WO2015004811A1 - Organic el element and organic el lighting apparatus using same - Google Patents

Organic el element and organic el lighting apparatus using same Download PDF

Info

Publication number
WO2015004811A1
WO2015004811A1 PCT/JP2013/069208 JP2013069208W WO2015004811A1 WO 2015004811 A1 WO2015004811 A1 WO 2015004811A1 JP 2013069208 W JP2013069208 W JP 2013069208W WO 2015004811 A1 WO2015004811 A1 WO 2015004811A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
refractive index
low refractive
light
Prior art date
Application number
PCT/JP2013/069208
Other languages
French (fr)
Japanese (ja)
Inventor
裕紀 若菜
石原 慎吾
素子 原田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015526126A priority Critical patent/JPWO2015004811A1/en
Priority to PCT/JP2013/069208 priority patent/WO2015004811A1/en
Publication of WO2015004811A1 publication Critical patent/WO2015004811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present invention relates to an organic EL element and an organic EL lighting device using the same.
  • the organic EL lighting device is a lighting device using, as a pixel, an organic EL element characterized by self-emission with a thin film.
  • a lighting device L shown in FIG. 10 includes a pair of electrodes A and B, and an organic compound layer C disposed between the electrodes A and B (for example, a hole injection layer C1, a hole transport layer C2, and a light emitting layer C3). And the electron transport layer C4 and the electron injection layer C5 are formed to be stacked on each other).
  • an organic compound layer C disposed between the electrodes A and B (for example, a hole injection layer C1, a hole transport layer C2, and a light emitting layer C3).
  • the electron transport layer C4 and the electron injection layer C5 are formed to be stacked on each other).
  • evanescent mode also referred to as surface plasmon mode
  • the rate decreases.
  • the position (light emitting position) of the light emitting layer C3 with respect to the reflective electrode B is 50 nm, about 20%, about 34%, about 4 depending on the external mode, the substrate mode and the thin film mode, respectively.
  • % That is, about 58% of the energy generated from the organic EL element S can be treated as propagation light, and can be taken out from the organic EL element S into the air, but about 42% of the energy generated from the organic EL element S by evanescent mode. It has been confirmed by the present inventors that% is lost in the organic EL element S.
  • the ratio of the propagation light can be increased by enlarging the light emission position, when the light emission position is enlarged as such, the distance between the reflective electrode B and the light emitting layer C3 is increased. Problems such as a rise in voltage and a rise in manufacturing cost may occur.
  • Patent Document 1 discloses a light emitting device for the purpose of improving the light emission efficiency and the color purity.
  • the light emitting device disclosed in Patent Document 1 includes an organic EL element having a pair of transparent electrodes and an organic compound layer including a light emitting layer disposed between the transparent electrodes, and a light extraction surface of the organic EL element.
  • the transparent electrode on the opposite side to the organic compound layer has a refractive index higher than that of the organic compound layer, and the low refractive index layer and the reflective film have a refractive index lower than that of the organic compound layer on the side opposite to the light extraction surface of the organic EL element
  • an organic compound layer side in this order from the organic compound layer side, and a light extraction structure for extracting guided light is provided on the same plane as the light emitting layer.
  • the guided light propagates in the light emitting device while being repeatedly reflected and is incident on the light extraction layer, and the guided light incident on the light extraction layer is reflected, scattered, diffracted, etc.
  • the propagation angle By converting the propagation angle by means of this, part of the guided light can be extracted into the air.
  • the refractive index of the low refractive index layer is not defined.
  • the film thickness of the low refractive index layer is 100 nm to 400 nm. Since the film thickness of the low refractive index layer is in the range of 300 nm to 400 nm in the green light emission and the film thickness of the low refractive index layer corresponding to the light emission position is relatively large, the reflective electrode and the light emitting layer Problems such as an increase in voltage during the period and an increase in manufacturing cost may remain.
  • the present invention has been made in view of the above problems, and the object of the present invention is to place the layer between the reflective layer or the reflective electrode and the light emitting layer while maintaining the ratio of the propagation light of the organic EL element. It is an object of the present invention to provide an organic EL element capable of reducing the film thickness of the low refractive index layer and an organic EL lighting device using the same.
  • an organic EL device is an organic EL device having a pair of electrodes and an organic layer disposed between the electrodes and including a light emitting layer, wherein One is formed by laminating an electrode layer from the organic layer side and a low refractive index layer having a refractive index lower than that of the light emitting layer, and a reflective layer, and the low refractive index layer has a refractive index of 1.4 or less. It is characterized by
  • Another embodiment of the organic EL device according to the present invention is an organic EL device having a pair of electrodes and an organic layer disposed between the electrodes and including a light emitting layer, wherein one of the electrodes is A low refractive index layer having a refractive index lower than that of the light emitting layer from the organic layer side and to which conductivity is imparted and a reflective electrode layer are laminated and formed, and the low refractive index layer has a refractive index of 1.4 or less It is characterized by being.
  • an organic EL lighting device is an organic EL lighting device including the organic EL element and a substrate on which the organic EL element is mounted and fixed, and the other of the organic EL element is provided on the substrate. It is characterized in that the electrodes are disposed to face each other.
  • the other form of the organic electroluminescent illuminating device which concerns on this invention is an organic electroluminescent illuminating device which has the said organic electroluminescent element and the board
  • the ratio of the propagation light of the organic EL element is maintained by defining the refractive index of the low refractive index layer disposed between the reflective layer or the reflective electrode layer and the light emitting layer to 1.4 or less.
  • the film thickness of the low refractive index layer can be reduced, an increase in voltage between the reflective layer and the light emitting layer can be suppressed, and an increase in manufacturing cost can be suppressed.
  • FIG. 6 is a view showing a relationship between a wave number vector of an organic EL element and an emission mode according to an analysis model of Example 1.
  • FIG. 6 is a graph showing the relationship between the refractive index of the low refractive index layer and the energy mode distribution according to the analysis model of Example 1.
  • FIG. 6 is a graph showing the relationship between the film thickness of the low refractive index layer and the energy mode distribution according to the analysis model of Example 1.
  • FIG. 18 is a graph showing the relationship between the refractive index of the hole injection layer and the energy mode distribution according to the analysis model of Example 4.
  • the longitudinal cross-sectional view which shows the conventional organic EL element and the organic EL illuminating device using the same.
  • FIG. 1 shows the whole configuration of Embodiment 1 of the organic EL element according to the present invention and the organic EL illumination device using the same, and is a bottom emission type in which light emission of the organic EL element 10 is taken out from the substrate 100 side.
  • An organic EL lighting device 1 is shown.
  • the organic EL lighting device 1 shown mainly includes an organic EL element 10 and a substrate 100 on which the organic EL element 10 is mounted and fixed.
  • a light extraction layer 106 for extracting light confined in the organic EL element 10 is provided on the organic EL element 10 side.
  • Layer 120 is provided.
  • the smoothing layer 120 is provided, for example, when the surface roughness Ra of the light extraction layer 106 is 5 nm or more.
  • the organic EL element 10 mainly includes an anode (the other electrode) including the transparent electrode 101, a cathode (the one electrode) 110 including the transparent electrode 103, and an organic layer 102 disposed between the anode and the cathode.
  • the anode (transparent electrode 101) of the organic EL element 10 is disposed to face the substrate 100.
  • the cathode 110 is formed by laminating a transparent electrode (electrode layer) 103, a low refractive index layer 104, and a reflective layer 105 from the organic layer 120 side.
  • the organic EL lighting device 1 further includes a sealing substrate, an auxiliary wiring, an arrangement driving circuit, a housing, etc. (not shown), and the transparent electrode 103 constituting the cathode and the transparent electrode 101 constituting the anode are It is connected via an auxiliary wiring.
  • substrate As a formation material of substrate 100, materials, such as glass and a plastic, are applicable, for example. Further, when the organic EL lighting device 1 is a bottom emission type, the substrate 100 is transparent, but when the organic EL lighting device 1 is a top emission type described later (see FIG. 5), the substrate 100 is It may be transparent or opaque. Examples of the material for forming the transparent substrate 100 include glass, quartz, a transparent resin film, and the like.
  • the material for forming the substrate 100 has flexibility that allows the organic EL element 10 to be flexible.
  • the provided resin film is applied.
  • materials for forming such resin films include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, and cellulose acetate pro Cellulose esters such as propionate (CAP), cellulose acetate phthalate (TAC), cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene , Polyether ketone, Polyimide, Polyether sulfone (PES), Polyphenylene sulf
  • the hybrid film which consists of a film of an inorganic substance and an organic substance, or both may be formed in the surface of the said resin film, and such a resin film is measured by the method based on JISK7129-1992, for example. It is preferable that the barrier film has a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) of 0.01 g / (m 2 ⁇ 24 h) or less, JIS K 7126-1987.
  • High barrier property film having an oxygen permeability of 0.001 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less, and a water vapor transmission rate of 0.001 g / (m 2 ⁇ 24 h) or less
  • the water vapor transmission rate is more preferably 0.00001 g / (m 2 ⁇ 24 h) or less.
  • the material for forming such a barrier film may be a material that suppresses the entry of factors (such as moisture and oxygen) that cause deterioration of the organic EL element 10, and examples thereof include silicon oxide, silicon dioxide, silicon nitride and the like.
  • the film preferably has a laminated structure of an inorganic substance and an organic substance.
  • the method of forming the barrier film is not particularly limited, and examples thereof include vacuum evaporation, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam, ion plating, plasma polymerization, Atmospheric pressure plasma polymerization method, plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be applied.
  • the organic electroluminescent illuminating device 1 is a top emission type (refer FIG. 5)
  • metals such as aluminum and stainless steel, opaque resin, a ceramic, etc. are mentioned, for example. .
  • the light extraction layer 106 there are a light extraction layer of scattering particles and a light extraction layer of a structure such as a microlens array or a pyramid. In the present embodiment, since the light extraction layer 106 is used to extract the light confined in the organic EL element 10, there is no difference in the effect of the light extraction layer by the scattering fine particles and the light extraction layer by the structure. , Both can be applied.
  • the light extraction layer in which the former fine particles are dispersed is mainly composed of a matrix and fine particles, and the matrix is an organic compound and, if necessary, nanoparticles for increasing the average refractive index of the organic compound etc. (size not contributing to scattering Of nanoparticles, etc.).
  • the matrix is an organic compound and, if necessary, nanoparticles for increasing the average refractive index of the organic compound etc. (size not contributing to scattering Of nanoparticles, etc.).
  • Examples of the material for forming the matrix constituting the light extraction layer 106 include ionizing radiation curable resins, thermosetting resins, thermoplastic resins, etc. Specifically, acrylate resins (epoxy acrylate, polyester acrylate, And radically polymerizable monomers or oligomers such as acrylic acrylate and ether acrylate), epoxy resins and the like.
  • examples of the ionizing radiation include ultraviolet light, visible light, infrared light, and electron beam.
  • an initiator may be added to the above-mentioned matrix, if necessary.
  • an initiator for example, a UV radical generator (Irgacure 907, 127, 192, etc. manufactured by Ciba Specialty Chemical Co., Ltd.), benzoyl peroxide and the like can be mentioned.
  • the refractive index of this resin component is preferably 1.4 to 1.85, Preferably, it is 1.7 to 1.8.
  • the scattering particles in the light extraction layer 106 be particles having no or small light absorption (the absorptivity is usually 30% or less) in the visible light region.
  • materials for forming such scattering particles include titanium oxide (refractive index: 2.5 or more and 2.7 or less), zirconium oxide (refractive index: 2.4), and barium titanate (refractive index: 2.4). And strontium titanate (refractive index: 2.37), bismuth oxide (refractive index: 2.45), etc. These materials may be used alone or in combination of two or more. It is also good.
  • the materials for forming these scattering particles particularly, materials made of inorganic materials are preferable, and the above-mentioned titanium oxide, zirconium oxide, barium titanate, strontium titanate, bismuth oxide and the like are preferable. Furthermore, the microparticles may be formed by voids in the matrix.
  • the particle size of the fine particles is 100 nm or more, preferably 200 nm or more, and usually 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • Such a light extraction layer 106 is generally formed by applying a coating liquid in which transparent fine particles are dispersed in a matrix precursor to the substrate 100.
  • the content of the transparent fine particles in the coating solution is adjusted so that Mie scattering is multiple-scattered in the light extraction layer to be formed.
  • a coating method of this coating solution for example, spin coating, dip coating, die coating, casting, spray coating, gravure coating, etc. are applied, and in particular, from the viewpoint of the uniformity of the coating, spin coating, dip coating, die coating, etc. Is applied.
  • the film thickness of the light extraction layer 106 is preferably 2 ⁇ m or more and 20 ⁇ m or less. When the film thickness is thinner than 2 ⁇ m, it is difficult to mix the scattering particles at a sufficient concentration, and when it is thicker than 20 ⁇ m, it becomes difficult to form a uniform coating film.
  • the light extraction layer based on the latter structure such as a microlens array or pyramid, it is necessary to arrange a structure of about 1 ⁇ m to 100 ⁇ m which is the light emission wavelength or more on one surface thereof.
  • the aspect ratio h / d should be in the range of 0.2 to 2 in order to increase the amount of light taken out to the outside. preferable.
  • the light extraction layer 106 can be omitted.
  • the transparent electrode 101 forming the anode is an electrode for injecting holes into the organic layer 102, and the material of the transparent electrode 101 is a metal, an alloy, an electrically conductive compound, or a material having a large work function.
  • the electrode material etc. which consist of these mixtures are applied, and especially the electrode material whose work function is 4 eV or more is applied suitably.
  • Examples of such an electrode material include metals such as Au (gold), and conductive transparent materials such as CuI, ITO (indium tin oxide), SnO 2 , ZnO, and IZO (indium zinc oxide).
  • a method of forming these electrode materials for example, a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a coating method or the like is applied, whereby the transparent electrode 101 can be formed as a thin film.
  • the light transmittance of the transparent electrode 101 is preferably 80% or more.
  • the average sheet resistance value of the transparent electrode 101 is preferably several hundreds ⁇ / sq (square) or less, and more preferably 100 ⁇ / sq or less.
  • the film thickness of the transparent electrode 101 is preferably 20 to 400 nm, preferably 20 to 200 nm although it varies depending on the material in order to define the transparency, conductivity and the like of the electrode (anode) as described above. Is desirable.
  • the organic layer 102 is formed by laminating a hole injection layer 201, a hole transport layer 202, a light emitting layer 203, an electron transport layer 204, and an electron injection layer 205 from the transparent electrode 101 side. .
  • the organic layer 102 may be formed as a single layer structure of only the light emitting layer 203, or at least at least the light emitting layer 203, the hole injection layer 201, the hole transport layer 202, the electron transport layer 204 and the electron injection layer 205. It may be formed in a multilayer structure including a single layer. Also, even if the hole injection layer 201 and the hole transport layer 202, the hole transport layer 202 and the light emitting layer 203, the light emitting layer 203 and the electron transport layer 204, and the electron transport layer 204 and the electron injection layer 205 respectively abut. Alternatively, the above-described other layers may be interposed between the layers. That is, the stacking order of the hole injection layer 201, the hole transport layer 202, the light emitting layer 203, the electron transport layer 204, and the electron injection layer 205 can be changed as appropriate.
  • the hole injection layer 201 is a layer for reducing the injection barrier between the transparent electrode (anode) 101 and the hole transport layer 202, and is formed of a material having an appropriate ionization potential. In addition, it is desirable that the hole injection layer 201 also play a role of filling the unevenness of the surface of the transparent electrode 101 as the base. Examples of materials for forming such a hole injection layer 201 include copper phthalocyanine, starburst amine compound, polyaniline, polythiophene, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide and the like. The hole injection layer 201 can be omitted as appropriate.
  • the hole transporting layer 202 is a layer for transporting holes from the transparent electrode 101 and injecting the holes into the light emitting layer 203, and is preferably formed of a hole transporting material having high hole mobility. In addition, it is preferable that the hole transport layer 202 be chemically stable, have a small ionization potential, a small electron affinity, and a high glass transition temperature.
  • N, N′-bis (3-methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4 ′ diamine TPD
  • 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl ⁇ -NPD
  • 4,4 ′, 4 ′ ′-tri N-carbazolyl) triphenylamine
  • TCTA 1,3,5-tris [N- (4-diphenylaminophenyl) phenylamino] benzene
  • p-DPA-TDAB 4,4 ′, 4 ′ ′-tris (N-carbazole) triphenylamine
  • o-MTDAB 1,3,5-tris [N, N-
  • an oxidant is contained in the hole transport material of the hole transport layer 202 in order to lower the injection barrier between the transparent electrode (anode) 101 and the hole transport layer 202 and to improve the electrical conductivity. It is also good.
  • an oxidizing agent include Lewis acid compounds such as ferric chloride, ammonium chloride, gallium chloride, indium chloride and antimony pentachloride, electron accepting compounds such as trinitrofluorene, and hole injecting materials. Vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide and the like can be applied, and these may be used singly or in combination of two or more.
  • the light emitting layer 203 contains host molecules and dopant molecules.
  • the light-emitting organic compound used for the light-emitting layer 203 may be any one, for example, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxa Diazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinate) aluminum complex, tris (4-methyl-8-quinolinate) aluminum complex, tris (5-phenyl-8-) Quinolinate) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative
  • the electron transport layer 204 is a layer for transporting electrons from the cathode 110 (particularly, the transparent electrode 103) and injecting the electrons into the light emitting layer 203, and is preferably formed of an electron transporting material having high electron mobility.
  • Examples of materials for forming such an electron transport layer 204 include tris (8-quinolinol) aluminum, oxadiazole derivatives, silole derivatives, zinc benzothiazole complexes, vasocuproin (BCP), etc. These may be used alone or in combination. You may use and may use 2 or more types together.
  • a reducing agent may be contained in the electron transporting material of the electron transporting layer 104 in order to lower the injection barrier between the transparent electrode 103 and the electron transporting layer 204 or to improve the electrical conductivity.
  • a reducing agent for example, alkali metals, alkaline earth metals, alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, alkali metals And complexes formed with aromatic compounds, etc., and in particular, alkali metals such as cesium (Cs), lithium (Li), sodium (Na) and potassium (K) are preferably used, These materials may be used alone or in combination of two or more.
  • the electron injection layer 205 is a layer for enhancing the electron injection efficiency to the light emitting layer 203.
  • the electron injection layer 205 may be omitted as appropriate.
  • the transparent electrode 103 forming the cathode 110 is an electrode for injecting electrons into the organic layer 102.
  • an electrode material having a small work function is suitably applied as a material of the transparent electrode 103.
  • Examples of such an electrode material include conductive transparent materials such as ITO (indium tin oxide), SnO 2 , ZnO, and IZO (indium zinc oxide), and graphene.
  • a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a coating method or the like is applied, whereby the transparent electrode 103 can be formed as a thin film.
  • the light transmittance of the transparent electrode 103 is preferably 80% or more. Further, the average sheet resistance value of the transparent electrode 103 is preferably several hundreds ⁇ / sq or less, and more preferably 100 ⁇ / sq or less. Furthermore, the film thickness of the transparent electrode 103 is preferably 20 to 400 nm, preferably 20 to 200 nm although it varies depending on the material in order to define the transparency, conductivity and the like of the electrode (cathode) as described above. Is desirable.
  • the low refractive index layer 104 is a layer for suppressing surface plasmon coupling between the reflective layer 105 and the light emitting layer 203, and as a material for forming the low refractive index layer 104, for example, mesoporous silica or ionizing radiation curability Resin, thermosetting resin, thermoplastic resin etc. are mentioned.
  • the refractive index of the low refractive index layer 104 is lower than the refractive index (for example, 1.8) of the organic layer 102 (in particular, the light emitting layer 203), and is preferably 1.4 or less, more preferably 1. It is 3 or less.
  • the refractive index of the low refractive index layer 104 can be reduced by providing a void of nanoparticle size in the low refractive index layer 104, and according to the current manufacturing method, about 1.2 to 1.4 It has been confirmed by the present inventors that a refractive index can be obtained.
