WO2015004935A1 - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
WO2015004935A1
WO2015004935A1 PCT/JP2014/052471 JP2014052471W WO2015004935A1 WO 2015004935 A1 WO2015004935 A1 WO 2015004935A1 JP 2014052471 W JP2014052471 W JP 2014052471W WO 2015004935 A1 WO2015004935 A1 WO 2015004935A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
disposed
boiler
air supply
combustion
Prior art date
Application number
PCT/JP2014/052471
Other languages
French (fr)
Japanese (ja)
Inventor
草平 秋永
智浩 大久保
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2015004935A1 publication Critical patent/WO2015004935A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • F22B21/04Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways

Definitions

  • the present invention relates to a boiler. This application claims priority based on Japanese Patent Application No. 2013-146336 for which it applied to Japan on July 12, 2013, and uses the content here.
  • boilers that generate steam by heating water with combustion gas generated by burning fuel in a can body are known.
  • heat recovery is performed from the combustion gas by providing an economizer that exchanges heat between the water supplied to the can body and the combustion gas after being used to generate steam.
  • the heat efficiency is improved.
  • a boiler is further proposed that further includes an air heater that performs heat exchange between the combustion air supplied to the can body and the combustion gas in addition to the economizer (for example, , See Patent Document 1).
  • an air heater is arranged on the upstream side of a blower that feeds combustion air into a can body, and heat exchange between the combustion air and the combustion gas is performed.
  • This invention solves the said subject, and it is easy to manage the piping at the time of installation, and it aims at providing the boiler which can be reduced in size.
  • the present invention comprises a can body that generates steam by burning fuel to heat a liquid, a water supply path that supplies liquid to the can body, an air supply path that supplies combustion air to the can body, An exhaust path that is disposed at a side of the can body and discharges combustion gas generated in the can body, and a liquid that is disposed in the exhaust path and that flows through the water supply path and the combustion gas that flows through the exhaust path. Between the combustion air flowing through the air supply passage and the combustion gas flowing through the exhaust passage, and disposed downstream of the water supply heater in the exhaust passage.
  • the present invention relates to a boiler that includes an air heater that performs replacement and a blower that is disposed in the vicinity of the exhaust passage and feeds combustion air into the air supply passage.
  • the feed water heater is disposed at a lower portion on the side of the can body, the air heater is disposed above the feed water heater, and the blower is disposed in the vicinity of the feed water heater. It is preferable.
  • the can body is formed in a cylindrical shape, and the exhaust passage is disposed between the can body and the blower.
  • FIG.1 (a) is a front view of the said boiler
  • FIG.1 (b) is a right view of the said boiler
  • FIG.1 (c) Is a rear view of the boiler
  • FIG. 1D is a plan view of the boiler.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • Fig.4 (a) is a top view of the said boiler
  • FIG.4 (b) is a front view of the said boiler.
  • FIG. 1 is an external view of a boiler 1 according to the first embodiment of the present invention.
  • the boiler 1 includes a can body 10, a water supply path 20 that supplies liquid to the can body 10, an air supply path 30 that supplies combustion air to the can body 10, and an air supply path 30.
  • a gas supply line 40 for supplying fuel gas see FIG.
  • an exhaust path 50 for discharging combustion gas generated in the can 10 a liquid disposed in the exhaust path 50 and flowing through the water supply path 20 and the exhaust path 50
  • An economizer (a feed water heater according to the present invention) 60 that exchanges heat with the combustion gas that circulates in the exhaust gas, and the combustion air that circulates in the air supply passage 30 and the exhaust passage 50 that is disposed in the exhaust passage 50.
  • An air heater (air heater according to the present invention) 70 that exchanges heat with the combustion gas, and a blower 80 that sends combustion air into the air supply path 30 are provided.
  • the can 10 generates steam by burning fuel and heating a liquid.
  • the can body 10 includes a boiler housing 11, a plurality of water pipes 12, a connecting wall 13, a lower header 14, an upper header 15, and a burner 17.
  • casing 11 comprises the external shape of the can 10, and is formed in the rectangular parallelepiped shape of planar view.
  • An air supply port 18 is formed in the first side surface 11 a located on one end side in the longitudinal direction of the boiler housing 11, and a second side surface 11 b located on the other end side in the longitudinal direction of the boiler housing 11 is An exhaust port 19 is formed.
  • a front end portion of an air supply path 30 to be described later is connected to the air supply port 18.
  • a base end portion of an exhaust passage 50 to be described later is connected to the exhaust port 19.
  • the plurality of water pipes 12 are disposed in the boiler casing 11 so as to extend in the vertical direction, and are disposed at predetermined intervals in the longitudinal direction and the width direction of the boiler casing 11.
  • the plurality of water tubes 12 are arranged along the longitudinal direction at the outer water tube group 12 a arranged along the side portion extending in the longitudinal direction of the boiler housing 11 and at the center portion in the width direction of the boiler housing 11.
  • the central water pipe group 12b is disposed between the outer water pipe group 12a and the central water pipe group 12b.
  • connection wall 13 connects the water pipes 12 arranged adjacent to each other in the outer water pipe group 12a.
  • the lower header 14 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed at the lower portion of the boiler casing 11.
  • the lower header 14 is connected to lower ends of the plurality of water pipes 12. Water is supplied to the lower header 14, and water is supplied from the lower header 14 to the plurality of water pipes 12.
  • the upper header 15 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed on an upper portion of the boiler casing 11.
  • the upper header 15 is connected to the upper ends of the plurality of water pipes 12. Steam generated in the plurality of water pipes 12 is collected in the upper header 15.
  • the steam collected in the upper header 15 is led out to the outside through a steam outlet pipe 16 (see FIG. 1).
  • the burner 17 is disposed in the air supply port 18.
  • the water supply channel 20 is a water channel through which a liquid serving as can water flows, and supplies the liquid to the lower header 14 (see FIG. 2) of the can body 10. As shown in FIG. 1B, the water supply channel 20 has a portion that extends downward along the side surface on the exhaust side of the can body 10.
  • the air supply path 30 has a downstream end connected to the air supply port 18.
  • the air supply path 30 supplies combustion air fed from a blower 80 described later to the can body 10.
  • the air supply path 30 includes an upward air supply path part 31, a first horizontal air supply path part 32, a first downward air supply path part 33, and a second horizontal air supply path part 34. And a second downward air supply passage 35.
  • the upward air supply path portion 31 extends upward from a connection portion with a blower 80 described later.
  • the 1st horizontal air supply path part 32 is connected to the upper end of the upward air supply path part 31, and is extended in a horizontal direction, as shown in FIG.1 (c) and (d).
  • the first downward air supply path section 33 extends downward from the tip of the first horizontal air supply path section 32 as shown in FIGS.
  • the second horizontal air supply passage portion 34 extends substantially horizontally from the front end portion of the first downward air supply passage portion 35 above the can body 10. As shown in FIGS. 1A and 1B, the second downward air supply passage portion 35 extends downward from the tip of the second horizontal air supply passage portion 34 along the first side surface 11 a of the can 10. It extends and is connected to the air inlet 18.
  • the combustion air sent out from the blower 80 circulates upward in the upward air supply path section 31 as shown in FIG. 1 and then the first horizontal air supply path section. 32 circulates in the horizontal direction, then circulates downward in the first downward air supply passage portion 33, then circulates in the second horizontal air supply passage portion 34 in the horizontal direction, and finally the second downward air supply passageway. It is supplied to the can 10 by flowing downward through the portion 35.
  • fuel gas is supplied from a gas supply line 40 described later, and the fuel gas and combustion air are mixed.
