JP6389723B2 - Multi-pipe once-through boiler - Google Patents

Multi-pipe once-through boiler Download PDF

Info

Publication number
JP6389723B2
JP6389723B2 JP2014202926A JP2014202926A JP6389723B2 JP 6389723 B2 JP6389723 B2 JP 6389723B2 JP 2014202926 A JP2014202926 A JP 2014202926A JP 2014202926 A JP2014202926 A JP 2014202926A JP 6389723 B2 JP6389723 B2 JP 6389723B2
Authority
JP
Japan
Prior art keywords
steam
pipe
water
boiler
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014202926A
Other languages
Japanese (ja)
Other versions
JP2016070628A (en
Inventor
訓央 林
訓央 林
宏一 深井
宏一 深井
Original Assignee
株式会社日本サーモエナー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本サーモエナー filed Critical 株式会社日本サーモエナー
Priority to JP2014202926A priority Critical patent/JP6389723B2/en
Publication of JP2016070628A publication Critical patent/JP2016070628A/en
Application granted granted Critical
Publication of JP6389723B2 publication Critical patent/JP6389723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、気水分離器が連結された多管式貫流ボイラに関する。   The present invention relates to a multitubular once-through boiler to which a steam separator is connected.

従来、この種の多管式貫流ボイラでは、水管で発生した蒸気は飽和水を伴って気水混合物となって上部管寄せに連結された連結管を通って気水分離器に送られ、気水分離器内の旋回羽根や遠心ノズル等の旋回流形成部を通じて旋回させられ、旋回流の遠心作用により、蒸気と飽和水との密度差により、飽和水は気水分離器胴の内壁側に偏り、蒸気は旋回する飽和水の内側に偏って気水分離器の上部中央に連結された蒸気排出管から排出されることにより、蒸気と飽和水とに分離され、蒸気は蒸気利用設備側に送られ、飽和水は気水分離器の下部に連結された戻り配管によりボイラ本体の下部管寄せに戻され、再循環される。この飽和水再循環について貫流ボイラには法規制により、「最大給水量に対する循環量の比が2以下」と定められている。   Conventionally, in this type of multi-tube once-through boiler, steam generated in the water pipe becomes a steam-water mixture with saturated water and is sent to the steam-water separator through a connecting pipe connected to the upper header. Saturated water is swirled through a swirl flow forming part such as swirl vanes and centrifugal nozzles in the water separator, and due to the centrifugal action of the swirl flow, saturated water is brought into the inner wall side of the steam-water separator body due to the density difference between the steam and saturated water. The steam is biased to the inside of the swirling saturated water and discharged from the steam discharge pipe connected to the upper center of the steam separator, so that it is separated into steam and saturated water. The saturated water is sent and returned to the lower header of the boiler body by a return pipe connected to the lower part of the steam separator, and recirculated. With regard to this saturated water recirculation, the once-through boiler is defined by law as “the ratio of the circulation amount to the maximum water supply amount is 2 or less”.

しかしながら、循環水量が極端に少ない場合、気水分離器下部の戻り配管及び下部管寄せの温度及びpHが低くなることで、腐食障害を生じ易くなる。そのため、貫流ボイラにおいては法規制を超えない範囲で、全ての燃焼領域において適切な循環水量を確保することが重要となる。   However, when the amount of circulating water is extremely small, the temperature and pH of the return pipe and the lower header at the lower part of the steam / water separator are lowered, which easily causes a corrosion failure. Therefore, in a once-through boiler, it is important to secure an appropriate amount of circulating water in all combustion regions within a range that does not exceed legal regulations.

燃焼量制御に多段制御もしくは比例制御を用いた貫流ボイラの場合、運転状況が高負荷から低負荷に移行するにつれて循環水量は減少する傾向にある。この要因は、水管内での沸騰状態が異なることや、気水分離器に流入する蒸気の絶対量が異なることが挙げられる。近年では省エネルギーの観点からターンダウン比(以下、TDR)を大きくとり、ボイラの発停回数を減らすことでパージ損失の低減を図っているボイラが注目されている。   In the case of a once-through boiler using multistage control or proportional control for combustion amount control, the circulating water amount tends to decrease as the operating state shifts from a high load to a low load. This is because the boiling state in the water pipe is different and the absolute amount of steam flowing into the steam separator is different. In recent years, attention has been focused on boilers that reduce the purge loss by increasing the turn-down ratio (hereinafter referred to as TDR) from the viewpoint of energy saving and reducing the number of times the boiler starts and stops.