  • Such a low refractive index layer 104 is usually formed by applying a coating solution containing the above-described material to the organic layer 102.
  • a coating solution containing the above-described material for example, spin coating, dip coating, die coating, casting, spray coating, gravure coating, etc. are applied, and spin coating, dip coating, die coating are particularly preferred from the viewpoint of coating uniformity. It applies suitably.
  • the thickness of the low refractive index layer 104 is preferably 30 nm or more and 100 nm or less as described later, and desirably 40 nm or more and 100 nm or less. If the film thickness is smaller than 30 nm, surface plasmon coupling is increased, and the light extraction rate is rapidly reduced, or it becomes difficult to form a uniform coating film. Moreover, when the film thickness is thicker than 100 nm, it becomes difficult to form a uniform coating film.
  • the reflective layer 105 can increase the light extraction efficiency by applying a material with high reflectance, and is formed of, for example, a metal such as silver (Ag).
  • a metal having a small work function for example, a metal having a work function of 5 eV or less
  • An electrode material consisting of an electrically conductive compound, and a mixture thereof is applied.
  • Examples of such electrode materials include alkali metals, halides of alkali metals, oxides of alkali metals, alkaline earth metals, rare earths, and alloys of these with other metals.
  • Examples thereof include sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O 3 mixture, Al / LiF mixture and the like.
  • a method of forming such a reflective electrode for example, a vacuum evaporation method, a sputtering method, or the like can be applied, whereby the reflective electrode can be formed as a thin film.
  • the light transmittance of the reflective electrode is preferably 10% or less. Further, the film thickness of this reflective electrode differs depending on the material in order to define the light transmittance etc. of the reflective electrode as described above, but usually it is preferably 500 nm or less, preferably within the range of 100 to 200 nm. desirable.
  • sealing substrate As a sealing substrate (not shown in FIG. 1, refer to FIG. 5), for example, a transparent glass plate made of soda lime glass, non-alkali glass, etc., acrylic resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin Transparent plastic plate made of cycloolefin resin, olefin resin, carbonate resin, nylon resin, fluorine resin, silicone resin, polyimide resin, polysulfone resin, etc., in particular, a plastic substrate having an appropriate gas barrier film is applied Preferably.
  • the sealing substrate may be light transmissive, may be colorless and transparent, or may be colored somewhat, but it is desirable to transmit light in the wavelength range of 380 nm to 780 nm.
  • the auxiliary wiring (not shown) is disposed on a line with a width of 1 ⁇ m to 20 ⁇ m on the transparent electrodes 101 and 103 to reflect emitted light and reduce the resistance between the electrodes.
  • the auxiliary wiring is preferably formed of a material comprising a metal or alloy having a high reflectance and a low resistance value, and as such a material, alkali metals, halides of alkali metals, these and other metals are used. Alloys such as silver, aluminum, sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O 3 mixture, Al / LiF mixture etc. are mentioned.
  • a method of forming the auxiliary wiring for example, a method such as a vacuum evaporation method or a sputtering method, a printing method, or the like can be applied, whereby the auxiliary wiring can be formed as a thin film.
  • the light transmittance of the auxiliary wiring is preferably 10% or less.
  • the thickness of the low refractive index layer 104 can be reduced while maintaining the ratio of the propagation light (light extraction efficiency) of the organic EL element 10 by providing the It is possible to suppress the increase in manufacturing cost.
  • FIG. 2 shows the whole structure of Embodiment 2 of the organic EL element concerning this invention, and an organic EL illuminating device using the same.
  • the organic EL lighting device 1A of the second embodiment shown in FIG. 2 is different from the organic EL lighting device 1 of the first embodiment in the arrangement configuration of the light extraction layer, and the other configuration is substantially the same as that of the first embodiment. It is similar. Therefore, about the same composition as Embodiment 1, the same numerals are attached and the detailed explanation is omitted.
  • the light extraction layer 106A is provided between the substrate 100A and the air layer, that is, on the opposite side of the substrate 100A to the organic EL element 10A side, and the transparent electrode 101A of the organic EL element 10A and the substrate 100A.
  • the organic EL element 10A is placed on and fixed to the substrate 100A so as to abut.
  • the reflective layer 105A and the light extraction layer 106A are provided as in the first embodiment.
  • the low refractive index layer 104A having a refractive index lower than that of the light emitting layer 203A, particularly the low refractive index layer 104A having a refractive index of 1.4 or less between the light emitting layer 203A, the light extraction of the organic EL element 10A
  • the film thickness of the low refractive index layer 104A can be reduced while maintaining the efficiency.
  • the light extraction layer 106A is provided on the opposite side of the substrate 100A to the organic EL element 10A side, the organic EL element 10A and the substrate 100A are directly connected, and the planarization layer is omitted. ing.
  • FIG. 3 shows the whole structure of Embodiment 3 of the organic EL element concerning this invention, and an organic EL illuminating device using the same.
  • the organic EL lighting device 1B of the third embodiment shown in FIG. 3 is different from the organic EL lighting device 1A of the above second embodiment in the arrangement configuration of the transparent electrode and the reflective layer on the cathode side, It is almost the same as in the second embodiment. Therefore, about the structure similar to Embodiment 2, the same code
  • the reflective layer is also used as an electrode for injecting electrons into the organic layer (such a reflective layer is referred to as a reflective electrode), and the organic EL element 10B mainly includes the anode (the other) composed of the transparent electrode 101B. And a cathode (one electrode) 110B including a reflective electrode 105B, and an organic layer 102B disposed between the anode and the cathode.
  • the cathode 110B is formed by laminating the low refractive index layer 104B and the reflective electrode (reflective electrode layer) 103B from the organic layer 120B side.
  • the low refractive index layer 104B generally has low conductivity
  • carbon nanotubes which are conductive materials in the low refractive index layer 104B disposed between the organic layer 120B and the reflective electrode 103B, are used. Conductivity is imparted by adding graphene and the like.
  • the average sheet resistance value of such a low refractive index layer 104B is preferably 1000 ⁇ / ⁇ or less.
  • the low refractive index layer 104B to which conductivity is imparted is disposed between the organic layer 120B and the reflective electrode 103B, thereby stably operating the organic EL lighting device 1B.
  • the light extraction efficiency of the organic EL element 10B can be maintained, and the film thickness of the low refractive index layer 104B can be reduced.
  • FIG. 4 shows the whole structure of Embodiment 4 of the organic EL element concerning this invention, and an organic EL illuminating device using the same.
  • the organic EL lighting device 1C of the fourth embodiment shown in FIG. 4 differs from the organic EL lighting device 1 of the first embodiment described above in the configuration of the hole injection layer of the organic layer, and the other configuration is the embodiment. Similar to 1. Therefore, about the same composition as Embodiment 1, the same numerals are attached and the detailed explanation is omitted.
  • the hole injection layer forming the organic layer generally has the same refractive index as that of the light emitting layer, but in the fourth embodiment, the hole injection layer (separate low refractive index layer) forming the organic layer 102C.
  • the refractive index of 201 C is lower than the refractive index of the light emitting layer 203 C and the like.
  • the low refractive index layer 104B and the hole injection layer 201C having a refractive index lower than that of the light emitting layer 203C are disposed on both sides with respect to the light emitting layer 203C.
  • the hole injection layer (separate low refractive index layer) 201C By sandwiching the light emitting layer 203C with the hole injection layer (separate low refractive index layer) 201C, light emission from the light emitting layer 203C is converted from the substrate mode to the external mode by the cavity effect, so for example, the light extraction layer 106C Even when omitted, high light extraction efficiency can be ensured.
  • the refractive index of the hole injection layer 201C forming the organic layer 102C is lower than the refractive index of the light emitting layer 203C or the like. If a low refractive index layer having a refractive index lower than that of the light emitting layer 203C is disposed, the position where the low refractive index layer is disposed can be appropriately changed.
  • FIG. 5 shows the whole structure of Embodiment 5 of the organic EL element based on this invention, and the organic EL illuminating device using the same.
  • the organic EL lighting device 1D of the fifth embodiment shown in FIG. 5 adopts a top emission type in which the light emission of the organic EL element is extracted from the side opposite to the substrate side to the organic EL lighting devices of the first to fourth embodiments described above.
  • the other points are substantially the same as in the first to fourth embodiments. Therefore, the same components as those in the first to fourth embodiments are given the same reference numerals and the detailed description thereof will be omitted.
  • the illustrated organic EL lighting device 1D mainly includes the organic EL element 10D and the substrate 100D on which the organic EL element 10D is mounted and fixed, and the surface of the organic EL element 10D, particularly the transparent electrode of the organic EL element 10D
  • a light extraction layer 106D is provided on the surface of 101D.
  • a sealing substrate 107D is disposed on the surface of the light extraction layer 106D.
  • the organic EL element 10D mainly includes an anode (the other electrode) including the transparent electrode 101D, a cathode (the one electrode) 110D including the transparent electrode 103D, and an organic layer 102D disposed between the anode and the cathode.
  • the cathode 110D of the organic EL element 10D is disposed to face the substrate 100D.
  • the cathode 110D is formed by laminating a transparent electrode (electrode layer) 103D, a low refractive index layer 104D, and a reflective layer 105D from the organic layer 120D side, and the reflective layer 105D is disposed in contact with the substrate 100D. .
  • a 50 mm square glass substrate 100D with a thickness of 1.1 mm is prepared.
  • aluminum (Al) is mask-deposited on the substrate 100D at a deposition rate of about 1 nm / s so as to have a width of 2 mm and a thickness of 150 nm to form a reflective layer 105D.
  • a mesoporous silica layer is applied on the reflective layer 105D to a film thickness of 50 nm to form a low refractive index layer 104D, and an ITO film is formed on the low refractive index layer 104D by sputtering to form a transparent electrode.
  • the refractive index of the low refractive index layer 104D is lower than the refractive index (for example, 1.8) of the organic layer 102D (in particular, the light emitting layer 203D), and as described later, preferably 1.4 or less, more preferably It is 1.3 or less.
  • a blue light emitting layer formed as follows, a yellow light emitting layer formed to a thickness of 10 nm of a layer obtained by doping rubrene (manufactured by Acros) with ⁇ -NPD, and a layer obtained by doping a pyrromethene boron complex in rubrene
  • a light emitting layer 203D is formed by laminating a red light emitting layer formed to have a thickness of 10 nm (electron transport layer 204D and electron injection layer 205D shown in FIG. 5 are omitted).
  • the hole transport layer 202D is formed by depositing ⁇ -NPD at a deposition rate of 0.1 to 0.2 nm / s so as to have a thickness of 30 nm (the hole injection layer 201D shown in FIG. 5 is omitted). ).
  • a transparent electrode 103D is formed on the hole transport layer 202D by sputtering using a mask so that IZO is formed in a strip shape having a width of 2 mm.
  • a light extraction layer 106D in which fine particles having a light scattering function are dispersed in a matrix (dispersion medium) such as a transparent resin layer is formed.
  • the scattering particles in the light extraction layer 106D are mainly composed of, for example, TiO 2 , ZrO 2 , Al 2 O 3 , Ta 2 O 3 , ZnO 2 , Sb 2 O 3 , ZrSiO 4 , BaTiO 3 , SrTiO 3 .
  • Inorganic particles, and organic particles of acrylic resin, styrene resin, polyethylene terephthalate resin, etc. can be applied.
  • inorganic particles are particularly preferable, and particles consisting of TiO 2 , ZrO 2 , Al 2 O 3 , BaTiO 3 , SrTiO 3 are particularly preferable.
  • a sealing substrate 107D is introduced into the sealing chamber, and a sealing dispenser device is used to draw a photocurable resin for sealing on an edge portion of the sealing substrate 107D, and the sealing resin is attached to the light extraction layer 106D of the sealing substrate 107D.
  • a sealing material made of epoxy resin for example, a refractive index of about 1.5 at a wavelength of 587.6 nm
  • the substrate 100D and the sealing substrate 107D are introduced into the vacuum bonding apparatus in the sealing chamber, and the sealing substrate 107D is bonded and pressure-bonded to the light extraction layer 106D on the substrate 100D, and the entire organic EL element 10D is obtained.
  • the light curing resin is cured by irradiating the UV light from the sealing substrate 107D side.
  • the low refractive index between the reflective layer 105D and the light emitting layer 203D is lower than that of the light emitting layer 203D.
  • the film thickness of the low refractive index layer 104D can be reduced while maintaining the light extraction efficiency of the organic EL element 10D by providing the low refractive index layer 104D having the refractive index layer 104D, in particular, the refractive index of 1.4 or less.
  • a rise in voltage between the 105D and the light emitting layer 203D can be suppressed, and a rise in manufacturing cost can be suppressed.
  • the mode in which the transparent electrode 103D and the reflective layer 105D are mainly used on the cathode side is described, but in the case where a reflective electrode is used on the cathode side (the reflective layer is used as an electrode for injecting electrons into the organic layer).
  • the reflective layer is used as an electrode for injecting electrons into the organic layer.
  • the electron injection layer and the electron transport layer are omitted from the above-described Embodiments 1 to 5, and the light emitting position (reflection layer or reflection electrode) is adjusted by adjusting the thickness of the low refractive index layer. Position of the light emitting layer with respect to
  • Example 1 The first embodiment is an analysis model corresponding to the first embodiment described above.
  • FIG. 6 is a figure which shows the wave number vector of the organic EL element by the model for analysis of Example 1, and the relationship of the light emission mode
  • FIG. 7 shows the relationship between the refractive index of a low refractive index layer, and energy mode distribution.
  • FIG. 8 is a view showing the relationship between the film thickness of the low refractive index layer and the energy mode distribution.
  • a low refractive index layer having a refractive index lower than that of the light emitting layer is provided between the reflective layer and the light emitting layer.
  • a low refractive index layer having a refractive index of 1.4 or less is provided between the reflective layer and the light emitting layer.
  • the refractive index of the organic layer is 1.8
  • the refractive index of the low refractive index layer is 1.3
  • the film thickness of the low refractive index layer is 65 nm
  • the refractive index of the low refractive index layer is 1.4 or less
  • the proportion of non-propagating light in the evanescent mode is 5% or less
  • the proportion of propagating light is 95% or more (light extraction efficiency that can be ensured by the conventional organic EL lighting device) It was done. That is, when the light extraction layer was used, it was demonstrated that the analysis model of Example 1 can achieve about 1.7 times the light extraction efficiency as compared with the conventional organic EL lighting device.
  • the light extraction efficiency is about 90% when the refractive index of the low refractive index layer is 1.5, and the light extraction efficiency when the refractive index of the low refractive index layer is 1.8, which is equivalent to that of the organic layer. Was confirmed to be about 70%.
  • the film thickness of the low refractive index layer is Even in the thin region, it was confirmed that the proportion of non-propagating light in the evanescent mode is small, and the proportion of propagating light (light extraction efficiency) is high. Specifically, when the film thickness of the low refractive index layer was 30 nm or more, it was confirmed that the proportion of the propagating light (light extraction efficiency) was 95% or more.
  • the proportion of light that can be extracted in the external mode is about 40% or more. That is, in the conventional organic EL lighting device (when the emission position is 50 nm), the proportion of light that can be extracted in the external mode when the light extraction layer is not used is about 20%, while In the analysis model, it was confirmed that the ratio of light that can be extracted in the external mode is about 40% or more when the film thickness of the low refractive index layer is in the range of 40 nm to 100 nm.
  • the analysis model of Example 1 can achieve about twice the light extraction efficiency and the power efficiency (lm / W) as compared with the conventional organic EL lighting device.
  • the film thickness of the low refractive index layer is in the range of 40 nm to 100 nm, conventional organic EL illumination It has been demonstrated that the light extraction efficiency can be effectively enhanced over the device.
  • the second embodiment is an analysis model corresponding to the second embodiment described above.
  • the evanescent mode is used as compared with the conventional organic EL lighting device. It has been confirmed that the proportion of non-propagating light is reduced and the proportion of propagating light (light extraction efficiency) is enhanced. Moreover, even in the region where the film thickness of the low refractive index layer is thin, it has been confirmed that the proportion of non-propagating light in the evanescent mode is small, and the proportion of propagating light (light extraction efficiency) is high.
  • the present inventors confirmed by analysis and experiments that the same effect can be obtained even when the light extraction layer is provided on both the organic EL element side of the substrate and on the side opposite to the organic EL element side. ing.
  • the third embodiment is an analysis model corresponding to the third embodiment described above.
  • the inventors of the present invention performed an electric current test for 10000 hours and operated the organic EL lighting device when changing the sheet resistance value of the low refractive index layer to which the conductive substance was added. confirmed.
  • the voltage increase was suppressed to about 10% in the conduction test for 10000 hours in the region where the average sheet resistance value is 1000 ⁇ / ⁇ or less, and the organic EL lighting device stably operates.
  • the voltage increase by a conduction test becomes 20% or more, and it was confirmed that operation
  • the present inventors analyze the energy mode distribution when changing the refractive index and the film thickness of the low refractive index layer with respect to the analysis model of Example 3 when the average sheet resistance value is 1000 ⁇ / ⁇ . Carried out.
  • the analysis model of Example 3 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is In the case of 65 nm), it was confirmed that about 1.7 times the light extraction efficiency could be achieved as compared with the conventional organic EL lighting device as in the analysis model of Example 1.
  • the analysis model of Example 3 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is 65 nm)
  • the refractive index of the organic layer is 1.8
  • the refractive index of the low refractive index layer is 1.3
  • the thickness of the low refractive index layer is 65 nm
  • the present inventors have confirmed by analysis and experiments that the same effect can be obtained when the light extraction layer is disposed on the organic EL element side of the substrate, that is, between the substrate and the transparent electrode.
  • the fourth embodiment is an analysis model corresponding to the fourth embodiment described above.
  • FIG. 9 is a view showing the relationship between the refractive index of the hole injection layer (separate low refractive index layer) and the energy mode distribution according to the analysis model of the fourth embodiment.
  • the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is 65 nm
  • the ratio of light that can be extracted in the external mode when the light extraction layer is not used is about 40% when the refractive index of the hole injection layer is 1.6, and the refractive index of the hole injection layer is In the case of 1.3, it was confirmed to be about 50%. That is, it was demonstrated that the analysis model of Example 4 can achieve about 2.5 times the light extraction efficiency and the power efficiency (lm / W) as compared with the conventional organic EL lighting device.
  • Example 4 When the light extraction layer is used, the analysis model of Example 4 achieves about 1.7 times the light extraction efficiency as compared with the conventional organic EL lighting device as shown in FIG. It has been demonstrated to gain.
  • Example 5 A fifth example is an analysis model corresponding to the fifth embodiment described above.
  • the evanescent mode is used as compared with the conventional organic EL lighting device. It has been confirmed that the proportion of non-propagating light is reduced and the proportion of propagating light (light extraction efficiency) is enhanced. Moreover, even in the region where the film thickness of the low refractive index layer is thin, it has been confirmed that the proportion of non-propagating light in the evanescent mode is small, and the proportion of propagating light (light extraction efficiency) is high.
  • the analysis model of Example 5 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is In the case of 65 nm), it was confirmed that about 1.7 times the light extraction efficiency can be achieved as compared with the conventional organic EL lighting device.
  • the analysis model of Example 5 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is 65 nm)
  • the proportion of light that can be extracted in the external mode is about 40% or more, and the light extraction efficiency and electric power are about twice that of the conventional organic EL lighting device as in the analysis model of Example 1. It has been demonstrated that an efficiency (lm / W) can be achieved.
  • the present invention is not limited to the above-described first to fifth embodiments, but includes various modifications.
  • the above-described first to fifth embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Organic EL lighting device 10 Organic EL element 100 Substrate 101 Transparent electrode (anode) (other electrode) 102 Organic layer 103 Transparent electrode (electrode layer) 104 Low refractive index layer 105 reflective layer 105 B reflective electrode (reflective electrode layer) 106 Light Extraction Layer 107D Sealing Substrate 110 Cathode (One Electrode) 120 Smoothing layer 201 Hole injection layer 201C Hole injection layer (separate low refractive index layer) 202 Hole transport layer 203 Light emitting layer 204 Electron transport layer 205 Electron injection layer

