  • the resin according to some embodiments has at least one group selected from the group consisting of groups represented by the above formulas (6) to (8) in the main chain skeleton.
  • the resin has structural units represented by the following formulas (105) to (108).
  • R 43 represents an organic group
  • J represents a divalent group represented by the above formula (6), (7) or (8)
  • a plurality of R 43 and J in the same molecule may be the same or different.
  • R 43 is preferably an aliphatic group having 2 to 25 carbon atoms, an aliphatic group substituted with an aromatic compound having 7 to 25 carbon atoms, or an aromatic group having 8 to 25 carbon atoms.
  • R 43 include ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylethane, ethylbenzene, diethylbenzene.
  • the resin composition of the present embodiment contains a resin represented by the following formula (109).
  • K 1 to K c are each independently Represents at least one group selected from the group consisting of the above formulas (6) to (8); L 1 to L c each independently represents an organic group that may or may not contain a group selected from the group consisting of formulas (6) to (8), c represents an integer of 1 or more, M 1 and M 2 each independently represents an organic group that may or may not contain an isothiocyanate group; w c represents an integer of 1 or more.
  • w c represents the number of repeating units of K c -L c .
  • the above formula (109) is represented by the following formula (110).
  • a method for producing a resin composition containing a resin having at least one structural unit selected from the group consisting of the groups represented by the above formulas (6) to (8) is not particularly limited.
  • a hydrazide group And a compound having a semicarbazide group or thiosemicarbazide group and an isothiocyanate can be produced.
  • the reaction between a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group and an isothiocyanate can be carried out in the presence or absence of a solvent.
  • Solvents used in the presence of a solvent include, in addition to the solvents mentioned in [Reaction with a compound having a hydroxyl group], alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol; methyl acetate, ethyl acetate, Esters such as propyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, methyl lactate, ethyl lactate, and butyl lactate can also be used.
  • the reaction temperature is not particularly limited, but it can be carried out in the range of 0 ° C to 300 ° C. Any reaction time can be set as the reaction time.
  • the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
  • the reaction may be performed in the presence or absence of a catalyst.
  • a catalyst the catalyst mentioned in the above [Reaction with a compound having a hydroxyl group] can be used.
  • the reaction apparatus used for carrying out the reaction is not particularly limited, and a known reactor can be used.
  • a reaction apparatus for example, conventionally known reactors such as a stirring tank, a pressurized stirring tank, a reduced pressure stirring tank, a tower reactor, a distillation tower, a packed tower, and a thin film distillation apparatus can be used in appropriate combination.
  • the material of the reactor is not particularly limited, and a known material can be used.
  • As the material of the reactor for example, glass, stainless steel, carbon steel, Hastelloy, glass lining of the base material, or Teflon (registered trademark) coating can be used.
  • SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used.
  • a known process device such as an instrument such as a flow meter or a thermometer, a reboiler, a pump, or a condenser may be added, and heating may be performed by a known method such as steam or a heater, and cooling may also be performed.
  • Known methods such as natural cooling, cooling water, and brine can be used.
  • a process can also be added as needed.
  • a modified resin composition containing a resin containing at least one structural unit selected from the group consisting of the groups represented by the above formulas (6) to (8) can also be produced.
  • the target resin may not be obtained.
  • the target resin can be produced by further performing the following heat treatment.
  • the heat treatment is preferably performed in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C.
  • the heat treatment can be performed in the air or in an inert gas atmosphere, but is preferably performed in an inert gas atmosphere.
  • the inert gas here refers to a gas such as nitrogen, helium, argon, or neon.
  • the pressure may be increased, reduced, or atmospheric.
  • the time for performing the heat treatment is not particularly limited and can be in the range of 1 minute to 500 hours. For example, the generation of the groups represented by the above formulas (6) to (8) using an infrared spectrometer The amount may be tracked and heating may be stopped when the desired amount is reached.
  • R 41 and R 42 are groups defined by the above formula (100), Y represents an —NH— group or an organic group, Z represents an oxygen atom or a sulfur atom. )
  • the modified resin composition of the present embodiment may be used alone or mixed with other resins.
  • the other resin to be mixed may be any resin, and various known resins can be used.
  • the modified resin composition of the present embodiment can be used for various known applications, among which a coating material is formed on the surface of at least one material selected from the group consisting of metal, glass and plastic.
  • a coating material is formed on the surface of at least one material selected from the group consisting of metal, glass and plastic.
  • the resin composition of this Embodiment is formed by reaction of a functional group stable with respect to water, the use to a water-system coating material is also preferable.
  • the modified resin composition of the present embodiment has a large effect of improving the adhesion to the metal surface by containing sulfur atoms in the molecular chain. Therefore, the resin composition can be suitably used for imparting cosmetic properties, weather resistance, acid resistance, rust resistance, chipping resistance, adhesion, and the like to pre-coated metal including an anti-rust steel plate, automobile coating, and the like. .
  • a preferred second resin in the present embodiment is a resin containing a molecular chain represented by the following formula (10).
  • P 1 represents an aliphatic group and / or an aromatic group
  • Q 1 is selected from the group consisting of divalent groups represented by the following formula (11), (12), (13) or (14). 1 or more types of structural units are represented, Plural P 1 and Q 1 may be the same or different, and n represents an integer of 2 or more.
  • R 1 represents an aliphatic group or an aromatic group
  • X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom
  • a plurality of R 1 , X 2 and Y 2 in the same molecule are each It may be the same or different.
  • One or more of X 2 and Y 2 in one Q 1 is a sulfur atom.
  • one Q1 contains one or more sulfur atoms.
  • the structure represented by the above formulas (11) to (14) constituting the resin is surprisingly excellent in adhesion, particularly adhesion to a metal surface. Although it is not clear about the mechanism that exerts such an effect, the present inventors presume that the sulfur atom or oxygen atom contained in the bond may have an effect of improving adhesion.
  • the resin of the present embodiment is characterized by the bonding mode contained in the molecule, and the skeletal structure other than the bonding is not particularly limited, but more preferable forms are as follows.
  • the number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components)
  • the number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less.
  • the number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
  • the content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above.
  • the value (Mn / n 1 ) obtained by dividing the number average molecular weight of the resin by the number n 1 of sulfur atoms constituting the nitrogen-carbon-sulfur bond and oxygen atoms constituting the nitrogen-carbon-oxygen bond contained per molecule is , Preferably 300 or less, more preferably 200 or less, still more preferably 150 or less.
  • the resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have.
  • n 1 Mn ⁇ X 1.
  • the resin is a nitrogen-carbon-sulfur bond.
  • n 1 is the total number of sulfur atoms and oxygen atoms constituting each bond.
  • R 1 in the above formulas (11) to (14) is an aliphatic group or an aromatic group.
  • the hydrocarbon group has at least one of an aliphatic group and an aromatic group, and may contain an oxygen atom, a nitrogen atom or the like in addition to the carbon atom.
  • the aliphatic group is preferably an aliphatic group having 1 to 22 carbon atoms, and more preferably an aliphatic group having 1 to 18 carbon atoms.
  • the aromatic group is preferably an aromatic group having 6 to 22 carbon atoms, more preferably an aromatic group having 6 to 15 carbon atoms.
  • a group having 7 to 20 carbon atoms in which an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms are bonded is also preferable.
  • R 1 are linear hydrocarbon groups such as methylene, dimethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, octamethylene; cyclopentane, cyclohexane, cycloheptane, cyclooctane, bis (cyclohexyl) alkane, etc.
  • Groups derived from unsubstituted alicyclic hydrocarbons methylcyclopentane, ethylcyclopentane, methylcyclohexane (each isomer), ethylcyclohexane (each isomer), propylcyclohexane (each isomer), butylcyclohexane (each isomer) ), Groups derived from alkyl-substituted cyclohexane such as pentylcyclohexane (each isomer), hexylcyclohexane (each isomer); dimethylcyclohexane (each isomer), diethylcyclohexane (each isomer), dibutylcyclohexane (each isomer), etc.
  • the “derived group” refers to a group having a structure in which two hydrogen atoms are removed from the compound.
  • R 1 is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms.
  • R 1 is preferably a group not containing a spiro atom.
  • Specific examples of R 1 are methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyl.
  • R 1 is preferably a divalent group represented by the following formulas (301) to (306).
  • P 1 is an aliphatic group and / or an aromatic group.
  • P 1 may have an oxygen atom, a nitrogen atom or the like in addition to the carbon atom.
  • P 1 in the above formula (10) more preferably includes an ether bond or an ester bond, and more preferably a group represented by the following formula (114).
  • R 43 represents an aliphatic group or an aromatic group
  • b 2 represents an integer of 1 to 3.
  • a plurality of R 43 and b 2 in the same molecule may be the same or different.
  • R 43 represents an aliphatic group or an aromatic group.
  • R 43 may have an oxygen atom, a nitrogen atom or the like in addition to the carbon atom.
  • the aliphatic group may be cyclic or acyclic.
  • the aliphatic group is preferably an aliphatic group having 1 to 22 carbon atoms, and more preferably an aliphatic group having 1 to 18 carbon atoms.
  • the aromatic group is preferably an aromatic group having 6 to 22 carbon atoms, more preferably an aromatic group having 6 to 15 carbon atoms.
  • a group having 7 to 20 carbon atoms having an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms bonded thereto is also preferable.
  • R 43 in the above formula (114) includes a group represented by the following formula (115).
  • R 44 represents one or more groups selected from the group consisting of a hydrogen atom, a chlorine atom, a bromine atom, a fluorine atom and a methyl group
  • R 45 represents a group selected from the group consisting of groups represented by the following formula (116), (117), (118) or (119)
  • a plurality of R 44 may be the same or different.
  • P 1 in the above formula (10) is preferably a group represented by the following formulas (201) to (204).
  • X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom, and X 2 and Y 2 in one unit are not oxygen atoms at the same time. That is, at least one of X 2 and Y 2 in one unit is a sulfur atom.
  • the gist of the present invention is, in one aspect, an improvement in adhesion in an epoxy resin and a modified epoxy resin, as described above. It is important that the compound of the present invention contains a sulfur atom and / or an oxygen atom (as an atom constituting the compound of the present invention), and the influence due to the difference in terminal structure is not necessarily large.
  • the compound represented by the formula (10) includes a compound having a terminal epoxy group, a compound having a terminal isothiocyanate group (—NCS), a compound having a terminal episulfide group, and a terminal isocyanate group (— NCO), or a combination of a compound having a terminal episulfide group and a compound having a terminal isothiocyanate group.
  • the terminal structure can be an epoxy group, episulfide group, isocyanate group, or isothiocyanate group.
  • an isocyanurate group in which an isocyanate group is trimerized (or an isothiocyanurate group in the case of an isothiocyanurate group) may be included in the compound according to this embodiment.
  • the compound (resin) according to this embodiment includes, for example, a compound having a terminal epoxy group and a compound having a terminal isothiocyanate group (—NCS), a compound having a terminal episulfide group, and a compound having a terminal isocyanate group (—NCO), Alternatively, it can be produced by a combination of a compound having a terminal episulfide group and a compound having a terminal isothiocyanate group.
  • the compound (resin) according to this embodiment includes a compound represented by the following formula (31) (a compound having a terminal isocyanate group, a compound having a terminal isothiocyanate group) and a compound represented by the following formula (20) ( A compound having a terminal epoxy group or a compound having a terminal episulfide group) is preferably used.
  • R 2 represents an aliphatic group or an aromatic group
  • R 1 represents an aliphatic group or an aromatic group
  • X and Y 2 each independently represent an oxygen atom or a sulfur atom.
  • the combination of the compound represented by Formula (31) and the compound represented by Formula (20) is a compound of Formula (31) in which X is a sulfur atom and / or Formula (20) in which Y 2 is a sulfur atom. ) Is selected so as to include one or more compounds.
  • R 1 and R 2 may be the same or different.
  • the compound having a terminal epoxy group (also referred to as an epoxy resin) is preferably a compound represented by the following formula (120).
  • R 2 represents an aliphatic group or an aromatic group.
  • Specific examples of the compound represented by the formula (120) include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A.
  • the compound having a terminal episulfide group (also referred to as episulfide resin) is preferably a compound represented by the following formula (121).
  • R 2 represents an aliphatic group or an aromatic group.
  • Specific examples of the compound represented by the formula (121) include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A.
  • R 1 in the formula (31) is preferably a hydrocarbon group selected from the group consisting of hydrocarbon groups represented by the following formulas (301) to (306).
  • the compound having a terminal isocyanate group is preferably a compound represented by the following formula (122).
  • R 1 represents an aliphatic group or an aromatic group.
  • Specific examples of the compound represented by the formula (122) include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl-1,6-diisocyanatohexane, lysine diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) -cyclohexane, 4,4′-dicyclohexylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, toluene diisocyanate (each isomer), naphthalene diisocyanate (each isomer), etc. it can.
  • the compound represented by the formula (122) is an aliphatic diisocyanate having 4 to 20 carbon atoms or an alicyclic diisocyanate having 8 to 20 carbon atoms.
  • hexamethylene diisocyanate and isophorone diisocyanate are preferable in terms of weather resistance, heat-resistant yellowing, and industrial availability.
  • These isocyanate compounds may be used alone or in combination of two or more.
  • the compound having a terminal isothiocyanate group is preferably a compound represented by the following formula (123).
  • R 1 represents an aliphatic group or an aromatic group.
  • Specific examples of the compound represented by the formula (123) include tetramethylene diisothiocyanate, pentamethylene diisothiocyanate, hexamethylene diisothiocyanate, 2,2,4-trimethyl-1,6-diisothiocyanatohexane.
  • Lysine diisothiocyanate isophorone diisothiocyanate, 1,3-bis (isothiocyanatomethyl) -cyclohexane, 4,4'-dicyclohexylmethane diisothiocyanate, 4,4'-diphenylmethane diisothiocyanate, toluene diisothiocyanate (Each isomer), naphthalene diisothiocyanate (each isomer) and the like. More preferably, the compound represented by the formula (123) is an aliphatic diisocyanate having 4 to 20 carbon atoms or an alicyclic diisothiocyanate having 8 to 20 carbon atoms. These compounds having a terminal isothiocyanate group may be used alone or in combination.
  • an epoxy resin can be read as an episulfide resin
  • an epoxy group can be read as an episulfide group.
  • an isocyanate compound is used instead of the isothiocyanate compound
  • the isothiocyanate group can be read as an isocyanate group in the isothiocyanate compound and isocyanate compound in the following description.
  • the isothiocyanate compound is preferably used in such an amount that the isothiocyanate group is 20 to 60 equivalent% with respect to the epoxy group.
  • the amount of the isothiocyanate compound used is more preferably 25 to 50 equivalent%, still more preferably 30 to 47 equivalent%, and still more preferably 30 to 45 equivalent%.
  • the isocyanate group in the isocyanate compound reacts with an epoxy group to form a ring structure.
  • an isothiocyanurate ring is formed by forming a thiourethane bond with an alcoholic hydroxyl group in an epoxy resin or by cyclization trimerization of an isothiocyanate group. Used to form.
  • the reaction is usually performed in the presence of a catalyst.
  • a catalyst include metal alcoholates such as butoxylithium and methoxysodium, Lewis acids such as lithium chloride and aluminum chloride, and mixtures of Lewis acids and Lewis bases such as triphenylphosphine oxide, tetramethylammonium, tetraethylammonium, and tetrabutyl.
  • Chlorides such as ammonium and benzyltributylammonium, quaternary ammonium salts such as bromide, iodide and acetate, triethylamine, N, N-dimethylbenzylamine, 1,8-diazabicyclo [5.4.0] undecene-7, 1,4 -Tertiary amines such as diazabicyclo [2.2.2] octane, and imidazoles such as 2-ethyl-4-methylimidazole and 2-phenylimidazole.
  • These catalysts may be used alone or in combination of two or more.
  • quaternary ammonium salts and tertiary amines are particularly preferable.
  • the amount of catalyst used is usually in the range of 5 ppm to 2 wt% with respect to the total weight of the epoxy resin.
  • the amount of catalyst used is preferably 20 ppm to 0.5 wt%.
  • the catalyst can also be used after diluting in a suitable solvent.
  • the production method according to this embodiment can be carried out without a solvent or in the presence of a suitable solvent.
  • N, N-dimethylformamide, N, N-diethylformamide, N-methyl-2-pyrrolidone dimethyl sulfoxide, dimethylacetamide, methyl ethyl ketone, methyl isobutyl ketone, xylene, toluene, methyl cellosolve acetate, tetrahydrofuran
  • a solvent which does not contain active hydrogen such as.
  • the reaction temperature is usually from 80 ° C to 300 ° C.
  • the temperature is preferably 100 ° C to 260 ° C, more preferably 120 ° C to 220 ° C. If the reaction temperature is too low, the activity of the catalyst is low, and side reactions such as formation of isocyanurate rings occur. Moreover, even if the reaction temperature is too high, the activity of the catalyst is lowered and the side reaction proceeds.
  • the epoxy resin is heated to a predetermined temperature, and moisture in the resin is removed as much as possible by blowing dry air, nitrogen, etc., and then the isothiocyanate compound and the catalyst are added. .
  • the charging method of the isothiocyanate compound and the catalyst can be selected as appropriate, and may be charged all at once, may be charged in several times, or the isothiocyanate compound is charged continuously. May be. At this time, the isothiocyanate and the catalyst may be charged simultaneously or separately. In the case of continuous charging, the charging time is preferably 1 to 10 hours, more preferably 2 to 5 hours. When the charging time is short, the amount of isothiocyanurate ring produced may increase.
  • 20 to 45 equivalent% (preferably 22 to 42 equivalent%, more preferably 25 to 40 equivalent%) of the epoxy group in the epoxy resin is the isothiocyanate group in the isothiocyanate compound.
  • the proportion of epoxy groups in the epoxy resin that are involved in the oxazolidine-2-thione ring is, for example, an instrument such as a method for measuring the Oxdation rate by a chemical method, infrared spectroscopy, or nuclear magnetic resonance spectroscopy. It can be determined by a quantitative method using an analytical technique.
  • the Oxdation rate is, for example, an equivalent percentage of the epoxy group forming the oxazolidine-2-thione ring to the original epoxy group.
  • Ep1 and weight (referred to as Wt1) of the used epoxy resin and the obtained oxazolidine-2 -Using the epoxy equivalent (referred to as Ep2) and weight (referred to as Wt2) of the thione ring-containing epoxy resin, the Oxd conversion rate is obtained by the following formula.
  • Oxd conversion rate 100 ⁇ (Wt2 ⁇ Ep2) ⁇ (Wt1 ⁇ Ep1) ⁇ 100
  • the compound (resin) according to this embodiment may contain a thiourethane bond obtained by a reaction between a part or all of the alcoholic hydroxyl groups in the epoxy resin and the isothiocyanate group in the isothiocyanate compound.
  • the amount of thiourethane bonds is preferably 0.9 equivalent / kg or less, more preferably 0.01 to 0.7 equivalent / kg, still more preferably 0.05 to 0.6 equivalent / kg, and still more preferably 0.1 ⁇ 0.5 equivalent / kg.
  • the compound (resin) according to this embodiment can contain an isothiocyanurate ring in which the isothiocyanate group in the isothiocyanate compound is cyclized and trimerized.
  • the content of the isothiocyanurate ring is preferably 40 equivalent% or less of the content of the oxazolidine-2-thione ring, more preferably 30 equivalent% or less, still more preferably 20 equivalent% or less, and even more preferably 10 equivalent% or less. is there. If there are too many isothiocyanurate rings, the polymerization stability may be reduced during production.
  • the compound (resin) according to this embodiment does not substantially contain an isocyanate group.
  • the melt viscosity of the compound (resin) according to this embodiment is preferably low in order to improve the flowability.
  • the melt viscosity at 125 ° C. is preferably 8000 mPa ⁇ s or less. More preferably, it is 6000 mPa * s or less, More preferably, it is 4000 mPa * s or less, More preferably, it is 3000 mPa * s or less.
  • the amount of hydrolyzable chlorine in the compound (resin) according to the present embodiment is not particularly limited, but is preferably 500 ppm or less when used in, for example, electric / electronic applications. More preferably, it is 100 ppm or less.
  • the compound (resin) of the present invention has an epoxy group
  • part or all of the epoxy group can be modified with a modifier.
  • the modifier is not particularly limited as long as it has a functional group that reacts with an epoxy group.
  • phenols such as xylenol, t-butylphenol, nonylphenol, bisphenol A, hydroquinone, n-butanol, butyl cellosolve, polyethylene Alcohols such as glycol monoethyl ether, ethylene glycol, polypropylene glycol, butylamine, octylamine, diethylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate , Amines such as aminoethylethanolamine dimethyl ketimine, acetic acid, lactic acid, 2-ethylhexanoic acid, lauric acid, 12-hydroxystear Phosphate, benzoic acid, carboxylic acids such as dimethanol propionic acid, sulfides such as diethyl disul
  • conversion to an ionic group such as conversion of an amino group into an ammonium salt using acetic acid or the like can also be performed.
  • the compound (resin) according to the present embodiment can be mixed with a curing agent and used to prepare a curable composition.
  • examples of the curing agent include ethylenediamine, triethylenepentamine, hexamethylenediamine, dimer acid-modified ethylenediamine, aliphatic amines such as N-ethylaminopiperazine, and metaphenylenediamine.
  • Aromatic amines such as paraphenylenediamine, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenolsulfone, 4,4′-diaminodiphenolmethane, 4,4′-diaminodiphenol ether , Mercaptans such as mercaptopropionic acid esters, terminal mercapto compounds of epoxy resins, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A, tetrafluorobisphenol A, biphenol, dihydroxynaphthalene, 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1 -(4- (1- (4-hydroxyphenyl) -1-methylethyl) pheny
  • examples of the curing agent include a melamine resin, a polyisocyanate compound, and a blocked isocyanate compound. Used. Moreover, these hardening
  • curing agents may be used individually or may use multiple types together.
  • melamine resin examples include hexamethoxymethylol melamine, methyl butylated melamine, butylated melamine and the like. These melamine resins may be used alone or in combination of two or more.
  • Polyisocyanate compounds include tetramethylene diisocyanate, pentamethylene diisocyanate, HDI, 2,2,4 (or 2,4,4) -trimethyl-1,6-diisocyanatohexane, lysine diisocyanate, isophorone diisocyanate, 1,3 -Bis (isocyanatomethyl) -cyclohexane, 4,4'-dicyclohexylmethane diisocyanate, tetramethylxylene diisocyanate, tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, xylylene diisocyanate, Examples include diisocyanates such as norbornane diisocyanate and polyisocyanates derived from these diisocyanates. These polyisocyanates may be used alone or in combination of two or more.
  • polyisocyanate derived from diisocyanate examples include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, and allophanate type polyisocyanate. These polyisocyanate compounds may be used alone or in combination.
  • the blocked isocyanate compound a compound obtained by blocking the diisocyanate and / or polyisocyanate compound with a blocking agent is used.
  • blocking agent examples include alcohols, phenols, oximes, lactams, active methylenes and the like. These blocking agents may be used alone or in combination of two or more.
  • the amount of the curing agent used can be arbitrarily selected with respect to the total amount including the compound according to the present embodiment, but is usually 0.1 to 90% by weight.
  • the amount of the curing agent used is preferably 0.1 to 50% by weight.
  • the curable composition can contain a solvent, if necessary.
  • the solvent include hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, naphtha, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl acetate, n-butyl acetate, and propylene glycol monomethyl ether acetate.
  • esters such as methanol, isopropanol, n-butanol, alcohols such as butyl cellosolve and butyl carbitol, and water according to the purpose and application. These solvents may be used alone or in combination of two or more.
  • the curable composition can contain a curing accelerator as necessary.
  • a curing accelerator examples include imidazoles, tertiary amines, phosphines, aminotriazoles, tin-based and zinc-based metal catalysts. These curing accelerators may be used alone or in combination of two or more.
  • pigments, fillers, additives and the like commonly used in the technical field as shown below can be used.
  • organic pigments such as quinacridone, azo, and phthalocyanine
  • inorganic pigments such as titanium oxide, metal foil pigments, rust preventive pigments
  • fillers such as barium sulfate, calcium carbonate, silica, carbon black, talc, clay
  • UV absorbers such as hindered amines, benzotriazoles, and benzophenones, hindered phenols, phosphorus, sulfur and hydrazide antioxidants, silane and titanium coupling agents, leveling agents, rheology control
  • additives such as glass fiber, glass cloth, and carbon fiber, can be contained as needed.
  • the curable composition according to this embodiment has both excellent adhesion and good flowability, and paints such as powder paints, electrodeposition paints and PCM paints, adhesives, sealing materials, molding materials, composite materials, and laminates. It is suitably used as a material such as a plate or a sealing material.
  • a preferred third resin in the present embodiment has two or more structural units represented by the following formula (40).
  • the resin further has one or more structural units selected from the group consisting of monovalent, divalent or trivalent groups represented by the following formulas (41) to (47).
  • R 3 in the structural units represented by formulas (41) to (47) may be directly bonded to the isothiocyanate group to form the structural unit of formula (40).
  • N in one structural unit represented by formulas (41) to (47) is not directly bonded to N in the other structural units represented by formulas (41) to (47).
  • R 3 represents an organic group
  • R 4 represents an aliphatic group or an aromatic group
  • X 3 represents an oxygen atom or a sulfur atom.
  • a plurality of R 3 , R 4 and X 3 in the same molecule may be the same or different.
  • R 3 may be an aliphatic group or an aromatic group.
  • substantially all of the nitrogen atoms that make up the polyisothiocyanate are bonded to at least one carbon atom. That is, the respective structural units are not directly bonded with each other.
  • R 3 in each structural unit may be directly bonded to an isothiocyanate group to form a structural unit represented by the formula (40).
  • a monofunctional repeating unit represented by the formula (46) or a bifunctional repeating unit represented by the formula (47) is obtained by bonding the structural unit represented by the formula (41) and the isothiocyanate group. Units may be formed.
  • the polyisothiocyanate may have an isothiocyanate group that is not bound to R 3 .
  • a hydroxy compound or a thiol is used.
  • the functional group represented by —X 3 —R 4 is a group derived from this hydroxy compound or thiols.
  • R 3 in the formulas (40) to (47) is preferably an aliphatic group having 1 to 22 carbon atoms, more preferably an aliphatic group having 1 to 18 carbon atoms, as the aliphatic group.
  • an aromatic group having 6 to 22 carbon atoms is preferable, and an aromatic group having 6 to 15 carbon atoms is more preferable.
  • a group having 7 to 20 carbon atoms having an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms bonded to the aliphatic group is also preferable.
  • R 3 is preferably a divalent group represented by the following formulas (301) to (306).
  • R 4 a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, a cyclopentyl group, a cyclohexyl group, Cycloheptyl group, cyclooctyl group, methylcyclopentyl group, ethylcyclopentyl group, methylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group, butylcyclohexyl group, pentylcyclohexyl group, hexylcyclohexyl group, dimethylcyclohexyl group, diethylcyclohexyl group, dibutylcyclohexyl group
  • the structural units represented by the above formulas (41) to (47) constituting the resin are surprisingly high in heat resistance and excellent in adhesion, particularly adhesion to a metal surface. Although it is not clear about the mechanism that exerts such an effect, the present inventors have improved the heat resistance by having a stable six-membered ring structure, and the sulfur atom contained in the bond increases the adhesion. I guess it will be effective.
  • the resin of the present embodiment is characterized by the bonding mode contained in the molecule, and the skeletal structure other than the bonding is not particularly limited, but more preferable forms are as follows.
  • the number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components)
  • the number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less.
  • the number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
  • the content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above.
  • the value (Mn / n 1 ) obtained by dividing the number average molecular weight of the resin by the number n 1 of sulfur atoms constituting the nitrogen-carbon-sulfur bond and oxygen atoms constituting the nitrogen-carbon-oxygen bond contained per molecule is , Preferably 300 or less, more preferably 200 or less, still more preferably 150 or less.
  • the resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have.
  • the resin according to the present embodiment is preferably a resin obtained by reacting a compound having a nitrogen-carbon-sulfur bond with polyisoisothiocyanate.
  • the nitrogen-carbon-sulfur bond is composed of a nitrogen atom, a carbon atom, and a sulfur atom, which are bonded in this order.
  • the resin according to this embodiment is preferably a resin obtained by a method including polymerizing a compound represented by the following formula (33).
  • R 3 represents an organic group and may be an aliphatic group or an aromatic group.
  • R 3 represents an aliphatic group, an aromatic group or a group composed of a combination thereof (aliphatic group substituted with an aromatic group).
  • the compound of the formula (30) used as a monomer for polymerization may be a combination of two or more compounds having different R 3 .
  • the aliphatic group and aromatic group as R 3 may have an oxygen atom, a nitrogen atom or the like in addition to the carbon atom.
  • an aliphatic group having 1 to 22 carbon atoms is preferable, and an aliphatic group having 1 to 18 carbon atoms is more preferable.
  • the aromatic group is preferably an aromatic group having 6 to 22 carbon atoms, more preferably an aromatic group having 6 to 15 carbon atoms.
  • a group having 7 to 20 carbon atoms having an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms bonded to the aliphatic group is also preferable.
  • R 3 include linear hydrocarbon groups such as methylene, dimethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, octamethylene; cyclopentane, cyclohexane, cycloheptane, cyclooctane, bis (cyclohexyl) methane, etc.
  • a group derived from an unsubstituted alicyclic hydrocarbon methylcyclopentane, ethylcyclopentane, methylcyclohexane (each isomer), ethylcyclohexane (each isomer), propylcyclohexane (each isomer), butylcyclohexane (each isomer) ), Pentylcyclohexane (each isomer), hexylcyclohexane (each isomer) and other alkyl-substituted cyclohexane-derived groups; dimethylcyclohexane (each isomer), diethylcyclohexane (each isomer), dibutylcyclohexane (each isomer) Groups derived from dialkyl-substituted cyclohexane such as 1,5,5-trimethylcyclohexane, 1,5,5-triethy
  • one or more groups selected from the group consisting of groups derived from hexane, benzene, diphenylmethane, toluene, cyclohexane, xylenyl, methylcyclohexane, isophorone, or dicyclohexylmethane are preferable.
  • the “derived group” refers to a group having a structure in which two hydrogen atoms are removed from the compound.
  • R 3 in the above formula (30) is more preferably a group represented by the following formulas (301) to (306).
  • the isothiocyanate represented by the formula (30) is hexamethylene diisothiocyanate, isophorone diisothiocyanate, 4,4′-dicyclohexylmethane diisothiocyanate, 4,4′-diphenylmethane diisothiocyanate, toluene.
  • Examples include diisothiocyanate (each isomer) and naphthalene dithiocyanate (each isomer).
  • the polyisothiocyanate according to this embodiment can be obtained, for example, by polymerizing monomer diisothiocyanate alone.
  • the polymerization of the monomer diisothiocyanate is preferably performed in the presence of a catalyst such as an isothiocyanurate-forming catalyst described later.
  • a catalyst such as an isothiocyanurate-forming catalyst described later.
  • Polyisothiocyanate can also be obtained by allophanatization.
  • Monomer diisothiocyanate refers to a compound represented by the above formula (33).
  • Hydroxy compounds include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, decanol, dodecanol, cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, methylcyclopentanol, ethylcyclopentanol, Methylcyclohexanol, ethylcyclohexanol, propylcyclohexanol, butylcyclohexanol, pentylcyclohexanol, hexylcyclohexanol, dimethylcyclohexanol, diethylcyclohexanol, dibutylcyclohexanol, phenol, methylphenol, ethylphenol, propylphenol, butylphenol, pentyl Pheno
  • Low molecular weight compounds such as acid esters, 2-ethyl-1,3-hexanediol, trimethylolpropane, glycerin, 1,2,6-hexanetriol, and polyester polyols and polyether polyols having a number average molecular weight of about 200 to 10,000 Etc. can also be used.
  • Thiols include methanethiol, ethanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, decanethiol, dodecanethiol, cyclopentanethiol, cyclohexanethiol, cycloheptanethiol, cyclooctanethiol, Methylcyclopentanethiol, ethylcyclopentanethiol, methylcyclohexanethiol, ethylcyclohexanethiol, propylcyclohexanethiol, butylcyclohexanethiol, pentylcyclohexanethiol, hexylcyclohexanethiol, dimethylcyclohexanethiol, diethylcyclo
  • the isothiocyanate group / hydroxyl group equivalent ratio of the hydroxy compound and the monomer diisothiocyanate can be selected from a value of about 10 to 100 according to the purpose.
  • the isothiocyanate group / thiol group equivalent ratio can be selected from a value of about 10 to 100 according to the purpose.
  • the isothiocyanurate-forming catalyst for forming the isothiocyanurate group represented by the above formula (41), (46) or (47) is preferably a quaternary ammonium salt, more preferably a quaternary ammonium hydroxy.
  • quaternary ammonium carboxylic acid more preferably quaternary ammonium carboxylic acid.
  • the isothiocyanuration catalyst include tetraalkylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, tetramethylammonium acetate, tetraethylammonium acetate, tetrabutyl acetate.
  • examples include organic weak acid salts such as ammonium salts.
  • Metal salts of alkyl carboxylic acids such as acetic acid, valeric acid, isovaleric acid, caproic acid, octylic acid and myristic acid can also be used, but organic weak acid salts and the like are preferred from the viewpoint of reducing the amount used.
  • the above isothiocyanuration catalyst may be diluted.
  • a hydroxy compound can be used as a diluent.
  • the hydroxy compound include methanol, ethanol, 1- or 2-butanol, 2-methyl-1-propanol, 1,2- or 1,3-propylene glycol, 1,3-, 1,4- or 2,
  • examples thereof include alcoholic hydroxy compounds such as 3-butylene glycol, glycerin and cyclohexanol, and phenolic hydroxy compounds such as phenol, cresol, xylenol and trimethylphenol.
  • alcohols having side chains such as 2-butanol, 2-methyl-1-propanol, 1,3- or 2,3-butanediol are preferred. Two or more types may be mixed. Thiols may be used in place of the hydroxy compound.
  • the concentration of the isothiocyanuration catalyst can be 1 to 20% by mass.
  • the concentration is preferably 1 to 10% by mass. If it is 1 mass% or more, the amount of the hydroxy compound entrained in the isothiocyanurate-forming catalyst does not increase too much, and the resulting polyisothiocyanate and the physical properties of the coating film formed thereby are unlikely to deteriorate.
  • the concentration is 20% by mass or less, the cocatalyst effect of the accompanying hydroxy compound is not lowered, and as a result, the amount of the isothiocyanurate-forming catalyst used is increased and the polyisothiocyanate is hardly colored.
  • the amount of the isothiocyanurate catalyst used is based on the weight of the monomeric diisothiocyanate.
  • the content is 1 ppm to 10%, preferably 10 ppm to 5%. If the amount of the catalyst is 1 ppm or more, the function as an isothiocyanurate-forming catalyst can be sufficiently exerted.
  • the isothiocyanurate-forming catalyst is deactivated, so that the amount of addition of a reaction terminator (described later) such as an acidic phosphoric acid compound or acidic phosphoric acid ester compound can be reduced.
  • a reaction terminator such as an acidic phosphoric acid compound or acidic phosphoric acid ester compound
  • a solvent may or may not be used, but the use of a solvent having no reaction activity with the isothiocyanate group makes it easier to control the reaction.
  • solvents examples include esters or ethers such as ethyl acetate, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, etc. Is possible. Of course, a mixture of two or more solvents can be used.
  • the isothiocyanuration reaction is performed at 30 ° C to 120 ° C, preferably 50 ° C to 100 ° C.
  • the progress of the reaction can be confirmed by 1 H-NMR analysis of the reaction solution.
  • the reaction is stopped by deactivating the catalyst by adding a reaction terminator.
  • the conversion rate is suitably selected in the range of 10 to 60%, preferably 10 to 30%. With a low conversion rate, it is possible to obtain a polyisothiocyanate having a lower viscosity, but a conversion rate of 10% or more is preferable from the viewpoint of productivity. On the other hand, if the conversion is 60% or less, the viscosity of the polyisothiocyanate does not become too high, which is preferable.
  • reaction terminator for the isothiocyanuration reaction one or more compounds selected from the group consisting of acidic phosphate compounds and acidic phosphate ester compounds are used.
  • the acidic phosphoric acid compound is an inorganic acid, and examples thereof include phosphoric acid, phosphorous acid, hypophosphorous acid, diphosphorous acid, hypophosphoric acid, pyrophosphoric acid, and peroxophosphoric acid.
  • it is phosphoric acid.
  • the acidic phosphate ester compound is a compound having an acidic group and an ester group, for example, a monoalkyl phosphate having 2 to 8 carbon atoms, a monoalkyl phosphite, a dialkyl phosphate having 4 to 16 carbon atoms, a dialkyl phosphite, and dilauryl.
  • Examples include phosphate, diphenyl phosphate, monolauryl phosphate, monophenyl phosphate, dilauryl phosphite, diphenyl phosphite, monolauryl phosphite, and monophenyl phosphite.
  • it is a monoalkyl phosphate having 3 to 8 carbon atoms, or a dialkyl phosphate having 6 to 16 carbon atoms, more preferably dioctyl phosphate or monooctyl phosphate.
  • an acidic phosphate compound it is preferable to use an acidic phosphate compound.
  • the addition amount of the acidic phosphoric acid compound is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, relative to the stoichiometric amount of the isothiocyanuration catalyst. If the addition amount is 1 equivalent or more, the isothiocyanuration catalyst can be sufficiently deactivated. If the addition amount is 10 equivalents or less, it is preferable without filtering the insoluble matter generated.
  • the deactivated isothiocyanurate-forming catalyst When an acidic phosphoric acid compound is used, the deactivated isothiocyanurate-forming catalyst often becomes an insoluble matter and can be removed by filtration. By removing by filtration, the phosphorus derived from the acidic phosphoric acid compound in the polyisothiocyanate can be reduced to the extent that it is detected in a very small amount.
  • the salt with the acidic phosphoric acid ester and the isothiocyanuration catalyst is dissolved in the polyisothiocyanate, so that it is mixed into the modified polyisocyanate after the monomeric diisothiocyanate is removed. There is a case.
  • an acidic phosphoric acid compound From the viewpoint of phosphorus concentration in polyisothiocyanate, it is preferable to use an acidic phosphoric acid compound.
  • the acidic phosphoric acid compound is added and then maintained at 90 to 150 ° C., preferably 100 to 120 ° C. for 30 to 120 minutes. Improves.
  • an acidic phosphoric acid compound and an acidic phosphoric acid ester compound may be added, and particularly an acidic phosphoric acid compound may be added.
  • the unreacted monomeric diisothiocyanate and the solvent are removed from the reaction solution for purification.
  • the purification method include vacuum distillation, solvent extraction and the like, and generally a thin film distiller can be used.
  • the content of monomeric diisothiocyanate in the purified polyisothiocyanate is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less.
  • the recovered unreacted monomeric diisothiocyanate can be used again.
  • Polyisothiocyanate can be used by mixing with an organic solvent.
  • the organic solvent preferably does not have a functional group that reacts with a hydroxyl group and an isocyanate group.
  • an organic solvent an ester compound, a ketone compound, an aromatic compound, or the like can be used.
  • Polyisothiocyanate has various additives such as curing accelerators, pigments, leveling materials, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, surfactants, etc., depending on the purpose. Can also be used in combination.
  • Polypolyisothiocyanate can be used in a wide range of fields, including two-component polyurethane paints, sealants, adhesives, inks, coating agents, casting materials, elastomers, foams, plastic raw materials, fiber treatment agents, and one-component curable polyisothiocyanates. .
  • the methyl group signal of tetramethylsilane was set to 0 ppm, the integrated value (A) of the 3.3 ppm signal derived from the monomeric diisocyanate and the 3.8 ppm signal derived from the isocyanurate structure.
  • the methyl group signal of tetramethylsilane was set to 0 ppm, the integrated value (A) of the 3.5 ppm signal derived from the monomer diisothiocyanate and the 4.8 ppm derived from the isothiocyanurate structure.
  • Heat resistance evaluation method TG-8120 (manufactured by RIGAKU) was used to measure thermogravimetric loss under a nitrogen atmosphere under the conditions of 10 mg sample and a heating rate of 10 ° C / min. A was not observed, and B was 5% weight loss within 300 ° C.
  • the coating film adhesion evaluation was performed as follows. A 1 mm square cut was made in a coating film formed on an aluminum plate (length 10 cm, width 10 cm, thickness 5 mm) and immersed in acetone together with the aluminum plate, and it was examined whether the coating film remained after 24 hours. The same test was conducted 10 times per sample, and A was given when 8 or more films remained, and B was given otherwise.
  • Copper peel strength Copper peel strength was measured in accordance with JIS C 6481. The copper peel strength is indicated by A, and the bad copper peel strength is indicated by B.
  • Example 1 Adipic acid dihydrazide and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were charged so that the equivalent ratio of isocyanate group to hydrazide group was 1.0, and butyl acetate was mixed to disperse the solid content to 10%. A liquid was prepared. This dispersion was stirred at 120 ° C. for 12 hours. When a part of the reaction solution was collected and analyzed by 1 H-NMR, a peak around 3.3 ppm derived from isocyanate disappeared. After removing butyl acetate with a rotary evaporator, the heat resistance was evaluated. The evaluation results are shown in Table 1.
  • Example 2 36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 50 g of hexamethylene diisothiocyanate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR, whereby it was 4,4′-hexamethylenebisthiosemicarbazide. The 4,4′-hexamethylene bisthiosemicarbazide and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate heat resistance. The evaluation results are shown in Table 1.
  • Example 3 36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 50 g of hexamethylene diisocyanate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR, whereby it was 4,4′-hexamethylene bissemicarbazide.
  • the 4,4′-hexamethylene bissemicarbazide and polyisocyanate Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate heat resistance. The evaluation results are shown in Table 1.
  • Example 4 36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 280 g of 2-isocyanatoethyl methacrylate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR to find methacrylic acid (2- (hydrazinecarboamido) ethyl). Next, 100 g of the methacrylic acid (2- (hydrazinecarboamido) ethyl) was dissolved in 1 L of toluene, and 80 g of methyl methacrylate and 0.5 g of azobisisobutyronitrile were added and heated to 80 ° C.
  • Example 5 to 8 Except that hexamethylene diisocyanate was used instead of polyisocyanate, the same method as in Example 1 was performed to evaluate heat resistance. The evaluation results are shown in Table 1.
  • Example 9 In the same manner as in Example 4, methacrylic acid (2- (hydrazinecarboamido) ethyl) was produced.
  • the methacrylic acid (2- (hydrazinecarboamido) ethyl) and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate the heat resistance. The evaluation results are shown in Table 1.
  • Example 11 4,4′-dicyclohexylmethanediamine and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of isothiocyanate groups to amino groups was 1.0, and butyl acetate was mixed to obtain a solid content of 50 % The same method as in Example 1 was performed except that a resin composition was prepared. Table 2 shows the evaluation results of the cured coating film.
  • Example 12 Adipic acid dihydrazide and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of the isothiocyanate group and hydrazide group was 1.0, and ethanol was mixed to prepare a resin composition having a solid content of 10%. Except that, the same method as in Example 10 was performed. Table 2 shows the evaluation results of the cured coating film.
  • Example 13 36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 280 g of 2-isocyanatoethyl methacrylate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR to find methacrylic acid (2- (hydrazinecarboamido) ethyl). Next, 100 g of the methacrylic acid (2- (hydrazinecarboamido) ethyl) was dissolved in 1 L of toluene, and 80 g of methyl methacrylate and 0.5 g of azobisisobutyronitrile were added and heated to 80 ° C.
  • Example 14 36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 50 g of hexamethylene diisothiocyanate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR, whereby it was 4,4′-hexamethylenebisthiosemicarbazide. The 4,4′-hexamethylene bisthiosemicarbazide and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of the isothiocyanate group to the thiosemicarbazide group was 1.0, and butyl acetate was mixed. A resin composition having a solid content of 25% was prepared. Table 2 shows the results obtained by conducting the same method as in Example 10 using the resin composition and evaluating the cured coating film.
  • the resin composition was heated at 130 ° C., isothiocyanate groups heating was continued until the disappearance in 1 H-NMR. Next, this resin composition was applied to an aluminum plate with an applicator so that the resin film thickness was 40 ⁇ m. After setting for 10 minutes at room temperature, it was kept in an oven at 150 ° C. for 10 hours to obtain a cured coating film. The adhesion of the obtained cured coating film was evaluated. The evaluation results are shown in Table 2.
  • Example 13 The same method as in Example 15 was carried out except that isocyanurate type polyisocyanate (Duranate TPA-100; trade name, manufactured by Asahi Kasei Chemicals Corporation) was used instead of the polyisothiocyanate obtained in Production Example 1.
  • isocyanurate type polyisocyanate Duranate TPA-100; trade name, manufactured by Asahi Kasei Chemicals Corporation
  • the cured coating film evaluation results are shown in Table 2.
  • Example 16 In the same manner as in Example 13, methacrylic acid (2- (hydrazinecarboamido) ethyl) was produced, and then a polymer of methacrylic acid (2- (hydrazinecarboamido) ethyl) was obtained.
  • the polymer and allyl isothiocyanate were charged so that the equivalent ratio of the isothiocyanate group and the semicarbazide group was 1.0, and butyl acetate was mixed to prepare a resin composition having a solid content of 25%.
  • the resin composition was applied to an aluminum plate with an applicator so that the resin film thickness was 40 ⁇ m. After setting for 10 minutes at room temperature, it was kept in an oven at 150 ° C. for 10 hours to obtain a cured coating film. The adhesion of the obtained cured coating film was evaluated. The evaluation results are shown in Table 2.
  • Example 14 The same procedure as in Example 16 was performed, except that 2-isocyanatoethyl methacrylate was used instead of allyl isothiocyanate. Table 2 shows the evaluation results of the cured coating film.
  • Example 17 After adding 345 g of tetramethylene diisothiocyanate and 384 g of adipic acid dihydrazide to a 2 L eggplant-shaped flask containing 200 g of water and 800 g of tetrahydrofuran and stirring at 60 ° C. for 12 hours, 7 g of ethyl isothiocyanate was further added and precipitated. The solid was filtered and collected. Next, the above-mentioned solid was added to a 2 L eggplant-shaped flask containing 1000 g of a 2% by weight aqueous sodium hydroxide solution, stirred at 100 ° C. for 8 hours, and the precipitated solid was collected with filter paper.
  • FIG. 1 shows the 1 H-NMR spectrum of the solid obtained in Example 17. It is presumed that a resin represented by the following formula (124) was obtained. The number average molecular weight was 5900, and Mn / n 1 as defined above was 150.
  • X 1 is the integral of the charged concentration of the 1 H-NMR measurement sample, the peak of the chloroform (7.26 ppm), and the peak of the methylene chain directly bonded to the nitrogen atom forming the ring (2.6 ppm). Obtained from the ratio of values.
  • Example 18 A four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was placed in a nitrogen atmosphere, 100 g of hexamethylene diisothiocyanate was charged, and the temperature in the reactor was kept at 100 ° C. with stirring. Thereafter, 2 g of tetramethylammonium acetate (2-butanol 5.0 mass% solution) was added as a catalyst and stirred. The reaction solution was appropriately sampled, and when the conversion of the isothiocyanate group reached 21% by 1 H-NMR analysis, 0.28 g of phosphoric acid (85 mass% aqueous solution) was added to stop the reaction.
  • the mixture was further heated at 100 ° C. for 1 hour, cooled to room temperature, the reaction solution was filtered to remove insoluble matters, and then the monomer diisothiocyanate was removed with a thin-film distiller.
  • the monomer diisothiocyanate concentration was 0.4 mass%, and the number average molecular weight was 860.
  • a 1 H-NMR chart of the obtained polyisothiocyanate is shown in FIG. From the NMR chart, it was confirmed that the polyisothiocyanate contains at least a structural unit represented by the formula (28).
  • the number average molecular weight was 1200, and Mn / n 1 according to the above definition was 100.
  • X 1 represents the preparation concentration of the 1 H-NMR measurement sample, the peak of the methylene chain (3.8 ppm) directly bonded to the chloroform peak (7.26 ppm) and the nitrogen atom forming the isothiocyanurate ring. ).
  • the obtained polyisothiocyanate and acrylic polyol manufactured by DIC Corporation, trade name: ACRYDIC A-801 were blended so that the isothiocyanate group / hydroxyl group ratio (equivalent) was 1.0, and dibutyltin dilaurate was respectively added.
  • the obtained coating solution is adjusted with an air spray gun so as to have a dry film thickness of 50 ⁇ m, coated on a copper foil having a thickness of 35 ⁇ m, and the copper foil having a thickness of 35 ⁇ m is stacked thereon, and an oven maintained at 120 ° C. After baking for 30 minutes, the copper peel strength was evaluated. The results are shown in Table 3.
  • Examples 19 to 23 A polyisothiocyanate was produced in the same manner as in Example 18 with the formulation and conditions shown in Table 3. A coating solution was prepared in the same manner as in Example 18 except that the obtained polyisothiocyanate was used, and the copper peel strength was evaluated. The results are shown in Table 3.
  • Example 24 A separable flask containing 100 parts of a bisphenol A type epoxy resin (epoxy equivalent 189) was equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube, and the temperature was raised to 150 ° C. with stirring while blowing nitrogen into the flask. The mixture was warmed and stirring was continued for 30 minutes after reaching 150 ° C. While maintaining the reaction temperature at 150 ° C., a mixture of 18.5 parts of hexamethylene diisothiocyanate and 0.05 part of tetrabutylammonium chloride (Wako Pure Chemical) was added dropwise over 2 hours. After completion of dropping, the reaction was carried out while maintaining the temperature at 150 ° C.
  • a bisphenol A type epoxy resin epoxy equivalent 189
  • the number average molecular weight was determined by comparison with the elution time of polystyrene having a known molecular weight group observed with a differential refractive index detector.
  • Mn / n 1 according to the above definition was 220.
  • X 1 is the ratio of the integrated concentration of the charged concentration of the 1 H-NMR measurement sample and the peak of toluene added as an internal standard (2.3 ppm) and the peak of methine forming a ring structure (4.8 ppm). I asked for it.
  • the obtained compound, a curing agent (dicyandiamide) and a curing catalyst (2-methylimidazole) are added, and the resulting resin composition is impregnated into a glass cloth and dried to obtain a prepreg having a resin content of 50% by mass. It was.
  • a laminate was produced by stacking four prepregs, and superposing copper foils having a thickness of 35 ⁇ m on the top and bottom of the prepregs for 60 minutes under conditions of a temperature of 190 ° C. and a pressure of 20 kg / cm 2 . The copper peel strength of the laminate was evaluated. The results are shown in Table 5.
  • Examples 25 to 29 The compounds shown in Table 5 were reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis. As a result, an oxazolidine-2-thione ring represented by the above formula (125) or (126) was contained. A compound was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 5.
  • Example 30 to 35 When the compound shown in Table 6 was reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis, a compound containing a thiazoline thione ring represented by the following formula (127) or (128) was obtained. It was. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 6.
  • Examples 36 to 41 The compounds shown in Table 7 were reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis. As a result, a thiazolin-2-one ring represented by the following formula (129) or (130) was contained. A compound was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 7.
  • Examples 42 to 59 The compounds shown in Tables 8 to 10 were reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis. As a result, the oxazolidine-2-thione ring represented by the above formula (125) or (126) was obtained. A compound containing was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Tables 8-10.
  • Example 60 to 62 Using the compounds shown in Table 11, it was reacted in the same manner as in Example 24, was subjected to 1 H-NMR analysis, including thiazoline-2-one ring represented by the formula (129) or (130) A compound was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 11.

