WO2015004946A1 - Charger - Google Patents

Charger Download PDF

Info

Publication number
WO2015004946A1
WO2015004946A1 PCT/JP2014/056148 JP2014056148W WO2015004946A1 WO 2015004946 A1 WO2015004946 A1 WO 2015004946A1 JP 2014056148 W JP2014056148 W JP 2014056148W WO 2015004946 A1 WO2015004946 A1 WO 2015004946A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
capacity
charger
battery pack
Prior art date
Application number
PCT/JP2014/056148
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 昌彦
弘毅 兵藤
田渕 泰弘
英裕 山内
和征 榊原
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2015004946A1 publication Critical patent/WO2015004946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]

Definitions

  • the present invention relates to a charger that can charge a plurality of battery packs that are used in a state where they are electrically connected in series, or that can be charged one by one.
  • a battery pack charger used for electric tools and the like is disclosed in JP-A-2006-318682.
  • the charger is configured to receive a signal from a temperature sensor provided in the battery pack and perform optimum charging control of the battery pack based on the signal.
  • the charger described above is configured so that the battery pack can be charged up to an effective charge capacity (limit charge capacity) that can be charged. For this reason, even if it is a plurality of battery packs used in a state where they are electrically connected in series, for example, each battery pack is charged to an effective charge capacity in the charger.
  • the effective charge capacity of each battery pack differs depending on the rated capacity of the battery pack. Further, even if the rated capacities of the battery packs are equal, the effective charge capacity may vary depending on the usage environment and the usage period of the battery pack.
  • the present invention has been made to solve the above-described problems, and the problem to be solved by the present invention is that power remaining unused in a plurality of battery packs used in a state of being connected in series. It is to eliminate the amount of battery pack charging time and waste of power.
  • a plurality of battery packs that are used in a state where they are electrically connected in series are collectively or can be charged one by one, and the plurality of battery packs are configured.
  • an effective charge capacity that can be charged is obtained, a specified charge capacity that is equal to or less than the smallest effective charge capacity among the effective charge capacities in each battery pack is set, and It is configured to be able to stop charging when the charging capacity reaches a specified charging capacity.
  • it is configured to set a specified charging capacity that is equal to or less than the smallest effective charging capacity among the effective charging capacities in each battery pack, and to stop charging when the charging capacity of the battery pack reaches a specified charging capacity. ing.
  • the same amount of electric power is charged in all of the plurality of battery packs, and the remaining capacity of the plurality of battery packs connected in series to the power tool becomes zero at substantially the same time. Therefore, the amount of power that remains unused is eliminated, and the battery pack charging time and waste of power can be saved.
  • the battery pack includes a charging port to which a plurality of battery packs are respectively connected, and is configured to be able to stop charging when the charging capacity of all the battery packs reaches a specified charging capacity. To do.
  • the charging amount can be adjusted by simultaneously charging the battery packs, so that the charging time can be shortened.
  • a charging port to which one of a plurality of battery packs is connected is provided, and the charging can be stopped when the charging capacity of the one battery pack reaches a specified charging capacity. It is characterized by.
  • the charge amounts of a plurality of battery packs used in a state of being connected in series can be made the same.
  • the effective charge capacity of each battery pack is determined using the rated capacity of the battery pack.
  • the effective charge capacity of each battery pack is determined from the history data of the battery pack.
  • the memory area of the microcomputer of the charger can be reduced by using the history data of the battery pack.
  • the charging control is performed so that the charging completion time of each battery pack is the same.
  • the respective battery packs are charged in order at a constant capacity.
  • the battery packs are charged with a constant charging current after the charge capacities of the battery packs become equal.
  • each battery pack is charged with substantially the same amount of power.
  • a control for stopping charging when a charging capacity of the battery pack reaches a specified charging capacity and a control for stopping charging when the charging capacity of the battery pack reaches an effective charging capacity can be switched and executed. It is comprised by these.
  • the present invention in a plurality of battery packs that are used in a state of being connected in series, there is no remaining electric energy that is not used, and it is possible to eliminate waste of charging time and waste of power of the battery pack.
  • FIG. 2 is a block diagram of a charger according to Embodiment 1.
  • FIG. It is a time chart showing ON / OFF of the control power supply in the said charger. It is a circuit diagram of the indicator in the charger. It is a schematic diagram showing the charging operation of the said charger. It is a graph showing the relationship between the charge amount of the said charger, and charging time. It is a flowchart showing operation
  • the battery charger 10 includes, for example, two battery packs 60 (hereinafter, referred to as a battery pack 60) used in a power tool (not shown) having a rated DC of 36V configured such that two battery packs 60 having a rated DC of 18V can be connected. , Battery 60).
  • a battery pack 60 used in a power tool (not shown) having a rated DC of 36V configured such that two battery packs 60 having a rated DC of 18V can be connected.
  • Battery 60 Battery 60
  • front and rear, right and left, and top and bottom in the figure correspond to front and rear, right and left, and top and bottom of the charger.
  • the charger 10 is configured to be able to charge the batteries 60 with two rated DC 18V batteries 60 connected. As shown in FIG. 1, the charger 10 includes two sets of charging ports 12 (A, B) configured to be connectable to the battery 60.
  • the left and right slide rails (not shown) of the battery 60 are fitted to the left and right receiving rails 13 of the charging port 12, and the battery 60 is connected to the charging port. 12 is slid from the rear side to the front side. As a result, the terminal cover 16 of the charging port 12 is pushed by the battery 60 and slides forward (in the opening direction) against the spring force.
  • the positive and negative connection terminals and the connector (not shown) of the battery 60 are connected to the positive and negative connection terminals (not shown) and the connector (not shown) of the charging port 12. Will be connected to each.
  • the battery 60 and the charging port 12 of the charger 10 are mechanically and electrically connected.
  • a partition wall 19 is formed between the leftmost charging port 12 (charging port A) and the right charging port 12 (charging port B), and a first indicator 21 is formed on the front inclined surface 19a of the partition wall 19. And a second display 22 is provided.
  • the 1st indicator 21 is a indicator which displays the charge state etc. of the battery 60 (battery A) connected to the charge port A, and displays the green LED 21a arranged on the upper side and the red LED 21b arranged on the lower side. I have.
  • the second display 22 is a display for displaying a charging state of the battery 60 (battery B) connected to the charging port B, and includes an upper green LED 22a and a lower red LED 22b.
  • the charger 10 includes a microcomputer 25 (microcomputer A), a microcomputer 26 (microcomputer B), a power supply circuit 27, and a switching circuit 28.
  • the power circuit 27 is a circuit that converts AC power supplied from a household outlet (not shown) through the power cord section 29 into DC power for charging.
  • the switching circuit 28 can switch and supply the DC power for charging the power supply circuit 27 to the battery A connected to the charging port A or the battery B connected to the charging port B based on a signal from the microcomputer A. It is configured as follows.
  • the microcomputer A is a part that controls charging of the battery A connected to the charging port A, and is configured to operate the power supply circuit 27 and the switching circuit 28 based on a program stored in the memory so as to perform charging. Yes.
  • microcomputer A is configured to operate the power supply circuit 27 and the switching circuit 28 based on the data transmitted from the microcomputer B.
  • microcomputer A is configured to monitor the connection state of the battery A to the charging port A and the charging state of the battery A and output a signal to the first display 21.
  • the microcomputer B is a part that controls charging of the battery B connected to the charging port B, transmits data to the microcomputer A, and operates the power supply circuit 27 and the switching circuit 28 via the microcomputer A to operate the battery B. It is comprised so that it can charge.
  • microcomputer B is configured to monitor the connection state of the battery B to the charging port B and the charging state of the battery B and output a signal to the second display 22.
  • microcomputer A is configured to be able to turn on and off the control power supply VccA used when charging the battery A in accordance with the connection state of the battery A to the charging port A, the charging state, the charging suspension state, and the like. .
  • the microcomputer B is configured to be able to turn on and off the control power supply VccB used when charging the battery B according to the connection state of the battery B to the charging port B, the charging state, the charging suspension state, and the like. Yes.
  • the control power supply VccA used when charging the battery A is turned on. Become.
  • the control power supply VccA is turned off after confirming the state of the battery A for a certain period of time.
  • the control power supply VccB is quickly turned off after the control power supply VccB is turned on for a predetermined time for checking the state of the battery B.
  • the control power supply VccB is turned on.
  • the first display 21 is a display that displays the state of charge of the battery A and the like. For example, the red LED 21b is turned on while the battery A is being charged, and the green LED 21a is turned on when charging is completed.
  • the second display 22 is a display that displays the charging state of the battery B, and is configured so that, for example, the red LED 22b is lit while the battery B is being charged, and the green LED 22a is lit when the charging is completed.
  • the LED 21a, LED 21b of the first display 21 and the LED 22a, LED 22b of the second display 22 are connected in series to the dedicated power supply VLED for LED via the constant current circuit 23. It is connected.
  • Transistors T21a, T21b, T22a, and T22b are connected to each LED in parallel.