Abstract

Provided are: an organic EL element, wherein the film thickness of a low-refractive index layer disposed between a reflecting layer or a reflecting electrode and a light emitting layer is reduced, while maintaining the rate of propagation light of the organic EL element; and an organic EL lighting apparatus using the organic EL element. This organic EL element has a pair of electrodes, and an organic layer (102), which is disposed between the electrodes, and which includes a light emitting layer (203). One of the electrodes is formed by laminating, from the organic layer (102) side, a transparent electrode (103), a low-refractive index layer (104) having a lower refractive index than the light emitting layer (203), and a reflecting layer (105), and the refractive index of the low-refractive index layer (104) is equal to or lower than 1.4.

Description

有機EL素子及びそれを用いた有機EL照明装置Organic EL element and organic EL lighting device using the same
 本発明は、有機EL素子及びそれを用いた有機EL照明装置に関する。 The present invention relates to an organic EL element and an organic EL lighting device using the same.
 有機EL照明装置は、薄膜で自発光を特徴とした有機EL素子を画素として用いた照明装置である。 The organic EL lighting device is a lighting device using, as a pixel, an organic EL element characterized by self-emission with a thin film.
 このような有機EL照明装置の従来技術として、図10に示すボトムエミッション型の照明装置が知られている。 As a prior art of such an organic electroluminescent illuminating device, the bottom emission type illuminating device shown in FIG. 10 is known.
 図10に示す照明装置Lは、一対の電極A、Bと、前記電極A、Bの間に配置された有機化合物層C(例えば、正孔注入層C1と正孔輸送層C2と発光層C3と電子輸送層C4と電子注入層C5とが積層されて形成)とを有する有機EL素子Sが基板K上に配置された装置である。 A lighting device L shown in FIG. 10 includes a pair of electrodes A and B, and an organic compound layer C disposed between the electrodes A and B (for example, a hole injection layer C1, a hole transport layer C2, and a light emitting layer C3). And the electron transport layer C4 and the electron injection layer C5 are formed to be stacked on each other).
 ところで、図10に示す従来の照明装置Lにおいては、エバネッセントモード(表面プラズモンモードともいう)と称される減衰モード(図11参照)によって、有機EL素子Sから発生するエネルギーのうち、伝搬光の割合が低下することが知られている。例えば、図12に示すように、反射電極Bに対する発光層C3の位置(発光位置)が50nmである場合には、外部モードと基板モードと薄膜モードによってそれぞれ約20%、約34%、約4%、すなわち有機EL素子Sから発生したエネルギーの約58%が伝搬光として取り扱え、当該有機EL素子Sから空気中に取り出すことができるものの、エバネッセントモードによって有機EL素子Sから発生したエネルギーの約42%は当該有機EL素子S中で失われてしまうことが本発明者等によって確認されている。このような従来の照明装置Lにおいては、発光位置を大きくすることによってその伝搬光の割合を高めることができるものの、そのように発光位置を大きくすると、反射電極Bと発光層C3との間の電圧が上昇するといった問題や製造コストが高騰するといった問題が生じ得る。 By the way, in the conventional lighting device L shown in FIG. 10, of the energy generated from the organic EL element S in the attenuation mode (see FIG. 11) called evanescent mode (also referred to as surface plasmon mode), It is known that the rate decreases. For example, as shown in FIG. 12, when the position (light emitting position) of the light emitting layer C3 with respect to the reflective electrode B is 50 nm, about 20%, about 34%, about 4 depending on the external mode, the substrate mode and the thin film mode, respectively. %, That is, about 58% of the energy generated from the organic EL element S can be treated as propagation light, and can be taken out from the organic EL element S into the air, but about 42% of the energy generated from the organic EL element S by evanescent mode. It has been confirmed by the present inventors that% is lost in the organic EL element S. In such a conventional lighting device L, although the ratio of the propagation light can be increased by enlarging the light emission position, when the light emission position is enlarged as such, the distance between the reflective electrode B and the light emitting layer C3 is increased. Problems such as a rise in voltage and a rise in manufacturing cost may occur.
 特許文献1には、発光効率及び色純度の向上を目的とした発光装置が開示されている。 Patent Document 1 discloses a light emitting device for the purpose of improving the light emission efficiency and the color purity.
 特許文献1に開示されている発光装置は、一対の透明電極と、前記透明電極の間に配置された発光層を含む有機化合物層とを有する有機EL素子と、前記有機EL素子の光取り出し面とは逆側の透明電極が、前記有機化合物層よりも屈折率が高く、前記有機EL素子の光取り出し面とは逆側に、有機化合物層よりも屈折率が低い低屈折率層と反射膜とを有機化合物層側からこの順で有し、導波光を取り出す光取り出し構造が発光層と同一平面上に設けられている装置である。 The light emitting device disclosed in Patent Document 1 includes an organic EL element having a pair of transparent electrodes and an organic compound layer including a light emitting layer disposed between the transparent electrodes, and a light extraction surface of the organic EL element. The transparent electrode on the opposite side to the organic compound layer has a refractive index higher than that of the organic compound layer, and the low refractive index layer and the reflective film have a refractive index lower than that of the organic compound layer on the side opposite to the light extraction surface of the organic EL element And an organic compound layer side in this order from the organic compound layer side, and a light extraction structure for extracting guided light is provided on the same plane as the light emitting layer.
特開2013-012378号公報JP, 2013-012378, A
 特許文献1に開示されている発光装置によれば、導波光が発光装置内を反射を繰り返しながら伝搬して光取り出し層に入射し、光取り出し層に入射した導波光が反射・散乱・回折等によって伝搬角度を変換することで、導波光の一部を空気中に取り出すことができる。 According to the light emitting device disclosed in Patent Document 1, the guided light propagates in the light emitting device while being repeatedly reflected and is incident on the light extraction layer, and the guided light incident on the light extraction layer is reflected, scattered, diffracted, etc. By converting the propagation angle by means of this, part of the guided light can be extracted into the air.
 しかしながら、特許文献1に開示されている発光装置においては、低屈折率層の屈折率が規定されておらず、例えば、有機EL素子の青色発光において低屈折率層の膜厚が100nmから400nmの範囲内であり、その緑色発光において低屈折率層の膜厚が300nmから400nmの範囲内であり、発光位置に相当する低屈折率層の膜厚が比較的大きいため、反射電極と発光層との間の電圧が上昇するといった問題や製造コストが高騰するといった問題が残存し得る。 However, in the light emitting device disclosed in Patent Document 1, the refractive index of the low refractive index layer is not defined. For example, in blue emission of the organic EL element, the film thickness of the low refractive index layer is 100 nm to 400 nm. Since the film thickness of the low refractive index layer is in the range of 300 nm to 400 nm in the green light emission and the film thickness of the low refractive index layer corresponding to the light emission position is relatively large, the reflective electrode and the light emitting layer Problems such as an increase in voltage during the period and an increase in manufacturing cost may remain.
 本発明は、前記問題に鑑みてなされたものであって、その目的とするところは、有機EL素子の伝搬光の割合を維持しながら、反射層もしくは反射電極と発光層との間に配される低屈折率層の膜厚を低減することのできる有機EL素子及びそれを用いた有機EL照明装置を提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to place the layer between the reflective layer or the reflective electrode and the light emitting layer while maintaining the ratio of the propagation light of the organic EL element. It is an object of the present invention to provide an organic EL element capable of reducing the film thickness of the low refractive index layer and an organic EL lighting device using the same.
 上記する課題を解決するために、本発明に係る有機EL素子は、一対の電極と、該電極の間に配置され且つ発光層を含む有機層とを有する有機EL素子であって、前記電極の一方は、前記有機層側から電極層と前記発光層よりも屈折率の低い低屈折率層と反射層とが積層されて形成され、前記低屈折率層の屈折率は1.4以下であることを特徴としている。 In order to solve the problems described above, an organic EL device according to the present invention is an organic EL device having a pair of electrodes and an organic layer disposed between the electrodes and including a light emitting layer, wherein One is formed by laminating an electrode layer from the organic layer side and a low refractive index layer having a refractive index lower than that of the light emitting layer, and a reflective layer, and the low refractive index layer has a refractive index of 1.4 or less. It is characterized by
 また、本発明に係る有機EL素子の他の形態は、一対の電極と、該電極の間に配置され且つ発光層を含む有機層とを有する有機EL素子であって、前記電極の一方は、前記有機層側から前記発光層よりも屈折率の低く且つ導電性が付与された低屈折率層と反射電極層とが積層されて形成され、前記低屈折率層の屈折率は1.4以下であることを特徴としている。 Another embodiment of the organic EL device according to the present invention is an organic EL device having a pair of electrodes and an organic layer disposed between the electrodes and including a light emitting layer, wherein one of the electrodes is A low refractive index layer having a refractive index lower than that of the light emitting layer from the organic layer side and to which conductivity is imparted and a reflective electrode layer are laminated and formed, and the low refractive index layer has a refractive index of 1.4 or less It is characterized by being.
 また、本発明に係る有機EL照明装置は、前記有機EL素子と、該有機EL素子が載置固定される基板とを有する有機EL照明装置であって、前記基板に前記有機EL素子の他方の電極が対向配置されていることを特徴としている。 Further, an organic EL lighting device according to the present invention is an organic EL lighting device including the organic EL element and a substrate on which the organic EL element is mounted and fixed, and the other of the organic EL element is provided on the substrate. It is characterized in that the electrodes are disposed to face each other.
 また、本発明に係る有機EL照明装置の他の形態は、前記有機EL素子と、該有機EL素子が載置固定される基板とを有する有機EL照明装置であって、前記基板に、前記有機EL素子の一方の電極が対向配置されていることを特徴としている。 Moreover, the other form of the organic electroluminescent illuminating device which concerns on this invention is an organic electroluminescent illuminating device which has the said organic electroluminescent element and the board | substrate by which this organic electroluminescent element is mounted and fixed, Comprising: The said organic substrate One of the electrodes of the EL element is disposed to face each other.
 本発明によれば、反射層もしくは反射電極層と発光層との間に配される低屈折率層の屈折率を1.4以下に規定することによって、有機EL素子の伝搬光の割合を維持しながら低屈折率層の膜厚を低減でき、反射層と発光層との間の電圧の上昇を抑制することができ、かつ製造コストの高騰を抑制することができる。 According to the present invention, the ratio of the propagation light of the organic EL element is maintained by defining the refractive index of the low refractive index layer disposed between the reflective layer or the reflective electrode layer and the light emitting layer to 1.4 or less. However, the film thickness of the low refractive index layer can be reduced, an increase in voltage between the reflective layer and the light emitting layer can be suppressed, and an increase in manufacturing cost can be suppressed.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態1の全体構成を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows the whole structure of Embodiment 1 of the organic EL element which concerns on this invention, and an organic EL illuminating device using the same. 本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態2の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of Embodiment 2 of the organic EL element which concerns on this invention, and an organic EL illuminating device using the same. 本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態3の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of Embodiment 3 of the organic EL element which concerns on this invention, and an organic EL illuminating device using the same. 本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態4の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of Embodiment 4 of the organic EL element which concerns on this invention, and an organic EL illuminating device using the same. 本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態5の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of Embodiment 5 of the organic EL element which concerns on this invention, and an organic EL illuminating device using the same. 実施例1の解析用モデルによる有機EL素子の波数ベクトルと発光モードの関係を示す図。FIG. 6 is a view showing a relationship between a wave number vector of an organic EL element and an emission mode according to an analysis model of Example 1. 実施例1の解析用モデルによる低屈折率層の屈折率とエネルギーモード分布の関係を示す図。FIG. 6 is a graph showing the relationship between the refractive index of the low refractive index layer and the energy mode distribution according to the analysis model of Example 1. 実施例1の解析用モデルによる低屈折率層の膜厚とエネルギーモード分布の関係を示す図。FIG. 6 is a graph showing the relationship between the film thickness of the low refractive index layer and the energy mode distribution according to the analysis model of Example 1. 実施例4の解析用モデルによる正孔注入層の屈折率とエネルギーモード分布の関係を示す図。FIG. 18 is a graph showing the relationship between the refractive index of the hole injection layer and the energy mode distribution according to the analysis model of Example 4. 従来の有機EL素子及びそれを用いた有機EL照明装置を示す縦断面図。The longitudinal cross-sectional view which shows the conventional organic EL element and the organic EL illuminating device using the same. 従来の有機EL素子の波数ベクトルと発光モードの関係を示す図。The figure which shows the wave number vector of the conventional organic EL element, and the relationship of the light emission mode. 従来の有機EL照明装置の発光位置とエネルギーモード分布の関係を示す図。The figure which shows the relationship between the light emission position of the conventional organic electroluminescent illuminating device, and energy mode distribution.
 以下、本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of an organic EL element according to the present invention and an organic EL lighting device using the same will be described with reference to the drawings.
(実施形態1)
 図1は、本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態1の全体構成を示したものであり、基板100側から有機EL素子10の発光を取出すボトムエミッション型の有機EL照明装置1を示したものである。
(Embodiment 1)
FIG. 1 shows the whole configuration of Embodiment 1 of the organic EL element according to the present invention and the organic EL illumination device using the same, and is a bottom emission type in which light emission of the organic EL element 10 is taken out from the substrate 100 side. An organic EL lighting device 1 is shown.
 図示する有機EL照明装置1は、主に、有機EL素子10と該有機EL素子10が載置固定される基板100とを有し、有機EL素子10と基板100との間、特に基板100の有機EL素子10側に、有機EL素子10に閉じ込められる光を取出す光取出し層106が設けられている。また、有機EL素子10と光取出し層106との間であって、光取出し層106の有機EL素子10側には、有機EL素子10と光取出し層106とを円滑に接続するための平坦化層120が設けられている。この平滑化層120は、例えば、光取出し層106の表面粗さRaが5nm以上の場合に設けられる。 The organic EL lighting device 1 shown mainly includes an organic EL element 10 and a substrate 100 on which the organic EL element 10 is mounted and fixed. On the organic EL element 10 side, a light extraction layer 106 for extracting light confined in the organic EL element 10 is provided. In addition, flattening between the organic EL element 10 and the light extraction layer 106, on the side of the organic EL element 10 of the light extraction layer 106, is a planarization for connecting the organic EL element 10 and the light extraction layer 106 smoothly. Layer 120 is provided. The smoothing layer 120 is provided, for example, when the surface roughness Ra of the light extraction layer 106 is 5 nm or more.
 有機EL素子10は、主に、透明電極101からなる陽極(他方の電極)と、透明電極103を含む陰極(一方の電極)110と、陽極と陰極との間に配置される有機層102とを有し、前記有機EL素子10の陽極(透明電極101)が前記基板100に対向配置されている。 The organic EL element 10 mainly includes an anode (the other electrode) including the transparent electrode 101, a cathode (the one electrode) 110 including the transparent electrode 103, and an organic layer 102 disposed between the anode and the cathode. The anode (transparent electrode 101) of the organic EL element 10 is disposed to face the substrate 100.
 陰極110は、有機層120側から透明電極(電極層)103と低屈折率層104と反射層105とが積層されて形成されている。 The cathode 110 is formed by laminating a transparent electrode (electrode layer) 103, a low refractive index layer 104, and a reflective layer 105 from the organic layer 120 side.
 なお、有機EL照明装置1は、不図示の封止基板や補助配線、配置駆動回路、筐体などを更に有しており、陰極を構成する透明電極103と陽極を構成する透明電極101とが補助配線を介して接続されている。 The organic EL lighting device 1 further includes a sealing substrate, an auxiliary wiring, an arrangement driving circuit, a housing, etc. (not shown), and the transparent electrode 103 constituting the cathode and the transparent electrode 101 constituting the anode are It is connected via an auxiliary wiring.
 以下、有機EL照明装置1を構成する各構成要素について詳述する。 Hereinafter, each component which comprises the organic electroluminescent illuminating device 1 is explained in full detail.
[基板]
 基板100の形成素材としては、例えば、ガラス、プラスチック等の素材を適用することができる。また、有機EL照明装置1がボトムエミッション型である場合には、基板100は透明であるが、有機EL照明装置1が後述するトップエミッション型(図5参照)である場合には、基板100は透明であっても不透明であってもよい。透明な基板100の形成素材としては、例えば、ガラス、石英、透明樹脂フィルム等が挙げられる。
[substrate]
As a formation material of substrate 100, materials, such as glass and a plastic, are applicable, for example. Further, when the organic EL lighting device 1 is a bottom emission type, the substrate 100 is transparent, but when the organic EL lighting device 1 is a top emission type described later (see FIG. 5), the substrate 100 is It may be transparent or opaque. Examples of the material for forming the transparent substrate 100 include glass, quartz, a transparent resin film, and the like.
 また、リジットな基板よりもフレキシブルな基板の方が、デザイン性や軽量効果が大きく発現されることから、基板100の形成素材としては、有機EL素子10に柔軟性を付与し得る可撓性を備えた樹脂フィルムが適用されることが好ましい。このような樹脂フィルムの形成素材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名:JSR社製)あるいはアペル(商品名:三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Moreover, since the designability and the lightness effect are largely exhibited when the flexible substrate is more flexible than the rigid substrate, the material for forming the substrate 100 has flexibility that allows the organic EL element 10 to be flexible. Preferably, the provided resin film is applied. Examples of materials for forming such resin films include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, and cellulose acetate pro Cellulose esters such as propionate (CAP), cellulose acetate phthalate (TAC), cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene , Polyether ketone, Polyimide, Polyether sulfone (PES), Polyphenylene sulf , Polysulfones, polyether imides, polyether ketone imides, polyamides, fluorocarbon resins, nylons, polymethyl methacrylates, acrylics or polyarylates, ARTON (trade name: manufactured by JSR Corporation) or APEL (trade name: manufactured by Mitsui Chemicals, Inc.) And cycloolefin resins and the like.
 また、上記樹脂フィルムの表面には、無機物や有機物の被膜またはその双方からなるハイブリッド被膜が形成されていてもよく、そのような樹脂フィルムは、例えば、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、JIS K 7126-1987に準拠した方法で測定された酸素透過度が0.001cm/(m・24h・atm)以下、且つ、上記水蒸気透過度が0.001g/(m・24h)以下の高バリア性フィルムであることがより好ましく、上記水蒸気透過度が0.00001g/(m・24h)以下であることが更に好ましい。 Moreover, the hybrid film which consists of a film of an inorganic substance and an organic substance, or both may be formed in the surface of the said resin film, and such a resin film is measured by the method based on JISK7129-1992, for example. It is preferable that the barrier film has a water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) of 0.01 g / (m 2 · 24 h) or less, JIS K 7126-1987. High barrier property film having an oxygen permeability of 0.001 cm 3 / (m 2 · 24 h · atm) or less, and a water vapor transmission rate of 0.001 g / (m 2 · 24 h) or less The water vapor transmission rate is more preferably 0.00001 g / (m 2 · 24 h) or less.
 このようなバリア性被膜の形成素材は、有機EL素子10の劣化を招く因子(水分や酸素等)の浸入を抑制する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等が挙げられる。更に、この被膜の脆弱性を改良するために、被膜は無機物と有機物の積層構造を有することが好ましい。前記無機物と有機物の積層順については特に制限はないが、双方を交互に複数回積層させることが好ましい。 The material for forming such a barrier film may be a material that suppresses the entry of factors (such as moisture and oxygen) that cause deterioration of the organic EL element 10, and examples thereof include silicon oxide, silicon dioxide, silicon nitride and the like. Be Furthermore, in order to improve the fragility of this film, the film preferably has a laminated structure of an inorganic substance and an organic substance. Although there is no restriction | limiting in particular about the order of lamination | stacking of the said inorganic substance and organic substance, It is preferable to laminate | stack both in multiple times alternately.
 上記バリア性被膜の形成方法としては、特に制限はないが、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を適用することができる。 The method of forming the barrier film is not particularly limited, and examples thereof include vacuum evaporation, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam, ion plating, plasma polymerization, Atmospheric pressure plasma polymerization method, plasma CVD method, laser CVD method, thermal CVD method, coating method and the like can be applied.
 なお、有機EL照明装置1がトップエミッション型(図5参照)である場合に採用し得る不透明な基板の形成素材としては、例えば、アルミニウムやステンレス等の金属、不透明な樹脂、セラミック等が挙げられる。 In addition, as a formation material of the opaque board | substrate which can be employ | adopted when the organic electroluminescent illuminating device 1 is a top emission type (refer FIG. 5), metals, such as aluminum and stainless steel, opaque resin, a ceramic, etc. are mentioned, for example. .
[光取出し層]
 光取出し層106としては、散乱微粒子による光取出し層とマイクロレンズアレイやピラミッド等の構造物による光取出し層が存在する。本実施形態において、光取出し層106は、有機EL素子10内に閉じ込められた光を取出すために用いられることから、上記散乱微粒子による光取出し層と構造物による光取出し層による効果の相違は無く、双方とも適用することができる。
[Light extraction layer]
As the light extraction layer 106, there are a light extraction layer of scattering particles and a light extraction layer of a structure such as a microlens array or a pyramid. In the present embodiment, since the light extraction layer 106 is used to extract the light confined in the organic EL element 10, there is no difference in the effect of the light extraction layer by the scattering fine particles and the light extraction layer by the structure. , Both can be applied.