しかしながら、TDRを広くとると従来の最低燃焼量よりさらに低負荷状態の超低負荷状態が存在することになる。このような超低負荷状態においては循環水の量は極端に減少し、気水分離器下部の戻り配管及び下部管寄せのpHは適切な管理基準値が外れてしまう。   However, if the TDR is wide, there is an ultra-low load state that is lower than the conventional minimum combustion amount. In such an ultra-low load state, the amount of circulating water is extremely reduced, and the pH of the return pipe and the lower header at the lower part of the steam-water separator will deviate from an appropriate management reference value.

そのため、図7に示すように、気水分離器20と上部管寄せ21との連結管を上部管寄せ21の側面から引き出した連結配管22と上部管寄せ21の上面から引き出した連結配管23の2本の連結配管を設置した、多管式貫流ボイラの気水分離器の連結構造が知られている(特許文献1)。   Therefore, as shown in FIG. 7, the connection pipe 22 that draws the connection pipe between the steam separator 20 and the upper header 21 from the side face of the upper header 21 and the connection pipe 23 that draws from the upper surface of the upper header 21. A connection structure of a multi-pipe once-through boiler air / water separator in which two connection pipes are installed is known (Patent Document 1).

図7に示す連結構造によれば、上部管寄せ21の側面から引き出された連結配管22は上部から引き出された連結配管23より圧力損失が少ないため、気水混合物の発生量が少ない低燃焼時には、気水混合物の大半は上部管寄せ21の側面から引き出された連結配管22から気水分離器20へ流れ込み、戻り管24を介して所定の飽和水戻り量を確保することができ、高燃焼時には気水混合物の流量増加と蒸気負荷への蒸気供給量増加のため、気水混合物は側面から引き出された連結配管22のみでは流れきれず上部引き出し連結配管23へも流れるため、高燃焼時の飽和水戻り量は上部引き出し連結配管23への流量により増減でき、高燃焼・低燃焼別々の戻り量(循環比)を決定することができ、その結果、低燃焼時にも適量の戻り量が得られるため、下部管寄せ内缶水を適正なpHに保持でき、低pHによる缶体の腐食が低減するとされている。   According to the connection structure shown in FIG. 7, the connection pipe 22 drawn from the side surface of the upper header 21 has less pressure loss than the connection pipe 23 drawn from the top, so that the amount of air-water mixture generated is low and the combustion is low. The majority of the air / water mixture flows into the steam / water separator 20 from the connecting pipe 22 drawn from the side surface of the upper header 21 and can secure a predetermined amount of saturated water return via the return pipe 24. Sometimes the flow rate of the air / water mixture is increased and the amount of steam supplied to the steam load is increased, so that the air / water mixture cannot be flowed only by the connecting pipe 22 drawn from the side but flows to the upper drawing connecting pipe 23. The amount of saturated water return can be increased or decreased by the flow rate to the upper drawer connecting pipe 23, and the return amount (circulation ratio) for high combustion and low combustion can be determined. As a result, an appropriate amount of return can be obtained even at low combustion. Is therefore the lower header in the reactor water can be kept in the proper pH, there is a corrosion of the can body with a low pH is reduced.

実開平6−40604号公報Japanese Utility Model Publication No. 6-40604

しかしながら、図8に示すように、従来、旋回型の気水分離器20内では、旋回羽根25(旋回流形成部)による飽和水Wの旋回による遠心力の影響を受け、低負荷域では必要な循環水量の流入を阻害し、高負荷域では飽和水Wがボイラの側へ逆流し、分離排出される蒸気Vの乾き度を悪化させるという問題を生じ得る。   However, as shown in FIG. 8, conventionally, in the swirl type steam / water separator 20, the swirl blade 25 (swirl flow forming portion) is affected by the centrifugal force due to swirling of the saturated water W, and is necessary in a low load region. Inflow of a large amount of circulating water is hindered, and in a high load region, saturated water W flows backward to the boiler side, which may cause a problem that the dryness of steam V separated and discharged is deteriorated.