  • the red LED 21b of the first display 21 is turned on when the transistor T21b is turned off, and the green LED 21a is turned off when the transistor T21a is turned on.
  • the red LED 21b of the first indicator 21 is turned off when the transistor T21b is turned on, and the green LED 21a is turned on when the transistor T21a is turned off.
  • the operation of the second indicator 22 for the battery B is the same as the operation of the first indicator 22 for the battery A.
  • a plurality of (four) LEDs are connected to the dedicated power supply VLED via the constant current circuit 23 in a state where they are connected in series, even if all four LEDs are lit, there is no difference.
  • FIGS. 7 and 8 are prepared on the assumption that the batteries A and B are connected to the charging ports A and B of the charger 10 almost simultaneously.
  • the processing shown in FIGS. 7 and 8 is executed based on a program stored in the memories of the microcomputers A and B of the charger 10.
  • the effective charging capacity MA is a capacity that allows the battery A to be charged to the limit.
  • step S103 When battery B is connected to charging port B of charger 10 (FIG. 7, step S103 YES), current charging capacity of battery B (remaining capacity CBstart), effective charging capacity MB, and history information of battery B Are stored (step S104 in FIG. 7).
  • the battery A and the battery B are batteries having the same rated capacity, but since the battery B is more deteriorated than the battery A, the effective charge capacity (limit charge capacity) of the battery A is large. MA is larger than the effective charge capacity (limit charge capacity) MB of battery B. Further, the remaining capacity CAstart of the battery A is assumed to be smaller than the remaining capacity CBstart of the battery B as shown in FIG.
  • the effective charge capacity MA of the battery A and the effective charge capacity MB of the battery B are compared, and the smaller one is stored as the specified charge capacity Cmax ( FIG. 7 Step S105). As shown in FIG. 5, since the effective charging capacity MA> the effective charging capacity MB, the effective charging capacity MB of the battery B is set to the specified charging capacity Cmax.
  • the specified charging capacity Cmax can be set to a value smaller than the effective charging capacity MB of the battery B.
  • step S106 the remaining capacity CAstart of the battery A and the remaining capacity CBstart of the battery B are compared (step S106 in FIG. 7). Since CAstart ⁇ CBstart (FIG. 7, step S106 YES), first, the battery A is charged (see FIG. 7, step S107, FIG. 5, FIG. 6, N1). When the current charging capacity CAnow of the battery A becomes equal to the current charging capacity CBnow (remaining capacity CBstart) of the battery B by charging (step S109 YES in FIG. 7), the battery A enters a charging suspension state (step S110 in FIG. 7).
  • step S106 NO if the remaining capacity CAstar of the battery A is larger than the remaining capacity CBstart of the battery B (FIG. 7, step S106 NO), the battery B is charged (step S108 in FIG. 7).
  • the current charging capacity CBnow of the battery B becomes equal to the current charging capacity CAnow of the battery A due to charging (step S109 YES in FIG. 7)
  • the battery B enters a charging suspension state (step S110 in FIG. 7).
  • step S111 YES in FIG. 8 since the battery A is charged and the battery A is in the charging halt state (step S111 YES in FIG. 8), the battery B is then charged. (See FIG. 8, Step S112, FIG. 5, FIG. 6, N2). When a certain amount of charging for the battery B is completed (FIG. 8, step S113: YES), the battery B enters a charging suspension state (FIG. 8, step S114).
  • step S115 in FIG. 8, N3 in FIG. 5 and FIG. 6 the battery A is charged.
  • step S116 in FIG. 8 battery A enters a charging suspension state (step S117 in FIG. 8).
  • step S118 in FIG. 8 since neither the battery A nor the battery B is charged to the specified charge capacity Cmax, the determination in step S118 in FIG. 8 is NO and the determination in step S120. NO, the determination in step S121 is NO, and the battery B is charged in step S112 of FIG. 8 (see N4 in FIGS. 5 and 6).
  • steps S112 to S117, step S118 (NO), step S120 (NO), and step S121 (NO) in FIG. Refer to FIG. 5, FIG. 6, N5, N6,..., Nn, Nn + 1).
  • step S118 when the current charging capacity CAnow of the battery A becomes larger than the specified charging capacity Cmax (step S118 YES in FIG. 8), the charging of the battery A is completed (step S119).
  • step S120 the current charge capacity CBnow of the battery B and the specified charge capacity Cmax are compared. If CBnow ⁇ Cmax (FIG. 8, step S120: NO), it is determined in step S121 that charging of one battery A is completed. As described above, since charging of the battery A is completed (step S121 YES in FIG. 8), the battery B is charged in step S122. When the current charging capacity CBnow of battery B> the specified charging capacity Cmax (step S120 YES in FIG. 8), charging of battery B is completed (step S123).
  • the batteries A and B can be charged up to the specified charge capacity Cmax. Further, since the charging is performed alternately, even when the charging is stopped halfway, the battery A and the battery B are charged with substantially the same amount of power.
  • the specified charging capacity Cmax smaller than the smallest effective charging capacity MA, MB in each of the batteries A, B is set, and the charging capacity of the batteries A, B is set. Is configured to be able to stop charging when it reaches the specified charging capacity Cmax. For this reason, the plurality of batteries A and B are charged with the same amount of electric power, and the remaining capacity of the plurality of batteries A and B connected in series to the electric tool (not shown) becomes almost zero at the same time. .
  • the effective charging capacities MA and MB of the batteries A and B are determined using the battery history data, the storage area of the microcomputers 25 and 26 of the charger 10 can be reduced.
  • the charger 10 according to the present embodiment is different from the charger 10 according to the first embodiment in a method of charging the batteries A and B, and the basic configuration is the same as that of the charger 10 according to the first embodiment.
  • the effective charge capacity MA of the battery A and the effective charge capacity MB of the battery B are compared, and the smaller one is stored as the specified charge capacity Cmax (step S145 in FIG. 11).
  • the effective charging capacity MA> the effective charging capacity MB since the effective charging capacity MA> the effective charging capacity MB, the effective charging capacity MB of the battery B is set to the specified charging capacity Cmax.
  • step S146 the battery A and the battery B are charged with an optimum current suitable for charging the respective batteries. That is, as shown in FIGS. 9 and 10, the battery A is charged with the target charging current I1, and the battery B is charged with the target charging current I2.
  • step S148 the current charging of the battery A is performed in step S148. It is determined whether or not the capacity CAnow and the current charging capacity CBnow of the battery B are equal. If the current charging capacity CAnow of the battery A is smaller than the current charging capacity CBnow of the battery B (see timing T1 in FIG. 10, FIG. 11, step S148, NO), the target charging current between the battery A and the battery B in step S146 in FIG. Charging by I1 and I2 is continued.
  • step S146 to step S148 in FIG. 11 when the processing from step S146 to step S148 in FIG. 11 is repeated and the current charging capacity CAnow of battery A becomes equal to the current charging capacity CBnow of battery B (see timing T2 in FIG. 10, YES in step S148 in FIG. 11), the battery.
  • the target charging current I1 (> I2) of A is limited to the target charging current I2 of the battery B (FIG. 12, step S150, YES, step S151). Then, the battery A and the battery B are charged with the same target charging current I2 (FIG. 12, step S154).
  • Step S154, Step S155, Step S157, and Step S158 are repeatedly executed.
  • step S155 YES when the current charge capacity CAnow of the battery A becomes larger than the specified charge capacity Cmax (FIG. 12, step S155 YES), the charging of the battery A is completed (see timing T4 in FIG. 10, FIG. 12, step S156). Further, when the current charging capacity CBnow of the battery B becomes larger than the specified charging capacity Cmax (step S157 YES in FIG. 12), the charging of the battery B is completed (see timing T4 in FIG. 10, step S160 in FIG. 12).
  • step S158 is YES, and the other battery Is continued (FIG. 12, step S159).
  • the current charging capacity Cnow of the other battery becomes larger than the specified charging capacity Cmax (FIG. 12, step S157 YES)
  • the charging of the other battery is completed (step S160 in FIG. 12).
  • step S151 the determination in step S151 is NO, and the target charging current I2 of the battery B is limited to the target charging current I1 of the battery A (FIG. 12, step S153).
  • the charging completion times of the batteries A and B are equal (see timing T4 in FIG. 10).
  • the present invention is not limited to the first and second embodiments, and can be modified without departing from the gist of the present invention.
  • the charger 10 including two sets of charging ports 12 is illustrated, but the present invention can also be applied to a charger including three or more sets of charging ports 12.
  • the charger 10 may be provided with a mode changeover switch 25s (see FIG. 2) or the like so that the battery can be switched between charging to the specified charging capacity Cmax or charging to the effective charging capacity MA, MB. good.
  • the charger 10 including two sets of the charging ports 12 is illustrated, but the present invention can be applied to the case where the charging port 12 is only one set.
  • the battery A inserted first is charged, and the effective charging capacity of the battery A when the charging is completed is stored in the charger 10.
  • the effective charging capacity of the battery B inserted into the charger 10 is acquired, and this is compared with the effective charging capacity of the battery A stored earlier, and the smaller one is set as the specified charging capacity. And you may make it charge the battery B to a regulation charge capacity. Further, by performing the same process for the battery C inserted next to the battery B, the smallest effective charge capacity can be set as the specified charge capacity.
  • the specified charging capacity may be stored in a nonvolatile memory of the charger 10.
  • a mode changeover switch 25s see FIG. 2 or the like for the charger 10.
  • the specified charge capacity may be stored in the volatile memory.

Abstract

A charger capable of collectively or individually charging a plurality of battery packs (A, B) which can be used while electrically-connected in series, the charger being configured to: store effective charge capacities (MA, MB) up to which battery packs (MA, MB) can each be charged; set a prescribed charge capacity (Cmax) that is equal to or less than the smallest effective charge capacity (MA, MB) among the effective charge capacities (MA, MB) in the respective battery packs (A, B); and stop the charge when the charge capacity of respective battery packs (A, B) reaches the prescribed charge capacity (Cmax).