 前者の微粒子を分散させた光取出し層は、主にマトリクスと微粒子からなり、このマトリクスは、有機化合物及び必要に応じて有機化合物の平均屈折率を高めるためのナノ粒子等(散乱に寄与しないサイズのナノ粒子等)からなる。このようにマトリクスの平均屈折率を高めて当該光取出し層を透明電極等に当接配置することで、より多くの光を光取出し層106に導入することができる。 The light extraction layer in which the former fine particles are dispersed is mainly composed of a matrix and fine particles, and the matrix is an organic compound and, if necessary, nanoparticles for increasing the average refractive index of the organic compound etc. (size not contributing to scattering Of nanoparticles, etc.). Thus, more light can be introduced into the light extraction layer 106 by disposing the light extraction layer in contact with the transparent electrode or the like by increasing the average refractive index of the matrix.
 上記光取出し層106を構成するマトリクスの形成素材としては、例えば、電離線硬化性樹脂や熱硬化性樹脂、熱可塑性樹脂等が挙げられ、具体的には、アクリレート樹脂(エポキシアクリレート、ポリエステルアクリレート、アクリルアクリレート、エーテルアクリレート)等のラジカル重合型モノマーもしくはオリゴマー、エポキシ樹脂等が挙げられる。ここで、電離線としては、例えば、紫外線、可視光、赤外線、電子線が挙げられる。 Examples of the material for forming the matrix constituting the light extraction layer 106 include ionizing radiation curable resins, thermosetting resins, thermoplastic resins, etc. Specifically, acrylate resins (epoxy acrylate, polyester acrylate, And radically polymerizable monomers or oligomers such as acrylic acrylate and ether acrylate), epoxy resins and the like. Here, examples of the ionizing radiation include ultraviolet light, visible light, infrared light, and electron beam.
 また、上記マトリクスには、必要に応じて開始剤を添加してもよい。このような開始剤としては、例えば、UVラジカル発生剤(チバ・スペシャリティ・ケミカル社製イルガキュア907、同127、同192等)、過酸化ベンゾイル等が挙げられる。 In addition, an initiator may be added to the above-mentioned matrix, if necessary. As such an initiator, for example, a UV radical generator (Irgacure 907, 127, 192, etc. manufactured by Ciba Specialty Chemical Co., Ltd.), benzoyl peroxide and the like can be mentioned.
 また、マトリクスの別の樹脂成分としては、例えば、脂肪族系(例えば、ポリオレフィン)樹脂、ウレタン系樹脂等が挙げられ、この樹脂成分の屈折率は、好ましくは1.4~1.85、より好ましくは1.7~1.8である。このような屈折率を有することで、より多くの光を光取出し層106のマトリクス中に取り込んで光取出し効率を高めることができる。 Further, as another resin component of the matrix, for example, aliphatic (for example, polyolefin) resin, urethane resin and the like can be mentioned, and the refractive index of this resin component is preferably 1.4 to 1.85, Preferably, it is 1.7 to 1.8. By having such a refractive index, more light can be taken into the matrix of the light extraction layer 106 to enhance the light extraction efficiency.
 ここで、光取出し層106内の散乱微粒子は、可視光の領域で光の吸収のない若しくは少ない粒子(吸収率が通常30%以下)であることが好ましい。そのような散乱微粒子の形成素材としては、例えば、酸化チタン(屈折率:2.5以上2.7以下)、酸化ジルコニウム(屈折率:2.4)、チタン酸バリウム(屈折率:2.4)、チタン酸ストロンチウム(屈折率:2.37)、酸化ビスマス(屈折率:2.45)等が挙げられ、これらの素材を一種単独で使用してもよいし、二種以上を併用してもよい。これらの散乱微粒子の形成素材のうち、特に、無機物からなる素材が好ましく、上記した酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウム、酸化ビスマス等が好ましい。更に、上記微粒子は、マトリックス中の空隙によって形成してもよい。また、上記微粒子の粒子サイズは、100nm以上、好ましくは200nm以上であり、通常10μm以下、好ましくは5μm以下である。 Here, it is preferable that the scattering particles in the light extraction layer 106 be particles having no or small light absorption (the absorptivity is usually 30% or less) in the visible light region. Examples of materials for forming such scattering particles include titanium oxide (refractive index: 2.5 or more and 2.7 or less), zirconium oxide (refractive index: 2.4), and barium titanate (refractive index: 2.4). And strontium titanate (refractive index: 2.37), bismuth oxide (refractive index: 2.45), etc. These materials may be used alone or in combination of two or more. It is also good. Among the materials for forming these scattering particles, particularly, materials made of inorganic materials are preferable, and the above-mentioned titanium oxide, zirconium oxide, barium titanate, strontium titanate, bismuth oxide and the like are preferable. Furthermore, the microparticles may be formed by voids in the matrix. The particle size of the fine particles is 100 nm or more, preferably 200 nm or more, and usually 10 μm or less, preferably 5 μm or less.
 このような光取出し層106は、通常、マトリックス前駆体に透明な微粒子を分散させた塗布液を基板100に塗布することで形成される。なお、塗布液中の透明な微粒子の含有量は、形成される光取出し層においてMie散乱が多重散乱するように調整される。この塗布液の塗布方法としては、例えば、スピンコート、ディップコート、ダイコート、キャスト、スプレーコート、グラビアコート等が適用され、特に、塗膜の均質性の観点から、スピンコート、ディップコート、ダイコート等が適用される。 Such a light extraction layer 106 is generally formed by applying a coating liquid in which transparent fine particles are dispersed in a matrix precursor to the substrate 100. The content of the transparent fine particles in the coating solution is adjusted so that Mie scattering is multiple-scattered in the light extraction layer to be formed. As a coating method of this coating solution, for example, spin coating, dip coating, die coating, casting, spray coating, gravure coating, etc. are applied, and in particular, from the viewpoint of the uniformity of the coating, spin coating, dip coating, die coating, etc. Is applied.
 なお、光取出し層106の膜厚は、2μm以上20μm以下であることが好ましい。その膜厚が2μmよりも薄い場合には、散乱微粒子を十分な濃度で混合することが難しく、20μmよりも厚い場合には、均一な塗膜を形成することが困難となる。 The film thickness of the light extraction layer 106 is preferably 2 μm or more and 20 μm or less. When the film thickness is thinner than 2 μm, it is difficult to mix the scattering particles at a sufficient concentration, and when it is thicker than 20 μm, it becomes difficult to form a uniform coating film.
 また、後者のマイクロレンズアレイやピラミッド等の構造物による光取出し層においては、発光波長以上である1μmから100μm程度の構造物をその一面に配置する必要がある。その構造物の底辺の長さをd、底辺からの高さをhとすると、外部へ取り出す光量を高めるために、そのアスペクト比h/dは0.2から2までの範囲内であることが好ましい。 Further, in the light extraction layer based on the latter structure such as a microlens array or pyramid, it is necessary to arrange a structure of about 1 μm to 100 μm which is the light emission wavelength or more on one surface thereof. Assuming that the length of the base of the structure is d and the height from the base is h, the aspect ratio h / d should be in the range of 0.2 to 2 in order to increase the amount of light taken out to the outside. preferable.
 なお、有機EL照明装置1が例えばディスプレイ等のデバイス構造を採用する場合には、この光取出し層106を省略することができる。 In the case where the organic EL lighting device 1 adopts a device structure such as a display, for example, the light extraction layer 106 can be omitted.
[透明電極(陽極側)]
 陽極を形成する透明電極101は、有機層102に正孔(ホール)を注入するための電極であり、この透明電極101の素材としては、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物からなる電極材料等が適用され、特に、仕事関数が4eV以上の電極材料が好適に適用される。このような電極材料としては、例えば、Au(金)等の金属、CuI、ITO(インジウムチンオキサイド)、SnO、ZnO、IZO(インジウムジンクオキサイド)等の導電性透明材料等が挙げられる。また、これら電極材料の形成方法としては、例えば、真空蒸着法やスパッタリング法、CVD法、イオンプレーティング法、塗布法等が適用され、これにより、透明電極101を薄膜として形成することができる。
[Transparent electrode (anode side)]
The transparent electrode 101 forming the anode is an electrode for injecting holes into the organic layer 102, and the material of the transparent electrode 101 is a metal, an alloy, an electrically conductive compound, or a material having a large work function. The electrode material etc. which consist of these mixtures are applied, and especially the electrode material whose work function is 4 eV or more is applied suitably. Examples of such an electrode material include metals such as Au (gold), and conductive transparent materials such as CuI, ITO (indium tin oxide), SnO 2 , ZnO, and IZO (indium zinc oxide). Further, as a method of forming these electrode materials, for example, a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a coating method or the like is applied, whereby the transparent electrode 101 can be formed as a thin film.
 なお、透明電極101の光透過率は80%以上であることが好ましい。また、透明電極101の平均シート抵抗値は数百Ω/□(スクエア)以下であることが好ましく、100Ω/□以下であることがより好ましい。更に、透明電極101の膜厚は、電極(陽極)の透明性や導電性等を上記のように規定するため、材料により異なるが、20~400nmであることが好ましく、20~200nmであることが望ましい。 The light transmittance of the transparent electrode 101 is preferably 80% or more. The average sheet resistance value of the transparent electrode 101 is preferably several hundreds Ω / sq (square) or less, and more preferably 100 Ω / sq or less. Furthermore, the film thickness of the transparent electrode 101 is preferably 20 to 400 nm, preferably 20 to 200 nm although it varies depending on the material in order to define the transparency, conductivity and the like of the electrode (anode) as described above. Is desirable.
[有機層]
 有機層102は、図1に示すように、透明電極101側から正孔注入層201、正孔輸送層202、発光層203、電子輸送層204、電子注入層205が積層されて形成されている。
[Organic layer]
As shown in FIG. 1, the organic layer 102 is formed by laminating a hole injection layer 201, a hole transport layer 202, a light emitting layer 203, an electron transport layer 204, and an electron injection layer 205 from the transparent electrode 101 side. .
 なお、有機層102は、発光層203のみの単層構造で形成してもよいし、発光層203と正孔注入層201、正孔輸送層202、電子輸送層204及び電子注入層205の少なくとも一層とを含む多層構造で形成してもよい。また、正孔注入層201と正孔輸送層202、正孔輸送層202と発光層203、発光層203と電子輸送層204、電子輸送層204と電子注入層205はそれぞれ当接配置してもよいし、各層の間に上記した他の層を介在させて配置してもよい。すなわち、正孔注入層201、正孔輸送層202、発光層203、電子輸送層204、電子注入層205の積層順は適宜変更することができる。 The organic layer 102 may be formed as a single layer structure of only the light emitting layer 203, or at least at least the light emitting layer 203, the hole injection layer 201, the hole transport layer 202, the electron transport layer 204 and the electron injection layer 205. It may be formed in a multilayer structure including a single layer. Also, even if the hole injection layer 201 and the hole transport layer 202, the hole transport layer 202 and the light emitting layer 203, the light emitting layer 203 and the electron transport layer 204, and the electron transport layer 204 and the electron injection layer 205 respectively abut. Alternatively, the above-described other layers may be interposed between the layers. That is, the stacking order of the hole injection layer 201, the hole transport layer 202, the light emitting layer 203, the electron transport layer 204, and the electron injection layer 205 can be changed as appropriate.
<正孔注入層>
 正孔注入層201は、透明電極(陽極)101と正孔輸送層202との注入障壁を減少させるための層であり、適当なイオン化ポテンシャルを有する材料から形成される。また、正孔注入層201は、下地となる透明電極101の表面の凹凸を埋める役割も果たすことが望ましい。このような正孔注入層201の形成素材としては、例えば、銅フタロシアニン、スターバーストアミン化合物、ポリアニリン、ポリチオフェン、酸化バナジウム、酸化モリブテン、酸化ルテニウム、酸化アルミニウム等が挙げられる。なお、この正孔注入層201は適宜省略することができる。
<Hole injection layer>
The hole injection layer 201 is a layer for reducing the injection barrier between the transparent electrode (anode) 101 and the hole transport layer 202, and is formed of a material having an appropriate ionization potential. In addition, it is desirable that the hole injection layer 201 also play a role of filling the unevenness of the surface of the transparent electrode 101 as the base. Examples of materials for forming such a hole injection layer 201 include copper phthalocyanine, starburst amine compound, polyaniline, polythiophene, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide and the like. The hole injection layer 201 can be omitted as appropriate.
<正孔輸送層>
 正孔輸送層202は、透明電極101から正孔を輸送して発光層203へ注入するための層であり、正孔移動度の高い正孔輸送性材料から形成されることが好ましい。また、正孔輸送層202は、化学的に安定で、イオン化ポテンシャルが小さく、電子親和力が小さく、且つガラス転移温度が高いことが望ましい。このような正孔輸送層202の形成素材としては、例えば、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’ジアミン(TPD)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(TCTA)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)フェニルアミノ]ベンゼン(p-DPA-TDAB)、4,4’,4’’-トリス(N-カルバゾール)トリフェニルアミン(TCTA)、1,3,5-トリス[N,N-ビス(2-メチルフェニル)-アミノ]-ベンゼン(o-MTDAB)、1,3,5-トリス[N,N-ビス(3-メチルフェニル)-アミノ]-ベンゼン(m-MTDAB)、1,3,5-トリス[N,N-ビス(4-メチルフェニル)-アミノ]-ベンゼン(p-MTDAB)、4,4’,4’’-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)、4,4’,4’’-トリス[2-ナフチル(フェニル)アミノ]トリフェニルアミン(2-TNATA)、4,4’,4’’-トリス[ビフェニル-4-イル-(3-メチルフェニル)アミノ]トリフェニルアミン(p-PMTDATA)、4,4’,4’’-トリス[9,9-ジメチルフルオレン-2-イル(フェニル)アミノ]トリフェニルアミン(TFATA)、4,4’,4’’-トリス(N-カルバゾイル)トリフェニルアミン(TCTA)、1,3,5-トリス-[N-(4-ジフェニルアミノフェニル)フェニルアミノ]ベンゼン(p-DPA-TDAB)、1,3,5-トリス{4-[メチルフェニル(フェニル)アミノ]フェニル}ベンゼン(MTDAPB)、N,N’-ジ(ビフェニル-4-イル)-N,N’-ジフェニル[1,1’-ビフェニル]-4,4’-ジアミン(p-BPD)、N,N’-ビス(9,9-ジメチルフルオレン-2-イル)-N,N’-ジフェニルフルオレン-2,7-ジアミン(PFFA)、N,N,N’,N’-テトラキス(9,9-ジメチルフルオレン-2-イル)-[1,1-ビフェニル]-4,4’-ジアミン(FFD)、(NDA)PP、4-4’-ビス[N,N’-(3-トリル)アミノ]-3-3’-ジメチルビフェニル(HMTPD)等が挙げられ、これらを一種単独で使用してもよいし、二種以上を併用してもよい。
<Hole transport layer>
The hole transporting layer 202 is a layer for transporting holes from the transparent electrode 101 and injecting the holes into the light emitting layer 203, and is preferably formed of a hole transporting material having high hole mobility. In addition, it is preferable that the hole transport layer 202 be chemically stable, have a small ionization potential, a small electron affinity, and a high glass transition temperature. As a forming material of such a hole transport layer 202, for example, N, N′-bis (3-methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4 ′ diamine (TPD), 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD), 4,4 ′, 4 ′ ′-tri (N-carbazolyl) triphenylamine ( TCTA), 1,3,5-tris [N- (4-diphenylaminophenyl) phenylamino] benzene (p-DPA-TDAB), 4,4 ′, 4 ′ ′-tris (N-carbazole) triphenylamine (TCTA), 1,3,5-tris [N, N-bis (2-methylphenyl) -amino] -benzene (o-MTDAB), 1,3,5-tris [N, N-bis (3-) Methylphenyl) -amino] -benzene (m- MTDAB), 1,3,5-tris [N, N-bis (4-methylphenyl) -amino] -benzene (p-MTDAB), 4,4 ′, 4 ′ ′-tris [1-naphthyl (phenyl) Amino] triphenylamine (1-TNATA), 4,4 ′, 4 ′ ′-tris [2-naphthyl (phenyl) amino] triphenylamine (2-TNATA), 4,4 ′, 4 ′ ′-tris [ Biphenyl-4-yl- (3-methylphenyl) amino] triphenylamine (p-PMTDATA), 4,4 ′, 4 ′ ′-tris [9,9-dimethylfluoren-2-yl (phenyl) amino] tri Phenylamine (TFATA), 4,4 ′, 4 ′ ′-tris (N-carbazoyl) triphenylamine (TCTA), 1,3,5-tris- [N- (4-diphenylaminophenyl) phenylamino] Benzene (p-DPA-TDAB), 1,3,5-tris {4- [methylphenyl (phenyl) amino] phenyl} benzene (MTDAPB), N, N'-di (biphenyl-4-yl) -N, N'-diphenyl [1,1'-biphenyl] -4,4'-diamine (p-BPD), N, N'-bis (9,9-dimethylfluoren-2-yl) -N, N'-diphenyl Fluorene-2,7-diamine (PFFA), N, N, N ', N'-tetrakis (9,9-dimethylfluoren-2-yl)-[1,1-biphenyl] -4,4'-diamine ( FFD), (NDA) PP, 4-4′-bis [N, N ′-(3-tolyl) amino] -3-3′-dimethylbiphenyl (HMTPD), etc. You may use together and may use 2 or more types.
 また、透明電極(陽極)101と正孔輸送層202との注入障壁を低下させたり、電気伝導性を向上させるために、正孔輸送層202の正孔輸送性材料に酸化剤を含有してもよい。このような酸化剤としては、例えば、塩化第二鉄、塩化アンモニウム、塩化ガリウム、塩化インジウム、五塩化アンチモン等のルイス酸化合物、トリニトロフルオレン等の電子受容性化合物、正孔注入材料として挙げられる酸化バナジウム、酸化モリブテン、酸化ルテニウム、酸化アルミニウム等を適用することができ、これらを一種単独で使用してもよいし、二種以上を併用してもよい。 Further, an oxidant is contained in the hole transport material of the hole transport layer 202 in order to lower the injection barrier between the transparent electrode (anode) 101 and the hole transport layer 202 and to improve the electrical conductivity. It is also good. Examples of such an oxidizing agent include Lewis acid compounds such as ferric chloride, ammonium chloride, gallium chloride, indium chloride and antimony pentachloride, electron accepting compounds such as trinitrofluorene, and hole injecting materials. Vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide and the like can be applied, and these may be used singly or in combination of two or more.
<発光層>
 発光層203は、ホスト分子とドーパント分子とを含んでいる。この発光層203に用いる発光性有機化合物としては、任意のものを挙げることができ、例えば、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン(DSA)誘導体、及び、これらの発光性有機化合物を分子内に含有するもの等が挙げられる。また、これらの化合物に代表される蛍光色素由来の化合物のみならず、三重項状態からの燐光発光が可能な材料、及びこれらの材料からなる基を分子内の一部に有する化合物も好適に用いることができる。
<Light emitting layer>
The light emitting layer 203 contains host molecules and dopant molecules. The light-emitting organic compound used for the light-emitting layer 203 may be any one, for example, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxa Diazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinate) aluminum complex, tris (4-methyl-8-quinolinate) aluminum complex, tris (5-phenyl-8-) Quinolinate) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quina Pyrrolidone, rubrene, distyrylbenzene derivatives, di still arylene (DSA) derivatives, and, such as those containing these luminous organic compound in the molecule. Moreover, not only compounds derived from fluorescent dyes represented by these compounds but also materials capable of phosphorescent light emission from the triplet state, and compounds having a group consisting of these materials in a part of the molecule are suitably used. be able to.
<電子輸送層>
 電子輸送層204は、陰極110(特に透明電極103)から電子を輸送して発光層203へ注入するための層であり、電子移動度の高い電子輸送性材料から形成されることが好ましい。このような電子輸送層204の形成素材としては、例えば、トリス(8-キノリノール)アルミニウム、オキサジアゾール誘導体、シロール誘導体、亜鉛ベンゾチアゾール錯体、バソキュプロイン(BCP)等が挙げられ、これらを一種単独で使用してもよいし、二種以上を併用してもよい。
<Electron transport layer>
The electron transport layer 204 is a layer for transporting electrons from the cathode 110 (particularly, the transparent electrode 103) and injecting the electrons into the light emitting layer 203, and is preferably formed of an electron transporting material having high electron mobility. Examples of materials for forming such an electron transport layer 204 include tris (8-quinolinol) aluminum, oxadiazole derivatives, silole derivatives, zinc benzothiazole complexes, vasocuproin (BCP), etc. These may be used alone or in combination. You may use and may use 2 or more types together.
 また、透明電極103と電子輸送層204との注入障壁を低下させたり、電気伝導性を向上させるために、電子輸送層104の電子輸送性材料に還元剤を含有してもよい。このような還元剤としては、例えば、アルカリ金属、アルカリ土類金属、アルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、アルカリ金属や芳香族化合物等で形成される錯体等を適用することができ、特に、セシウム(Cs)、リチウム(Li)、ナトリウム(Na)、カリウム(K)等のアルカリ金属を適用することが好ましく、これらの材料を一種単独で使用してもよいし、二種以上を併用してもよい。 In addition, a reducing agent may be contained in the electron transporting material of the electron transporting layer 104 in order to lower the injection barrier between the transparent electrode 103 and the electron transporting layer 204 or to improve the electrical conductivity. As such a reducing agent, for example, alkali metals, alkaline earth metals, alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, alkali metals And complexes formed with aromatic compounds, etc., and in particular, alkali metals such as cesium (Cs), lithium (Li), sodium (Na) and potassium (K) are preferably used, These materials may be used alone or in combination of two or more.
<電子注入層>
 電子注入層205は、発光層203への電子注入効率を高めるための層であり、例えば、弗化リチウム、弗化マグネシウム、弗化カルシウム、弗化ストロンチウム、弗化バリウム、酸化マグネシウム、酸化アルミニウム等から形成され、これらの材料を一種単独で使用して形成してもよいし、二種以上を併用して形成してもよい。なお、この電子注入層205は適宜省略することができる。
<Electron injection layer>
The electron injection layer 205 is a layer for enhancing the electron injection efficiency to the light emitting layer 203. For example, lithium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, magnesium oxide, aluminum oxide, etc. These materials may be used alone or in combination of two or more. Note that this electron injection layer 205 can be omitted as appropriate.
[透明電極(陰極側)]
 陰極110を形成する透明電極103は、有機層102に電子を注入するための電極であり、この透明電極103の素材としては、仕事関数の小さい電極材料が好適に適用される。このような電極材料としては、例えば、ITO(インジウムチンオキサイド)、SnO、ZnO、IZO(インジウムジンクオキサイド)等の導電性透明材料や、グラフェン等が挙げられる。これら電極材料の形成方法としては、例えば、真空蒸着法やスパッタリング法、CVD法、イオンプレーティング法、塗布法等が適用され、これにより、透明電極103を薄膜として形成することができる。
[Transparent electrode (cathode side)]
The transparent electrode 103 forming the cathode 110 is an electrode for injecting electrons into the organic layer 102. As a material of the transparent electrode 103, an electrode material having a small work function is suitably applied. Examples of such an electrode material include conductive transparent materials such as ITO (indium tin oxide), SnO 2 , ZnO, and IZO (indium zinc oxide), and graphene. As a method of forming these electrode materials, for example, a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a coating method or the like is applied, whereby the transparent electrode 103 can be formed as a thin film.
 透明電極101と同様に、透明電極103の光透過率は80%以上であることが好ましい。また、透明電極103の平均シート抵抗値は数百Ω/□以下であることが好ましく、100Ω/□以下であることがより好ましい。更に、透明電極103の膜厚は、電極(陰極)の透明性や導電性等を上記のように規定するため、材料により異なるが、20~400nmであることが好ましく、20~200nmであることが望ましい。 Similar to the transparent electrode 101, the light transmittance of the transparent electrode 103 is preferably 80% or more. Further, the average sheet resistance value of the transparent electrode 103 is preferably several hundreds Ω / sq or less, and more preferably 100 Ω / sq or less. Furthermore, the film thickness of the transparent electrode 103 is preferably 20 to 400 nm, preferably 20 to 200 nm although it varies depending on the material in order to define the transparency, conductivity and the like of the electrode (cathode) as described above. Is desirable.
[低屈折率層]
 低屈折率層104は、反射層105と発光層203との表面プラズモンカップリングを抑制するための層であり、この低屈折率層104の形成素材としては、例えば、メソポーラスシリカや電離線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等が挙げられる。この低屈折率層104の屈折率は、有機層102(特に発光層203)の屈折率(例えば1.8)よりも低く、後述するように、好ましくは1.4以下、より好ましくは1.3以下である。なお、例えば低屈折率層104にナノ粒子サイズの空隙を設けることによって、低屈折率層104の屈折率を低減することもでき、現状の製法によれば、1.2~1.4程度の屈折率が得られることが本発明者等によって確認されている。
[Low refractive index layer]
The low refractive index layer 104 is a layer for suppressing surface plasmon coupling between the reflective layer 105 and the light emitting layer 203, and as a material for forming the low refractive index layer 104, for example, mesoporous silica or ionizing radiation curability Resin, thermosetting resin, thermoplastic resin etc. are mentioned. The refractive index of the low refractive index layer 104 is lower than the refractive index (for example, 1.8) of the organic layer 102 (in particular, the light emitting layer 203), and is preferably 1.4 or less, more preferably 1. It is 3 or less. For example, the refractive index of the low refractive index layer 104 can be reduced by providing a void of nanoparticle size in the low refractive index layer 104, and according to the current manufacturing method, about 1.2 to 1.4 It has been confirmed by the present inventors that a refractive index can be obtained.