  • the gas supply line 40 is connected to the second downward air supply path 35.
  • the gas supply line 40 is provided with an adjustment valve 41 and a plurality of nozzles 42.
  • the adjustment valve 41 adjusts the flow rate of the fuel gas supplied to the air supply path 30.
  • the plurality of nozzles 42 are disposed at the distal end portion of the gas supply line 40 and eject fuel gas into the air supply path 30.
  • the tip ends of the plurality of nozzles 42 extend upward, that is, in a direction facing the flow direction of the combustion air in the supply passage 30 (see FIG. 2).
  • the exhaust path 50 is arrange
  • the exhaust path 50 is connected to the second side surface 11b of the can body 10 (boiler casing 11).
  • the exhaust passage 50 discharges the combustion gas generated by burning the mixed gas inside the can body 10.
  • the exhaust passage 50 has an upward exhaust passage portion 51 that extends upward along the second side surface 11b. According to the exhaust path 50 described above, the combustion gas discharged from the can body 10 is exhausted through the upward exhaust path portion 51 upward as shown in FIG.
  • the economizer 60 is disposed in the lower portion of the exhaust body 50 on the second side surface 11b side of the can body 10 (boiler casing 11).
  • the economizer 60 performs heat exchange between the water flowing through the water supply channel 20 and the combustion gas flowing through the exhaust channel 50 (upward exhaust channel portion 51). More specifically, the economizer 60 heats water by exchanging heat between water flowing from the upper side to the lower side of the water supply channel 20 and combustion gas flowing from the lower side to the upper side of the upward exhaust channel portion 51. .
  • the air heater 70 is disposed downstream of the economizer 60 in the exhaust passage 50. More specifically, as shown in FIG. 1, the air heater 70 is disposed in a portion where the first downward air supply passage portion 33 and the upward exhaust passage portion 51 are located above the economizer 60.
  • the air heater 70 performs heat exchange between the combustion air flowing through the air supply passage 30 and the combustion gas flowing through the exhaust passage 50 (upward exhaust passage portion 51). More specifically, the air heater 70 performs heat exchange between the combustion air that circulates in the first downward air supply passage portion 33 from above and the combustion gas that circulates in the upward exhaust passage portion 51 from below. To heat the combustion air.
  • the blower 80 is disposed in the vicinity of the exhaust passage 50. More specifically, as shown in FIG. 1, the blower 80 is disposed at a lower portion on the left side of the exhaust passage 50 and at a lower portion on the left side of the boiler 1.
  • the blower 80 is connected to the upstream end of the air supply path 30.
  • the blower 80 has air wheel blades. The air wheel blades are disposed inside the blower 80. As the air wheel blades rotate, the combustion air is drawn into the blower 80 and sent into the air supply path 30 described later.
  • the boiler 1 draws combustion air by the blower 80 and sends it out to the air supply path 30.
  • the combustion air sent out from the blower 80 circulates upward in the upward air supply path portion 31.
  • the combustion air that has passed through the upward air supply passage portion 31 flows through the first horizontal air supply passage portion 32 and then flows through the first downward air supply passage portion 33.
  • the combustion air flowing through the first downward air supply passage portion 33 is heated by the air heater 70 by exchanging heat with the combustion gas discharged from the can 10 and flowing through the exhaust passage 50.
  • the blower 80 since the blower 80 is disposed in the vicinity of the exhaust passage 50, the distance between the blower 80 and the air heater 70 disposed in the exhaust passage 50 is shortened. Therefore, in the boiler 1, it is not necessary to configure a long path from the blower 80 to the air heater 70 (upward air supply path portion 31, first horizontal air supply path portion 32) in the air supply path 30.
  • the combustion gas discharged from the can 10 flows through the water supply channel 20 in the economizer 60 before the heat exchange (second heat exchange) in the air heater 70, and the water and heat supplied to the can 10. Exchange (first heat exchange).
  • the fuel gas is supplied through the gas supply line 40 and a plurality of nozzles 42 provided at the tip of the gas supply line 40, and the fuel gas and the combustion air are mixed.
  • the mixed gas obtained by mixing the fuel gas and the combustion air is supplied to the inside of the can body 10 through the air supply port 18.
  • the mixed gas is injected by the burner 17 and burned.
  • the water (can water) supplied from the above-described water supply channel 20 and disposed in the water pipe disposed inside the can body 10 boils to generate steam.
  • the steam generated in the water pipe is stored in the upper header 15 and then led out to the outside through the steam outlet pipe 16.
  • the combustion gas generated by the mixed gas burning in the gas flow space in the can 10 is discharged from the exhaust port 19 to the exhaust path 50.
  • the combustion gas discharged from the exhaust passage 50 is discharged to the outside after being subjected to the first heat exchange and the second heat exchange described above (see FIG. 1B).
  • the boiler 1 according to the first embodiment of the present invention has the following effects. (1) In the boiler 1, the exhaust path 50 is disposed in the vicinity of the can body 10, and the blower 80 that sends combustion air to the air supply path 30 is disposed in the vicinity of the exhaust path 50. Thereby, the distance from the air blower 80 to the air heater 70 arrange
  • the economizer 60 was disposed at the lower part of the exhaust passage 50 extending vertically on the side of the can 10. Further, the air heater 70 is disposed above the economizer 60, and the blower 80 is disposed in the vicinity of the economizer 60.
  • the boiler 1 includes both an economizer and an air heater, but with such an arrangement, the boiler 1 can be made compact.
  • FIG. 4 is a diagram schematically showing the appearance of a boiler 1 according to the second embodiment of the present invention
  • FIG. 4 (a) is a plan view of the boiler
  • FIG. 4 (b) is a diagram of the boiler. It is a front view.
  • the boiler 1A of the second embodiment is different from the first embodiment mainly in the shape of the can body 10A and the shape of the exhaust passage 50A.
  • the can body 10A has a cylindrical shape.
  • the exhaust passage 50A is disposed between the can body 10A and the blower 80A. That is, since the can body 10A, the exhaust passage 50A, and the blower 80A are arranged on a straight line in the plan view of the boiler 1A, it is possible to arrange the supply passage 30A without making it long ( (See FIG. 4 (a)).
  • the exhaust passage 50A has a downward exhaust passage portion 52A and an upward exhaust passage portion 51A. According to the exhaust path 50A, as shown in FIG. 4B, the combustion gas discharged from the can body 10A flows downward through the downward exhaust path part 52A and then moves upward through the upward exhaust path part 51A. It is distributed and discharged.
  • the economizer 60A is disposed in a portion of the exhaust passage 50A where the downward exhaust passage portion 52A is located.
  • the combustion gas discharged to the exhaust passage 50A flows downward through the economizer 60A as shown in FIG.
  • the first heat exchange is performed between the combustion gas flowing through the downward exhaust passage 52A and the water flowing through the water supply passage 20A.
  • the combustion gas that has flowed through the economizer 60A and performed the first heat exchange flows through the air heater 70A in the middle of flowing upward through the upward exhaust passage 51A.
  • a second heat exchange is performed between the combustion gas flowing through the upward exhaust passage 51A and the combustion air flowing through the supply passage 30A (first downward supply passage 33A). The combustion gas after passing through the air heater 70A and performing the second heat exchange flows through the upward exhaust passage 51A and is discharged.
  • the boiler 1A according to the second embodiment of the present invention has the following effects in addition to (1) and (2) described above.
  • (3) The can body 10A was configured in a cylindrical shape, and the exhaust passage 50A was disposed between the can body 10A and the blower 80A. That is, the can body 10A, the exhaust passage 50A, and the blower 80A are arranged on a straight line in a plan view of the boiler 1A. Thereby, the air supply path 30A and the exhaust path 50A can be crossed in the middle of the path from the blower 80A toward the can body 10A. Accordingly, the air heater 70A can be arranged without lengthening the air supply passage 30A for sending combustion air from the blower 80A to the can body 10A, and thus the boiler 1A can be made compact.