Description

充電器Charger
 本発明は、電気的に直列に接続された状態で使用される複数のバッテリパックをまとめて、あるいは一台毎に充電できる充電器に関する。 The present invention relates to a charger that can charge a plurality of battery packs that are used in a state where they are electrically connected in series, or that can be charged one by one.
 電動工具等に使用されるバッテリパックの充電器が特開2006-318682号に開示されている。この充電器は、バッテリパックに設けられた温度センサの信号を受信し、前記信号に基づいてバッテリパックの最適な充電制御を行えるように構成されている。 A battery pack charger used for electric tools and the like is disclosed in JP-A-2006-318682. The charger is configured to receive a signal from a temperature sensor provided in the battery pack and perform optimum charging control of the battery pack based on the signal.
 上記した充電器では、バッテリパックに対して充電が可能な有効充電容量(限界充電容量)まで充電を行えるように構成されている。このため、例えば、電気的に直列に接続された状態で使用される複数のバッテリパックであっても、前記充電器では、各々のバッテリパックは有効充電容量まで充電される。 The charger described above is configured so that the battery pack can be charged up to an effective charge capacity (limit charge capacity) that can be charged. For this reason, even if it is a plurality of battery packs used in a state where they are electrically connected in series, for example, each battery pack is charged to an effective charge capacity in the charger.
 しかし、各々のバッテリパックの有効充電容量は、バッテリパックの定格容量により異なっている。また、バッテリパックの定格容量が等しくてもバッテリパックの使用環境、使用期間によって有効充電容量が異なる場合がある。 However, the effective charge capacity of each battery pack differs depending on the rated capacity of the battery pack. Further, even if the rated capacities of the battery packs are equal, the effective charge capacity may vary depending on the usage environment and the usage period of the battery pack.
このため、これらのバッテリパック(例えば、18V)を直列に接続して電動工具(36V)を駆動させる場合、最も有効充電容量が小さいバッテリパックが放電不能になれば、残りのバッテリパックが放電可能な状態であっても電動工具を駆動させることはできない。即ち、一台のバッテリパックの残容量が零となったときに、残りのバッテリパックに残容量が存在しても、残りのバッテリパックの電力を使用することはできない。 For this reason, when these battery packs (for example, 18V) are connected in series to drive a power tool (36V), the remaining battery pack can be discharged if the battery pack with the smallest effective charge capacity cannot be discharged. Even in such a state, the electric tool cannot be driven. That is, when the remaining capacity of one battery pack becomes zero, even if the remaining battery pack has a remaining capacity, the power of the remaining battery pack cannot be used.
 したがって、直列に接続された状態で使用される複数のバッテリパックの場合、各々のバッテリパックをそれぞれ有効充電容量まで充電すると、充電時間、及び電力の無駄が生じることになる。 Therefore, in the case of a plurality of battery packs used in a state of being connected in series, if each battery pack is charged to the effective charge capacity, charging time and power are wasted.
 本発明は、上記問題点を解決するためになされたものであり、本発明が解決しようとする課題は、直列に接続された状態で使用される複数のバッテリパックにおいて、使用されずに残る電力量をなくして、バッテリパックの充電時間、及び電力の無駄を省けるようにすることである。 The present invention has been made to solve the above-described problems, and the problem to be solved by the present invention is that power remaining unused in a plurality of battery packs used in a state of being connected in series. It is to eliminate the amount of battery pack charging time and waste of power.
 本発明の1つの側面によると、電気的に直列に接続された状態で使用される複数のバッテリパックをまとめて、あるいは一台毎に充電できる充電器であって、前記複数のバッテリパックを構成する個々のバッテリパックについて、充電が可能な有効充電容量を求め、各々のバッテリパックにおける有効充電容量のうちで最も小さい有効充電容量以下の容量の規定充電容量を設定し、前記各々のバッテリパックの充電容量が規定充電容量まで達したら充電を停止できるように構成されていることを特徴とする。 According to one aspect of the present invention, a plurality of battery packs that are used in a state where they are electrically connected in series are collectively or can be charged one by one, and the plurality of battery packs are configured. For each battery pack, an effective charge capacity that can be charged is obtained, a specified charge capacity that is equal to or less than the smallest effective charge capacity among the effective charge capacities in each battery pack is set, and It is configured to be able to stop charging when the charging capacity reaches a specified charging capacity.
 即ち、各々のバッテリパックにおける有効充電容量のうちで最も小さい有効充電容量以下の容量の規定充電容量を設定し、前記バッテリパックの充電容量が規定充電容量まで達したら充電を停止できるように構成されている。 That is, it is configured to set a specified charging capacity that is equal to or less than the smallest effective charging capacity among the effective charging capacities in each battery pack, and to stop charging when the charging capacity of the battery pack reaches a specified charging capacity. ing.
このため、複数のバッテリパックの全てにそれぞれ等しい電力量が充電されるようになり、電動工具に対して直列接続された複数のバッテリパックがほぼ同時期に残容量が零となる。したがって、使用されずに残る電力量がなくなり、バッテリパックの充電時間、及び電力の無駄を省けるようになる。 For this reason, the same amount of electric power is charged in all of the plurality of battery packs, and the remaining capacity of the plurality of battery packs connected in series to the power tool becomes zero at substantially the same time. Therefore, the amount of power that remains unused is eliminated, and the battery pack charging time and waste of power can be saved.
 他の側面によると、複数のバッテリパックがそれぞれ接続される充電ポートを備えており、全てのバッテリパックの充電容量が規定充電容量まで達したら充電を停止できるように構成されていることを特徴とする。 According to another aspect, the battery pack includes a charging port to which a plurality of battery packs are respectively connected, and is configured to be able to stop charging when the charging capacity of all the battery packs reaches a specified charging capacity. To do.
 このように、複数のバッテリパックがそれぞれ接続される充電ポートを備えているため、それらのバッテリパックを同時に充電して充電量を合わせることができるので、充電時間の短縮を図ることができる。 As described above, since the charging port to which each of the plurality of battery packs is connected is provided, the charging amount can be adjusted by simultaneously charging the battery packs, so that the charging time can be shortened.
 他の側面によると、複数のバッテリパックのうちの一台が接続される充電ポートを備えており、前記一台のバッテリパックの充電容量が規定充電容量まで達したら充電を停止できるように構成されていることを特徴とする。 According to another aspect, a charging port to which one of a plurality of battery packs is connected is provided, and the charging can be stopped when the charging capacity of the one battery pack reaches a specified charging capacity. It is characterized by.
 このように、充電ポートが一台の充電器の場合でも、直列に接続された状態で使用される複数のバッテリパックの充電量を同一にすることができる。 Thus, even when the charging port is a single charger, the charge amounts of a plurality of battery packs used in a state of being connected in series can be made the same.
 他の側面によると、各々のバッテリパックの有効充電容量は、前記バッテリパックの定格容量を利用して決定されることを特徴とする。 According to another aspect, the effective charge capacity of each battery pack is determined using the rated capacity of the battery pack.
 他の側面よると、各々のバッテリパックの有効充電容量は、前記バッテリパックの履歴データから決定されることを特徴とする。このように、バッテリパックの履歴データ等を利用することで、充電器のマイコンの記憶領域を減らすことができる。 According to another aspect, the effective charge capacity of each battery pack is determined from the history data of the battery pack. Thus, the memory area of the microcomputer of the charger can be reduced by using the history data of the battery pack.
 他の側面によると、各々のバッテリパックの充電完了時間が同じとなるように充電制御が行われることを特徴とする。 According to another aspect, the charging control is performed so that the charging completion time of each battery pack is the same.
 他の側面によると、各々のバッテリパックの充電容量が等しくなった後、各々のバッテリパックを順番に一定容量づつ充電することを特徴とする。 According to another aspect, after the charge capacities of the respective battery packs become equal, the respective battery packs are charged in order at a constant capacity.
 他の側面によると、各々のバッテリパックの充電容量が等しくなった後、各々のバッテリパックを一定の充電電流で充電することを特徴とする。 According to another aspect, the battery packs are charged with a constant charging current after the charge capacities of the battery packs become equal.
 このため、複数のバッテリパックの充電を途中で中断した場合でも、各々のバッテリパックにはほぼ等しい電力量が充電されているようになる。 Therefore, even when charging of a plurality of battery packs is interrupted, each battery pack is charged with substantially the same amount of power.
したがって、バッテリパックの充電を途中で中断した場合でも、電動工具(図示省略)に直列接続されたバッテリパックA,Bがほぼ同時期に残容量が零となる。 Therefore, even when the charging of the battery pack is interrupted in the middle, the remaining capacity of the battery packs A and B connected in series to the electric tool (not shown) becomes zero almost at the same time.
 他の側面によると、バッテリパックの充電容量が規定充電容量まで達したら充電を停止する制御と、前記バッテリパックの充電容量が有効充電容量まで達したら充電を停止する制御とを切替えて実施できるように構成されていることを特徴とする。 According to another aspect, a control for stopping charging when a charging capacity of the battery pack reaches a specified charging capacity and a control for stopping charging when the charging capacity of the battery pack reaches an effective charging capacity can be switched and executed. It is comprised by these.