Abstract

 The present invention discloses a resin having a nitrogen-carbon-sulfur bond. The nitrogen-carbon-sulfur bond is constituted by a nitrogen atom, a carbon atom, and a sulfur atom, bonding in the stated order, and the bond between the carbon atom and sulfur atom and/or the bond between the carbon atom and nitrogen atom is a single bond. When the number average molecular weight of this resin is defined as Mn and the number of sulfur atoms constituting the nitrogen-carbon-sulfur bonds contained per resin molecule is defined as n1, Mn is 500 or higher and Mn/n1 is from 50 to 300 inclusive.

Description

改質された樹脂及び樹脂組成物Modified resin and resin composition
 本発明は、改質された樹脂及び樹脂組成物に関する。 The present invention relates to a modified resin and a resin composition.
 イソシアネートは、ポリウレタン及びポリ尿素の原料として知られている。 Isocyanate is known as a raw material for polyurethane and polyurea.
 ポリウレタンは、イソシアネート基と水酸基との反応によって製造され、抗張力や耐摩耗性、耐油性に優れ、塗料、接着剤、自動車部品等に使用されている。例えば、特許文献1には、パッキングフィルムのための二成分ポリウレタン塗料が開示されている。 Polyurethane is produced by the reaction of isocyanate groups and hydroxyl groups, has excellent tensile strength, wear resistance, and oil resistance, and is used in paints, adhesives, automobile parts, and the like. For example, Patent Document 1 discloses a two-component polyurethane paint for a packing film.
 ポリ尿素は、イソシアネート基とアミノ基との反応によって製造され、耐熱性、機械強度、耐薬品性に優れ、射出成型品、フィルム、繊維等に加工され使用されている。例えば、特許文献2には、ポリ尿素を使用する接着剤が開示されている。 Polyurea is produced by a reaction between an isocyanate group and an amino group, has excellent heat resistance, mechanical strength, and chemical resistance, and is processed and used for injection molded products, films, fibers, and the like. For example, Patent Document 2 discloses an adhesive using polyurea.
 このように、イソシアネート基の反応に基づくポリウレタン及びポリ尿素は、塗料や接着剤として、金属、ガラス、プラスチックの表面に塗布され、その表面に機能を付与するが、そのためには表面への密着度が充分でなければならない。 In this way, polyurethane and polyurea based on the reaction of isocyanate groups are applied to the surface of metals, glass and plastics as paints and adhesives, and give functions to the surface. Must be sufficient.
 密着性を改善する方法として、例えば、特許文献3には、鋼板表面の有機皮膜処理によりウレタンの密着性を制御する方法が開示されている。また、塗布する樹脂側の改善方法としては、例えば、特許文献4には、酸変性ポリオレフィン系樹脂分散体と硫黄元素を含有するポリマーを含む組成物が開示されている。 As a method for improving the adhesion, for example, Patent Document 3 discloses a method for controlling the adhesion of urethane by an organic film treatment on the surface of a steel sheet. Moreover, as a method for improving the resin side to be applied, for example, Patent Document 4 discloses a composition containing an acid-modified polyolefin resin dispersion and a polymer containing sulfur element.
 多官能イソシアネート化合物(ポリイソシアネート)を含むポリイソシアネート組成物は、塗料組成物等の広汎な用途に用いられる。このようなポリイソシアネート組成物は、例えば、一液型又は二液型ポリウレタン塗料組成物として上梓されている。中でも、二液型ポリウレタン塗料組成物は、緻密な架橋塗膜が形成可能であり、かつ仕上がり外観が良好であることから、自動車、情報家電等のトップコート用途のように、高品質な外観と優れた耐候性、耐久性が要求される用途において、高く評価されている。 The polyisocyanate composition containing a polyfunctional isocyanate compound (polyisocyanate) is used for a wide range of applications such as a coating composition. Such polyisocyanate compositions are listed as, for example, one-pack or two-pack polyurethane coating compositions. Among them, the two-component polyurethane coating composition is capable of forming a dense cross-linked coating film and has a good finished appearance, so that it has a high-quality appearance such as a top coat application for automobiles, information appliances, etc. It is highly evaluated for applications that require excellent weather resistance and durability.
 自動車用途、情報家電用途等のトップコートには、高品質な外観等に加えて、耐擦り傷性を持ち、さらに高い硬度が求められる。また、トップコートを形成するための塗料組成物には、良好な伸展性が望まれている。 Top coats for automobiles, information appliances, and the like are required to have scratch resistance and higher hardness in addition to high-quality appearance. Moreover, good extensibility is desired for the coating composition for forming the top coat.
 ポリイソシアネートを含む組成物としては、例えば、イソシアヌレート基を含有し、リン濃度が0.1~20ppmであるポリイソシアネート組成物(特許文献5)、アロファネート基を有するポリイソシアネートを含有する塗料組成物(特許文献6、特許文献7)、アロファネート基を有するポリイソシアネート組成物とポリオールとを含むコーティング組成物(特許文献8)等が提案され、その製造方法とともに利用が検討されている。 Examples of the composition containing polyisocyanate include a polyisocyanate composition containing isocyanurate groups and having a phosphorus concentration of 0.1 to 20 ppm (Patent Document 5), and a coating composition containing polyisocyanates having allophanate groups. (Patent Literature 6, Patent Literature 7), a coating composition (Patent Literature 8) containing a polyisocyanate composition having an allophanate group and a polyol, etc. have been proposed, and its use is being studied together with its production method.
 エポキシ樹脂は、耐熱性、耐薬品性等のバランスに優れることから、例えば、塗料、接着剤、成型材料、複合材料、積層板、封止材等の材料として広い分野で使用されている。 Epoxy resins are used in a wide range of materials such as paints, adhesives, molding materials, composite materials, laminates, and sealing materials because of their excellent balance of heat resistance and chemical resistance.
 近年、従来の樹脂素材と比較して、著しく高性能、高信頼性の樹脂素材が求められている。各種変性手法による従来の樹脂の変性が検討されている。中でも、オキシド基の一部をイソシアネート基と反応させた1-オキサ-3-アザシクロアルカン-2-オン構造を有する変性エポキシ樹脂は、高いガラス転移温度と可撓性とを両立できる樹脂として注目され、多くの提案がなされている(例えば、特許文献9、特許文献10、特許文献11参照)。 In recent years, there has been a demand for a resin material with significantly higher performance and higher reliability than conventional resin materials. Conventional modification of resins by various modification methods has been studied. Among them, a modified epoxy resin having a 1-oxa-3-azacycloalkane-2-one structure in which a part of an oxide group is reacted with an isocyanate group is attracting attention as a resin that can achieve both high glass transition temperature and flexibility. Many proposals have been made (see, for example, Patent Document 9, Patent Document 10, and Patent Document 11).
特表2012-517489号公報Special Table 2012-1251789 特表2010-507689号公報Japanese Translation of PCT Special Publication 2010-507689 特開2001-219498号公報JP 2001-219498 A 特開2010-163579号公報JP 2010-163579 A 特許第4201582号公報Japanese Patent No. 4201582 特開平8-188566号公報Japanese Patent Laid-Open No. 8-188856 特開平7-304724号公報JP-A-7-304724 国際公開第2002/32979号International Publication No. 2002/32979 特開昭59-135265号公報JP 59-135265 A 特開昭61-181820号公報Japanese Patent Laid-Open No. 61-181820 特開平5-222160号公報JP-A-5-222160
 イソシアネート基の反応に基づくポリウレタンやポリ尿素は、塗料又は接着剤として、金属、ガラス、プラスチックの表面に塗布され、その表面に機能を付与するが、更なる耐熱性の改善が求められている。 Polyurethanes and polyureas based on the reaction of isocyanate groups are applied as paints or adhesives to the surfaces of metals, glass, and plastics, and give functions to the surfaces, but further improvements in heat resistance are required.
 そこで、一つの側面において、本発明は、耐熱性の高い改質された樹脂組成物を提供することを目的とする。 Therefore, in one aspect, an object of the present invention is to provide a modified resin composition having high heat resistance.
 一方、特許文献3のように表面処理を行う方法は、表面形状及び表面材質によっては適用しにくい場合が多い。また、特許文献4のような樹脂混合物では、樹脂同士の相分離により却って密着性が低下したり、塗膜そのものの機能が損なわれたりする場合がある。 On the other hand, the method of performing surface treatment as in Patent Document 3 is often difficult to apply depending on the surface shape and surface material. Moreover, in the resin mixture like patent document 4, adhesiveness falls on the contrary by phase separation of resin, and the function of the coating film itself may be impaired.
 そこで、別の側面において、本発明は、密着性の高い改質された樹脂組成物を提供することを目的とする。 Therefore, in another aspect, an object of the present invention is to provide a modified resin composition having high adhesion.
 また、本発明者らの検討により、特許文献5~8に記載されたようなポリイソシアネート組成物は、被着体への密着性の点、特に金属への密着性の点で改善の余地があることが判明した。 In addition, as a result of studies by the present inventors, the polyisocyanate compositions as described in Patent Documents 5 to 8 have room for improvement in terms of adhesion to adherends, particularly in terms of adhesion to metals. It turned out to be.
 更に別の側面において、本発明の目的は、被着体への密着性が良好なポリイソチオシアネート及びその製造方法を提供することにある。 In still another aspect, an object of the present invention is to provide a polyisothiocyanate having good adhesion to an adherend and a method for producing the same.
 さらに、本発明者らの検討により、特許文献9~11に記載されたような1-オキサ-3-アザシクロアルカン-2-オン構造を有する変性エポキシ樹脂は、その用途によっては、被着体への密着性、特に金属への密着性の点で改善の余地があることが判明した。 Furthermore, as a result of studies by the present inventors, a modified epoxy resin having a 1-oxa-3-azacycloalkane-2-one structure as described in Patent Documents 9 to 11 depends on the application. It has been found that there is room for improvement in terms of adhesion to metal, particularly to metal.
 更に別の側面において、本発明は、エポキシ樹脂、エピスルフィド樹脂等の化合物の特性を保持しつつ、被着体への密着性が良好な変性エポキシ樹脂、被着体への密着性が良好な変性エピスルフィド樹脂等の化合物並びにこれらの化合物の製造方法を提供することを課題とするものである。 In yet another aspect, the present invention provides a modified epoxy resin having good adhesion to an adherend while maintaining the properties of a compound such as an epoxy resin and an episulfide resin, and a modification having good adhesion to an adherend. It is an object of the present invention to provide compounds such as episulfide resins and methods for producing these compounds.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の構造を分子中に有する樹脂、特定の官能基を有する化合物を反応させて得られる化合物を含有する樹脂によって上記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors solved the above problems with a resin containing a compound having a specific structure in the molecule and a compound obtained by reacting a compound having a specific functional group. The present inventors have found that the present invention can be accomplished and have completed the present invention.
 すなわち、本発明は、以下に関する。
[1]
 窒素原子、炭素原子及び硫黄原子から構成され、これらがこの順で結合しており、前記炭素原子と前記硫黄原子との結合及び前記炭素原子と前記窒素原子との結合のうち少なくとも一方が単結合である、窒素-炭素-硫黄結合を有する樹脂であって、当該樹脂の数平均分子量がMnで、当該樹脂1分子あたりに含まれる前記窒素-炭素-硫黄結合を構成する硫黄原子の数がnであるときに、Mnが500以上で、Mn/nが50以上300以下であり、nは式:n=X・Mn(Xは当該樹脂1gあたりに含まれる前記窒素-炭素-硫黄結合を構成する硫黄原子の数を表す。)により算出される、樹脂。
That is, the present invention relates to the following.
[1]
It is composed of a nitrogen atom, a carbon atom and a sulfur atom, which are bonded in this order, and at least one of the bond between the carbon atom and the sulfur atom and the bond between the carbon atom and the nitrogen atom is a single bond A resin having a nitrogen-carbon-sulfur bond, wherein the number average molecular weight of the resin is Mn, and the number of sulfur atoms constituting the nitrogen-carbon-sulfur bond contained per molecule of the resin is n. 1 , Mn is 500 or more, Mn / n 1 is 50 or more and 300 or less, and n 1 is a formula: n 1 = X 1 · Mn (X 1 is the nitrogen-containing amount per 1 g of the resin) (Representing the number of sulfur atoms constituting the carbon-sulfur bond).
[2]
 当該樹脂の5%熱重量減少温度が300℃以上である、[1]に記載の樹脂。
[2]
The resin according to [1], wherein the resin has a 5% thermal weight loss temperature of 300 ° C or higher.
[3]
 下記式(1)、(2)、(3)、(4)又は(5)で表される1価の基からなる群から選ばれる少なくとも1種の官能基を有する化合物と、
 モノイソシアネート、ポリイソシアネート、モノイソチオシアネート及びポリイソチオシアネートからなる群より選ばれる少なくとも1種の化合物と、
の反応により得られる樹脂。
[3]
A compound having at least one functional group selected from the group consisting of monovalent groups represented by the following formula (1), (2), (3), (4) or (5);
At least one compound selected from the group consisting of monoisocyanate, polyisocyanate, monoisothiocyanate and polyisothiocyanate;
Resin obtained by the reaction of
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[4]
 式(1)~(5)で表される1価の基からなる群から選ばれる少なくとも1種の官能基を有する前記化合物と、モノイソチオシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の化合物、又はモノイソチオシアネート若しくはポリイソチオシアネートと、の反応により得られる樹脂である、[3]に記載の樹脂。
[4]
The compound having at least one functional group selected from the group consisting of monovalent groups represented by formulas (1) to (5), and at least one compound selected from monoisothiocyanate and polyisothiocyanate, Alternatively, the resin according to [3], which is a resin obtained by a reaction with monoisothiocyanate or polyisothiocyanate.
[5]
 前記モノイソチオシアネートが、下記式(30)で表される化合物を含む、又は当該化合物である、[3]又は[4]に記載の樹脂。
[5]
The resin according to [3] or [4], wherein the monoisothiocyanate includes or is a compound represented by the following formula (30).
Figure JPOXMLDOC01-appb-C000019
(式中、
は有機基を表す。Rは、炭素数1~25の脂肪族基、芳香族化合物で置換された炭素数7~25の脂肪族基又は炭素数6~25の芳香族基であってもよい。
Figure JPOXMLDOC01-appb-C000019
(Where
R 5 represents an organic group. R 5 may be an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic compound, or an aromatic group having 6 to 25 carbon atoms.
[6]
 前記樹脂が、式(3)~(5)で表される前記官能基と、イソシアネート基又はイソチオシアネート基との反応に由来する環状構造を有する、[3]~[5]のいずれか一項に記載の樹脂。
[6]
Any one of [3] to [5], wherein the resin has a cyclic structure derived from a reaction between the functional group represented by the formulas (3) to (5) and an isocyanate group or an isothiocyanate group. Resin.
[7]
 前記環状構造を含有する基として、下記式(6)、(7)又は(8)で表される2価の基からなる群から選ばれる少なくとも1種の構成単位(基)を2以上有する、[6]に記載の樹脂。
[7]
The group containing the cyclic structure has two or more structural units (groups) selected from the group consisting of divalent groups represented by the following formula (6), (7) or (8). The resin according to [6].
Figure JPOXMLDOC01-appb-C000020
(式中、
は有機基を表し、同一分子中の複数のYは同一でも異なってもよい。Yは-NH-基であってもよい。)
Figure JPOXMLDOC01-appb-C000020
(Where
Y 1 represents an organic group, and a plurality of Y 1 in the same molecule may be the same or different. Y 1 may be a —NH— group. )
[8]
 下記式(6)、(7)又は(8)で表される2価の基からなる群から選ばれる少なくとも1種の構成単位(基)を2以上有する、樹脂。
[8]
Resin which has 2 or more of at least 1 type of structural unit (group) chosen from the group which consists of a bivalent group represented by following formula (6), (7) or (8).
Figure JPOXMLDOC01-appb-C000021
(式中、
は有機基を表し、同一分子中の複数のYは同一でも異なってもよい。Yは-NH-基であってもよい。)
Figure JPOXMLDOC01-appb-C000021
(Where
Y 1 represents an organic group, a plurality of Y 1 in the same molecule may be the same or different. Y 1 may be a —NH— group. )
[9]
 当該樹脂の数平均分子量がMnで、当該樹脂1分子あたりに含まれる式(6)、(7)又は(8)で表される前記構成単位の数の和がnであるときに、Mnが500以上で、Mn/nが50以上300以下であり、nは式:n=X・Mn(Xは当該樹脂1gあたりに含まれる式(6)、(7)又は(8)で表される前記構成単位の数の和を表す。)により算出される、[7]又は[8]に記載の樹脂。
[9]
The number average molecular weight of the resin is Mn, type contained per the resin molecule (6), when (7) or the sum of the number of the structural unit represented by (8) is n 2, Mn Is 500 or more, Mn / n 2 is 50 or more and 300 or less, and n 2 is a formula: n 2 = X 2 · Mn (X 2 is a formula (6), (7) or ( The resin according to [7] or [8], which is calculated according to 8).
[10]
 窒素原子、炭素原子及び硫黄原子から構成され、これらがこの順で結合している、窒素-炭素-硫黄結合を有する化合物と、ポリイソチオシアネートとの反応により得られる樹脂。
[10]
A resin obtained by reacting a compound having a nitrogen-carbon-sulfur bond, which is composed of a nitrogen atom, a carbon atom and a sulfur atom, and these are bonded in this order, with a polyisothiocyanate.
[11]
 前記ポリイソチオシアネートが、下記式(32)で表される化合物を含む、又は当該化合物である、[3]~[7]及び[10]のいずれか一項に記載の樹脂。
[11]
The resin according to any one of [3] to [7] and [10], wherein the polyisothiocyanate includes or is a compound represented by the following formula (32).
Figure JPOXMLDOC01-appb-C000022
(式中、
は有機基を表し、
aは2~1000の整数を表す。)
Figure JPOXMLDOC01-appb-C000022
(Where
R 6 represents an organic group,
a represents an integer of 2 to 1000. )
[12]
 前記ポリイソチオシアネートが、下記式(33)で表される繰り返し単位を2以上有するポリマーを含む、又は当該ポリマーである、[3]~[7]及び[10]のいずれか一項に記載の樹脂。
[12]
The polyisothiocyanate includes a polymer having two or more repeating units represented by the following formula (33), or is the polymer, according to any one of [3] to [7] and [10] resin.
Figure JPOXMLDOC01-appb-C000023
(式中、
は有機基を表し、
は有機基又は単結合を表し、
bは1以上の整数を表し、
gは1又は2を表し、
同一分子中の複数のR、R、b及びgはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000023
(Where
R 7 represents an organic group,
R 8 represents an organic group or a single bond,
b represents an integer of 1 or more,
g represents 1 or 2,
A plurality of R 7 , R 8 , b and g in the same molecule may be the same or different. )
[13]
 前記ポリイソチオシアネートが、下記式(40)で表される構成単位を2以上と、下記式(41)、(42)、(43)、(44)、(45)、(46)又は(47)で表される1価、2価又は3価の基(単位)からなる群から選ばれる少なくとも1種の構成単位と、を有する化合物であって、該化合物中の窒素原子が、炭素原子と結合している、化合物を含む、又は当該化合物である、[3]~[7]及び[10]のいずれか一項に記載の樹脂。
[13]
The polyisothiocyanate has two or more structural units represented by the following formula (40) and the following formulas (41), (42), (43), (44), (45), (46) or (47). And at least one structural unit selected from the group consisting of monovalent, divalent or trivalent groups (units) represented by the formula: wherein the nitrogen atom in the compound is a carbon atom; The resin according to any one of [3] to [7] and [10], which is bound, contains a compound, or is the compound.
Figure JPOXMLDOC01-appb-C000024
(式中、
は有機基を表し、Rは脂肪族基若しくは芳香族基、又は脂肪族炭化水素基若しくは芳香族炭化水素基を表し、Xは酸素原子又は硫黄原子を表し、同一分子中の複数のR、R及びXはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000024
(Where
R 3 represents an organic group, R 4 represents an aliphatic group or an aromatic group, or an aliphatic hydrocarbon group or an aromatic hydrocarbon group, X 3 represents an oxygen atom or a sulfur atom, and a plurality of them in the same molecule R 3 , R 4 and X 3 may be the same or different. )
[14]
 前記ポリイソチオシアネートが、下記式(33)で表される化合物を含む、又は当該化合物である、[3]~[7]及び[10]のいずれか一項に記載の樹脂。
[14]
The resin according to any one of [3] to [7] and [10], wherein the polyisothiocyanate includes or is a compound represented by the following formula (33).
Figure JPOXMLDOC01-appb-C000025
(式中、
は、有機基を表す。)
Figure JPOXMLDOC01-appb-C000025
(Where
R 3 represents an organic group. )
[15]
 下記式(33)で表される化合物を重合することを含む方法によって得られる、樹脂。
[15]
Resin obtained by the method including superposing | polymerizing the compound represented by following formula (33).
Figure JPOXMLDOC01-appb-C000026
(式中、
は、有機基を表す。)
Figure JPOXMLDOC01-appb-C000026
(Where
R 3 represents an organic group. )
[16]
 式(33)で表される前記化合物を触媒の存在下で重合することを含む、[15]に記載の樹脂の製造方法。
[16]
The method for producing a resin according to [15], comprising polymerizing the compound represented by the formula (33) in the presence of a catalyst.
[17]
 下記式(40)で表される構成単位を2以上と、
 下記式(41)、(42)、(43)、(44)、(45)、(46)又は(47)で表される1価、2価又は3価の基(構成単位)からなる群より選択される少なくとも1種の構成単位と、を有し、
 式(41)~(47)で表される1つの前記構成単位中の窒素原子(N)が式(41)~(47)で表される他の前記構成単位中の窒素原子(N)と直接結合していない、樹脂。式(41)~(47)で表される前記構成単位中のRがイソチオシアネート基と直接結合して式(40)の前記構成単位が形成されていてもよい。
[17]
Two or more structural units represented by the following formula (40),
A group consisting of a monovalent, divalent or trivalent group (structural unit) represented by the following formula (41), (42), (43), (44), (45), (46) or (47) And at least one structural unit selected from
A nitrogen atom (N) in one of the structural units represented by formulas (41) to (47) is a nitrogen atom (N) in the other structural unit represented by formulas (41) to (47); Resin that is not directly bonded. R 3 in the structural units represented by formulas (41) to (47) may be directly bonded to an isothiocyanate group to form the structural unit of formula (40).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(式中、
は有機基を表し、Rは脂肪族基又は芳香族基を表し、
は酸素原子又は硫黄原子を表し、
同一分子中の複数のR、R及びXはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000028
(Where
R 3 represents an organic group, R 4 represents an aliphatic group or an aromatic group,
X 3 represents an oxygen atom or a sulfur atom,
A plurality of R 3 , R 4 and X 3 in the same molecule may be the same or different. )
[18]
 Rが、脂肪族基又は芳香族基である、[13]、[14]、[15]又は[17]に記載の樹脂。
[18]
The resin according to [13], [14], [15] or [17], wherein R 3 is an aliphatic group or an aromatic group.
[19]
 Rが下記式(301)、(302)、(303)、(304)、(305)又は(306)で表される炭化水素基である、[18]に記載の樹脂。
[19]
The resin according to [18], wherein R 3 is a hydrocarbon group represented by the following formula (301), (302), (303), (304), (305) or (306).
Figure JPOXMLDOC01-appb-C000029
(式中、
iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000029
(Where
i represents an integer of 1 to 12, and may be 1 to 10. )
[20]
 [1]~[15]及び[17]~[19]のいずれか一項に記載の樹脂を含む樹脂組成物。
[20]
A resin composition comprising the resin according to any one of [1] to [15] and [17] to [19].
[21]
 [20]に記載の樹脂組成物から形成される、又は当該樹脂組成物を用いて形成される、塗膜材。
[21]
[20] A coating material formed from the resin composition according to [20] or formed using the resin composition.
[22]
 [20]に記載の樹脂組成物を含有する、水系塗料。
[22]
A water-based paint containing the resin composition according to [20].
[23]
 下記式(10)で表される分子鎖を含む樹脂。
[23]
Resin containing the molecular chain represented by following formula (10).
Figure JPOXMLDOC01-appb-C000030
(式中、
は脂肪族基及び/又は芳香族基を表し、Qは下記式(11)、(12)、(13)又は(14)で表される2価の基からなる群より選択される1種以上の構成単位(基)を表し、複数あるP及びQは同一でも異なってもよく、nは2以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000030
(Where
P 1 represents an aliphatic group and / or an aromatic group, and Q 1 is selected from the group consisting of divalent groups represented by the following formula (11), (12), (13) or (14). It represents one or more structural units (groups), and a plurality of P 1 and Q 1 may be the same or different, and n represents an integer of 2 or more. )
Figure JPOXMLDOC01-appb-C000031
(式中、
は、脂肪族基又は芳香族基を表し、
及びYはそれぞれ独立に酸素原子又は硫黄原子を表し、同一分子中の複数のR、X及びYはそれぞれ同一でも異なってもよい。一つのQ中のX及びYのうち1つ以上が硫黄原子である。)
Figure JPOXMLDOC01-appb-C000031
(Where
R 1 represents an aliphatic group or an aromatic group,
X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom, and a plurality of R 1 , X 2 and Y 2 in the same molecule may be the same or different. One or more of X 2 and Y 2 in one Q 1 is a sulfur atom. )
[24]
 Rが、ポリイソシアネートから該ポリイソシアネートを構成するイソシアネート基(-NCO)を2つ除いた残基、又は、ポリイソチオシアネートから該ポリイソチオシアネートを構成するイソチオシアネート基(-NCS)を2つ除いた残基である、[23]に記載の樹脂。
[24]
R 1 is a residue obtained by removing two isocyanate groups (—NCO) constituting the polyisocyanate from polyisocyanate, or two isothiocyanate groups (—NCS) constituting the polyisothiocyanate from polyisothiocyanate. The resin according to [23], which is a removed residue.
[25]
 ポリイソシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の化合物と、
 下記式(20)で表される化合物との反応によって得られる、[23]又は[24]に記載の樹脂。
[25]
At least one compound selected from polyisocyanates and polyisothiocyanates;
Resin as described in [23] or [24] obtained by reaction with the compound represented by following formula (20).
Figure JPOXMLDOC01-appb-C000032
(式中、
は、脂肪族基又は芳香族基を表し、
は、酸素原子又は硫黄原子を表す。一単位中の複数あるYは同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000032
(Where
R 2 represents an aliphatic group or an aromatic group,
Y 2 represents an oxygen atom or a sulfur atom. Plural Y 2 in one unit may be the same or different. )
[26]
 ポリイソシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の前記化合物が、下記式(31)で表される化合物を含む、[25]に記載の樹脂。
[26]
The resin according to [25], wherein the at least one compound selected from polyisocyanate and polyisothiocyanate includes a compound represented by the following formula (31).
Figure JPOXMLDOC01-appb-C000033
(式中、
は、脂肪族基又は芳香族基を表し、
Xは、酸素原子又は硫黄原子を表す。一単位中のXとYとの少なくとも一方が硫黄原子であってもよい。)
Figure JPOXMLDOC01-appb-C000033
(Where
R 1 represents an aliphatic group or an aromatic group,
X represents an oxygen atom or a sulfur atom. At least one of X and Y 2 in one unit may be a sulfur atom. )
[27]
 Rが下記式(201)、(202)、(203)又は(204)で表される1価の基である、[25]又は[26]に記載の樹脂。
[27]
The resin according to [25] or [26], wherein R 2 is a monovalent group represented by the following formula (201), (202), (203) or (204).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[28]
 Rが、炭素数1~25の脂肪族基、芳香族基(芳香族化合物)で置換された炭素数7~25の脂肪族基又は炭素数6~25の芳香族基である、[23]~[27]のいずれか一項に記載の樹脂。
[28]
R 1 is an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group (aromatic compound), or an aromatic group having 6 to 25 carbon atoms [23 ] The resin according to any one of [27] to [27].
[29]
 Rが、下記式(301)、(302)、(303)、(304)、(305)又は(306)で表される炭化水素基からなる群より選択される炭化水素基である、[23]~[27]のいずれか一項に記載の樹脂。
[29]
R 1 is a hydrocarbon group selected from the group consisting of hydrocarbon groups represented by the following formula (301), (302), (303), (304), (305) or (306), [23] The resin according to any one of [27].
Figure JPOXMLDOC01-appb-C000035
(式中、
iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000035
(Where
i represents an integer of 1 to 12, and may be 1 to 10. )
[30]
 Rが、スピロ原子を含有しない、[23]~[28]のいずれか一項に記載の樹脂。
[30]
The resin according to any one of [23] to [28], wherein R 1 does not contain a spiro atom.
[31]
 [23]~[30]のいずれか一項に記載の樹脂と、硬化剤と、を含む硬化性組成物。
[31]
[23] A curable composition comprising the resin according to any one of [30] and a curing agent.
[32]
 ポリイソシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の前記化合物と、式(20)で表される前記化合物とを触媒の存在下で反応させることを含む、[25]、又は[26]に記載の樹脂の製造方法。
[32]
The method according to [25] or [26], comprising reacting at least one compound selected from polyisocyanate and polyisothiocyanate with the compound represented by formula (20) in the presence of a catalyst. Resin production method.
 本発明によれば、耐熱性の高い改質された樹脂組成物を提供することができる。
 本発明によれば、密着性の高い改質された樹脂組成物を提供することができる。
 本発明によれば、被着体への密着性が良好なポリイソチオシアネート及びその製造方法を提供することができる。
 本発明によれば、エポキシ樹脂、エピスルフィド樹脂等の化合物の特性を保持しつつ、被着体への密着性が良好な変性エポキシ樹脂、被着体への密着性が良好な変性エピスルフィド樹脂等の化合物並びにこれらの化合物の製造方法を提供することできる。
According to the present invention, a modified resin composition having high heat resistance can be provided.
According to the present invention, it is possible to provide a modified resin composition having high adhesion.
ADVANTAGE OF THE INVENTION According to this invention, the polyisothiocyanate with favorable adhesiveness to a to-be-adhered body and its manufacturing method can be provided.
According to the present invention, a modified epoxy resin having good adhesion to an adherend, a modified episulfide resin having good adhesion to an adherend and the like while retaining the properties of a compound such as an epoxy resin and an episulfide resin. Compounds and methods for producing these compounds can be provided.
実施例17で得た固体のH-NMRスペクトルである。3 is a 1 H-NMR spectrum of the solid obtained in Example 17. ポリイソチオシアネートのH-NMRチャートを示す図である。FIG. 3 is a diagram showing a 1 H-NMR chart of polyisothiocyanate. オキサゾリジン-2-チオン環を含む化合物のH-NMRチャートを示す図である。FIG. 3 is a diagram showing a 1 H-NMR chart of a compound containing an oxazolidine-2-thione ring.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist thereof.
 本明細書において、化合物名は、IUPAC(The International Union of Pure and Applied Chemistry)で定められたNomenclature(IUPAC Nomencrature of Organic Chemistry)記載の規則に基づく名称を用いる場合が多い。“有機”とは、該規則に開示されている命名法の対象とされる化合物群一般を指す。該対象は、1993年に出された勧告に記載された対象であってもよい。ただし、上記した該Nomencratureの対象とした“有機”化合物には、有機金属化合物、及び金属錯体をも含有される。本実施形態においては、“有機”及び/又は“有機基”及び/又は“置換基”などの用語を用いて、本実施形態で使用する化合物を以下に説明するが、特に説明のない場合、それらは金属原子及び/又は半金属を含まない原子で構成される。H(水素原子)、C(炭素原子)、N(窒素原子)、O(酸素原子)、S(硫黄原子)、Cl(塩素原子)、Br(臭素原子)、I(ヨウ素原子)から選ばれる原子から構成される構造として、“有機化合物”、“有機基”、“置換基”を本実施形態では使用する。 In this specification, compound names are often based on the description of Nomenclature (IUPAC Nomenclature of Organic Chemistry) defined by IUPAC (The International Union of Pure and Applied Chemistry). “Organic” refers to a general group of compounds that are subject to the nomenclature disclosed in the rules. The subject may be a subject described in a recommendation issued in 1993. However, the “organic” compounds targeted by the above-mentioned Nomenclature include organometallic compounds and metal complexes. In this embodiment, the term “organic” and / or “organic group” and / or “substituent” will be used to describe the compounds used in this embodiment below. They are composed of atoms that do not contain metal atoms and / or metalloids. Selected from H (hydrogen atom), C (carbon atom), N (nitrogen atom), O (oxygen atom), S (sulfur atom), Cl (chlorine atom), Br (bromine atom), I (iodine atom) As the structure composed of atoms, “organic compound”, “organic group”, and “substituent” are used in this embodiment.
 以下の説明に、“脂肪族”及び“芳香族”という語を多用する。上記したIUPACの規則によれば、有機化合物は、脂肪族化合物と芳香族化合物に分類されることが記載されている。脂肪族化合物とは、1995年のIUPAC勧告に基づいた脂肪族化合物に沿った基の定義である。該勧告には、脂肪族化合物を“Acyclic or cyclic,saturated or unsaturated carbon compounds,excluding aromatic compounds”と定義している。また、本実施形態の説明で用いる脂肪族化合物及び脂肪族基は、飽和及び不飽和、鎖状及び環状のいずれも包含し、上記したH(水素原子);C(炭素原子);N(窒素原子);O(酸素原子);S(硫黄原子);Si(ケイ素原子);Cl(塩素原子)、Br(臭素原子)及びI(ヨウ素原子)から選ばれるハロゲン原子;から選ばれる原子で構成され得る。 In the following explanation, the terms “aliphatic” and “aromatic” are frequently used. According to the above IUPAC rules, it is described that organic compounds are classified into aliphatic compounds and aromatic compounds. An aliphatic compound is a definition of a group in line with an aliphatic compound based on the 1995 IUPAC recommendation. The recommendation defines an aliphatic compound as “Acyclic or cyclic, saturated or unsaturated carbon compounds, and excluded aromatic compounds”. In addition, the aliphatic compound and the aliphatic group used in the description of this embodiment include both saturated and unsaturated, chain and cyclic, and the above-described H (hydrogen atom); C (carbon atom); N (nitrogen) Atoms); O (oxygen atoms); S (sulfur atoms); Si (silicon atoms); halogen atoms selected from Cl (chlorine atoms), Br (bromine atoms) and I (iodine atoms); Can be done.
 “アラルキル基”のように、脂肪族基に結合した芳香族基を有する基は、“芳香族基で置換された脂肪族基”、“芳香脂肪族基”又は“芳香族基が結合した脂肪族基からなる基”としばしば表記することがある。これは、本実施形態における反応性に基づくもので、アラルキル基のような基の反応に関する性質は、芳香族性ではなく脂肪族の反応性に極めて類似しているからである。また、アラルキル基、アルキル基等を包含した非芳香族反応性基を、しばしば“芳香族で置換されてもよい脂肪族基”、“芳香族で置換された脂肪族基”、“芳香族基が結合した脂肪族基”などと表記し、“脂肪族基”に含める場合がある。 A group having an aromatic group bonded to an aliphatic group, such as an “aralkyl group”, is an “aliphatic group substituted with an aromatic group”, “aromatic aliphatic group” or “an aliphatic group bonded to an aromatic group”. Often referred to as a “group consisting of a group”. This is based on the reactivity in the present embodiment, and the property related to the reaction of a group such as an aralkyl group is very similar to the reactivity of aliphatic rather than aromatic. In addition, non-aromatic reactive groups including aralkyl groups, alkyl groups, etc. are often referred to as “aliphatic groups optionally substituted with aromatics”, “aliphatic groups substituted with aromatics”, “aromatic groups May be included in the “aliphatic group”.
 本明細書で使用する化合物の一般式を説明する際は、上記したIUPACで定められたNomenclature規則に沿った定義を使用するが、具体的な基の名称、例示する化合物名称は、しばしば慣用名を使用している。また、本明細書中に、原子の数、置換基の数、個数をしばしば記載するが、それらはすべて整数を表している。 In describing the general formula of the compound used in the present specification, the definition in accordance with the above-mentioned Nomenclature rule defined by IUPAC is used, but the name of a specific group, the exemplified compound name is often a common name. Is used. In this specification, the number of atoms, the number of substituents, and the number are often described, and they all represent integers.
 本明細書中に例示する置換基や化合物が、構造異性体を有する場合には、特に断らない限り、これらの構造異性体を含む。 When the substituents and compounds exemplified in the present specification have structural isomers, these structural isomers are included unless otherwise specified.
<樹脂組成物>
 いくつかの実施形態に係る樹脂組成物は、窒素-炭素-硫黄結合、及び/又は窒素-炭素-酸素結合を有する樹脂を含有する。ここでいう窒素-炭素-硫黄結合とは、窒素原子、炭素原子、硫黄原子がこの順で結合している状態の構造を指し、当該結合における窒素-炭素結合、炭素-硫黄結合は、単結合であっても不飽和結合であってもよい。ただし、窒素-炭素結合及び炭素-硫黄結合のうち少なくとも一方は、単結合であってもよい。当該結合を形成する窒素原子と硫黄原子は他の原子、例えば、炭素原子、窒素原子、酸素原子、ケイ素原子等を結合していてもよい。窒素-炭素-酸素結合も同様に定義される。
<Resin composition>
The resin composition according to some embodiments contains a resin having a nitrogen-carbon-sulfur bond and / or a nitrogen-carbon-oxygen bond. Here, the nitrogen-carbon-sulfur bond refers to a structure in which a nitrogen atom, a carbon atom, and a sulfur atom are bonded in this order. The nitrogen-carbon bond and the carbon-sulfur bond in the bond are a single bond. Or an unsaturated bond. However, at least one of the nitrogen-carbon bond and the carbon-sulfur bond may be a single bond. The nitrogen atom and sulfur atom that form the bond may be bonded to other atoms such as a carbon atom, a nitrogen atom, an oxygen atom, or a silicon atom. Nitrogen-carbon-oxygen bonds are defined similarly.
 窒素-炭素-硫黄結合及び/又は窒素-炭素-酸素結合を含む基として、好ましくは下記式で表される構成単位を挙げることができる。 Preferred examples of the group containing a nitrogen-carbon-sulfur bond and / or nitrogen-carbon-oxygen bond include structural units represented by the following formulae.
Figure JPOXMLDOC01-appb-C000036
(式中、
は、ポリイソシアネートから該ポリイソシアネートを構成するイソシアネート基(-NCO)を2つ除いた残基、又は、ポリイソチオシアネートから該ポリイソチオシアネートを構成するイソチオシアネート基(-NCS)を2つ除いた残基を表し、
及びYは各々独立に酸素原子又は硫黄原子を表し、
一つの構成単位中のX及びYのうち1つ以上が硫黄原子である。)
Figure JPOXMLDOC01-appb-C000036
(Where
R 1 is a residue obtained by removing two isocyanate groups (—NCO) constituting the polyisocyanate from polyisocyanate, or two isothiocyanate groups (—NCS) constituting the polyisothiocyanate from polyisothiocyanate. Represents the residue removed,
X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom,
One or more of X 2 and Y 2 in one structural unit is a sulfur atom. )
Figure JPOXMLDOC01-appb-C000037
(式中、
及びRは、それぞれ独立に脂肪族基又は芳香族基を表し、複数あるR及びRは同一でも異なってもよく、
は酸素原子又は硫黄原子を表す。)
Figure JPOXMLDOC01-appb-C000037
(Where
R 3 and R 4 each independently represent an aliphatic group or an aromatic group, and a plurality of R 3 and R 4 may be the same or different,
X 3 represents an oxygen atom or a sulfur atom. )
 このような構成単位を分子中に有する樹脂を含有する樹脂組成物は、金属との密着性を大幅に改善する効果を奏する。また、この屈折率が高いことから、光沢性等の塗料物性の改善にも効果が奏される。 A resin composition containing a resin having such a structural unit in the molecule has an effect of greatly improving the adhesion with a metal. In addition, since the refractive index is high, it is effective for improving the physical properties of paint such as gloss.
 塗膜を形成した際の特性としては、耐熱性が重要な特性の一つである。具体的には、5%熱重量減少温度が250℃以上又は300℃以上である樹脂を含有する樹脂組成物であってもよい。ここでいう、5%熱重量減少温度とは、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下、毎分10℃で温度上昇する炉の中で樹脂を加熱した際に、室温(20℃~30℃)での樹脂重量に対して5%の重量減少が認められた時点での炉の温度であり、一般的には、熱重量分析計として市販されている装置を使用して測定することができる。 As a characteristic when a coating film is formed, heat resistance is one of the important characteristics. Specifically, it may be a resin composition containing a resin having a 5% thermal weight loss temperature of 250 ° C. or higher or 300 ° C. or higher. As used herein, the 5% thermogravimetric decrease temperature refers to room temperature (20 ° C. to 20 ° C.) when the resin is heated in a furnace whose temperature rises at 10 ° C./min in an inert gas atmosphere such as nitrogen, helium or argon. This is the temperature of the furnace when a 5% weight loss is observed with respect to the resin weight at 30 ° C., and is generally measured using a device commercially available as a thermogravimetric analyzer. Can do.
 耐熱性の効果を奏する樹脂組成物は、その主鎖骨格、結合様式、分子量、耐熱性の発現に寄与する結合の含有量等により様々である。結合様式の観点では、上記した中でも、上記式(6)~(8)、(11)~(14)、(41)、(42)、(45)、(46)又は(47)で表される構成単位を有する樹脂を含有する樹脂組成物が好ましい。 The resin composition exhibiting the heat resistance effect varies depending on the main chain skeleton, the bonding mode, the molecular weight, the content of bonds contributing to the expression of heat resistance, and the like. From the viewpoint of the binding mode, among the above, it is represented by the above formulas (6) to (8), (11) to (14), (41), (42), (45), (46) or (47). A resin composition containing a resin having a structural unit is preferred.
 樹脂の数平均分子量は、好ましくは500以上、より好ましくは1000以上、更に好ましくは5000以上である。一般的には高分子量の方が、耐熱性が良好となる傾向にあるが、一方で、あまりに高分子量である場合には、塗膜を形成する際の取り扱い性(他の成分との混和性、流動性、展性等)の面で不利となる場合があることから、数平均分子量は好ましくは100万以下、より好ましくは50万以下、更に好ましくは20万以下である。ここでいう数平均分子量は、排除限界分子量1000万以上のカラムを少なくとも1つ具備するゲルパーミエーションクロマトグラフィーを使用して測定し、ポリスチレン等の標準物質を用いて保持時間を分子量に換算することで計算した値である。当業者であれば容易に数平均分子量を求めることができる。溶媒に由来するピークは除いて計算する。 The number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components) The number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less. The number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
 耐熱性の発現に寄与する結合の含有量は、上記した数平均分子量Mnとも相関する。1分子あたりに含まれる窒素-炭素-硫黄結合を構成する硫黄原子の数及び窒素-炭素-酸素結合を構成する酸素原子の数nで樹脂の数平均分子量を除した値(Mn/n)が、好ましくは300以下、より好ましくは200以下、更に好ましくは150以下である。本実施の形態の樹脂組成物は、上記したように金属との密着性の面においても効果を奏するが、そのような効果を発現する観点からも、樹脂が1分子あたりに多くの上記結合を有していることが好ましい。一方で、樹脂があまりに多くの上記結合を有している場合、特に、樹脂が上記式(6)~(8)、(11)~(14)、(41)、(42)、(45)、(46)又は(47)で表される構成単位を有する場合、塗膜性能の一つである柔軟性が損なわれる場合もある。そのような観点から、Mn/nは好ましくは50以上、より好ましくは70以上である。nは、例えば、樹脂単位重量(1g)あたりの当該結合の数X(単位mol/g)を、例えば赤外線吸収スペクトルやH-NMR等によって求め、上記した数平均分子量(Mn)から、式:n=Mn・Xによって算出することができる。樹脂が窒素-炭素-硫黄結合及び窒素-炭素-酸素結合の両方を含む場合、nはそれぞれの結合を構成する硫黄原子及び酸素原子の合計数である。 The content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above. Nitrogen contained per one molecule - carbon - number of sulfur atoms and nitrogen constituting the sulfur bonds - carbon - the value obtained by dividing the number average molecular weight of the resin by the number n 1 of oxygen atoms constituting the oxygen binding (Mn / n 1 ) Is preferably 300 or less, more preferably 200 or less, still more preferably 150 or less. The resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have. On the other hand, when the resin has too many of the above bonds, in particular, the resin has the above formulas (6) to (8), (11) to (14), (41), (42), (45) , (46) or (47), the flexibility, which is one of the coating film performances, may be impaired. From such a viewpoint, Mn / n 1 is preferably 50 or more, more preferably 70 or more. n 1 is, for example, the number X 1 (unit mol / g) of the bonds per resin unit weight (1 g) determined by, for example, an infrared absorption spectrum, 1 H-NMR, etc., and calculated from the above-mentioned number average molecular weight (Mn). , N 1 = Mn · X 1 . When the resin contains both nitrogen-carbon-sulfur bonds and nitrogen-carbon-oxygen bonds, n 1 is the total number of sulfur atoms and oxygen atoms constituting each bond.
 本実施の形態の樹脂組成物に含まれる樹脂は、上記したように分子鎖を構成する結合(構成単位)に特徴があり、各結合間の骨格構造については特に限定されない。具体的には、以下に例示する本実施の形態の樹脂組成物の製造方法において使用される原料化合物に由来する骨格構造が好ましく使用される。 The resin contained in the resin composition of the present embodiment is characterized by the bonds (structural units) constituting the molecular chain as described above, and the skeleton structure between the bonds is not particularly limited. Specifically, a skeleton structure derived from a raw material compound used in the method for producing a resin composition of the present embodiment exemplified below is preferably used.
 このような樹脂の中でも、上記式(6)~(8)、(11)~(14)、(41)、(42)、(45)、(46)又は(47)で表される構成単位を含有する樹脂は特性が良好であり、好ましく使用することができる。以下、これらの樹脂について説明する。 Among such resins, structural units represented by the above formulas (6) to (8), (11) to (14), (41), (42), (45), (46) or (47) The resin containing is good in properties and can be preferably used. Hereinafter, these resins will be described.
≪複素環を有する樹脂≫
<好ましい構造>
 本実施の形態で好ましい第1の樹脂は、上記式(6)~(8)で表される1価の基からなる群から選ばれる少なくとも1種の構成単位を2以上有する樹脂である。上記式(6)~(8)で表される構成単位を有する樹脂は、驚くべきことに、耐熱性が高く、密着性、殊に金属表面への密着性に優れる。このような効果を奏する機構については明らかではないが、本発明者らは、共役系を有する環構造が耐熱性に寄与し、該構成単位に含まれる硫黄原子、殊に、上記式(6)の構成単位が有するチオール基(-SH基)が密着性を高める効果を奏するのではないかと推測している。このような観点からは、上記式(6)で表される構成単位及び/又は上記式(7)で表される構成単位を含む樹脂が好ましい。
≪Resin having a heterocyclic ring≫
<Preferred structure>
A preferred first resin in the present embodiment is a resin having two or more structural units selected from the group consisting of monovalent groups represented by the above formulas (6) to (8). The resin having the structural units represented by the above formulas (6) to (8) is surprisingly high in heat resistance and excellent in adhesion, particularly adhesion to the metal surface. Although the mechanism that exerts such an effect is not clear, the present inventors have found that a ring structure having a conjugated system contributes to heat resistance, and sulfur atoms contained in the structural unit, particularly the above formula (6). It is speculated that the thiol group (—SH group) possessed by the structural unit may have the effect of improving the adhesion. From such a viewpoint, a resin containing the structural unit represented by the above formula (6) and / or the structural unit represented by the above formula (7) is preferable.
 このように、本実施の形態の樹脂は、その分子中に含まれる結合様式に特徴があり、該結合以外の骨格構造は特に限定されないが、より好ましい形態は以下の通りである。 As described above, the resin of the present embodiment is characterized by the bonding mode contained in the molecule, and the skeletal structure other than the bonding is not particularly limited, but more preferable forms are as follows.
 樹脂の数平均分子量は、好ましくは500以上、より好ましくは1000以上、更に好ましくは5000以上である。一般的には高分子量の方が、耐熱性が良好となる傾向にあるが、一方で、あまりに高分子量である場合には、塗膜を形成する際の取り扱い性(他の成分との混和性、流動性、展性等)の面で不利となる場合があることから、数平均分子量は好ましくは100万以下、より好ましくは50万以下、更に好ましくは20万以下である。ここでいう数平均分子量は、排除限界分子量1000万以上のカラムを少なくとも1つ具備するゲルパーミエーションクロマトグラフィーを使用して測定し、ポリスチレン等の標準物質を用いて保持時間を分子量に換算することで計算した値である。当業者であれば容易に数平均分子量を求めることができる。溶媒に由来するピークは除いて計算する。 The number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components) The number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less. The number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
 耐熱性の発現に寄与する結合の含有量は、上記した数平均分子量Mnとも相関する。1分子あたりに含まれる窒素-炭素-硫黄結合を構成する硫黄原子の数及び窒素-炭素-酸素結合を構成する酸素原子の数nで樹脂の数平均分子量を除した値(Mn/n)が、好ましくは300以下、より好ましくは200以下、更に好ましくは150以下である。本実施の形態の樹脂組成物は、上記したように金属との密着性の面においても効果を奏するが、そのような効果を発現する観点からも、樹脂が1分子あたりに多くの上記結合を有していることが好ましい。一方で、樹脂があまりに多くの上記結合を有している場合、特に、樹脂が上記式(6)~(8)、(11)~(14)、(41)、(42)、(45)、(46)又は(47)で表される構成単位を有する場合、塗膜性能の一つである柔軟性が損なわれる場合もある。そのような観点から、(Mn/nは好ましくは50以上、より好ましくは70以上である。nは、例えば、樹脂単位重量(1g)あたりの当該結合の数X(単位mol/g)を、例えば赤外線吸収スペクトルやH-NMR等によって求め、上記した数平均分子量(Mn)から、式:n=Mn・Xによって算出することができる。樹脂が窒素-炭素-硫黄結合及び窒素-炭素-酸素結合の両方を含む場合、nはそれぞれの結合を構成する硫黄原子及び酸素原子の合計数である。樹脂が式(6)~(8)の構成単位を有する場合、当該樹脂1分子あたりに含まれる式(6)~(8)で表される構成単位の数の和がnであるときに、Mn/nが50以上300以下である。nは式:n=X・Mnにより算出される。Xは当該樹脂1gあたりに含まれる式(6)~(8)で表される構成単位の数の和であり、Xと同様の方法により求めることができる。 The content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above. Nitrogen contained per one molecule - carbon - number of sulfur atoms and nitrogen constituting the sulfur bonds - carbon - the value obtained by dividing the number average molecular weight of the resin by the number n 1 of oxygen atoms constituting the oxygen binding (Mn / n 1 ) Is preferably 300 or less, more preferably 200 or less, still more preferably 150 or less. The resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have. On the other hand, when the resin has too many of the above bonds, in particular, the resin has the above formulas (6) to (8), (11) to (14), (41), (42), (45) , (46) or (47), the flexibility, which is one of the coating film performances, may be impaired. From such a viewpoint, (Mn / n 1 is preferably 50 or more, more preferably 70 or more. For example, n 1 is the number of bonds per unit weight (1 g) of the resin X 1 (unit mol / g). ) Can be calculated by, for example, infrared absorption spectrum, 1 H-NMR, etc., and calculated from the above-mentioned number average molecular weight (Mn) by the formula: n 1 = Mn · X 1. The resin is a nitrogen-carbon-sulfur bond. N 1 is the total number of sulfur atoms and oxygen atoms constituting each bond, and when the resin has structural units of formulas (6) to (8), when the number sum of the structural units of the formula contained per the resin molecule (6) to (8) is n 2, Mn / n 2 is 50 to 300 .n 2 formula It is calculated by n 2 = X 2 · Mn: .X 2 is the sum of the number of structural units represented by the formula contained per the resin 1g (6) ~ (8) , can be obtained in the same manner as X 1.
 上記構成単位の間に設けられる構造は、特に限定されないが、好ましくは、炭素数1~25の脂肪族基、炭素数6~25の芳香族基である。具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。なお、異性体が存在する場合は該異性体も含まれる。 The structure provided between the structural units is not particularly limited, but is preferably an aliphatic group having 1 to 25 carbon atoms and an aromatic group having 6 to 25 carbon atoms. Specifically, methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane , Benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, and the like are residues obtained by removing two hydrogen atoms. In addition, when an isomer exists, this isomer is also included.
 これらの中でも、下記式(301)~(306)で表される構造を有する樹脂が好ましい。 Among these, resins having a structure represented by the following formulas (301) to (306) are preferable.
Figure JPOXMLDOC01-appb-C000038
(式中、iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000038
(In the formula, i represents an integer of 1 to 12, and may be 1 to 10.)
<好ましい製造方法>
 本実施の形態の好ましい第1の樹脂は、好ましくは、下記式(1)~(5)で表される1価の基からなる群から選ばれる少なくとも1種の官能基を有する化合物と、
 モノイソシアネート、ポリイソシアネート、モノイソチオシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の化合物と、
を反応させることを含む方法により得られる樹脂である。
<Preferred production method>
The preferred first resin of the present embodiment is preferably a compound having at least one functional group selected from the group consisting of monovalent groups represented by the following formulas (1) to (5):
At least one compound selected from monoisocyanate, polyisocyanate, monoisothiocyanate and polyisothiocyanate;
It is resin obtained by the method including making this react.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 本明細書では、上記式(1)で表される基を水酸基、上記式(2)で表される基をアミノ基、上記式(3)で表される基をヒドラジド基、上記式(4)で表される基をセミカルバジド基、上記式(5)で表される基をチオセミカルバジド基と称する場合がある。式(2)の基は、式(3)~(5)の基とは異なる基として定義される。 In this specification, the group represented by the above formula (1) is a hydroxyl group, the group represented by the above formula (2) is an amino group, the group represented by the above formula (3) is a hydrazide group, and the above formula (4) ) May be referred to as a semicarbazide group, and the group represented by the above formula (5) may be referred to as a thiosemicarbazide group. The group of formula (2) is defined as a group different from the groups of formulas (3) to (5).
 以下、本実施の形態の好ましい第1の樹脂の製造方法の例について説明する。 Hereinafter, an example of a preferable first resin production method of the present embodiment will be described.
[好ましく使用される化合物]
 水酸基、アミノ基、ヒドラジド基、セミカルバジド基及びチオセミカルバジド基からなる群から選ばれる少なくとも1種の基を2以上有する化合物は、特に限定されず、水酸基(-OH)、アミノ基(-NH)、ヒドラジド基(-C(=O)-NH-NH)、セミカルバジド基(-NH-C(=O)-NH-NH)、チオセミカルバジド基(-NH-C(=S)-NH-NH)からなる群から選ばれる少なくとも1種の基を2以上含んでいればよい。例えば、下記式(70)又は式(71)で表される化合物が用いられ得る。
[Preferably used compounds]
The compound having at least two groups selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group, and a thiosemicarbazide group is not particularly limited, and a hydroxyl group (—OH), amino group (—NH 2 ) , Hydrazide group (—C (═O) —NH—NH 2 ), semicarbazide group (—NH—C (═O) —NH—NH 2 ), thiosemicarbazide group (—NH—C (═S) —NH— It suffices if it contains at least one group selected from the group consisting of NH 2 ). For example, a compound represented by the following formula (70) or formula (71) may be used.
Figure JPOXMLDOC01-appb-C000040
(式中、
12、R13及びR14は各々独立に有機基を表し、R15は有機基又は単結合を表し、A及びEは各々独立に、水酸基、アミノ基、ヒドラジド基、セミカルバジド基、チオセミカルバジド基からなる群から選ばれる基を表し、B及びDは各々独立に、水酸基、アミノ基、ヒドラジド基、セミカルバジド基、チオセミカルバジド基からなる群から選ばれる基、有機基、又は水素原子を表し、Fは水素原子又は有機基を表し、dは2~1000の整数を表し、eは1~3の整数を表し、xは1以上の整数を表し、yは0又は1以上の整数を表す。同一分子中の複数のR12、R13、R14、A、E、B、D、F、及びeは、それぞれ同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000040
(Where
R 12 , R 13 and R 14 each independently represents an organic group, R 15 represents an organic group or a single bond, and A 1 and E 1 each independently represent a hydroxyl group, amino group, hydrazide group, semicarbazide group, thiol Represents a group selected from the group consisting of a semicarbazide group, and B 1 and D 1 are each independently a group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group, and a thiosemicarbazide group, an organic group, or a hydrogen atom F 1 represents a hydrogen atom or an organic group, d represents an integer of 2 to 1000, e represents an integer of 1 to 3, x represents an integer of 1 or more, and y represents 0 or 1 or more of Represents an integer. A plurality of R 12 , R 13 , R 14 , A 1 , E 1 , B 1 , D 1 , F 1 , and e in the same molecule may be the same or different.
 上記式において、R12は好ましくは、炭素数1~25の脂肪族基、芳香族基(芳香族化合物)で置換された炭素数7~25の脂肪族基、又は、炭素数6~25の芳香族基である。R12の具体例は、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から1個の水素原子を除いた残基である。本明細書において、「芳香族基で置換された炭素数7~25の脂肪族基」は、芳香族基及び脂肪族基の組み合わせからなる基であって、芳香族基及び脂肪族基は酸素原子、窒素原子、硫黄原子等のヘテロ原子を含むことがあり、当該基中に含まれる炭素原子の総数が7~25である基を意味する。他の同様な用語も同様に定義される。 In the above formula, R 12 is preferably an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group (aromatic compound), or a group having 6 to 25 carbon atoms. It is an aromatic group. Specific examples of R 12 are methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyl. It is a residue obtained by removing one hydrogen atom from dicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like. In the present specification, the “C7-25 aliphatic group substituted with an aromatic group” is a group composed of a combination of an aromatic group and an aliphatic group, and the aromatic group and the aliphatic group are oxygen This means a group that may contain heteroatoms such as atoms, nitrogen atoms, sulfur atoms, etc., and the total number of carbon atoms contained in the group is 7 to 25. Other similar terms are defined similarly.
 上記式において、R13及びR14は好ましくは、炭素数2~25の脂肪族基、芳香族基で置換された炭素数7~25の脂肪族基、又は炭素数8~25の芳香族基である。R13及びR14の具体例は、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルエタン、エチルベンゼン、ジエチルベンゼン、ジフェニルエタン、テトラメチルジフェニルエタン等から3個の水素原子を除いた残基である。 In the above formula, R 13 and R 14 are preferably an aliphatic group having 2 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group, or an aromatic group having 8 to 25 carbon atoms. It is. Specific examples of R 13 and R 14 are ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylethane, ethylbenzene. , A residue obtained by removing three hydrogen atoms from diethylbenzene, diphenylethane, tetramethyldiphenylethane and the like.
 上記式において、R15は有機基又は単結合を表すが、有機基である場合は、炭素数1~25のアルキレン基、炭素数6~25の芳香族炭化水素基、又は下記式(72)もしくは式(73)で表される基である。 In the above formula, R 15 represents an organic group or a single bond. When it is an organic group, R 15 is an alkylene group having 1 to 25 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, or the following formula (72) Or it is group represented by Formula (73).
Figure JPOXMLDOC01-appb-C000041
(式中、
16、R17及びR18は各々独立に、炭素数1~10のアルキレン基、炭素数6~10の芳香族炭化水素基又は単結合を表し、zは1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000041
(Where