Abstract

Provided is a boiler that has a simple piping arrangement during installation and that can be made compact. A boiler (1) comprises: a vessel (10) that generates steam by a liquid being heated by way of burning a fuel; a water supply channel (20) for supplying the liquid to the vessel (10); an air supply channel (30) for supplying air for combustion to the vessel (10); an exhaust channel (50) by which combustion gas generated by the vessel (10) is discharged and that is disposed on the side of the vessel (10); an economizer (60) that is disposed in the exhaust channel (50) and that performs heat exchange between the liquid flowing in the water supply channel (20) and the combustion gas flowing in the exhaust channel (50); an air heater (70) that is disposed further downstream than the economizer (60) in the exhaust channel (50) and that performs heat exchange between the air for combustion flowing in the air supply channel (30) and the combustion gas flowing in the exhaust channel (50); and a blower (80) that is disposed near the air heater (70) and that sends air for combustion to the air supply channel (30).

Description

ボイラboiler
 本発明は、ボイラに関する。本願は、2013年7月12日に日本に出願された特願2013-146336号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a boiler. This application claims priority based on Japanese Patent Application No. 2013-146336 for which it applied to Japan on July 12, 2013, and uses the content here.
 従来、缶体において燃料を燃焼させて発生させた燃焼ガスにより水を加熱することで蒸気を生成するボイラが知られている。このようなボイラでは、缶体に供給される水と、蒸気を生成するために用いられた後の燃焼ガスとの間で熱交換を行うエコノマイザを設けることにより、燃焼ガスから熱回収を行うことで熱効率を向上させている。また、ボイラの熱効率を更に向上させるために、エコノマイザに加えて、缶体に供給される燃焼用空気と燃焼ガスとの間で熱交換を行うエアヒータを更に備えたボイラも提案されている(例えば、特許文献1参照)。 Conventionally, boilers that generate steam by heating water with combustion gas generated by burning fuel in a can body are known. In such a boiler, heat recovery is performed from the combustion gas by providing an economizer that exchanges heat between the water supplied to the can body and the combustion gas after being used to generate steam. The heat efficiency is improved. In order to further improve the thermal efficiency of the boiler, a boiler is further proposed that further includes an air heater that performs heat exchange between the combustion air supplied to the can body and the combustion gas in addition to the economizer (for example, , See Patent Document 1).
 特許文献1で提案されたボイラでは、燃焼用空気を缶体に送り込む送風機の上流側にエアヒータを配置して、燃焼用空気と燃焼ガスとの熱交換を行っている。 In the boiler proposed in Patent Document 1, an air heater is arranged on the upstream side of a blower that feeds combustion air into a can body, and heat exchange between the combustion air and the combustion gas is performed.
特開平11-118104号公報JP-A-11-118104
 しかしながら、特許文献1で提案されたボイラでは、エアヒータが送風機よりも上流側の給気路に配置されているため、燃焼用空気が熱交換されてから缶体に供給されるまでの距離が長くなってしまう。このように、特許文献1で提案されたボイラでは、燃焼用空気を缶体に供給する給気路が長くなってしまうことから、ボイラの設置する際の配管の取り回しが複雑になり、ボイラをコンパクトに構成できない。 However, in the boiler proposed in Patent Document 1, since the air heater is disposed in the air supply path upstream of the blower, the distance from when the combustion air is heat-exchanged until it is supplied to the can body is long. turn into. Thus, in the boiler proposed by patent document 1, since the air supply path which supplies combustion air to a can body will become long, the management of piping at the time of installing a boiler will become complicated, and a boiler will be used. It cannot be configured compactly.
 本発明は、上記課題を解決するものであり、設置する際の配管の取り回しが容易であり、且つ、コンパクト化できるボイラを提供することを目的とする。 This invention solves the said subject, and it is easy to manage the piping at the time of installation, and it aims at providing the boiler which can be reduced in size.
 本発明は、燃料を燃焼させて液体を加熱することで蒸気を生成する缶体と、前記缶体に液体を供給する給水路と、前記缶体に燃焼用空気を供給する給気路と、前記缶体の側部に配置され該缶体で発生した燃焼ガスを排出する排気路と、前記排気路に配置され、前記給水路を流通する液体と前記排気路を流通する燃焼ガスとの間で熱交換を行う給水加熱器と、前記排気路における前記給水加熱器よりも下流側に配置され、前記給気路を流通する燃焼用空気と前記排気路を流通する燃焼ガスとの間で熱交換を行う空気加熱器と、前記排気路の近傍に配置され、前記給気路に燃焼用空気を送り込む送風機と、を備えるボイラに関する。 The present invention comprises a can body that generates steam by burning fuel to heat a liquid, a water supply path that supplies liquid to the can body, an air supply path that supplies combustion air to the can body, An exhaust path that is disposed at a side of the can body and discharges combustion gas generated in the can body, and a liquid that is disposed in the exhaust path and that flows through the water supply path and the combustion gas that flows through the exhaust path. Between the combustion air flowing through the air supply passage and the combustion gas flowing through the exhaust passage, and disposed downstream of the water supply heater in the exhaust passage. The present invention relates to a boiler that includes an air heater that performs replacement and a blower that is disposed in the vicinity of the exhaust passage and feeds combustion air into the air supply passage.
 また、前記給水加熱器は、前記缶体の側方における下部に配置され、前記空気加熱器は、前記給水加熱器の上方に配置され、前記送風機は、前記給水加熱器の近傍に配置されることが好ましい。 The feed water heater is disposed at a lower portion on the side of the can body, the air heater is disposed above the feed water heater, and the blower is disposed in the vicinity of the feed water heater. It is preferable.
 また、前記缶体は、円筒形状に構成され、前記排気路は、前記缶体と前記送風機との間に配置されることが好ましい。 Further, it is preferable that the can body is formed in a cylindrical shape, and the exhaust passage is disposed between the can body and the blower.
 本発明によれば、設置する際の配管の取り回しが容易であり、且つ、コンパクト化できるボイラを提供することができる。 According to the present invention, it is possible to provide a boiler that can be easily routed for installation and can be made compact.
本発明の第1実施形態に係るボイラの外観図であり、図1(a)は前記ボイラの正面図であり、図1(b)は前記ボイラの右側面図であり、図1(c)は前記ボイラの背面図であり、図1(d)は前記ボイラの平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the boiler which concerns on 1st Embodiment of this invention, Fig.1 (a) is a front view of the said boiler, FIG.1 (b) is a right view of the said boiler, FIG.1 (c) Is a rear view of the boiler, and FIG. 1D is a plan view of the boiler. 本発明の第1実施形態に係るボイラにおける缶体部分の断面図であり、図(d)のA-A線断面を示す図である。It is sectional drawing of the can part in the boiler which concerns on 1st Embodiment of this invention, and is a figure which shows the AA line cross section of FIG. (D). 図2のB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 本発明の第2実施形態に係るボイラの外観を模式的に示した図であり、図4(a)は前記ボイラの平面図であり、図4(b)は前記ボイラの正面図である。It is the figure which showed typically the external appearance of the boiler which concerns on 2nd Embodiment of this invention, Fig.4 (a) is a top view of the said boiler, FIG.4 (b) is a front view of the said boiler.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1実施形態>
 まず、本発明の第1実施形態に係るボイラ1について説明する。
 図1は、本発明の第1実施形態に係るボイラ1の外観図である。
 ボイラ1は、図1に示すように、缶体10と、缶体10に液体を供給する給水路20と、缶体10に燃焼用空気を供給する給気路30と、給気路30に燃料ガスを供給するガス供給ライン40(図2参照)と、缶体10で発生した燃焼ガスを排出する排気路50と、排気路50に配置され、給水路20を流通する液体と排気路50を流通する燃焼ガスとの間で熱交換を行うエコノマイザ(本発明に係る給水加熱器)60と、排気路50に配置され、給気路30を流通する燃焼用空気と排気路50を流通する燃焼ガスとの間で熱交換を行うエアヒータ(本発明に係る空気加熱器)70と、給気路30に燃焼用空気を送り込む送風機80と、を備える。
<First Embodiment>
First, the boiler 1 which concerns on 1st Embodiment of this invention is demonstrated.
FIG. 1 is an external view of a boiler 1 according to the first embodiment of the present invention.