そこで、本発明は、気水分離器での飽和水の旋回による遠心力の影響を緩和し、低負荷状態でも一定の循環水量を確保するとともに、蒸気乾き度の低下を防ぐことができる多管式貫流ボイラを提供することを主たる目的とする。   Therefore, the present invention reduces the influence of centrifugal force caused by swirling of saturated water in the steam separator, ensures a constant circulating water amount even in a low load state, and prevents a decrease in steam dryness. The main purpose is to provide a once-through boiler.

上記問題を解決するため、本発明に係る多管式貫流ボイラは、上部管寄せから気水分離器の旋回流形成部に蒸気と飽和水の混合物を送る連結管と、上部管寄せと前記気水分離器の前記旋回流形成部より低い位置とを連通連結するバイパス管と、を備え、前記バイパス管は、吐出口を備える先端部が前記気水分離器内に突出して設けられていることを特徴とする。   In order to solve the above problems, a multitubular once-through boiler according to the present invention includes a connecting pipe that sends a mixture of steam and saturated water from the upper header to the swirl flow forming portion of the steam separator, the upper header, and the air header. A bypass pipe that communicates with a position lower than the swirl flow forming portion of the water separator, and the bypass pipe is provided with a distal end portion provided with a discharge port protruding into the steam-water separator. It is characterized by.

前記吐出口は、前記気水分離器内で生じる飽和水旋回流の下流側に向けて開口していることが好ましい。   The discharge port is preferably opened toward the downstream side of the saturated water swirl generated in the steam separator.

前記バイパス管の先端部は、先端の端面が閉じられ、該先端部の側面に前記吐出口が形成されていることが好ましい。   It is preferable that the end of the bypass pipe is closed at the end, and the discharge port is formed on the side of the end.

前記バイパス管に介在させた制御弁と、ボイラ負荷が所定値以下の時に前記制御弁を開くように制御する制御装置と、を備えることが好ましい。   It is preferable to include a control valve interposed in the bypass pipe and a control device that controls the control valve to open when the boiler load is a predetermined value or less.

前記バイパス管は、上部管寄せへの連結位置より気水分離器への連結位置が低い位置にあることが好ましい。   The bypass pipe is preferably located at a position where the connection position to the steam separator is lower than the connection position to the upper header.

前記バイパス管が、前記気水分離器の給水管接続位置と同レベルの高さ位置で該気水分離器に連結されていることが好ましい。   It is preferable that the bypass pipe is connected to the steam / water separator at a height position that is the same level as a feed pipe connection position of the steam / water separator.

前記バイパス管は、前記連結管より内径が小さい管であることが好ましい。   The bypass pipe is preferably a pipe having an inner diameter smaller than that of the connecting pipe.

本発明によれば、バイパス管の先端部を気水分離器内に突出させることにより、バイパス管は、飽和水の旋回流の遠心力を受けにくくなり、低負荷域では必要な循環水量の流入を妨げず、また、高負荷域では飽和水がボイラの側へ逆流することを防ぐことが可能となる。   According to the present invention, by projecting the tip of the bypass pipe into the steam / water separator, the bypass pipe becomes less susceptible to the centrifugal force of the swirling flow of saturated water, and the inflow of the necessary circulating water amount in the low load region. It is possible to prevent the saturated water from flowing back to the boiler side in a high load range.

本発明に係る多管式貫流ボイラの第1実施形態を示す概略構成図である。It is a schematic structure figure showing a 1st embodiment of a multi-tube type once-through boiler concerning the present invention. 図1の多管式貫流ボイラの要部横断面図である。It is a principal part cross-sectional view of the multitubular once-through boiler of FIG. 本発明に係る多管式貫流ボイラの第2実施形態を示す要部横断面図である。It is a principal part cross-sectional view which shows 2nd Embodiment of the multi-tube type once-through boiler which concerns on this invention. 本発明に係る多管式貫流ボイラの第3実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of the multi-tube type once-through boiler which concerns on this invention. 本発明に係る多管式貫流ボイラの第4実施形態を示す概略構成図である。It is a schematic block diagram which shows 4th Embodiment of the multitubular once-through boiler which concerns on this invention. 本発明に係る多管式貫流ボイラの第5実施形態を示す概略構成図である。It is a schematic block diagram which shows 5th Embodiment of the multitubular once-through boiler which concerns on this invention. 従来の多管式貫流ボイラの概略構成図である。It is a schematic block diagram of the conventional multitubular once-through boiler. 従来の気水分離器の中央縦断面図である。It is a center longitudinal cross-sectional view of the conventional steam separator.