R 16 , R 17 and R 18 each independently represents an alkylene group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a single bond, and z represents an integer of 1 to 10. )
 R15が炭素数1~25のアルキレン基又は炭素数6~25の芳香族炭化水素基である場合、R15は、具体的には、メタン、エタン、プロパン、ブタン、プロパン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。 When R 15 is an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms, specifically, R 15 is methane, ethane, propane, butane, propane, hexane, octane, 2 from decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, etc. A residue obtained by removing one hydrogen atom.
 R15が単結合とは、R15は基として存在せずにR13にEが結合することを表す。以下、本明細書中でいう「単結合」は同様に定義して使用している。 The term “R 15 is a single bond” means that R 15 is not present as a group and E 1 is bonded to R 13 . Hereinafter, “single bond” in this specification is defined and used in the same manner.
 上記式(72)及び式(73)において、R16、R17及びR18は、好ましくは、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。異性体が存在する場合は該異性体も含まれる。 In the above formula (72) and formula (73), R 16 , R 17 and R 18 are preferably methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, A residue obtained by removing two hydrogen atoms from dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, etc. . When an isomer exists, the isomer is also included.
 上記式(71)において、B、D及びFが有機基である場合、該有機基は、好ましくは、炭素数1~25のアルキル基、炭素数6~25の芳香族炭化水素基、又は下記式(74)~(76)で表される基である。 In the above formula (71), when B 1 , D 1 and F 1 are organic groups, the organic group is preferably an alkyl group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms. Or a group represented by the following formulas (74) to (76).
Figure JPOXMLDOC01-appb-C000042
(式中、
19、R20、R21は各々独立に、炭素数1~10のアルキレン基、又は炭素数6~10の芳香族基を表し、zは1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000042
(Where
R 19 , R 20 and R 21 each independently represents an alkylene group having 1 to 10 carbon atoms or an aromatic group having 6 to 10 carbon atoms, and z represents an integer of 1 to 10. )
 上記式(74)~(76)において、R19、R20及びR21は好ましくは、炭素数1~25のアルキレン基、又は炭素数6~25の芳香族炭化水素基である。R19、R20及びR21は、具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。異性体が存在する場合は該異性体も含まれる。 In the above formulas (74) to (76), R 19 , R 20 and R 21 are preferably an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms. R 19 , R 20 and R 21 are specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethyl A residue obtained by removing two hydrogen atoms from ethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, and the like. When an isomer exists, the isomer is also included.
 水酸基、アミノ基、ヒドラジド基、セミカルバジド基及びチオセミカルバジド基からなる群から選ばれる少なくとも1つの官能基を含む化合物の具体例を以下に示す。 Specific examples of the compound containing at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group are shown below.
 (a)水酸基を有する化合物としては、エチレングリコール、プロピレングリコール、オペンタエリトリトール等の多価アルコール、及び繰り返し単位を有するポリオールが例示される。 (A) Examples of the compound having a hydroxyl group include polyhydric alcohols such as ethylene glycol, propylene glycol and openaerythritol, and polyols having repeating units.
 ポリオールの例としては、アクリルポリオール、ポリオレフィンポリオール、ポリビニルアルコール等が挙げられる。アクリルポリオールは、ヒドロキシル基を有するエチレン性不飽和結合含有単量体の単独又は混合物と、これと共重合可能な他のエチレン性不飽和結合含有単量体の単独又は混合物とを共重合させることにより得られる。 Examples of the polyol include acrylic polyol, polyolefin polyol, polyvinyl alcohol and the like. Acrylic polyol is obtained by copolymerizing an ethylenically unsaturated bond-containing monomer having a hydroxyl group alone or a mixture thereof with another ethylenically unsaturated bond-containing monomer copolymerizable therewith. Is obtained.
 ヒドロキシル基を有するエチレン性不飽和結合含有単量体としては、例えば、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル等が挙げられる。好ましくは、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチルである。 Examples of the ethylenically unsaturated bond-containing monomer having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate. It is done. Preferred are hydroxyethyl acrylate and hydroxyethyl methacrylate.
 上記単量体と共重合可能な他のエチレン性不飽和結合含有単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸-2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ベンジル、アクリル酸フェニル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ベンジル、メタクリル酸フェニル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、アクリルアミド、メタクリルアミド、N,N-メチレンビスアクリルアミド、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、マレイン酸アミド、マレイミド等の不飽和アミド、及びメタクリル酸グリシジル、スチレン、ビニルトルエン、酢酸ビニル、アクリロニトリル、フマル酸ジブチル等のビニル系単量体、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等の加水分解性シリル基を有するビニル系単量体等が挙げられる。 Other ethylenically unsaturated bond-containing monomers copolymerizable with the above monomers include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, acrylate-n-butyl, isobutyl acrylate, Acrylic acid esters such as acrylic acid-n-hexyl, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, benzyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate Methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-n-hexyl, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, phenyl methacrylate, etc. Unsaturated carboxylic acids such as acid esters, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, methacrylamide, N, N-methylenebisacrylamide, diacetone acrylamide, diacetone methacrylamide, maleic amide, maleimide, etc. Unsaturated amides, vinyl monomers such as glycidyl methacrylate, styrene, vinyl toluene, vinyl acetate, acrylonitrile, dibutyl fumarate, vinyltrimethoxysilane, vinylmethyldimethoxysilane, γ- (meth) acryloxypropyltrimethoxy Examples thereof include vinyl monomers having hydrolyzable silyl groups such as silane.
 ポリオレフィンポリオールとしては、例えば、水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレン等が挙げられる。ポリオールの統計的1分子が持つ水酸基数(以下、水酸基平均数)は2以上であることが好ましい。ポリオールの水酸基平均数が2以上であることによって、得られた塗膜の架橋密度の低下を抑制することができる。 Examples of the polyolefin polyol include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene. The number of hydroxyl groups (hereinafter, the average number of hydroxyl groups) possessed by one statistical molecule of polyol is preferably 2 or more. When the average number of hydroxyl groups of the polyol is 2 or more, a decrease in the crosslinking density of the obtained coating film can be suppressed.
 ポリビニルアルコールとしては、ビニルエステルを重合して得られたポリビニルエステルをけん化して得られるポリビニルアルコール;ポリビニルアルコールの主鎖にコモノマーをグラフト共重合させた変性ポリビニルアルコール;ビニルエステルとコモノマーとを共重合させた変性ポリビニルエステルをけん化することにより製造された変性ポリビニルアルコール;未変性ポリビニルアルコール又は変性ポリビニルアルコールの水酸基の一部をホルマリン、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド類で架橋した、いわゆるポリビニルアセタール樹脂等が挙げられる。 As polyvinyl alcohol, polyvinyl alcohol obtained by saponifying polyvinyl ester obtained by polymerizing vinyl ester; modified polyvinyl alcohol obtained by graft copolymerization of a comonomer on the main chain of polyvinyl alcohol; copolymerizing vinyl ester and comonomer Modified polyvinyl alcohol produced by saponification of the modified polyvinyl ester; so-called polyvinyl acetal resin obtained by crosslinking a part of hydroxyl groups of unmodified polyvinyl alcohol or modified polyvinyl alcohol with aldehydes such as formalin, butyraldehyde, benzaldehyde, etc. Is mentioned.
 ポリビニルアルコールの製造に用いられる上記のビニルエステルとしては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル等が挙げられる。これらの中でもポリビニルアルコールの製造の容易性、入手容易性、コスト等の点から、酢酸ビニルが好ましい。また、変性ポリビニルアルコールの製造に使用される上記のコモノマーは、主としてポリビニルアルコールの変性を目的に共重合されるものであり、本発明の趣旨を損なわない範囲で使用される。このようなコモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等のオレフィン類;アクリル酸又はその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(異性体含む)、アクリル酸ブチル(異性体含む)、アクリル酸オクチル(異性体含む)、アクリル酸ドデシル(異性体含む)等のアクリル酸エステル類;メタクリル酸又はその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(異性体含む)、メタクリル酸ブチル(異性体含む)、メタクリル酸オクチル(異性体含む)、メタクリル酸ドデシル(異性体含む)、メタクリル酸オクタデシル(異性体含む)等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸又はその塩、アクリルアミドプロピルジメチルアミン又はその塩、N-メチロールアクリルアミド又はその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸又はその塩、メタクリルアミドプロピルジメチルアミン又はその塩、N-メチロールメタクリルアミド又はその誘導体等のメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル類;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸又はその塩もしくはエステル;イタコン酸又はその塩もしくはエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等を挙げることができる。これらの中でもα-オレフィン(例えば、炭素数2~30のα-オレフィン等)、不飽和カルボン酸又はその誘導体、不飽和スルホン酸又はその誘導体が好ましく、α-オレフィンがより好ましく、エチレンが特に好ましい。変性ポリビニルアルコールにおいてコモノマーによる変性量は変性ポリビニルアルコールを構成する全構造単位のモル数に基づいて15モル%以下であることが好ましく、5モル%以下であることがより好ましい。 Examples of the vinyl ester used in the production of polyvinyl alcohol include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, and vinyl benzoate. Is mentioned. Among these, vinyl acetate is preferable from the viewpoint of ease of production, availability, and cost of polyvinyl alcohol. The above-mentioned comonomer used for the production of the modified polyvinyl alcohol is copolymerized mainly for the purpose of modifying the polyvinyl alcohol, and is used within a range not impairing the gist of the present invention. Examples of such comonomer include olefins such as ethylene, propylene, 1-butene, and isobutene; acrylic acid or a salt thereof; methyl acrylate, ethyl acrylate, propyl acrylate (including isomers), butyl acrylate ( Acrylic esters such as isomers), octyl acrylate (including isomers), dodecyl acrylate (including isomers); methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, propyl methacrylate (including isomers) ), Butyl methacrylate (including isomers), octyl methacrylate (including isomers), dodecyl methacrylate (including isomers), octadecyl methacrylate (including isomers) and the like; acrylamide, N-methylacrylamide N-ethylacrylamide, N, N-di Acrylamide derivatives such as til acrylamide, diacetone acrylamide, acrylamide propane sulfonic acid or salts thereof, acrylamide propyldimethylamine or salts thereof, N-methylol acrylamide or derivatives thereof; methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, Methacrylamide derivatives such as methacrylamide propanesulfonic acid or salts thereof, methacrylamide propyldimethylamine or salts thereof, N-methylol methacrylamide or derivatives thereof; N- such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, etc. Vinyl amides; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether vinyl ethers such as i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether and stearyl vinyl ether; nitriles such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; Examples include allyl compounds such as allyl acetate and allyl chloride; maleic acid or salts or esters thereof; itaconic acid or salts or esters thereof; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like. Among these, α-olefins (for example, α-olefins having 2 to 30 carbon atoms), unsaturated carboxylic acids or derivatives thereof, unsaturated sulfonic acids or derivatives thereof are preferable, α-olefins are more preferable, and ethylene is particularly preferable. . In the modified polyvinyl alcohol, the amount of modification by the comonomer is preferably 15 mol% or less, more preferably 5 mol% or less, based on the number of moles of all structural units constituting the modified polyvinyl alcohol.
 以上に列挙したポリオールの中でも、アクリルポリオール、ポリエステルポリオールが好ましい。 Among the polyols listed above, acrylic polyols and polyester polyols are preferred.
 (b)アミノ基を有する化合物の具体例としては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジシクロヘキシルメタン、ピペラジン、2-メチルピペラジン、イソホロンジアミン、ノルボルナンジアミン、フェニレンジアミン、4,4’-ジアミノジフェニル、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,3’-ジアミノジフェニルスルホン、ジエチルトルエンジアミン、ビスアニリン等のジアミン類、ビスヘキサメチレントリアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタメチレンヘキサミン、テトラプロピレンペンタミン等の3個以上のアミノ基を有する鎖状ポリアミン類、1,4,7,10,13,16-ヘキサアザシクロオクタデカン、1,4,7,10-テトラアザシクロデカン、1,4,8,12-テトラアザシクロペンタデカン、1,4,8,11-テトラアザシクロテトラデカン等の環状ポリアミン類、ポリアリルアミン、ポリビニルアミン、下記式(77)~(80)で表されるポリアミン等のポリマー状ポリアミンが挙げられる。これらの中でも、ポリアリルアミン、ポリビニルアミンが好ましい。なお、ポリアリルアミン、ポリビニルアミンは、従来公知の方法で製造されたいずれのものも使用でき、重合度等は特に限定されない。また、他のモノマーとの共重合物でもよい。 (B) Specific examples of the compound having an amino group include ethylenediamine, propylenediamine, butylenediamine, triethylenediamine, hexamethylenediamine, 4,4′-diaminodicyclohexylmethane, piperazine, 2-methylpiperazine, isophoronediamine, norbornanediamine. Diamines such as phenylenediamine, 4,4′-diaminodiphenyl, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diaminodiphenylsulfone, diethyltoluenediamine, bisaniline, bishexamethylenetriamine, diethylenetriamine Chain polyamines having three or more amino groups, such as triethylenetetramine, tetraethylenepentamine, pentamethylenehexamine, tetrapropylenepentamine, , 10,13,16-hexaazacyclooctadecane, 1,4,7,10-tetraazacyclodecane, 1,4,8,12-tetraazacyclopentadecane, 1,4,8,11-tetraazacyclotetradecane And cyclic polyamines such as polyallylamine, polyvinylamine, and polymeric polyamines such as polyamines represented by the following formulas (77) to (80). Among these, polyallylamine and polyvinylamine are preferable. As polyallylamine and polyvinylamine, any of those conventionally produced by known methods can be used, and the degree of polymerization is not particularly limited. Moreover, the copolymer with another monomer may be sufficient.
Figure JPOXMLDOC01-appb-C000043
(式中、
g’は2~70の整数を表す。)
Figure JPOXMLDOC01-appb-C000043
(Where
g ′ represents an integer of 2 to 70. )
Figure JPOXMLDOC01-appb-C000044
(式中、
h’は2~40の整数を表し、
i’、j’は各々1~6の整数を表し、i’とj’の和は2~7の整数である。)
Figure JPOXMLDOC01-appb-C000044
(Where
h ′ represents an integer of 2 to 40,
i ′ and j ′ each represent an integer of 1 to 6, and the sum of i ′ and j ′ is an integer of 2 to 7. )
Figure JPOXMLDOC01-appb-C000045
(式中、
35は水素原子、メチル基及びエチル基からなる群から選ばれる基を表し、
sは0又は1の整数を表し、
r、t、uは各々0又は1以上の整数を表し、
rとtとuの和は5~90である。)
Figure JPOXMLDOC01-appb-C000045
(Where
R 35 represents a group selected from the group consisting of a hydrogen atom, a methyl group and an ethyl group,
s represents an integer of 0 or 1,
r, t and u each represents 0 or an integer of 1 or more;
The sum of r, t and u is 5 to 90. )
 (c)ヒドラジド基を有する化合物としては、例えば、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、グルタル酸ジヒドラジド、こはく酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等の2~18個の炭素原子を有する飽和ジカルボン酸ジヒドラジド;マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジド等のモノオレフィン性不飽和ジカルボン酸ジヒドラジド;カルボン酸低級アルキルエステル基を有する低重合体をヒドラジン又はヒドラジン水和物と反応させることにより得られるポリヒドラジド等が挙げられる。また、ヒドロキシル基を有するエチレン性不飽和結合含有単量体、例えば、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル等の重合物(共重合体であってもよい)にヒドラジンを反応させて得られるポリマーであってもよいし、ビニルエステル(例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル等)の重合物(共重合体であってもよい)にヒドラジンを反応させて得られるポリマーであってもよい。 (C) Examples of the compound having a hydrazide group include saturated dicarboxylic acids having 2 to 18 carbon atoms such as oxalic acid dihydrazide, malonic acid dihydrazide, glutaric acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, and sebacic acid dihydrazide. Dihydrazide; monoolefinic unsaturated dicarboxylic acid dihydrazide such as maleic acid dihydrazide, fumaric acid dihydrazide, itaconic acid dihydrazide; poly obtained by reacting a low polymer having a carboxylic acid lower alkyl ester group with hydrazine or hydrazine hydrate And hydrazide. Polymerization of ethylenically unsaturated bond-containing monomers having a hydroxyl group, such as hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, etc. It may be a polymer obtained by reacting a product (which may be a copolymer) with hydrazine, or a vinyl ester (for example, vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, It may be a polymer obtained by reacting hydrazine with a polymer (which may be a copolymer) of vinyl tickate, vinyl laurate, vinyl stearate, vinyl benzoate and the like.
 (d)セミカルバジド基を有する化合物としては、例えば、ビスセミカルバジド;ヘキサメチレンジイソシアネートやイソホロンジイソシアネート等のジイソシアネート又はそれから誘導されるポリイソシアネート化合物にN,N-ジメチルヒドラジン等のN,N-置換ヒドラジンや上記例示のヒドラジンを反応させて得られる多官能セミカルバジド等が挙げられる。 (D) Examples of the compound having a semicarbazide group include bissemicarbazide; diisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate or polyisocyanate compounds derived therefrom, N, N-substituted hydrazines such as N, N-dimethylhydrazine, and the above. Examples thereof include polyfunctional semicarbazide obtained by reacting the exemplified hydrazine.
 (e)チオセミカルバジド基を有する化合物としては、例えば、ビスチオセミカルバジド;ヘキサメチレンジイソチオシアネートやイソホロンジイソチオシアネート等のジイソチオシアネート又はそれから誘導されるポリイソチオシアネート化合物にN,N-ジメチルヒドラジン等のN,N-置換ヒドラジンや上記例示のヒドラジンを反応させて得られる多官能チオセミカルバジド等が挙げられる。 (E) Examples of the compound having a thiosemicarbazide group include bisthiosemicarbazide; diisothiocyanates such as hexamethylene diisothiocyanate and isophorone diisothiocyanate, or polyisothiocyanate compounds derived therefrom, N, N-dimethylhydrazine, etc. N, N-substituted hydrazine and polyfunctional thiosemicarbazide obtained by reacting the above-exemplified hydrazine.
 水酸基を有する化合物の例として挙げたポリオールは、ポリエステルポリオール、ポリエーテルポリオール、フッ素ポリオール、ポリカーボネートポリオール、ポリウレタンポリオールであってもよい。 The polyol mentioned as an example of the compound having a hydroxyl group may be a polyester polyol, a polyether polyol, a fluorine polyol, a polycarbonate polyol, or a polyurethane polyol.
 ポリエステルポリオールとしては、例えば、コハク酸、アジピン酸、セバシン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸等のカルボン酸の群から選ばれた二塩基酸の単独又は混合物と、エチレングリコール、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、グリセリン等の群から選ばれた多価アルコールの単独又は混合物との縮合反応によって得られるポリエステルポリオール、及び、例えば多価アルコールを用いたε-カプロラクトンの開環重合により得られるポリカプロラクトン類等が挙げられる。 As the polyester polyol, for example, a dibasic acid selected from the group of carboxylic acids such as succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, or a mixture thereof Polyester polyol obtained by a condensation reaction with a single or mixture of polyhydric alcohols selected from the group of ethylene glycol, propylene glycol, diethylene glycol, neopentyl glycol, trimethylolpropane, glycerin, and the like, and for example, polyhydric alcohol And polycaprolactones obtained by ring-opening polymerization of ε-caprolactone.
 ポリエーテルポリオール類としては、多価ヒドロキシ化合物の単独又は混合物に、例えばリチウム、ナトリウム、カリウム等の水酸化物、アルコラート、アルキルアミン等の強塩基性触媒を使用して、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、シクロヘキセンオキサイド、スチレンオキサイド等のアルキレンオキサイドの単独又は混合物を付加して得られるポリエーテルポリオール類、エチレンジアミン類等の多官能化合物にアルキレンオキサイドを反応させて得られるポリエーテルポリオール類、及び、これらポリエーテル類を媒体としてアクリルアミド等を重合して得られるいわゆるポリマーポリオール類などが含まれる。 As the polyether polyol, a polybasic hydroxy compound alone or in a mixture, for example, a hydroxide such as lithium, sodium or potassium, a strongly basic catalyst such as alcoholate or alkylamine, ethylene oxide, propylene oxide, Polyether polyols obtained by adding a single or mixture of alkylene oxides such as butylene oxide, cyclohexene oxide and styrene oxide, polyether polyols obtained by reacting alkylene oxide with a polyfunctional compound such as ethylenediamine, and So-called polymer polyols obtained by polymerizing acrylamide or the like using these polyethers as a medium are included.
 多価ヒドロキシ化合物としては、
(1)ジグリセリン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等、
(2)エリスリトール、D-トレイトール、L-アラビニトール、リビトール、キシリトール、ソルビトール、マンニトール、ガラクチトール、ラムニトール等の糖アルコール系化合物、
(3)アラビノース、リボース、キシロース、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、ラムノース、フコース、リボデソース等の単糖類、
(4)トレハロース、ショ糖、マルトース、セロビオース、ゲンチオビオース、ラクトース、メリビオース等の二糖類、
(5)ラフィトース、ゲンチアノース、メレチトース等の三糖類、
(6)スタキオース等の四糖類、
などが挙げられる。
As a polyvalent hydroxy compound,
(1) Diglycerin, ditrimethylolpropane, pentaerythritol, dipentaerythritol, etc.
(2) sugar alcohol compounds such as erythritol, D-threitol, L-arabinitol, ribitol, xylitol, sorbitol, mannitol, galactitol, rhamnitol,
(3) monosaccharides such as arabinose, ribose, xylose, glucose, mannose, galactose, fructose, sorbose, rhamnose, fucose, ribodesose,
(4) disaccharides such as trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, melibiose,
(5) Trisaccharides such as rafitose, gentianose, and meletitose,
(6) tetrasaccharides such as stachyose,
Etc.
 フッ素ポリオールは、分子内にフッ素を含むポリオールであり、例えば特開昭57-34107号公報、特開昭61-275311号公報で開示されているフルオロオレフィン、シクロビニルエーテル、ヒドロキシアルキルビニルエーテル、モノカルボン酸ビニルエステル等の共重合体がある。 The fluorine polyol is a polyol containing fluorine in the molecule. For example, fluoroolefin, cyclovinyl ether, hydroxyalkyl vinyl ether, monocarboxylic acid disclosed in JP-A-57-34107 and JP-A-61-275311 There are copolymers such as vinyl esters.
 ポリカーボネートポリオール類としては、ジメチルカーボネート等のジアルキルカーボネート、エチレンカーボネート等のアルキレンカーボネート、ジフェニルカーボネート等のジアリールカーボネートのような低分子カーボネート化合物と、前述のポリエステルポリオールに用いられる低分子ポリオールとを、縮重合して得られるものが挙げられる。 Polycarbonate polyols are polycondensation of low-molecular carbonate compounds such as dialkyl carbonates such as dimethyl carbonate, alkylene carbonates such as ethylene carbonate, diaryl carbonates such as diphenyl carbonate, and low-molecular polyols used in the aforementioned polyester polyols. Can be obtained.
 ポリウレタンポリオールは、常法により、例えば、ポリオールとポリイソシアネートとを反応させることにより得ることができる。カルボキシル基を有しないポリオールとしては、低分子量のものとして、エチレングリコール、プロピレングリコール等が例示され、高分子量のものとして、アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等が例示される。 Polyurethane polyol can be obtained by a conventional method, for example, by reacting polyol and polyisocyanate. Examples of the polyol having no carboxyl group include ethylene glycol and propylene glycol as low molecular weights, and examples of the high molecular weight include acrylic polyol, polyester polyol, and polyether polyol.
 水酸基、アミノ基、ヒドラジド基、セミカルバジド基及びチオセミカルバジド基からなる群から選ばれる1つの基を1つ含む、繰り返し単位を有してもよい化合物は、下記式(81)で表される化合物である。 The compound having one repeating unit containing one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group is a compound represented by the following formula (81). is there.
Figure JPOXMLDOC01-appb-C000046
(式中、
22は有機基を表し、
は上記式(70)で定義した基を表す。)
Figure JPOXMLDOC01-appb-C000046
(Where
R 22 represents an organic group,
A 1 represents a group defined by the above formula (70). )
 上記式においては、R22は好ましくは、炭素数1~25の脂肪族基、炭素数7~25の芳香族基で置換された脂肪族基、炭素数6~25の芳香族基である。R22は具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から1個の水素原子を除いた残基である。異性体が存在する場合は該異性体も含まれる。 In the above formula, R 22 is preferably an aliphatic group having 1 to 25 carbon atoms, an aliphatic group substituted with an aromatic group having 7 to 25 carbon atoms, or an aromatic group having 6 to 25 carbon atoms. R 22 is specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetra A residue obtained by removing one hydrogen atom from methyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like. When an isomer exists, the isomer is also included.
 上記式(81)で表される化合物としては、具体的には、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ドデカノール、オクタデカノール、シクロヘキサノール、シクロオクタノール、ジメチルシクロヘキサノール、ジエチルシクロヘキサノール、トリメチルシクロヘキサノール、トリメチルエチルシクロヘキサノール、ジシクロヘキシルメタノール、テトラメチルジシクロヘキシルメタノール、フェノール、メチルフェノール、キシレノール、エチルフェノール、ジエチルフェノール等のヒドロキシ化合物、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、シクロヘキシルアミン、シクロオクチルアミン、ジメチルシクロヘキシルアミン、フェニルアミン、メチルフェニルアミン、ジメチルフェニルアミン、エチルフェニルアミン、ジエチルフェニルアミン等のアミン、エチルヒドラジド、プロピルヒドラジド、ブチルヒドラジド、ペンチルヒドラジド、ヘキシルヒドラジド、オクチルヒドラジド、デシルヒドラジド、ドデシルヒドラジド、シクロヘキシルヒドラジド、シクロオクチルヒドラジド、ジメチルシクロヘキシルヒドラジド、フェニルヒドラジド、メチルフェニルヒドラジド、ジメチルフェニルヒドラジド、エチルフェニルヒドラジド、ジエチルフェニルヒドラジド等のヒドラジド、エチルセミカルバジド、プロピルセミカルバジド、ブチルセミカルバジド、ペンチルセミカルバジド、ヘキシルセミカルバジド、オクチルセミカルバジド、デシルセミカルバジド、ドデシルセミカルバジド、シクロヘキシルセミカルバジド、シクロオクチルセミカルバジド、ジメチルシクロヘキシルセミカルバジド、フェニルセミカルバジド、メチルフェニルセミカルバジド、ジメチルフェニルセミカルバジド、エチルフェニルセミカルバジド、ジエチルフェニルセミカルバジド等のセミカルバジド、エチルチオセミカルバジド、プロピルチオセミカルバジド、ブチルチオセミカルバジド、ペンチルチオセミカルバジド、ヘキシルチオセミカルバジド、オクチルチオセミカルバジド、デシルチオセミカルバジド、ドデシルチオセミカルバジド、シクロヘキシルチオセミカルバジド、シクロオクチルチオセミカルバジド、ジメチルシクロヘキシルチオセミカルバジド、フェニルチオセミカルバジド、メチルフェニルチオセミカルバジド、ジメチルフェニルチオセミカルバジド、エチルフェニルチオセミカルバジド、ジエチルフェニルチオセミカルバジド等のチオセミカルバジドが挙げられる。 Specific examples of the compound represented by the above formula (81) include methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, octadecanol, cyclohexanol, cyclooctanol, and dimethylcyclohexanol. , Diethylcyclohexanol, trimethylcyclohexanol, trimethylethylcyclohexanol, dicyclohexylmethanol, tetramethyldicyclohexylmethanol, hydroxy compounds such as phenol, methylphenol, xylenol, ethylphenol, diethylphenol, ethylamine, propylamine, butylamine, pentylamine, hexyl Amine, octylamine, decylamine, dodecylamine, cyclohexylamine, Chrooctylamine, dimethylcyclohexylamine, phenylamine, methylphenylamine, dimethylphenylamine, ethylphenylamine, diethylphenylamine and other amines, ethyl hydrazide, propyl hydrazide, butyl hydrazide, pentyl hydrazide, hexyl hydrazide, octyl hydrazide, decyl hydrazide Hydrazide such as dodecyl hydrazide, cyclohexyl hydrazide, cyclooctyl hydrazide, dimethylcyclohexyl hydrazide, phenyl hydrazide, methylphenyl hydrazide, dimethylphenyl hydrazide, ethylphenyl hydrazide, diethylphenyl hydrazide, butyl semicarbazide, butyl semicarbazide, pentyl semicarbazide, Semicarbazide Octyl semicarbazide, decyl semicarbazide, dodecyl semicarbazide, cyclohexyl semicarbazide, cyclooctyl semicarbazide, dimethylcyclohexyl semicarbazide, phenyl semicarbazide, methylphenyl semicarbazide, dimethylphenyl semicarbazide, ethylphenyl semicarbazide, diethylphenyl semicarbazide, ethylthiosemicarbazide, ethylthiosemicarbazide, Butylthiosemicarbazide, pentylthiosemicarbazide, hexylthiosemicarbazide, octylthiosemicarbazide, decylthiosemicarbazide, dodecylthiosemicarbazide, cyclohexylthiosemicarbazide, cyclooctylthiosemicarbazide, dimethylcyclohexylthiosemicarbazide, fe Examples thereof include thiosemicarbazides such as nilthiosemicarbazide, methylphenylthiosemicarbazide, dimethylphenylthiosemicarbazide, ethylphenylthiosemicarbazide, and diethylphenylthiosemicarbazide.
 上記式(81)で表される化合物は、下記式(82)で表される化合物であってもよい。 The compound represented by the above formula (81) may be a compound represented by the following formula (82).
Figure JPOXMLDOC01-appb-C000047
(式中、
23は炭素数1~25の不飽和脂肪族炭化水素基を表し、
15、Eは上記式(71)で定義した基を表す。)
Figure JPOXMLDOC01-appb-C000047
(Where
R 23 represents an unsaturated aliphatic hydrocarbon group having 1 to 25 carbon atoms,
R 15 and E 1 represent a group defined by the above formula (71). )
 上記式(82)で表される化合物は、より好ましくは、下記式(83)~(85)で表される化合物である。 The compound represented by the above formula (82) is more preferably a compound represented by the following formulas (83) to (85).
Figure JPOXMLDOC01-appb-C000048
(式中、
24、R25及びR26は各々独立に、水素原子又は炭素数1~6の飽和炭化水素基を表し、
27、R28、R29及びR30は各々独立に、水素原子、炭素数1~6の飽和炭化水素基を表し、
31は炭素数1~6の飽和炭化水素基又は単結合を表し、Eは上記式(71)で定義した基を表し、
wは1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000048
(Where
R 24 , R 25 and R 26 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms,
R 27 , R 28 , R 29 and R 30 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms,
R 31 represents a saturated hydrocarbon group having 1 to 6 carbon atoms or a single bond, E 1 represents a group defined by the above formula (71),
w represents an integer of 1 to 3. )
<イソチオシアネート化合物>
 イソチオシアネート化合物は、1分子中にイソチオシアネート基を1以上有する化合物であり、モノイソチオシアネートと、ポリイソチオシアネートとに分類される。
<Isothiocyanate compound>
An isothiocyanate compound is a compound having one or more isothiocyanate groups in one molecule, and is classified into a monoisothiocyanate and a polyisothiocyanate.
 本実施形態の樹脂組成物において、モノイソチオシアネートは1分子中にイソチオシアネート基を1つ有する化合物であり、好ましくは、下記式(30)で表される化合物である。 In the resin composition of the present embodiment, monoisothiocyanate is a compound having one isothiocyanate group in one molecule, and preferably a compound represented by the following formula (30).
Figure JPOXMLDOC01-appb-C000049
(式中、
は有機基を表す。)
Figure JPOXMLDOC01-appb-C000049
(Where
R 5 represents an organic group. )
 上記式(30)において、Rは好ましくは、炭素数1~25の脂肪族基又は炭素数6~25の芳香族基である。Rは芳香族基で置換された炭素数7~25の脂肪族基であってもよい。Rは、具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から1個の水素原子を除いた残基である。異性体が存在する場合は該異性体も含まれる。 In the above formula (30), R 5 is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms. R 5 may be an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group. R 5 is specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, It is a residue obtained by removing one hydrogen atom from tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like. When an isomer exists, the isomer is also included.
 上記式(1)で表される化合物は具体的には、メタンイソチオシアネート、エタンイソチオシアネート、プロパンイソチオシアネート、ブタンイソチオシアネート、ペンタンイソチオシアネート、ヘキサンイソチオシアネート、オクタンイソチオシアネート、デカンイソチオシアネート、ドデカンイソチオシアネート、オクタデカンイソチオシアネート、シクロヘキサンイソチオシアネート、シクロオクタンイソチオシアネート、ジメチルシクロヘキサンイソチオシアネート、ジエチルシクロヘキサンイソチオシアネート、トリメチルシクロヘキサンイソチオシアネート、トリメチルエチルシクロヘキサンイソチオシアネート、ジシクロヘキシルメタンイソチオシアネート、テトラメチルジシクロヘキシルメタンイソチオシアネート、フェニルイソチオシアネート、トルエンイソチオシアネート、キシレンイソチオシアネート、エチルベンゼンイソチオシアネート、ジエチルベンゼンイソチオシアネート、ジフェニルメタンイソチオシアネート、テトラメチルジフェニルメタンイソチオシアネート等が挙げられる。 Specific examples of the compound represented by the above formula (1) include methane isothiocyanate, ethane isothiocyanate, propane isothiocyanate, butane isothiocyanate, pentane isothiocyanate, hexane isothiocyanate, octane isothiocyanate, decane isothiocyanate, dodecane isothiocyanate. Thiocyanate, octadecane isothiocyanate, cyclohexane isothiocyanate, cyclooctane isothiocyanate, dimethyl cyclohexane isothiocyanate, diethyl cyclohexane isothiocyanate, trimethyl cyclohexane isothiocyanate, trimethyl ethyl cyclohexane isothiocyanate, dicyclohexyl methane isothiocyanate, tetramethyl dicyclohexyl methane isothiocyanate, phen Isothiocyanate, toluene isothiocyanate, xylene isothiocyanate, ethyl benzene isothiocyanate, diethylbenzene isothiocyanate, diphenylmethane isothiocyanate, tetramethyl diphenyl methane isothiocyanate, and the like.
 上記式(30)で表される化合物は、下記式(86)で表される化合物であってもよい。 The compound represented by the above formula (30) may be a compound represented by the following formula (86).
Figure JPOXMLDOC01-appb-C000050
(式中、
15、R23は、上記式(82)で定義した基を表す。)
Figure JPOXMLDOC01-appb-C000050
(Where
R 15 and R 23 represent a group defined by the above formula (82). )
 上記式(30)で表される化合物は、より好ましくは、下記式(87)~(89)で表される化合物である。 The compound represented by the above formula (30) is more preferably a compound represented by the following formulas (87) to (89).
Figure JPOXMLDOC01-appb-C000051
(式中、
24、R25及びR26は各々独立に、水素原子、炭素数1~6の飽和炭化水素基を表し、
27、R28、R29及びR30は各々独立に、水素原子又は炭素数1~6の飽和炭化水素基を表し、
31は炭素数1~6の飽和炭化水素基又は単結合を表し、
wは1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000051
(Where
R 24 , R 25 and R 26 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms;
R 27 , R 28 , R 29 and R 30 each independently represents a hydrogen atom or a saturated hydrocarbon group having 1 to 6 carbon atoms,
R 31 represents a saturated hydrocarbon group having 1 to 6 carbon atoms or a single bond,
w represents an integer of 1 to 3. )
 式(87)~(89)で表される化合物の具体例として、アクリル酸イソチオシアナトメチル、メタクリル酸イソチオシアナトメチル、アクリル酸(2-イソチオシアナトエチル)、メタクリル酸(2-イソチオシアナトエチル)、アクリル酸(3-イソチオシアナトプロピル)、メタクリル酸(3-イソチオシアナトプロピル)、2-イソチオシアナトエチルビニルエーテル、4-イソチオシアナトブチルビニルエーテル、p-(イソシアナトメチル)スチレン、p-(イソシアナトエチルスチレン)等が挙げられる。 Specific examples of the compounds represented by formulas (87) to (89) include isothiocyanatomethyl acrylate, isothiocyanatomethyl methacrylate, acrylic acid (2-isothiocyanatoethyl), methacrylic acid (2-isothiocyana Toethyl), acrylic acid (3-isothiocyanatopropyl), methacrylic acid (3-isothiocyanatopropyl), 2-isothiocyanatoethyl vinyl ether, 4-isothiocyanatobutyl vinyl ether, p- (isocyanatomethyl) styrene , P- (isocyanatoethylstyrene) and the like.
 本実施形態の樹脂組成物において、ポリイソチオシアネートは1分子中にイソチオシアネート基を2つ以上有する化合物であり、例えば、下記式(32)で表される化合物である。 In the resin composition of the present embodiment, polyisothiocyanate is a compound having two or more isothiocyanate groups in one molecule, for example, a compound represented by the following formula (32).
Figure JPOXMLDOC01-appb-C000052
(式中、
は有機基を表し、
aは2~1000の整数を表す。)
Figure JPOXMLDOC01-appb-C000052
(Where
R 6 represents an organic group,
a represents an integer of 2 to 1000. )
 このようなポリイソチオシアネートの好ましい第1の態様は、下記式(33)で表される繰り返し単位を少なくとも2つ含むポリマーである。 A preferred first embodiment of such a polyisothiocyanate is a polymer containing at least two repeating units represented by the following formula (33).
Figure JPOXMLDOC01-appb-C000053
(式中、
は有機基を表し、
は有機基又は単結合を表し、
bは1以上の整数を表し、
gは1又は2を表す。同一分子中の複数のR、R、b及びgはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000053
(Where
R 7 represents an organic group,
R 7 represents an organic group or a single bond,
b represents an integer of 1 or more,
g represents 1 or 2; A plurality of R 7 , R 8 , b and g in the same molecule may be the same or different. )
 ここに記載するポリイソチオシアネートの好ましい第1の態様としてのポリマーは、上記式(33)で表される繰り返し単位以外の、1種又は複数種の繰り返し単位を有してもよい。該ポリマーの末端は、重合開始剤、重合停止剤、末端変性剤に由来する基であり製造方法によって異なるが、本実施形態の趣旨に反しない限りは特に限定されない。すなわち、ポリイソチオシアネートの好ましい第1の態様は、より好ましくは、下記式(90)で表される化合物である。 The polymer as a preferable first aspect of the polyisothiocyanate described herein may have one or more kinds of repeating units other than the repeating unit represented by the above formula (33). The terminal of the polymer is a group derived from a polymerization initiator, a polymerization terminator, and a terminal modifier, and varies depending on the production method, but is not particularly limited as long as it does not contradict the gist of the present embodiment. That is, the preferable first aspect of the polyisothiocyanate is more preferably a compound represented by the following formula (90).
Figure JPOXMLDOC01-appb-C000054
(式中、
32は有機基を表し、
33は有機基又は単結合を表し、
及びDは各々独立にイソチオシアネート基、イソチオシアネート基以外の有機基及び水素原子からなる群から選ばれる少なくとも1種の基を表し、
~Gはイソチオシアネート基を含んでも含まなくてもよい有機基を表し、xは1以上の整数であり、nは1以上の整数を表し、
gは1又は2を表し、
fは1以上の整数を表し、
mは2以上の整数を表す。同一分子中の複数のR32、R33、f及びgはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000054
(Where
R 32 represents an organic group,
R 33 represents an organic group or a single bond,
B 2 and D 2 each independently represent at least one group selected from the group consisting of an isothiocyanate group, an organic group other than an isothiocyanate group, and a hydrogen atom;
G 1 ~ G x represents an organic group or may not include isothiocyanate group, x is an integer of 1 or more, n x represents an integer of 1 or more,
g represents 1 or 2,
f represents an integer of 1 or more,
m represents an integer of 2 or more. A plurality of R 32 , R 33 , f and g in the same molecule may be the same or different. )
 上記式(90)において、G~Gは上記式(33)で表される繰り返し単位以外の繰り返し単位を表す。また、nはGの繰り返し単位の数を表す。例えば、上記式(43)で表される繰り返し単位以外に、G、G、Gの3種の繰り返し単位がそれぞれn、n、n存在する場合は、Gである。 In the above formula (90), G 1 to G x represent a repeating unit other than the repeating unit represented by the above formula (33). Further, n x represents the number of repeating units of G x. For example, in addition to the repeating unit represented by the above formula (43), when there are n 1 , n 2 , and n 3 of G 1 , G 2 , and G 3 , respectively, G 1 n 1 G 2 n 2 G 3 n 3 .
 上記式(90)において、R32は好ましくは、炭素数2~25の脂肪族基、炭素数7~25の芳香族化合物で置換された脂肪族基又は炭素数8~25の芳香族基である。R32の具体例は、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルエタン、エチルベンゼン、ジエチルベンゼン、ジフェニルエタン、テトラメチルジフェニルエタン、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ドデカノール、オクタデカノール、シクロヘキサノール、シクロオクタノール、ジメチルシクロヘキサノール、ジエチルシクロヘキサノール、トリメチルシクロヘキサノール、トリメチルエチルシクロヘキサノール、ジシクロヘキシルエタノール等から3個の水素原子を除いた残基である。 In the above formula (90), R 32 is preferably an aliphatic group having 2 to 25 carbon atoms, an aliphatic group substituted with an aromatic compound having 7 to 25 carbon atoms, or an aromatic group having 8 to 25 carbon atoms. is there. Specific examples of R 32 include ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylethane, ethylbenzene, diethylbenzene, Diphenylethane, tetramethyldiphenylethane, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, octadecanol, cyclohexanol, cyclooctanol, dimethylcyclohexanol, diethylcyclohexanol, trimethylcyclohexanol, trimethylethylcyclo Hexanol, dicyclohexyl ethanol, etc. These residues are obtained by removing three hydrogen atoms.
 上記式(90)において、R33は有機基又は単結合を表すが、有機基である場合は、炭素数1~25のアルキレン基、炭素数6~25の芳香族炭化水素基、又は、下記式(91)、もしくは式(92)で表される基である。 In the above formula (90), R 33 represents an organic group or a single bond. When it is an organic group, R 33 represents an alkylene group having 1 to 25 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, or It is group represented by Formula (91) or Formula (92).
Figure JPOXMLDOC01-appb-C000055
(式中、
34、R36及びR37は各々独立に、炭素数1~10のアルキレン基、炭素数6~10の芳香族炭化水素基又は単結合を表し、
lは1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000055
(Where
R 34 , R 36 and R 37 each independently represents an alkylene group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a single bond,
l represents an integer of 1 to 10. )
 R34が炭素数1~25のアルキレン基、炭素数6~25の芳香族炭化水素基である場合、具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。 When R 34 is an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms, specifically, methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, 2 hydrogen atoms from octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane, etc. It is a residue excluding.
 上記式(91)、(92)において、R34、R36及びR37は好ましくは、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。なお、異性体が存在する場合は該異性体も含まれる。 In the above formulas (91) and (92), R 34 , R 36 and R 37 are preferably methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane. , Diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like are residues obtained by removing two hydrogen atoms. In addition, when an isomer exists, this isomer is also included.
 上記式(90)において、B及びDが有機基である場合、該有機基は好ましくは、炭素数1~25のアルキル基、炭素数6~25の芳香族炭化水素基、又は、下記式(93)~(95)で表される基である。 In the above formula (90), when B 2 and D 2 are organic groups, the organic group is preferably an alkyl group having 1 to 25 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, or And groups represented by formulas (93) to (95).
Figure JPOXMLDOC01-appb-C000056
(式中、
38、R39及びR40は各々独立に、炭素数1~25のアルキレン基又は炭素数6~25の芳香族基を表し、
pは1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000056
(Where
R 38 , R 39 and R 40 each independently represents an alkylene group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms,
p represents an integer of 1 to 10. )
 上記式(93)~(95)において、R38、R39及びR40は好ましくは、炭素数1~25のアルキレン基、炭素数6~25の芳香族炭化水素基であり、具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。なお、異性体が存在する場合は該異性体も含まれる。 In the above formulas (93) to (95), R 38 , R 39 and R 40 are preferably an alkylene group having 1 to 25 carbon atoms or an aromatic hydrocarbon group having 6 to 25 carbon atoms. , Methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyldicyclohexylmethane, benzene, toluene , Xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like are residues obtained by removing two hydrogen atoms. In addition, when an isomer exists, this isomer is also included.
 以上に示したポリイソチオシアネートの第1の態様は、例えば上記式(41)で表されるモノイソチオシアネートの重合体であってもよく、該重合体は他のモノマーとの共重合体であってもよい。具体的には、アクリル酸イソチオシアナトメチルをアクリル酸メチルの共重合体、メタクリル酸イソチオシアナトメチルとメタクリル酸メチルの共重合体、アクリル酸(2-イソチオシアナトエチル)とアクリル酸メチルの共重合体、メタクリル酸(2-イソチオシアナトエチル)とメタクリル酸メチルの共重合体、アクリル酸(3-イソチオシアナトプロピル)とアクリル酸メチルの共重合体、メタクリル酸(3-イソチオシアナトプロピル)とメタクリル酸メチルの共重合体等が挙げられる。これらの化合物は公知の方法で製造することができる。 The first aspect of the polyisothiocyanate shown above may be, for example, a polymer of monoisothiocyanate represented by the above formula (41), and the polymer is a copolymer with other monomers. May be. Specifically, isothiocyanatomethyl acrylate is a copolymer of methyl acrylate, a copolymer of isothiocyanatomethyl methacrylate and methyl methacrylate, acrylic acid (2-isothiocyanatoethyl) and methyl acrylate. Copolymer, copolymer of methacrylic acid (2-isothiocyanatoethyl) and methyl methacrylate, copolymer of acrylic acid (3-isothiocyanatopropyl) and methyl acrylate, methacrylic acid (3-isothiocyanato Propyl) and methyl methacrylate copolymer. These compounds can be produced by known methods.
 本実施形態の樹脂組成物において、ポリイソチオシアネートの第2の態様は、下記式(40)で表される構成単位と、下記式(41)~(47)で表される単位からなる群から選ばれる少なくとも1種の構成単位と、を有し、ポリイソチオシアネートを構成する窒素原子が、炭素原子と結合しているポリイソチオシアネートである。 In the resin composition of the present embodiment, the second aspect of the polyisothiocyanate is a group consisting of a structural unit represented by the following formula (40) and units represented by the following formulas (41) to (47). And a polyisothiocyanate in which a nitrogen atom constituting the polyisothiocyanate is bonded to a carbon atom.
Figure JPOXMLDOC01-appb-C000057
(式中、
は各々独立に有機基を表し、
は脂肪族基若しくは芳香族基又は脂肪族炭化水素基若しくは芳香族炭化水素基を表し、
複数あるR及びRは同一であっても異なっていてもよく、
は酸素原子又は硫黄原子を表す。)
Figure JPOXMLDOC01-appb-C000057
(Where
Each R 3 independently represents an organic group;
R 4 represents an aliphatic group or an aromatic group, an aliphatic hydrocarbon group or an aromatic hydrocarbon group,
A plurality of R 3 and R 4 may be the same or different,
X 3 represents an oxygen atom or a sulfur atom. )
 上記式(40)、式(41)~(47)において、Rは好ましくは、炭素数1~25の脂肪族基、炭素数6~25の芳香族基である。Rは、具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。異性体が存在する場合は該異性体も含まれる。 In the above formulas (40) and (41) to (47), R 3 is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms. R 3 is specifically methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, It is a residue obtained by removing two hydrogen atoms from tetramethyldicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like. When an isomer exists, the isomer is also included.
 上記式(43)、式(45)に含まれる基-X-Rについて説明する。 The group —X 3 —R 4 contained in the above formulas (43) and (45) will be described.
 後述するが、本発明のポリイソチオシアネートの製造において、上記式(43)で表されるN,N’-ジ置換ジチオアロファン酸結合や、上記式(45)で表される、N-置換-O-置換チオカルバミン酸エステル基(Xが酸素原子の場合)又はN-置換-S-置換ジチオカルバミン酸エステル基(Xが硫黄原子の場合)を生成させる際には、ヒドロキシ化合物又はチオール類を用いる。基-X-Rは、このヒドロキシ化合物又はチオール類に由来する基であり、ヒドロキシ化合物を用いる場合、Xは酸素原子、チオール類を用いる場合、Xは硫黄原子である。 As will be described later, in the production of the polyisothiocyanate of the present invention, an N, N′-disubstituted dithioalophanoic acid bond represented by the above formula (43) or an N-substitution represented by the above formula (45) is used. When an —O-substituted thiocarbamate group (when X 3 is an oxygen atom) or an N-substituted —S-substituted dithiocarbamate group (when X 3 is a sulfur atom) is formed, a hydroxy compound or thiol Use a kind. The group —X 3 —R 4 is a group derived from this hydroxy compound or thiols. When a hydroxy compound is used, X 3 is an oxygen atom, and when using a thiol, X 3 is a sulfur atom.
 Rは炭化水素基であり得る。前記炭化水素基は、脂肪族基及び芳香族基のうち少なくとも一方を有し、炭素原子の他に酸素原子及び窒素原子等を含んでも構わない。Rは、脂肪族基又は芳香族基であり、好ましくは、炭素数1~22の脂肪族基又は炭素数6~22の芳香族基であり、より好ましくは、炭素数1~22の脂肪族基、炭素数1~22の芳香族基、又は炭素数1~22の脂肪族基と炭素数6~22の芳香族基が結合した炭素数7~22の基である。Rの具体例として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、メチルシクロペンチル基、エチルシクロペンチル基、メチルシクロヘキシル基、エチルシクロヘキシル基、プロピルシクロヘキシル基、ブチルシクロヘキシル基、ペンチルシクロヘキシル基、ヘキシルシクロヘキシル基、ジメチルシクロヘキシル基、ジエチルシクロヘキシル基、ジブチルシクロヘキシル基、フェニル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、オクチルフェニル基、ノニルフェニル基、クミルフェニル基、ジメチルフェニル基等が挙げられる。 R 4 may be a hydrocarbon group. The hydrocarbon group has at least one of an aliphatic group and an aromatic group, and may contain an oxygen atom, a nitrogen atom, or the like in addition to a carbon atom. R 4 is an aliphatic group or an aromatic group, preferably an aliphatic group or an aromatic group having 6 to 22 carbon atoms having 1 to 22 carbon atoms, more preferably, fats having 1 to 22 carbon atoms And a group having 7 to 22 carbon atoms in which an aliphatic group having 1 to 22 carbon atoms and an aromatic group having 6 to 22 carbon atoms are bonded. Specific examples of R 4 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, cyclopentyl group, cyclohexyl group, cyclohexane Heptyl group, cyclooctyl group, methylcyclopentyl group, ethylcyclopentyl group, methylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group, butylcyclohexyl group, pentylcyclohexyl group, hexylcyclohexyl group, dimethylcyclohexyl group, diethylcyclohexyl group, dibutylcyclohexyl group , Phenyl group, methylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group, octylphenyl group, nonylphenyl Group, cumylphenyl group, dimethylphenyl group and the like.
 本実施形態におけるポリイソチオシアネートは、本実施形態のポリイソチオシアネートの1種である下記式(33)に示す化合物を、更に重合させることによって得られるポリイソチオシアネートであってもよい。 The polyisothiocyanate in the present embodiment may be a polyisothiocyanate obtained by further polymerizing a compound represented by the following formula (33), which is one type of the polyisothiocyanate of the present embodiment.
Figure JPOXMLDOC01-appb-C000058
(式中、
は有機基を表す。)
Figure JPOXMLDOC01-appb-C000058
(Where
R 3 represents an organic group. )
 上記式(33)におけるRは好ましくは、炭素数1~25の脂肪族基、炭素数6~25の芳香族基である。Rの具体例は、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。異性体が存在する場合は該異性体も含まれる。Rは、より好ましくは、下記式(300)~(306)で表される基である。 R 3 in the above formula (33) is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms. Specific examples of R 3 are methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyl. A residue obtained by removing two hydrogen atoms from dicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like. When an isomer exists, the isomer is also included. R 3 is more preferably a group represented by the following formulas (300) to (306).
Figure JPOXMLDOC01-appb-C000059
(式中、iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000059
(In the formula, i represents an integer of 1 to 12, and may be 1 to 10.)
 上記式(33)で表される化合物として、更に好ましくは、ヘキサメチレンジイソチオシアネート、イソホロンジイソチオシアネート、4,4’-ジシクロヘキシルメタンジイソチオシアネート、4,4’-ジフェニルメタンジイソチオシアネート、トルエンジイソチオシアネート(各異性体)、ナフタレンジイソチオシアネート(各異性体)等を挙げることができる。 More preferably, the compound represented by the above formula (33) is hexamethylene diisothiocyanate, isophorone diisothiocyanate, 4,4′-dicyclohexylmethane diisothiocyanate, 4,4′-diphenylmethane diisothiocyanate, toluene diene. Examples include isothiocyanate (each isomer) and naphthalene dithiocyanate (each isomer).
 上記式(33)で表される化合物として、フェニレンジイソチオシアネート、4,4’-ジイソチオシアナトジフェニルエーテル、1,3-ビス(3-イソチオシアナトフェノキシ)ベンゼン、3,3’-ジイソチオシアナトジフェニルスルホン、ジエチルトルエンジイソチオシアネート等を挙げることもできる。 Examples of the compound represented by the above formula (33) include phenylene diisothiocyanate, 4,4′-diisothiocyanatodiphenyl ether, 1,3-bis (3-isothiocyanatophenoxy) benzene, 3,3′-diisothione. There can also be mentioned, for example, oocyanatodiphenylsulfone, diethyltoluene diisothiocyanate.
 以下、上記式(33)で表される化合物を重合させることによって得られる樹脂(ポリイソチオシアネート)について記載する。なお、以下の記載では、上記式(33)で表される化合物を、重合させる前の化合物という意味で「単量体」と記載する場合がある。 Hereinafter, the resin (polyisothiocyanate) obtained by polymerizing the compound represented by the above formula (33) will be described. In the following description, the compound represented by the formula (33) may be described as a “monomer” in the sense of a compound before polymerization.
 上記式(33)で表される「単量体」の重合によって製造されるポリイソチオシアネートは、その製造の際に、ヒドロキシ化合物及び/又はチオール類を副原料として使用することができる。 The polyisothiocyanate produced by the polymerization of the “monomer” represented by the above formula (33) can use a hydroxy compound and / or a thiol as an auxiliary material in the production.
 ヒドロキシ化合物としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、ドデカノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、シクロオクタノール、メチルシクロペンタノール、エチルシクロペンタノール、メチルシクロヘキサノール、エチルシクロヘキサノール、プロピルシクロヘキサノール、ブチルシクロヘキサノール、ペンチルシクロヘキサノール、ヘキシルシクロヘキサノール、ジメチルシクロヘキサノール、ジエチルシクロヘキサノール、ジブチルシクロヘキサノール、フェノール、メチルフェノール、エチルフェノール、プロピルフェノール、ブチルフェノール、ペンチルフェノール、ヘキシルフェノール、オクチルフェノール、ノニルフェノール、クミルフェノール、ジメチルフェノール、メチルエチルフェノール、メチルプロピルフェノール、メチルブチルフェノール、メチルペンチルフェノール、ジエチルフェノール、エチルプロピルフェノール、エチルブチルフェノール、ジプロピルフェノール、ジクミルフェノール、トリメチルフェノール、トリエチルフェノール、ナフトール等が挙げられる。 Hydroxy compounds include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, decanol, dodecanol, cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, methylcyclopentanol, ethylcyclopentanol, Methylcyclohexanol, ethylcyclohexanol, propylcyclohexanol, butylcyclohexanol, pentylcyclohexanol, hexylcyclohexanol, dimethylcyclohexanol, diethylcyclohexanol, dibutylcyclohexanol, phenol, methylphenol, ethylphenol, propylphenol, butylphenol, pentyl Phenol, hexylphenol, o Tylphenol, nonylphenol, cumylphenol, dimethylphenol, methylethylphenol, methylpropylphenol, methylbutylphenol, methylpentylphenol, diethylphenol, ethylpropylphenol, ethylbutylphenol, dipropylphenol, dicumylphenol, trimethylphenol, triethylphenol And naphthol.
 エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、2,3-ブチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、ネオペンチルグリコールヒドロキシピバリン酸エステル、2-エチル-1,3-ヘキサンジオール、トリメチロールプロパン、グリセリン、1,2,6-ヘキサントリオール等の低分子量化合物及び分子量約200~10,000のポリエステルポリオール、ポリエーテルポリオールなどを用いることもできる。 Ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 2,3-butylene glycol, 1,6-hexanediol, neopentyl glycol, neo Low molecular weight compounds such as pentyl glycol hydroxypivalate, 2-ethyl-1,3-hexanediol, trimethylolpropane, glycerin, 1,2,6-hexanetriol, and polyester polyols having a molecular weight of about 200 to 10,000, poly Ether polyols can also be used.
 チオール類としては、メタンチオール、エタンチオール、プロパンチオール、ブタンチオール、ペンタンチオール、ヘキサンチオール、ヘプタンチオール、オクタンチオール、デカンチオール、ドデカンチオール、シクロペンタンチオール、シクロヘキサンチオール、シクロヘプタンチオール、シクロオクタンチオール、メチルシクロペンタンチオール、エチルシクロペンタンチオール、メチルシクロヘキサンチオール、エチルシクロヘキサンチオール、プロピルシクロヘキサンチオール、ブチルシクロヘキサンチオール、ペンチルシクロヘキサンチオール、ヘキシルシクロヘキサンチオール、ジメチルシクロヘキサンチオール、ジエチルシクロヘキサンチオール、ジブチルシクロヘキサンチオール、チオフェノール、メチルチオフェノール、エチルチオフェノール、プロピルチオフェノール、ブチルチオフェノール、ペンチルチオフェノール、ヘキシルチオフェノール、オクチルチオフェノール、ノニルチオフェノール、クミルチオフェノール、ジメチルチオフェノール、メチルエチルチオフェノール、メチルプロピルチオフェノール、メチルブチルチオフェノール、メチルペンチルチオフェノール、ジエチルチオフェノール、エチルプロピルチオフェノール、エチルブチルチオフェノール、ジプロピルチオフェノール、ジクミルチオフェノール、トリメチルチオフェノール、トリエチルチオフェノール、チオナフトール等が挙げられる。 Thiols include methanethiol, ethanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, decanethiol, dodecanethiol, cyclopentanethiol, cyclohexanethiol, cycloheptanethiol, cyclooctanethiol, Methylcyclopentanethiol, ethylcyclopentanethiol, methylcyclohexanethiol, ethylcyclohexanethiol, propylcyclohexanethiol, butylcyclohexanethiol, pentylcyclohexanethiol, hexylcyclohexanethiol, dimethylcyclohexanethiol, diethylcyclohexanethiol, dibutylcyclohexanethiol, thiophenol, methylthio Fenault , Ethylthiophenol, propylthiophenol, butylthiophenol, pentylthiophenol, hexylthiophenol, octylthiophenol, nonylthiophenol, cumylthiophenol, dimethylthiophenol, methylethylthiophenol, methylpropylthiophenol, methylbutylthio Examples include phenol, methylpentylthiophenol, diethylthiophenol, ethylpropylthiophenol, ethylbutylthiophenol, dipropylthiophenol, dicumylthiophenol, trimethylthiophenol, triethylthiophenol, thionaphthol, and the like.
 ヒドロキシ化合物を使用する場合、上記ヒドロキシ化合物と上記式(33)で表される「単量体」のイソチオシアネート基/水酸基当量比は、10~100程度の値から目的に応じ選択される。チオール類を使用する場合も同様に、イソチオシアネート基/チオール基当量比は、10~100程度の値から目的に応じて選択される。 When a hydroxy compound is used, the isothiocyanate group / hydroxyl group equivalent ratio of the above-mentioned hydroxy compound and the “monomer” represented by the above formula (33) is selected from a value of about 10 to 100 according to the purpose. Similarly, when thiols are used, the isothiocyanate group / thiol group equivalent ratio is selected from a value of about 10 to 100 according to the purpose.