As shown in FIG. 1, the boiler 1 includes a can body 10, a water supply path 20 that supplies liquid to the can body 10, an air supply path 30 that supplies combustion air to the can body 10, and an air supply path 30. A gas supply line 40 for supplying fuel gas (see FIG. 2), an exhaust path 50 for discharging combustion gas generated in the can 10, a liquid disposed in the exhaust path 50 and flowing through the water supply path 20 and the exhaust path 50 An economizer (a feed water heater according to the present invention) 60 that exchanges heat with the combustion gas that circulates in the exhaust gas, and the combustion air that circulates in the air supply passage 30 and the exhaust passage 50 that is disposed in the exhaust passage 50. An air heater (air heater according to the present invention) 70 that exchanges heat with the combustion gas, and a blower 80 that sends combustion air into the air supply path 30 are provided.
 缶体10は、燃料を燃焼させて液体を加熱することで蒸気を生成する。缶体10は、図2及び図3に示すように、ボイラ筐体11と、複数の水管12と、連結壁13と、下部ヘッダ14と、上部ヘッダ15と、バーナ17と、を備える。
 ボイラ筐体11は、缶体10の外形を構成し、平面視矩形形状の直方体状に形成される。このボイラ筐体11の長手方向の一端側に位置する第1側面11aには、給気口18が形成され、ボイラ筐体11の長手方向の他端側に位置する第2側面11bには、排気口19が形成される。
The can 10 generates steam by burning fuel and heating a liquid. As shown in FIGS. 2 and 3, the can body 10 includes a boiler housing 11, a plurality of water pipes 12, a connecting wall 13, a lower header 14, an upper header 15, and a burner 17.
The boiler housing | casing 11 comprises the external shape of the can 10, and is formed in the rectangular parallelepiped shape of planar view. An air supply port 18 is formed in the first side surface 11 a located on one end side in the longitudinal direction of the boiler housing 11, and a second side surface 11 b located on the other end side in the longitudinal direction of the boiler housing 11 is An exhaust port 19 is formed.
 給気口18には、後述の給気路30の先端部が接続される。排気口19には、後述の排気路50の基端部が接続される。
 複数の水管12は、ボイラ筐体11の内部に上下方向に延びて配置されるとともに、ボイラ筐体11の長手方向及び幅方向に所定の間隔をあけて配置される。
 本実施形態では、複数の水管12は、ボイラ筐体11の長手方向に延びる側部に沿って配置される外側水管群12aと、ボイラ筐体11の幅方向の中央部に、長手方向に沿って配置される中央水管群12bと、外側水管群12aと中央水管群12bとの間に配置される中間水管群12cと、に分類される。
A front end portion of an air supply path 30 to be described later is connected to the air supply port 18. A base end portion of an exhaust passage 50 to be described later is connected to the exhaust port 19.
The plurality of water pipes 12 are disposed in the boiler casing 11 so as to extend in the vertical direction, and are disposed at predetermined intervals in the longitudinal direction and the width direction of the boiler casing 11.
In the present embodiment, the plurality of water tubes 12 are arranged along the longitudinal direction at the outer water tube group 12 a arranged along the side portion extending in the longitudinal direction of the boiler housing 11 and at the center portion in the width direction of the boiler housing 11. The central water pipe group 12b is disposed between the outer water pipe group 12a and the central water pipe group 12b.
 連結壁13は、外側水管群12aにおいて隣り合って配置される水管12同士を連結する。
 下部ヘッダ14は、平面視矩形形状の直方体状の容器によって構成され、ボイラ筐体11の下部に配置される。下部ヘッダ14には、複数の水管12の下端部が接続される。下部ヘッダ14には、水が供給され、この下部ヘッダ14から複数の水管12に水が供給される。
The connection wall 13 connects the water pipes 12 arranged adjacent to each other in the outer water pipe group 12a.
The lower header 14 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed at the lower portion of the boiler casing 11. The lower header 14 is connected to lower ends of the plurality of water pipes 12. Water is supplied to the lower header 14, and water is supplied from the lower header 14 to the plurality of water pipes 12.
 上部ヘッダ15は、平面視矩形形状の直方体状の容器によって構成され、ボイラ筐体11の上部に配置される。上部ヘッダ15には、複数の水管12の上端部が接続される。上部ヘッダ15には、複数の水管12において生成された蒸気が集められる。上部ヘッダ15に集められた蒸気は、蒸気導出管16(図1参照)を介して外部に導出される。
 バーナ17は、給気口18に配置される。
The upper header 15 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed on an upper portion of the boiler casing 11. The upper header 15 is connected to the upper ends of the plurality of water pipes 12. Steam generated in the plurality of water pipes 12 is collected in the upper header 15. The steam collected in the upper header 15 is led out to the outside through a steam outlet pipe 16 (see FIG. 1).
The burner 17 is disposed in the air supply port 18.
 給水路20は、缶水となる液体を流通させる水路であり、缶体10の下部ヘッダ14(図2参照)に液体を供給する。給水路20は、図1(b)に示すように、缶体10の排気側の側面に沿って下方に延びる部分を有する。 The water supply channel 20 is a water channel through which a liquid serving as can water flows, and supplies the liquid to the lower header 14 (see FIG. 2) of the can body 10. As shown in FIG. 1B, the water supply channel 20 has a portion that extends downward along the side surface on the exhaust side of the can body 10.
 給気路30は、下流側の端部が給気口18に接続される。給気路30は、後述する送風機80から送り込まれた燃焼用空気を缶体10に供給する。
 給気路30は、図1に示すように、上向き給気路部31と、第1水平給気路部32と、第1下向き給気路部33と、第2水平給気路部34と、第2下向き給気路部35と、を有する。
The air supply path 30 has a downstream end connected to the air supply port 18. The air supply path 30 supplies combustion air fed from a blower 80 described later to the can body 10.
As shown in FIG. 1, the air supply path 30 includes an upward air supply path part 31, a first horizontal air supply path part 32, a first downward air supply path part 33, and a second horizontal air supply path part 34. And a second downward air supply passage 35.
 上向き給気路部31は、図1(c)に示すように、後述する送風機80との接続部分から上方に延びる。
 第1水平給気路部32は、図1(c)及び(d)に示すように、上向き給気路部31の上端に接続され水平方向に延びる。
 第1下向き給気路部33は、図1(a)~(c)に示すように、第1水平給気路部32の先端部から下方に延びる。
As illustrated in FIG. 1C, the upward air supply path portion 31 extends upward from a connection portion with a blower 80 described later.
The 1st horizontal air supply path part 32 is connected to the upper end of the upward air supply path part 31, and is extended in a horizontal direction, as shown in FIG.1 (c) and (d).
The first downward air supply path section 33 extends downward from the tip of the first horizontal air supply path section 32 as shown in FIGS.
 第2水平給気路部34は、図1(b)に示すように、第1下向き給気路部35の先端部から缶体10の上方を略水平方向に延びる。
 第2下向き給気路部35は、図1(a)及び(b)に示すように、第2水平給気路部34の先端部から、缶体10の第1側面11aに沿って下方に延び、給気口18に接続される。
As shown in FIG. 1 (b), the second horizontal air supply passage portion 34 extends substantially horizontally from the front end portion of the first downward air supply passage portion 35 above the can body 10.
As shown in FIGS. 1A and 1B, the second downward air supply passage portion 35 extends downward from the tip of the second horizontal air supply passage portion 34 along the first side surface 11 a of the can 10. It extends and is connected to the air inlet 18.
 以上の給気路30によれば、送風機80から送り出された燃焼用空気は、図1に示すように、上向き給気路部31を上方に向かって流通した後、第1水平給気路部32を水平方向に流通してから第1下向き給気路部33を下方に向かって流通し、続いて第2水平給気路部34を水平方向に流通し、最後に第2下向き給気路部35を下方に向かって流通することで缶体10に供給される。また、第2下向き給気路部35において、後述するガス供給ライン40から燃料ガスが供給され、燃料ガスと燃焼用空気とが混合される。 According to the air supply path 30 described above, the combustion air sent out from the blower 80 circulates upward in the upward air supply path section 31 as shown in FIG. 1 and then the first horizontal air supply path section. 32 circulates in the horizontal direction, then circulates downward in the first downward air supply passage portion 33, then circulates in the second horizontal air supply passage portion 34 in the horizontal direction, and finally the second downward air supply passageway. It is supplied to the can 10 by flowing downward through the portion 35. In the second downward air supply passage 35, fuel gas is supplied from a gas supply line 40 described later, and the fuel gas and combustion air are mixed.
