WO2015004752A1 - Production method for molding material, molding die used in said production method, and production method for rotating resin body - Google Patents

Production method for molding material, molding die used in said production method, and production method for rotating resin body Download PDF

Info

Publication number
WO2015004752A1
WO2015004752A1 PCT/JP2013/068877 JP2013068877W WO2015004752A1 WO 2015004752 A1 WO2015004752 A1 WO 2015004752A1 JP 2013068877 W JP2013068877 W JP 2013068877W WO 2015004752 A1 WO2015004752 A1 WO 2015004752A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
resin
molding material
short fibers
mold
Prior art date
Application number
PCT/JP2013/068877
Other languages
French (fr)
Japanese (ja)
Inventor
昌也 小澤
匡生 杉山
武司 深尾
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to US14/901,756 priority Critical patent/US10265886B2/en
Priority to JP2013548510A priority patent/JP5621941B1/en
Priority to CN201380077901.4A priority patent/CN105339146B/en
Priority to PCT/JP2013/068877 priority patent/WO2015004752A1/en
Publication of WO2015004752A1 publication Critical patent/WO2015004752A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • B29C2043/3628Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices moving inside a barrel or container like sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0087Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2015/00Gear wheels or similar articles with grooves or projections, e.g. control knobs
    • B29L2015/003Gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • F16H2055/065Moulded gears, e.g. inserts therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels

Definitions

  • the present invention relates to a method for manufacturing a molding material, a method for manufacturing a resin rotating body using the molding material manufactured by the above-described manufacturing method, and a molding die used for the manufacturing method.
  • JP 2009-154338 A Patent Document 1
  • JP 2009-250364 A Patent Document 2
  • JP 2011-152729 A Patent Document 3
  • a method for manufacturing a resin rotating body in which a reinforcing fiber base material (molding material) is formed on the outer peripheral portion of a bush using a slurry in which is mixed.
  • the slurry is placed in a cylindrical mold containing a metal bush, and the reinforcing fibers are collected around the bush by dehydrating the slurry so that the reinforcing fibers do not leak out.
  • a slurry diffusing member is disposed in the center of the cylindrical mold.
  • the slurry diffusing member includes a conical slurry diffusing portion at the upper end. Therefore, it can be expected that the slurry can be put into the cylindrical mold without any large variation by throwing the slurry into the molding die from above toward the slurry diffusion portion.
  • An object of the present invention is to provide a method for producing a molding material that can be continuously produced without damage to the mold.
  • Another object of the present invention is a method for producing a molding material capable of performing continuous production with little variation in the amount of individual short fibers and powdered resin, no damage to the mold, and molding used in the production method.
  • the purpose is to provide molds.
  • the manufacturing method of the molding material of the present invention performs the following adjustment process, charging process, cleaning process, discharging process and compression process.
  • a slurry is prepared in which short fibers and powdered resin are dispersed in a dispersion medium.
  • the cylindrical mold having an opening that opens upward, and the area of the cross section that is arranged in the center of the cylindrical mold and extends upward and is orthogonal to the upward direction is upward.
  • the slurry diffusing member having a slurry diffusing portion having a shape that becomes smaller as it goes toward, the slurry is thrown from above toward the slurry diffusing portion.
  • the same dispersion medium or water as the dispersion medium is poured from above toward the slurry diffusion part to drop the short fibers and the powdered resin adhering to the slurry diffusion part.
  • the slurry or short fibers remaining on the slurry diffusion portion can be surely dropped from the slurry diffusion portion, so that the occurrence of so-called material biting can be prevented. Therefore, it is possible to provide a manufacturing method of a molding material that can be continuously produced without damage to the mold.
  • the amount of the dispersion medium or water to wash away the short fibers and the powdered resin is added at a predetermined time interval so that the dispersion medium or water does not overflow from the mold, and the number of injections of the dispersion medium or water is 2
  • the predetermined time interval when injecting the dispersion medium or water twice or more is more than the upper surface of the aggregate of the short fibers and the powdered resin in which the liquid surface of the dispersion medium or water previously injected is accumulated in the mold. Determined as the time interval required to go down.
  • the dispersion medium or the dispersion medium and water are discharged from the molding die to form an aggregate in which short fibers and powdered resin are aggregated in the molding die.
  • the discharging step is preferably performed under a reduced pressure atmosphere.