 式(33)の単量体の重合反応によって、式(41)で表されるイソチオシアヌレート基が形成され得る。式(41)で表されるイソチオシアヌレート基を形成するためのイソチオシアヌレート化触媒としては、好ましくは第4級アンモニウム塩、より好ましくは第4級アンモニウムヒドロキシド、第4級アンモニウムカルボン酸、更に好ましくは第4級アンモニウムカルボン酸である。具体例としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニムヒドロキシド、テトラブチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド、酢酸テトラメチルアンモニウム塩、酢酸テトラエチルアンモニウム塩、酢酸テトラブチルアンモニウム塩等の有機弱酸塩などが挙げられる。酢酸、吉草酸、イソ吉草酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の金属塩なども使用できるが、使用量が低減できる観点から有機弱酸塩などが好ましい。 An isothiocyanurate group represented by the formula (41) can be formed by the polymerization reaction of the monomer of the formula (33). The isothiocyanurate-forming catalyst for forming the isothiocyanurate group represented by the formula (41) is preferably a quaternary ammonium salt, more preferably a quaternary ammonium hydroxide, a quaternary ammonium carboxylic acid, More preferred is quaternary ammonium carboxylic acid. Specific examples include tetraalkylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide; weak organic acids such as tetramethylammonium acetate, tetraethylammonium acetate, and tetrabutylammonium acetate. Examples include salt. Although metal salts of alkyl carboxylic acids such as acetic acid, valeric acid, isovaleric acid, caproic acid, octylic acid, and myristic acid can be used, organic weak acid salts and the like are preferable from the viewpoint of reducing the amount used.
 上記イソチオシアヌレート化触媒を希釈するヒドロキシ化合物としては、例えば、メタノール、エタノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、2,3-ブチレングリコール、グリセリン、シクロヘキサノール等のアルコール性ヒドロキシ化合物、フェノール、クレゾール、キシレノール、トリメチルフェノール等のフェノール性ヒドロキシ化合物が挙げられる。これらから得られるポリイソシアネートの結晶性の観点から、2-ブタノール、2-メチル-1-プロパノール、1,3-ブタンジオール、2,3-ブタンジオール等の側鎖を有するアルコールが好ましい。また、2種類以上を混合してもよい。なお、該ヒドロキシ化合物に代えてチオール類を使用してもよい。 Examples of the hydroxy compound for diluting the isothiocyanurate-forming catalyst include methanol, ethanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1,2-propylene glycol, 1,3-propylene glycol, Examples thereof include alcoholic hydroxy compounds such as 1,3-butylene glycol, 1,4-butylene glycol, 2,3-butylene glycol, glycerin and cyclohexanol, and phenolic hydroxy compounds such as phenol, cresol, xylenol and trimethylphenol. From the viewpoint of crystallinity of the polyisocyanate obtained from these, alcohols having side chains such as 2-butanol, 2-methyl-1-propanol, 1,3-butanediol, and 2,3-butanediol are preferred. Two or more types may be mixed. Thiols may be used in place of the hydroxy compound.
 上記式(33)で表される単量体を、又は、イソチオシアネート基をヒドロキシ化合物でウレタン化した単量体を、上述のイソチオシアヌレート化触媒の存在下で反応させるに際し、上記ヒドロキシ化合物で希釈されたイソチオシアヌレート化触媒の濃度は1~20質量%で行う。濃度は、好ましくは、1~10質量%である。濃度が1質量%以上であれば、イソチオシアヌレート化触媒に同伴するヒドロキシ化合物の量が多くなりすぎず、得られるポリイソチオシアネート及び、これで形成される塗膜の物性が低下しにくい。濃度が20質量%以下であれば、同伴するヒドロキシ化合物の助触媒効果が低下せず、その結果、イソチオシアヌレート化触媒の使用量の増加やポリイソチオシアネートの着色等が起こりにくい。 When the monomer represented by the above formula (33) or the monomer obtained by urethanizing the isothiocyanate group with a hydroxy compound in the presence of the above-mentioned isothiocyanuration catalyst, The concentration of the diluted isothiocyanurate catalyst is 1 to 20% by mass. The concentration is preferably 1 to 10% by mass. If the concentration is 1% by mass or more, the amount of the hydroxy compound accompanying the isothiocyanurate-forming catalyst does not increase excessively, and the physical properties of the resulting polyisothiocyanate and the coating film formed thereby are unlikely to deteriorate. If the concentration is 20% by mass or less, the cocatalyst effect of the accompanying hydroxy compound does not decrease, and as a result, the amount of the isothiocyanurate-forming catalyst used is increased and the polyisothiocyanate is not easily colored.
 上記式(33)で表される単量体等の原料に微量含まれている酸性成分によりイソチオシアヌレート化触媒が失活する場合を除き、イソチオシアヌレート化触媒の使用量は、単量体ジイソチオシアネートの重量に対し1ppm~10%、好ましくは10ppm~5%である。この量が1ppm以上であれば、イソチオシアヌレート化触媒としての機能が充分に発揮できる。この量が3%以下であれば、イソチオシアヌレート化触媒を失活するための酸性リン酸化合物及び酸性リン酸エステル化合物(後述する)の添加量が少なくなる。 Except for the case where the isothiocyanuration catalyst is deactivated by an acidic component contained in a trace amount in the raw material such as the monomer represented by the formula (33), the amount of the isothiocyanuration catalyst used is the monomer It is 1 ppm to 10%, preferably 10 ppm to 5%, based on the weight of diisothiocyanate. If this amount is 1 ppm or more, the function as an isothiocyanurate-forming catalyst can be sufficiently exhibited. If this amount is 3% or less, the amount of acidic phosphoric acid compound and acidic phosphoric acid ester compound (described later) added to deactivate the isothiocyanurate-forming catalyst is reduced.
 反応時、溶媒は使用してもしなくてもよいが、イソチオシアネート基と反応活性を持たない溶媒を使用することにより、反応の制御がより容易になる。 During the reaction, a solvent may or may not be used, but the use of a solvent having no reaction activity with the isothiocyanate group makes it easier to control the reaction.
 溶媒の例としては、酢酸エチル、酢酸ブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエステル又はエーテル類、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素類などが使用可能である。もちろん、2種類以上の溶媒を混合使用することも可能である。 Examples of solvents include esters or ethers such as ethyl acetate, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, etc. Is possible. Of course, a mixture of two or more solvents can be used.
 イソチオシアヌレート化反応は、30℃~120℃、好ましくは50℃~100℃で行われる。反応の進行は反応液のH-NMR分析により確認することができる。 The isothiocyanuration reaction is performed at 30 ° C to 120 ° C, preferably 50 ° C to 100 ° C. The progress of the reaction can be confirmed by 1 H-NMR analysis of the reaction solution.
 反応が所望の転化率に達した時点で、反応停止剤の投入により触媒を失活させて反応を停止する。転化率は10~60%の範囲で選定するのが適当であり、好ましくは10~30%である。低い転化率では、より低い粘度のポリイソチオシアネートを得ることが可能であるが、生産性の点から転化率10%以上が好ましい。一方、転化率60%以下であれば、ポリイソチオシアネートの粘度が高くなりすぎず好ましい。 When the reaction reaches the desired conversion rate, the reaction is stopped by deactivating the catalyst by adding a reaction terminator. The conversion rate is suitably selected in the range of 10 to 60%, preferably 10 to 30%. With a low conversion rate, it is possible to obtain a polyisothiocyanate having a lower viscosity, but a conversion rate of 10% or more is preferable from the viewpoint of productivity. On the other hand, if the conversion is 60% or less, the viscosity of the polyisothiocyanate does not become too high, which is preferable.
 転化率は下記式で求めることができる。
 H-NMRチャートにおいて、テトラメチルシランのメチル基のピークを0ppmとし、3.5ppmのピークの積分値(A)と4.8ppmのピークの積分値(B)とから次式により転化率を算出する。
  転化率(%)=B/(A+B)×100
The conversion rate can be obtained by the following formula.
In the 1 H-NMR chart, the methyl group peak of tetramethylsilane is set to 0 ppm, and the conversion rate is calculated from the integral value (A) of the 3.5 ppm peak and the integral value (B) of the 4.8 ppm peak according to the following formula. calculate.
Conversion rate (%) = B / (A + B) × 100
 イソチオシアヌレート化反応の停止剤として、酸性リン酸化合物及び酸性リン酸エステル化合物の1種以上の化合物を用いる。 As the terminator for the isothiocyanuration reaction, one or more compounds of an acidic phosphate compound and an acidic phosphate compound are used.
 酸性リン酸化合物は、無機酸であり、例えば、リン酸、亜リン酸、次亜リン酸、二亜リン酸、次リン酸、ピロリン酸、ペルオキソリン酸等が挙げられる。酸性リン酸化合物は、好ましくは、リン酸である。 The acidic phosphoric acid compound is an inorganic acid, and examples thereof include phosphoric acid, phosphorous acid, hypophosphorous acid, diphosphorous acid, hypophosphoric acid, pyrophosphoric acid, and peroxophosphoric acid. The acidic phosphoric acid compound is preferably phosphoric acid.
 酸性リン酸エステル化合物は、酸性基とエステル基を有する化合物であり、例えば、炭素数2~8のモノアルキルホスフェート、モノアルキルホスファイト、又は、炭素数4~16のジアルキルホスフェート、ジアルキルホスファイト、又は、ジラウリルホスフェート、ジフェニルホスフェート、モノラウリルホスフェート、モノフェニルホスフェート、ジラウリルホスファイト、ジフェニルホスファイト、モノラウリルホスファイト、モノフェニルホスファイト等が挙げられる。酸性リン酸エステル化合物は、好ましくは、炭素数3~8のモノアルキルホスフェート、又は、炭素数6~16のジアルキルホスフェート、より好ましくは、ジオクチルホスフェート、モノオクチルホスフェートである。これらのうち、酸性リン酸化合物を使用することが好ましい。酸性リン酸化合物の添加量は、イソチオシアヌレート化触媒の化学量論量に対し1~10当量が好ましく、1~6当量が更に好ましい。添加量が1当量以上であれば、充分にイソチオシアヌレート化触媒を失活することができる。添加量が10当量以下であれば、発生する不溶物のろ過が困難となることもなく好ましい。 The acidic phosphate ester compound is a compound having an acidic group and an ester group. For example, the monoalkyl phosphate having 2 to 8 carbon atoms, the monoalkyl phosphite, or the dialkyl phosphate having 4 to 16 carbon atoms, dialkyl phosphite, Alternatively, dilauryl phosphate, diphenyl phosphate, monolauryl phosphate, monophenyl phosphate, dilauryl phosphite, diphenyl phosphite, monolauryl phosphite, monophenyl phosphite and the like can be mentioned. The acidic phosphate ester compound is preferably a monoalkyl phosphate having 3 to 8 carbon atoms, or a dialkyl phosphate having 6 to 16 carbon atoms, more preferably dioctyl phosphate or monooctyl phosphate. Among these, it is preferable to use an acidic phosphoric acid compound. The addition amount of the acidic phosphoric acid compound is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, relative to the stoichiometric amount of the isothiocyanuration catalyst. If the addition amount is 1 equivalent or more, the isothiocyanuration catalyst can be sufficiently deactivated. If the addition amount is 10 equivalents or less, it is preferable without filtering the insoluble matter generated.
 本実施形態のポリイソチオシアネートは、下記式(96)~(99)で表される化合物であってもよい。 The polyisothiocyanate of this embodiment may be a compound represented by the following formulas (96) to (99).
Figure JPOXMLDOC01-appb-C000060
(式中、
h’は2~40の整数を表し、
i’、j’は各々1~6の整数を表し、i’とj’の和は2~7の整数である。)
Figure JPOXMLDOC01-appb-C000060
(Where
h ′ represents an integer of 2 to 40,
i ′ and j ′ each represent an integer of 1 to 6, and the sum of i ′ and j ′ is an integer of 2 to 7. )
Figure JPOXMLDOC01-appb-C000061
(式中、
kは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000061
(Where
k represents an integer of 1 to 4. )
Figure JPOXMLDOC01-appb-C000062
(式中、
35は水素原子、メチル基、エチル基からなる群から選ばれる基を表し、
sは0又は1の整数を表し、
r、t、uは各々0又は1以上の整数を表し、rとtとuの和は5~90である。)
Figure JPOXMLDOC01-appb-C000062
(Where
R 35 represents a group selected from the group consisting of a hydrogen atom, a methyl group, and an ethyl group,
s represents an integer of 0 or 1,
r, t and u each represents 0 or an integer of 1 or more, and the sum of r, t and u is 5 to 90. )
Figure JPOXMLDOC01-appb-C000063
(式中、
vは2~70の整数を表す。)
Figure JPOXMLDOC01-appb-C000063
(Where
v represents an integer of 2 to 70. )
 [反応方法]
 本実施形態の、水酸基、アミノ基、ヒドラジド基、セミカルバジド基及びチオセミカルバジド基からなる群から選ばれる少なくとも1種の基を有する化合物と、イソチオシアネート(モノイソチオシアネートであってもポリイソチオシアネートであってもよい)とを反応させる方法について説明する。
[Reaction method]
A compound having at least one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group, and an isothiocyanate (monoisothiocyanate or polyisothiocyanate may be used). The method of reacting with the above may be described.
 本実施形態の樹脂組成物は、
1.水酸基、アミノ基、ヒドラジド基、セミカルバジド基及びチオセミカルバジド基からなる群から選ばれる少なくとも1種の基を2以上有する化合物と、モノイソチオシアネートとを反応させて得られる樹脂、
2.水酸基、アミノ基、ヒドラジド基、セミカルバジド基及びチオセミカルバジド基からなる群から選ばれる1種の基を1つ有する化合物と、ポリイソチオシアネートとを反応させて得られる樹脂、
3.水酸基、アミノ基、ヒドラジド基、セミカルバジド基及びチオセミカルバジド基からなる群から選ばれる少なくとも1つの基を2以上有する化合物と、ポリイソチオシアネートとを反応させて得られる樹脂、
のいずれも含有することができる。いずれも反応させる官能基の組み合わせは同じであり、ここに記載する方法に準拠して行うことができる。
The resin composition of the present embodiment is
1. A resin obtained by reacting a compound having at least one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group with a monoisothiocyanate,
2. A resin obtained by reacting a compound having one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group with a polyisothiocyanate;
3. A resin obtained by reacting a compound having at least one group selected from the group consisting of a hydroxyl group, an amino group, a hydrazide group, a semicarbazide group and a thiosemicarbazide group with a polyisothiocyanate,
Any of these can be contained. In any case, the combination of the functional groups to be reacted is the same and can be performed in accordance with the method described herein.
 以下の説明では反応を分かりやすくするため反応式を示し、該反応式は単官能化合物を例に記載するが、多官能化合物においても同様の反応が進行することは言うまでもない。 In the following explanation, a reaction formula is shown for easy understanding of the reaction, and the reaction formula describes a monofunctional compound as an example, but it goes without saying that the same reaction proceeds even in a polyfunctional compound.
[水酸基を有する化合物との反応]
 水酸基を有する化合物とイソチオシアネートとの反応は、下記式(100)で表される。
[Reaction with a compound having a hydroxyl group]
The reaction between the compound having a hydroxyl group and isothiocyanate is represented by the following formula (100).
Figure JPOXMLDOC01-appb-C000064
(式中、R41、R42は各々独立に有機基を表す。)
Figure JPOXMLDOC01-appb-C000064
(In the formula, R 41 and R 42 each independently represents an organic group.)
 反応は、溶媒存在下でも溶媒非存在下でも実施することができる。溶媒存在下で行う場合に用いる溶媒は、水酸基とイソチオシアネート基に対して不活性な溶媒、又は、イソチオシアネート基と反応するが目的とする反応に対して速度が極めて遅い溶媒が好ましい。好ましい溶媒として、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン等の炭化水素化合物;エチルエーテル、テトラヒドロフラン、オクチルエーテル、ノニルエーテル、デシルエーテル、ドデシルエーテル、テトラデシルエーテル、ペンタデシルエーテル、ヘキサデシルエーテル、オクタデシルエーテル、テトラエチレングリコールジメチルエーテル等の炭化水素化合物がエーテル結合を介して結合したエーテル類;ジメチルスルフィド、ジエチルスルフィド、ジブチルスルフィド、ジヘキシルスルフィド、オクチルスルフィド、ノニルスルフィド、デシルスルフィド、ドデシルスルフィド、テトラデシルスルフィド、ペンタデシルスルフィド、ヘキサデシルスルフィド、オクタデシルスルフィド、ノナデシルスルフィド等の炭化水素化合物がチオエーテル結合を介して結合したチオエーテル類;ベンゼン、トルエン、エチルベンゼン、ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、オクチルベンゼン、ビフェニル、ターフェニル、ジフェニルエタン、(メチルフェニル)フェニルエタン、ジメチルビフェニル、ベンジルトルエン等の芳香族炭化水素化合物;ジフェニルエーテル、ジ(メチルベンジル)エーテル、ジ(エチルベンジル)エーテル、ジ(ブチルベンジル)エーテル、ジ(ペンチルベンジル)エーテル、ジ(ヘキシルベンジル)エーテル、ジ(オクチルベンジル)エーテル、ジフェニルエーテル、ジベンジルエーテル等の芳香族炭化水素化合物がエーテル結合を介して結合した芳香族エーテル類;ジフェニルスルフィド、ジ(メチルベンジル)スルフィド、ジ(エチルベンジル)スルフィド、ジ(ブチルベンジル)スルフィド、ジ(ペンチルベンジル)スルフィド、ジ(ヘキシルベンジル)スルフィド、ジ(オクチルベンジル)スルフィド、ジ(メチルフェニル)スルフィド、ジベンジルスルフィド等の芳香族炭化水素化合物がチオエーテル結合を介して結合した芳香族チオエーテル類;メトキシベンゼン、エトキシベンゼン、ブトキシベンゼン、ジメトキシベンゼン、ジエトキシベンゼン、ジブトキシベンゼン等の炭化水素化合物と芳香族炭化水素化合物とがエーテル結合を介して結合した化合物;クロロメタン、クロロエタン、クロロペンタン、クロロオクタン、ブロモメタン、ブロモエタン、ブロモペンタン、ブロモオクタン、ジクロロエタン、ジクロロペンタン、ジクロロオクタン、ジブロモエタン、ジブロモペンタン、ジブロモオクタン、クロロベンゼン、ブロモベンゼン、ジクロロベンゼン、ジブロモベンゼン等のハロゲン化物;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン類;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;水を挙げることができる。 The reaction can be carried out in the presence or absence of a solvent. The solvent used in the presence of a solvent is preferably a solvent inert to the hydroxyl group and the isothiocyanate group, or a solvent that reacts with the isothiocyanate group but has a very slow rate for the intended reaction. Preferred solvents include hydrocarbon compounds such as pentane, hexane, heptane, octane, nonane, decane, dodecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane; ethyl ether, tetrahydrofuran, octyl ether, nonyl ether, decyl ether, dodecyl ether, Ethers in which hydrocarbon compounds such as tetradecyl ether, pentadecyl ether, hexadecyl ether, octadecyl ether and tetraethylene glycol dimethyl ether are bonded via an ether bond; dimethyl sulfide, diethyl sulfide, dibutyl sulfide, dihexyl sulfide, octyl sulfide, Nonyl sulfide, decyl sulfide, dodecyl sulfide, tetradecyl sulfide, pentadecyl sulfi Thioethers in which hydrocarbon compounds such as hexadecyl sulfide, octadecyl sulfide, and nonadecyl sulfide are bonded via a thioether bond; benzene, toluene, ethylbenzene, butylbenzene, pentylbenzene, hexylbenzene, octylbenzene, biphenyl, terphenyl, Aromatic hydrocarbon compounds such as diphenylethane, (methylphenyl) phenylethane, dimethylbiphenyl, benzyltoluene; diphenyl ether, di (methylbenzyl) ether, di (ethylbenzyl) ether, di (butylbenzyl) ether, di (pentylbenzyl) ) Aromatic hydrocarbon compounds such as ether, di (hexylbenzyl) ether, di (octylbenzyl) ether, diphenylether, dibenzylether Diphenyl sulfide, di (methylbenzyl) sulfide, di (ethylbenzyl) sulfide, di (butylbenzyl) sulfide, di (pentylbenzyl) sulfide, di (hexylbenzyl) sulfide, di ( Aromatic thioethers in which aromatic hydrocarbon compounds such as octylbenzyl) sulfide, di (methylphenyl) sulfide, dibenzylsulfide and the like are bonded via a thioether bond; methoxybenzene, ethoxybenzene, butoxybenzene, dimethoxybenzene, diethoxybenzene , A compound in which a hydrocarbon compound such as dibutoxybenzene and an aromatic hydrocarbon compound are bonded via an ether bond; chloromethane, chloroethane, chloropentane, chlorooctane, bromomethane, bromoethane, Halogenated compounds such as bromopentane, bromooctane, dichloroethane, dichloropentane, dichlorooctane, dibromoethane, dibromopentane, dibromooctane, chlorobenzene, bromobenzene, dichlorobenzene, dibromobenzene; acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone And the like; ketones such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; water.
 反応温度は特に限定されないが、0℃~300℃の範囲で行うことができる。反応時間は任意の反応時間を設定でき、例えば、赤外分光計でイソチオシアネート基の残存量を追跡し、所望の残存量になったところで反応を停止してもよい。 The reaction temperature is not particularly limited, but it can be carried out in the range of 0 ° C to 300 ° C. Any reaction time can be set as the reaction time. For example, the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
 一般的には、水酸基とイソチオシアネート基との反応は遅いため、触媒を使用してもよい。触媒としては、ルイス酸及びルイス酸を生成する遷移金属化合物、有機スズ化合物、銅族金属、亜鉛、鉄族金属の化合物である。触媒の具体例として、AlX、TiX、TiX、VOX、VX、ZnX、FeX、SnX(ここでXは、ハロゲン、アセトキシ基、アルコキシ基、アリーロキシ基である)で表されるルイス酸及びルイス酸を生成する遷移金属化合物;(CHSnOCOCH、(C)SnOCOC、BuSnOCOCH、PhSnOCOCH、BuSn(OCOCH、BuSn(OCOC1123、PhSnOCH、(CSnOPh、BuSn(OCH、BuSn(OC、BuSn(OPh)、PhSn(CH、(CSnOH、PhSnOH、BuSnO、(C17SnO、BuSnCl、BuSnO(OH)等で表される有機スズ化合物;CuCl、CuCl、CuBr、CuBr、CuI、CuI、Cu(OAc)、Cu(acac)、オレフィン酸銅、BuCu、(CHO)Cu、AgNO、AgBr、ピクリン酸銀、AgCClO等の銅族金属の化合物;Zn(acac)等の亜鉛の化合物;Fe(C10)(CO)、Fe(CO)、Fe(C)(CO)、Co(メシチレン)(PEtPh)、CoC(CO)、フェロセン等の鉄族金属の化合物などが挙げられる(Buはブチル基、Phはフェニル基、acacはアセチルアセトンキレート配位子を表す。)。 In general, since the reaction between the hydroxyl group and the isothiocyanate group is slow, a catalyst may be used. Examples of the catalyst include Lewis acids and transition metal compounds that generate Lewis acids, organotin compounds, copper group metals, zinc, and iron group metal compounds. Table Specific examples of the catalyst, in AlX 3, TiX 3, TiX 4 , VOX 3, VX 5, ZnX 2, FeX 3, SnX 4 (X in this case, a halogen, an acetoxy group, an alkoxy group, an aryloxy group) Lewis acid and transition metal compound that generates Lewis acid; (CH 3 ) 3 SnOCOCH 3 , (C 2 H 5 ) SnOCOC 6 H 5 , Bu 3 SnOCOCH 3 , Ph 3 SnOCOCH 3 , Bu 2 Sn (OCOCH 3 ) 2 , Bu 2 Sn (OCOC 11 H 23 ) 2 , Ph 3 SnOCH 3 , (C 2 H 5 ) 3 SnOPh, Bu 2 Sn (OCH 3 ) 2 , Bu 2 Sn (OC 2 H 5 ) 2 , Bu 2 Sn (OPh) 2, Ph 2 Sn (CH 3) 2, (C 2 H 5) 3 SnOH, PhSnOH, Bu 2 SnO, ( Organotin compounds represented by C 8 H 17 ) 2 SnO, Bu 2 SnCl 2 , BuSnO (OH), etc .; CuCl, CuCl 2 , CuBr, CuBr 2 , CuI, CuI 2 , Cu (OAc) 2 , Cu (acac ) 2 , copper olefinate, Bu 2 Cu, (CH 3 O) 2 Cu, AgNO 3 , AgBr, silver picrate, AgC 6 H 6 ClO 4 and other compounds of copper group metals; zinc such as Zn (acac) 2 A compound of Fe (C 10 H 8 ) (CO) 5 , Fe (CO) 5 , Fe (C 4 H 6 ) (CO) 3 , Co (mesitylene) 2 (PEt 2 Ph 2 ), CoC 5 F 5 ( CO) 7 and iron group metal compounds such as ferrocene (Bu represents a butyl group, Ph represents a phenyl group, and acac represents an acetylacetone chelate ligand).
[アミノ基を有する化合物との反応]
 アミノ基を有する化合物とイソチオシアネートとの反応は、下記式(101)で表される。
[Reaction with a compound having an amino group]
The reaction between the compound having an amino group and isothiocyanate is represented by the following formula (101).
Figure JPOXMLDOC01-appb-C000065
(式中、R41、R42は上記式(100)で定義した基である。)
Figure JPOXMLDOC01-appb-C000065
(Wherein, R 41, R 42 is a group as defined by formula (100).)
 反応は、溶媒存在下でも溶媒非存在下でも実施することができる。溶媒存在下で行う場合に用いる溶媒は、アミノ基とイソチオシアネート基に対して不活性な溶媒、又は、イソチオシアネート基と反応するが目的とする反応に対して速度が極めて遅い溶媒が好ましい。好ましい溶媒として、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン等の炭化水素化合物;エチルエーテル、テトラヒドロフラン、オクチルエーテル、ノニルエーテル、デシルエーテル、ドデシルエーテル、テトラデシルエーテル、ペンタデシルエーテル、ヘキサデシルエーテル、オクタデシルエーテル、テトラエチレングリコールジメチルエーテル等の炭化水素化合物がエーテル結合を介して結合したエーテル類;ジメチルスルフィド、ジエチルスルフィド、ジブチルスルフィド、ジヘキシルスルフィド、オクチルスルフィド、ノニルスルフィド、デシルスルフィド、ドデシルスルフィド、テトラデシルスルフィド、ペンタデシルスルフィド、ヘキサデシルスルフィド、オクタデシルスルフィド、ノナデシルスルフィド等の炭化水素化合物がチオエーテル結合を介して結合したチオエーテル類;ベンゼン、トルエン、エチルベンゼン、ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、オクチルベンゼン、ビフェニル、ターフェニル、ジフェニルエタン、(メチルフェニル)フェニルエタン、ジメチルビフェニル、ベンジルトルエン等の芳香族炭化水素化合物;ジフェニルエーテル、ジ(メチルベンジル)エーテル、ジ(エチルベンジル)エーテル、ジ(ブチルベンジル)エーテル、ジ(ペンチルベンジル)エーテル、ジ(ヘキシルベンジル)エーテル、ジ(オクチルベンジル)エーテル、ジフェニルエーテル、ジベンジルエーテル等の芳香族炭化水素化合物がエーテル結合を介して結合した芳香族エーテル類;ジフェニルスルフィド、ジ(メチルベンジル)スルフィド、ジ(エチルベンジル)スルフィド、ジ(ブチルベンジル)スルフィド、ジ(ペンチルベンジル)スルフィド、ジ(ヘキシルベンジル)スルフィド、ジ(オクチルベンジル)スルフィド、ジ(メチルフェニル)スルフィド、ジベンジルスルフィド等の芳香族炭化水素化合物がチオエーテル結合を介して結合した芳香族チオエーテル類;メトキシベンゼン、エトキシベンゼン、ブトキシベンゼン、ジメトキシベンゼン、ジエトキシベンゼン、ジブトキシベンゼン等の炭化水素化合物と芳香族炭化水素化合物とがエーテル結合を介して結合した化合物;クロロメタン、クロロエタン、クロロペンタン、クロロオクタン、ブロモメタン、ブロモエタン、ブロモペンタン、ブロモオクタン、ジクロロエタン、ジクロロペンタン、ジクロロオクタン、ジブロモエタン、ジブロモペンタン、ジブロモオクタン、クロロベンゼン、ブロモベンゼン、ジクロロベンゼン、ジブロモベンゼン等のハロゲン化物;水を挙げることができる。 The reaction can be carried out in the presence or absence of a solvent. The solvent used in the presence of a solvent is preferably a solvent inert to the amino group and the isothiocyanate group, or a solvent that reacts with the isothiocyanate group but has a very slow rate for the intended reaction. Preferred solvents include hydrocarbon compounds such as pentane, hexane, heptane, octane, nonane, decane, dodecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane; ethyl ether, tetrahydrofuran, octyl ether, nonyl ether, decyl ether, dodecyl ether, Ethers in which hydrocarbon compounds such as tetradecyl ether, pentadecyl ether, hexadecyl ether, octadecyl ether and tetraethylene glycol dimethyl ether are bonded via an ether bond; dimethyl sulfide, diethyl sulfide, dibutyl sulfide, dihexyl sulfide, octyl sulfide, Nonyl sulfide, decyl sulfide, dodecyl sulfide, tetradecyl sulfide, pentadecyl sulfi Thioethers in which hydrocarbon compounds such as hexadecyl sulfide, octadecyl sulfide, and nonadecyl sulfide are bonded via a thioether bond; benzene, toluene, ethylbenzene, butylbenzene, pentylbenzene, hexylbenzene, octylbenzene, biphenyl, terphenyl, Aromatic hydrocarbon compounds such as diphenylethane, (methylphenyl) phenylethane, dimethylbiphenyl, benzyltoluene; diphenyl ether, di (methylbenzyl) ether, di (ethylbenzyl) ether, di (butylbenzyl) ether, di (pentylbenzyl) ) Aromatic hydrocarbon compounds such as ether, di (hexylbenzyl) ether, di (octylbenzyl) ether, diphenylether, dibenzylether Diphenyl sulfide, di (methylbenzyl) sulfide, di (ethylbenzyl) sulfide, di (butylbenzyl) sulfide, di (pentylbenzyl) sulfide, di (hexylbenzyl) sulfide, di ( Aromatic thioethers in which aromatic hydrocarbon compounds such as octylbenzyl) sulfide, di (methylphenyl) sulfide, dibenzylsulfide and the like are bonded via a thioether bond; methoxybenzene, ethoxybenzene, butoxybenzene, dimethoxybenzene, diethoxybenzene , A compound in which a hydrocarbon compound such as dibutoxybenzene and an aromatic hydrocarbon compound are bonded via an ether bond; chloromethane, chloroethane, chloropentane, chlorooctane, bromomethane, bromoethane, Listed are halides such as bromopentane, bromooctane, dichloroethane, dichloropentane, dichlorooctane, dibromoethane, dibromopentane, dibromooctane, chlorobenzene, bromobenzene, dichlorobenzene, and dibromobenzene; water.
 反応温度は特に限定されないが、-50℃~250℃の範囲で行うことができる。反応時間は任意の反応時間を設定でき、例えば、赤外分光計でイソチオシアネート基の残存量を追跡し、所望の残存量になったところで反応を停止してもよい。 The reaction temperature is not particularly limited, but it can be carried out in the range of −50 ° C. to 250 ° C. Any reaction time can be set as the reaction time. For example, the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
 一般的には、アミノ基とイソチオシアネート基との反応は速いため、触媒を使用する必要はないが、使用すること自体は否定されない。触媒としては、上記[水酸基を有する化合物との反応]で挙げた触媒が使用できる。 Generally, since the reaction between an amino group and an isothiocyanate group is fast, it is not necessary to use a catalyst, but the use itself is not denied. As the catalyst, the catalysts mentioned in the above [Reaction with a compound having a hydroxyl group] can be used.
[ヒドラジド基、セミカルバジド基又はチオセミカルバジド基を有する化合物との反応]
 ヒドラジド基、セミカルバジド基又はチオセミカルバジド基を有する化合物とイソチオシアネートとの反応は、用いる化合物によっても種々の反応が生起し得るが、例えば下記式(102)で表される反応が挙げられる。
[Reaction with a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group]
Various reactions may occur in the reaction of a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group with an isothiocyanate, depending on the compound used, for example, a reaction represented by the following formula (102).
Figure JPOXMLDOC01-appb-C000066
(式中、
41、R42は、上記式(100)で定義した基であり、
Yは-NH-基又はCH-基を表し、
Zは酸素原子又は硫黄原子を表す。)
Figure JPOXMLDOC01-appb-C000066
(Where
R 41 and R 42 are groups defined by the above formula (100),
Y represents an —NH— group or a CH 2 — group,
Z represents an oxygen atom or a sulfur atom. )
 ヒドラジド基、セミカルバジド基又はチオセミカルバジド基を有する化合物とイソチオシアネートとの反応は、溶媒存在下でも溶媒非存在下でも実施することができる。溶媒存在下で行う場合に用いる溶媒は、上記[水酸基を有する化合物との反応]で挙げた溶媒の他、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル類も使用することができる。 The reaction between a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group and an isothiocyanate can be carried out in the presence or absence of a solvent. Solvents used in the presence of a solvent include, in addition to the solvents mentioned in [Reaction with a compound having a hydroxyl group], alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol; methyl acetate, ethyl acetate, Esters such as propyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, methyl lactate, ethyl lactate, and butyl lactate can also be used.
 反応温度は特に限定されないが、0℃~300℃の範囲で行うことができる。反応時間は任意の反応時間を設定でき、例えば、赤外分光計でイソチオシアネート基の残存量を追跡し、所望の残存量になったところで反応を停止してもよい。 The reaction temperature is not particularly limited, but it can be carried out in the range of 0 ° C to 300 ° C. Any reaction time can be set as the reaction time. For example, the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
 反応は触媒の存在下、非存在下のどちらで行ってもよい。触媒を使用する場合、上記[水酸基を有する化合物との反応]で挙げた触媒を使用することができる。 The reaction may be performed in the presence or absence of a catalyst. When a catalyst is used, the catalyst mentioned in the above [Reaction with a compound having a hydroxyl group] can be used.
 ヒドラジド基又はセミカルバジド基を有する化合物とイソチオシアネートとの反応の場合は、更に加熱処理を行うことも好ましい。該加熱処理により、樹脂組成物の剛性、硬度、加工性、耐衝撃性、曲げ疲労性等の機械的特性が改善する効果を奏する場合がある。このような効果を奏する機構は明確ではないが、本発明者らは、加熱処理によって、例えば、上記式(102)右辺の結合が下記式(103)や式(104)で表される反応によって分子鎖中に環構造を形成することによるのではないかと推測している。 In the case of a reaction between a compound having a hydrazide group or a semicarbazide group and isothiocyanate, it is also preferable to perform a heat treatment. The heat treatment may have an effect of improving mechanical properties such as rigidity, hardness, workability, impact resistance, and bending fatigue resistance of the resin composition. Although the mechanism that exerts such an effect is not clear, the present inventors have performed heat treatment, for example, by a reaction in which the bond on the right side of the formula (102) is represented by the following formula (103) or formula (104). It is speculated that this may be due to the formation of a ring structure in the molecular chain.
Figure JPOXMLDOC01-appb-C000067
(式中、
41、R42、Y、Zは上記式(102)で定義した基である。)
Figure JPOXMLDOC01-appb-C000067
(Where
R 41 , R 42 , Y, and Z are groups defined by the above formula (102). )
 本実施形態の樹脂の好ましい態様の1つは、下記式(6)~(8)で表される2価の基からなる群から選ばれる少なくとも1種の構成単位を2以上有する樹脂である。 One preferred aspect of the resin of the present embodiment is a resin having two or more structural units selected from the group consisting of divalent groups represented by the following formulas (6) to (8).
Figure JPOXMLDOC01-appb-C000068
(式中、
は有機基を表し、-NH-基であってもよい。)
Figure JPOXMLDOC01-appb-C000068
(Where
Y 1 represents an organic group and may be an —NH— group. )
 Yは、好ましくは、炭素数1~12の脂肪族基、又は炭素数6~12の芳香族基である。炭素数1~12の脂肪族基としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン等の炭化水素化合物から誘導される2価の基、シクロヘキサン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン、ブチルシクロヘキサン、ジメチルシクロヘキサン等の環状炭化水素基を有する化合物から誘導される2価の基、及び、ベンゼン、メチルベンゼン、エチルベンゼン、ブチルベンゼン、ヘキシルベンゼン等の芳香族炭化水素化合物から誘導される2価の基が挙げられる。 Y 1 is preferably an aliphatic group having 1 to 12 carbon atoms or an aromatic group having 6 to 12 carbon atoms. Examples of the aliphatic group having 1 to 12 carbon atoms include divalent groups derived from hydrocarbon compounds such as methane, ethane, propane, butane, pentane, hexane, octane, decane, cyclohexane, cyclooctane, cyclodecane, and methylcyclohexane. Derived from a compound having a cyclic hydrocarbon group such as ethylcyclohexane, butylcyclohexane and dimethylcyclohexane, and an aromatic hydrocarbon compound such as benzene, methylbenzene, ethylbenzene, butylbenzene and hexylbenzene And a divalent group.
 いくつかの態様に係る樹脂は、上記式(6)~(8)で表される基からなる群から選ばれる少なくとも1種の基を、主鎖骨格中に有する。例えば、樹脂が、下記式(105)~(108)で表される構成単位を有している。 The resin according to some embodiments has at least one group selected from the group consisting of groups represented by the above formulas (6) to (8) in the main chain skeleton. For example, the resin has structural units represented by the following formulas (105) to (108).
Figure JPOXMLDOC01-appb-C000069
(式中、
43は有機基を表し、
複数あるR43は同じであっても異なっていてもよく、
Jは上記式(6)、(7)又は(8)で表される2価の基を表し、同一分子中の複数のR43及びJは同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000069
(Where
R 43 represents an organic group,
A plurality of R 43 may be the same or different,
J represents a divalent group represented by the above formula (6), (7) or (8), and a plurality of R 43 and J in the same molecule may be the same or different. )
 上記R43は、好ましくは、炭素数2~25の脂肪族基、炭素数7~25の芳香族化合物で置換された脂肪族基又は炭素数8~25の芳香族基である。R43の具体例としては、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルエタン、エチルベンゼン、ジエチルベンゼン、ジフェニルエタン、テトラメチルジフェニルエタン、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ドデカノール、オクタデカノール、シクロヘキサノール、シクロオクタノール、ジメチルシクロヘキサノール、ジエチルシクロヘキサノール、トリメチルシクロヘキサノール、トリメチルエチルシクロヘキサノール、ジシクロヘキシルエタノール等から3個の水素原子を除いた残基が挙げられる。 R 43 is preferably an aliphatic group having 2 to 25 carbon atoms, an aliphatic group substituted with an aromatic compound having 7 to 25 carbon atoms, or an aromatic group having 8 to 25 carbon atoms. Specific examples of R 43 include ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylethane, ethylbenzene, diethylbenzene. , Diphenylethane, tetramethyldiphenylethane, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, octadecanol, cyclohexanol, cyclooctanol, dimethylcyclohexanol, diethylcyclohexanol, trimethylcyclohexanol, trimethylethyl Cyclohexanol, dicyclohexyl ethanol And a residue obtained by removing three hydrogen atoms from ru and the like.
 本実施形態の樹脂組成物は、更に好ましくは、下記式(109)で表される樹脂を含有する。 More preferably, the resin composition of the present embodiment contains a resin represented by the following formula (109).
Figure JPOXMLDOC01-appb-C000070
(式中、
~Kは各々独立に、
上記式(6)~(8)からなる群から選ばれる少なくとも1種の基を表し、
~Lは各々独立に、式(6)~(8)からなる群から選ばれる基を含んでも含まなくてもよい有機基を表し、cは1以上の整数を表し、
及びMは各々独立に、イソチオシアネート基を含んでも含まなくてもよい有機基を表し、
は1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000070
(Where
K 1 to K c are each independently
Represents at least one group selected from the group consisting of the above formulas (6) to (8);
L 1 to L c each independently represents an organic group that may or may not contain a group selected from the group consisting of formulas (6) to (8), c represents an integer of 1 or more,
M 1 and M 2 each independently represents an organic group that may or may not contain an isothiocyanate group;
w c represents an integer of 1 or more. )
 上記式(109)において、wはK-Lの繰り返し単位の数を表す。例えば、K-L及びK-Lの2種の繰り返し単位からなる樹脂の場合、上記式(109)は、下記式(110)で表される。 In the above formula (109), w c represents the number of repeating units of K c -L c . For example, in the case of a resin composed of two kinds of repeating units of K 1 -L 1 and K 2 -L 2 , the above formula (109) is represented by the following formula (110).
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 上記式(6)~(8)で表される基からなる群から選ばれる少なくとも1種の構成単位を2以上有する樹脂を含有する樹脂組成物の製造方法は特に限定されないが、例えば、ヒドラジド基、セミカルバジド基又はチオセミカルバジド基を有する化合物とイソチオシアネートとの反応によって製造することができる。 A method for producing a resin composition containing a resin having at least one structural unit selected from the group consisting of the groups represented by the above formulas (6) to (8) is not particularly limited. For example, a hydrazide group And a compound having a semicarbazide group or thiosemicarbazide group and an isothiocyanate can be produced.
 ヒドラジド基、セミカルバジド基又はチオセミカルバジド基を有する化合物とイソチオシアネートとの反応は、溶媒存在下でも溶媒非存在下でも実施することができる。溶媒存在下で行う場合に用いる溶媒は、上記[水酸基を有する化合物との反応]で挙げた溶媒の他、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル類も使用することができる。 The reaction between a compound having a hydrazide group, a semicarbazide group or a thiosemicarbazide group and an isothiocyanate can be carried out in the presence or absence of a solvent. Solvents used in the presence of a solvent include, in addition to the solvents mentioned in [Reaction with a compound having a hydroxyl group], alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol; methyl acetate, ethyl acetate, Esters such as propyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, methyl lactate, ethyl lactate, and butyl lactate can also be used.
 反応温度は特に限定されないが、0℃~300℃の範囲で行うことができる。反応時間は任意の反応時間を設定でき、例えば、赤外分光計でイソチオシアネート基の残存量を追跡し、所望の残存量になったところで反応を停止してもよい。 The reaction temperature is not particularly limited, but it can be carried out in the range of 0 ° C to 300 ° C. Any reaction time can be set as the reaction time. For example, the remaining amount of the isothiocyanate group may be traced with an infrared spectrometer, and the reaction may be stopped when the desired remaining amount is reached.
 反応は触媒の存在下、非存在下のどちらで行ってもよい。触媒を使用する場合、上記[水酸基を有する化合物との反応]で挙げた触媒を使用することができる。 The reaction may be performed in the presence or absence of a catalyst. When a catalyst is used, the catalyst mentioned in the above [Reaction with a compound having a hydroxyl group] can be used.
 反応を実施する際に使用する反応装置は、特に制限がなく、公知の反応器が使用できる。反応装置として、例えば、撹拌槽、加圧式撹拌槽、減圧式撹拌槽、塔型反応器、蒸留塔、充填塔、薄膜蒸留器等の従来公知の反応器を適宜組み合わせて使用できる。反応器の材質にも特に制限はなく、公知の材質が使用できる。反応器の材質として、例えば、ガラス製、ステンレス製、炭素鋼製、ハステロイ製や、基材にグラスライニングを施したものや、テフロン(登録商標)コーティングを行ったものも使用できる。SUS304、SUS316、SUS316L等が安価であり、好ましく使用できる。必要に応じて、流量計、温度計等の計装機器、リボイラー、ポンプ、コンデンサー等の公知のプロセス装置を付加してよく、加熱はスチーム、ヒーター等の公知の方法で行えばよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。必要に応じて工程を付加することもできる。 The reaction apparatus used for carrying out the reaction is not particularly limited, and a known reactor can be used. As the reaction apparatus, for example, conventionally known reactors such as a stirring tank, a pressurized stirring tank, a reduced pressure stirring tank, a tower reactor, a distillation tower, a packed tower, and a thin film distillation apparatus can be used in appropriate combination. The material of the reactor is not particularly limited, and a known material can be used. As the material of the reactor, for example, glass, stainless steel, carbon steel, Hastelloy, glass lining of the base material, or Teflon (registered trademark) coating can be used. SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, a known process device such as an instrument such as a flow meter or a thermometer, a reboiler, a pump, or a condenser may be added, and heating may be performed by a known method such as steam or a heater, and cooling may also be performed. Known methods such as natural cooling, cooling water, and brine can be used. A process can also be added as needed.
 このような方法によって、上記式(6)~(8)で表される基からなる群から選ばれる少なくとも1種の構成単位を含む樹脂を含有する改質された樹脂組成物を製造することもできるが、反応条件によっては、目的とする樹脂が得られない場合もある。そのような場合は、次に示す加熱処理を更に実施することによって、目的とする樹脂を製造することもできる。 By such a method, a modified resin composition containing a resin containing at least one structural unit selected from the group consisting of the groups represented by the above formulas (6) to (8) can also be produced. However, depending on the reaction conditions, the target resin may not be obtained. In such a case, the target resin can be produced by further performing the following heat treatment.
 加熱処理は、好ましくは、100℃~300℃の範囲、より好ましくは150℃~250℃の範囲で行われる。加熱処理は、大気下でも、不活性ガス雰囲気下でも行うことができるが、好ましくは不活性ガス雰囲気下で実施される。ここでいう不活性ガスとは、窒素、ヘリウム、アルゴン、ネオン等の気体を指す。また、圧力は加圧でも減圧でも大気圧でもよい。加熱処理を行う時間は特に限定されず、1分~500時間の範囲で行うことができ、例えば、赤外分光計を使用して上記式(6)~(8)で表される基の生成量を追跡し、所望量になったところで加熱を停止してもよい。 The heat treatment is preferably performed in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C. The heat treatment can be performed in the air or in an inert gas atmosphere, but is preferably performed in an inert gas atmosphere. The inert gas here refers to a gas such as nitrogen, helium, argon, or neon. The pressure may be increased, reduced, or atmospheric. The time for performing the heat treatment is not particularly limited and can be in the range of 1 minute to 500 hours. For example, the generation of the groups represented by the above formulas (6) to (8) using an infrared spectrometer The amount may be tracked and heating may be stopped when the desired amount is reached.
 上述した製造方法では、種々の反応ルートによって上記式(6)~(8)で表される基が生成していると考えられるが、例えば、下記式(111)による反応、次いで、下記式(111)における右辺の化合物が下記式(112)又は式(113)によって環構造を形成する反応が生じていると推測される。 In the production method described above, it is considered that the groups represented by the above formulas (6) to (8) are generated by various reaction routes. For example, the reaction represented by the following formula (111), followed by the following formula ( It is estimated that the reaction on the right side compound in (111) forms a ring structure by the following formula (112) or formula (113).
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
(式中、
41及びR42は上記式(100)で定義した基であり、
Yは-NH-基又は有機基を表し、
Zは酸素原子又は硫黄原子を表す。)
Figure JPOXMLDOC01-appb-C000073
(Where
R 41 and R 42 are groups defined by the above formula (100),
Y represents an —NH— group or an organic group,
Z represents an oxygen atom or a sulfur atom. )
 本実施の形態の改質された樹脂組成物は、単独で用いてもよいし、他の樹脂と混合することも好ましい。混合する他の樹脂は、どのような樹脂であってもよく公知の種々の樹脂が使用できる。 The modified resin composition of the present embodiment may be used alone or mixed with other resins. The other resin to be mixed may be any resin, and various known resins can be used.
 本実施の形態の改質された樹脂組成物は、公知の種々の用途に使用できるが、中でも、金属、ガラス及びプラスチックからなる群から選ばれる少なくとも1種の材質表面で形成させる、塗膜材としての用途は好適である。また、本実施の形態の樹脂組成物は、水に対して安定な官能基の反応により形成されることから、水系塗料への使用も好ましい。 The modified resin composition of the present embodiment can be used for various known applications, among which a coating material is formed on the surface of at least one material selected from the group consisting of metal, glass and plastic. The use as is suitable. Moreover, since the resin composition of this Embodiment is formed by reaction of a functional group stable with respect to water, the use to a water-system coating material is also preferable.
 本実施の形態の改質された樹脂組成物は、分子鎖中に硫黄原子を含有することで、金属表面への密着性改善効果が大きい。したがって、樹脂組成物は、防錆鋼板を含むプレコートメタル、自動車塗装等に、美粧性、耐候性、耐酸性、防錆性、耐チッピング性、密着性等を付与するために好適に用いられ得る。 The modified resin composition of the present embodiment has a large effect of improving the adhesion to the metal surface by containing sulfur atoms in the molecular chain. Therefore, the resin composition can be suitably used for imparting cosmetic properties, weather resistance, acid resistance, rust resistance, chipping resistance, adhesion, and the like to pre-coated metal including an anti-rust steel plate, automobile coating, and the like. .
≪オキサゾリジンチオン≫
<好ましい構造>
 本実施の形態で好ましい第2の樹脂は、下記式(10)で表される分子鎖を含む樹脂である。
≪Oxazolidinethione≫
<Preferred structure>
A preferred second resin in the present embodiment is a resin containing a molecular chain represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000074
(式中、
は脂肪族基及び/又は芳香族基を表し、Qは下記式(11)、(12)、(13)又は(14)で表される2価の基からなる群より選択される1種以上の構成単位を表し、複数あるP及びQは同一でも異なってもよく、nは2以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000074
(Where
P 1 represents an aliphatic group and / or an aromatic group, and Q 1 is selected from the group consisting of divalent groups represented by the following formula (11), (12), (13) or (14). 1 or more types of structural units are represented, Plural P 1 and Q 1 may be the same or different, and n represents an integer of 2 or more. )
Figure JPOXMLDOC01-appb-C000075
 式中、Rは、脂肪族基又は芳香族基を表し、X及びYは各々独立に酸素原子又は硫黄原子を表し、同一分子中の複数のR、X及びYはそれぞれ同一でも異なってもよい。一つのQ中のX及びYのうち1つ以上が硫黄原子である。言い換えると、一つのQ1は、1つ以上の硫黄原子を含む。
Figure JPOXMLDOC01-appb-C000075
In the formula, R 1 represents an aliphatic group or an aromatic group, X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom, and a plurality of R 1 , X 2 and Y 2 in the same molecule are each It may be the same or different. One or more of X 2 and Y 2 in one Q 1 is a sulfur atom. In other words, one Q1 contains one or more sulfur atoms.
 該樹脂を構成する上記式(11)~(14)で表される構造は、驚くべきことに、密着性、殊に金属表面への密着性に優れる。このような効果を奏する機構については明らかではないが、本発明者らは、該結合に含まれる硫黄原子又は酸素原子が密着性を高める効果を奏するのではないかと推測している。 The structure represented by the above formulas (11) to (14) constituting the resin is surprisingly excellent in adhesion, particularly adhesion to a metal surface. Although it is not clear about the mechanism that exerts such an effect, the present inventors presume that the sulfur atom or oxygen atom contained in the bond may have an effect of improving adhesion.
 このように、本実施の形態の樹脂は、その分子中に含まれる結合様式に特徴があり、該結合以外の骨格構造は特に限定されないが、より好ましい形態は以下の通りである。 As described above, the resin of the present embodiment is characterized by the bonding mode contained in the molecule, and the skeletal structure other than the bonding is not particularly limited, but more preferable forms are as follows.
 樹脂の数平均分子量は、好ましくは500以上、より好ましくは1000以上、更に好ましくは5000以上である。一般的には高分子量の方が、耐熱性が良好となる傾向にあるが、一方で、あまりに高分子量である場合には、塗膜を形成する際の取り扱い性(他の成分との混和性、流動性、展性等)の面で不利となる場合があることから、数平均分子量は好ましくは100万以下、より好ましくは50万以下、更に好ましくは20万以下である。ここでいう数平均分子量は、排除限界分子量1000万以上のカラムを少なくとも1つ具備するゲルパーミエーションクロマトグラフィーを使用して測定し、ポリスチレン等の標準物質を用いて保持時間を分子量に換算することで計算した値である。当業者であれば容易に数平均分子量を求めることができる。溶媒に由来するピークは除いて計算する。 The number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components) The number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less. The number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
 耐熱性の発現に寄与する結合の含有量は、上記した数平均分子量Mnとも相関する。1分子あたりに含まれる窒素-炭素-硫黄結合を構成する硫黄原子及び窒素-炭素-酸素結合を構成する酸素原子の数nで樹脂の数平均分子量を除した値(Mn/n)が、好ましくは300以下、より好ましくは200以下、更に好ましくは150以下である。本実施の形態の樹脂組成物は、上記したように金属との密着性の面においても効果を奏するが、そのような効果を発現する観点からも、樹脂が1分子あたりに多くの上記結合を有していることが好ましい。一方で、樹脂があまりに多くの上記結合を有している場合、特に、樹脂が上記式(6)~(8)、(11)~(14)、(41)、(42)、(45)、(46)又は(47)で表される構成単位を有する場合、塗膜性能の一つである柔軟性が損なわれる場合もある。そのような観点から、(Mn/nは好ましくは50以上、より好ましくは70以上である。nは、例えば、樹脂単位重量(1g)あたりの当該結合の数X(単位mol/g)を、例えば赤外線吸収スペクトルやH-NMR等によって求め、上記した数平均分子量(Mn)から、式:n=Mn・Xによって算出することができる。樹脂が窒素-炭素-硫黄結合及び窒素-炭素-酸素結合の両方を含む場合、nはそれぞれの結合を構成する硫黄原子及び酸素原子の合計数である。 The content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above. The value (Mn / n 1 ) obtained by dividing the number average molecular weight of the resin by the number n 1 of sulfur atoms constituting the nitrogen-carbon-sulfur bond and oxygen atoms constituting the nitrogen-carbon-oxygen bond contained per molecule is , Preferably 300 or less, more preferably 200 or less, still more preferably 150 or less. The resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have. On the other hand, when the resin has too many of the above bonds, in particular, the resin has the above formulas (6) to (8), (11) to (14), (41), (42), (45) , (46) or (47), the flexibility, which is one of the coating film performances, may be impaired. From such a viewpoint, (Mn / n 1 is preferably 50 or more, more preferably 70 or more. For example, n 1 is the number of bonds per unit weight (1 g) of the resin X 1 (unit mol / g). ) Can be calculated by, for example, infrared absorption spectrum, 1 H-NMR, etc., and can be calculated from the number average molecular weight (Mn) by the formula: n 1 = Mn · X 1. The resin is a nitrogen-carbon-sulfur bond. And n 1 is the total number of sulfur atoms and oxygen atoms constituting each bond.
 上記式(11)~(14)におけるRは、脂肪族基又は芳香族基である。炭化水素基は脂肪族基、芳香族基のうち少なくとも1種以上有し、炭素原子の他に酸素原子、窒素原子等があっても構わない。脂肪族基は、炭素数1~22の脂肪族基が好ましく、炭素数1~18の脂肪族基がより好ましい。芳香族基は炭素数6~22の芳香族基が好ましく、炭素数6~15の芳香族基がより好ましい。炭素数1~5の脂肪族基と炭素数6~15の芳香族基が結合した炭素数7~20の基も好ましい。 R 1 in the above formulas (11) to (14) is an aliphatic group or an aromatic group. The hydrocarbon group has at least one of an aliphatic group and an aromatic group, and may contain an oxygen atom, a nitrogen atom or the like in addition to the carbon atom. The aliphatic group is preferably an aliphatic group having 1 to 22 carbon atoms, and more preferably an aliphatic group having 1 to 18 carbon atoms. The aromatic group is preferably an aromatic group having 6 to 22 carbon atoms, more preferably an aromatic group having 6 to 15 carbon atoms. A group having 7 to 20 carbon atoms in which an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms are bonded is also preferable.
 Rの具体例は、メチレン、ジメチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、オクタメチレン等の直鎖炭化水素基;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ビス(シクロヘキシル)アルカン等の無置換の脂環式炭化水素由来の基;メチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン(各異性体)、エチルシクロヘキサン(各異性体)、プロピルシクロヘキサン(各異性体)、ブチルシクロヘキサン(各異性体)、ペンチルシクロヘキサン(各異性体)、ヘキシルシクロヘキサン(各異性体)等のアルキル置換シクロヘキサン由来の基;ジメチルシクロヘキサン(各異性体)、ジエチルシクロヘキサン(各異性体)、ジブチルシクロヘキサン(各異性体)等のジアルキル置換シクロヘキサン由来の基;1,5,5-トリメチルシクロヘキサン、1,5,5-トリエチルシクロヘキサン、1,5,5-トリプロピルシクロヘキサン(各異性体)、1,5,5-トリブチルシクロヘキサン(各異性体)等のトリアルキル置換シクロヘキサン由来の基;トルエン、エチルベンゼン、プロピルベンゼン等のモノアルキル置換ベンゼン;キシレン、ジエチルベンゼン、ジプロピルベンゼン等のジアルキル置換ベンゼン;ジフェニルアルカン、ベンゼン等の芳香族炭化水素由来の基等が挙げられる。 Specific examples of R 1 are linear hydrocarbon groups such as methylene, dimethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, octamethylene; cyclopentane, cyclohexane, cycloheptane, cyclooctane, bis (cyclohexyl) alkane, etc. Groups derived from unsubstituted alicyclic hydrocarbons; methylcyclopentane, ethylcyclopentane, methylcyclohexane (each isomer), ethylcyclohexane (each isomer), propylcyclohexane (each isomer), butylcyclohexane (each isomer) ), Groups derived from alkyl-substituted cyclohexane such as pentylcyclohexane (each isomer), hexylcyclohexane (each isomer); dimethylcyclohexane (each isomer), diethylcyclohexane (each isomer), dibutylcyclohexane (each isomer), etc. of Groups derived from dialkyl-substituted cyclohexane; 1,5,5-trimethylcyclohexane, 1,5,5-triethylcyclohexane, 1,5,5-tripropylcyclohexane (each isomer), 1,5,5-tributylcyclohexane (each Isomers) derived from trialkyl-substituted cyclohexanes; monoalkyl-substituted benzenes such as toluene, ethylbenzene, and propylbenzene; dialkyl-substituted benzenes such as xylene, diethylbenzene, and dipropylbenzene; derived from aromatic hydrocarbons such as diphenylalkane and benzene And the like.
 これらの中でも、ヘキサン、ベンゼン、ジフェニルメタン、トルエン、シクロヘキサン、キシレン、メチルシクロヘキサン、イソホロン又はジシクロヘキシルメタン由来の基が好ましい。「由来の基」とは、その化合物から2個の水素原子を除いた構造の基を示す。 Among these, groups derived from hexane, benzene, diphenylmethane, toluene, cyclohexane, xylene, methylcyclohexane, isophorone or dicyclohexylmethane are preferable. The “derived group” refers to a group having a structure in which two hydrogen atoms are removed from the compound.
 あるいは、Rは、好ましくは、炭素数1~25の脂肪族基、炭素数6~25の芳香族基である。Rは、スピロ原子を含有しない基であることが好ましい。Rの具体例は、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン、シクロヘキサン、シクロオクタン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、トリメチルエチルシクロヘキサン、ジシクロヘキシルメタン、テトラメチルジシクロヘキシルメタン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ジフェニルメタン、テトラメチルジフェニルメタン等から2個の水素原子を除いた残基である。異性体が存在する場合は該異性体も含まれる。 Alternatively, R 1 is preferably an aliphatic group having 1 to 25 carbon atoms or an aromatic group having 6 to 25 carbon atoms. R 1 is preferably a group not containing a spiro atom. Specific examples of R 1 are methane, ethane, propane, butane, pentane, hexane, octane, decane, dodecane, octadecane, cyclohexane, cyclooctane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, trimethylethylcyclohexane, dicyclohexylmethane, tetramethyl. A residue obtained by removing two hydrogen atoms from dicyclohexylmethane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, diphenylmethane, tetramethyldiphenylmethane and the like. When an isomer exists, the isomer is also included.
 これらの中でも、Rは下記式(301)~(306)で表される2価の基であることが好ましい。 Among these, R 1 is preferably a divalent group represented by the following formulas (301) to (306).
Figure JPOXMLDOC01-appb-C000076
(式中、
iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000076
(Where
i represents an integer of 1 to 12, and may be 1 to 10. )
 上記式(10)において、Pは脂肪族基及び/又は芳香族基である。Pは、炭素原子の他に酸素原子、窒素原子等を有していても構わない。 In the above formula (10), P 1 is an aliphatic group and / or an aromatic group. P 1 may have an oxygen atom, a nitrogen atom or the like in addition to the carbon atom.
 上記式(10)におけるPは、より好ましくはエーテル結合又はエステル結合を含み、更に好ましくは下記式(114)で表される基である。 P 1 in the above formula (10) more preferably includes an ether bond or an ester bond, and more preferably a group represented by the following formula (114).
Figure JPOXMLDOC01-appb-C000077
(式中、
43は脂肪族基又は芳香族基を表し、
は1~3の整数を表す。同一分子中の複数のR43及びbは、それぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000077
(Where
R 43 represents an aliphatic group or an aromatic group,
b 2 represents an integer of 1 to 3. A plurality of R 43 and b 2 in the same molecule may be the same or different. )
 上記式(114)において、R43は脂肪族基又は芳香族基である。R43は、炭素原子の他に酸素原子、窒素原子等を有していても構わない。脂肪族基は環式でも非環式でも構わない。脂肪族基は、炭素数1~22の脂肪族基が好ましく、炭素数1~18の脂肪族基がより好ましい。芳香族基は炭素数6~22の芳香族基が好ましく、炭素数6~15の芳香族基がより好ましい。炭素数1~5の脂肪族基とこれに結合した炭素数6~15の芳香族基とを有する炭素数7~20の基も好ましい。 In the above formula (114), R 43 represents an aliphatic group or an aromatic group. R 43 may have an oxygen atom, a nitrogen atom or the like in addition to the carbon atom. The aliphatic group may be cyclic or acyclic. The aliphatic group is preferably an aliphatic group having 1 to 22 carbon atoms, and more preferably an aliphatic group having 1 to 18 carbon atoms. The aromatic group is preferably an aromatic group having 6 to 22 carbon atoms, more preferably an aromatic group having 6 to 15 carbon atoms. A group having 7 to 20 carbon atoms having an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms bonded thereto is also preferable.