 このため、直列に接続された状態で使用される複数のバッテリパックと、単独で使用されるバッテリパックとの充電を一台の充電器で実施することができる。 For this reason, it is possible to charge a plurality of battery packs used in a state of being connected in series and a battery pack used singly with a single charger.
 本発明によると、直列に接続された状態で使用される複数のバッテリパックにおいて、使用されずに残る電力量がなくなり、バッテリパックの充電時間の無駄、及び電力の無駄を省けるようになる。 According to the present invention, in a plurality of battery packs that are used in a state of being connected in series, there is no remaining electric energy that is not used, and it is possible to eliminate waste of charging time and waste of power of the battery pack.
本発明の実施形態1に係る充電器の全体斜視図である。It is a whole perspective view of the charger concerning Embodiment 1 of the present invention. 実施形態1に係る充電器のブロック図である。2 is a block diagram of a charger according to Embodiment 1. FIG. 前記充電器における制御電源のオンオフを表すタイムチャートである。It is a time chart showing ON / OFF of the control power supply in the said charger. 前記充電器における表示器の回路図である。It is a circuit diagram of the indicator in the charger. 前記充電器の充電動作を表す模式図である。It is a schematic diagram showing the charging operation of the said charger. 前記充電器の充電量と充電時間との関係を表すグラフである。It is a graph showing the relationship between the charge amount of the said charger, and charging time. 前記充電器の動作を表すフローチャートである。It is a flowchart showing operation | movement of the said charger. 前記充電器の動作を表すフローチャートである。It is a flowchart showing operation | movement of the said charger. 変更例に係る充電器の充電動作を表す模式図である。It is a schematic diagram showing the charging operation of the charger which concerns on the example of a change. 変更例に係る充電器の充電量と充電時間との関係を表すグラフである。It is a graph showing the relationship between the charge amount of the charger which concerns on the example of a change, and charging time. 変更例に係る充電器の動作を表すフローチャートである。It is a flowchart showing operation | movement of the charger which concerns on the example of a change. 変更例に係る充電器の動作を表すフローチャートである。It is a flowchart showing operation | movement of the charger which concerns on the example of a change.
 本発明の実施形態を図1から図8に基づいて説明する。本実施形態に係る充電器10は、例えば、定格DC18Vのバッテリパック60が二個接続可能なように構成された定格DC36Vの電動工具(図示省略)において使用される二個のバッテリパック60(以下、バッテリ60という)を効率的に充電できるように構成されている。ここで、図中における前後左右、上下は、充電器における前後左右、上下に対応している。 Embodiments of the present invention will be described with reference to FIGS. The battery charger 10 according to the present embodiment includes, for example, two battery packs 60 (hereinafter, referred to as a battery pack 60) used in a power tool (not shown) having a rated DC of 36V configured such that two battery packs 60 having a rated DC of 18V can be connected. , Battery 60). Here, front and rear, right and left, and top and bottom in the figure correspond to front and rear, right and left, and top and bottom of the charger.
 充電器10は、定格DC18Vのバッテリ60が二個接続された状態で、それらのバッテリ60を充電可能なように構成されている。充電器10は、図1に示すように、前記バッテリ60が接続可能に構成された二セットの充電ポート12(A、B)を備えている。 The charger 10 is configured to be able to charge the batteries 60 with two rated DC 18V batteries 60 connected. As shown in FIG. 1, the charger 10 includes two sets of charging ports 12 (A, B) configured to be connectable to the battery 60.
 バッテリ60を充電ポート12(A、B)に接続する場合には、バッテリ60の左右のスライドレール(図示省略)を充電ポート12の左右の受けレール13に嵌合させ、そのバッテリ60を充電ポート12に対して後側から前側にスライドさせる。これにより、充電ポート12の端子カバー16がバッテリ60に押されてバネ力に抗して前方(開方向)にスライドする。 When the battery 60 is connected to the charging port 12 (A, B), the left and right slide rails (not shown) of the battery 60 are fitted to the left and right receiving rails 13 of the charging port 12, and the battery 60 is connected to the charging port. 12 is slid from the rear side to the front side. As a result, the terminal cover 16 of the charging port 12 is pushed by the battery 60 and slides forward (in the opening direction) against the spring force.
 そして、バッテリ60が前進限位置までスライドする過程で、そのバッテリ60の正負の接続端子とコネクタ(図示省略)とが前記充電ポート12の正負の接続端子(図示省略)とコネクタ(図示省略)とにそれぞれ接続されるようになる。 In the process of sliding the battery 60 to the forward limit position, the positive and negative connection terminals and the connector (not shown) of the battery 60 are connected to the positive and negative connection terminals (not shown) and the connector (not shown) of the charging port 12. Will be connected to each.
 これにより、バッテリ60と充電器10の充電ポート12とが機械的、電気的に接続される。 Thereby, the battery 60 and the charging port 12 of the charger 10 are mechanically and electrically connected.
 左端の充電ポート12(充電ポートA)と右側の充電ポート12(充電ポートB)との間には隔壁部19が形成されており、その隔壁部19の前側傾斜面19aに第1表示器21と第2表示器22が設けられている。 A partition wall 19 is formed between the leftmost charging port 12 (charging port A) and the right charging port 12 (charging port B), and a first indicator 21 is formed on the front inclined surface 19a of the partition wall 19. And a second display 22 is provided.
第1表示器21は、充電ポートAに接続されたバッテリ60(バッテリA)の充電状態等を表示する表示器であり、上側に配置された緑色LED21aと下側に配置された赤色LED21bとを備えている。 The 1st indicator 21 is a indicator which displays the charge state etc. of the battery 60 (battery A) connected to the charge port A, and displays the green LED 21a arranged on the upper side and the red LED 21b arranged on the lower side. I have.
第2表示器22は、充電ポートBに接続されたバッテリ60(バッテリB)の充電状態等を表示する表示器であり、上側の緑色LED22aと下側の赤色LED22bとを備えている。 The second display 22 is a display for displaying a charging state of the battery 60 (battery B) connected to the charging port B, and includes an upper green LED 22a and a lower red LED 22b.
 充電器10は、図2に示すように、マイコン25(マイコンA)とマイコン26(マイコンB)と電源回路27と切替回路28とを備えている。 2, the charger 10 includes a microcomputer 25 (microcomputer A), a microcomputer 26 (microcomputer B), a power supply circuit 27, and a switching circuit 28.
 電源回路27は、家庭用コンセント(図示省略)から電源コード部29を介して供給された交流電力を充電用の直流電力に変換する回路である。 The power circuit 27 is a circuit that converts AC power supplied from a household outlet (not shown) through the power cord section 29 into DC power for charging.
 切替回路28は、マイコンAからの信号に基づいて電源回路27の充電用の直流電力を充電ポートAに接続されたバッテリA、あるいは充電ポートBに接続されたバッテリBに対して切替えて供給できるように構成されている。 The switching circuit 28 can switch and supply the DC power for charging the power supply circuit 27 to the battery A connected to the charging port A or the battery B connected to the charging port B based on a signal from the microcomputer A. It is configured as follows.
 マイコンAは、充電ポートAに接続されたバッテリAの充電を制御する部分であり、メモリーに格納されたプログラムに基づいて電源回路27、切替回路28を動作させて充電を行えるように構成されている。 The microcomputer A is a part that controls charging of the battery A connected to the charging port A, and is configured to operate the power supply circuit 27 and the switching circuit 28 based on a program stored in the memory so as to perform charging. Yes.
また、マイコンAは、マイコンBから伝送されてきたデータに基づいて電源回路27、切替回路28を動作させられるように構成されている。 In addition, the microcomputer A is configured to operate the power supply circuit 27 and the switching circuit 28 based on the data transmitted from the microcomputer B.
さらに、マイコンAは、充電ポートAに対するバッテリAの接続状態、及びバッテリAの充電状態を監視して第1表示器21に対して信号を出力できるように構成されている。 Further, the microcomputer A is configured to monitor the connection state of the battery A to the charging port A and the charging state of the battery A and output a signal to the first display 21.
 マイコンBは、充電ポートBに接続されたバッテリBの充電を制御する部分であり、マイコンAに対してデータを伝送し、マイコンAを介して電源回路27、切替回路28を動作させてバッテリBの充電を行えるように構成されている。 The microcomputer B is a part that controls charging of the battery B connected to the charging port B, transmits data to the microcomputer A, and operates the power supply circuit 27 and the switching circuit 28 via the microcomputer A to operate the battery B. It is comprised so that it can charge.
 また、マイコンBは、充電ポートBに対するバッテリBの接続状態、及びバッテリBの充電状態を監視して第2表示器22に対して信号を出力できるように構成されている。 Further, the microcomputer B is configured to monitor the connection state of the battery B to the charging port B and the charging state of the battery B and output a signal to the second display 22.
 また、マイコンAは、充電ポートAに対するバッテリAの接続状態、及び充電状態、充電休止状態等に合わせて、バッテリAの充電時に使用される制御電源VccAをオン、オフできるように構成されている。 Further, the microcomputer A is configured to be able to turn on and off the control power supply VccA used when charging the battery A in accordance with the connection state of the battery A to the charging port A, the charging state, the charging suspension state, and the like. .