  • a method of putting slurry into such a mold and draining the mold is called a filtration dehydration method.
  • the filtration dehydration method is a method in which a slurry containing short fibers is placed in a predetermined container and the slurry in the container is dehydrated while being filtered to form an aggregate of short fibers and a powdered resin. is there.
  • the aggregate is compressed to form a molding material during the discharge process or after the discharge process.
  • the compression step is preferably performed at a pressure of 5 to 25 MPa.
  • the compression process is preferably performed while applying heat at a temperature lower than the melting temperature of the powdered resin.
  • short fiber includes not only a fiber having a literally short length but also a case of containing fine fibers and / or pulp-like fibers obtained by fibrillating the fibers.
  • the powdered resin various materials such as a thermosetting resin and a thermoplastic resin can be used.
  • the particle shape of the powdery resin is arbitrary, but a granular resin is preferably used.
  • the particle diameter varies depending on the fiber diameter of the short fibers, but a particle diameter that can be uniformly distributed in the gaps of the short fiber aggregates is preferable. When the particle diameter is large, the fiber orientation of the aggregate of short fibers is disturbed, or when forming a resin molded body by heat and pressure molding, the short fibers and the resin inside the molded body may not be uniformly distributed. It is.
  • the slurry may be adjusted by adding one or more types of electrostatic attraction aggregation type polymer flocculant (polymer-flocculating agent) to a mixture of short fibers, powdered resin, and water.
  • electrostatic attraction aggregation type polymer flocculant polymer-flocculating agent
  • the slurry diffusing member it is preferable to use a member having a curved surface that protrudes upward at the tip of the slurry diffusing portion.
  • an electrostatic attractive aggregation type polymer flocculant is added, the polymer flocculant functions not only as an aggregating function but also as a fixing agent (fixing agent). The resin is fixed. As a result, the amount of short fibers and powdered resin remaining in the aggregate can be increased.
  • the fixing ratio between the short fibers and the powdered resin can be increased.
  • the slurry diffusing member provided with the slurry diffusing portion having the curved surface at the tip portion is used, and the slurry is adjusted by adding a polymer flocculant to perform the cleaning step. Even if the viscosity of the slurry increases, short fibers and powdered resin do not remain on the slurry diffusion portion.
  • molding die is 10 mm or more and 20 mm or less. If the radius of curvature is smaller than this range, there is a possibility that a large number of flocs formed by gathering some short fibers and some powdered resin are stuck in the tip of the slurry diffusion part. high. When the radius of curvature is larger than this range, flocs are likely to be deposited on the slurry nucleic acid part.
  • anionic polymer flocculant agent As one or more types of electrostatic attraction aggregation type polymer flocculant, after adding cationic polymer flocculent agent to the mixture, anionic polymer flocculant agent (anionic polymer floculating agent) Is preferably added.
  • anionic polymer flocculant agent anionic polymer floculating agent
  • flocs When a cationic polymer flocculant is added to the mixed solution, a large number of aggregates called flocs are formed which are formed by collecting some short fibers and some powdered resin. Thereafter, when an anionic polymer flocculant is added, flocs gather to form a larger floc, and a large number of flocs having larger dimensions are formed. When such a floc is formed, the dewaterability is improved.
  • amphoteric polymer flocculating agent may be used as the one or more types of electrostatic attraction aggregation type polymer flocculants.
  • Amphoteric polymer flocculants are the neutralization effect (cations) of short fibers and powdered particles in the mixture, the formation of entanglement (high molecular weight) by polymer chains, and the entanglement (high molecular weight). It exerts an effect of reinforcing by electrostatic attraction due to charges of anions and cations.
  • the opening of the cylindrical mold may be closed by a lid member having a nozzle extending downward in the center.
  • the length and the tip shape of the nozzle are determined so that the dispersion medium or water is concentrated on the slurry diffusion portion in the cleaning process. If it does in this way, a dispersion medium or water can be effectively applied on a slurry diffusion part from a nozzle, and a short fiber and powdery resin can be dropped below on a slurry diffusion part more reliably.
  • the molding material produced by the production method of the present invention is heated and pressurized to melt the powdered resin, impregnated with a molten resin layer made of short fibers, and then the molten resin is cured.
  • a resin-made rotating body can be manufactured by further performing a molding step for forming the resin-molded body.