 上記式(114)におけるR43の好ましい具体的な構造として、下記式(115)で表される基が挙げられる。 A preferred specific structure of R 43 in the above formula (114) includes a group represented by the following formula (115).
Figure JPOXMLDOC01-appb-C000078
(式中、
44は、水素原子、塩素原子、臭素原子、フッ素原子及びメチル基からなる群より選択される1以上の基を表し、
45は、下記式(116)、(117)、(118)又は(119)で表される基からなる群より選択される基を表し、
複数あるR44は同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000078
(Where
R 44 represents one or more groups selected from the group consisting of a hydrogen atom, a chlorine atom, a bromine atom, a fluorine atom and a methyl group,
R 45 represents a group selected from the group consisting of groups represented by the following formula (116), (117), (118) or (119),
A plurality of R 44 may be the same or different. )
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 上記式(10)におけるPは、より具体的には、下記式(201)~(204)で表される基であることが好ましい。 More specifically, P 1 in the above formula (10) is preferably a group represented by the following formulas (201) to (204).
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 上記式(11)~(14)において、X及びYは、各々独立に、酸素原子又は硫黄原子を表し、一単位中のXとYとは同時に酸素原子ではない。即ち、一単位中のXとYとのうち少なくとも一方は硫黄原子である。硫黄原子が含まれることにより被着体への密着性、特に、金属表面への密着性が向上する。 In the above formulas (11) to (14), X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom, and X 2 and Y 2 in one unit are not oxygen atoms at the same time. That is, at least one of X 2 and Y 2 in one unit is a sulfur atom. By containing a sulfur atom, the adhesion to the adherend, particularly the adhesion to the metal surface is improved.
 上記式(10)で表される構造は末端の構造を表していないが、本発明の趣旨は、一つの側面において、エポキシ樹脂及び変性エポキシ樹脂等における密着性の改良であり、上記したように、本発明の化合物中に(本発明の化合物を構成する原子として)硫黄原子及び/又は酸素原子を含むことが重要な点であり、末端の構造の違いによる影響は必ずしも大きくないと考えられる。また、後述するように、上記式(10)で表される化合物は、末端エポキシ基を有する化合物と末端イソチオシアネート基(-NCS)を有する化合物、末端エピスルフィド基を有する化合物と末端イソシアネート基(-NCO)、又は末端エピスルフィド基を有する化合物と末端イソチオシアネート基を有する化合物組み合わせにより製造することができる。上記式(10)の化合物を得るために使用する化合物によって、末端の構造は、エポキシ基、エピスルフィド基、イソシアネート基、又はイソチオシアネート基とすることができる。また、<製造方法>で述べるように、イソシアネート基が3量体化したイソシアヌレート基(イソチオシアヌレート基の場合はイソチオシアヌレート基)が本実施形態に係る化合物に含まれる場合もある。エポキシ樹脂(後述)中のアルコール性水酸基とイソチオシアネート基との反応に由来するN-置換-O-置換チオカルバミン酸エステル基、エピスルフィド樹脂(後述)中のチオール基とイソシアネート基との反応に由来するN-置換-S-置換チオカルバミン酸エステル基、エピスルフィド樹脂中のチオール基とイソチオシアネート基との反応に由来するジチオカルバミン酸エステル基が含まれる場合もある。 Although the structure represented by the above formula (10) does not represent a terminal structure, the gist of the present invention is, in one aspect, an improvement in adhesion in an epoxy resin and a modified epoxy resin, as described above. It is important that the compound of the present invention contains a sulfur atom and / or an oxygen atom (as an atom constituting the compound of the present invention), and the influence due to the difference in terminal structure is not necessarily large. As described later, the compound represented by the formula (10) includes a compound having a terminal epoxy group, a compound having a terminal isothiocyanate group (—NCS), a compound having a terminal episulfide group, and a terminal isocyanate group (— NCO), or a combination of a compound having a terminal episulfide group and a compound having a terminal isothiocyanate group. Depending on the compound used to obtain the compound of formula (10), the terminal structure can be an epoxy group, episulfide group, isocyanate group, or isothiocyanate group. In addition, as described in <Production Method>, an isocyanurate group in which an isocyanate group is trimerized (or an isothiocyanurate group in the case of an isothiocyanurate group) may be included in the compound according to this embodiment. N-substituted-O-substituted thiocarbamate group derived from reaction of alcoholic hydroxyl group and isothiocyanate group in epoxy resin (described later), derived from reaction of thiol group and isocyanate group in episulfide resin (described later) N-substituted-S-substituted thiocarbamate groups, and dithiocarbamate groups derived from the reaction of thiol groups and isothiocyanate groups in episulfide resins may be included.
<製造方法>
 本実施形態に係る化合物(樹脂)は、例えば、末端エポキシ基を有する化合物と末端イソチオシアネート基(-NCS)を有する化合物、末端エピスルフィド基を有する化合物と末端イソシアネート基(-NCO)を有する化合物、又は末端エピスルフィド基を有する化合物と末端イソチオシアネート基を有する化合物の組み合わせにより製造することができる。
<Manufacturing method>
The compound (resin) according to this embodiment includes, for example, a compound having a terminal epoxy group and a compound having a terminal isothiocyanate group (—NCS), a compound having a terminal episulfide group, and a compound having a terminal isocyanate group (—NCO), Alternatively, it can be produced by a combination of a compound having a terminal episulfide group and a compound having a terminal isothiocyanate group.
 本実施形態に係る化合物(樹脂)は、下記式(31)で表される化合物(末端イソシアネート基を有する化合物、末端イソチオシアネート基を有する化合物)と、下記式(20)で表される化合物(末端エポキシ基を有する化合物、末端エピスルフィド基を有する化合物)の反応によって得ることが好ましい。 The compound (resin) according to this embodiment includes a compound represented by the following formula (31) (a compound having a terminal isocyanate group, a compound having a terminal isothiocyanate group) and a compound represented by the following formula (20) ( A compound having a terminal epoxy group or a compound having a terminal episulfide group) is preferably used.
Figure JPOXMLDOC01-appb-C000081
(式中、
は脂肪族基又は芳香族基を表し、
は脂肪族基又は芳香族基を表し、X及びYは各々独立に酸素原子又は硫黄原子を表す。)
 式(31)で表される化合物と、式(20)で表される化合物との組み合わせは、Xが硫黄原子である式(31)の化合物及び/又はYが硫黄原子である式(20)の化合物が1種以上含まれるように選択される。
Figure JPOXMLDOC01-appb-C000081
(Where
R 2 represents an aliphatic group or an aromatic group,
R 1 represents an aliphatic group or an aromatic group, and X and Y 2 each independently represent an oxygen atom or a sulfur atom. )
The combination of the compound represented by Formula (31) and the compound represented by Formula (20) is a compound of Formula (31) in which X is a sulfur atom and / or Formula (20) in which Y 2 is a sulfur atom. ) Is selected so as to include one or more compounds.
 式(31)で表される化合物、式(20)で表される化合物をそれぞれ複数種組み合わせて反応を行う場合、複数あるR及びRは同一でも異なってもよい。 When the compound represented by the formula (31) and the compound represented by the formula (20) are used in combination to carry out the reaction, a plurality of R 1 and R 2 may be the same or different.
 上記式(20)で表される化合物のうち、末端エポキシ基を有する化合物(エポキシ樹脂とも表記する)は、好ましくは下記式(120)で表される化合物である。 Among the compounds represented by the above formula (20), the compound having a terminal epoxy group (also referred to as an epoxy resin) is preferably a compound represented by the following formula (120).
Figure JPOXMLDOC01-appb-C000082
(式中、
は脂肪族基又は芳香族基を表す。)
Figure JPOXMLDOC01-appb-C000082
(Where
R 2 represents an aliphatic group or an aromatic group. )
 式(120)で表される化合物の具体例として、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂、ビフェノール、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をグリシジル化したエポキシ樹脂、1,1,1-トリス(4-ヒドロキシフェニル)メタン、4,4-(1-(4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をグリシジル化したエポキシ樹脂、1,1,2,2,-テトラキス(4-ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化したエポキシ樹脂、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のノボラック類をグリシジル化したノボラック型エポキシ樹脂等のグリシジルエーテル類、ヘキサヒドロフタル酸やダイマー酸のジグリシジルエステル等のグリシジルエステル類、が挙げられる。これらの末端エポキシ基を有する化合物は単独で使用しても複数種を併用してもよい。 Specific examples of the compound represented by the formula (120) include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A. Bisphenol type epoxy resin obtained by glycidylation of bisphenols such as tetrachlorobisphenol A and tetrafluorobisphenol A, and other dihydric phenols such as biphenol, dihydroxynaphthalene and 9,9-bis (4-hydroxyphenyl) fluorene Epoxy resin, 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1- (4- (1- (4-hydroxyphenyl) -1-methylethyl) ) Epoxy resin obtained by glycidylation of trisphenols such as phenyl) ethylidene) bisphenol, epoxy resin obtained by glycidylation of tetrakisphenols such as 1,1,2,2, -tetrakis (4-hydroxyphenyl) ethane, phenol novolac, Glycidyl ethers such as novolak-type epoxy resins obtained by glycidylation of novolaks such as cresol novolak, bisphenol A novolak, brominated phenol novolak, brominated bisphenol A novolak, glycidyl esters such as diglycidyl esters of hexahydrophthalic acid and dimer acid And the like. These compounds having a terminal epoxy group may be used alone or in combination.
 上記式(20)で表される化合物のうち、末端エピスルフィド基を有する化合物(エピスルフィド樹脂とも表記する)は、好ましくは下記式(121)で表される化合物である。 Among the compounds represented by the above formula (20), the compound having a terminal episulfide group (also referred to as episulfide resin) is preferably a compound represented by the following formula (121).
Figure JPOXMLDOC01-appb-C000083
(式中、
は脂肪族基又は芳香族基を表す。)
Figure JPOXMLDOC01-appb-C000083
(Where
R 2 represents an aliphatic group or an aromatic group. )
 式(121)で表される化合物の具体例として、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をチオグリシジル化したビスフェノール型エピスルフィド樹脂、ビフェノール、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をチオグリシジル化したエピスルフィド樹脂、1,1,1-トリス(4-ヒドロキシフェニル)メタン、4,4-(1-(4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をチオグリシジル化したエピスルフィド樹脂、1,1,2,2,-テトラキス(4-ヒドロキシフェニル)エタン等のテトラキスフェノール類をチオグリシジル化したエピスルフィド樹脂、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のノボラック類をチオグリシジル化したノボラック型エピスルフィド樹脂等のチオグリシジルエーテル類、ヘキサヒドロフタル酸やダイマー酸のジチオグリシジルエステル等のチオグリシジルエステル類、が挙げられる。これらの末端エピスルフィド基を有する化合物は単独で使用しても複数種を併用してもよい。 Specific examples of the compound represented by the formula (121) include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A. Bisphenol type episulfide resin obtained by thioglycidylation of bisphenols such as tetrachlorobisphenol A and tetrafluorobisphenol A, and other dihydric phenols such as biphenol, dihydroxynaphthalene and 9,9-bis (4-hydroxyphenyl) fluorene Thioglycidylated episulfide resin, 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1- (4- (1- (4-hydroxyphenyl) ) -1-Methylethyl) phenyl) ethylidene) episulfide resins obtained by thioglycidylation of trisphenols such as bisphenol, tetrakisphenols such as 1,1,2,2, -tetrakis (4-hydroxyphenyl) ethane and thioglycidyl Thioglycidyl ethers such as novolak-type episulfide resins obtained by thioglycidylation of novolaks such as modified episulfide resins, phenol novolaks, cresol novolaks, bisphenol A novolaks, brominated phenol novolaks, brominated bisphenol A novolaks, And thioglycidyl esters such as dithioglycidyl ester of dimer acid. These compounds having a terminal episulfide group may be used alone or in combination of two or more.
 式(31)におけるRは、下記式(301)~(306)で表される炭化水素基からなる群より選択される炭化水素基であることが好ましい。 R 1 in the formula (31) is preferably a hydrocarbon group selected from the group consisting of hydrocarbon groups represented by the following formulas (301) to (306).
Figure JPOXMLDOC01-appb-C000084
(式中、
iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000084
(Where
i represents an integer of 1 to 12, and may be 1 to 10. )
 上記式(31)で表される化合物のうち、末端イソシアネート基を有する化合物(イソシアネート化合物)は、好ましくは、下記式(122)で表される化合物である。 Among the compounds represented by the above formula (31), the compound having a terminal isocyanate group (isocyanate compound) is preferably a compound represented by the following formula (122).
Figure JPOXMLDOC01-appb-C000085
(式中、
は脂肪族基又は芳香族基を表す。)
Figure JPOXMLDOC01-appb-C000085
(Where
R 1 represents an aliphatic group or an aromatic group. )
 式(122)で表される化合物の具体例としては、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチル-1,6-ジイソシアナトヘキサン、リジンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナートメチル)-シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トルエンジイソシアネート(各異性体)、ナフタレンジイソシアネート(各異性体)等を挙げることができる。更に好ましくは、式(122)で表される化合物は、炭素数4~20の脂肪族ジイソシアネート、炭素数8~20の脂環族ジイソシアネートである。これらの中でも、耐候性、耐熱黄変性、工業的入手の容易さから、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが好ましい。これらのイソシアネート化合物は単独で使用しても複数種を併用してもよい。 Specific examples of the compound represented by the formula (122) include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl-1,6-diisocyanatohexane, lysine diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) -cyclohexane, 4,4′-dicyclohexylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, toluene diisocyanate (each isomer), naphthalene diisocyanate (each isomer), etc. it can. More preferably, the compound represented by the formula (122) is an aliphatic diisocyanate having 4 to 20 carbon atoms or an alicyclic diisocyanate having 8 to 20 carbon atoms. Among these, hexamethylene diisocyanate and isophorone diisocyanate are preferable in terms of weather resistance, heat-resistant yellowing, and industrial availability. These isocyanate compounds may be used alone or in combination of two or more.
 上記式(31)で表される化合物のうち、末端イソチオシアネート基を有する化合物(イソチオシアネート化合物)は、好ましくは、下記式(123)で表される化合物である。 Among the compounds represented by the above formula (31), the compound having a terminal isothiocyanate group (isothiocyanate compound) is preferably a compound represented by the following formula (123).
Figure JPOXMLDOC01-appb-C000086
(式中、
は脂肪族基又は芳香族基を表す。)
Figure JPOXMLDOC01-appb-C000086
(Where
R 1 represents an aliphatic group or an aromatic group. )
 式(123)で表される化合物の具体例としては、テトラメチレンジイソチオシアネート、ペンタメチレンジイソチオシアネート、ヘキサメチレンジイソチオシアネート、2,2,4-トリメチル-1,6-ジイソチオシアナトヘキサン、リジンジイソチオシアネート、イソホロンジイソチオシアネート、1,3-ビス(イソチオシアナートメチル)-シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソチオシアネート、4,4’-ジフェニルメタンジイソチオシアネート、トルエンジイソチオシアネート(各異性体)、ナフタレンジイソチオシアネート(各異性体)等を挙げることができる。更に好ましくは、式(123)で表される化合物は、炭素数4~20の脂肪族ジイソシアネート、炭素数8~20の脂環族ジイソチオシアネートである。これらの末端イソチオシアネート基を有する化合物は単独で使用しても複数種を併用してもよい。 Specific examples of the compound represented by the formula (123) include tetramethylene diisothiocyanate, pentamethylene diisothiocyanate, hexamethylene diisothiocyanate, 2,2,4-trimethyl-1,6-diisothiocyanatohexane. Lysine diisothiocyanate, isophorone diisothiocyanate, 1,3-bis (isothiocyanatomethyl) -cyclohexane, 4,4'-dicyclohexylmethane diisothiocyanate, 4,4'-diphenylmethane diisothiocyanate, toluene diisothiocyanate (Each isomer), naphthalene diisothiocyanate (each isomer) and the like. More preferably, the compound represented by the formula (123) is an aliphatic diisocyanate having 4 to 20 carbon atoms or an alicyclic diisothiocyanate having 8 to 20 carbon atoms. These compounds having a terminal isothiocyanate group may be used alone or in combination.
 以下、エポキシ樹脂とイソチオシアネート化合物との反応を例に、本実施形態に係る化合物の製造方法について記載する。エポキシ樹脂の代わりにエピスルフィド樹脂を使用する場合も同様の方法であり、下記説明中の、エポキシ樹脂をエピスルフィド樹脂に、エポキシ基をエピスルフィド基に読み替えることができる。また、イソチオシアネート化合物の代わりにイソシアネート化合物を使用する場合についても同様であり、下記説明中のイソチオシアネート化合物とイソシアネート化合物に、イソチオシアネート基をイソシアネート基に読み替えることができる。 Hereinafter, the method for producing a compound according to this embodiment will be described by taking the reaction between an epoxy resin and an isothiocyanate compound as an example. The same method is used when an episulfide resin is used instead of an epoxy resin. In the following description, an epoxy resin can be read as an episulfide resin, and an epoxy group can be read as an episulfide group. The same applies to the case where an isocyanate compound is used instead of the isothiocyanate compound, and the isothiocyanate group can be read as an isocyanate group in the isothiocyanate compound and isocyanate compound in the following description.
 イソチオシアネート化合物の使用量は、そのイソチオシアネート基が、エポキシ基に対して、20~60当量%となる量で用いるのが好ましい。イソチオシアネート化合物の使用量は、より好ましくは25~50当量%、更に好ましくは30~47当量%、一層好ましくは30~45当量%である。イソシアネート化合物中のイソシアネート基は、エポキシ基と反応して環構造を形成する他に、エポキシ樹脂中のアルコール性水酸基とのチオウレタン結合の形成又はイソチオシアネート基の環化3量化によるイソチオシアヌレート環の形成に使用される。 The isothiocyanate compound is preferably used in such an amount that the isothiocyanate group is 20 to 60 equivalent% with respect to the epoxy group. The amount of the isothiocyanate compound used is more preferably 25 to 50 equivalent%, still more preferably 30 to 47 equivalent%, and still more preferably 30 to 45 equivalent%. The isocyanate group in the isocyanate compound reacts with an epoxy group to form a ring structure. In addition, an isothiocyanurate ring is formed by forming a thiourethane bond with an alcoholic hydroxyl group in an epoxy resin or by cyclization trimerization of an isothiocyanate group. Used to form.
 反応は、通常、触媒の存在下に行われる。触媒としては、例えば、ブトキシリチウム、メトキシナトリウム等の金属アルコラート、塩化リチウム、塩化アルミニウム等のルイス酸及びルイス酸とトリフェニルホスフィンオキサイド等のルイス塩基との混合物、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、ベンジルトリブチルアンモニウム等のクロライド、ブロマイド、ヨーダイド、アセテート等の4級アンモニウム塩、トリエチルアミン、N,N-ジメチルベンジルアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,4-ジアザビシクロ[2.2.2]オクタン等の3級アミン類、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類等が挙げられる。これらの触媒は、1種を単独で、又は2種以上を混合して用いてもよい。触媒としては、4級アンモニウム塩及び3級アミンが特に好ましい。 The reaction is usually performed in the presence of a catalyst. Examples of the catalyst include metal alcoholates such as butoxylithium and methoxysodium, Lewis acids such as lithium chloride and aluminum chloride, and mixtures of Lewis acids and Lewis bases such as triphenylphosphine oxide, tetramethylammonium, tetraethylammonium, and tetrabutyl. Chlorides such as ammonium and benzyltributylammonium, quaternary ammonium salts such as bromide, iodide and acetate, triethylamine, N, N-dimethylbenzylamine, 1,8-diazabicyclo [5.4.0] undecene-7, 1,4 -Tertiary amines such as diazabicyclo [2.2.2] octane, and imidazoles such as 2-ethyl-4-methylimidazole and 2-phenylimidazole. These catalysts may be used alone or in combination of two or more. As the catalyst, quaternary ammonium salts and tertiary amines are particularly preferable.
 触媒の使用量は、通常、エポキシ樹脂の総重量に対して、5ppm~2wt%の範囲で使用される。触媒の使用量は、好ましくは20ppm~0.5wt%である。触媒は、適当な溶剤に希釈して用いることもできる。 The amount of catalyst used is usually in the range of 5 ppm to 2 wt% with respect to the total weight of the epoxy resin. The amount of catalyst used is preferably 20 ppm to 0.5 wt%. The catalyst can also be used after diluting in a suitable solvent.
 本実施形態に係る製造方法は、無溶剤で行うこともできるし、適当な溶剤の存在下に行うこともできる。 The production method according to this embodiment can be carried out without a solvent or in the presence of a suitable solvent.
 溶剤を使用する場合は、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、メチルエチルケトン、メチルイソブチルケトン、キシレン、トルエン、メチルセロソルブアセテート、テトラヒドロフラン等の活性水素を含まない溶剤の使用が好ましい。 When using a solvent, N, N-dimethylformamide, N, N-diethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, methyl ethyl ketone, methyl isobutyl ketone, xylene, toluene, methyl cellosolve acetate, tetrahydrofuran It is preferable to use a solvent which does not contain active hydrogen such as.
 反応温度は、通常、80℃~300℃である。好ましくは100℃~260℃、更に好ましくは120℃~220℃である。反応温度が低すぎると、触媒の活性が低く、イソシアヌレート環の生成等の副反応が起こる。また、反応温度が高すぎても、触媒の活性低下が起こり、やはり副反応が進行する。 The reaction temperature is usually from 80 ° C to 300 ° C. The temperature is preferably 100 ° C to 260 ° C, more preferably 120 ° C to 220 ° C. If the reaction temperature is too low, the activity of the catalyst is low, and side reactions such as formation of isocyanurate rings occur. Moreover, even if the reaction temperature is too high, the activity of the catalyst is lowered and the side reaction proceeds.
 本実施形態に係る化合物の製造は、エポキシ樹脂を所定の温度に昇温し、乾燥空気、窒素等の吹き込みにより樹脂中の水分を極力除去した後、イソチオシアネート化合物及び触媒を投入するのが好ましい。イソチオシアネート化合物及び触媒の投入方法は、適宜選択することが可能であり、一括して投入してもよく、数回に分けて投入してもよく、また、連続的にイソチオシアネート化合物を投入してもよい。この際、イソチオシアネートと触媒との投入は、同時に行っても、別々に行ってもよい。連続的に投入する場合、その投入時間は、1~10時間が好ましく、より好ましくは、2~5時間である。投入時間が短い場合、イソチオシアヌレート環の生成量が多くなる場合がある。 In the production of the compound according to the present embodiment, it is preferable that the epoxy resin is heated to a predetermined temperature, and moisture in the resin is removed as much as possible by blowing dry air, nitrogen, etc., and then the isothiocyanate compound and the catalyst are added. . The charging method of the isothiocyanate compound and the catalyst can be selected as appropriate, and may be charged all at once, may be charged in several times, or the isothiocyanate compound is charged continuously. May be. At this time, the isothiocyanate and the catalyst may be charged simultaneously or separately. In the case of continuous charging, the charging time is preferably 1 to 10 hours, more preferably 2 to 5 hours. When the charging time is short, the amount of isothiocyanurate ring produced may increase.
 本実施形態に係る化合物は、好ましくは、エポキシ樹脂中のエポキシ基20~45当量%(好ましくは22~42当量%、更に好ましくは25~40当量%)が、イソチオシアネート化合物中のイソチオシアネート基と反応してオキサゾリジン-2-チオン環(エピスルフィド樹脂とイソシアネート化合物の反応ではチアゾリン-2-オン環、エピスルフィド樹脂とイソチオシアネート化合物の反応ではチアゾリンチオン環)を形成している。 In the compound according to this embodiment, preferably, 20 to 45 equivalent% (preferably 22 to 42 equivalent%, more preferably 25 to 40 equivalent%) of the epoxy group in the epoxy resin is the isothiocyanate group in the isothiocyanate compound. To form an oxazolidin-2-thione ring (thiazoline-2-one ring in the reaction of episulfide resin and isocyanate compound, and thiazoline thione ring in the reaction of episulfide resin and isothiocyanate compound).
 エポキシ樹脂中のエポキシ基のうち、オキサゾリジン-2-チオン環に関与するものの割合は、例えば、化学的手法によりOxd化率を測定する方法、赤外分光法、及び核磁気共鳴分光法等の機器分析的手法を用いて定量する方法により求めることができる。 The proportion of epoxy groups in the epoxy resin that are involved in the oxazolidine-2-thione ring is, for example, an instrument such as a method for measuring the Oxdation rate by a chemical method, infrared spectroscopy, or nuclear magnetic resonance spectroscopy. It can be determined by a quantitative method using an analytical technique.
 Oxd化率は、例えば、オキサゾリジン-2-チオン環を形成したエポキシ基の、元のエポキシ基に対する当量%である。エポキシ基がオキサゾリジン-2-チオン環を形成する反応以外には、実質的に消費されない場合、使用したエポキシ樹脂のエポキシ当量(Ep1と称す)と重量(Wt1と称す)、得られたオキサゾリジン-2-チオン環含有エポキシ樹脂のエポキシ当量(Ep2と称す)と重量(Wt2と称す)を用い、Oxd化率は下記式により求められる。
Oxd化率=100-(Wt2÷Ep2)÷(Wt1÷Ep1)×100
The Oxdation rate is, for example, an equivalent percentage of the epoxy group forming the oxazolidine-2-thione ring to the original epoxy group. When the epoxy group is not substantially consumed except for the reaction that forms an oxazolidine-2-thione ring, the epoxy equivalent (referred to as Ep1) and weight (referred to as Wt1) of the used epoxy resin, and the obtained oxazolidine-2 -Using the epoxy equivalent (referred to as Ep2) and weight (referred to as Wt2) of the thione ring-containing epoxy resin, the Oxd conversion rate is obtained by the following formula.
Oxd conversion rate = 100− (Wt2 ÷ Ep2) ÷ (Wt1 ÷ Ep1) × 100
 本実施形態に係る化合物(樹脂)は、エポキシ樹脂中のアルコール性水酸基の一部又は全部と、イソチオシアネート化合物中のイソチオシアネート基との反応により得られるチオウレタン結合を含有することができる。チオウレタン結合量は、0.9当量/kg以下が好ましく、より好ましくは0.01~0.7当量/kg、更に好ましくは0.05~0.6当量/kg、一層好ましくは0.1~0.5当量/kgである。 The compound (resin) according to this embodiment may contain a thiourethane bond obtained by a reaction between a part or all of the alcoholic hydroxyl groups in the epoxy resin and the isothiocyanate group in the isothiocyanate compound. The amount of thiourethane bonds is preferably 0.9 equivalent / kg or less, more preferably 0.01 to 0.7 equivalent / kg, still more preferably 0.05 to 0.6 equivalent / kg, and still more preferably 0.1 ~ 0.5 equivalent / kg.
 本実施形態に係る化合物(樹脂)は、イソチオシアネート化合物中のイソチオシアネート基が環化3量化したイソチオシアヌレート環を含有することができる。イソチオシアヌレート環の含有量は、オキサゾリジン-2-チオン環の含有量の40当量%以下が好ましく、より好ましくは30当量%以下、更に好ましくは20当量%以下、一層好ましくは10当量%以下である。イソチオシアヌレート環が多すぎると、製造する時に重合安定性が低下する場合がある。 The compound (resin) according to this embodiment can contain an isothiocyanurate ring in which the isothiocyanate group in the isothiocyanate compound is cyclized and trimerized. The content of the isothiocyanurate ring is preferably 40 equivalent% or less of the content of the oxazolidine-2-thione ring, more preferably 30 equivalent% or less, still more preferably 20 equivalent% or less, and even more preferably 10 equivalent% or less. is there. If there are too many isothiocyanurate rings, the polymerization stability may be reduced during production.
 本実施形態に係る化合物(樹脂)は、実質的にイソシアネート基を含有しないのが好ましい。 It is preferable that the compound (resin) according to this embodiment does not substantially contain an isocyanate group.
 本実施形態に係る化合物(樹脂)の溶融粘度は、フロー性を向上させるために、低い方が好ましい。具体的には、125℃における溶融粘度が、8000mPa・s以下が好ましい。より好ましくは6000mPa・s以下、更に好ましくは4000mPa・s以下、一層好ましくは3000mPa・s以下である。 The melt viscosity of the compound (resin) according to this embodiment is preferably low in order to improve the flowability. Specifically, the melt viscosity at 125 ° C. is preferably 8000 mPa · s or less. More preferably, it is 6000 mPa * s or less, More preferably, it is 4000 mPa * s or less, More preferably, it is 3000 mPa * s or less.
 本実施形態に係る化合物(樹脂)の加水分解性塩素量は、特に制限されないが、例えば電気・電子用途で使用する場合は、500ppm以下が好ましい。より好ましくは100ppm以下である。 The amount of hydrolyzable chlorine in the compound (resin) according to the present embodiment is not particularly limited, but is preferably 500 ppm or less when used in, for example, electric / electronic applications. More preferably, it is 100 ppm or less.
 本発明の化合物(樹脂)がエポキシ基を有する場合、エポキシ基の一部又は全部を、変性剤で変性することができる。 When the compound (resin) of the present invention has an epoxy group, part or all of the epoxy group can be modified with a modifier.
 変性剤としては、エポキシ基と反応する官能基を有する化合物であれば、特に限定されないが、例えば、キシレノール、t-ブチルフェノール、ノニルフェノール、ビスフェノールA、ハイドロキノン等のフェノール類、n-ブタノール、ブチルセロソルブ、ポリエチレングリコールモノエチルエーテル、エチレングリコール、ポリプロピレングリコール等のアルコール類、ブチルアミン、オクチルアミン、ジエチルアミン、メチルブチルアミン、モノエタノールアミン、ジエタノールアミン、N-メチルエタノールアミン、トリエチルアミン塩酸塩、N,N-ジメチルエタノールアミン酢酸塩、アミノエチルエタノールアミンのジメチルケチミン等のアミン類、酢酸、乳酸、2-エチルヘキサン酸、ラウリン酸、12-ヒドロキシステアリン酸、安息香酸、ジメタノールプロピオン酸等のカルボン酸類、ジエチルジスルフィド・酢酸混合物等のスルフィド類、γ-メルカプトプロピルジメトキシメチルシラン、γ-メルカプトプロピルトリメトキシシラン等のメルカプタン類などが挙げられる。 The modifier is not particularly limited as long as it has a functional group that reacts with an epoxy group. For example, phenols such as xylenol, t-butylphenol, nonylphenol, bisphenol A, hydroquinone, n-butanol, butyl cellosolve, polyethylene Alcohols such as glycol monoethyl ether, ethylene glycol, polypropylene glycol, butylamine, octylamine, diethylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine hydrochloride, N, N-dimethylethanolamine acetate , Amines such as aminoethylethanolamine dimethyl ketimine, acetic acid, lactic acid, 2-ethylhexanoic acid, lauric acid, 12-hydroxystear Phosphate, benzoic acid, carboxylic acids such as dimethanol propionic acid, sulfides such as diethyl disulfide acetate mixture, .gamma.-mercaptopropyl dimethoxymethyl silane, such as mercaptans such as .gamma.-mercaptopropyl trimethoxysilane.
 また、例えば、アミン類で変性した後、更に、アミノ基を酢酸等を用いてアンモニウム塩に変換する等、イオン性基への変換を行うこともできる。 Further, for example, after modification with amines, conversion to an ionic group such as conversion of an amino group into an ammonium salt using acetic acid or the like can also be performed.
[硬化性組成物]
 本実施形態に係る化合物(樹脂)は、硬化剤と混合して、硬化性組成物を調製するために用いることができる。
[Curable composition]
The compound (resin) according to the present embodiment can be mixed with a curing agent and used to prepare a curable composition.
 硬化形態がエポキシ基を用いた硬化の場合、硬化剤としては、例えば、エチレンジアミン、トリエチレンペンタミン、ヘキサメチレンジアミン、ダイマー酸変性エチレンジアミン、N-エチルアミノピペラジン等の脂肪族アミン類、メタフェニレンジアミン、パラフェニレンジアミン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェノルスルホン、4,4’-ジアミノジフェノルメタン、4,4’-ジアミノジフェノルエーテル等の芳香族アミン類、メルカプトプロピオン酸エステル、エポキシ樹脂の末端メルカプト化合物等のメルカプタン類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA、ビフェノール、ジヒドロキシナフタレン、1,1,1-トリス(4-ヒドロキシフェニル)メタン、4,4-(1-(4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)フェニル)エチリデン)ビスフェノール、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のフェノール樹脂類、ポリアゼライン酸無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の酸無水物類、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類、アジピン酸ジヒドラジド等のヒドラジン類、ジメチルベンジルアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7等の第3級アミン類、ジシアンジアミド等、が挙げられる。また、これらの硬化剤は単独で使用しても複数種を併用してもよい。 When the curing form is curing using an epoxy group, examples of the curing agent include ethylenediamine, triethylenepentamine, hexamethylenediamine, dimer acid-modified ethylenediamine, aliphatic amines such as N-ethylaminopiperazine, and metaphenylenediamine. , Aromatic amines such as paraphenylenediamine, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenolsulfone, 4,4′-diaminodiphenolmethane, 4,4′-diaminodiphenol ether , Mercaptans such as mercaptopropionic acid esters, terminal mercapto compounds of epoxy resins, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A, tetrafluorobisphenol A, biphenol, dihydroxynaphthalene, 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1 -(4- (1- (4-hydroxyphenyl) -1-methylethyl) phenyl) ethylidene) phenol resins such as bisphenol, phenol novolak, cresol novolak, bisphenol A novolak, brominated phenol novolak, brominated bisphenol A novolak Acid anhydrides such as polyazeline acid anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride Imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, hydrazines such as adipic acid dihydrazide, dimethylbenzylamine, 1,8-diazabicyclo [5.4.0] undecene-7 And tertiary amines such as dicyandiamide and the like. Moreover, these hardening | curing agents may be used individually or may use multiple types together.
 硬化形態がエポキシ基の変性により組み込まれた架橋性基や、変性により生成した2級水酸基を用いた硬化の場合は、硬化剤としては、例えば、メラミン樹脂、ポリイソシアネート化合物、ブロックイソシアネート化合物等が用いられる。また、これらの硬化剤は単独で使用しても複数種を併用してもよい。 In the case of curing using a crosslinkable group incorporated by modification of an epoxy group or a secondary hydroxyl group generated by modification, examples of the curing agent include a melamine resin, a polyisocyanate compound, and a blocked isocyanate compound. Used. Moreover, these hardening | curing agents may be used individually or may use multiple types together.
 メラミン樹脂としては、ヘキサメトキシメチロールメラミン、メチル・ブチル化メラミン、ブチル化メラミン等が例示される。また、これらのメラミン樹脂は単独で使用しても複数種を併用してもよい。 Examples of the melamine resin include hexamethoxymethylol melamine, methyl butylated melamine, butylated melamine and the like. These melamine resins may be used alone or in combination of two or more.
 ポリイソシアネート化合物としては、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、HDI、2,2,4(又は2,4,4)-トリメチル-1,6-ジイソシアナトヘキサン、リジンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)-シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート、テトラメチルキシレンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート、ノルボルナンジイソシアネート等のジイソシアネート及びこれらジイソシアネートより誘導されるポリイソシアネートが例示される。これらのポリイソシアネートは単独で使用しても複数種を併用してもよい。 Polyisocyanate compounds include tetramethylene diisocyanate, pentamethylene diisocyanate, HDI, 2,2,4 (or 2,4,4) -trimethyl-1,6-diisocyanatohexane, lysine diisocyanate, isophorone diisocyanate, 1,3 -Bis (isocyanatomethyl) -cyclohexane, 4,4'-dicyclohexylmethane diisocyanate, tetramethylxylene diisocyanate, tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, xylylene diisocyanate, Examples include diisocyanates such as norbornane diisocyanate and polyisocyanates derived from these diisocyanates. These polyisocyanates may be used alone or in combination of two or more.
 ジイソシアネートより誘導されるポリイソシアネートとしては、イソシアヌレート型ポリイソシアネート、ビュレット型ポリイソシアネート、ウレタン型ポリイソシアネート、アロハネート型ポリイソシアネート等がある。これらのポリイソシアネート化合物は単独で用いても複数種を併用してもよい。 Examples of the polyisocyanate derived from diisocyanate include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, and allophanate type polyisocyanate. These polyisocyanate compounds may be used alone or in combination.
 ブロックイソシアネート化合物としては、上記ジイソシアネート及び/又はポリイソシアネート化合物をブロック剤でブロックした化合物が用いられる。 As the blocked isocyanate compound, a compound obtained by blocking the diisocyanate and / or polyisocyanate compound with a blocking agent is used.
 ブロック剤としては、例えば、アルコール類、フェノール類、オキシム類、ラクタム類、活性メチレン類等が挙げられる。これらのブロック剤は単独で用いても複数種を併用してもよい。 Examples of the blocking agent include alcohols, phenols, oximes, lactams, active methylenes and the like. These blocking agents may be used alone or in combination of two or more.
 硬化剤の使用量は、本実施形態に係る化合物を含む全量に対して、任意に選択できるが、通常、0.1~90重量%である。硬化剤の使用量は、好ましくは0.1~50重量%である。 The amount of the curing agent used can be arbitrarily selected with respect to the total amount including the compound according to the present embodiment, but is usually 0.1 to 90% by weight. The amount of the curing agent used is preferably 0.1 to 50% by weight.
 硬化性組成物は、必要に応じ、溶剤を含むことができる。溶剤としては、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸-n-ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類、メタノール、イソプロパノール、n-ブタノール、ブチルセロソルブ、ブチルカルビトール等のアルコール類、水などの群から目的及び用途に応じて適宜選択して使用することができる。これらの溶剤は単独で用いても良く、2種以上を併用しても良い。 The curable composition can contain a solvent, if necessary. Examples of the solvent include hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, naphtha, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl acetate, n-butyl acetate, and propylene glycol monomethyl ether acetate. Can be appropriately selected from the group of esters such as methanol, isopropanol, n-butanol, alcohols such as butyl cellosolve and butyl carbitol, and water according to the purpose and application. These solvents may be used alone or in combination of two or more.
 硬化性組成物は、必要に応じて硬化促進剤を含むことができる。硬化促進剤としては、例えば、イミダゾール類、第3級アミン類、ホスフィン類、アミノトリアゾール類、錫系、亜鉛系等の金属触媒類等が用いられる。これらの硬化促進剤は単独で用いても良く、2種以上を併用しても良い。 The curable composition can contain a curing accelerator as necessary. Examples of the curing accelerator include imidazoles, tertiary amines, phosphines, aminotriazoles, tin-based and zinc-based metal catalysts. These curing accelerators may be used alone or in combination of two or more.
 硬化性組成物では、以下に示すような当該技術分野で常用される顔料、充填剤、添加剤等が使用できる。例えば、キナクリドン系、アゾ系、フタロシアニン系等の有機顔料、酸化チタン、金属箔状顔料、防錆顔料等の無機顔料、硫酸バリウム、炭酸カルシウム、シリカ、カーボンブラック、タルク、クレー等の充填剤、ヒンダードアミン系、ベンゾトリアゾール系、ベンゾフェノン系等の紫外線吸収剤、ヒンダードフェノール系、リン系、イオウ系、ヒドラジド系等の酸化防止剤、シラン系、チタン系等のカップリング剤、レベリング剤、レオロジーコントロール剤、顔料分散剤、ハジキ防止剤、消泡剤等の添加剤等が挙げられる。また必要に応じて、ガラス繊維、ガラス布、炭素繊維等の強化材を含有することができる。 In the curable composition, pigments, fillers, additives and the like commonly used in the technical field as shown below can be used. For example, organic pigments such as quinacridone, azo, and phthalocyanine, inorganic pigments such as titanium oxide, metal foil pigments, rust preventive pigments, fillers such as barium sulfate, calcium carbonate, silica, carbon black, talc, clay, UV absorbers such as hindered amines, benzotriazoles, and benzophenones, hindered phenols, phosphorus, sulfur and hydrazide antioxidants, silane and titanium coupling agents, leveling agents, rheology control Additives, pigment dispersants, anti-repellent agents, antifoaming agents and the like. Moreover, reinforcing materials, such as glass fiber, glass cloth, and carbon fiber, can be contained as needed.
 本実施形態に係る硬化性組成物は、優れた密着性と良好なフロー性を併せ持ち、粉体塗料、電着塗料、PCM塗料等の塗料、接着剤、シーリング材、成型材料、複合材料、積層板、封止材等の材料として好適に使用される。 The curable composition according to this embodiment has both excellent adhesion and good flowability, and paints such as powder paints, electrodeposition paints and PCM paints, adhesives, sealing materials, molding materials, composite materials, and laminates. It is suitably used as a material such as a plate or a sealing material.
≪イソチオシアヌレート構造を有する樹脂≫
<好ましい構造>
 本実施の形態で好ましい第3の樹脂は、下記式(40)で表される構成単位を2以上有する。当該樹脂は、下記式(41)~(47)で表される1価、2価又は3価の基からなる群より選択される1種以上の構成単位を更に有する。式(41)~(47)で表される構成単位中のRがイソチオシアネート基と直接結合して式(40)の構成単位が形成されていてもよい。式(41)~(47)で表される1つの構成単位中のNが、式(41)~(47)で表される他の構成単位中のNと直接結合していない。
≪Resin having an isothiocyanurate structure≫
<Preferred structure>
A preferred third resin in the present embodiment has two or more structural units represented by the following formula (40). The resin further has one or more structural units selected from the group consisting of monovalent, divalent or trivalent groups represented by the following formulas (41) to (47). R 3 in the structural units represented by formulas (41) to (47) may be directly bonded to the isothiocyanate group to form the structural unit of formula (40). N in one structural unit represented by formulas (41) to (47) is not directly bonded to N in the other structural units represented by formulas (41) to (47).
Figure JPOXMLDOC01-appb-C000087
(式中、
は有機基を表し、Rは、脂肪族基又は芳香族基を表し、Xは酸素原子又は硫黄原子を表す。同一分子中の複数のR、R及びXは同一でも異なってもよい。Rは脂肪族基又は芳香族基であってもよい。)
Figure JPOXMLDOC01-appb-C000087
(Where
R 3 represents an organic group, R 4 represents an aliphatic group or an aromatic group, X 3 represents an oxygen atom or a sulfur atom. A plurality of R 3 , R 4 and X 3 in the same molecule may be the same or different. R 3 may be an aliphatic group or an aromatic group. )
 通常、該ポリイソチオシアネートを構成する実質的に全ての窒素原子は、少なくとも1個の炭素原子と結合している。すなわち、各構成単位同士がN同士で直接結合していない。また、各構成単位におけるRがイソチオシアネート基と直接結合し、式(40)で表される構成単位が形成されていてもよい。例えば、式(41)で表される構成単位とイソチオシアネート基とが結合することにより、式(46)で表される一官能性繰り返し単位、又は式(47)で表される二官能性繰り返し単位が形成されていてもよい。ポリイソチオシアネートは、Rに結合していないイソチオシアネート基を有していてもよい。 Usually, substantially all of the nitrogen atoms that make up the polyisothiocyanate are bonded to at least one carbon atom. That is, the respective structural units are not directly bonded with each other. In addition, R 3 in each structural unit may be directly bonded to an isothiocyanate group to form a structural unit represented by the formula (40). For example, a monofunctional repeating unit represented by the formula (46) or a bifunctional repeating unit represented by the formula (47) is obtained by bonding the structural unit represented by the formula (41) and the isothiocyanate group. Units may be formed. The polyisothiocyanate may have an isothiocyanate group that is not bound to R 3 .
 式(43)及び(45)に含まれる-X-Rで表される官能基について説明する。 The functional group represented by —X 3 —R 4 contained in the formulas (43) and (45) will be described.
 後述するポリイソチオシアネートの製造方法において、式(43)で表されるN,N’-ジ置換ジチオアロファン酸結合、又は式(45)で表されるN-置換-O-置換チオカルバミン酸エステル基もしくはN-置換-S-置換ジチオカルバミン酸エステル基を有するポリイソチオシアネートを製造する際には、ヒドロキシ化合物やチオール類を用いる。-X-Rで表される官能基は、このヒドロキシ化合物又はチオール類に由来する基であり、ヒドロキシ化合物を用いる場合はXが酸素原子、チオール類を用いる場合はXが硫黄原子である。 In a method for producing a polyisothiocyanate described later, an N, N′-disubstituted dithioalophanoic acid bond represented by formula (43) or an N-substituted-O-substituted thiocarbamic acid represented by formula (45) When producing a polyisothiocyanate having an ester group or an N-substituted-S-substituted dithiocarbamate group, a hydroxy compound or a thiol is used. The functional group represented by —X 3 —R 4 is a group derived from this hydroxy compound or thiols. When a hydroxy compound is used, X 3 is an oxygen atom, and when thiols are used, X 3 is a sulfur atom. It is.
 式(40)~(47)中のRは、脂肪族基としては、炭素数1~22の脂肪族基が好ましく、炭素数1~18の脂肪族基がより好ましい。芳香族基としては炭素数6~22の芳香族基が好ましく、炭素数6~15の芳香族基がより好ましい。炭素数1~5の脂肪族基と該脂肪族基に結合した炭素数6~15の芳香族基とを有する炭素数7~20の基も好ましい。 R 3 in the formulas (40) to (47) is preferably an aliphatic group having 1 to 22 carbon atoms, more preferably an aliphatic group having 1 to 18 carbon atoms, as the aliphatic group. As the aromatic group, an aromatic group having 6 to 22 carbon atoms is preferable, and an aromatic group having 6 to 15 carbon atoms is more preferable. A group having 7 to 20 carbon atoms having an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms bonded to the aliphatic group is also preferable.
 これらの中でも、Rは、下記式(301)~(306)で表される2価の基であることが好ましい。 Among these, R 3 is preferably a divalent group represented by the following formulas (301) to (306).
Figure JPOXMLDOC01-appb-C000088
(式中、
iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000088
(Where
i represents an integer of 1 to 12, and may be 1 to 10. )
 Rの具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、メチルシクロペンチル基、エチルシクロペンチル基、メチルシクロヘキシル基、エチルシクロヘキシル基、プロピルシクロヘキシル基、ブチルシクロヘキシル基、ペンチルシクロヘキシル基、ヘキシルシクロヘキシル基、ジメチルシクロヘキシル基、ジエチルシクロヘキシル基、ジブチルシクロヘキシル基、フェニル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、オクチルフェニル基、ノニルフェニル基、クミルフェニル基、ジメチルフェニル基等が挙げられる。 Specific examples of R 4, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, a cyclopentyl group, a cyclohexyl group, Cycloheptyl group, cyclooctyl group, methylcyclopentyl group, ethylcyclopentyl group, methylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group, butylcyclohexyl group, pentylcyclohexyl group, hexylcyclohexyl group, dimethylcyclohexyl group, diethylcyclohexyl group, dibutylcyclohexyl Group, phenyl group, methylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group, octylphenyl group, nonylphenyl Group, cumylphenyl group, dimethylphenyl group and the like.
 該樹脂を構成する上記式(41)~(47)で表される構成単位は、驚くべきことに、耐熱性が高く、密着性、殊に金属表面への密着性に優れる。このような効果を奏する機構については明らかではないが、本発明者らは、安定な6員環構造を有していることが耐熱性を高め、該結合に含まれる硫黄原子が密着性を高める効果を奏するのではないかと推測している。 The structural units represented by the above formulas (41) to (47) constituting the resin are surprisingly high in heat resistance and excellent in adhesion, particularly adhesion to a metal surface. Although it is not clear about the mechanism that exerts such an effect, the present inventors have improved the heat resistance by having a stable six-membered ring structure, and the sulfur atom contained in the bond increases the adhesion. I guess it will be effective.
 このように、本実施の形態の樹脂は、その分子中に含まれる結合様式に特徴があり、該結合以外の骨格構造は特に限定されないが、より好ましい形態は以下の通りである。 As described above, the resin of the present embodiment is characterized by the bonding mode contained in the molecule, and the skeletal structure other than the bonding is not particularly limited, but more preferable forms are as follows.
 樹脂の数平均分子量は、好ましくは500以上、より好ましくは1000以上、更に好ましくは5000以上である。一般的には高分子量の方が、耐熱性が良好となる傾向にあるが、一方で、あまりに高分子量である場合には、塗膜を形成する際の取り扱い性(他の成分との混和性、流動性、展性等)の面で不利となる場合があることから、数平均分子量は好ましくは100万以下、より好ましくは50万以下、更に好ましくは20万以下である。ここでいう数平均分子量は、排除限界分子量1000万以上のカラムを少なくとも1つ具備するゲルパーミエーションクロマトグラフィーを使用して測定し、ポリスチレン等の標準物質を用いて保持時間を分子量に換算することで計算した値である。当業者であれば容易に数平均分子量を求めることができる。溶媒に由来するピークは除いて計算する。 The number average molecular weight of the resin is preferably 500 or more, more preferably 1000 or more, and still more preferably 5000 or more. In general, the higher the molecular weight, the better the heat resistance. On the other hand, if the molecular weight is too high, the handling property when forming a coating film (miscibility with other components) The number average molecular weight is preferably 1 million or less, more preferably 500,000 or less, and still more preferably 200,000 or less. The number average molecular weight here is measured using gel permeation chromatography having at least one column with an exclusion limit molecular weight of 10 million or more, and the retention time is converted into molecular weight using a standard substance such as polystyrene. It is the value calculated by. A person skilled in the art can easily determine the number average molecular weight. Calculations are made excluding peaks originating from the solvent.
 耐熱性の発現に寄与する結合の含有量は、上記した数平均分子量Mnとも相関する。1分子あたりに含まれる窒素-炭素-硫黄結合を構成する硫黄原子及び窒素-炭素-酸素結合を構成する酸素原子の数nで樹脂の数平均分子量を除した値(Mn/n)が、好ましくは300以下、より好ましくは200以下、更に好ましくは150以下である。本実施の形態の樹脂組成物は、上記したように金属との密着性の面においても効果を奏するが、そのような効果を発現する観点からも、樹脂が1分子あたりに多くの上記結合を有していることが好ましい。一方で、樹脂があまりに多くの上記結合を有している場合、特に、樹脂が上記式(6)~(8)、(11)~(14)、(41)、(42)、(45)、(46)又は(47)で表される構成単位を有する場合、塗膜性能の一つである柔軟性が損なわれる場合もある。そのような観点から、(Mn/nは好ましくは50以上、より好ましくは70以上である。nは、例えば、樹脂単位重量(1g)あたりの当該結合の数X(単位mol/g)を、例えば赤外線吸収スペクトルやH-NMR等によって求め、上記した数平均分子量(Mn)から、式:n=Mn・Xによって算出することができる。樹脂が窒素-炭素-硫黄結合及び窒素-炭素-酸素結合の両方を含む場合、nはそれぞれの結合を構成する硫黄原子及び酸素原子の合計数である。 The content of bonds that contribute to the development of heat resistance also correlates with the number average molecular weight Mn described above. The value (Mn / n 1 ) obtained by dividing the number average molecular weight of the resin by the number n 1 of sulfur atoms constituting the nitrogen-carbon-sulfur bond and oxygen atoms constituting the nitrogen-carbon-oxygen bond contained per molecule is , Preferably 300 or less, more preferably 200 or less, still more preferably 150 or less. The resin composition of the present embodiment has an effect in terms of adhesion to a metal as described above. From the viewpoint of exhibiting such an effect, the resin has many bonds per molecule. It is preferable to have. On the other hand, when the resin has too many of the above bonds, in particular, the resin has the above formulas (6) to (8), (11) to (14), (41), (42), (45) , (46) or (47), the flexibility, which is one of the coating film performances, may be impaired. From such a viewpoint, (Mn / n 1 is preferably 50 or more, more preferably 70 or more. For example, n 1 is the number of bonds per unit weight (1 g) of the resin X 1 (unit mol / g). ), for example determined by the infrared absorption spectrum and 1 H-NMR or the like, the number average molecular weight above from (Mn), formula. can be calculated by n 1 = Mn · X 1 resin nitrogen - carbon - sulfur bonds And n 1 is the total number of sulfur atoms and oxygen atoms constituting each bond.
<好ましい製造方法>
 本実施の形態に係る樹脂は、好ましくは、窒素-炭素-硫黄結合を有する化合物と、ポリオイソチオシアネートとを反応させて得られる樹脂である。窒素-炭素-硫黄結合は、窒素原子、炭素原子及び硫黄原子から構成され、これらがこの順で結合している。
<Preferred production method>
The resin according to the present embodiment is preferably a resin obtained by reacting a compound having a nitrogen-carbon-sulfur bond with polyisoisothiocyanate. The nitrogen-carbon-sulfur bond is composed of a nitrogen atom, a carbon atom, and a sulfur atom, which are bonded in this order.
 また、本実施形態に係る樹脂は、好ましくは、下記式(33)で表される化合物を重合することを含む方法によって得られる樹脂である。 In addition, the resin according to this embodiment is preferably a resin obtained by a method including polymerizing a compound represented by the following formula (33).
Figure JPOXMLDOC01-appb-C000089
(式中、
は有機基を表し、脂肪族基又は芳香族基であってもよい。)
Figure JPOXMLDOC01-appb-C000089
(Where
R 3 represents an organic group and may be an aliphatic group or an aromatic group. )
 上記式(30)中、Rは、脂肪族基、芳香族基又はこれらの組み合わせからなる基(芳香族基で置換された脂肪族基)を表す。重合の単量体として用いられる式(30)の化合物は、Rが異なる2種以上の化合物の組み合わせであってもよい。Rとしての脂肪族基及び芳香族基は、炭素原子の他に酸素原子、窒素原子等を有していても構わない。脂肪族基としては、炭素数1~22の脂肪族基が好ましく、炭素数1~18の脂肪族基がより好ましい。芳香族基は炭素数6~22の芳香族基が好ましく、炭素数6~15の芳香族基がより好ましい。炭素数1~5の脂肪族基と該脂肪族基に結合した炭素数6~15の芳香族基とを有する炭素数7~20の基も好ましい。 In the above formula (30), R 3 represents an aliphatic group, an aromatic group or a group composed of a combination thereof (aliphatic group substituted with an aromatic group). The compound of the formula (30) used as a monomer for polymerization may be a combination of two or more compounds having different R 3 . The aliphatic group and aromatic group as R 3 may have an oxygen atom, a nitrogen atom or the like in addition to the carbon atom. As the aliphatic group, an aliphatic group having 1 to 22 carbon atoms is preferable, and an aliphatic group having 1 to 18 carbon atoms is more preferable. The aromatic group is preferably an aromatic group having 6 to 22 carbon atoms, more preferably an aromatic group having 6 to 15 carbon atoms. A group having 7 to 20 carbon atoms having an aliphatic group having 1 to 5 carbon atoms and an aromatic group having 6 to 15 carbon atoms bonded to the aliphatic group is also preferable.
 Rの具体例としては、メチレン、ジメチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、オクタメチレン等の直鎖炭化水素基;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ビス(シクロヘキシル)メタン等の無置換の脂環式炭化水素由来の基;メチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン(各異性体)、エチルシクロヘキサン(各異性体)、プロピルシクロヘキサン(各異性体)、ブチルシクロヘキサン(各異性体)、ペンチルシクロヘキサン(各異性体)、ヘキシルシクロヘキサン(各異性体)等のアルキル置換シクロヘキサン由来の基;ジメチルシクロヘキサン(各異性体)、ジエチルシクロヘキサン(各異性体)、ジブチルシクロヘキサン(各異性体)等のジアルキル置換シクロヘキサン由来の基;1,5,5-トリメチルシクロヘキサン、1,5,5-トリエチルシクロヘキサン、1,5,5-トリプロピルシクロヘキサン(各異性体)、1,5,5-トリブチルシクロヘキサン(各異性体)等のトリアルキル置換シクロヘキサン由来の基;トルエン、エチルベンゼン、プロピルベンゼン等のモノアルキル置換ベンゼン;キシレン、ジエチルベンゼン、ジプロピルベンゼン等のジアルキル置換ベンゼン;ベンゼン等の芳香族炭化水素由来の基などが挙げられる。 Specific examples of R 3 include linear hydrocarbon groups such as methylene, dimethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, octamethylene; cyclopentane, cyclohexane, cycloheptane, cyclooctane, bis (cyclohexyl) methane, etc. A group derived from an unsubstituted alicyclic hydrocarbon; methylcyclopentane, ethylcyclopentane, methylcyclohexane (each isomer), ethylcyclohexane (each isomer), propylcyclohexane (each isomer), butylcyclohexane (each isomer) ), Pentylcyclohexane (each isomer), hexylcyclohexane (each isomer) and other alkyl-substituted cyclohexane-derived groups; dimethylcyclohexane (each isomer), diethylcyclohexane (each isomer), dibutylcyclohexane (each isomer) Groups derived from dialkyl-substituted cyclohexane such as 1,5,5-trimethylcyclohexane, 1,5,5-triethylcyclohexane, 1,5,5-tripropylcyclohexane (each isomer), 1,5,5-tributylcyclohexane Groups derived from trialkyl-substituted cyclohexane such as (each isomer); monoalkyl-substituted benzenes such as toluene, ethylbenzene, and propylbenzene; dialkyl-substituted benzenes such as xylene, diethylbenzene, and dipropylbenzene; derived from aromatic hydrocarbons such as benzene Group and the like.
 これらの中でも、ヘキサン、ベンゼン、ジフェニルメタン、トルエン、シクロヘキサン、キシレニル、メチルシクロヘキサン、イソホロン又はジシクロヘキシルメタン由来の基からなる群より選択される1以上の基が好ましい。「由来の基」とは、その化合物から2個の水素原子を除いた構造の基を示す。 Among these, one or more groups selected from the group consisting of groups derived from hexane, benzene, diphenylmethane, toluene, cyclohexane, xylenyl, methylcyclohexane, isophorone, or dicyclohexylmethane are preferable. The “derived group” refers to a group having a structure in which two hydrogen atoms are removed from the compound.
 上記式(30)におけるRは、より好ましくは、下記式(301)~(306)で表される基である。 R 3 in the above formula (30) is more preferably a group represented by the following formulas (301) to (306).
Figure JPOXMLDOC01-appb-C000090
(式中、
iは1~12の整数を表し、1~10であってもよい。)
Figure JPOXMLDOC01-appb-C000090
(Where
i represents an integer of 1 to 12, and may be 1 to 10. )
 上記式(30)で表されるイソチオシアネートとして、更に好ましくは、ヘキサメチレンジイソチオシアネート、イソホロンジイソチオシアネート、4,4’-ジシクロヘキシルメタンジイソチオシアネート、4,4’-ジフェニルメタンジイソチオシアネート、トルエンジイソチオシアネート(各異性体)、ナフタレンジイソチオシアネート(各異性体)等を挙げることができる。 More preferably, the isothiocyanate represented by the formula (30) is hexamethylene diisothiocyanate, isophorone diisothiocyanate, 4,4′-dicyclohexylmethane diisothiocyanate, 4,4′-diphenylmethane diisothiocyanate, toluene. Examples include diisothiocyanate (each isomer) and naphthalene dithiocyanate (each isomer).
 次に、本実施形態に係る樹脂(ポリイソチオシアネート)の製造方法について説明する。 Next, a method for producing a resin (polyisothiocyanate) according to this embodiment will be described.
 本実施形態に係るポリイソチオシアネートは、例えば、単量体ジイソチオシアネートを単独で重合させて得ることができる。単量体ジイソチオシアネートの重合は、好ましくは、後述のイソチオシアヌレート化触媒等の触媒の存在下で行われる。また、単量体ジイソチオシアネートを重合する際に、ヒドロキシ化合物又はチオール類を副原料として使用して、ジイソチオシアネートとヒドロキシ化合物又はチオール類との反応によりイソチオシアネート基の一部をウレタン化、アロファネート化などすることによりポリイソチオシアネーとを得ることもできる。 The polyisothiocyanate according to this embodiment can be obtained, for example, by polymerizing monomer diisothiocyanate alone. The polymerization of the monomer diisothiocyanate is preferably performed in the presence of a catalyst such as an isothiocyanurate-forming catalyst described later. In addition, when polymerizing the monomer diisothiocyanate, using a hydroxy compound or thiols as an auxiliary material, a part of the isothiocyanate group is urethanated by the reaction between the diisothiocyanate and the hydroxy compound or thiols, Polyisothiocyanate can also be obtained by allophanatization.