同様に、マイコンBは、充電ポートBに対するバッテリBの接続状態、及び充電状態、充電休止状態等に合わせて、バッテリBの充電時に使用される制御電源VccBをオン、オフできるように構成されている。 Similarly, the microcomputer B is configured to be able to turn on and off the control power supply VccB used when charging the battery B according to the connection state of the battery B to the charging port B, the charging state, the charging suspension state, and the like. Yes.
 例えば、図3に示すように、充電器10にバッテリAがセット(接続)されて、そのバッテリAの充電が開始されると、バッテリAの充電時に使用される制御電源VccAがオンするようになる。そして、バッテリAの充電が完了すると、バッテリAがセットされている状態であっても、一定時間バッテリAの状態確認が行われた後に前記制御電源VccAがオフされる。 For example, as shown in FIG. 3, when the battery A is set (connected) to the charger 10 and charging of the battery A is started, the control power supply VccA used when charging the battery A is turned on. Become. When the charging of the battery A is completed, even if the battery A is set, the control power supply VccA is turned off after confirming the state of the battery A for a certain period of time.
 また、バッテリAの充電中にバッテリBが充電ポートBにセットされると、バッテリBの状態確認のため制御電源VccBが一定時間オンした後、速やかに制御電源VccBがオフされる。そして、バッテリBの充電が開始されると、制御電源VccBがオンするようになる。このように、制御電源VccA,VccBが必要時にのみオンするため、電力の無駄を省けるようになる。 Further, when the battery B is set to the charging port B while the battery A is being charged, the control power supply VccB is quickly turned off after the control power supply VccB is turned on for a predetermined time for checking the state of the battery B. When charging of the battery B is started, the control power supply VccB is turned on. Thus, since the control power supplies VccA and VccB are turned on only when necessary, waste of power can be saved.
 第1表示器21は、バッテリAの充電状態等を表示する表示器であり、例えば、バッテリAの充電中に赤色LED21bが点灯し、充電完了時に緑色LED21aが点灯するように構成されている。 The first display 21 is a display that displays the state of charge of the battery A and the like. For example, the red LED 21b is turned on while the battery A is being charged, and the green LED 21a is turned on when charging is completed.
 第2表示器22は、バッテリBの充電状態等を表示する表示器であり、例えば、バッテリBの充電中に赤色LED22bが点灯し、充電完了時に緑色LED22aが点灯するように構成されている。 The second display 22 is a display that displays the charging state of the battery B, and is configured so that, for example, the red LED 22b is lit while the battery B is being charged, and the green LED 22a is lit when the charging is completed.
 第1表示器21のLED21a、LED21b、及び第2表示器22のLED22a、LED22bは、図4に示すように、直列に接続された状態で定電流回路23を介してLED用の専用電源VLEDに接続されている。そして、各々のLEDに対して並列にトランジスタT21a,T21b,T22a,T22bがそれぞれ接続されている。 As shown in FIG. 4, the LED 21a, LED 21b of the first display 21 and the LED 22a, LED 22b of the second display 22 are connected in series to the dedicated power supply VLED for LED via the constant current circuit 23. It is connected. Transistors T21a, T21b, T22a, and T22b are connected to each LED in parallel.
 即ち、バッテリAの充電中は、トランジスタT21bがオフすることで第1表示器21の赤色LED21bが点灯し、トランジスタT21aがオンすることで緑色LED21aが消灯するようになる。逆に、バッテリAの充電完了時は、トランジスタT21bがオンすることで第1表示器21の赤色LED21bが消灯し、トランジスタT21aがオフすることで緑色LED21aが点灯するようになる。 That is, while the battery A is being charged, the red LED 21b of the first display 21 is turned on when the transistor T21b is turned off, and the green LED 21a is turned off when the transistor T21a is turned on. On the contrary, when the charging of the battery A is completed, the red LED 21b of the first indicator 21 is turned off when the transistor T21b is turned on, and the green LED 21a is turned on when the transistor T21a is turned off.
 バッテリBに対する第2表示器22の動作も、バッテリAに対する第1表示器22の動作と同様である。このように、複数(四台)のLEDが直列に接続された状態で定電流回路23を介して専用電源VLEDに接続されているため、仮に、四台のLEDが全て点灯した場合でも、一台のLEDが点灯した場合と同じ大きさの電流が流れるようになる。このため、多数のLEDを使用する回路において消費電量を抑えることができる。 The operation of the second indicator 22 for the battery B is the same as the operation of the first indicator 22 for the battery A. Thus, since a plurality of (four) LEDs are connected to the dedicated power supply VLED via the constant current circuit 23 in a state where they are connected in series, even if all four LEDs are lit, there is no difference. A current of the same magnitude as that when the LED of the base is turned on flows. For this reason, power consumption can be suppressed in a circuit using a large number of LEDs.
 次に、図5の充電動作を表す模式図、図6の充電量と充電時間との関係を表すグラフ、及び図7、図8のフローチャートに基づいて充電器10の動作について説明する。なお、図7、図8のフローチャートは、充電器10の充電ポートA,Bに対してほぼ同時にバッテリA,Bが接続されるのを前提として作成されている。ここで、図7、図8に示す処理は、充電器10のマイコンA,Bのメモリーに格納されたプログラムに基づいて実行される。 Next, the operation of the charger 10 will be described based on the schematic diagram showing the charging operation in FIG. 5, the graph showing the relationship between the charge amount and the charging time in FIG. 6, and the flowcharts in FIGS. 7 and 8 are prepared on the assumption that the batteries A and B are connected to the charging ports A and B of the charger 10 almost simultaneously. Here, the processing shown in FIGS. 7 and 8 is executed based on a program stored in the memories of the microcomputers A and B of the charger 10.
 先ず、充電器10の充電ポートAにバッテリAが接続されると(図7 ステップS101 YES)、バッテリAの現在充電容量(残容量CAstart)と、有効充電容量MAと、そのバッテリAの履歴情報等が記憶される(図7 ステップS102)。ここで、有効充電容量MAとは、バッテリAにおいて限界まで充電が可能な容量である。 First, when the battery A is connected to the charging port A of the charger 10 (FIG. 7, step S101 YES), the current charging capacity (remaining capacity CAstart) of the battery A, the effective charging capacity MA, and history information of the battery A Are stored (step S102 in FIG. 7). Here, the effective charging capacity MA is a capacity that allows the battery A to be charged to the limit.
 また、充電器10の充電ポートBにバッテリBが接続されると(図7 ステップS103 YES)、バッテリBの現在充電容量(残容量CBstart)と、有効充電容量MBと、そのバッテリBの履歴情報等が記憶される(図7 ステップS104)。 When battery B is connected to charging port B of charger 10 (FIG. 7, step S103 YES), current charging capacity of battery B (remaining capacity CBstart), effective charging capacity MB, and history information of battery B Are stored (step S104 in FIG. 7).
 図5に示すように、バッテリAとバッテリBとは、等しい定格容量のバッテリではあるが、バッテリBの方がバッテリAよりも劣化分が大きいため、バッテリAの有効充電容量(限界充電容量)MAはバッテリBの有効充電容量(限界充電容量)MBよりも大きい。また、バッテリAの残容量CAstartは、図5に示すように、バッテリBの残容量CBstartよりは小さいものとする。 As shown in FIG. 5, the battery A and the battery B are batteries having the same rated capacity, but since the battery B is more deteriorated than the battery A, the effective charge capacity (limit charge capacity) of the battery A is large. MA is larger than the effective charge capacity (limit charge capacity) MB of battery B. Further, the remaining capacity CAstart of the battery A is assumed to be smaller than the remaining capacity CBstart of the battery B as shown in FIG.
 このようにして、バッテリA,Bの履歴情報等が記憶されると、バッテリAの有効充電容量MAとバッテリBの有効充電容量MBとを比較し、小さい方を規定充電容量Cmaxとして記憶する(図7 ステップS105)。図5に示すように、有効充電容量MA>有効充電容量MBであるため、バッテリBの有効充電容量MBが規定充電容量Cmaxに設定される。 When the history information of the batteries A and B is stored in this way, the effective charge capacity MA of the battery A and the effective charge capacity MB of the battery B are compared, and the smaller one is stored as the specified charge capacity Cmax ( FIG. 7 Step S105). As shown in FIG. 5, since the effective charging capacity MA> the effective charging capacity MB, the effective charging capacity MB of the battery B is set to the specified charging capacity Cmax.
 ここで、規定充電容量Cmaxは、バッテリBの有効充電容量MBよりも小さな値に設定することも可能である。 Here, the specified charging capacity Cmax can be set to a value smaller than the effective charging capacity MB of the battery B.
 次に、バッテリAの残容量CAstartとバッテリBの残容量CBstartとが比較される(図7 ステップS106)。CAstart<CBstartであるため(図7 ステップS106 YES)、先ず、バッテリAの充電が行われる(図7 ステップS107 図5、図6 N1参照)。そして、充電によりバッテリAの現在充電容量CAnowがバッテリBの現在充電容量CBnow(残容量CBstart)に等しくなると(図7 ステップS109 YES)、バッテリAが充電休止状態になる(図7 ステップS110)。 Next, the remaining capacity CAstart of the battery A and the remaining capacity CBstart of the battery B are compared (step S106 in FIG. 7). Since CAstart <CBstart (FIG. 7, step S106 YES), first, the battery A is charged (see FIG. 7, step S107, FIG. 5, FIG. 6, N1). When the current charging capacity CAnow of the battery A becomes equal to the current charging capacity CBnow (remaining capacity CBstart) of the battery B by charging (step S109 YES in FIG. 7), the battery A enters a charging suspension state (step S110 in FIG. 7).