 ガス供給ライン40は、第2下向き給気路部35に接続される。このガス供給ライン40には、調整弁41と、複数のノズル42が設けられる。
 調整弁41は、給気路30に供給される燃料ガスの流通量を調整する。複数のノズル42は、ガス供給ライン40の先端部に配置され、給気路30に燃料ガスを噴出する。複数のノズル42の先端側は、上方に向かって、つまり、給気路30における燃焼用空気の流通方向に対向する方向に延びている(図2参照)。
The gas supply line 40 is connected to the second downward air supply path 35. The gas supply line 40 is provided with an adjustment valve 41 and a plurality of nozzles 42.
The adjustment valve 41 adjusts the flow rate of the fuel gas supplied to the air supply path 30. The plurality of nozzles 42 are disposed at the distal end portion of the gas supply line 40 and eject fuel gas into the air supply path 30. The tip ends of the plurality of nozzles 42 extend upward, that is, in a direction facing the flow direction of the combustion air in the supply passage 30 (see FIG. 2).
 排気路50は、缶体10の第2側面11b側に配置される(図2参照)。排気路50は、缶体10(ボイラ筐体11)の第2側面11bに接続される。排気路50は、缶体10の内部で混合ガスが燃焼して生じた燃焼ガスを排出する。排気路50は、第2側面11bに沿って上方に延びる上向き排気路部51を有する。
 以上の排気路50によれば、缶体10から排出された燃焼ガスは、図1に示すように、上向き排気路部51を上方に向かって流通して排出される。
The exhaust path 50 is arrange | positioned at the 2nd side surface 11b side of the can 10 (refer FIG. 2). The exhaust path 50 is connected to the second side surface 11b of the can body 10 (boiler casing 11). The exhaust passage 50 discharges the combustion gas generated by burning the mixed gas inside the can body 10. The exhaust passage 50 has an upward exhaust passage portion 51 that extends upward along the second side surface 11b.
According to the exhaust path 50 described above, the combustion gas discharged from the can body 10 is exhausted through the upward exhaust path portion 51 upward as shown in FIG.
 エコノマイザ60は、排気路50における、缶体10(ボイラ筐体11)の第2側面11b側の下部に配置される。エコノマイザ60は、給水路20を流通する水と、排気路50(上向き排気路部51)を流通する燃焼ガスとの間で熱交換を行う。
 より具体的には、エコノマイザ60は、給水路20を上方から下方に流通する水と、上向き排気路部51を下方から上方に流通する燃焼ガスと間で熱交換を行うことで水を加熱する。
The economizer 60 is disposed in the lower portion of the exhaust body 50 on the second side surface 11b side of the can body 10 (boiler casing 11). The economizer 60 performs heat exchange between the water flowing through the water supply channel 20 and the combustion gas flowing through the exhaust channel 50 (upward exhaust channel portion 51).
More specifically, the economizer 60 heats water by exchanging heat between water flowing from the upper side to the lower side of the water supply channel 20 and combustion gas flowing from the lower side to the upper side of the upward exhaust channel portion 51. .
 エアヒータ70は、排気路50におけるエコノマイザ60の下流に配置される。より具体的には、エアヒータ70は、図1に示すように、エコノマイザ60の上方における第1下向き給気路部33及び上向き排気路部51が位置する部分に配置される。エアヒータ70は、給気路30を流通する燃焼用空気と、排気路50(上向き排気路部51)を流通する燃焼ガスとの間で熱交換を行う。
 より詳しくは、エアヒータ70は、第1下向き給気路部33を上方から下方に流通する燃焼用空気と、上向き排気路部51を下方から上方に流通する燃焼ガスと間で熱交換を行うことで燃焼用空気を加熱する。
The air heater 70 is disposed downstream of the economizer 60 in the exhaust passage 50. More specifically, as shown in FIG. 1, the air heater 70 is disposed in a portion where the first downward air supply passage portion 33 and the upward exhaust passage portion 51 are located above the economizer 60. The air heater 70 performs heat exchange between the combustion air flowing through the air supply passage 30 and the combustion gas flowing through the exhaust passage 50 (upward exhaust passage portion 51).
More specifically, the air heater 70 performs heat exchange between the combustion air that circulates in the first downward air supply passage portion 33 from above and the combustion gas that circulates in the upward exhaust passage portion 51 from below. To heat the combustion air.
 送風機80は、排気路50の近傍に配置される。より具体的には、送風機80は、図1に示すように、排気路50の左側の側方の下部であって、ボイラ1の左側の側方の下部に配置される。送風機80は、給気路30の上流側の端部に接続される。送風機80は、エアホイール羽根を有する。
 エアホイール羽根は、送風機80の内部に配置される。このエアホイール羽根が回転することで、燃焼用空気が送風機80に引き込まれて、後述の給気路30に送り込まれる。
The blower 80 is disposed in the vicinity of the exhaust passage 50. More specifically, as shown in FIG. 1, the blower 80 is disposed at a lower portion on the left side of the exhaust passage 50 and at a lower portion on the left side of the boiler 1. The blower 80 is connected to the upstream end of the air supply path 30. The blower 80 has air wheel blades.
The air wheel blades are disposed inside the blower 80. As the air wheel blades rotate, the combustion air is drawn into the blower 80 and sent into the air supply path 30 described later.
 次に、ボイラ1の動作について説明する。
 ボイラ1は、送風機80によって燃焼用空気を引き込むとともに、給気路30に送り出す。
 給気路30では送風機80から送り出された燃焼用空気は、上向き給気路部31を上方に向かって流通する。上向き給気路部31を通過した燃焼用空気は、第1水平給気路部32を流通した後に、第1下向き給気路部33を流通する。
Next, the operation of the boiler 1 will be described.
The boiler 1 draws combustion air by the blower 80 and sends it out to the air supply path 30.
In the air supply path 30, the combustion air sent out from the blower 80 circulates upward in the upward air supply path portion 31. The combustion air that has passed through the upward air supply passage portion 31 flows through the first horizontal air supply passage portion 32 and then flows through the first downward air supply passage portion 33.
 第1下向き給気路部33を流通する燃焼用空気は、エアヒータ70において、缶体10から排出され、排気路50を流通する燃焼ガスとの間で熱交換されることによって加温される。ここで、上記のように、送風機80は、排気路50の近傍に配置されるので、送風機80と排気路50に配置されるエアヒータ70との距離が短くなる。従って、ボイラ1では、給気路30における送風機80からエアヒータ70までの経路(上向き給気路部31、第1水平給気路部32)を長く構成する必要がない。
 なお、缶体10から排出された燃焼ガスは、エアヒータ70における熱交換(2回目の熱交換)の前に、エコノマイザ60において、給水路20を流通し、缶体10に供給される水と熱交換(1回目の熱交換)される。
The combustion air flowing through the first downward air supply passage portion 33 is heated by the air heater 70 by exchanging heat with the combustion gas discharged from the can 10 and flowing through the exhaust passage 50. Here, as described above, since the blower 80 is disposed in the vicinity of the exhaust passage 50, the distance between the blower 80 and the air heater 70 disposed in the exhaust passage 50 is shortened. Therefore, in the boiler 1, it is not necessary to configure a long path from the blower 80 to the air heater 70 (upward air supply path portion 31, first horizontal air supply path portion 32) in the air supply path 30.
Note that the combustion gas discharged from the can 10 flows through the water supply channel 20 in the economizer 60 before the heat exchange (second heat exchange) in the air heater 70, and the water and heat supplied to the can 10. Exchange (first heat exchange).
 そして、エアヒータ70を流通しての燃焼ガスとの間で熱交換を行った後の燃焼用空気は、第2水平給気路部34を流通し、続いて、第2下向き給気路部35を流通する。 Then, the combustion air after heat exchange with the combustion gas flowing through the air heater 70 flows through the second horizontal air supply passage 34 and then the second downward air supply passage 35. Circulate.
 第2下向き給気路部35では、ガス供給ライン40及びガス供給ライン40の先端部に設けられた複数のノズル42を通じて燃料ガスが供給され、燃料ガスと燃焼用空気が混合される。
 燃料ガスと燃焼用空気が混合した混合ガスは給気口18を通じて缶体10の内部に供給される。
In the second downward air supply passage 35, the fuel gas is supplied through the gas supply line 40 and a plurality of nozzles 42 provided at the tip of the gas supply line 40, and the fuel gas and the combustion air are mixed.
The mixed gas obtained by mixing the fuel gas and the combustion air is supplied to the inside of the can body 10 through the air supply port 18.
 缶体10では、混合ガスがバーナ17により噴射されて燃焼される。この混合ガスの燃焼によって、上述した給水路20から供給される、缶体10の内部に配置された水管内の水(缶水)が沸騰して蒸気を生成する。水管内で生成した蒸気は、上部ヘッダ15に貯留された後、蒸気導出管16を介して外部に導出される。 In the can 10, the mixed gas is injected by the burner 17 and burned. By the combustion of the mixed gas, the water (can water) supplied from the above-described water supply channel 20 and disposed in the water pipe disposed inside the can body 10 boils to generate steam. The steam generated in the water pipe is stored in the upper header 15 and then led out to the outside through the steam outlet pipe 16.