 単量体ジイソチオシアネートとは、上記式(33)で表される化合物を指す。 Monomer diisothiocyanate refers to a compound represented by the above formula (33).
 ヒドロキシ化合物としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、ドデカノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、シクロオクタノール、メチルシクロペンタノール、エチルシクロペンタノール、メチルシクロヘキサノール、エチルシクロヘキサノール、プロピルシクロヘキサノール、ブチルシクロヘキサノール、ペンチルシクロヘキサノール、ヘキシルシクロヘキサノール、ジメチルシクロヘキサノール、ジエチルシクロヘキサノール、ジブチルシクロヘキサノール、フェノール、メチルフェノール、エチルフェノール、プロピルフェノール、ブチルフェノール、ペンチルフェノール、ヘキシルフェノール、オクチルフェノール、ノニルフェノール、クミルフェノール、ジメチルフェノール、メチルエチルフェノール、メチルプロピルフェノール、メチルブチルフェノール、メチルペンチルフェノール、ジエチルフェノール、エチルプロピルフェノール、エチルブチルフェノール、ジプロピルフェノール、ジクミルフェノール、トリメチルフェノール、トリエチルフェノール、ナフトール等が挙げられる。また、エチレングリコール、1,2-又は1,3-プロピレングリコール、1,3-、1,4-又は2,3-ブチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、ネオペンチルグリコールヒドロキシピバリン酸エステル、2-エチル-1,3-ヘキサンジオール、トリメチロールプロパン、グリセリン、1,2,6-ヘキサントリオール等の低分子量化合物及び数平均分子量約200~10,000のポリエステルポリオール、ポリエーテルポリオール等を用いることもできる。 Hydroxy compounds include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, decanol, dodecanol, cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, methylcyclopentanol, ethylcyclopentanol, Methylcyclohexanol, ethylcyclohexanol, propylcyclohexanol, butylcyclohexanol, pentylcyclohexanol, hexylcyclohexanol, dimethylcyclohexanol, diethylcyclohexanol, dibutylcyclohexanol, phenol, methylphenol, ethylphenol, propylphenol, butylphenol, pentyl Phenol, hexylphenol, o Tylphenol, nonylphenol, cumylphenol, dimethylphenol, methylethylphenol, methylpropylphenol, methylbutylphenol, methylpentylphenol, diethylphenol, ethylpropylphenol, ethylbutylphenol, dipropylphenol, dicumylphenol, trimethylphenol, triethylphenol And naphthol. Further, ethylene glycol, 1,2- or 1,3-propylene glycol, 1,3-, 1,4- or 2,3-butylene glycol, 1,6-hexanediol, neopentyl glycol, neopentyl glycol hydroxypivalin Low molecular weight compounds such as acid esters, 2-ethyl-1,3-hexanediol, trimethylolpropane, glycerin, 1,2,6-hexanetriol, and polyester polyols and polyether polyols having a number average molecular weight of about 200 to 10,000 Etc. can also be used.
 チオール類としては、メタンチオール、エタンチオール、プロパンチオール、ブタンチオール、ペンタンチオール、ヘキサンチオール、ヘプタンチオール、オクタンチオール、デカンチオール、ドデカンチオール、シクロペンタンチオール、シクロヘキサンチオール、シクロヘプタンチオール、シクロオクタンチオール、メチルシクロペンタンチオール、エチルシクロペンタンチオール、メチルシクロヘキサンチオール、エチルシクロヘキサンチオール、プロピルシクロヘキサンチオール、ブチルシクロヘキサンチオール、ペンチルシクロヘキサンチオール、ヘキシルシクロヘキサンチオール、ジメチルシクロヘキサンチオール、ジエチルシクロヘキサンチオール、ジブチルシクロヘキサンチオール、チオフェノール、メチルチオフェノール、エチルチオフェノール、プロピルチオフェノール、ブチルチオフェノール、ペンチルチオフェノール、ヘキシルチオフェノール、オクチルチオフェノール、ノニルチオフェノール、クミルチオフェノール、ジメチルチオフェノール、メチルエチルチオフェノール、メチルプロピルチオフェノール、メチルブチルチオフェノール、メチルペンチルチオフェノール、ジエチルチオフェノール、エチルプロピルチオフェノール、エチルブチルチオフェノール、ジプロピルチオフェノール、ジクミルチオフェノール、トリメチルチオフェノール、トリエチルチオフェノール、チオナフトール等が挙げられる。 Thiols include methanethiol, ethanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, decanethiol, dodecanethiol, cyclopentanethiol, cyclohexanethiol, cycloheptanethiol, cyclooctanethiol, Methylcyclopentanethiol, ethylcyclopentanethiol, methylcyclohexanethiol, ethylcyclohexanethiol, propylcyclohexanethiol, butylcyclohexanethiol, pentylcyclohexanethiol, hexylcyclohexanethiol, dimethylcyclohexanethiol, diethylcyclohexanethiol, dibutylcyclohexanethiol, thiophenol, methylthio Fenault , Ethylthiophenol, propylthiophenol, butylthiophenol, pentylthiophenol, hexylthiophenol, octylthiophenol, nonylthiophenol, cumylthiophenol, dimethylthiophenol, methylethylthiophenol, methylpropylthiophenol, methylbutylthio Examples include phenol, methylpentylthiophenol, diethylthiophenol, ethylpropylthiophenol, ethylbutylthiophenol, dipropylthiophenol, dicumylthiophenol, trimethylthiophenol, triethylthiophenol, thionaphthol, and the like.
 ヒドロキシ化合物を使用する場合、上記ヒドロキシ化合物と単量体ジイソチオシアネートとのイソチオシアネート基/水酸基当量比は、10~100程度の値から目的に応じ選択することができる。チオール類を使用する場合も同様に、イソチオシアネート基/チオール基当量比は、10~100程度の値から目的に応じて選択することができる。 When a hydroxy compound is used, the isothiocyanate group / hydroxyl group equivalent ratio of the hydroxy compound and the monomer diisothiocyanate can be selected from a value of about 10 to 100 according to the purpose. Similarly, when using thiols, the isothiocyanate group / thiol group equivalent ratio can be selected from a value of about 10 to 100 according to the purpose.
 上記式(41)、(46)又は(47)で表されるイソチオシアヌレート基を形成するためのイソチオシアヌレート化触媒としては、好ましくは第4級アンモニウム塩、より好ましくは第4級アンモニウムヒドロキシド、第4級アンモニウムカルボン酸、更に好ましくは第4級アンモニウムカルボン酸である。 The isothiocyanurate-forming catalyst for forming the isothiocyanurate group represented by the above formula (41), (46) or (47) is preferably a quaternary ammonium salt, more preferably a quaternary ammonium hydroxy. And quaternary ammonium carboxylic acid, more preferably quaternary ammonium carboxylic acid.
 イソチオシアヌレート化触媒の具体例としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニムヒドロキシド、テトラブチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド、酢酸テトラメチルアンモニウム塩、酢酸テトラエチルアンモニウム塩、酢酸テトラブチルアンモニウム塩等の有機弱酸塩等が挙げられる。酢酸、吉草酸、イソ吉草酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の金属塩等も使用できるが、使用量が低減できる観点から有機弱酸塩等が好ましい。 Specific examples of the isothiocyanuration catalyst include tetraalkylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, tetramethylammonium acetate, tetraethylammonium acetate, tetrabutyl acetate. Examples include organic weak acid salts such as ammonium salts. Metal salts of alkyl carboxylic acids such as acetic acid, valeric acid, isovaleric acid, caproic acid, octylic acid and myristic acid can also be used, but organic weak acid salts and the like are preferred from the viewpoint of reducing the amount used.
 上記イソチオシアヌレート化触媒は希釈して用いてもよい。希釈剤としてはヒドロキシ化合物を用いることができる。ヒドロキシ化合物としては、例えば、メタノール、エタノール、1-又は2-ブタノール、2-メチル-1-プロパノール、1,2-又は1,3-プロピレングリコール、1,3-、1,4-又は2,3-ブチレングリコール、グリセリン、シクロヘキサノール等のアルコール性ヒドロキシ化合物、フェノール、クレゾール、キシレノール、トリメチルフェノール等のフェノール性ヒドロキシ化合物が挙げられる。これらから得られるポリイソシアネートの結晶性の観点から、2-ブタノール、2-メチル-1-プロパノール、1,3-又は2,3-ブタンジオール等側鎖を有するアルコールが好ましい。また、2種類以上を混合してもよい。当該ヒドロキシ化合物に代えてチオール類を使用してもよい。 The above isothiocyanuration catalyst may be diluted. A hydroxy compound can be used as a diluent. Examples of the hydroxy compound include methanol, ethanol, 1- or 2-butanol, 2-methyl-1-propanol, 1,2- or 1,3-propylene glycol, 1,3-, 1,4- or 2, Examples thereof include alcoholic hydroxy compounds such as 3-butylene glycol, glycerin and cyclohexanol, and phenolic hydroxy compounds such as phenol, cresol, xylenol and trimethylphenol. From the viewpoint of the crystallinity of the polyisocyanates obtained from these, alcohols having side chains such as 2-butanol, 2-methyl-1-propanol, 1,3- or 2,3-butanediol are preferred. Two or more types may be mixed. Thiols may be used in place of the hydroxy compound.
 上述の単量体ジイソチオシアネート単独又は、単量体ジイソチオシアネートをヒドロキシ化合物でウレタン化したイソチオシアネート化合物を上述のイソチオシアヌレート化触媒の存在下で反応させるに際し、上記ヒドロキシ化合物で希釈されたイソチオシアヌレート化触媒の濃度は1~20質量%で行うことができる。上記濃度は、好ましくは1~10質量%である。1質量%以上であれば、イソチオシアヌレート化触媒に同伴するヒドロキシ化合物の量が多くなりすぎず、得られるポリイソチオシアネート及び、これで形成される塗膜の物性が低下しにくい。濃度が20質量%以下であれば、同伴するヒドロキシ化合物の助触媒効果が低下せず、その結果、イソチオシアヌレート化触媒の使用量の増加、ポリイソチオシアネートの着色などが起こりにくい。 When the above-mentioned monomer diisothiocyanate alone or the isothiocyanate compound obtained by urethanizing the monomer diisothiocyanate with a hydroxy compound was reacted in the presence of the above-mentioned isothiocyanuration catalyst, it was diluted with the hydroxy compound. The concentration of the isothiocyanuration catalyst can be 1 to 20% by mass. The concentration is preferably 1 to 10% by mass. If it is 1 mass% or more, the amount of the hydroxy compound entrained in the isothiocyanurate-forming catalyst does not increase too much, and the resulting polyisothiocyanate and the physical properties of the coating film formed thereby are unlikely to deteriorate. When the concentration is 20% by mass or less, the cocatalyst effect of the accompanying hydroxy compound is not lowered, and as a result, the amount of the isothiocyanurate-forming catalyst used is increased and the polyisothiocyanate is hardly colored.
 単量体ジイソチオシアネートなどの原料に微量含まれている酸性成分によりイソチオシアヌレート化触媒が失活する場合を除き、イソチオシアヌレート化触媒の使用量は、単量体ジイソチオシアネートの重量に対し1ppm~10%、好ましくは10ppm~5%である。触媒の量が1ppm以上であれば、イソチオシアヌレート化触媒としての機能が充分に発揮できる。触媒の量が3%以下であれば、イソチオシアヌレート化触媒を失活するため酸性リン酸化合物、酸性リン酸エステル化合物等の反応停止剤(後述する)の添加量を削減することができる。 Unless the isothiocyanurate catalyst is deactivated by an acidic component contained in a trace amount in a raw material such as monomeric diisothiocyanate, the amount of the isothiocyanurate catalyst used is based on the weight of the monomeric diisothiocyanate. The content is 1 ppm to 10%, preferably 10 ppm to 5%. If the amount of the catalyst is 1 ppm or more, the function as an isothiocyanurate-forming catalyst can be sufficiently exerted. If the amount of the catalyst is 3% or less, the isothiocyanurate-forming catalyst is deactivated, so that the amount of addition of a reaction terminator (described later) such as an acidic phosphoric acid compound or acidic phosphoric acid ester compound can be reduced.
 反応時、溶媒は使用してもしなくてもよいが、イソチオシアネート基と反応活性を持たない溶媒を使用することにより、反応の制御がより容易になる。 During the reaction, a solvent may or may not be used, but the use of a solvent having no reaction activity with the isothiocyanate group makes it easier to control the reaction.
 溶媒の例としては、酢酸エチル、酢酸ブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエステル又はエーテル類、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素類等が使用可能である。もちろん、2種類以上の溶媒を混合使用することも可能である。 Examples of solvents include esters or ethers such as ethyl acetate, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, etc. Is possible. Of course, a mixture of two or more solvents can be used.
 イソチオシアヌレート化反応は、30℃~120℃、好ましくは50℃~100℃で行われる。反応の進行は反応液のH-NMR分析により確認することができる。反応が所望の転化率に達した時点で、反応停止剤の投入により触媒を失活させて反応を停止する。転化率は10~60%の範囲で選定するのが適当であり、好ましくは10~30%である。低い転化率では、より低い粘度のポリイソチオシアネートを得ることが可能であるが、生産性の点から転化率10%以上が好ましい。一方、転化率60%以下であれば、ポリイソチオシアネートの粘度が高くなりすぎず好ましい。 The isothiocyanuration reaction is performed at 30 ° C to 120 ° C, preferably 50 ° C to 100 ° C. The progress of the reaction can be confirmed by 1 H-NMR analysis of the reaction solution. When the reaction reaches a desired conversion rate, the reaction is stopped by deactivating the catalyst by adding a reaction terminator. The conversion rate is suitably selected in the range of 10 to 60%, preferably 10 to 30%. With a low conversion rate, it is possible to obtain a polyisothiocyanate having a lower viscosity, but a conversion rate of 10% or more is preferable from the viewpoint of productivity. On the other hand, if the conversion is 60% or less, the viscosity of the polyisothiocyanate does not become too high, which is preferable.
 転化率は下記式で求めることができる。上記転化率は、H-NMRチャートにおいて、テトラメチルシランのメチル基のピークを0ppmとし、3.5ppmのピークの積分値(A)と4.8ppmのピークの積分値(B)とから次式により算出する。
  転化率(%)=B/(A+B)×100
The conversion rate can be obtained by the following formula. In the 1 H-NMR chart, the conversion rate is calculated from the peak of the methyl group of tetramethylsilane at 0 ppm and the integrated value (A) of the peak of 3.5 ppm and the integrated value (B) of the peak of 4.8 ppm. Calculated by the formula.
Conversion rate (%) = B / (A + B) × 100
 イソチオシアヌレート化反応の反応停止剤として、酸性リン酸化合物及び酸性リン酸エステル化合物からなる群より選択される1種以上の化合物を用いる。 As the reaction terminator for the isothiocyanuration reaction, one or more compounds selected from the group consisting of acidic phosphate compounds and acidic phosphate ester compounds are used.
 酸性リン酸化合物は、無機酸であり、例えば、リン酸、亜リン酸、次亜リン酸、二亜リン酸、次リン酸、ピロリン酸、ペルオキソリン酸等が挙げられる。好ましくは、リン酸である。 The acidic phosphoric acid compound is an inorganic acid, and examples thereof include phosphoric acid, phosphorous acid, hypophosphorous acid, diphosphorous acid, hypophosphoric acid, pyrophosphoric acid, and peroxophosphoric acid. Preferably, it is phosphoric acid.
 酸性リン酸エステル化合物は、酸性基とエステル基を有する化合物であり、例えば、炭素数2~8のモノアルキルホスフェート、モノアルキルホスファイト、炭素数4~16のジアルキルホスフェート、ジアルキルホスファイト、ジラウリルホスフェート、ジフェニルホスフェート、モノラウリルホスフェート、モノフェニルホスフェート、ジラウリルホスファイト、ジフェニルホスファイト、モノラウリルホスファイト、モノフェニルホスファイト等が挙げられる。好ましくは炭素数3~8のモノアルキルホスフェート、又は炭素数6~16のジアルキルホスフェート、より好ましくはジオクチルホスフェート、又はモノオクチルホスフェートである。 The acidic phosphate ester compound is a compound having an acidic group and an ester group, for example, a monoalkyl phosphate having 2 to 8 carbon atoms, a monoalkyl phosphite, a dialkyl phosphate having 4 to 16 carbon atoms, a dialkyl phosphite, and dilauryl. Examples include phosphate, diphenyl phosphate, monolauryl phosphate, monophenyl phosphate, dilauryl phosphite, diphenyl phosphite, monolauryl phosphite, and monophenyl phosphite. Preferably, it is a monoalkyl phosphate having 3 to 8 carbon atoms, or a dialkyl phosphate having 6 to 16 carbon atoms, more preferably dioctyl phosphate or monooctyl phosphate.
 これらのうち、酸性リン酸化合物を使用することが好ましい。酸性リン酸化合物の添加量は、イソチオシアヌレート化触媒の化学量論量に対し1~10当量が好ましく、1~6当量が更に好ましい。添加量が1当量以上であれば、充分にイソチオシアヌレート化触媒を失活することができる。添加量が、10当量以下であれば、発生する不溶物のろ過が困難となることもなく好ましい。 Of these, it is preferable to use an acidic phosphate compound. The addition amount of the acidic phosphoric acid compound is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, relative to the stoichiometric amount of the isothiocyanuration catalyst. If the addition amount is 1 equivalent or more, the isothiocyanuration catalyst can be sufficiently deactivated. If the addition amount is 10 equivalents or less, it is preferable without filtering the insoluble matter generated.
 酸性リン酸化合物を用いた場合、失活されたイソチオシアヌレート化触媒は多くの場合不溶物となる場合が多く、ろ過により除去することが可能となる。ろ過により除去することで、ポリイソチオシアネート中の酸性リン酸化合物由来のリンはごく微量に検出される程度まで低減することができる。 When an acidic phosphoric acid compound is used, the deactivated isothiocyanurate-forming catalyst often becomes an insoluble matter and can be removed by filtration. By removing by filtration, the phosphorus derived from the acidic phosphoric acid compound in the polyisothiocyanate can be reduced to the extent that it is detected in a very small amount.
 酸性リン酸エステル化合物を用いた場合、酸性リン酸エステル及びイソチオシアヌレート化触媒との塩が、ポリイソチオシアネートに溶解するため、単量体ジイソチオシアネートを除去した後の変性ポリイソシアネートに混入する場合がある。 When an acidic phosphoric acid ester compound is used, the salt with the acidic phosphoric acid ester and the isothiocyanuration catalyst is dissolved in the polyisothiocyanate, so that it is mixed into the modified polyisocyanate after the monomeric diisothiocyanate is removed. There is a case.
 ポリイソチオシアネート中リン濃度の観点から、酸性リン酸化合物を用いる方が好ましい。酸性リン酸化合物を用いた場合、酸性リン酸化合物を添加した後、90~150℃、好ましくは100~120℃で、30~120分間保持することで、ろ過工程において、ろ過時間の短縮といったろ過性が向上する。 From the viewpoint of phosphorus concentration in polyisothiocyanate, it is preferable to use an acidic phosphoric acid compound. When an acidic phosphoric acid compound is used, the acidic phosphoric acid compound is added and then maintained at 90 to 150 ° C., preferably 100 to 120 ° C. for 30 to 120 minutes. Improves.
 ポリイソチオシアネートを得た後に、酸性リン酸化合物、酸性リン酸エステル化合物を添加してもよく、特に酸性リン酸化合物を添加してもよい。 After obtaining the polyisothiocyanate, an acidic phosphoric acid compound and an acidic phosphoric acid ester compound may be added, and particularly an acidic phosphoric acid compound may be added.
 以上のように、イソチオシアヌレート化反応を停止した後、反応液から未反応の単量体ジイソチオシアネート及び溶媒を除去し精製する。精製方法としては、減圧蒸留、溶剤抽出等を挙げることができ、一般には薄膜蒸留器を使用することができる。 As described above, after the isothiocyanuration reaction is stopped, the unreacted monomeric diisothiocyanate and the solvent are removed from the reaction solution for purification. Examples of the purification method include vacuum distillation, solvent extraction and the like, and generally a thin film distiller can be used.
 精製後のポリイソチオシアネート中の単量体ジイソチオシアネートの含有量は、好ましくは1.0質量%以下、より好ましくは0.5質量%以下とすることができる。回収した未反応の単量体ジイソチオシアネートは再度使用することができる。 The content of monomeric diisothiocyanate in the purified polyisothiocyanate is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less. The recovered unreacted monomeric diisothiocyanate can be used again.
 ポリイソチオシアネートは、有機溶剤と混合して使用することも可能である。この場合、有機溶剤としては、水酸基及びイソシアネート基と反応する官能基を有していないことが好ましい。このような有機溶剤として、エステル化合物、ケトン化合物、芳香族化合物等を用いることができる。 Polyisothiocyanate can be used by mixing with an organic solvent. In this case, the organic solvent preferably does not have a functional group that reacts with a hydroxyl group and an isocyanate group. As such an organic solvent, an ester compound, a ketone compound, an aromatic compound, or the like can be used.
 ポリイソチオシアネートには、目的に応じて、ウレタン化反応等を促進する硬化促進剤、顔料、レベリング材、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、表面活性剤等の各種添加剤を混合して使用することもできる。 Polyisothiocyanate has various additives such as curing accelerators, pigments, leveling materials, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, surfactants, etc., depending on the purpose. Can also be used in combination.
 ポリポリイソチオシアネートは、二液型ポリウレタン塗料、シーリング材、接着剤、インキ、コーティング剤、注型材、エラストマ-、フォーム、プラスチック原料、繊維処理剤、一液硬化型ポリイソチオシアネート等幅広い分野において活用できる。 Polypolyisothiocyanate can be used in a wide range of fields, including two-component polyurethane paints, sealants, adhesives, inks, coating agents, casting materials, elastomers, foams, plastic raw materials, fiber treatment agents, and one-component curable polyisothiocyanates. .
 以下、本発明を実施例に基づき具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。実施例及び比較例中の「部」又は「%」は特記しない限り重量基準である。 Hereinafter, the present invention will be specifically described based on examples, but the scope of the present invention is not limited to these examples. “Parts” or “%” in the examples and comparative examples are based on weight unless otherwise specified.
[分析方法]
(1)H-NMR分析
 試料を約0.3g秤量し、重クロロホルム(米国、アルドリッチ社製、99.8%)を約0.7gと内部標準物質としてテトラメチルシラン(日本国、和光純薬工業社製、和光一級)を0.05g加えて均一に混合した溶液をNMR分析サンプルとした。該サンプルを用いて、日本電子(株)社製JNM-A400FT-NMRシステムにより分析した。
 なお、ポリイソシアネート製造時のイソシアネート基の転化率は次の方法で算出した。
 H-NMRチャートにおいて、テトラメチルシランのメチル基のシグナルを0ppmとし、単量体ジイソシアネートに由来する3.3ppmのシグナルの積分値(A)とイソシアヌレート構造に由来する3.8ppmのシグナルの積分値(B)とから次式により、転化率を算出した。
  転化率(%)=B/(A+B)×100
 また、ポリイソチオシアネート製造時のイソチオシアネート基の転化率は次の方法で算出した。
 H-NMRチャートにおいて、テトラメチルシランのメチル基のシグナルを0ppmとし、単量体ジイソチオシアネートに由来する3.5ppmのシグナルの積分値(A)とイソチオシアヌレート構造に由来する4.8ppmのシグナルの積分値(B)とから次式により、転化率を算出した。
  転化率(%)=B/(A+B)×100
[Analysis method]
(1) 1 H-NMR analysis About 0.3 g of a sample was weighed, about 0.7 g of deuterated chloroform (Aldrich, USA, 99.8%) and tetramethylsilane (Japan, Jun Wako) as an internal standard substance. A solution in which 0.05 g of Yakuhin Kogyo Co., Ltd., Wako Grade 1) was added and mixed uniformly was used as an NMR analysis sample. The sample was analyzed with a JNM-A400FT-NMR system manufactured by JEOL Ltd.
In addition, the conversion rate of the isocyanate group at the time of polyisocyanate manufacture was computed with the following method.
In the 1 H-NMR chart, the methyl group signal of tetramethylsilane was set to 0 ppm, the integrated value (A) of the 3.3 ppm signal derived from the monomeric diisocyanate and the 3.8 ppm signal derived from the isocyanurate structure. The conversion rate was calculated from the integral value (B) according to the following equation.
Conversion rate (%) = B / (A + B) × 100
Moreover, the conversion rate of the isothiocyanate group at the time of polyisothiocyanate manufacture was computed with the following method.
In the 1 H-NMR chart, the methyl group signal of tetramethylsilane was set to 0 ppm, the integrated value (A) of the 3.5 ppm signal derived from the monomer diisothiocyanate and the 4.8 ppm derived from the isothiocyanurate structure. The conversion was calculated from the integral value (B) of the signal of
Conversion rate (%) = B / (A + B) × 100
(2)数平均分子量
 東ソー社製GPC-8020を測定装置として使用し、テトラヒドロフランを展開溶媒とて使用し、東ソー社製TSKgel SuperH3000、SuperH2000、SuperH1000をカラムとして使用してゲル浸透クロマトグラフィー分析(GPC分析)を行った。サンプル約10mgを10mLのテトラヒドロフランに溶解して測定試料とし、注入量は10μLとした。示差屈折率検出器にて観測される分子量既知のポリスチレンの溶出時間との比較で数平均分子量を求めた。
(2) Number average molecular weight Gel permeation chromatography analysis using GPC-8020 manufactured by Tosoh Corporation as a measuring device, tetrahydrofuran as a developing solvent, and TSKgel SuperH3000, SuperH2000 and SuperH1000 manufactured by Tosoh Corporation as columns. Analysis was carried out. About 10 mg of the sample was dissolved in 10 mL of tetrahydrofuran to prepare a measurement sample, and the injection volume was 10 μL. The number average molecular weight was determined by comparison with the elution time of polystyrene having a known molecular weight observed with a differential refractive index detector.
(3)耐熱性評価方法
 TG-8120(RIGAKU社製)にて、窒素雰囲気下、試料10mg、昇温速度10℃/minの条件で熱重量減少測定を行い、300℃以内に5%重量減少が認められなかった場合をAとし、300℃以内に5%重量減少が認められた場合をBとした。
(3) Heat resistance evaluation method TG-8120 (manufactured by RIGAKU) was used to measure thermogravimetric loss under a nitrogen atmosphere under the conditions of 10 mg sample and a heating rate of 10 ° C / min. A was not observed, and B was 5% weight loss within 300 ° C.
(4)塗膜評価方法
 塗膜の密着性評価は以下のようにして行った。アルミ板(縦10cm、横10cm、厚み5mm)に形成した塗膜に、1mm角の切り込みを入れてアルミ板ごとアセトンに浸漬し、24時間後に塗膜が残存するかどうかを調べた。1試料につき10回同様の試験を行い、8枚以上で塗膜が残存している場合をA、それ以外をBとした。
(4) Coating Film Evaluation Method The coating film adhesion evaluation was performed as follows. A 1 mm square cut was made in a coating film formed on an aluminum plate (length 10 cm, width 10 cm, thickness 5 mm) and immersed in acetone together with the aluminum plate, and it was examined whether the coating film remained after 24 hours. The same test was conducted 10 times per sample, and A was given when 8 or more films remained, and B was given otherwise.
(5)銅剥離強度
 JIS C 6481に準じて銅剥離強度を測定した。銅剥離強度が良好なものをA、悪いものをBで表した。
(5) Copper peel strength Copper peel strength was measured in accordance with JIS C 6481. The copper peel strength is indicated by A, and the bad copper peel strength is indicated by B.
[実施例1]
 アジピン酸ジヒドラジドとポリイソシアネート(デュラネートTPA-100、旭化成ケミカルズ株式会社製)を、イソシアネート基とヒドラジド基の当量比が1.0となるように仕込み、酢酸ブチルを混合して固形分10%の分散液を調製した。この分散液を120℃で12時間攪拌した。反応液を一部採取してH-NMRで分析したところ、イソシアネートに由来する3.3ppm付近のピークが消滅していた。ロータリーエバポレーターで酢酸ブチルを留去後、耐熱性の評価をした。評価結果を表1に示す。
[Example 1]
Adipic acid dihydrazide and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were charged so that the equivalent ratio of isocyanate group to hydrazide group was 1.0, and butyl acetate was mixed to disperse the solid content to 10%. A liquid was prepared. This dispersion was stirred at 120 ° C. for 12 hours. When a part of the reaction solution was collected and analyzed by 1 H-NMR, a peak around 3.3 ppm derived from isocyanate disappeared. After removing butyl acetate with a rotary evaporator, the heat resistance was evaluated. The evaluation results are shown in Table 1.
[実施例2]
 ヒドラジン・1水和物36gをイソプロパノール1Lに溶解して0℃に冷却し、撹拌しながらヘキサメチレンジイソチオシアネート50gを添加した。生成した固体をろ過により回収しH-NMRにより分析したところ、4,4’-ヘキサメチレンビスチオセミカルバジドであった。
 該4,4’-ヘキサメチレンビスチオセミカルバジドとポリイソシアネート(デュラネートTPA-100、旭化成ケミカルズ株式会社製)を、実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Example 2]
36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 50 g of hexamethylene diisothiocyanate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR, whereby it was 4,4′-hexamethylenebisthiosemicarbazide.
The 4,4′-hexamethylene bisthiosemicarbazide and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate heat resistance. The evaluation results are shown in Table 1.
[実施例3]
 ヒドラジン・1水和物36gをイソプロパノール1Lに溶解して0℃に冷却し、撹拌しながらヘキサメチレンジイソシアネート50gを添加した。生成した固体をろ過により回収しH-NMRにより分析したところ、4,4’-ヘキサメチレンビスセミカルバジドであった。
 該4,4’-ヘキサメチレンビスセミカルバジドとポリイソシアネート(デュラネートTPA-100、旭化成ケミカルズ株式会社製)を、実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Example 3]
36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 50 g of hexamethylene diisocyanate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR, whereby it was 4,4′-hexamethylene bissemicarbazide.
The 4,4′-hexamethylene bissemicarbazide and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate heat resistance. The evaluation results are shown in Table 1.
[実施例4]
 ヒドラジン・1水和物36gをイソプロパノール1Lに溶解して0℃に冷却し、撹拌しながらメタクリル酸2-イソシアナトエチル280gを添加した。生成した固体をろ過により回収しH-NMRにより分析したところ、メタクリル酸(2-(ヒドラジンカルボアミド)エチル)であった。
 次いで、該メタクリル酸(2-(ヒドラジンカルボアミド)エチル)100gをトルエン1Lに溶解し、メタクリル酸メチル80gとアゾビスイソブチロニトリル0.5gを加え80℃に加熱した。3時間後反応液を採取して1H-NMRで分析したところ、メタクリル酸メチルを構成する二重結合が消失していた。ロータリーエバポレーターでトルエンを留去しセミカルバジド基を有するポリマーを得た。
 該ポリマーとポリイソシアネート(デュラネートTPA-100、旭化成ケミカルズ株式会社製)を実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Example 4]
36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 280 g of 2-isocyanatoethyl methacrylate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR to find methacrylic acid (2- (hydrazinecarboamido) ethyl).
Next, 100 g of the methacrylic acid (2- (hydrazinecarboamido) ethyl) was dissolved in 1 L of toluene, and 80 g of methyl methacrylate and 0.5 g of azobisisobutyronitrile were added and heated to 80 ° C. After 3 hours, the reaction solution was collected and analyzed by 1 H-NMR. As a result, the double bond constituting methyl methacrylate disappeared. Toluene was distilled off with a rotary evaporator to obtain a polymer having a semicarbazide group.
The polymer and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate heat resistance. The evaluation results are shown in Table 1.
[実施例5~8]
 ポリイソシアネートの代わりに、ヘキサメチレンジイソシアネートを使用した以外は、実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Examples 5 to 8]
Except that hexamethylene diisocyanate was used instead of polyisocyanate, the same method as in Example 1 was performed to evaluate heat resistance. The evaluation results are shown in Table 1.
[実施例9]
 実施例4と同様の方法をおこない、メタクリル酸(2-(ヒドラジンカルボアミド)エチル)を製造した。該メタクリル酸(2-(ヒドラジンカルボアミド)エチル)とポリイソシアネート(デュラネートTPA-100、旭化成ケミカルズ株式会社製)を実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Example 9]
In the same manner as in Example 4, methacrylic acid (2- (hydrazinecarboamido) ethyl) was produced. The methacrylic acid (2- (hydrazinecarboamido) ethyl) and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate the heat resistance. The evaluation results are shown in Table 1.
[参考例1]
 実施例1のアジピン酸ジヒドラジドの代わりにヘキサメチレンジオールを使用した以外は、実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Reference Example 1]
The heat resistance was evaluated in the same manner as in Example 1 except that hexamethylenediol was used instead of adipic acid dihydrazide in Example 1. The evaluation results are shown in Table 1.
[参考例2]
 実施例1のアジピン酸ジヒドラジドの代わりにヘキサメチレンジアミンを使用した以外は、実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Reference Example 2]
The heat resistance was evaluated in the same manner as in Example 1 except that hexamethylenediamine was used instead of adipic acid dihydrazide in Example 1. The evaluation results are shown in Table 1.
[参考例3]
 メタクリル酸(2-ヒドロキシエチル)100gをトルエン1Lに溶解し、メタクリル酸メチル80gとアゾビスイソブチロニトリル0.5gを加え80℃に加熱した。3時間後反応液を採取してH-NMRで分析したところ、メタクリル酸メチルを構成する二重結合が消失していた。ロータリーエバポレーターでトルエンを留去しヒドロキシ基を有するポリマーを得た。該ポリマーとポリイソシアネート(デュラネートTPA-100、旭化成ケミカルズ株式会社製)を実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Reference Example 3]
100 g of methacrylic acid (2-hydroxyethyl) was dissolved in 1 L of toluene, 80 g of methyl methacrylate and 0.5 g of azobisisobutyronitrile were added and heated to 80 ° C. After 3 hours, the reaction solution was collected and analyzed by 1 H-NMR. As a result, the double bond constituting methyl methacrylate disappeared. Toluene was distilled off with a rotary evaporator to obtain a polymer having a hydroxy group. The polymer and polyisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Corporation) were evaluated in the same manner as in Example 1 to evaluate heat resistance. The evaluation results are shown in Table 1.
[参考例4~6]
 比較例1のポリイソシアネートの代わりにヘキサメチレンジイソシアネートを使用した以外は、実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Reference Examples 4 to 6]
Except that hexamethylene diisocyanate was used in place of the polyisocyanate of Comparative Example 1, the same method as in Example 1 was performed to evaluate the heat resistance. The evaluation results are shown in Table 1.
[参考例7]
 実施例1のアジピン酸ジヒドラジドの代わりにメタクリル酸(2-ヒドロキシエチル)を使用した以外は、実施例1と同様の方法を行い、耐熱性の評価をした。評価結果を表1に示す。
[Reference Example 7]
The heat resistance was evaluated in the same manner as in Example 1 except that methacrylic acid (2-hydroxyethyl) was used instead of adipic acid dihydrazide in Example 1. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000091
[製造例1]ポリイソチオシアネートの製造
 攪拌機、温度計、環流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、ヘキサメチレンジイソチオシアネート600gを仕込み、撹拌下反応器内温度を130℃に保持し、環状3量体化触媒テトラメチルアンモニウムカプリエートを1.0g添加した。イソチオシアネート基の転化率が30%になった時点で、リン酸添加し反応を停止した。反応液を濾過した後、薄膜蒸留器で未反応のヘキサメチレン時イソチオシアネートを除去した。得られたポリイソチオシアネートの数平均分子量は620であり、イソチオシアネート基平均数は3.2であった。
[Production Example 1] Production of polyisothiocyanate A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen blowing tube was placed in a nitrogen atmosphere, and 600 g of hexamethylene diisothiocyanate was charged. Was maintained at 130 ° C., and 1.0 g of the cyclic trimerization catalyst tetramethylammonium capryate was added. When the conversion of the isothiocyanate group reached 30%, phosphoric acid was added to stop the reaction. After the reaction solution was filtered, unreacted hexamethylene isothiocyanate was removed with a thin-film distiller. The number average molecular weight of the obtained polyisothiocyanate was 620, and the average number of isothiocyanate groups was 3.2.
[実施例10]
 アクリルポリオール(Setalux1903;NUPLEX社製、商品名;水酸基濃度4.5%(樹脂基準)、樹脂固形分75%)と製造例1で得られたポリイソチオシアネートをイソチオシアネート基と水酸基の当量比が1.0となるように仕込み、ジブチル錫ジラウレートを樹脂に対して0.5質量%加え、酢酸ブチルを混合して、固形分50%の樹脂組成物を調製した。この樹脂組成物をアルミ板に樹脂膜厚40μmになるようにアプリケーター塗装した。室温で10分セッテングした後、150℃のオーブンに10時間保持し、硬化塗膜を得た。得られた硬化塗膜の密着性を評価した。評価結果を表2に示す。
[Example 10]
Acrylic polyol (Setalux 1903; manufactured by NUPLEX, trade name; hydroxyl group concentration 4.5% (resin basis), resin solid content 75%) and the polyisothiocyanate obtained in Production Example 1 have an equivalent ratio of isothiocyanate groups to hydroxyl groups. Then, 0.5 mass% of dibutyltin dilaurate was added to the resin, and butyl acetate was mixed to prepare a resin composition having a solid content of 50%. This resin composition was applied to an aluminum plate with an applicator so that the resin film thickness was 40 μm. After setting for 10 minutes at room temperature, it was kept in an oven at 150 ° C. for 10 hours to obtain a cured coating film. The adhesion of the obtained cured coating film was evaluated. The evaluation results are shown in Table 2.
[実施例11]
 4,4’-ジシクロヘキシルメタンジアミンと製造例1で得られたポリイソチオシアネートを、イソチオシアネート基とアミノ基の当量比が1.0となるように仕込み、酢酸ブチルを混合して、固形分50%の樹脂組成物を調製した以外は、実施例1と同様の方法を行った。硬化塗膜の評価結果を表2に示す。
[Example 11]
4,4′-dicyclohexylmethanediamine and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of isothiocyanate groups to amino groups was 1.0, and butyl acetate was mixed to obtain a solid content of 50 % The same method as in Example 1 was performed except that a resin composition was prepared. Table 2 shows the evaluation results of the cured coating film.
[実施例12]
 アジピン酸ジヒドラジドと製造例1で得られたポリイソチオシアネートを、イソチオシアネート基とヒドラジド基の当量比が1.0となるように仕込み、エタノールを混合して固形分10%の樹脂組成物を調製した以外は、実施例10と同様の方法を行った。硬化塗膜の評価結果を表2に示す。
[Example 12]
Adipic acid dihydrazide and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of the isothiocyanate group and hydrazide group was 1.0, and ethanol was mixed to prepare a resin composition having a solid content of 10%. Except that, the same method as in Example 10 was performed. Table 2 shows the evaluation results of the cured coating film.
[実施例13]
 ヒドラジン・1水和物36gをイソプロパノール1Lに溶解して0℃に冷却し、撹拌しながらメタクリル酸2-イソシアナトエチル280gを添加した。生成した固体をろ過により回収しH-NMRにより分析したところ、メタクリル酸(2-(ヒドラジンカルボアミド)エチル)であった。
 次いで、該メタクリル酸(2-(ヒドラジンカルボアミド)エチル)100gをトルエン1Lに溶解し、メタクリル酸メチル80gとアゾビスイソブチロニトリル0.5gを加え80℃に加熱した。3時間後反応液を採取してH-NMRで分析したところ、メタクリル酸メチルを構成する二重結合が消失していた。ロータリーエバポレーターでトルエンを留去しセミカルバジド基を有するポリマーを得た。
 該ポリマーと製造例1で得られたポリイソチオシアネートを、イソチオシアネート基とセミカルバジド基の当量比が1.0となるように仕込み、酢酸ブチルを混合して固形分25%の樹脂組成物を調製した。該樹脂組成物を使用して実施例10と同様の方法を行い、硬化塗膜の評価を行った結果を表2に示す。
[Example 13]
36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 280 g of 2-isocyanatoethyl methacrylate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR to find methacrylic acid (2- (hydrazinecarboamido) ethyl).
Next, 100 g of the methacrylic acid (2- (hydrazinecarboamido) ethyl) was dissolved in 1 L of toluene, and 80 g of methyl methacrylate and 0.5 g of azobisisobutyronitrile were added and heated to 80 ° C. After 3 hours, the reaction solution was collected and analyzed by 1 H-NMR. As a result, the double bond constituting methyl methacrylate disappeared. Toluene was distilled off with a rotary evaporator to obtain a polymer having a semicarbazide group.
The polymer and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of the isothiocyanate group and the semicarbazide group was 1.0, and butyl acetate was mixed to prepare a resin composition having a solid content of 25%. did. Table 2 shows the results obtained by conducting the same method as in Example 10 using the resin composition and evaluating the cured coating film.
[実施例14]
 ヒドラジン・1水和物36gをイソプロパノール1Lに溶解して0℃に冷却し、撹拌しながらヘキサメチレンジイソチオシアネート50gを添加した。生成した固体をろ過により回収しH-NMRにより分析したところ、4,4’-ヘキサメチレンビスチオセミカルバジドであった。
 該4,4’-ヘキサメチレンビスチオセミカルバジドと製造例1で得られたポリイソチオシアネートを、イソチオシアネート基とチオセミカルバジド基の当量比が1.0となるように仕込み、酢酸ブチルを混合して固形分25%の樹脂組成物を調製した。該樹脂組成物を使用して実施例10と同様の方法を行い、硬化塗膜の評価を行った結果を表2に示す。
[Example 14]
36 g of hydrazine monohydrate was dissolved in 1 L of isopropanol, cooled to 0 ° C., and 50 g of hexamethylene diisothiocyanate was added with stirring. The produced solid was recovered by filtration and analyzed by 1 H-NMR, whereby it was 4,4′-hexamethylenebisthiosemicarbazide.
The 4,4′-hexamethylene bisthiosemicarbazide and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of the isothiocyanate group to the thiosemicarbazide group was 1.0, and butyl acetate was mixed. A resin composition having a solid content of 25% was prepared. Table 2 shows the results obtained by conducting the same method as in Example 10 using the resin composition and evaluating the cured coating film.
[参考例8~12]
 ポリイソチオシアネートの代わりにイソシアヌレートタイプポリイソシアネート(デュラネートTPA-100;旭化成ケミカルズ株式会社製、商品名)を使用した以外は、それぞれ実施例10~14と同様の方法を行い、硬化塗膜の評価を行った。結果を表2に示す。
[Reference Examples 8 to 12]
Evaluation of cured coating film was carried out in the same manner as in Examples 10 to 14 except that isocyanurate type polyisocyanate (Duranate TPA-100; trade name, manufactured by Asahi Kasei Chemicals Corporation) was used instead of polyisothiocyanate. Went. The results are shown in Table 2.
[実施例15]
 メタクリル酸2-ヒドロキシエチルと製造例1で得られたポリイソチオシアネートをイソチオシアネート基と水酸基の当量比が水酸基/イソチオシアネート基=1.3となるように仕込み、酢酸ブチルを加えて固形分50%の樹脂組成物とした。該樹脂組成物を130℃で加熱し、H-NMRでイソチオシアネート基が消失するまで加熱を継続した。次いで、この樹脂組成物をアルミ板に樹脂膜厚40μmになるようにアプリケーター塗装した。室温で10分セッテングした後、150℃のオーブンに10時間保持し、硬化塗膜を得た。得られた硬化塗膜の密着性を評価した。評価結果を表2に示す。
[Example 15]
2-hydroxyethyl methacrylate and the polyisothiocyanate obtained in Production Example 1 were charged so that the equivalent ratio of isothiocyanate groups and hydroxyl groups was hydroxyl group / isothiocyanate group = 1.3, and butyl acetate was added to obtain a solid content of 50 % Resin composition. The resin composition was heated at 130 ° C., isothiocyanate groups heating was continued until the disappearance in 1 H-NMR. Next, this resin composition was applied to an aluminum plate with an applicator so that the resin film thickness was 40 μm. After setting for 10 minutes at room temperature, it was kept in an oven at 150 ° C. for 10 hours to obtain a cured coating film. The adhesion of the obtained cured coating film was evaluated. The evaluation results are shown in Table 2.
[参考例13]
 製造例1で得られたポリイソチオシアネートの代わりにイソシアヌレートタイプポリイソシアネート(デュラネートTPA-100;旭化成ケミカルズ株式会社製、商品名)を使用した以外は、実施例15と同様の方法を行った。硬化塗膜評価結果を表2に示す。
[Reference Example 13]
The same method as in Example 15 was carried out except that isocyanurate type polyisocyanate (Duranate TPA-100; trade name, manufactured by Asahi Kasei Chemicals Corporation) was used instead of the polyisothiocyanate obtained in Production Example 1. The cured coating film evaluation results are shown in Table 2.
[実施例16]
 実施例13と同様の方法を行い、メタクリル酸(2-(ヒドラジンカルボアミド)エチル)を製造し、次いでメタクリル酸(2-(ヒドラジンカルボアミド)エチル)のポリマーを得た。
 該ポリマーとアリルイソチオシアネートを、イソチオシアネート基とセミカルバジド基の当量比が1.0となるように仕込み、酢酸ブチルを混合して固形分25%の樹脂組成物を調製した。該樹脂組成物をアルミ板に樹脂膜厚40μmになるようにアプリケーター塗装した。室温で10分セッテングした後、150℃のオーブンに10時間保持し、硬化塗膜を得た。得られた硬化塗膜の密着性を評価した。評価結果を表2に示す。
[Example 16]
In the same manner as in Example 13, methacrylic acid (2- (hydrazinecarboamido) ethyl) was produced, and then a polymer of methacrylic acid (2- (hydrazinecarboamido) ethyl) was obtained.
The polymer and allyl isothiocyanate were charged so that the equivalent ratio of the isothiocyanate group and the semicarbazide group was 1.0, and butyl acetate was mixed to prepare a resin composition having a solid content of 25%. The resin composition was applied to an aluminum plate with an applicator so that the resin film thickness was 40 μm. After setting for 10 minutes at room temperature, it was kept in an oven at 150 ° C. for 10 hours to obtain a cured coating film. The adhesion of the obtained cured coating film was evaluated. The evaluation results are shown in Table 2.
[参考例14]
 アリルイソチオシアネートの代わりにメタクリル酸2-イソシアナトエチルを使用した以外は実施例16と同様の方法を行った。硬化塗膜の評価結果を表2に示す。
[Reference Example 14]
The same procedure as in Example 16 was performed, except that 2-isocyanatoethyl methacrylate was used instead of allyl isothiocyanate. Table 2 shows the evaluation results of the cured coating film.
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000092
[実施例17]
 水200g及びテトラヒドロフラン800gを入れた2Lのナス型フラスコに、テトラメチレンジイソチオシアネート345gと、アジピン酸ジヒドラジド384gとを加えて60℃で12時間撹拌した後、エチルイソチオシアネート7gを更に加え、析出した固体を濾過し回収した。次いで、2重量%水酸化ナトリウム水溶液1000gを入れた2Lナス型フラスコに、上記固体を加え、100℃で8時間撹拌を行い、析出した固体を濾紙で回収した。回収した固体のH-NMRを測定し、構造を同定した。図1に実施例17で得た固体のH-NMRスペクトルを示す。下記式(124)で表される樹脂が得られたと推定される。数平均分子量は5900、上記定義によるMn/nは150であった。なお、XH-NMR測定試料の仕込み濃度と、クロロホルムのピーク(7.26ppm)と環を形成している窒素原子に直接結合しているメチレン鎖のピーク(2.6ppm)の積分値の比から求めた。
[Example 17]
After adding 345 g of tetramethylene diisothiocyanate and 384 g of adipic acid dihydrazide to a 2 L eggplant-shaped flask containing 200 g of water and 800 g of tetrahydrofuran and stirring at 60 ° C. for 12 hours, 7 g of ethyl isothiocyanate was further added and precipitated. The solid was filtered and collected. Next, the above-mentioned solid was added to a 2 L eggplant-shaped flask containing 1000 g of a 2% by weight aqueous sodium hydroxide solution, stirred at 100 ° C. for 8 hours, and the precipitated solid was collected with filter paper. 1 H-NMR of the collected solid was measured to identify the structure. FIG. 1 shows the 1 H-NMR spectrum of the solid obtained in Example 17. It is presumed that a resin represented by the following formula (124) was obtained. The number average molecular weight was 5900, and Mn / n 1 as defined above was 150. X 1 is the integral of the charged concentration of the 1 H-NMR measurement sample, the peak of the chloroform (7.26 ppm), and the peak of the methylene chain directly bonded to the nitrogen atom forming the ring (2.6 ppm). Obtained from the ratio of values.
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
[実施例18]
 攪拌器、温度計、環流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、ヘキサメチレンジイソチオシアネート100gを仕込み、撹拌下反応器内温度を100℃に保持した。その後、触媒としてテトラメチルアンモニウムアセテート(2-ブタノール5.0質量%溶液)2gを添加し撹拌した。適宜反応液のサンプリングを行い、H-NMR分析でイソチオシアネート基の転化率が21%になった時点で、リン酸(85質量%水溶液)0.28g添加し反応を停止した。その後、更に100℃にて1時間加熱し、室温まで冷却し、反応液をろ過して不溶物を除去した後、薄膜蒸留器で単量体ジイソチオシアネートを除去した。単量体ジイソチオシアネート濃度0.4質量%、数平均分子量は860であった。
 得られたポリイソチオシアネートのH-NMRチャートを図2に示す。NMRチャートから、ポリイソチオシアネートが、少なくとも式(28)で表される構成単位を含むことが確認された。数平均分子量は1200、上記定義によるMn/nは100であった。なお、XH-NMR測定試料の仕込み濃度と、クロロホルムのピーク(7.26ppm)とイソチオシアヌレート環を形成している窒素原子に直接結合しているメチレン鎖のピーク(3.8ppm)の積分値の比から求めた。
 得られたポリイソチオシアネートとアクリルポリオール(DIC株式会社製、商品名:アクリディックA-801)をイソチオシアネート基/水酸基比率(当量)が1.0になるように配合し、ジブチル錫ジラウレートをそれぞれ塗料固形分に対して0.5%添加し、これにシンナーとして酢酸エチル/トルエン/酢酸ブチル/キシレン/プロピレングリコールモノメチルエーテルアセテート(重量比=30/30/20/15/5)の混合液を加えた。得られた塗料溶液をエアースプレーガンで乾燥膜厚50μmになるように調整して厚み35μmの銅箔に塗膜し、上に厚み35μmの銅箔を重ねて、120℃に保持されているオーブン中で30分間焼付けたのち、銅剥離強度を評価した。結果を表3に示す。
[Example 18]
A four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube was placed in a nitrogen atmosphere, 100 g of hexamethylene diisothiocyanate was charged, and the temperature in the reactor was kept at 100 ° C. with stirring. Thereafter, 2 g of tetramethylammonium acetate (2-butanol 5.0 mass% solution) was added as a catalyst and stirred. The reaction solution was appropriately sampled, and when the conversion of the isothiocyanate group reached 21% by 1 H-NMR analysis, 0.28 g of phosphoric acid (85 mass% aqueous solution) was added to stop the reaction. Thereafter, the mixture was further heated at 100 ° C. for 1 hour, cooled to room temperature, the reaction solution was filtered to remove insoluble matters, and then the monomer diisothiocyanate was removed with a thin-film distiller. The monomer diisothiocyanate concentration was 0.4 mass%, and the number average molecular weight was 860.
A 1 H-NMR chart of the obtained polyisothiocyanate is shown in FIG. From the NMR chart, it was confirmed that the polyisothiocyanate contains at least a structural unit represented by the formula (28). The number average molecular weight was 1200, and Mn / n 1 according to the above definition was 100. X 1 represents the preparation concentration of the 1 H-NMR measurement sample, the peak of the methylene chain (3.8 ppm) directly bonded to the chloroform peak (7.26 ppm) and the nitrogen atom forming the isothiocyanurate ring. ).
The obtained polyisothiocyanate and acrylic polyol (manufactured by DIC Corporation, trade name: ACRYDIC A-801) were blended so that the isothiocyanate group / hydroxyl group ratio (equivalent) was 1.0, and dibutyltin dilaurate was respectively added. 0.5% based on the solid content of the paint, and a mixture of ethyl acetate / toluene / butyl acetate / xylene / propylene glycol monomethyl ether acetate (weight ratio = 30/30/20/15/5) as a thinner added. The obtained coating solution is adjusted with an air spray gun so as to have a dry film thickness of 50 μm, coated on a copper foil having a thickness of 35 μm, and the copper foil having a thickness of 35 μm is stacked thereon, and an oven maintained at 120 ° C. After baking for 30 minutes, the copper peel strength was evaluated. The results are shown in Table 3.
[実施例19~23]
 表3に示す処方及び条件で、実施例18と同様の方法にてポリイソチオシアネートを製造した。得られたポリイソチオシアネートを用いた以外は実施例18と同様に塗料溶液を調製し、銅剥離強度を評価した。結果を表3に示す。
[Examples 19 to 23]
A polyisothiocyanate was produced in the same manner as in Example 18 with the formulation and conditions shown in Table 3. A coating solution was prepared in the same manner as in Example 18 except that the obtained polyisothiocyanate was used, and the copper peel strength was evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000094
[比較例15]
 ヘキサメチレンジイソチオシアネートの代わりにヘキサメチレンジイソシアネートを使用し、触媒としてテトラメチルアンモニウムアセテート(2-ブタノール5.0質量%溶液)を0.1g使用し、リン酸(85質量%水溶液)12mgを使用した以外は、実施例18と同様の方法で、ポリイソシアネートを製造した。数平均分子量は1100であった。得られたポリイソシアネートを使用した以外は実施例18と同様に塗料溶液を調製し、銅剥離強度を評価した。結果を表4に示す。
[Comparative Example 15]
Hexamethylene diisocyanate is used instead of hexamethylene diisothiocyanate, 0.1 g of tetramethylammonium acetate (2-butanol 5.0 mass% solution) is used as a catalyst, and phosphoric acid (85 mass% aqueous solution) 12 mg is used. A polyisocyanate was produced in the same manner as in Example 18 except that. The number average molecular weight was 1100. A coating solution was prepared in the same manner as in Example 18 except that the obtained polyisocyanate was used, and the copper peel strength was evaluated. The results are shown in Table 4.
[比較例16~20]
 表4に示す処方及び条件で、実施例18と同様の方法にてポリイソシアネートを製造し、銅剥離強度を評価した。結果を表4に示す。
[Comparative Examples 16 to 20]
Polyisocyanate was produced in the same manner as in Example 18 with the formulation and conditions shown in Table 4, and the copper peel strength was evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000095
[実施例24]
 ビスフェノールA型エポキシ樹脂(エポキシ当量189)100部を入れたセパラブルフラスコに、撹拌器、温度計、還流冷却管、窒素吹き込み管を取り付け、フラスコ内に窒素を吹き込みながら、撹拌下150℃に昇温し、150℃到達後30分間撹拌を続けた。反応温度を150℃に維持したまま、ヘキサメチレンジイソチオシアネート18.5部とテトラブチルアンモニウムクロライド(和光純薬;Practical Grade)0.05部の混合物を2時間かけて滴下した。滴下終了後、温度を150℃に保ち反応を行った。H-NMR分析の結果(図3)、下記式(125)又は(126)で表されるオキサゾリジン-2-チオン環を含む化合物が得られたことがわかった。得られた化合物の数平均分子量は2,000であり、数平均分子量2万以上のものは見られなかった。なお、上記数平均分子量は、昭和電工社製shodex A-804、A-803、A-802、A802をカラムとして使用してゲル浸透クロマトグラフィー分析を行った。サンプル約10mgを10mLのテトラヒドロフランに溶解して測定試料とし、注入量は10μLとした。示差屈折率検出器にて観測される分子量基既知のポリスチレンの溶出時間と比較して数平均分子量を求めた。上記定義によるMn/nは220であった。なお、XH-NMR測定試料の仕込み濃度と、内部標準として加えたトルエンのピーク(2.3ppm)と環構造を形成しているメチンのピーク(4.8ppm)の積分値の比から求めた。
[Example 24]
A separable flask containing 100 parts of a bisphenol A type epoxy resin (epoxy equivalent 189) was equipped with a stirrer, thermometer, reflux condenser, and nitrogen blowing tube, and the temperature was raised to 150 ° C. with stirring while blowing nitrogen into the flask. The mixture was warmed and stirring was continued for 30 minutes after reaching 150 ° C. While maintaining the reaction temperature at 150 ° C., a mixture of 18.5 parts of hexamethylene diisothiocyanate and 0.05 part of tetrabutylammonium chloride (Wako Pure Chemical) was added dropwise over 2 hours. After completion of dropping, the reaction was carried out while maintaining the temperature at 150 ° C. As a result of 1 H-NMR analysis (FIG. 3), it was found that a compound containing an oxazolidine-2-thione ring represented by the following formula (125) or (126) was obtained. The number average molecular weight of the obtained compound was 2,000, and no number average molecular weight was 20,000 or more. The number average molecular weight was analyzed by gel permeation chromatography using shodex A-804, A-803, A-802, and A802 manufactured by Showa Denko KK as columns. About 10 mg of the sample was dissolved in 10 mL of tetrahydrofuran to prepare a measurement sample, and the injection volume was 10 μL. The number average molecular weight was determined by comparison with the elution time of polystyrene having a known molecular weight group observed with a differential refractive index detector. Mn / n 1 according to the above definition was 220. X 1 is the ratio of the integrated concentration of the charged concentration of the 1 H-NMR measurement sample and the peak of toluene added as an internal standard (2.3 ppm) and the peak of methine forming a ring structure (4.8 ppm). I asked for it.
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 得られた化合物と硬化剤(ジシアンジアミド)と硬化触媒(2-メチルイミダゾール)を添加し、得られた樹脂組成物をガラスクロスに含浸させ、乾燥することにより樹脂含有量50質量%のプリプレグを得た。該プリプレグを4枚重ね、その上下に厚み35μmの銅箔を重ね合わせたものを温度190℃、圧力20kg/cmの条件下で60分加熱加圧することにより積層板を作製した。該積層板について銅剥離強度を評価した。結果を表5に示す。 The obtained compound, a curing agent (dicyandiamide) and a curing catalyst (2-methylimidazole) are added, and the resulting resin composition is impregnated into a glass cloth and dried to obtain a prepreg having a resin content of 50% by mass. It was. A laminate was produced by stacking four prepregs, and superposing copper foils having a thickness of 35 μm on the top and bottom of the prepregs for 60 minutes under conditions of a temperature of 190 ° C. and a pressure of 20 kg / cm 2 . The copper peel strength of the laminate was evaluated. The results are shown in Table 5.
[実施例25~29]
 表5に示す化合物を用い、実施例24と同様の方法で反応させ、H-NMR分析を行ったところ、上記式(125)又は(126)で表されるオキサゾリジン-2-チオン環を含む化合物を得た。得られた化合物を用い、実施例24と同様の方法で銅剥離強度を評価した。結果を表5に示す。
[Examples 25 to 29]
The compounds shown in Table 5 were reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis. As a result, an oxazolidine-2-thione ring represented by the above formula (125) or (126) was contained. A compound was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
[実施例30~35]
 表6に示す化合物を用い、実施例24と同様の方法で反応させ、H-NMR分析を行ったところ、下記式(127)又は(128)で表されるチアゾリンチオン環を含む化合物を得た。得られた化合物を用い、実施例24と同様の方法で銅剥離強度を評価した。結果を表6に示す。
[Examples 30 to 35]
When the compound shown in Table 6 was reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis, a compound containing a thiazoline thione ring represented by the following formula (127) or (128) was obtained. It was. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
[実施例36~41]
 表7に示す化合物を用い、実施例24と同様の方法で反応させ、H-NMR分析を行ったところ、下記式(129)又は(130)で表されるチアゾリン-2-オン環を含む化合物を得た。得られた化合物を用い、実施例24と同様の方法で銅剥離強度を評価した。結果を表7に示す。
[Examples 36 to 41]
The compounds shown in Table 7 were reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis. As a result, a thiazolin-2-one ring represented by the following formula (129) or (130) was contained. A compound was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000101
[実施例42~59]
 表8~10に示す化合物を用い、実施例24と同様の方法で反応させ、H-NMR分析を行ったところ、上記式(125)又は(126)で表されるオキサゾリジン-2-チオン環を含む化合物を得た。得られた化合物を用い、実施例24と同様の方法で銅剥離強度を評価した。結果を表8~10に示す。
[Examples 42 to 59]
The compounds shown in Tables 8 to 10 were reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis. As a result, the oxazolidine-2-thione ring represented by the above formula (125) or (126) was obtained. A compound containing was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Tables 8-10.
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
[実施例60~62]
 表11に示す化合物を用い、実施例24と同様の方法で反応させ、H-NMR分析を行ったところ、上記式(129)又は(130)で表されるチアゾリン-2-オン環を含む化合物を得た。得られた化合物を用い、実施例24と同様の方法で銅剥離強度を評価した。結果を表11に示す。
[Examples 60 to 62]
Using the compounds shown in Table 11, it was reacted in the same manner as in Example 24, was subjected to 1 H-NMR analysis, including thiazoline-2-one ring represented by the formula (129) or (130) A compound was obtained. Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000105
[比較例21~26]
 表12に示す化合物を用い、実施例24と同様の方法で反応させ、H-NMR分析を行ったところ、下記式(131)又は(132)で表されるオキサゾリドン環を含む化合物を得た。得られた化合物を用い、実施例24と同様の方法で銅剥離強度を評価した。結果を表12に示す。
[Comparative Examples 21 to 26]
The compounds shown in Table 12 were reacted in the same manner as in Example 24 and subjected to 1 H-NMR analysis. As a result, a compound containing an oxazolidone ring represented by the following formula (131) or (132) was obtained. . Using the obtained compound, the copper peel strength was evaluated in the same manner as in Example 24. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000107