 このような低屈折率層104は、通常、上記素材を含む塗布液を有機層102に塗布することで形成される。この塗布液の塗布方法としては、例えば、スピンコート、ディップコート、ダイコート、キャスト、スプレーコート、グラビアコート等が適用され、特に、塗膜の均質性の観点から、スピンコート、ディップコート、ダイコートが好適に適用される。 Such a low refractive index layer 104 is usually formed by applying a coating solution containing the above-described material to the organic layer 102. As a method of applying this coating solution, for example, spin coating, dip coating, die coating, casting, spray coating, gravure coating, etc. are applied, and spin coating, dip coating, die coating are particularly preferred from the viewpoint of coating uniformity. It applies suitably.
 なお、低屈折率層104の膜厚は、後述するように30nm以上100nm以下であることが好ましく、40nm以上100nm以下であることが望ましい。その膜厚が30nmよりも薄い場合には、表面プラズモンカップリングが増加して光取出し率が急激に減少したり、均一な塗膜を形成することが難しくなる。また、その膜厚が100nmよりも厚い場合には、均一な塗膜を形成することが困難となる。 The thickness of the low refractive index layer 104 is preferably 30 nm or more and 100 nm or less as described later, and desirably 40 nm or more and 100 nm or less. If the film thickness is smaller than 30 nm, surface plasmon coupling is increased, and the light extraction rate is rapidly reduced, or it becomes difficult to form a uniform coating film. Moreover, when the film thickness is thicker than 100 nm, it becomes difficult to form a uniform coating film.
[反射層(もしくは反射電極)]
 反射層105は、反射率の高い材料を適用することで光取出し効率を高めることができ、例えば銀(Ag)等の金属から形成される。
[Reflective layer (or reflective electrode)]
The reflective layer 105 can increase the light extraction efficiency by applying a material with high reflectance, and is formed of, for example, a metal such as silver (Ag).
 また、反射層105が有機層102に電子を注入する電極としても用いられる場合(反射電極という)(図3参照)には、仕事関数の小さい金属(例えば仕事関数が5eV以下の金属)、合金、電気伝導性化合物、及びこれらの混合物からなる電極材料が適用される。このような電極材料としては、例えば、アルカリ金属、アルカリ金属のハロゲン化物、アルカリ金属の酸化物、アルカリ土類金属、希土類等や、これらと他の金属との合金等が挙げられ、具体的には、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物等が挙げられる。また、このような反射電極の形成方法としては、例えば、真空蒸着法やスパッタリング法等を適用することができ、これにより、この反射電極を薄膜として形成することができる。 When the reflective layer 105 is also used as an electrode for injecting electrons into the organic layer 102 (referred to as a reflective electrode) (see FIG. 3), a metal having a small work function (for example, a metal having a work function of 5 eV or less) An electrode material consisting of an electrically conductive compound, and a mixture thereof is applied. Examples of such electrode materials include alkali metals, halides of alkali metals, oxides of alkali metals, alkaline earth metals, rare earths, and alloys of these with other metals. Examples thereof include sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O 3 mixture, Al / LiF mixture and the like. Further, as a method of forming such a reflective electrode, for example, a vacuum evaporation method, a sputtering method, or the like can be applied, whereby the reflective electrode can be formed as a thin film.
 前記反射電極の光透過率は10%以下であることが好ましい。また、この反射電極の膜厚は、反射電極の光透過率等を上記のように規定するため、材料により異なるが、通常500nm以下であるが好ましく、100から200nmまでの範囲内であることが望ましい。 The light transmittance of the reflective electrode is preferably 10% or less. Further, the film thickness of this reflective electrode differs depending on the material in order to define the light transmittance etc. of the reflective electrode as described above, but usually it is preferably 500 nm or less, preferably within the range of 100 to 200 nm. desirable.
[封止基板]
 封止基板(図1では不図示、図5参照)としては、例えば、ソーダライムガラスや無アルカリガラス等からなる透明ガラス板、アクリル樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、シクロオレフィン樹脂、オレフィン樹脂、カーボネート樹脂、ナイロン樹脂、フッ素系樹脂、シリコーン系樹脂、ポリイミド樹脂、ポリサルフォン樹脂等からなる透明プラスチック板等が適用され、特に、適切なガスバリア膜を有するプラスチック基板が適用されることが好ましい。封止基板は、光透過性であればよく、無色透明であってもよいし、多少着色されていてもよいが、380nm~780nmの波長範囲の光を透過させることが望ましい。
[Sealing substrate]
As a sealing substrate (not shown in FIG. 1, refer to FIG. 5), for example, a transparent glass plate made of soda lime glass, non-alkali glass, etc., acrylic resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin Transparent plastic plate made of cycloolefin resin, olefin resin, carbonate resin, nylon resin, fluorine resin, silicone resin, polyimide resin, polysulfone resin, etc., in particular, a plastic substrate having an appropriate gas barrier film is applied Preferably. The sealing substrate may be light transmissive, may be colorless and transparent, or may be colored somewhat, but it is desirable to transmit light in the wavelength range of 380 nm to 780 nm.
[補助配線]
 補助配線(不図示)は、透明電極101、103上に1μm~20μmの幅でライン上に配置することで、発光した光を反射させると共に、電極同士の抵抗を低減するものである。この補助配線は、反射率が高く且つ抵抗値が低い金属や合金からなる材料から形成されることが好ましく、このような材料としては、アルカリ金属、アルカリ金属のハロゲン化物、これらと他の金属との合金等が挙げられ、例えば、銀、アルミニウム、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物等が挙げられる。この補助配線の形成方法法としては、例えば、真空蒸着法やスパッタリング法等の方法や印刷法等を適用することができ、これにより、この補助配線を薄膜として形成することができる。なお、前記補助配線の光透過率は10%以下であることが好ましい。
[Auxiliary wiring]
The auxiliary wiring (not shown) is disposed on a line with a width of 1 μm to 20 μm on the transparent electrodes 101 and 103 to reflect emitted light and reduce the resistance between the electrodes. The auxiliary wiring is preferably formed of a material comprising a metal or alloy having a high reflectance and a low resistance value, and as such a material, alkali metals, halides of alkali metals, these and other metals are used. Alloys such as silver, aluminum, sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O 3 mixture, Al / LiF mixture etc. are mentioned. As a method of forming the auxiliary wiring, for example, a method such as a vacuum evaporation method or a sputtering method, a printing method, or the like can be applied, whereby the auxiliary wiring can be formed as a thin film. The light transmittance of the auxiliary wiring is preferably 10% or less.
 本実施形態1によれば、反射層105と発光層203との間に当該発光層203よりも屈折率の低い低屈折率層104、特に屈折率が1.4以下である低屈折率層104を設けることによって、有機EL素子10の伝搬光の割合(光取出し効率)を維持しながら低屈折率層104の膜厚を低減でき、反射層105と発光層203との間の電圧の上昇を抑制することができ、且つ製造コストの高騰を抑制することができる。 According to the first embodiment, the low refractive index layer 104 having a refractive index lower than that of the light emitting layer 203 between the reflective layer 105 and the light emitting layer 203, particularly the low refractive index layer 104 having a refractive index of 1.4 or less. The thickness of the low refractive index layer 104 can be reduced while maintaining the ratio of the propagation light (light extraction efficiency) of the organic EL element 10 by providing the It is possible to suppress the increase in manufacturing cost.
(実施形態2)
 図2は、本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態2の全体構成を示したものである。図2に示す実施形態2の有機EL照明装置1Aは、上記する実施形態1の有機EL照明装置1に対して光取出し層の配置構成が相違しており、その他の構成は実施形態1とほぼ同様である。したがって、実施形態1と同様の構成については、同様の符号を付してその詳細な説明は省略する。
Second Embodiment
FIG. 2 shows the whole structure of Embodiment 2 of the organic EL element concerning this invention, and an organic EL illuminating device using the same. The organic EL lighting device 1A of the second embodiment shown in FIG. 2 is different from the organic EL lighting device 1 of the first embodiment in the arrangement configuration of the light extraction layer, and the other configuration is substantially the same as that of the first embodiment. It is similar. Therefore, about the same composition as Embodiment 1, the same numerals are attached and the detailed explanation is omitted.
 本実施形態2では、光取出し層106Aが、基板100Aと空気層との間、即ち基板100Aの有機EL素子10A側とは反対側に設けられ、有機EL素子10Aの透明電極101Aが基板100Aと当接するように当該有機EL素子10Aが基板100Aに載置固定されている。 In the second embodiment, the light extraction layer 106A is provided between the substrate 100A and the air layer, that is, on the opposite side of the substrate 100A to the organic EL element 10A side, and the transparent electrode 101A of the organic EL element 10A and the substrate 100A. The organic EL element 10A is placed on and fixed to the substrate 100A so as to abut.
 このように、本実施形態2では、光取出し層106Aが基板100Aの有機EL素子10A側とは反対側に設けられている場合であっても、上記する実施形態1と同様、反射層105Aと発光層203Aとの間に当該発光層203Aよりも屈折率の低い低屈折率層104A、特に屈折率が1.4以下である低屈折率層104Aを設けることによって、有機EL素子10Aの光取出し効率を維持しながら低屈折率層104Aの膜厚を低減することができる。 As described above, in the second embodiment, even when the light extraction layer 106A is provided on the opposite side of the substrate 100A to the organic EL element 10A side, the reflective layer 105A and the light extraction layer 106A are provided as in the first embodiment. By providing the low refractive index layer 104A having a refractive index lower than that of the light emitting layer 203A, particularly the low refractive index layer 104A having a refractive index of 1.4 or less, between the light emitting layer 203A, the light extraction of the organic EL element 10A The film thickness of the low refractive index layer 104A can be reduced while maintaining the efficiency.
 なお、本実施形態2では、光取出し層106Aが基板100Aの有機EL素子10A側とは反対側に設けられ、有機EL素子10Aと基板100Aとが直接的に接続され、平坦化層が省略されている。 In the second embodiment, the light extraction layer 106A is provided on the opposite side of the substrate 100A to the organic EL element 10A side, the organic EL element 10A and the substrate 100A are directly connected, and the planarization layer is omitted. ing.
(実施形態3)
 図3は、本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態3の全体構成を示したものである。図3に示す実施形態3の有機EL照明装置1Bは、上記する実施形態2の有機EL照明装置1Aに対して陰極側の透明電極及び反射層の配置構成が相違しており、その他の構成は実施形態2とほぼ同様である。したがって、実施形態2と同様の構成については、同様の符号を付してその詳細な説明は省略する。
(Embodiment 3)
FIG. 3 shows the whole structure of Embodiment 3 of the organic EL element concerning this invention, and an organic EL illuminating device using the same. The organic EL lighting device 1B of the third embodiment shown in FIG. 3 is different from the organic EL lighting device 1A of the above second embodiment in the arrangement configuration of the transparent electrode and the reflective layer on the cathode side, It is almost the same as in the second embodiment. Therefore, about the structure similar to Embodiment 2, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 本実施形態3では、反射層が有機層に電子を注入する電極としても用いられ(このような反射層を反射電極という)、有機EL素子10Bは、主に、透明電極101Bからなる陽極(他方の電極)と、反射電極105Bを含む陰極(一方の電極)110Bと、陽極と陰極との間に配置される有機層102Bとを有している。 In the third embodiment, the reflective layer is also used as an electrode for injecting electrons into the organic layer (such a reflective layer is referred to as a reflective electrode), and the organic EL element 10B mainly includes the anode (the other) composed of the transparent electrode 101B. And a cathode (one electrode) 110B including a reflective electrode 105B, and an organic layer 102B disposed between the anode and the cathode.
 陰極110Bは、有機層120B側から低屈折率層104Bと反射電極(反射電極層)103Bとが積層されて形成されている。 The cathode 110B is formed by laminating the low refractive index layer 104B and the reflective electrode (reflective electrode layer) 103B from the organic layer 120B side.
 ここで、低屈折率層104Bは、一般に導電性が低いため、本実施形態3では、有機層120Bと反射電極103Bとの間に配置される低屈折率層104Bに導電性物質であるカーボンナノチューブやグラフェン等を添加することにより導電性を付与している。このような低屈折率層104Bの平均シート抵抗値は、好ましくは1000Ω/□以下である。 Here, since the low refractive index layer 104B generally has low conductivity, in Embodiment 3, carbon nanotubes, which are conductive materials in the low refractive index layer 104B disposed between the organic layer 120B and the reflective electrode 103B, are used. Conductivity is imparted by adding graphene and the like. The average sheet resistance value of such a low refractive index layer 104B is preferably 1000 Ω / □ or less.
 このように、本実施形態3では、有機層120Bと反射電極103Bとの間に導電性を付与した低屈折率層104Bを配置することによって、有機EL照明装置1Bを安定して動作させながら、有機EL素子10Bの光取出し効率を維持し且つ低屈折率層104Bの膜厚を低減することができる。 As described above, in the third embodiment, the low refractive index layer 104B to which conductivity is imparted is disposed between the organic layer 120B and the reflective electrode 103B, thereby stably operating the organic EL lighting device 1B. The light extraction efficiency of the organic EL element 10B can be maintained, and the film thickness of the low refractive index layer 104B can be reduced.
(実施形態4)
 図4は、本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態4の全体構成を示したものである。図4に示す実施形態4の有機EL照明装置1Cは、上記する実施形態1の有機EL照明装置1に対して有機層の正孔注入層の構成が相違しており、その他の構成は実施形態1とほぼ同様である。したがって、実施形態1と同様の構成については、同様の符号を付してその詳細な説明は省略する。
(Embodiment 4)
FIG. 4 shows the whole structure of Embodiment 4 of the organic EL element concerning this invention, and an organic EL illuminating device using the same. The organic EL lighting device 1C of the fourth embodiment shown in FIG. 4 differs from the organic EL lighting device 1 of the first embodiment described above in the configuration of the hole injection layer of the organic layer, and the other configuration is the embodiment. Similar to 1. Therefore, about the same composition as Embodiment 1, the same numerals are attached and the detailed explanation is omitted.
 有機層を形成する正孔注入層は、一般に発光層と同等の屈折率を有しているが、本実施形態4では、有機層102Cを形成する正孔注入層(別途の低屈折率層)201Cの屈折率が、発光層203C等の屈折率よりも低くなっている。 The hole injection layer forming the organic layer generally has the same refractive index as that of the light emitting layer, but in the fourth embodiment, the hole injection layer (separate low refractive index layer) forming the organic layer 102C. The refractive index of 201 C is lower than the refractive index of the light emitting layer 203 C and the like.
 このように、本実施形態4では、発光層203Cに対して両側に当該発光層203Cよりも屈折率の低い低屈折率層104Bと正孔注入層201Cを配置し、低屈折率層104Bと正孔注入層(別途の低屈折率層)201Cとで発光層203Cを挟持することで、キャビティ効果により発光層203Cからの発光が基板モードから外部モードに変換されるため、例えば光取出し層106Cを省略した場合であっても、高い光取出し効率を確保することができる。 As described above, in the fourth embodiment, the low refractive index layer 104B and the hole injection layer 201C having a refractive index lower than that of the light emitting layer 203C are disposed on both sides with respect to the light emitting layer 203C. By sandwiching the light emitting layer 203C with the hole injection layer (separate low refractive index layer) 201C, light emission from the light emitting layer 203C is converted from the substrate mode to the external mode by the cavity effect, so for example, the light extraction layer 106C Even when omitted, high light extraction efficiency can be ensured.
 なお、上記する実施形態4では、有機層102Cを形成する正孔注入層201Cの屈折率を発光層203C等の屈折率よりも低くする形態について説明したが、発光層203Cに対して両側に当該発光層203Cよりも屈折率の低い低屈折率層が配置されれば、低屈折率層を配置する位置は適宜変更することができる。 In the fourth embodiment described above, the refractive index of the hole injection layer 201C forming the organic layer 102C is lower than the refractive index of the light emitting layer 203C or the like. If a low refractive index layer having a refractive index lower than that of the light emitting layer 203C is disposed, the position where the low refractive index layer is disposed can be appropriately changed.
(実施形態5)
 図5は、本発明に係る有機EL素子及びそれを用いた有機EL照明装置の実施形態5の全体構成を示したものである。図5に示す実施形態5の有機EL照明装置1Dは、上記する実施形態1~4の有機EL照明装置に対して基板側とは反対側から有機EL素子の発光を取出すトップエミッション型を採用した点が相違しており、その他の構成は実施形態1~4とほぼ同様である。したがって、実施形態1~4と同様の構成については、同様の符号を付してその詳細な説明は省略する。
Embodiment 5
FIG. 5 shows the whole structure of Embodiment 5 of the organic EL element based on this invention, and the organic EL illuminating device using the same. The organic EL lighting device 1D of the fifth embodiment shown in FIG. 5 adopts a top emission type in which the light emission of the organic EL element is extracted from the side opposite to the substrate side to the organic EL lighting devices of the first to fourth embodiments described above. The other points are substantially the same as in the first to fourth embodiments. Therefore, the same components as those in the first to fourth embodiments are given the same reference numerals and the detailed description thereof will be omitted.
 図示する有機EL照明装置1Dは、主に、有機EL素子10Dと該有機EL素子10Dが載置固定される基板100Dとを有し、有機EL素子10Dの表面、特に有機EL素子10Dの透明電極101Dの表面に光取出し層106Dが設けられている。また、光取出し層106Dに表面には封止基板107Dが配置されている。 The illustrated organic EL lighting device 1D mainly includes the organic EL element 10D and the substrate 100D on which the organic EL element 10D is mounted and fixed, and the surface of the organic EL element 10D, particularly the transparent electrode of the organic EL element 10D A light extraction layer 106D is provided on the surface of 101D. A sealing substrate 107D is disposed on the surface of the light extraction layer 106D.
 有機EL素子10Dは、主に、透明電極101Dからなる陽極(他方の電極)と、透明電極103Dを含む陰極(一方の電極)110Dと、陽極と陰極との間に配置される有機層102Dとを有し、前記有機EL素子10Dの陰極110Dが前記基板100Dに対向配置されている。 The organic EL element 10D mainly includes an anode (the other electrode) including the transparent electrode 101D, a cathode (the one electrode) 110D including the transparent electrode 103D, and an organic layer 102D disposed between the anode and the cathode. The cathode 110D of the organic EL element 10D is disposed to face the substrate 100D.
 陰極110Dは、有機層120D側から透明電極(電極層)103Dと低屈折率層104Dと反射層105Dとが積層されて形成されており、前記反射層105Dが基板100Dに当接配置されている。 The cathode 110D is formed by laminating a transparent electrode (electrode layer) 103D, a low refractive index layer 104D, and a reflective layer 105D from the organic layer 120D side, and the reflective layer 105D is disposed in contact with the substrate 100D. .
 この有機EL照明装置1Dの作製方法の一例を概説すると、まず、1.1mmの厚さを有する50mm角のガラス製の基板100Dを用意する。次いで、その基板100D上にアルミニウム(Al)を幅が2mm、厚さが150nmとなるように約1nm/sの蒸着速度でマスク蒸着して反射層105Dを形成する。 First, a 50 mm square glass substrate 100D with a thickness of 1.1 mm is prepared. Then, aluminum (Al) is mask-deposited on the substrate 100D at a deposition rate of about 1 nm / s so as to have a width of 2 mm and a thickness of 150 nm to form a reflective layer 105D.
 次いで、反射層105D上にメソポーラスシリカ層を膜厚が50nmとなるように塗布して低屈折率層104Dを形成し、その低屈折率層104D上にスパッタリング法によりITOを成膜して透明電極103Dを形成する。なお、前記低屈折率層104Dの屈折率は、有機層102D(特に発光層203D)の屈折率(例えば1.8)よりも低く、後述するように、好ましくは1.4以下、より好ましくは1.3以下である。 Next, a mesoporous silica layer is applied on the reflective layer 105D to a film thickness of 50 nm to form a low refractive index layer 104D, and an ITO film is formed on the low refractive index layer 104D by sputtering to form a transparent electrode. Form 103D. The refractive index of the low refractive index layer 104D is lower than the refractive index (for example, 1.8) of the organic layer 102D (in particular, the light emitting layer 203D), and as described later, preferably 1.4 or less, more preferably It is 1.3 or less.
 次に、その透明電極103D上に、ジスチリルビフェニル誘導体(出光興産社製「DPVBi」)の末端にカルバゾリル基を有するDSA誘導体(出光興産社製「BCzVBi」)をドープした層を厚さが20nmとなるように形成した青色発光層、α-NPDにルブレン(アクロス社製)をドープした層を厚さが10nmとなるように形成した黄色発光層、ルブレンにピロメテンホウ素錯体をドーピングした層を厚さが10nmとなるように形成した赤色発光層を積層した発光層203Dを形成する(図5に示す電子輸送層204Dと電子注入層205Dは省略)。次いで、1.33×10-4Paの減圧下で、その発光層203D上に、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(株式会社同仁化学研究所製:α-NPD)を厚さが30nmとなるように0.1~0.2nm/sの蒸着速度で蒸着して正孔輸送層202Dを形成する(図5に示す正孔注入層201Dは省略)。 Next, on the transparent electrode 103D, a layer obtained by doping a DSA derivative having a carbazolyl group at the end of a distyrylbiphenyl derivative ("DPVBi" manufactured by Idemitsu Kosan Co., Ltd. "BCzVBi" manufactured by Idemitsu Kosan Co., Ltd.) is 20 nm thick A blue light emitting layer formed as follows, a yellow light emitting layer formed to a thickness of 10 nm of a layer obtained by doping rubrene (manufactured by Acros) with α-NPD, and a layer obtained by doping a pyrromethene boron complex in rubrene A light emitting layer 203D is formed by laminating a red light emitting layer formed to have a thickness of 10 nm (electron transport layer 204D and electron injection layer 205D shown in FIG. 5 are omitted). Then, under a reduced pressure of 1.33 × 10 −4 Pa, 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (manufactured by Dojin Chemical Research Laboratory, Inc.) on the light emitting layer 203D. The hole transport layer 202D is formed by depositing α-NPD at a deposition rate of 0.1 to 0.2 nm / s so as to have a thickness of 30 nm (the hole injection layer 201D shown in FIG. 5 is omitted). ).
 次に、その正孔輸送層202D上に、スパッタリング法によりIZOを幅が2mmの帯状となるようにマスクを用いて成膜して透明電極103Dを形成する。 Next, a transparent electrode 103D is formed on the hole transport layer 202D by sputtering using a mask so that IZO is formed in a strip shape having a width of 2 mm.
 次に、その透明電極103上に、透明樹脂層等のマトリクス(分散媒)に光散乱機能を有する微粒子を分散させた光取出し層106Dを形成する。なお、光取出し層106D内の散乱微粒子としては、例えば、TiO、ZrO、Al、Ta、ZnO、Sb、ZrSiO、BaTiO、SrTiOを主成分とした無機粒子や、アクリル樹脂、スチレン樹脂、ポリエチレンテレフタレート樹脂等の有機粒子等を適用することができる。これらの散乱微粒子のうち、特に無機粒子が好ましく、中でもTiO、ZrO、Al、BaTiO、SrTiO、からなる粒子が好ましい。 Next, on the transparent electrode 103, a light extraction layer 106D in which fine particles having a light scattering function are dispersed in a matrix (dispersion medium) such as a transparent resin layer is formed. The scattering particles in the light extraction layer 106D are mainly composed of, for example, TiO 2 , ZrO 2 , Al 2 O 3 , Ta 2 O 3 , ZnO 2 , Sb 2 O 3 , ZrSiO 4 , BaTiO 3 , SrTiO 3 . Inorganic particles, and organic particles of acrylic resin, styrene resin, polyethylene terephthalate resin, etc. can be applied. Among these scattering particles, inorganic particles are particularly preferable, and particles consisting of TiO 2 , ZrO 2 , Al 2 O 3 , BaTiO 3 , SrTiO 3 are particularly preferable.