 一方、缶体10内のガス流動空間において混合ガスが燃焼することによって生成した燃焼ガスは、排気口19から排気路50に排出される。排気路50から排出される燃焼ガスは、上述した1回目の熱交換及び2回目の熱交換に供された後に外部に排出される(図1(b)参照)。 On the other hand, the combustion gas generated by the mixed gas burning in the gas flow space in the can 10 is discharged from the exhaust port 19 to the exhaust path 50. The combustion gas discharged from the exhaust passage 50 is discharged to the outside after being subjected to the first heat exchange and the second heat exchange described above (see FIG. 1B).
 本発明の第1実施形態に係るボイラ1は、以下のような効果を奏する。
 (1)ボイラ1において、缶体10の近傍に排気路50を配置し、排気路50の近傍に給気路30に燃焼用空気を送り込む送風機80を配置した。これにより、送風機80から、排気路50に配置されるエアヒータ70までの距離を短くすることができる。従って、本実施形態に係るボイラ1は、設置する際の配管の取り回しが容易であり、コンパクトに設置することが可能になる。
 また、ボイラ1は、コンパクトに設置できるので、エアヒータ70で加熱した後の燃焼用空気や燃焼ガスの熱の損失が少ない。
The boiler 1 according to the first embodiment of the present invention has the following effects.
(1) In the boiler 1, the exhaust path 50 is disposed in the vicinity of the can body 10, and the blower 80 that sends combustion air to the air supply path 30 is disposed in the vicinity of the exhaust path 50. Thereby, the distance from the air blower 80 to the air heater 70 arrange | positioned at the exhaust path 50 can be shortened. Therefore, the boiler 1 according to the present embodiment can be easily installed and can be installed in a compact manner.
Moreover, since the boiler 1 can be installed compactly, there is little loss of the heat of the combustion air after heating with the air heater 70 or combustion gas.
 (2)エコノマイザ60を、缶体10の側方において上下に延びる排気路50の下部に配置した。また、エアヒータ70を、エコノマイザ60の上方に配置し、送風機80を、エコノマイザ60の近傍に配置した。ボイラ1は、エコノマイザとエアヒータを両方備えるが、このような配置によって、コンパクト化することが可能になる。 (2) The economizer 60 was disposed at the lower part of the exhaust passage 50 extending vertically on the side of the can 10. Further, the air heater 70 is disposed above the economizer 60, and the blower 80 is disposed in the vicinity of the economizer 60. The boiler 1 includes both an economizer and an air heater, but with such an arrangement, the boiler 1 can be made compact.
<第2実施形態>
 次に、本発明の第2実施形態に係るボイラ1Aついて説明する。
 なお、第2実施形態に係るボイラ1Aについては、第1実施形態に係るボイラ1を異なる構成について説明し、同様の構成については説明を省略する。
 図4は、本発明の第2実施形態に係るボイラ1の外観を模式的に示した図であり、図4(a)は前記ボイラの平面図であり、図4(b)は前記ボイラの正面図である。
Second Embodiment
Next, a boiler 1A according to a second embodiment of the present invention will be described.
In addition, about the boiler 1A which concerns on 2nd Embodiment, the boiler 1 which concerns on 1st Embodiment is demonstrated about a different structure, and description is abbreviate | omitted about the same structure.
FIG. 4 is a diagram schematically showing the appearance of a boiler 1 according to the second embodiment of the present invention, FIG. 4 (a) is a plan view of the boiler, and FIG. 4 (b) is a diagram of the boiler. It is a front view.
 第2実施形態のボイラ1Aは、主として、缶体10Aの形状及び排気路50Aの形状において第1実施形態と異なる。
 缶体10Aは、図4に示すように、円筒形状に構成されている。そして、排気路50Aは缶体10Aと送風機80Aとの間に配置される。つまり、缶体10Aと、排気路50Aと、送風機80Aとは、ボイラ1Aの平面視において直線上に配置されているので、給気路30Aを長く構成することなく配置することが可能である(図4(a)参照)。
The boiler 1A of the second embodiment is different from the first embodiment mainly in the shape of the can body 10A and the shape of the exhaust passage 50A.
As shown in FIG. 4, the can body 10A has a cylindrical shape. The exhaust passage 50A is disposed between the can body 10A and the blower 80A. That is, since the can body 10A, the exhaust passage 50A, and the blower 80A are arranged on a straight line in the plan view of the boiler 1A, it is possible to arrange the supply passage 30A without making it long ( (See FIG. 4 (a)).
 排気路50Aは、下向き排気路部52Aと、上向き排気路部51Aと、を有する。
 排気路50Aによれば、缶体10Aから排出された燃焼ガスは、図4(b)に示すように、下向き排気路部52Aを下方に向かって流通した後に、上向き排気路部51Aを上方に向かって流通して排出される。
 エコノマイザ60Aは、排気路50Aにおける、下向き排気路部52Aの位置する部分に配置される。
The exhaust passage 50A has a downward exhaust passage portion 52A and an upward exhaust passage portion 51A.
According to the exhaust path 50A, as shown in FIG. 4B, the combustion gas discharged from the can body 10A flows downward through the downward exhaust path part 52A and then moves upward through the upward exhaust path part 51A. It is distributed and discharged.
The economizer 60A is disposed in a portion of the exhaust passage 50A where the downward exhaust passage portion 52A is located.
 第2実施形態において、排気路50Aに排出された燃焼ガスは、図4(b)に示すように、エコノマイザ60Aを下方に向かって流通する。エコノマイザ60Aでは、下向き排気路部52Aを流通する燃焼ガスと、給水路20Aを流通する水との間で1回目の熱交換が行われる。そして、エコノマイザ60Aを流通して1回目の熱交換を行った燃焼ガスは、上向き排気路部51Aを上方に向かって流通する途中でエアヒータ70Aを流通する。エアヒータ70Aでは、上向き排気路部51Aを流通する燃焼ガスと、給気路30A(第1下向き給気路部33A)を流通する燃焼用空気との間で2回目の熱交換が行われる。
 そして、エアヒータ70Aを流通して2回目の熱交換を行った後の燃焼ガスは、上向き排気路部51Aを流通して排出される。
In the second embodiment, the combustion gas discharged to the exhaust passage 50A flows downward through the economizer 60A as shown in FIG. In the economizer 60A, the first heat exchange is performed between the combustion gas flowing through the downward exhaust passage 52A and the water flowing through the water supply passage 20A. Then, the combustion gas that has flowed through the economizer 60A and performed the first heat exchange flows through the air heater 70A in the middle of flowing upward through the upward exhaust passage 51A. In the air heater 70A, a second heat exchange is performed between the combustion gas flowing through the upward exhaust passage 51A and the combustion air flowing through the supply passage 30A (first downward supply passage 33A).
The combustion gas after passing through the air heater 70A and performing the second heat exchange flows through the upward exhaust passage 51A and is discharged.
 本発明の第2実施形態に係るボイラ1Aによれば、上述した(1)及び(2)に加えて以下のような効果を奏する。
 (3)缶体10Aを、円筒形状に構成し、排気路50Aを、缶体10Aと送風機80Aとの間に配置した。つまり、缶体10Aと、排気路50Aと、送風機80Aとを、ボイラ1Aの平面視において直線上に配置した。これにより、送風機80Aから缶体10Aに向かう経路の途中で、給気路30Aと排気路50Aとを交差させられる。従って、送風機80Aから缶体10Aに燃焼用空気を送り込む給気路30Aを長く構成することなくエアヒータ70Aを配置することが可能になることから、ボイラ1Aをコンパクト化できる。
The boiler 1A according to the second embodiment of the present invention has the following effects in addition to (1) and (2) described above.
(3) The can body 10A was configured in a cylindrical shape, and the exhaust passage 50A was disposed between the can body 10A and the blower 80A. That is, the can body 10A, the exhaust passage 50A, and the blower 80A are arranged on a straight line in a plan view of the boiler 1A. Thereby, the air supply path 30A and the exhaust path 50A can be crossed in the middle of the path from the blower 80A toward the can body 10A. Accordingly, the air heater 70A can be arranged without lengthening the air supply passage 30A for sending combustion air from the blower 80A to the can body 10A, and thus the boiler 1A can be made compact.
 以上、本発明のボイラの好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。 The preferred embodiments of the boiler of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and can be modified as appropriate.
 1,1A…ボイラ
 10,10A…缶体
 20,20A…給水路
 30,30A…給気路
 50,50A…排気路
 60,60A…エコノマイザ(給水加熱器)
 70,70A…エアヒータ(空気加熱器)
 80,80A…送風機
DESCRIPTION OF SYMBOLS 1,1A ... Boiler 10, 10A ... Can body 20, 20A ... Supply channel 30, 30A ... Supply channel 50, 50A ... Exhaust channel 60, 60A ... Economizer (supply water heater)
70, 70A ... Air heater (air heater)
80, 80A ... Blower