本発明に係る多管式貫流ボイラの実施形態について、図1〜図6を参照して説明する。なお、本発明に関し、全図及び全実施形態を通じ、同一又は類似の構成部分には同符号を付した。   An embodiment of a multitubular once-through boiler according to the present invention will be described with reference to FIGS. In the present invention, the same or similar components are denoted by the same reference numerals throughout the drawings and the embodiments.

本発明に係る多管式貫流ボイラの第1実施形態は、図1に示すように、多管式貫流ボイラ1は、ボイラ本体2、ボイラ本体2の周囲に配置される水管3、水管3と接続された下部管寄せ4及び上部管寄せ5、上部管寄せと気水分離器6とを連結する連結管7、連結管7から送られてくる気水混合物を旋回させる旋回流形成部8と、上部管寄せ5と気水分離器6とを旋回流形成部8の下方で連結するバイパス管9と、旋回流形成部8で飽和水と分離された蒸気を排気する蒸気配管10と、気水分離器6と下部管寄せ4とを連結する戻り管11と、気水分離器6に給水する給水管12と、を備えている。燃焼バーナーは図示省略されており、燃焼制御には、多段制御もしくは比例制御が用いられる。   As shown in FIG. 1, a first embodiment of a multi-tube once-through boiler according to the present invention includes a multi-tube once-through boiler 1, a boiler main body 2, a water pipe 3 disposed around the boiler main body 2, a water pipe 3, A lower header 4 and an upper header 5 connected to each other, a connecting pipe 7 for connecting the upper header and the steam separator 6, and a swirl flow forming unit 8 for rotating the air / water mixture sent from the connecting pipe 7; A bypass pipe 9 for connecting the upper header 5 and the steam separator 6 below the swirling flow forming section 8, a steam pipe 10 for exhausting steam separated from the saturated water by the swirling flow forming section 8, and a gas A return pipe 11 for connecting the water separator 6 and the lower header 4 and a water supply pipe 12 for supplying water to the steam separator 6 are provided. The combustion burner is not shown, and multistage control or proportional control is used for combustion control.

第1実施形態の旋回流形成部8は、気水分離器6内に固定された案内羽根8aによって形成されており、水管3で沸騰した蒸気が飽和水を伴い連結管7を通って案内羽根8aの上部空間6aに送られると、蒸気と飽和水の気水混合物は案内羽根8aを通過する際に旋回流となり、案内羽根8aの下方空間6bに気水混合物の旋回流を生じさせ、遠心力の作用下で蒸気と飽和水が密度差により遠心分離され、蒸気は蒸気配管10から排出され、飽和水は旋回流となり、戻り管11を通して下部管寄せ4に戻される。   The swirl flow forming portion 8 of the first embodiment is formed by guide vanes 8a fixed in the steam separator 6, and the steam boiled in the water pipe 3 passes through the connecting pipe 7 along with the saturated water and the guide vanes. When sent to the upper space 6a of the 8a, the steam-saturated water-water mixture becomes a swirling flow when passing through the guide vanes 8a, and a swirling flow of the air-water mixture is generated in the lower space 6b of the guide vanes 8a. Under the action of force, the steam and the saturated water are centrifuged due to the density difference, the steam is discharged from the steam pipe 10, and the saturated water becomes a swirling flow and is returned to the lower header 4 through the return pipe 11.