Claims (32)

  1.  窒素原子、炭素原子及び硫黄原子から構成され、これらがこの順で結合しており、前記炭素原子と前記硫黄原子との結合及び前記炭素原子と前記窒素原子との結合のうち少なくとも一方が単結合である、窒素-炭素-硫黄結合、を有する樹脂であって、
     当該樹脂の数平均分子量がMnで、当該樹脂1分子あたりに含まれる前記窒素-炭素-硫黄結合を構成する硫黄原子の数がnであるときに、Mnが500以上で、Mn/nが50以上300以下であり、nは式:n=X・Mn(Xは当該樹脂1gあたりに含まれる前記窒素-炭素-硫黄結合を構成する硫黄原子の数を表す。)により算出される、樹脂。
    It is composed of a nitrogen atom, a carbon atom and a sulfur atom, which are bonded in this order, and at least one of the bond between the carbon atom and the sulfur atom and the bond between the carbon atom and the nitrogen atom is a single bond A resin having a nitrogen-carbon-sulfur bond,
    When the number average molecular weight of the resin is Mn and the number of sulfur atoms constituting the nitrogen-carbon-sulfur bond contained per molecule of the resin is n 1 , Mn is 500 or more, Mn / n 1 Is from 50 to 300, and n 1 is represented by the formula: n 1 = X 1 · Mn (X 1 represents the number of sulfur atoms constituting the nitrogen-carbon-sulfur bond contained per 1 g of the resin). Calculated resin.
  2.  当該樹脂の5%熱重量減少温度が300℃以上である、請求項1に記載の樹脂。 The resin according to claim 1, wherein the resin has a 5% thermal weight loss temperature of 300 ° C or higher.
  3.  下記式(1)、(2)、(3)、(4)又は(5)で表される1価の基からなる群から選ばれる少なくとも1種の官能基を有する化合物と、
     モノイソシアネート、ポリイソシアネート、モノイソチオシアネート及びポリイソチオシアネートからなる群より選ばれる少なくとも1種の化合物と、
    の反応によって得られる樹脂。
    Figure JPOXMLDOC01-appb-C000001
    A compound having at least one functional group selected from the group consisting of monovalent groups represented by the following formula (1), (2), (3), (4) or (5);
    At least one compound selected from the group consisting of monoisocyanate, polyisocyanate, monoisothiocyanate and polyisothiocyanate;
    Resin obtained by the reaction of
    Figure JPOXMLDOC01-appb-C000001
  4.  式(1)、(2)、(3)、(4)又は(5)で表される1価の基からなる群から選ばれる少なくとも1種の官能基を有する前記化合物と、
     モノイソチオシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の化合物と、
    の反応によって得られる樹脂である、請求項3に記載の樹脂。
    The compound having at least one functional group selected from the group consisting of monovalent groups represented by formula (1), (2), (3), (4) or (5);
    At least one compound selected from monoisothiocyanate and polyisothiocyanate;
    The resin of Claim 3 which is resin obtained by reaction of these.
  5.  前記モノイソチオシアネートが、下記式(30)で表される化合物を含む、請求項3又は4に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、炭素数1~25の脂肪族基、芳香族基で置換された炭素数7~25の脂肪族基又は炭素数6~25の芳香族基を表す。)
    The resin according to claim 3 or 4, wherein the monoisothiocyanate includes a compound represented by the following formula (30).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 5 represents an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group, or an aromatic group having 6 to 25 carbon atoms.)
  6.  式(3)、(4)又は(5)で表される前記官能基と、イソシアネート基又はイソチオシアネート基との反応に由来する環状構造を有する、請求項3~5のいずれか一項に記載の樹脂。 The cyclic structure derived from a reaction between the functional group represented by the formula (3), (4) or (5) and an isocyanate group or an isothiocyanate group is described in any one of claims 3 to 5. Resin.
  7.  前記環状構造を含有する基として、下記式(6)、(7)又は(8)で表される2価の基からなる群から選ばれる少なくとも1種の構成単位を2以上有する、請求項6に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式中、
    は有機基を表し、同一分子中の複数のYは同一でも異なってもよい。)
    The group containing the cyclic structure has two or more structural units selected from the group consisting of divalent groups represented by the following formula (6), (7) or (8). Resin.
    Figure JPOXMLDOC01-appb-C000003
    (Where
    Y 1 represents an organic group, a plurality of Y 1 in the same molecule may be the same or different. )
  8.  下記式(6)、(7)又は(8)で表される2価の基からなる群から選ばれる少なくとも1種の構成単位を2以上有する、樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (式中、
    は有機基を表し、同一分子中の複数のYは同一でも異なってもよい。)
    Resin which has 2 or more of at least 1 type of structural unit chosen from the group which consists of a bivalent group represented by following formula (6), (7) or (8).
    Figure JPOXMLDOC01-appb-C000004
    (Where
    Y 1 represents an organic group, a plurality of Y 1 in the same molecule may be the same or different. )
  9.  当該樹脂の数平均分子量がMnで、当該樹脂1分子あたりに含まれる式(6)、(7)又は(8)で表される前記構成単位の数の和がnであるときに、Mnが500以上で、Mn/nが50以上300以下であり、nは式:n=X・Mn(Xは当該樹脂1gあたりに含まれる式(6)、(7)又は(8)で表される前記構成単位の数の和を表す。)により算出される、請求項7又は8に記載の樹脂。 The number average molecular weight of the resin is Mn, type contained per the resin molecule (6), when (7) or the sum of the number of the structural unit represented by (8) is n 2, Mn Is 500 or more, Mn / n 2 is 50 or more and 300 or less, and n 2 is a formula: n 2 = X 2 · Mn (X 2 is a formula (6), (7) or ( The resin according to claim 7 or 8, which is calculated by the following formula: 8) representing the sum of the number of the structural units represented by 8).
  10.  窒素原子、炭素原子及び硫黄原子から構成され、これらがこの順で結合している、窒素-炭素-硫黄結合、を有する化合物と、ポリイソチオシアネートとの反応により得られる樹脂。 A resin obtained by reacting a compound having a nitrogen-carbon-sulfur bond, which is composed of a nitrogen atom, a carbon atom and a sulfur atom and bonded in this order, with a polyisothiocyanate.
  11.  前記ポリイソチオシアネートが、下記式(32)で表される化合物を含む、請求項3~7及び10のいずれか一項に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000005
    (式中、
    は有機基を表し、
    aは2~1000の整数を表す。)
    The resin according to any one of claims 3 to 7 and 10, wherein the polyisothiocyanate contains a compound represented by the following formula (32).
    Figure JPOXMLDOC01-appb-C000005
    (Where
    R 6 represents an organic group,
    a represents an integer of 2 to 1000. )
  12.  前記ポリイソチオシアネートが、下記式(33)で表される繰り返し単位を2以上有するポリマーを含む、請求項3~7及び10のいずれか一項に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000006
    (式中、
    は有機基を表し、
    は有機基又は単結合を表し、
    bは1以上の整数を表し、
    gは1又は2を表し、
    同一分子中の複数のR、R、b及びgはそれぞれ同一でも異なってもよい。)
    The resin according to any one of claims 3 to 7 and 10, wherein the polyisothiocyanate includes a polymer having two or more repeating units represented by the following formula (33).
    Figure JPOXMLDOC01-appb-C000006
    (Where
    R 7 represents an organic group,
    R 8 represents an organic group or a single bond,
    b represents an integer of 1 or more,
    g represents 1 or 2,
    A plurality of R 7 , R 8 , b and g in the same molecule may be the same or different. )
  13.  前記ポリイソチオシアネートが、
     下記式(40)で表される構成単位を2以上と、
     下記式(41)、(42)、(43)、(44)、(45)、(46)又は(47)で表される1価、2価又は3価の基からなる群から選ばれる少なくとも1種の構成単位と、を有する化合物であって、該化合物中の窒素原子が炭素原子と結合している、化合物を含む、請求項3~7及び10のいずれか一項に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (式中、
    は有機基を表し、Rは脂肪族基又は芳香族基を表し、Xは酸素原子又は硫黄原子を表し、同一分子中の複数のR、R及びXはそれぞれ同一でも異なってもよい。)
    The polyisothiocyanate is
    Two or more structural units represented by the following formula (40),
    At least selected from the group consisting of monovalent, divalent or trivalent groups represented by the following formula (41), (42), (43), (44), (45), (46) or (47) The resin according to any one of claims 3 to 7 and 10, which comprises a compound having one structural unit, wherein a nitrogen atom in the compound is bonded to a carbon atom.
    Figure JPOXMLDOC01-appb-C000007
    (Where
    R 3 represents an organic group, R 4 represents an aliphatic group or an aromatic group, X 3 represents an oxygen atom or a sulfur atom, and a plurality of R 3 , R 4 and X 3 in the same molecule may be the same May be different. )
  14.  前記ポリイソチオシアネートが、下記式(33)で表される化合物を含む、請求項3~7及び10のいずれか一項に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000008
    (式中、
    は、有機基を表す。)
    The resin according to any one of claims 3 to 7 and 10, wherein the polyisothiocyanate contains a compound represented by the following formula (33).
    Figure JPOXMLDOC01-appb-C000008
    (Where
    R 3 represents an organic group. )
  15.  下記式(33)で表される化合物を重合することを含む方法によって得られる、樹脂。
    Figure JPOXMLDOC01-appb-C000009
    (式中、
    は、有機基を表す。)
    Resin obtained by the method including superposing | polymerizing the compound represented by following formula (33).
    Figure JPOXMLDOC01-appb-C000009
    (Where
    R 3 represents an organic group. )
  16.  式(33)で表される前記化合物を触媒の存在下で重合することを含む、請求項15に記載の樹脂の製造方法。 The method for producing a resin according to claim 15, comprising polymerizing the compound represented by the formula (33) in the presence of a catalyst.
  17.  下記式(40)で表される構成単位を2以上と、
     下記式(41)、(42)、(43)、(44)、(45)、(46)又は(47)で表される1価、2価又は3価の基からなる群から選ばれる少なくとも1種の構成単位と、を有し、
     式(41)、(42)、(43)、(44)、(45)、(46)又は(47)で表される1つの前記構成単位中の窒素原子が、式(41)、(42)、(43)、(44)、(45)、(46)又は(47)で表される他の前記構成単位中の窒素原子と直接結合していない、樹脂。
    Figure JPOXMLDOC01-appb-C000010
    (式中、
    は有機基を表し、Rは脂肪族基又は芳香族基を表し、
    は酸素原子又は硫黄原子を表し、
    同一分子中の複数のR、R及びXはそれぞれ同一でも異なってもよい。)
    Two or more structural units represented by the following formula (40),
    At least selected from the group consisting of monovalent, divalent or trivalent groups represented by the following formula (41), (42), (43), (44), (45), (46) or (47) One structural unit, and
    The nitrogen atom in one said structural unit represented by Formula (41), (42), (43), (44), (45), (46) or (47) is represented by Formula (41), (42 ), (43), (44), (45), (46) or a resin not directly bonded to a nitrogen atom in the other structural unit represented by (47).
    Figure JPOXMLDOC01-appb-C000010
    (Where
    R 3 represents an organic group, R 4 represents an aliphatic group or an aromatic group,
    X 3 represents an oxygen atom or a sulfur atom,
    A plurality of R 3 , R 4 and X 3 in the same molecule may be the same or different. )
  18.  Rが、脂肪族基又は芳香族基である、請求項13、14、15又は17に記載の樹脂。 The resin according to claim 13, 14, 15 or 17, wherein R 3 is an aliphatic group or an aromatic group.
  19.  Rが、下記式(301)、(302)、(303)、(304)、(305)又は(306)で表される基である、請求項18に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000011
    (式中、
    iは1~12の整数を表す。)
    The resin according to claim 18, wherein R 3 is a group represented by the following formula (301), (302), (303), (304), (305) or (306).
    Figure JPOXMLDOC01-appb-C000011
    (Where
    i represents an integer of 1 to 12. )
  20.  請求項1~15及び17~19のいずれか一項に記載の樹脂を含む、樹脂組成物。 A resin composition comprising the resin according to any one of claims 1 to 15 and 17 to 19.
  21.  請求項20に記載の樹脂組成物から形成される、塗膜材。 A coating material formed from the resin composition according to claim 20.
  22.  請求項20に記載の樹脂組成物を含有する、水系塗料。 A water-based paint containing the resin composition according to claim 20.
  23.  下記式(10)で表される分子鎖を有する樹脂。
    Figure JPOXMLDOC01-appb-C000012
    (式中、
    は脂肪族基及び/又は芳香族基を表し、Qは下記式(11)、(12)、(13)又は(14)で表される2価の基からなる群より選択される1種以上の構成単位を表し、複数あるP及びQは同一でも異なってもよく、nは2以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000013
    (式中、
    は、脂肪族基又は芳香族基を表し、
    及びYはそれぞれ独立に酸素原子又は硫黄原子を表し、
    同一分子中の複数のR、X及びYはそれぞれ同一でも異なってもよく、
    一つのQ中のX及びYのうち1つ以上が硫黄原子である。)
    A resin having a molecular chain represented by the following formula (10).
    Figure JPOXMLDOC01-appb-C000012
    (Where
    P 1 represents an aliphatic group and / or an aromatic group, and Q 1 is selected from the group consisting of divalent groups represented by the following formula (11), (12), (13) or (14). 1 or more types of structural units are represented, Plural P 1 and Q 1 may be the same or different and n represents an integer of 2 or more. )
    Figure JPOXMLDOC01-appb-C000013
    (Where
    R 1 represents an aliphatic group or an aromatic group,
    X 2 and Y 2 each independently represent an oxygen atom or a sulfur atom,
    A plurality of R 1 , X 2 and Y 2 in the same molecule may be the same or different,
    One or more of X 2 and Y 2 in one Q 1 is a sulfur atom. )
  24.  Rが、ポリイソシアネートから該ポリイソシアネートを構成するイソシアネート基を2つ除いた残基、又は、ポリイソチオシアネートから該ポリイソチオシアネートを構成するイソチオシアネート基を2つ除いた残基である、請求項23に記載の樹脂。 R 1 is a residue obtained by removing two isocyanate groups constituting the polyisocyanate from polyisocyanate or a residue obtained by removing two isothiocyanate groups constituting the polyisothiocyanate from polyisothiocyanate. Item 24. The resin according to item 23.
  25.  ポリイソシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の化合物と、
     下記式(20)で表される化合物との反応によって得られる、請求項23又は24に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000014
    (式中、
    は、脂肪族基又は芳香族基を表し、
    は、酸素原子又は硫黄原子を表す。)
    At least one compound selected from polyisocyanates and polyisothiocyanates;
    The resin according to claim 23 or 24, which is obtained by a reaction with a compound represented by the following formula (20).
    Figure JPOXMLDOC01-appb-C000014
    (Where
    R 2 represents an aliphatic group or an aromatic group,
    Y 2 represents an oxygen atom or a sulfur atom. )
  26.  ポリイソシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の前記化合物が、下記式(31)で表される化合物を含む、請求項25に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000015
    (式中、
    は、脂肪族基又は芳香族基を表し、
    Xは、酸素原子又は硫黄原子を表す。)
    The resin according to claim 25, wherein the at least one compound selected from polyisocyanate and polyisothiocyanate includes a compound represented by the following formula (31).
    Figure JPOXMLDOC01-appb-C000015
    (Where
    R 1 represents an aliphatic group or an aromatic group,
    X represents an oxygen atom or a sulfur atom. )
  27.  Rが下記式(201)、(202)、(203)又は(204)で表される1価の基である、請求項25又は26に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000016
    The resin according to claim 25 or 26, wherein R 2 is a monovalent group represented by the following formula (201), (202), (203) or (204).
    Figure JPOXMLDOC01-appb-C000016
  28.  Rが、炭素数1~25の脂肪族基、芳香族基で置換された炭素数7~25の脂肪族基又は炭素数6~25の芳香族基である、請求項23~27のいずれか一項に記載の樹脂。 R 1 is an aliphatic group having 1 to 25 carbon atoms, an aliphatic group having 7 to 25 carbon atoms substituted with an aromatic group, or an aromatic group having 6 to 25 carbon atoms. The resin according to claim 1.
  29.  Rが、下記式(301)、(302)、(303)、(304)、(305)又は(306)で表される炭化水素基からなる群より選択される炭化水素基である、請求項23~27のいずれか一項に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000017
    (式中、
    iは1~12の整数を表す。)
    R 1 is a hydrocarbon group selected from the group consisting of hydrocarbon groups represented by the following formula (301), (302), (303), (304), (305) or (306). Item 28. The resin according to any one of Items 23 to 27.
    Figure JPOXMLDOC01-appb-C000017
    (Where
    i represents an integer of 1 to 12. )
  30.  Rが、スピロ原子を含有しない、請求項23~28のいずれか一項に記載の樹脂。 The resin according to any one of claims 23 to 28, wherein R 1 does not contain a spiro atom.
  31.  請求項23~30のいずれか一項に記載の樹脂と、硬化剤と、を含む硬化性組成物。 A curable composition comprising the resin according to any one of claims 23 to 30 and a curing agent.
  32.  ポリイソシアネート及びポリイソチオシアネートから選ばれる少なくとも1種の前記化合物と、式(20)で表される前記化合物とを触媒の存在下で反応させることを含む、請求項25又は26に記載の樹脂の製造方法。 27. The resin according to claim 25, comprising reacting at least one compound selected from polyisocyanate and polyisothiocyanate with the compound represented by formula (20) in the presence of a catalyst. Production method.
PCT/JP2014/068056 2013-07-08 2014-07-07 Modified resin and resin composition WO2015005283A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202010115257.7A CN111205424B (en) 2013-07-08 2014-07-07 Modified resin and resin composition
KR1020167000412A KR101875294B1 (en) 2013-07-08 2014-07-07 Modified resin and resin composition
JP2015526326A JP6005285B2 (en) 2013-07-08 2014-07-07 Modified resin and resin composition
CN201480038533.7A CN105358602B (en) 2013-07-08 2014-07-07 Modified resin and resin combination
CN202111368897.XA CN113929866B (en) 2013-07-08 2014-07-07 Modified resin and resin composition