 次に、上記有機EL素子10Dや光取出し層106Dを形成した基板100Dを大気に曝すことなく、高純度の窒素ガスを循環させて高露点を保持した封止室に移動させる。また、この封止室に封止基板107Dを導入し、封止基板107Dのエッジ部分にシールディスペンサ装置を用いてシール用の光硬化樹脂を描画し、封止基板107Dの光取出し層106Dと貼り合わせられる側面に、エポキシ樹脂製の封止材料(例えば、波長587.6nmにおける屈折率が約1.5)を塗布する。 Next, without exposing the substrate 100D on which the organic EL element 10D and the light extraction layer 106D are formed, high purity nitrogen gas is circulated to move to a sealing chamber holding a high dew point without exposing to the air. In addition, a sealing substrate 107D is introduced into the sealing chamber, and a sealing dispenser device is used to draw a photocurable resin for sealing on an edge portion of the sealing substrate 107D, and the sealing resin is attached to the light extraction layer 106D of the sealing substrate 107D. On the side to be joined, a sealing material made of epoxy resin (for example, a refractive index of about 1.5 at a wavelength of 587.6 nm) is applied.
 そして、前記封止室内にある真空貼り合わせ装置に基板100Dと封止基板107Dを導入し、基板100D上の光取出し層106Dに封止基板107Dを貼り合せて圧着させ、有機EL素子10D全体にUV光が照射されないように遮光板を配置した状態で、封止基板107D側からUV光を照射して光硬化樹脂を硬化させる。 Then, the substrate 100D and the sealing substrate 107D are introduced into the vacuum bonding apparatus in the sealing chamber, and the sealing substrate 107D is bonded and pressure-bonded to the light extraction layer 106D on the substrate 100D, and the entire organic EL element 10D is obtained. In a state where the light shielding plate is disposed so as not to be irradiated with UV light, the light curing resin is cured by irradiating the UV light from the sealing substrate 107D side.
 このように作製したトップエミッション型の有機EL照明装置1Dにおいても、上記する実施形態1~4と同様、反射層105Dと発光層203Dとの間に、発光層203Dよりも屈折率の低い低屈折率層104D、特に屈折率が1.4以下である低屈折率層104Dを設けることによって、有機EL素子10Dの光取出し効率を維持しながら低屈折率層104Dの膜厚を低減でき、反射層105Dと発光層203Dとの間の電圧の上昇を抑制することができ、且つ製造コストの高騰を抑制することができる。 Also in the top emission type organic EL lighting device 1D manufactured in this manner, as in the first to fourth embodiments, the low refractive index between the reflective layer 105D and the light emitting layer 203D is lower than that of the light emitting layer 203D. The film thickness of the low refractive index layer 104D can be reduced while maintaining the light extraction efficiency of the organic EL element 10D by providing the low refractive index layer 104D having the refractive index layer 104D, in particular, the refractive index of 1.4 or less. A rise in voltage between the 105D and the light emitting layer 203D can be suppressed, and a rise in manufacturing cost can be suppressed.
 なお、本実施形態5では、主に陰極側に透明電極103D及び反射層105Dを用いる形態について説明したが、陰極側に反射電極を用いる場合(反射層が有機層に電子を注入する電極として用いられる場合)(実施形態3参照)においても同様の形態を有することができる。 In the fifth embodiment, the mode in which the transparent electrode 103D and the reflective layer 105D are mainly used on the cathode side is described, but in the case where a reflective electrode is used on the cathode side (the reflective layer is used as an electrode for injecting electrons into the organic layer). (In Embodiment 3) (see Embodiment 3) can have the same form.
{有機EL照明装置の光取出し効率を測定した解析とその結果}
 本発明者等は、上記した実施形態1~5のそれぞれに対応する解析用モデル(実施例1~5)を作成し、各解析用モデルに対して低屈折率層の屈折率や膜厚を変化させた際のエネルギーモード分布解析を実施した。
{Analysis that measured the light extraction efficiency of the organic EL lighting device and the result}
The inventors of the present invention create analysis models (Examples 1 to 5) corresponding to the above-described first to fifth embodiments, and compare the refractive index and the film thickness of the low refractive index layer with respect to each of the analysis models. The energy mode distribution analysis at the time of changing was performed.
 なお、実施例1~5では、上記した実施形態1~5に対して電子注入層と電子輸送層を省略し、低屈折率層の厚さを調整することで発光位置(反射層もしくは反射電極に対する発光層の位置)を調整した。 In Examples 1 to 5, the electron injection layer and the electron transport layer are omitted from the above-described Embodiments 1 to 5, and the light emitting position (reflection layer or reflection electrode) is adjusted by adjusting the thickness of the low refractive index layer. Position of the light emitting layer with respect to
(実施例1)
 実施例1は、上記した実施形態1に対応する解析用モデルである。また、図6は、実施例1の解析用モデルによる有機EL素子の波数ベクトルと発光モードの関係を示す図であり、図7は、低屈折率層の屈折率とエネルギーモード分布の関係を示す図であり、図8は、低屈折率層の膜厚とエネルギーモード分布の関係を示す図である。
Example 1
The first embodiment is an analysis model corresponding to the first embodiment described above. Moreover, FIG. 6 is a figure which shows the wave number vector of the organic EL element by the model for analysis of Example 1, and the relationship of the light emission mode, and FIG. 7 shows the relationship between the refractive index of a low refractive index layer, and energy mode distribution. FIG. 8 is a view showing the relationship between the film thickness of the low refractive index layer and the energy mode distribution.
 上記したように、従来の有機EL照明装置(図10参照)では、表面プラズモンとのカップリング強度に相当するエバネッセントモードの大きなピークが観測された(図11参照)。また、そのエバネッセントモードにより、発光位置が小さくなるに従って非伝搬光(有機EL素子から外部に取り出すことのできない光)の割合が大きくなり、伝搬光(有機EL素子から外部に取り出すことのできる光)が減少し、発行位置が200nm程度で伝搬光の割合(光取出し効率)が95%程度を確保し得ることが確認された。 As described above, in the conventional organic EL lighting device (see FIG. 10), a large peak of the evanescent mode corresponding to the coupling intensity with the surface plasmon was observed (see FIG. 11). Further, the proportion of non-propagating light (light which can not be extracted from the organic EL element) increases as the light emitting position becomes smaller due to the evanescent mode, and propagating light (light which can be extracted to the outside from the organic EL element) It has been confirmed that when the emission position is about 200 nm, the proportion of the propagating light (light extraction efficiency) can be secured about 95%.
 一方で、実施例1の解析用モデルでは、反射層と発光層との間に当該発光層よりも屈折率の低い低屈折率層、特に屈折率が1.4以下である低屈折率層を設けたことにより、図6(有機層の屈折率が1.8、低屈折率層の屈折率が1.3、低屈折率層の膜厚が65nmの場合)に示すように、エバネッセントモードの大きなピークがほとんど観測されなかった。 On the other hand, in the analysis model of Example 1, a low refractive index layer having a refractive index lower than that of the light emitting layer, particularly a low refractive index layer having a refractive index of 1.4 or less, is provided between the reflective layer and the light emitting layer. As shown in FIG. 6 (when the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the film thickness of the low refractive index layer is 65 nm), Almost no large peak was observed.
 具体的には、図7(有機層の屈折率が1.8、低屈折率層の膜厚が65nmの場合)に示すように、低屈折率層の屈折率が1.4以下である場合に、エバネッセントモードによる非伝搬光の割合が5%以下であり、伝搬光の割合(光取出し効率)が95%以上(従来の有機EL照明装置で確保し得る光取出し効率)であることが確認された。すなわち、光取出し層を使用した場合には、実施例1の解析用モデルでは、従来の有機EL照明装置と比較して約1.7倍の光取出し効率を達成し得ることが実証された。 Specifically, as shown in FIG. 7 (when the refractive index of the organic layer is 1.8 and the film thickness of the low refractive index layer is 65 nm), the refractive index of the low refractive index layer is 1.4 or less In addition, it is confirmed that the proportion of non-propagating light in the evanescent mode is 5% or less, and the proportion of propagating light (light extraction efficiency) is 95% or more (light extraction efficiency that can be ensured by the conventional organic EL lighting device) It was done. That is, when the light extraction layer was used, it was demonstrated that the analysis model of Example 1 can achieve about 1.7 times the light extraction efficiency as compared with the conventional organic EL lighting device.
 なお、低屈折率層の屈折率が1.5である場合に光取出し効率が90%程度であり、低屈折率層の屈折率が有機層と同等の1.8である場合に光取出し効率が70%程度であることが確認された。 The light extraction efficiency is about 90% when the refractive index of the low refractive index layer is 1.5, and the light extraction efficiency when the refractive index of the low refractive index layer is 1.8, which is equivalent to that of the organic layer. Was confirmed to be about 70%.
 また、実施例1の解析用モデルでは、図8(有機層の屈折率が1.8、低屈折率層の屈折率が1.3の場合)に示すように、低屈折率層の膜厚が薄い領域であっても、エバネッセントモードによる非伝搬光の割合が小さく、伝搬光の割合(光取出し効率)が高いことが確認された。具体的には、低屈折率層の膜厚が30nm以上である場合に、伝搬光の割合(光取出し効率)が95%以上であることが確認された。 Further, in the analysis model of Example 1, as shown in FIG. 8 (when the refractive index of the organic layer is 1.8 and the refractive index of the low refractive index layer is 1.3), the film thickness of the low refractive index layer is Even in the thin region, it was confirmed that the proportion of non-propagating light in the evanescent mode is small, and the proportion of propagating light (light extraction efficiency) is high. Specifically, when the film thickness of the low refractive index layer was 30 nm or more, it was confirmed that the proportion of the propagating light (light extraction efficiency) was 95% or more.
 また、低屈折率層の膜厚が40nmから100nmまでの範囲内である場合には、外部モードで取り出すことのできる光の割合が約40%以上であることが確認された。すなわち、従来の有機EL照明装置(発行位置が50nmの場合)では、光取出し層を使用しない場合に外部モードで取り出すことのできる光の割合が約20%程度である一方で、実施例1の解析用モデルでは、低屈折率層の膜厚が40nmから100nmまでの範囲内において外部モードで取り出すことのできる光の割合が約40%以上となることが確認された。よって、光取出し層を使用した場合に、実施例1の解析用モデルは、従来の有機EL照明装置と比較して約2倍の光取出し効率および電力効率(lm/W)を達成し得ることが実証された。これにより、例えばディスプレイ等の光取出し層を使用しないデバイス構造を採用する場合であっても、低屈折率層の膜厚が40nmから100nmまでの範囲内である場合には、従来の有機EL照明装置よりも光取出し効率を効果的に高めることができることが実証された。 In addition, when the film thickness of the low refractive index layer was in the range of 40 nm to 100 nm, it was confirmed that the proportion of light that can be extracted in the external mode is about 40% or more. That is, in the conventional organic EL lighting device (when the emission position is 50 nm), the proportion of light that can be extracted in the external mode when the light extraction layer is not used is about 20%, while In the analysis model, it was confirmed that the ratio of light that can be extracted in the external mode is about 40% or more when the film thickness of the low refractive index layer is in the range of 40 nm to 100 nm. Therefore, when the light extraction layer is used, the analysis model of Example 1 can achieve about twice the light extraction efficiency and the power efficiency (lm / W) as compared with the conventional organic EL lighting device. Was demonstrated. Thus, for example, even in the case of adopting a device structure that does not use a light extraction layer such as a display, when the film thickness of the low refractive index layer is in the range of 40 nm to 100 nm, conventional organic EL illumination It has been demonstrated that the light extraction efficiency can be effectively enhanced over the device.
(実施例2)
 実施例2は、上記した実施形態2に対応する解析用モデルである。
(Example 2)
The second embodiment is an analysis model corresponding to the second embodiment described above.
 実施例2の解析用モデルでは、実施例1の解析用モデルと同様、低屈折率層の屈折率が1.4以下である場合に、従来の有機EL照明装置と比較して、エバネッセントモードによる非伝搬光の割合が低減され、伝搬光の割合(光取出し効率)が高められることが確認された。また、低屈折率層の膜厚が薄い領域であっても、エバネッセントモードによる非伝搬光の割合が小さく、伝搬光の割合(光取出し効率)が高いことが確認された。 In the analysis model of the second embodiment, as in the analysis model of the first embodiment, when the refractive index of the low refractive index layer is 1.4 or less, the evanescent mode is used as compared with the conventional organic EL lighting device. It has been confirmed that the proportion of non-propagating light is reduced and the proportion of propagating light (light extraction efficiency) is enhanced. Moreover, even in the region where the film thickness of the low refractive index layer is thin, it has been confirmed that the proportion of non-propagating light in the evanescent mode is small, and the proportion of propagating light (light extraction efficiency) is high.
 なお、本発明者等は、光取出し層を基板の有機EL素子側及び有機EL素子側とは反対側の双方に設けた場合にも、同様の効果が得られることを解析や実験により確認している。 The present inventors confirmed by analysis and experiments that the same effect can be obtained even when the light extraction layer is provided on both the organic EL element side of the substrate and on the side opposite to the organic EL element side. ing.
(実施例3)
 実施例3は、上記した実施形態3に対応する解析用モデルである。
(Example 3)
The third embodiment is an analysis model corresponding to the third embodiment described above.
 本発明者等は、エネルギーモード分布解析を実施するに当たり、10000時間の通電試験を行い、導電性物質を添加した低屈折率層のシート抵抗値を変化させた際の有機EL照明装置の動作を確認した。 In conducting energy mode distribution analysis, the inventors of the present invention performed an electric current test for 10000 hours and operated the organic EL lighting device when changing the sheet resistance value of the low refractive index layer to which the conductive substance was added. confirmed.
 その結果、平均シート抵抗値が1000Ω/□以下の領域で、10000時間の通電試験において電圧増加が10%程度に抑制され、有機EL照明装置が安定して動作することが確認された。なお、シート抵抗値が1000Ω/□を超えた領域では、通電試験による電圧増加が20%以上となり、有機EL照明装置の動作が不安定となることが確認された。 As a result, it was confirmed that the voltage increase was suppressed to about 10% in the conduction test for 10000 hours in the region where the average sheet resistance value is 1000 Ω / □ or less, and the organic EL lighting device stably operates. In addition, in the area | region where sheet resistance value exceeded 1000 ohms / square, the voltage increase by a conduction test becomes 20% or more, and it was confirmed that operation | movement of an organic electroluminescent illuminating device becomes unstable.
 そして、本発明者等は、平均シート抵抗値が1000Ω/□である場合の実施例3の解析用モデルに対して低屈折率層の屈折率や膜厚を変化させた際のエネルギーモード分布解析を実施した。 Then, the present inventors analyze the energy mode distribution when changing the refractive index and the film thickness of the low refractive index layer with respect to the analysis model of Example 3 when the average sheet resistance value is 1000 Ω / □. Carried out.
 その結果、実施例3の解析用モデルでは、実施例1の解析用モデルと同様、低屈折率層の屈折率が1.4以下である場合に、従来の有機EL照明装置と比較して、エバネッセントモードによる非伝搬光の割合が低減され、伝搬光の割合(光取出し効率)が高められることが確認された。また、低屈折率層の膜厚が薄い領域であっても、エバネッセントモードによる非伝搬光の割合が小さく、伝搬光の割合(光取出し効率)が高いことが確認された。 As a result, in the analysis model of the third embodiment, as in the analysis model of the first embodiment, when the refractive index of the low refractive index layer is 1.4 or less, as compared with the conventional organic EL lighting device, It has been confirmed that the proportion of non-propagating light due to the evanescent mode is reduced and the proportion of propagating light (light extraction efficiency) is enhanced. Moreover, even in the region where the film thickness of the low refractive index layer is thin, it has been confirmed that the proportion of non-propagating light in the evanescent mode is small, and the proportion of propagating light (light extraction efficiency) is high.
 また、光取出し層を使用した場合には、実施例3の解析用モデル(有機層の屈折率が1.8、低屈折率層の屈折率が1.3、低屈折率層の膜厚が65nmの場合)では、実施例1の解析用モデルと同様、従来の有機EL照明装置と比較して約1.7倍の光取出し効率を達成し得ることが確認された。 When the light extraction layer is used, the analysis model of Example 3 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is In the case of 65 nm), it was confirmed that about 1.7 times the light extraction efficiency could be achieved as compared with the conventional organic EL lighting device as in the analysis model of Example 1.
 また、光取出し層を使用しない場合、実施例3の解析用モデル(有機層の屈折率が1.8、低屈折率層の屈折率が1.3、低屈折率層の膜厚が65nmの場合)では、実施例1の解析用モデルと同様、従来の有機EL照明装置と比較して約2倍の光取出し効率および電力効率(lm/W)を達成し得ることが実証された。 When the light extraction layer is not used, the analysis model of Example 3 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is 65 nm) In the case (1), similar to the analysis model of Example 1, it was demonstrated that about twice the light extraction efficiency and power efficiency (lm / W) can be achieved as compared with the conventional organic EL lighting device.
 なお、本発明者等は、光取出し層を基板の有機EL素子側、すなわち基板と透明電極の間に配置した場合にも同様の効果が得られることを解析や実験により確認している。 The present inventors have confirmed by analysis and experiments that the same effect can be obtained when the light extraction layer is disposed on the organic EL element side of the substrate, that is, between the substrate and the transparent electrode.
(実施例4)
 実施例4は、上記した実施形態4に対応する解析用モデルである。また、図9は、実施例4の解析用モデルによる正孔注入層(別途の低屈折率層)の屈折率とエネルギーモード分布の関係を示す図である。
(Example 4)
The fourth embodiment is an analysis model corresponding to the fourth embodiment described above. FIG. 9 is a view showing the relationship between the refractive index of the hole injection layer (separate low refractive index layer) and the energy mode distribution according to the analysis model of the fourth embodiment.
 実施例4の解析用モデルでは、図9(有機層の屈折率が1.8、低屈折率層の屈折率が1.3、低屈折率層の膜厚が65nmの場合)に示すように、光取出し層を使用しない場合に外部モードで取り出すことのできる光の割合が、正孔注入層の屈折率が1.6である場合に40%程度であり、正孔注入層の屈折率が1.3である場合に50%程度であることが確認された。すなわち、実施例4の解析用モデルは、従来の有機EL照明装置と比較して約2.5倍の光取出し効率および電力効率(lm/W)を達成し得ることが実証された。 As shown in FIG. 9 (where the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is 65 nm) in the analysis model of Example 4 The ratio of light that can be extracted in the external mode when the light extraction layer is not used is about 40% when the refractive index of the hole injection layer is 1.6, and the refractive index of the hole injection layer is In the case of 1.3, it was confirmed to be about 50%. That is, it was demonstrated that the analysis model of Example 4 can achieve about 2.5 times the light extraction efficiency and the power efficiency (lm / W) as compared with the conventional organic EL lighting device.
 また、光取出し層を使用した場合には、実施例4の解析用モデルは、図9に示すように、従来の有機EL照明装置と比較して約1.7倍の光取出し効率を達成し得ることが実証された。 When the light extraction layer is used, the analysis model of Example 4 achieves about 1.7 times the light extraction efficiency as compared with the conventional organic EL lighting device as shown in FIG. It has been demonstrated to gain.
(実施例5)
 実施例5は、上記した実施形態5に対応する解析用モデルである。
(Example 5)
A fifth example is an analysis model corresponding to the fifth embodiment described above.
 実施例5の解析用モデルでは、実施例1の解析用モデルと同様、低屈折率層の屈折率が1.4以下である場合に、従来の有機EL照明装置と比較して、エバネッセントモードによる非伝搬光の割合が低減され、伝搬光の割合(光取出し効率)が高められることが確認された。また、低屈折率層の膜厚が薄い領域であっても、エバネッセントモードによる非伝搬光の割合が小さく、伝搬光の割合(光取出し効率)が高いことが確認された。 In the analysis model of the fifth embodiment, as in the analysis model of the first embodiment, when the refractive index of the low refractive index layer is 1.4 or less, the evanescent mode is used as compared with the conventional organic EL lighting device. It has been confirmed that the proportion of non-propagating light is reduced and the proportion of propagating light (light extraction efficiency) is enhanced. Moreover, even in the region where the film thickness of the low refractive index layer is thin, it has been confirmed that the proportion of non-propagating light in the evanescent mode is small, and the proportion of propagating light (light extraction efficiency) is high.
 また、光取出し層を使用した場合には、実施例5の解析用モデル(有機層の屈折率が1.8、低屈折率層の屈折率が1.3、低屈折率層の膜厚が65nmの場合)では、従来の有機EL照明装置と比較して約1.7倍の光取出し効率を達成し得ることが確認された。 When the light extraction layer is used, the analysis model of Example 5 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is In the case of 65 nm), it was confirmed that about 1.7 times the light extraction efficiency can be achieved as compared with the conventional organic EL lighting device.
 また、光取出し層を使用しない場合、実施例5の解析用モデル(有機層の屈折率が1.8、低屈折率層の屈折率が1.3、低屈折率層の膜厚が65nmの場合)では、外部モードで取り出すことのできる光の割合が約40%以上となり、実施例1の解析用モデルと同様、従来の有機EL照明装置と比較して約2倍の光取出し効率および電力効率(lm/W)を達成し得ることが実証された。 When the light extraction layer is not used, the analysis model of Example 5 (the refractive index of the organic layer is 1.8, the refractive index of the low refractive index layer is 1.3, and the thickness of the low refractive index layer is 65 nm) In the case of (1), the proportion of light that can be extracted in the external mode is about 40% or more, and the light extraction efficiency and electric power are about twice that of the conventional organic EL lighting device as in the analysis model of Example 1. It has been demonstrated that an efficiency (lm / W) can be achieved.
 なお、上記した実施形態1~5において、構成要素に関する数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上であっても以下であってもよい。また、上記した実施形態1~5において、構成要素等の形状や位置関係等に言及する場合、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。 In the first to fifth embodiments described above, when reference is made to the number and the like (including the number, numerical value, amount, range, etc.) relating to the constituent elements, they are clearly specified and clearly clearly limited to a specific number in principle. It is not limited to the specific number except for the case etc., and may be more or less than the specific number. In the first to fifth embodiments described above, when referring to the shapes, positional relationships, etc. of the components etc., the shapes thereof are substantially the same except when particularly clearly shown and when it is considered that the principle is not clearly apparent in principle. It is assumed that it includes things that are similar or similar to etc.
 なお、本発明は上記した実施形態1~5に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態1~5は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described first to fifth embodiments, but includes various modifications. For example, the above-described first to fifth embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
1   有機EL照明装置
10  有機EL素子
100 基板
101 透明電極(陽極)(他方の電極)
102 有機層
103 透明電極(電極層)
104 低屈折率層
105 反射層
105B 反射電極(反射電極層)
106 光取出し層
107D 封止基板
110 陰極(一方の電極)
120 平滑化層
201 正孔注入層
201C 正孔注入層(別途の低屈折率層)
202 正孔輸送層
203 発光層
204 電子輸送層
205 電子注入層
1 Organic EL lighting device 10 Organic EL element 100 Substrate 101 Transparent electrode (anode) (other electrode)
102 Organic layer 103 Transparent electrode (electrode layer)
104 Low refractive index layer 105 reflective layer 105 B reflective electrode (reflective electrode layer)
106 Light Extraction Layer 107D Sealing Substrate 110 Cathode (One Electrode)
120 Smoothing layer 201 Hole injection layer 201C Hole injection layer (separate low refractive index layer)
202 Hole transport layer 203 Light emitting layer 204 Electron transport layer 205 Electron injection layer