  • a resin-made gear can be manufactured by performing a gear cutting process process to the outer peripheral part of a resin molding after a shaping
  • FIG. 4 shows a metal bush of the resin gear shown in FIG. 3, (A) shows a plan view, and (B) shows a longitudinal sectional view.
  • A) shows the longitudinal cross-sectional view of the shaping
  • B) shows the longitudinal cross-sectional view of a filtration dehydration compression apparatus.
  • the filtration dehydration compression apparatus 13 used in the method for producing a molding material according to the present invention includes, as shown in FIG. 1, for example, a molding die including a pedestal 1, a hollow lower compression mold 2, a cylindrical mold 3, and a hollow upper compression mold 4. Is used.
  • the hollow lower compression mold 2 includes a bush support 5 and a lower elastic body 6 therein.
  • the cylindrical mold 3 is provided with a slurry diffusion member 7 therein.
  • the hollow upper compression mold 4 includes a pressing member 8 and an upper elastic body 9.
  • the pedestal 1 supports the entire filtration dehydration compression apparatus, and the hollow lower compression mold 2 is directly placed on the upper surface of the pedestal 1 as long as it can be placed horizontally with little distortion due to load. There is no particular limitation.
  • the material of the pedestal 1 is not particularly limited, but stainless steel, carbon steel, aluminum, aluminum alloy, magnesium alloy and the like can be used, and stainless steel is preferably used from the viewpoint of corrosion resistance.
  • the size of the pedestal 1 is not particularly limited.
  • the hollow lower compression mold 2 is installed on the upper surface of the base 1 described above, and various methods such as bolt fixing, groove fixing, fitting fixing, and welding can be used as the installation method. From the viewpoint of ease of disassembly, it is preferable to fix the hollow lower compression mold 2 to the base 1 with a plurality of bolts.
  • the hollow lower compression mold 2 has a hollow part opened in the vertical direction inside. In this hollow portion, a bush support 5 on which the bush 31 is placed is arranged.
  • the lower surface of the bush support base 5 is supported by a lower elastic body 6 erected on the base 1, and the height from the base 1 can be changed by the expansion and contraction of the lower elastic body 6.
  • the lower elastic body 6 may be erected not only directly on the pedestal 1 but also indirectly on the pedestal 1. Further, a plurality of lower elastic bodies 6 may be installed.
  • the lower elastic body 6 only needs to change the height of the bush support 5 by expansion and contraction, and a coil spring, a disc spring, a leaf spring, a molded body of natural / synthetic rubber, or the like is used. Can do.
  • a spring is preferable in terms of durability.
  • the material of the spring is not particularly limited, but stainless steel excellent in corrosion resistance and a spring subjected to rust prevention treatment are preferable.
  • a rubber spring or the like can also be used.
  • the bush support 5 is for mounting the bush 31 on the upper surface thereof, and one having a groove for preventing the displacement of the bush 31 can be preferably used. If the bush 31 is a magnetic body, a magnet can be used instead of the groove.
  • connection between the bush support 5 and the lower elastic body 6 may be performed by adhesion or fixation. It is preferable that the bush support 5 and the lower elastic body 6 are detachably connected so that the bush support can be exchanged according to the type of the bush 31.
  • the relationship between the hollow lower compression mold 2 and the bush support base 5 is that at least a part of the bush support base 5 enters the hollow portion of the hollow lower compression mold 2 when viewed from the horizontal direction.
  • the amount of insertion of the bush support 5 into the hollow portion changes due to expansion and contraction.
  • the bush support 5 is separated from the hollow portion of the hollow lower compression mold 2 when viewed from the horizontal direction due to the extension of the lower elastic body 6, the bush support is supported by the contraction of the lower elastic body 6.
  • the table 5 returns to the hollow lower compression mold 2, there is a possibility that a position shift occurs, which is not practical.
  • a step 10 is provided on the inner wall of the hollow lower compression mold 2 in which the hollow portion is formed.
  • the step portion 10 is in contact with the lower portion of the bush support base 5 to prevent the bush support base 5 from being lowered due to expansion and contraction of the lower elastic body 6.
  • the step portion 10 is preferably formed by changing the inner diameter of the hollow portion or by providing a protrusion on the inner wall.
  • the step part 10 does not necessarily need to be provided over the entire circumference of the inner wall of the hollow lower compression mold 2, and may be provided on a part of the inner wall.
  • the step part 10 in a part of inner wall, in order to maintain the level of the bush support stand 5, it is preferable to provide in three or more places at equal angular intervals.