 ここで、仮に、バッテリAの残容量CAstarがバッテリBの残容量CBstartよりも大きい場合には(図7 ステップS106 NO)、バッテリBの充電が行われる(図7 ステップS108)。そして、充電によりバッテリBの現在充電容量CBnowがバッテリAの現在充電容量CAnowに等しくなると(図7 ステップS109 YES)、バッテリBが充電休止状態となる(図7 ステップS110)。 Here, if the remaining capacity CAstar of the battery A is larger than the remaining capacity CBstart of the battery B (FIG. 7, step S106 NO), the battery B is charged (step S108 in FIG. 7). When the current charging capacity CBnow of the battery B becomes equal to the current charging capacity CAnow of the battery A due to charging (step S109 YES in FIG. 7), the battery B enters a charging suspension state (step S110 in FIG. 7).
 現段階では、図5、図6のN1に示すように、バッテリAの充電が行われて、バッテリAが充電休止状態のため(図8 ステップS111 YES)、次に、バッテリBに対して充電が行われる(図8 ステップS112 図5、図6 N2参照)。そして、バッテリBに対する一定量充電が完了すると(図8 ステップS113 YES)、バッテリBが充電休止状態になる(図8 ステップS114)。 At this stage, as shown by N1 in FIGS. 5 and 6, since the battery A is charged and the battery A is in the charging halt state (step S111 YES in FIG. 8), the battery B is then charged. (See FIG. 8, Step S112, FIG. 5, FIG. 6, N2). When a certain amount of charging for the battery B is completed (FIG. 8, step S113: YES), the battery B enters a charging suspension state (FIG. 8, step S114).
 次に、バッテリAに対して充電が行なわれる(図8 ステップS115 図5、図6 N3参照)。そして、バッテリAに対して一定量充電が行われると(図8 ステップS116 YES)、バッテリAが充電休止状態となる(図8 ステップS117)。 Next, the battery A is charged (see step S115 in FIG. 8, N3 in FIG. 5 and FIG. 6). When a certain amount of charge is performed on battery A (YES in step S116 in FIG. 8), battery A enters a charging suspension state (step S117 in FIG. 8).
 現段階では、図5、図6に示すように、バッテリA、バッテリBのいずれのバッテリも規定充電容量Cmaxとまで充電されていないため、図8のステップS118の判断がNO、ステップS120の判断がNO、ステップS121の判断がNOとなり、図8のステップS112でバッテリBに対して充電が行われる(図5、図6 N4参照)。 At this stage, as shown in FIGS. 5 and 6, since neither the battery A nor the battery B is charged to the specified charge capacity Cmax, the determination in step S118 in FIG. 8 is NO and the determination in step S120. NO, the determination in step S121 is NO, and the battery B is charged in step S112 of FIG. 8 (see N4 in FIGS. 5 and 6).
 このように、図8のステップS112~S117、ステップS118(NO)、ステップS120(NO)、ステップS121(NO)の処理が繰り返し実行されることで、バッテリAとバッテリBに対して交互に充電(図5、図6 N5、N6、・・、Nn、Nn+1参照)が行われる。 As described above, the processes of steps S112 to S117, step S118 (NO), step S120 (NO), and step S121 (NO) in FIG. (Refer to FIG. 5, FIG. 6, N5, N6,..., Nn, Nn + 1).
 そして、例えば、バッテリAの現在充電容量CAnowが規定充電容量Cmaxよりも大きくなると(図8 ステップS118 YES)、バッテリAの充電が完了する(ステップS119)。 For example, when the current charging capacity CAnow of the battery A becomes larger than the specified charging capacity Cmax (step S118 YES in FIG. 8), the charging of the battery A is completed (step S119).
 次に、図8 ステップS120で、バッテリBの現在充電容量CBnowと規定充電容量Cmaxとが比較される。そして、CBnow<Cmaxであれば(図8 ステップS120 NO)、ステップS121で、一方のバッテリAの充電完了が判断される。前述のように、バッテリAの充電が完了しているため(図8 ステップS121 YES)、ステップS122でバッテリBの充電が行われる。そして、バッテリBの現在充電容量CBnow>規定充電容量Cmaxになると(図8 ステップS120 YES)、バッテリBの充電が完了する(ステップS123)。 Next, in FIG. 8, step S120, the current charge capacity CBnow of the battery B and the specified charge capacity Cmax are compared. If CBnow <Cmax (FIG. 8, step S120: NO), it is determined in step S121 that charging of one battery A is completed. As described above, since charging of the battery A is completed (step S121 YES in FIG. 8), the battery B is charged in step S122. When the current charging capacity CBnow of battery B> the specified charging capacity Cmax (step S120 YES in FIG. 8), charging of battery B is completed (step S123).
 このように、バッテリA,Bに対してほぼ規定充電容量Cmaxまで充電を行えるようになる。また、充電を交互に行う構成のため、途中で充電を中止した場合でも、バッテリAとバッテリBとにはほぼ等しい電力量が充電されるようになる。 Thus, the batteries A and B can be charged up to the specified charge capacity Cmax. Further, since the charging is performed alternately, even when the charging is stopped halfway, the battery A and the battery B are charged with substantially the same amount of power.
 本実施形態に係る充電器10によると、各々のバッテリA,Bにおける有効充電容量MA,MBのうちで最も小さい有効充電容量よりも小さな規定充電容量Cmaxを設定し、バッテリA,Bの充電容量が規定充電容量Cmaxまで達したら充電を停止できるように構成されている。このため、複数のバッテリA,Bにそれぞれ等しい電力量が充電されるようになり、電動工具(図示省略)に直列接続された複数のバッテリA,Bがほぼ同時期に残容量が零となる。 According to the charger 10 according to the present embodiment, the specified charging capacity Cmax smaller than the smallest effective charging capacity MA, MB in each of the batteries A, B is set, and the charging capacity of the batteries A, B is set. Is configured to be able to stop charging when it reaches the specified charging capacity Cmax. For this reason, the plurality of batteries A and B are charged with the same amount of electric power, and the remaining capacity of the plurality of batteries A and B connected in series to the electric tool (not shown) becomes almost zero at the same time. .
したがって、使用されず残る電力量がなくなり、バッテリA,Bの充電時間、及び電力の無駄を省けるようになる。 Accordingly, the amount of power that is not used is eliminated, and the charging time of the batteries A and B and the waste of power can be saved.
 また、各々のバッテリA,Bにおける有効充電容量MA,MBをバッテリの履歴データを利用して決定する構成のため、充電器10のマイコン25,26の記憶領域を減らすことができる。 Further, since the effective charging capacities MA and MB of the batteries A and B are determined using the battery history data, the storage area of the microcomputers 25 and 26 of the charger 10 can be reduced.
 また、バッテリA,Bの充電を途中で中断した場合でも、各々のバッテリにはほぼ等しい電力量が充電されているようになる。したがって、バッテリA,Bの充電を途中で中断した場合でも、電動工具(図示省略)に直列接続されたバッテリA,Bがほぼ同時期に残容量が零となる。 Further, even when the charging of the batteries A and B is interrupted in the middle, each battery is charged with substantially the same amount of power. Therefore, even when the charging of the batteries A and B is interrupted in the middle, the remaining capacity of the batteries A and B connected in series to the electric tool (not shown) becomes zero almost at the same time.
 以下、図9~図12に基づいて本発明の実施形態2に係る充電器について説明する。本実施形態に係る充電器10は、実施形態1に係る充電器10とバッテリA,Bを充電する方法が異なっており、その他に基本構成は実施形態1に係る充電器10と同じである。 Hereinafter, a charger according to Embodiment 2 of the present invention will be described with reference to FIGS. The charger 10 according to the present embodiment is different from the charger 10 according to the first embodiment in a method of charging the batteries A and B, and the basic configuration is the same as that of the charger 10 according to the first embodiment.
 本実施形態に係る充電器10の場合も、充電器10の充電ポートA,BにそれぞれバッテリA,Bが接続されると(図11 ステップS141,143 YES)、バッテリA,Bの残容量(残容量CAstart,CBstart)と、充電が可能な有効充電容量MA,MBと、それらのバッテリA,Bの履歴情報等が記憶される(図11 ステップS142,144)。 Also in the case of the charger 10 according to the present embodiment, when the batteries A and B are connected to the charging ports A and B of the charger 10 (FIG. 11, steps S141 and 143 YES), the remaining capacity of the batteries A and B ( (Remaining capacity CAstart, CBstart), effective charge capacity MA, MB that can be charged, history information of the batteries A, B, etc. are stored (FIG. 11, steps S142, 144).
 そして、バッテリAの有効充電容量MAとバッテリBの有効充電容量MBを比較し、小さい方を規定充電容量Cmaxとして記憶する(図11 ステップS145)。図9に示すように、有効充電容量MA>有効充電容量MBであるため、バッテリBの有効充電容量MBが規定充電容量Cmaxに設定される。 Then, the effective charge capacity MA of the battery A and the effective charge capacity MB of the battery B are compared, and the smaller one is stored as the specified charge capacity Cmax (step S145 in FIG. 11). As shown in FIG. 9, since the effective charging capacity MA> the effective charging capacity MB, the effective charging capacity MB of the battery B is set to the specified charging capacity Cmax.
 次に、バッテリAとバッテリBとがそれぞれのバッテリの充電に適した最適な電流により充電される(ステップS146)。即ち、図9、図10に示すように、バッテリAを目標充電電流I1で充電し、バッテリBを目標充電電流I2で充電する。ここで、電流I1>電流I2とする。 Next, the battery A and the battery B are charged with an optimum current suitable for charging the respective batteries (step S146). That is, as shown in FIGS. 9 and 10, the battery A is charged with the target charging current I1, and the battery B is charged with the target charging current I2. Here, current I1> current I2.
 現段階では、図9、図10に示すように、バッテリA,Bの現在充電容量CAnow,CBnowが規定充電容量Cmaxよりも小さいため(図11 ステップS147 NO)、ステップS148でバッテリAの現在充電容量CAnowとバッテリBの現在充電容量CBnowとが等しくなったか否かを判定する。そして、バッテリAの現在充電容量CAnowがバッテリBの現在充電容量CBnowよりも小さい場合(図10 タイミングT1参照 図11 ステップS148 NO)、図11のステップS146でバッテリAとバッテリBとの目標充電電流I1,I2による充電が継続される。 At the present stage, as shown in FIGS. 9 and 10, since the current charging capacities CAnow and CBnow of the batteries A and B are smaller than the specified charging capacity Cmax (step S147 NO in FIG. 11), the current charging of the battery A is performed in step S148. It is determined whether or not the capacity CAnow and the current charging capacity CBnow of the battery B are equal. If the current charging capacity CAnow of the battery A is smaller than the current charging capacity CBnow of the battery B (see timing T1 in FIG. 10, FIG. 11, step S148, NO), the target charging current between the battery A and the battery B in step S146 in FIG. Charging by I1 and I2 is continued.