バイパス管9は、図2に拡大して示すように、吐出口9aが形成された先端部9bが、気水分離器6内に突出して延設されている。先端部9bを気水分離器6内に突出させることにより、バイパス管9は、飽和水の旋回流Fの遠心力を受けにくくなる。その結果、低負荷域では必要な循環水量の流入を妨げず、また、高負荷域では飽和水がボイラの側へ逆流することを防ぐことができる。   As shown in an enlarged view in FIG. 2, the bypass pipe 9 has a distal end portion 9 b in which a discharge port 9 a is formed so as to protrude into the steam / water separator 6. By projecting the distal end portion 9b into the steam / water separator 6, the bypass pipe 9 is less likely to receive the centrifugal force of the swirling flow F of saturated water. As a result, it is possible to prevent the inflow of the necessary circulating water amount in the low load region, and to prevent the saturated water from flowing back to the boiler side in the high load region.

バイパス管9の先端部9bの吐出口9aは、気水分離器6の内壁面から離れた位置にあって、飽和水の旋回流Fの旋回方向の下流側に向けて開口している。斯かる構成により、バイパス管9の先端部9bは吐出口9aと反対側の周側面で飽和水の旋回流Fを受けるため、飽和水の旋回流Fの遠心力の影響がいっそう軽減され、低負荷域での必要な循環水量の流入を妨げず、また、高負荷域では飽和水がボイラの側へ逆流することを防ぐ効果をいっそう高めることができる。バイパス管9の先端部9bの吐出口9aは、複数としてもよいし、一つにしてもよい。   The discharge port 9a of the tip 9b of the bypass pipe 9 is located away from the inner wall surface of the steam / water separator 6 and opens toward the downstream side in the swirling direction of the swirling flow F of the saturated water. With such a configuration, the distal end portion 9b of the bypass pipe 9 receives the swirling flow F of the saturated water on the peripheral side opposite to the discharge port 9a, and thus the influence of the centrifugal force of the swirling flow F of the saturated water is further reduced. The effect of preventing the inflow of the necessary circulating water amount in the load region and preventing the saturated water from flowing back to the boiler side in the high load region can be further enhanced. The discharge port 9a at the tip 9b of the bypass pipe 9 may be plural or one.

また、バイパス管9の先端部9bは、その先端面9cが閉じられており、先端部9bの側面に吐出口9aが形成されることにより、低負荷域での必要な循環水量の流入を妨げず、また、高負荷域では飽和水がボイラの側へ逆流することを防ぐ効果を更に高めることができる。   Further, the distal end portion 9b of the bypass pipe 9 is closed at the distal end surface 9c, and the discharge port 9a is formed on the side surface of the distal end portion 9b, thereby preventing the flow of necessary circulating water in the low load region. Moreover, the effect which prevents that saturated water flows backward to the boiler side can be further heightened in a high load area.

バイパス管9は、連結管7より内径の小さい管を採用し、連結管7に比べて気水混合物が通りにくくしておくことが望ましい。バイパス管9に絞り(図示せず。)を介在させてもよい。   The bypass pipe 9 is preferably a pipe having an inner diameter smaller than that of the connecting pipe 7, and it is preferable that the air-water mixture is less likely to pass than the connecting pipe 7. A throttle (not shown) may be interposed in the bypass pipe 9.

図3は、本発明に係る多管式貫流ボイラの第2実施形態を示しており、第2実施形態では、バイパス管9の先端部9bの吐出口9aが、管端を斜めにカットした形状とされている。この場合も、吐出口9aは旋回流Fの下流側を向いて開口しているため、第1実施形態と同様の技術的効果が得られる。   FIG. 3 shows a second embodiment of the multi-tube once-through boiler according to the present invention. In the second embodiment, the discharge port 9a of the distal end portion 9b of the bypass pipe 9 has a shape in which the pipe end is cut obliquely. It is said that. Also in this case, since the discharge port 9a opens toward the downstream side of the swirling flow F, the same technical effect as in the first embodiment can be obtained.

図4は、本発明に係る多管式貫流ボイラの第3実施形態を示している。第3実施形態においては、バイパス管9に制御弁13が介在され、ボイラ負荷が設定値以下の時に制御弁13を開くように制御する制御装置14と、を備えている。   FIG. 4 shows a third embodiment of the multi-tube once-through boiler according to the present invention. In 3rd Embodiment, the control valve 13 is interposed in the bypass pipe 9, and the control apparatus 14 which controls to open the control valve 13 when a boiler load is below a setting value is provided.