  • the position of the stepped portion 10 can be changed depending on the final thickness of the aggregate of short fibers and powdered resin.
  • the step portion 10 is preferably provided at a position where a molding material layer having a thickness equal to the vertical direction can be formed from the center in the thickness direction of the bush 31.
  • the position of the step portion 10 of the hollow lower compression mold 2 and the step portion 11 of the hollow upper compression mold 4 described later are in contact with the step portion 10 of the hollow lower compression mold 2 and the bush support 5.
  • the distance from the upper end of the hollow lower compression mold 2 to the center of the bush thickness direction, and the lower end of the hollow upper compression mold 4 when the stepped portion 11 of the hollow upper compression mold 4 and the pressing member 8 are in contact with each other. It is preferable to make the distance to the center in the thickness direction equal.
  • the upper surface of the hollow lower compression mold 2 is a bottom portion into which a slurry to be described later is introduced, except for the upper open portion of the hollow portion. Therefore, it is preferable to provide a discharge port 12 for discharging the liquid component in the slurry on the upper surface of the hollow lower compression mold 2. It is more preferable to connect a vacuum suction pump to the discharge port 12. When such a hollow lower compression mold 2 is used, the filtration dehydration time can be further shortened.
  • the cylindrical mold 3 has an opening opened up and down, and the hollow lower compression mold 2 is inserted into the lower opening so as to be in close contact with the outer periphery, and the slurry is outside the mold. To prevent leakage.
  • mold 4 mentioned later is inserted in an upper opening part.
  • the cylindrical mold 3 is made of the same material as that of the hollow lower compression mold 2 because it is necessary to consider the coefficient of thermal expansion and the like and further to make the compression strain ratio the same as that of the hollow lower compression mold 2. Is preferably used.
  • the vertical length of the cylindrical mold 3 is not particularly limited, but it should be high enough not to leak at least when a predetermined amount of slurry is inserted when the slurry is charged.
  • a slurry diffusing member 7 is disposed at the center inside the cylindrical mold 3.
  • the slurry diffusing member 7 is located on the upper surface of the bush 31 placed on the bush support 5, and the lower surface thereof has a groove for preventing the displacement of the bush as described in the upper surface of the bush support 5. What has been dug can be preferably used. If the bush 31 is a magnetic body, a magnet can be used instead of the groove.
  • the slurry diffusing member 7 includes a slurry diffusing portion 71 at its upper end.
  • the slurry diffusion portion 71 has a shape that extends in the upward direction and becomes smaller as the cross-sectional area in the direction orthogonal to the upward direction becomes upward.
  • the slurry diffusion portion 71 has a conical shape with the top portion located above.
  • the cone-shaped top portion has a curved surface with a radius of curvature of 10 mm or more and 20 mm or less.
  • the surface shape of the slurry diffusion portion 71 ′ may be a hemispherical shape as shown in FIG.
  • the tip portion may be a convex curved surface
  • the base portion may be a curved surface 71 ′′ that becomes concave toward the outside.
  • the slurry diffusing member 7 does not need to be fixed to the upper surface of the bush 31 as long as it does not shift in position, and may simply be placed.
  • the hollow upper compression mold 4 is disposed opposite to the hollow lower compression mold 2 and is inserted into the upper opening of the cylindrical mold 3.
  • the outer periphery of the hollow upper compression mold 4 and the inner wall of the cylindrical mold 3 are in close contact with each other when the hollow upper compression mold 4 is inserted, and prevent leakage of slurry.
  • the material of the hollow upper compression mold 4 needs to have the same compressive strain rate as that of the hollow lower compression mold 2 and the cylindrical mold 3 in consideration of the thermal expansion coefficient and the like. It is preferable to use the same material as that of the compression mold 2 and the cylindrical mold 3.
  • the hollow upper compression mold 4 has a pressing member 8 in its hollow portion, and this pressing member 8 comes into contact with the slurry diffusion portion 71 of the slurry diffusion member 7.
  • the upper surface of the pressing member 8 is supported by the upper elastic body 9, and the position of the pressing member 8 changes as the upper elastic body 9 expands and contracts.
  • the upper elastic body 9 may be the same as or different from the lower elastic body 6 described above.
  • the upper elastic body 9 is preferably a spring in terms of durability under the use conditions in which the hollow lower compression mold 2 is heated or a high compressive force is applied to the elastic body.