 そして、図11のステップS146からステップS148の処理が繰り返されて、バッテリAの現在充電容量CAnowとバッテリBの現在充電容量CBnowとが等しくなると(図10 タイミングT2参照 図11 ステップS148 YES)、バッテリAの目標充電電流I1(>I2)をバッテリBの目標充電電流I2まで制限する(図12 ステップS150 YES、ステップS151)。そして、バッテリAとバッテリBとが等しい目標充電電流I2で充電される(図12 ステップS154)。 Then, when the processing from step S146 to step S148 in FIG. 11 is repeated and the current charging capacity CAnow of battery A becomes equal to the current charging capacity CBnow of battery B (see timing T2 in FIG. 10, YES in step S148 in FIG. 11), the battery. The target charging current I1 (> I2) of A is limited to the target charging current I2 of the battery B (FIG. 12, step S150, YES, step S151). Then, the battery A and the battery B are charged with the same target charging current I2 (FIG. 12, step S154).
 バッテリA,Bが等しい目標充電電流I2で充電されている状態では(図10 タイミングT3参照)、バッテリA,Bの現在充電容量CAnow,CBnowが規定充電容量Cmaxよりも小さく(図12 ステップS155 NO、ステップS157 NO)、バッテリの充電が完了していないため(図12 ステップS158 NO)、ステップS154、ステップS155、ステップS157、ステップS158までの処理が繰り返し実行される。 In the state where the batteries A and B are charged with the same target charging current I2 (see timing T3 in FIG. 10), the current charging capacities CAnow and CBnow of the batteries A and B are smaller than the specified charging capacity Cmax (FIG. 12, step S155 NO) Step S157 NO), since the charging of the battery is not completed (FIG. 12, Step S158 NO), the processes up to Step S154, Step S155, Step S157, and Step S158 are repeatedly executed.
 そして、例えば、バッテリAの現在充電容量CAnowが規定充電容量Cmaxよりも大きくなると(図12 ステップS155 YES)、バッテリAの充電が完了する(図10 タイミングT4参照 図12 ステップS156)。また、バッテリBの現在充電容量CBnowが規定充電容量Cmaxよりも大きくなると(図12 ステップS157 YES)、バッテリBの充電が完了する(図10 タイミングT4参照 図12 ステップS160)。 And, for example, when the current charge capacity CAnow of the battery A becomes larger than the specified charge capacity Cmax (FIG. 12, step S155 YES), the charging of the battery A is completed (see timing T4 in FIG. 10, FIG. 12, step S156). Further, when the current charging capacity CBnow of the battery B becomes larger than the specified charging capacity Cmax (step S157 YES in FIG. 12), the charging of the battery B is completed (see timing T4 in FIG. 10, step S160 in FIG. 12).
 なお、一方のバッテリの充電が完了した場合でも、他方のバッテリの現在充電容量Cnowが規定充電容量Cmaxより小さい場合には(図12 ステップS157 NO)、ステップS158の判断がYESとなり、他方のバッテリの充電が継続される(図12 ステップS159)。そして、他方のバッテリの現在充電容量Cnowが規定充電容量Cmaxよりも大きくなると(図12 ステップS157 YES)、他方のバッテリの充電が完了する(図12 ステップS160)。 Even when the charging of one battery is completed, if the current charging capacity Cnow of the other battery is smaller than the specified charging capacity Cmax (FIG. 12, step S157 NO), the determination in step S158 is YES, and the other battery Is continued (FIG. 12, step S159). When the current charging capacity Cnow of the other battery becomes larger than the specified charging capacity Cmax (FIG. 12, step S157 YES), the charging of the other battery is completed (step S160 in FIG. 12).
 ここで、本実施形態では、バッテリAの目標充電電流I1がバッテリBの目標充電電流I2よりも大きい場合を例示したが、目標充電電流I1<目標充電電流I2である場合には、図12のステップS151の判断がNOになり、バッテリBの目標充電電流I2がバッテリAの目標充電電流I1まで制限される(図12 ステップS153)。 Here, in the present embodiment, the case where the target charging current I1 of the battery A is larger than the target charging current I2 of the battery B is illustrated, but when the target charging current I1 <the target charging current I2, The determination in step S151 is NO, and the target charging current I2 of the battery B is limited to the target charging current I1 of the battery A (FIG. 12, step S153).
 また、本実施形態では、バッテリA,Bの充電が完了する前に、バッテリAの現在充電容量CAnowとバッテリBの現在充電容量CBnowとが等しくなる例を示した。しかし、バッテリAが目標充電電流I1で充電されており、バッテリBが目標充電電流I2で充電されている状態で、バッテリAの現在充電容量CAnowとバッテリBの現在充電容量CBnowとが等しくなる前に、バッテリA,Bの現在充電容量CAnow,CBnowが規定充電容量Cmaxよりも大きくなった場合には(図11 ステップS147 YES)、この時点でバッテリA,Bの充電が完了するようになる(図11 ステップS149)。 Further, in the present embodiment, an example is shown in which the current charging capacity CAnow of the battery A and the current charging capacity CBnow of the battery B are equal before the charging of the batteries A and B is completed. However, before the battery A is charged with the target charge current I1 and the battery B is charged with the target charge current I2, the current charge capacity CAnow of the battery A and the current charge capacity CBnow of the battery B become equal. If the current charging capacities CAnow and CBnow of the batteries A and B become larger than the specified charging capacity Cmax (step S147 YES in FIG. 11), the charging of the batteries A and B is completed at this time ( FIG. 11 Step S149).
 本実施形態に係る充電器10の場合、バッテリA,Bの充電完了時間が等しくなる(図10 タイミングT4参照)。 In the case of the charger 10 according to the present embodiment, the charging completion times of the batteries A and B are equal (see timing T4 in FIG. 10).
 ここで、本発明は上記実施形態1,2に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更が可能である。 Here, the present invention is not limited to the first and second embodiments, and can be modified without departing from the gist of the present invention.
 例えば、本実施形態1,2では、充電ポート12を二セット備える充電器10を例示したが、充電ポート12を三セット以上備える充電器に本発明を適用することも可能である。 For example, in the first and second embodiments, the charger 10 including two sets of charging ports 12 is illustrated, but the present invention can also be applied to a charger including three or more sets of charging ports 12.
 本実施形態1,2では、バッテリA,Bの有効充電容量MA,MBの小さい方を規定充電容量Cmaxとし、バッテリA,Bを規定充電容量Cmaxまで充電する例を示した。しかし、充電器10にモード切替えスイッチ25s(図2参照)等を設けておき、バッテリによって、規定充電容量Cmaxまで充電するか、有効充電容量MA,MBまで充電するか、切替えられるようにしても良い。 In the first and second embodiments, an example in which the smaller of the effective charge capacities MA and MB of the batteries A and B is defined as the specified charge capacity Cmax and the batteries A and B are charged to the specified charge capacity Cmax is shown. However, the charger 10 may be provided with a mode changeover switch 25s (see FIG. 2) or the like so that the battery can be switched between charging to the specified charging capacity Cmax or charging to the effective charging capacity MA, MB. good.
 本実施形態1,2では、充電ポート12を二セット備える充電器10を例示したが、充電ポート12が一セットのみの場合にも本発明を適用することが可能である。 In the first and second embodiments, the charger 10 including two sets of the charging ports 12 is illustrated, but the present invention can be applied to the case where the charging port 12 is only one set.
 具体的には、最初に挿入されたバッテリAを充電し、充電が完了したときのバッテリAの有効充電容量を充電器10に記憶する。次に、充電器10に挿入されたバッテリBの有効充電容量を取得し、これと先ほど記憶したバッテリAの有効充電容量を比較し、小さい方を規定充電容量とする。そして、バッテリBを規定充電容量まで充電するようにしても良い。さらに、バッテリBの次に挿入されたバッテリCに関しても同様に処理することで、最も小さい有効充電容量を規定充電容量として設定することが可能である。 Specifically, the battery A inserted first is charged, and the effective charging capacity of the battery A when the charging is completed is stored in the charger 10. Next, the effective charging capacity of the battery B inserted into the charger 10 is acquired, and this is compared with the effective charging capacity of the battery A stored earlier, and the smaller one is set as the specified charging capacity. And you may make it charge the battery B to a regulation charge capacity. Further, by performing the same process for the battery C inserted next to the battery B, the smallest effective charge capacity can be set as the specified charge capacity.
 ここで、前記規定充電容量は、充電器10の不揮発性メモリに記憶しても良い。この場合、充電器10にモード切替えスイッチ25s(図2参照)等を用いることが好ましい。また、充電器10のリセットの都度、前記規定充電容量がクリアされた方が良い場合には、規定充電容量を揮発性メモリに記憶しても良い。 Here, the specified charging capacity may be stored in a nonvolatile memory of the charger 10. In this case, it is preferable to use a mode changeover switch 25s (see FIG. 2) or the like for the charger 10. Further, when it is better to clear the specified charge capacity every time the charger 10 is reset, the specified charge capacity may be stored in the volatile memory.
 また、本実施形態では、専用の充電器10を用いて充電する例を示したが、工具やバッテリ等を収納するための工具箱に同様の充電機能を設けて、前記バッテリを工具箱に収納している間に、前記バッテリの充電を行うことも可能である。
                                                                                