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-142424 2013-07-08
JP2013142424 2013-07-08
JP2013146433 2013-07-12
JP2013-146433 2013-07-12
JP2013-196918 2013-09-24
JP2013196918 2013-09-24
JP2013197448 2013-09-24
JP2013-197448 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015005283A1 true WO2015005283A1 (en) 2015-01-15

Family

ID=52279963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068056 WO2015005283A1 (en) 2013-07-08 2014-07-07 Modified resin and resin composition

Country Status (5)

Country Link
JP (1) JP6005285B2 (en)
KR (1) KR101875294B1 (en)
CN (4) CN111205424B (en)
TW (5) TWI543995B (en)
WO (1) WO2015005283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017047733A1 (en) * 2015-09-16 2018-08-09 国立大学法人 東京大学 New underwater adhesive compound

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102093B2 (en) * 2016-09-28 2022-07-19 味の素株式会社 Resin composition, resin sheet, circuit board and semiconductor chip package
MX2020004288A (en) * 2017-10-27 2020-07-29 Huntsman Int Llc Catalysts for making oxazolidinone materials.
CN109705306B (en) * 2018-12-13 2021-02-26 江南大学 Preparation method of UV-cured polydimethylsiloxane-based modified weather-resistant coating
CN116003379B (en) * 2022-12-28 2024-02-09 湖北安卡新材料科技有限公司 Polycyclic thioether monomer and preparation method of polycyclic thioether optical resin thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3914850B1 (en) * 1962-12-19 1964-07-27
JPS61233021A (en) * 1985-04-09 1986-10-17 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Triazoline thione-containing polymer
JPH0236216A (en) * 1987-09-19 1990-02-06 Mitsui Toatsu Chem Inc Resin for plastic lens having high refractive index and lens made thereof
JPH05345854A (en) * 1992-06-16 1993-12-27 Showa Denko Kk Polymide resin composition
JP2001114860A (en) * 1999-10-13 2001-04-24 Rengo Co Ltd High-molecular compound and sulfur-containing urethane-based resin
JP2002317026A (en) * 2001-04-23 2002-10-31 Rengo Co Ltd Sulfur-containing urethane dendrimer and method for producing the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585200A (en) * 1966-06-09 1971-06-15 Pennwalt Corp 4,4'-alkylene bis(semicarbazide) and derivatives thereof
US3597341A (en) * 1968-09-11 1971-08-03 Exxon Research Engineering Co Selective addition of thiols to allylic isocyanates and isothiocyanates
US3884951A (en) * 1968-09-11 1975-05-20 Exxon Research Engineering Co Thioether isocyanate adducts
CA960793A (en) * 1970-06-22 1975-01-07 James A. Clarke Oxazolidinone-modified epoxy novolac resin molding compositions
US3998866A (en) * 1971-01-18 1976-12-21 Exxon Research And Engineering Company Thioether propyl isocyanates
ZA839459B (en) 1982-12-30 1985-08-28 Mobil Oil Corp Polyoxazolidone powder coating compositions
JPS61181820A (en) 1985-02-06 1986-08-14 Sumitomo Bakelite Co Ltd Thermosetting resin composition
US4861806A (en) * 1986-09-19 1989-08-29 Ciba-Geigy Corporation Process for curing polyisocyanate coatings in the presence of a ferrocenium compound
EP0351073B1 (en) * 1988-07-14 1994-09-21 MITSUI TOATSU CHEMICALS, Inc. Lens comprising a resin having a large refractive index and process for preparing the lens
JP2758952B2 (en) 1989-12-28 1998-05-28 富士通株式会社 Display Method for Japanese Document Reading and Translation System at Correction
JPH03258768A (en) * 1990-03-07 1991-11-19 Agency Of Ind Science & Technol Preparation of 1,3,5-perhydrotriazine-2,4,6-trithione derivative
JPH04201582A (en) 1990-11-30 1992-07-22 Ricoh Co Ltd Bit map development processing method
JPH05255283A (en) * 1992-03-09 1993-10-05 Nippon Nohyaku Co Ltd Triazinetrithione derivatives and its production
JPH05287076A (en) * 1992-04-13 1993-11-02 Nippon Nohyaku Co Ltd Triazinetrithione oligomer and its production
JP3969906B2 (en) * 1999-09-01 2007-09-05 独立行政法人科学技術振興機構 Redox active polymer and electrode using the same
JP2001219498A (en) 2000-02-10 2001-08-14 Nippon Steel Corp Aluminum plated steel panel good in urethane releasability and urethane adhesiveness and excellent in processability
CN1296404C (en) 2000-10-17 2007-01-24 旭化成株式会社 Process for preparation of polyisocyanate composition
US20040138401A1 (en) * 2002-11-05 2004-07-15 Nina Bojkova High impact poly (urethane urea) polysulfides
US20030149217A1 (en) * 2001-11-16 2003-08-07 Bojkova Nina V. High impact poly (urethane urea) polysulfides
JP4092173B2 (en) 2002-10-24 2008-05-28 Necエレクトロニクス株式会社 Semiconductor integrated circuit device
US7304724B2 (en) 2004-04-13 2007-12-04 The Regents Of The University Of California Method and apparatus for quantification of optical properties of superficial volumes
WO2007094819A2 (en) 2005-08-18 2007-08-23 Synta Pharmaceuticals Corp. Triazole compounds that modulate hsp90 activity
JP4995282B2 (en) 2006-10-27 2012-08-08 ソシエテ ド テクノロジー ミシュラン Polyurea adhesive
JP5385620B2 (en) 2009-01-19 2014-01-08 三井化学株式会社 Adhesive composition
EP2216353A1 (en) 2009-02-10 2010-08-11 Bayer MaterialScience AG Carrier film with polyurethane coating
KR101310593B1 (en) * 2009-02-27 2013-09-23 아사히 가세이 이-매터리얼즈 가부시키가이샤 Microencapsulated hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack epoxy resin composition, and processed article
KR20120115329A (en) * 2009-12-22 2012-10-17 다우 글로벌 테크놀로지스 엘엘씨 Oxazolidone ring contaning adducts
CN102311700A (en) * 2010-06-29 2012-01-11 拜耳材料科技(中国)有限公司 Aliphatic Polyurea paint, preparation method and application thereof
RU2549891C2 (en) * 2010-07-08 2015-05-10 Хантсмэн Интернэшнл Ллс Polyisocyanate-based anti-corrosion coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3914850B1 (en) * 1962-12-19 1964-07-27
JPS61233021A (en) * 1985-04-09 1986-10-17 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Triazoline thione-containing polymer
JPH0236216A (en) * 1987-09-19 1990-02-06 Mitsui Toatsu Chem Inc Resin for plastic lens having high refractive index and lens made thereof
JPH05345854A (en) * 1992-06-16 1993-12-27 Showa Denko Kk Polymide resin composition
JP2001114860A (en) * 1999-10-13 2001-04-24 Rengo Co Ltd High-molecular compound and sulfur-containing urethane-based resin
JP2002317026A (en) * 2001-04-23 2002-10-31 Rengo Co Ltd Sulfur-containing urethane dendrimer and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017047733A1 (en) * 2015-09-16 2018-08-09 国立大学法人 東京大学 New underwater adhesive compound

Also Published As

Publication number Publication date
TWI570144B (en) 2017-02-11
TW201605915A (en) 2016-02-16
TW201605917A (en) 2016-02-16
CN113929866B (en) 2023-07-07
JPWO2015005283A1 (en) 2017-03-02
KR101875294B1 (en) 2018-07-05
TWI565725B (en) 2017-01-11
KR20160018726A (en) 2016-02-17
CN113929866A (en) 2022-01-14
CN105358602B (en) 2018-12-04
CN107629183B (en) 2021-01-05
TW201605916A (en) 2016-02-16
TW201522403A (en) 2015-06-16
CN107629183A (en) 2018-01-26
TWI564316B (en) 2017-01-01
CN105358602A (en) 2016-02-24
CN111205424A (en) 2020-05-29
TW201605918A (en) 2016-02-16
TWI543995B (en) 2016-08-01
TWI577705B (en) 2017-04-11
CN111205424B (en) 2022-04-08
JP6005285B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6005285B2 (en) Modified resin and resin composition
JP6250138B2 (en) Isocyanurate composition
CN100460435C (en) (Block) polyisocyanate composition and coating composition using same
JP7044797B2 (en) A method for improving the water resistance and hardness retention of a coating film
JP6571007B2 (en) Coating composition for forming impact-resistant coating film
KR20200047519A (en) Multilayer film and two-liquid curable coating agent
US20200048494A1 (en) Urethane coating composition for metal substrates
CN104710905A (en) Coating system, a method of applying the coating system and an article comprising the coating system
JP6437837B2 (en) Polyisocyanate composition, coating composition, and coating film
JP6801125B2 (en) Paint composition
WO2007090875A1 (en) One-part type heat curable composition
JP7078846B2 (en) Paint modifiers and paint compositions
JPH08120222A (en) Electrodeposition coating composition
WO2021007125A1 (en) Omniphobic compatibilizers for clear coatings, related articles, and related methods
JP2017197657A (en) Polyisocyanate composition, coating composition, coating film and coated article
DE112012005181B4 (en) Waterborne coating composition containing bioresource polytrimethylene ether polyol, multicoat paint system and method of forming a multicoat paint system
JP2019156928A (en) Curing agent composition and water-based coating composition
CN114752031A (en) Aqueous hardener, aqueous matting coating composition comprising the same and use thereof
TW202235472A (en) Urethanization reaction catalyst, urethane compound, curable composition, cured product, and method for producing urethane compound
JPH09328619A (en) Curable composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038533.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526326

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167000412

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822917

Country of ref document: EP

Kind code of ref document: A1