  • the upper elastic body 9 and the lower elastic body 6 are springs having the same spring constant. By doing so, compression from above and compression from below are performed at the same speed, and variations in the density of the short fibers and the powdered resin in the vertical direction can be reduced.
  • the pressing member 8 and the upper elastic body 9 may be connected by adhesion or fixation. It is preferable that the pressing member 8 and the upper elastic body 9 are detachably connected so that the pressing member 8 can be exchanged according to the type of the bush 31.
  • the relationship between the hollow upper compression mold 4 and the pressing member 8 is that at least a part of the pressing member 8 enters the hollow portion of the hollow upper compression mold 4 when viewed from the horizontal direction, and the upper elastic body 9 expands and contracts.
  • the insertion amount of the pressing member 8 into the hollow portion changes.
  • the pressing member 8 moves away from the hollow portion of the hollow upper compression mold 4 as viewed from the horizontal direction due to the extension of the upper elastic body 9, the pressing member 8 is contracted due to the upper elastic body 9 being contracted. Is likely to cause a position shift when returning into the hollow upper compression mold 4 and is not practical.
  • a step portion 11 is provided on the inner wall of the hollow upper compression mold 4 in which the hollow portion is formed.
  • the step portion 11 is in contact with the upper portion of the pressing member 8 to prevent the pressing member 8 from rising due to the expansion and contraction of the upper elastic body 9.
  • the step portion 11 is preferably formed by changing the inner diameter of the hollow portion of the hollow upper compression mold 4 or by providing a protrusion on the inner wall.
  • the step part 11 does not necessarily need to be provided over the perimeter of the inner wall of the hollow upper compression mold
  • the step part 11 in order to maintain the horizontal of the pressing member 8, it is preferable to provide in three or more places at equal angular intervals.
  • the position of the step 11 is the position of the step 10 of the hollow lower compression mold 2 and the step 11 of the hollow upper compression mold 4.
  • the distance from the upper end of the hollow lower compression mold 2 to the center of the bush thickness direction when the step 10 of the hollow lower compression mold 2 and the bush support 5 are in contact with each other, and the step 11 of the hollow upper compression mold 4 The distance from the lower end of the hollow upper compression mold 4 to the center of the bush thickness direction when the member 8 is in contact is preferably set to be equal.
  • the temperature of the lower surface of the hollow upper compression mold 4 can be adjusted. By heating at the time of pressure compression, the liquid component adhering to the short fiber and the powdered resin can be quickly dried. At this time, heating temperature shall be below the melting temperature of the powdery resin to be used. This is because if the resin is heated at a temperature exceeding the melting temperature of the powdery resin, the resin adheres to the lower surface of the hollow upper compression mold 4 and the inner peripheral surface of the cylindrical mold 3, making continuous production difficult.
  • the temperature adjustment may be performed by changing the resistance value of the heater using a variable resistor, or simply by controlling the heater on and off.
  • the filtration dehydration compression apparatus can include a slurry injection upper mold 20 that constitutes a lid member for injecting slurry as required (see FIG. 1B).
  • the slurry injection hole 21 of the slurry injection upper mold 20 is located above the slurry diffusion member 7 in order to produce a molding material in which the basis weight of the short fibers and the powdery resin accumulated around the bush 31 is uniform. As in the present embodiment, it is preferable to dispose the slurry injection hole 21 immediately above the slurry diffusion member 7.
  • a nozzle 22 having a through hole 23 communicating with the slurry injection hole 21 is fixed to the back surface of the slurry injection upper mold 20.
  • the tip of the nozzle 22 extends toward the slurry diffusing member 7, and the length and the tip shape are determined so that a dispersion medium or water is intensively introduced onto the slurry diffusing portion 71 in a cleaning process described later. Yes.
  • the end surface of the tip portion of the nozzle 22 has a shape that widens as it approaches the slurry diffusion portion 71 (the cross-sectional area in the direction perpendicular to the vertical direction increases as it approaches the slurry diffusion portion 71).
  • the distance between the end face of the tip of the nozzle 22 and the surface of the slurry diffusion part 71 is arbitrarily determined according to the viscosity of the slurry, the length of the short fibers, and the like.
  • the nozzle 22 is provided when the short fibers and the powdery resin remain attached to the slurry diffusion portion 71 of the slurry diffusion member 7 after the slurry is charged.