ボイラ負荷は、ボイラの燃焼バーナー(図示せず。)による燃焼量であり、燃焼量は燃焼バーナーに供給する燃料ガスの流量に比例するため、燃料ガスの流量を流量計で計測することにより知ることができる。ボイラの燃焼量(実際ボイラ負荷b)が所定の燃焼量(設定ボイラ負荷a)以下となった場合に、制御弁が「開」となるように制御することにより、制御弁13により循環水量の確保が必要な低負荷燃焼運転時のみ確実に気水分離器6内にボイラ本体2からの気水混合物を供給し、循環水量の確保を可能にする。また、循環水量が確保でき制御弁13が不要となる高負荷燃焼時においては制御弁が「閉」となることで、制御弁13から上部管寄せ5に飽和水が逆流することによる乾き度の低下を防止し得る。   The boiler load is a combustion amount by a combustion burner (not shown) of the boiler, and the combustion amount is proportional to the flow rate of the fuel gas supplied to the combustion burner. Therefore, the boiler load is known by measuring the flow rate of the fuel gas with a flow meter. be able to. When the combustion amount of the boiler (actual boiler load b) becomes equal to or less than the predetermined combustion amount (set boiler load a), the control valve 13 is controlled so that the control valve is “open”. The air / water mixture from the boiler body 2 is reliably supplied into the air / water separator 6 only during the low-load combustion operation that needs to be ensured, thereby ensuring the amount of circulating water. In addition, during high load combustion where the amount of circulating water can be secured and the control valve 13 is not required, the control valve is “closed”, so that the dryness of the saturated water flows back from the control valve 13 to the upper header 5. Decline can be prevented.

図5は、本発明に係る多管式管流ボイラの第4実施形態を示している。第4実施形態では、バイパス管9は、上部管寄せ5への連結位置より低い位置で気水分離器6に連結されている。水管3で発生する高温蒸気は上昇する傾向にあるため、斯かる構成により、上部管寄せ5からバイパス管9を通って気水分離器6へ蒸気が入りにくく、また、気水分離器6からの飽和水の逆流も制限され得る。   FIG. 5 shows a fourth embodiment of the multi-tube tubular boiler according to the present invention. In the fourth embodiment, the bypass pipe 9 is connected to the steam separator 6 at a position lower than the connection position to the upper header 5. Since the high-temperature steam generated in the water pipe 3 tends to rise, this structure makes it difficult for steam to enter the steam-water separator 6 from the upper header 5 through the bypass pipe 9, and from the steam-water separator 6. The backflow of saturated water can also be limited.

また、図5に示す第4実施形態では、バイパス管9は、気水分離器6の給水管12の接続位置と同レベルの高さ位置で気水分離器6に連結されている。給水管12を流れる水には、ボイラの腐食防止のために水酸化ナトリウム等の薬剤が所定量添加されており、バイパス管9と給水管12とを同レベルの高さ位置で気水分離器6に連結しておくことにより、バイパス管9からの飽和水と給水管12からの給水とが迅速に混合され、薬剤の迅速な攪拌がなされ得る。また、給水管12は通常、気水分離器6のニュートラルレベルの水位より低い位置に設けられており、バイパス管9を給水管12と同レベルの高さ位置に連結することで、バイパス管9の先端部吐出口は蒸気配管10の入口10aから十分離れた位置に設置されることとなり、バイパス管9からの気水混合物が蒸気配管10から排出されにくくなり、蒸気配管10から排気される蒸気の乾き度の低下を防ぐことができる。   Moreover, in 4th Embodiment shown in FIG. 5, the bypass pipe 9 is connected with the steam-water separator 6 in the height position of the same level as the connection position of the water supply pipe 12 of the steam-water separator 6. A predetermined amount of a chemical such as sodium hydroxide is added to the water flowing through the water supply pipe 12 to prevent the corrosion of the boiler, and the steam separator is connected to the bypass pipe 9 and the water supply pipe 12 at the same level. By connecting to 6, the saturated water from the bypass pipe 9 and the water supplied from the water supply pipe 12 are quickly mixed, and the drug can be rapidly stirred. Further, the water supply pipe 12 is usually provided at a position lower than the water level at the neutral level of the steam separator 6, and the bypass pipe 9 is connected to the height position at the same level as the water supply pipe 12. The tip discharge outlet of the steam pipe 10 is installed at a position sufficiently away from the inlet 10a of the steam pipe 10, and the steam-water mixture from the bypass pipe 9 becomes difficult to be discharged from the steam pipe 10, and the steam exhausted from the steam pipe 10 This can prevent a decrease in dryness.