Claims (15)

  1.  一対の電極と、該電極の間に配置され且つ発光層を含む有機層とを有する有機EL素子であって、
     前記電極の一方は、前記有機層側から電極層と前記発光層よりも屈折率の低い低屈折率層と反射層とが積層されて形成され、前記低屈折率層の屈折率は1.4以下であることを特徴とする有機EL素子。
    An organic EL device comprising: a pair of electrodes; and an organic layer disposed between the electrodes and including a light emitting layer,
    One of the electrodes is formed by laminating the electrode layer from the organic layer side, a low refractive index layer having a refractive index lower than that of the light emitting layer, and a reflective layer, and the low refractive index layer has a refractive index of 1.4. The organic electroluminescent element characterized by being the following.
  2.  前記有機EL素子は、前記発光層よりも屈折率の低い別途の低屈折率層を有し、前記発光層は、前記低屈折率層と前記別途の低屈折率層との間に配置されていることを特徴とする、請求項1に記載の有機EL素子。 The organic EL element has an additional low refractive index layer having a refractive index lower than that of the light emitting layer, and the light emitting layer is disposed between the low refractive index layer and the additional low refractive index layer. The organic EL device according to claim 1, characterized in that
  3.  前記低屈折率層の膜厚は、30nmから100nmまでの範囲内であることを特徴とする、請求項1に記載の有機EL素子。 The organic EL device according to claim 1, wherein the film thickness of the low refractive index layer is in the range of 30 nm to 100 nm.
  4.  一対の電極と、該電極の間に配置され且つ発光層を含む有機層とを有する有機EL素子であって、
     前記電極の一方は、前記有機層側から前記発光層よりも屈折率の低く且つ導電性が付与された低屈折率層と反射電極層とが積層されて形成され、前記低屈折率層の屈折率は1.4以下であることを特徴とする有機EL素子。
    An organic EL device comprising: a pair of electrodes; and an organic layer disposed between the electrodes and including a light emitting layer,
    One of the electrodes is formed by laminating a low refractive index layer having a refractive index lower than that of the light emitting layer and to which conductivity is imparted from the organic layer side and a reflective electrode layer, and refraction of the low refractive index layer The rate is 1.4 or less, The organic EL element characterized by the above-mentioned.
  5.  前記低屈折率層の平均シート抵抗値は1000Ω/□以下であることを特徴とする、請求項4に記載の有機EL素子。 The organic EL device according to claim 4, wherein an average sheet resistance value of the low refractive index layer is 1000 Ω / □ or less.
  6.  前記有機EL素子は、前記発光層よりも屈折率の低い別途の低屈折率層を有し、前記発光層は、前記低屈折率層と前記別途の低屈折率層との間に配置されていることを特徴とする、請求項4に記載の有機EL素子。 The organic EL element has an additional low refractive index layer having a refractive index lower than that of the light emitting layer, and the light emitting layer is disposed between the low refractive index layer and the additional low refractive index layer. The organic EL device according to claim 4, characterized in that
  7.  前記低屈折率層の膜厚は、30nmから100nmまでの範囲内であることを特徴とする、請求項4に記載の有機EL素子。 The organic EL device according to claim 4, wherein the film thickness of the low refractive index layer is in a range of 30 nm to 100 nm.
  8.  請求項1に記載の有機EL素子と、該有機EL素子が載置固定される基板とを有する有機EL照明装置であって、
     前記基板に前記有機EL素子の他方の電極が対向配置されていることを特徴とする有機EL照明装置。
    An organic EL lighting device comprising the organic EL element according to claim 1 and a substrate on which the organic EL element is mounted and fixed,
    The other electrode of the said organic EL element is opposingly arranged by the said board | substrate, The organic electroluminescent illuminating device characterized by the above-mentioned.
  9.  前記基板の前記有機EL素子側及び/又は前記有機EL素子側とは反対側に光取出し層が設けられていることを特徴とする、請求項8に記載の有機EL照明装置。 The organic EL lighting device according to claim 8, wherein a light extraction layer is provided on the side opposite to the organic EL element side of the substrate and / or the organic EL element side of the substrate.
  10.  請求項1に記載の有機EL素子と、該有機EL素子が載置固定される基板とを有する有機EL照明装置であって、
     前記基板に前記有機EL素子の一方の電極が対向配置されていることを特徴とする有機EL照明装置。
    An organic EL lighting device comprising the organic EL element according to claim 1 and a substrate on which the organic EL element is mounted and fixed,
    An organic EL lighting device, wherein one electrode of the organic EL element is disposed opposite to the substrate.
  11.  前記有機EL素子の他方の電極の表面に光取出し層が設けられていることを特徴とする、請求項10に記載の有機EL照明装置。 The organic EL lighting device according to claim 10, wherein a light extraction layer is provided on the surface of the other electrode of the organic EL element.
  12.  請求項4に記載の有機EL素子と、該有機EL素子が載置固定される基板とを有する有機EL照明装置であって、
     前記基板に前記有機EL素子の他方の電極が対向配置されていることを特徴とする有機EL照明装置。
    An organic EL lighting device comprising the organic EL element according to claim 4 and a substrate on which the organic EL element is mounted and fixed,
    The other electrode of the said organic EL element is opposingly arranged by the said board | substrate, The organic electroluminescent illuminating device characterized by the above-mentioned.
  13.  前記基板の前記有機EL素子側及び/又は前記有機EL素子側とは反対側に光取出し層が設けられていることを特徴とする、請求項12に記載の有機EL照明装置。 The organic EL lighting device according to claim 12, wherein a light extraction layer is provided on the side of the substrate opposite to the organic EL element side and / or the organic EL element side.
  14.  請求項4に記載の有機EL素子と、該有機EL素子が載置固定される基板とを有する有機EL照明装置であって、
     前記基板に前記有機EL素子の一方の電極が対向配置されていることを特徴とする有機EL照明装置。
    An organic EL lighting device comprising the organic EL element according to claim 4 and a substrate on which the organic EL element is mounted and fixed,
    An organic EL lighting device, wherein one electrode of the organic EL element is disposed opposite to the substrate.
  15.  前記有機EL素子の他方の電極の表面に光取出し層が設けられていることを特徴とする、請求項14に記載の有機EL照明装置。 The light extraction layer is provided in the surface of the other electrode of the said organic EL element, The organic electroluminescent illuminating device of Claim 14 characterized by the above-mentioned.
PCT/JP2013/069208 2013-07-12 2013-07-12 Organic el element and organic el lighting apparatus using same WO2015004811A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015526126A JPWO2015004811A1 (en) 2013-07-12 2013-07-12 ORGANIC EL ELEMENT AND ORGANIC EL LIGHTING DEVICE USING SAME
PCT/JP2013/069208 WO2015004811A1 (en) 2013-07-12 2013-07-12 Organic el element and organic el lighting apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069208 WO2015004811A1 (en) 2013-07-12 2013-07-12 Organic el element and organic el lighting apparatus using same