  • the dispersion medium or water is concentrated and efficiently in the slurry diffusion part 71. This is to realize that it is put into the system. That is, when the nozzle 22 is provided, the short fibers and the powdered resin attached to the slurry diffusion member 7 can be efficiently dropped in a small amount when the dispersion medium or water is injected from the nozzle 22 after the slurry is charged.
  • the slurry injection upper mold 20 has a structure in which the slurry injection upper mold 20 is in close contact with the peripheral edge of the opening of the cylindrical mold 3 when the slurry is charged. This prevents slurry from overflowing from the cylindrical mold 3.
  • the bush 31 is sandwiched between the bush support 5 and the slurry diffusion member 7.
  • the bush 31 will be described in detail.
  • the bush is positioned at the center in the radial direction of the molding material. If the final desired one is a resin gear, it is fixed to the rotating shaft and used.
  • the material of the bush is not particularly limited, but a metal is preferable in view of strength.
  • FIG. 3 is a longitudinal sectional view of the resin gear 30 schematically shown.
  • the resin gear 30 includes a metal bush 31 that is fixed to a rotating shaft (not shown) and rotates.
  • a through hole 32 into which a rotating shaft (not shown) is fitted is formed at the center of the metal bush 31.
  • protrusions 33 constituting a plurality of detent portions are integrally formed with a predetermined interval in the circumferential direction.
  • the metal bush 31 will be described with a specific example.
  • the thickness dimension L2 measured in the axial direction of the plurality of protrusions 33 is smaller than the thickness dimension L1 measured in the axial direction of the metal bush 31.
  • the protrusion part 33 which comprises a rotation prevention part is an undercut shape with a thick top part and a thin base part. This undercut prevents interface breakage from occurring at the interface with the surrounding resin molding part and prevents only the metal bush 31 from spinning around.
  • the angle ⁇ of the metal bush 31 in the cross section in the rotation axis direction is The one of 5 to 40 ° is used.
  • the protrusion 33 serving as the anti-rotation portion includes at least a protrusion 33 having a height h 1 and two protrusions 33. It is preferable that the recesses 34 formed between them and having a bottom portion having a height h2 are alternately arranged.
  • the projecting portion 33 having such an undercut shape and an angle ⁇ of 5 to 40 °, preferably 10 to 35 ° is used, a plurality of projecting portions 33 as rotation preventing portions are formed in the molding material. It becomes a completely filled state, and the strength of the mechanical bond between them can be made sufficient.
  • the dispersion medium used for the slurry is not particularly limited as long as it can disperse the short fibers and the powdered resin and does not deteriorate the properties of the short fibers and the powdered resin used.
  • an organic solvent, a mixture of an organic solvent and water, water, or the like can be used as the dispersion medium. It is particularly preferable to use water that is economical and has a low environmental impact.
  • an organic solvent such as methanol, ethanol, acetone, toluene, diethyl ether, etc. with careful attention to safety.
  • the slurry may be adjusted by adding one or more types of electrostatic attraction aggregation type polymer flocculants to a mixed liquid obtained by mixing short fibers, powdered resin, and a dispersion medium.
  • the short fibers dispersed in the dispersion medium are preferably made of short fibers having a melting point or decomposition temperature of 250 ° C. or higher.
  • a molding material or resin gear having excellent heat resistance can be obtained without causing thermal deterioration of the short fibers at the molding temperature and processing temperature during molding and the ambient temperature during actual use. be able to.
  • Such short fibers include para-aramid fibers, meta-aramid fibers, carbon fibers, glass fibers, boron fibers, ceramic fibers, ultra-high strength polyethylene fibers, polyketone fibers, polyparaphenylene benzobisoxazole fibers, wholly aromatic. It is preferable to use at least one kind of short fiber selected from polyester fiber, polyimide fiber, and polyvinyl alcohol fiber, especially when a mixed fiber of para aramid fiber and meta aramid fiber is used. Has an excellent balance of heat resistance, strength, and workability after resin molding.
  • the short fiber preferably contains at least 20% by volume or more of high-strength and high-modulus fiber having a tensile strength of 15 cN / dtex or more and a tensile modulus of 350 cN / dtex or more.
  • the single fiber fineness (thickness) of the short fiber is preferably in the range of 0.1 to 5.5 dtex, more preferably in the range of 0.3 to 2.5 dtex.