In the present embodiment, an example in which charging is performed using the dedicated charger 10 has been described. However, a similar charging function is provided in a tool box for storing tools, batteries, and the like, and the battery is stored in the tool box. It is also possible to charge the battery while it is running.

Claims (9)

  1. 電気的に直列に接続された状態で使用される複数のバッテリパックをまとめて、あるいは一台毎に充電できる充電器であって、
     前記複数のバッテリパックを構成する個々のバッテリパックについて、充電が可能な有効充電容量を求め、各々のバッテリパックにおける有効充電容量のうちで最も小さい有効充電容量以下の容量の規定充電容量を設定し、前記各々のバッテリパックの充電容量が規定充電容量まで達したら充電を停止できるように構成されている充電器。
    It is a charger that can charge a plurality of battery packs used in a state where they are electrically connected in series, or can be charged one by one.
    For each of the battery packs constituting the plurality of battery packs, an effective charge capacity that can be charged is obtained, and a specified charge capacity that is equal to or less than the smallest effective charge capacity among the effective charge capacities in each battery pack is set. A charger configured to stop charging when the charging capacity of each of the battery packs reaches a specified charging capacity.
  2. 請求項1に記載された充電器であって、
     前記複数のバッテリパックがそれぞれ接続される充電ポートを備えており、全てのバッテリパックの充電容量が規定充電容量まで達したら充電を停止できるように構成されている充電器。
    The charger according to claim 1, wherein
    A charger comprising a charging port to which each of the plurality of battery packs is connected, and configured to be able to stop charging when the charging capacities of all the battery packs reach a specified charging capacity.
  3. 請求項1に記載された充電器であって、
     前記複数のバッテリパックのうちの一台が接続される充電ポートを備えており、前記一台のバッテリパックの充電容量が規定充電容量まで達したら充電を停止できるように構成されている充電器。
    The charger according to claim 1, wherein
    A charger configured to include a charging port to which one of the plurality of battery packs is connected, and to stop charging when a charging capacity of the one battery pack reaches a specified charging capacity.
  4. 請求項1から請求項3のいずれかに記載された充電器であって、
     各々のバッテリパックの有効充電容量は、前記バッテリパックの定格容量を利用して決定される充電器。
    The charger according to any one of claims 1 to 3,
    A battery charger in which the effective charge capacity of each battery pack is determined using the rated capacity of the battery pack.
  5. 請求項1から請求項3のいずれかに記載された充電器であって、
     各々のバッテリパックの有効充電容量は、前記バッテリパックの履歴データから決定される充電器。
    The charger according to any one of claims 1 to 3,
    The charger in which the effective charge capacity of each battery pack is determined from the history data of the battery pack.
  6. 請求項2に記載された充電器であって、
     各々のバッテリパックの充電完了時間が同じとなるように充電制御が行われる充電器。
    The charger according to claim 2, wherein
    A charger in which charging control is performed so that the charging completion time of each battery pack is the same.
  7. 請求項2に記載された充電器であって、
     各々のバッテリパックの充電容量が等しくなった後、各々のバッテリパックを順番に一定容量づつ充電する充電器。
    The charger according to claim 2, wherein
    A charger that charges each battery pack in order by a fixed capacity after the charge capacity of each battery pack becomes equal.
  8. 請求項6に記載された充電器であって、
     各々のバッテリパックの充電容量が等しくなった後、各々のバッテリパックを一定の充電電流で充電する充電器。
    The charger according to claim 6, wherein
    A charger that charges each battery pack with a constant charging current after the charge capacity of each battery pack becomes equal.
  9. 請求項1から請求項8のいずれかに記載された充電器であって、
     前記バッテリパックの充電容量が前記規定充電容量まで達したら充電を停止する制御と、前記バッテリパックの充電容量が前記有効充電容量まで達したら充電を停止する制御とを切り替えて実施できるように構成されている充電器。
                                                                                    
    The charger according to any one of claims 1 to 8, wherein
    A control for stopping charging when the charging capacity of the battery pack reaches the specified charging capacity and a control for stopping charging when the charging capacity of the battery pack reaches the effective charging capacity are configured to be switched. Charger.
PCT/JP2014/056148 2013-07-12 2014-03-10 Charger WO2015004946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013146012A JP6140557B2 (en) 2013-07-12 2013-07-12 Charger
JP2013-146012 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015004946A1 true WO2015004946A1 (en) 2015-01-15

Family

ID=52279645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056148 WO2015004946A1 (en) 2013-07-12 2014-03-10 Charger

Country Status (2)

Country Link
JP (1) JP6140557B2 (en)
WO (1) WO2015004946A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094054A (en) * 2017-09-22 2020-05-01 尼科公司 Rechargeable battery jump starting device with jump charging system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247800B2 (en) * 2019-07-18 2023-03-29 三菱電機株式会社 charger and vacuum system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215217A (en) * 1996-02-07 1997-08-15 Sony Corp Apparatus and method for charging of battery
JP2000324709A (en) * 1999-05-06 2000-11-24 Matsushita Electric Ind Co Ltd Charger
JP2003158827A (en) * 2001-11-15 2003-05-30 Matsushita Electric Works Ltd Charging method, charging device, and discharging controller for lithium ion battery
JP2009124795A (en) * 2007-11-12 2009-06-04 Sony Corp Method and apparatus for charge
JP2009207253A (en) * 2008-02-27 2009-09-10 Autech Japan Inc Battery-charging system and battery-charging method
JP2011072084A (en) * 2009-09-24 2011-04-07 Hokuriku Electric Power Co Inc:The Method and system for charging large secondary battery
JP2013078242A (en) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd Electric power supply device
US20130169211A1 (en) * 2010-08-30 2013-07-04 David Brun-Buisson Method for charging an electric battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215217A (en) * 1996-02-07 1997-08-15 Sony Corp Apparatus and method for charging of battery
JP2000324709A (en) * 1999-05-06 2000-11-24 Matsushita Electric Ind Co Ltd Charger
JP2003158827A (en) * 2001-11-15 2003-05-30 Matsushita Electric Works Ltd Charging method, charging device, and discharging controller for lithium ion battery
JP2009124795A (en) * 2007-11-12 2009-06-04 Sony Corp Method and apparatus for charge
JP2009207253A (en) * 2008-02-27 2009-09-10 Autech Japan Inc Battery-charging system and battery-charging method
JP2011072084A (en) * 2009-09-24 2011-04-07 Hokuriku Electric Power Co Inc:The Method and system for charging large secondary battery
US20130169211A1 (en) * 2010-08-30 2013-07-04 David Brun-Buisson Method for charging an electric battery
JP2013078242A (en) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd Electric power supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094054A (en) * 2017-09-22 2020-05-01 尼科公司 Rechargeable battery jump starting device with jump charging system
JP2020534773A (en) * 2017-09-22 2020-11-26 ザ・ノコ・カンパニーThe Noco Company Rechargeable battery jump starter with leap frog charging system
JP2022109964A (en) * 2017-09-22 2022-07-28 ザ・ノコ・カンパニー Rechargeable battery jump starting device with leapfrog charging system
US11824385B2 (en) 2017-09-22 2023-11-21 The Noco Company Rechargeable battery jump starting device with leapfrog charging system

Also Published As

Publication number Publication date
JP6140557B2 (en) 2017-05-31
JP2015019522A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
US10967489B2 (en) Power tool communication system
US10476284B2 (en) Battery system for a power tool, as well as battery holder therefor, charger, and charging system
CN103124089B (en) Battery adapter
EP2690748B1 (en) Power storage device, power storage system using same, and method for configuring power storage system
EP2575235B1 (en) Batery pack with a battery control system
CN102598463B (en) Power supply device
JP2020513721A (en) Battery module equalization apparatus and method
WO2010015839A3 (en) A cell management system
US10944131B2 (en) Battery pack switch
WO2014119184A1 (en) Motor-driven appliance and main body thereof
JP5169477B2 (en) Capacitor control device
EP2819211A1 (en) Battery pack
US9472976B2 (en) Storage battery device and charging control method
JP6639686B2 (en) Cell balancing system and control method
WO2015004946A1 (en) Charger
JP6569979B2 (en) Power supply device and method of operating power supply device
CN104065116A (en) Battery pack charging and discharging system for electric power tool, method and electric power tool
JP6373661B2 (en) Battery pack
JP2011015538A (en) Battery pack, cordless power tool with the same as power supply, and charger for charging the same
JP2011015538A5 (en)
TW201743533A (en) Balanced battery charging system
CN103633384A (en) Method for continuous passive balance of operation battery cores in battery pack
JP6591683B2 (en) Charging voltage supply device and supply method
US20150194823A1 (en) Battery charging device and battery charging method
CN116073465A (en) Charging device and control method for charging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823396

Country of ref document: EP

Kind code of ref document: A1