Publications (1)

Publication Number Publication Date
WO2015004811A1 true WO2015004811A1 (en) 2015-01-15

Family

ID=52279529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069208 WO2015004811A1 (en) 2013-07-12 2013-07-12 Organic el element and organic el lighting apparatus using same

Country Status (2)

Country Link
JP (1) JPWO2015004811A1 (en)
WO (1) WO2015004811A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143529A (en) * 2015-01-30 2016-08-08 パイオニア株式会社 Light emission device
TWI613849B (en) * 2016-12-16 2018-02-01 財團法人工業技術研究院 Light emitting device
KR20190017043A (en) * 2016-06-16 2019-02-19 우한 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Organic light emitting diode device and display device
JP7285219B2 (en) 2017-05-05 2023-06-01 スリーエム イノベイティブ プロパティズ カンパニー Display device containing polymer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052950A (en) * 2006-08-23 2008-03-06 Sony Corp Display device
JP2011113973A (en) * 2009-11-24 2011-06-09 Samsung Mobile Display Co Ltd Organic light-emitting element, lighting device including the same, and organic light-emitting display device equipped with lighting device
JP2013001237A (en) * 2011-06-16 2013-01-07 Mitsuba Corp Wiper control device and wiper control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052950A (en) * 2006-08-23 2008-03-06 Sony Corp Display device
JP2011113973A (en) * 2009-11-24 2011-06-09 Samsung Mobile Display Co Ltd Organic light-emitting element, lighting device including the same, and organic light-emitting display device equipped with lighting device
JP2013001237A (en) * 2011-06-16 2013-01-07 Mitsuba Corp Wiper control device and wiper control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143529A (en) * 2015-01-30 2016-08-08 パイオニア株式会社 Light emission device
KR20190017043A (en) * 2016-06-16 2019-02-19 우한 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Organic light emitting diode device and display device
JP2019518319A (en) * 2016-06-16 2019-06-27 武漢華星光電技術有限公司 Organic light emitting diode device and display device
KR102115124B1 (en) * 2016-06-16 2020-05-25 우한 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Organic light emitting diode device and display device
TWI613849B (en) * 2016-12-16 2018-02-01 財團法人工業技術研究院 Light emitting device
JP7285219B2 (en) 2017-05-05 2023-06-01 スリーエム イノベイティブ プロパティズ カンパニー Display device containing polymer film

Also Published As

Publication number Publication date
JPWO2015004811A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
KR101471501B1 (en) Surface light emitting device
JP4703108B2 (en) Light emitting element substrate and light emitting element using the same
JP4195352B2 (en) Light emitting element substrate and light emitting element using the same
JP5390850B2 (en) Organic electroluminescence device
US20160329515A1 (en) Organic light-emitting component and method for producing an organic light-emitting component
JP2007505465A (en) High-efficiency organic light-emitting device using a substrate having nano-sized hemispherical recesses and a method for manufacturing the same
JP2006030548A (en) Optical substrate, light emitting element, display apparatus, and their manufacturing method
US9461276B2 (en) Organic electroluminescence device and method of fabricating the same
JP5297399B2 (en) Light emitting device
JP5334888B2 (en) Light emitting device
WO2015004811A1 (en) Organic el element and organic el lighting apparatus using same
JP5887540B2 (en) Organic electroluminescence device
JP2011204645A (en) Light-emitting device
US8872167B2 (en) Organic light-emitting device
WO2013146350A1 (en) Light emitting apparatus and method for manufacturing light emitting apparatus
JP5297400B2 (en) Light emitting device
US20140217386A1 (en) Light emission device
JP2011216353A (en) Light-emitting device
JP4726411B2 (en) Light emitting element substrate and light emitting element using the same
JP2010033973A (en) Organic electroluminescent element
JP2006066553A (en) Organic el device and its manufacturing method
WO2015029203A1 (en) Organic light-emitting device
JP4103531B2 (en) Organic electroluminescence device
JP5452266B2 (en) Light emitting device
WO2014034308A1 (en) Organic light-emitting element, and organic light-emitting light source device using organic light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889143

Country of ref document: EP

Kind code of ref document: A1