Claims (3)

  1.  燃料を燃焼させて液体を加熱することで蒸気を生成する缶体と、
     前記缶体に液体を供給する給水路と、
     前記缶体に燃焼用空気を供給する給気路と、
     前記缶体の側部に配置され該缶体で発生した燃焼ガスを排出する排気路と、
     前記排気路に配置され、前記給水路を流通する液体と前記排気路を流通する燃焼ガスとの間で熱交換を行う給水加熱器と、
     前記排気路における前記給水加熱器よりも下流側に配置され、前記給気路を流通する燃焼用空気と前記排気路を流通する燃焼ガスとの間で熱交換を行う空気加熱器と、
     前記排気路の近傍に配置され、前記給気路に燃焼用空気を送り込む送風機と、を備える
    ボイラ。
    A can body that generates steam by burning a fuel and heating a liquid;
    A water supply channel for supplying liquid to the can body;
    An air supply passage for supplying combustion air to the can body;
    An exhaust passage that is disposed at a side of the can body and discharges combustion gas generated in the can body;
    A water heater that is disposed in the exhaust passage and exchanges heat between the liquid flowing through the water supply passage and the combustion gas flowing through the exhaust passage;
    An air heater that is disposed on the downstream side of the feed water heater in the exhaust passage, and exchanges heat between the combustion air flowing through the air supply passage and the combustion gas flowing through the exhaust passage;
    A boiler provided with a blower that is disposed in the vicinity of the exhaust passage and feeds combustion air into the air supply passage.
  2.  前記給水加熱器は、前記缶体の側方における下部に配置され、
     前記空気加熱器は、前記給水加熱器の上方に配置され、
     前記送風機は、前記給水加熱器の近傍に配置される請求項1に記載のボイラ。
    The feed water heater is disposed at a lower portion on the side of the can body,
    The air heater is disposed above the feed water heater,
    The boiler according to claim 1, wherein the blower is disposed in the vicinity of the feed water heater.
  3.  前記缶体は、円筒形状に構成され、
     前記排気路は、前記缶体と前記送風機との間に配置される請求項2に記載のボイラ。
    The can body is configured in a cylindrical shape,
    The boiler according to claim 2, wherein the exhaust path is disposed between the can body and the blower.
PCT/JP2014/052471 2013-07-12 2014-02-03 Boiler WO2015004935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-146336 2013-07-12
JP2013146336A JP6171647B2 (en) 2013-07-12 2013-07-12 boiler