図6は、本発明に係る多管式管流ボイラの第5実施形態を示し、旋回流形成部8が遠心ノズル8bで構成されている点が上記第1実施形態と相違し、その他の構成は上記第1実施形態と同様であるので、詳細な説明を省略する。旋回流形成部は、第1実施形態、第5実施形態の態様に限らず、連結管7からの気水混合物の流れを旋回流にする他の形態のものを採用し得る。   FIG. 6 shows a fifth embodiment of the multitubular tube flow boiler according to the present invention, which is different from the first embodiment in that the swirling flow forming portion 8 is constituted by a centrifugal nozzle 8b, and other configurations. Since this is the same as that of the first embodiment, detailed description thereof is omitted. The swirl flow forming unit is not limited to the form of the first embodiment and the fifth embodiment, and other forms that make the flow of the air-water mixture from the connecting pipe 7 swirl can be adopted.

本発明は、上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1 多管式貫流ボイラ
2 ボイラ本体
3 水管
4 下部管寄せ
5 上部管寄せ
6 気水分離器
7 連結管
8 旋回流形成部
9 バイパス管
9a 吐出口
9b 先端部
12 給水管
13 制御弁
14 制御装置
DESCRIPTION OF SYMBOLS 1 Multipipe once-through boiler 2 Boiler main body 3 Water pipe 4 Lower header 5 Upper header 6 Gas-water separator 7 Connection pipe 8 Swirling flow formation part 9 Bypass pipe 9a Discharge port 9b Tip part 12 Water supply pipe 13 Control valve 14 Control apparatus

Claims (5)

上部管寄せから気水分離器の旋回流形成部に蒸気と飽和水の混合物を送る連結管と、
前記上部管寄せと前記気水分離器の前記旋回流形成部より低い位置とを連通連結するバイパス管と、を備え、
前記バイパス管は、吐出口を備える先端部が前記気水分離器内に突出して設けられているとともに、前記吐出口が前記気水分離器内で生じる飽和水旋回流の下流側に向けて開口しており、且つ、前記上部管寄せへの連結位置より気水分離器への連結位置が低い位置にあることを特徴とする多管式貫流ボイラ。
A connecting pipe for sending a mixture of steam and saturated water from the upper header to the swirl flow forming section of the steam separator,
And a bypass pipe for connecting communicating the position lower than the swirling flow of the steam-water separator and the upper header,
The bypass pipe is provided with a distal end provided with a discharge port protruding into the steam-water separator, and the discharge port is opened toward the downstream side of the saturated water swirl flow generated in the steam-water separator. And a multi-pipe once-through boiler characterized in that the connection position to the steam separator is lower than the connection position to the upper header .
上部管寄せから気水分離器の旋回流形成部に蒸気と飽和水の混合物を送る連結管と、
前記上部管寄せと前記気水分離器の前記旋回流形成部より低い位置とを連通連結するバイパス管と、を備え、
前記バイパス管は、吐出口を備える先端部が前記気水分離器内に突出して設けられているとともに、前記吐出口が前記気水分離器内で生じる飽和水旋回流の下流側に向けて開口しており、且つ、前記連結管より内径が小さい管であることを特徴とする多管式貫流ボイラ。
A connecting pipe for sending a mixture of steam and saturated water from the upper header to the swirl flow forming section of the steam separator,
A bypass pipe that communicatively connects the upper header and a position lower than the swirl flow forming portion of the steam separator,
The bypass pipe is provided with a distal end provided with a discharge port protruding into the steam-water separator, and the discharge port is opened toward the downstream side of the saturated water swirl flow generated in the steam-water separator. And a multi-pipe once -through boiler characterized in that the inner diameter is smaller than that of the connecting pipe .
前記バイパス管の先端部は、先端の端面が閉じられ、該先端部の側面に前記吐出口が形成されていることを特徴とする請求項1又は2に記載の多管式貫流ボイラ。 The multi-pipe once -through boiler according to claim 1 or 2 , wherein an end face of the tip of the bypass pipe is closed and the discharge port is formed on a side surface of the tip. 前記バイパス管に介在させた制御弁と、ボイラ負荷が所定値以下の時に前記制御弁を開くように制御する制御装置と、を備えることを特徴とする請求項1〜3の何れかに記載の多管式貫流ボイラ。 A control valve interposed in the bypass pipe, the boiler load according to claim 1, characterized in that it comprises a control device for controlling to open the control valve when the predetermined value or less Multi-tube once-through boiler. 前記バイパス管が、前記気水分離器の給水管接続位置と同レベルの高さ位置で該気水分離器に連結されていることを特徴とする請求項に記載の多管式貫流ボイラ。
2. The multi-pipe once -through boiler according to claim 1 , wherein the bypass pipe is connected to the steam / water separator at a height position that is the same level as a feed pipe connection position of the steam / water separator.
JP2014202926A 2014-10-01 2014-10-01 Multi-pipe once-through boiler Active JP6389723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202926A JP6389723B2 (en) 2014-10-01 2014-10-01 Multi-pipe once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202926A JP6389723B2 (en) 2014-10-01 2014-10-01 Multi-pipe once-through boiler

Publications (2)

Publication Number Publication Date
JP2016070628A JP2016070628A (en) 2016-05-09
JP6389723B2 true JP6389723B2 (en) 2018-09-12

Family

ID=55866495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202926A Active JP6389723B2 (en) 2014-10-01 2014-10-01 Multi-pipe once-through boiler

Country Status (1)

Country Link
JP (1) JP6389723B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621531Y2 (en) * 1988-10-19 1994-06-08 株式会社タクマ Steam separator
JP2555008Y2 (en) * 1992-09-24 1997-11-19 株式会社サムソン Connection structure of brackish water separator of multi-tube once-through boiler
JP2002005404A (en) * 2000-06-23 2002-01-09 Ebara Bioler Co Ltd Steam separator
JP2002013703A (en) * 2000-06-28 2002-01-18 Ishikawajima Harima Heavy Ind Co Ltd Air-water separator
JP2004176948A (en) * 2002-11-25 2004-06-24 Ozaki:Kk Steam supply device
JP4684542B2 (en) * 2003-07-15 2011-05-18 株式会社テイエルブイ Gas-liquid separator with drainage valve
JP2008261538A (en) * 2007-04-11 2008-10-30 Babcock Hitachi Kk Steam separator and boiler device comprising the same

Also Published As

Publication number Publication date
JP2016070628A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
US5762031A (en) Vertical drum-type boiler with enhanced circulation
JP2008101516A (en) Steam valve and steam turbine
JP6389723B2 (en) Multi-pipe once-through boiler
CN103727519B (en) Device for preventing low-temperature corrosion of economizer heating surface
JP4920082B2 (en) Boiler water cycle of a fluidized bed reactor and fluidized bed reactor having such a boiler water cycle
JP5733822B2 (en) boiler
JP2008261538A (en) Steam separator and boiler device comprising the same
US6499440B2 (en) Fossil-fired steam generator
JP4977398B2 (en) A economizer and an exhaust heat recovery boiler equipped with the economizer
CN202928094U (en) Condensing water boiler
CN214536157U (en) Heating heat exchange type boiler
JP6161329B2 (en) Water supply preheating boiler
JP2012058113A (en) Steam separation facility for nuclear reactor
JP2008082752A (en) Jet pump and nuclear reactor
JP5415701B2 (en) Reactor jet pump
JP4133676B2 (en) Boiler with water supply path backflow prevention structure
JP6171647B2 (en) boiler
CN102692012B (en) High-boiling-rate economizer system for industrial boiler
JPH025202Y2 (en)
JP2012112590A (en) Steam generator, and nuclear power plant
JPH06308276A (en) Nozzle of reactor pressure vessel
JP3176435B2 (en) Steam generator
JPH028201B2 (en)
JPS63116032A (en) Jet mixer with by-pass device
JP2555008Y2 (en) Connection structure of brackish water separator of multi-tube once-through boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6389723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250