Publications (1)

Publication Number Publication Date
WO2015004935A1 true WO2015004935A1 (en) 2015-01-15

Family

ID=52279635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052471 WO2015004935A1 (en) 2013-07-12 2014-02-03 Boiler

Country Status (2)

Country Link
JP (1) JP6171647B2 (en)
WO (1) WO2015004935A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213406A (en) * 1985-03-18 1986-09-22 Takuma Co Ltd Steam boiler
JPH11118104A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Boiler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127813A (en) * 1987-11-13 1989-05-19 Ebara Corp Supply water heater with air preheating mechanism
JPH10160112A (en) * 1996-12-02 1998-06-19 Tokyo Gas Co Ltd Boiler with highly efficient low nox combustion apparatus
JP4040020B2 (en) * 2003-12-24 2008-01-30 大阪瓦斯株式会社 boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213406A (en) * 1985-03-18 1986-09-22 Takuma Co Ltd Steam boiler
JPH11118104A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Boiler

Also Published As

Publication number Publication date
JP6171647B2 (en) 2017-08-02
JP2015017777A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP6123253B2 (en) Boiler equipment
RU2016114849A (en) INTEGRATED FUEL GAS HEAT DISPOSAL SYSTEM
CN110290706A (en) Steam generator and relative steam cooking system
JP6056371B2 (en) Boiler system
JP4920082B2 (en) Boiler water cycle of a fluidized bed reactor and fluidized bed reactor having such a boiler water cycle
JP6531099B2 (en) Heat exchanger, heating device, heating system and method for heating water
JP6171647B2 (en) boiler
CN107667271B (en) Header device for a heat exchanger system, heat exchanger system and method for heating a fluid
WO2014069004A1 (en) Boiler
EP3014193A1 (en) Air heater
JP6221706B2 (en) Boiler equipment
JP6161329B2 (en) Water supply preheating boiler
CN101512223B (en) Method of producing steam in a gas tube steam boiler and gas tube steam boiler for implementing said method
JP6393028B2 (en) Underwater combustion type vaporizer
JP6331958B2 (en) boiler
JP2014092357A (en) Boiler system
KR20160108850A (en) Heating fan
CN216143707U (en) Two-way feedwater heating system of msw incineration boiler
JP6430099B2 (en) Boiler system
JP2014105882A (en) Boiler device
KR101659786B1 (en) Finsless double pipe heat exchanger
JP6389723B2 (en) Multi-pipe once-through boiler
JP2024032219A (en) boiler
KR102086205B1 (en) Flow-through boiler
CN202813323U (en) Boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823368

Country of ref document: EP

Kind code of ref document: A1