  • the length of the short fiber is not particularly limited, but is preferably 1 to 12 mm, and more preferably 2 to 6 mm.
  • the fiber length is less than 1 mm, the mechanical properties of the fiber reinforced resin molded product are gradually lowered.
  • the fiber length exceeds 12 mm the short fibers are too entangled, making it difficult to form a uniform formation, and also piping for transferring the short fibers dispersed in the dispersion to the filtration dehydration compression device Of these, clogging due to short fibers tends to occur gradually, which is not preferable.
  • the ratio of the short fibers contained in the resin molding is preferably selected so that the short fibers are strong, the short fibers are surely filled, and the impregnation of the resin is not inhibited, and 35 to 45% by volume is particularly preferable.
  • the short fibers include fine fibers obtained by fibrillating aramid fibers, the fineness of the fine fibers is 100 to 400 ml, and the fine fiber content is 30% by mass or less in the short fibers. Is desirable.
  • thermosetting resin various materials such as a thermosetting resin and a thermoplastic resin can be used.
  • a thermosetting resin various materials such as a thermosetting resin and a thermoplastic resin
  • epoxy resin polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyethersulfone resin, polyetheretherketone resin, polyamideimide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, polypropylene
  • a phenol resin is preferable from the viewpoints of the strength and heat resistance of the cured resin.
  • the particle shape of the powdered resin is arbitrary, but it is preferable to use a granular one. Moreover, although a particle diameter changes with fiber diameters of a short fiber, 50 micrometers or less are preferable. The particle diameter was measured by a metal mesh sieving method defined in JIS-Z8801-1. Thereby, powdery resin can be uniformly distributed in the gaps between the aggregates of short fibers.
  • the dispersion concentration of the short fibers and the powdered resin in the dispersion medium is preferably 0.3 g / liter or more and 20 g / liter or less.
  • the resin rotating body is a resin molded body obtained by impregnating a reinforcing fiber layer made of short fibers with a molten resin produced by pressurizing a molding material while heating to melt a powdered resin, and then curing the molten resin. Is formed. Further, a gear cutting process can be performed on the outer peripheral portion of the resin molded body to form a gear shape. More specifically, one having a metal bush 31 fitted to a rotating shaft for rotating a gear and a tooth portion arranged around the metal bush can be preferably used.
  • the tooth portion is arranged on the outer periphery of the metal bush described above. More specifically, with reference to FIG. 3 described above, one molding material 35 is arranged at a position outside the outer peripheral portion 36 of the metal bush 31 in a state of being fitted to the outer peripheral portion 36. .
  • the molding material 35 becomes a resin molding 37 formed by being impregnated with resin and cured.
  • the tooth portion is formed on the outer periphery of the resin molded body 37.
  • the filtration dehydration compression apparatus 13 has a drive device that can change the separation distance between the hollow lower compression mold 2 and the hollow upper compression mold 4 described above.
  • the drive source is not particularly limited, and an electric press machine capable of controlling the moving speed and the applied pressure can be used as the drive source.
  • hollow lower compression mold 2 and the hollow upper compression mold 4 may be driven, it is preferable to drive the hollow upper compression mold 4 up and down because it is easy to disassemble and clean.
  • the molding material 35 uses a filtration dehydration compression device 13 to place a collection 38 of short fibers and powdered resin on the outer position of the outer peripheral portion 36 of the metal bush 31. It is formed by compressing the aggregate 38 of the short fibers and the powdered resin in the axial direction of a rotating shaft (not shown) for rotating the metal bush 31.
  • the slurry is charged from above into the cylindrical mold 3 toward the slurry diffusing member 7. This slurry is temporarily stored in the cylindrical mold, or the dispersion medium is discharged out of the cylindrical mold in parallel with the addition.
  • the hollow lower compression mold 2 has a discharge port for discharging the dispersion medium in order to impart the liquid permeability of the dispersion medium contained in the aggregate 38 of short fibers and powdered resin. 12.
  • a vacuum suction pump (not shown) is attached to the discharge port 12, and the discharge of the dispersion medium can be completed in a short time.
  • a bottom member 39 is disposed on the upper surface of the hollow lower compression mold 2 in order to prevent short fibers from flowing out when the dispersion medium is discharged from the discharge port 12.
  • a metal mesh can be used for the bottom member 39.
  • the mesh size of the wire mesh is preferably 10 mesh or more and 100 mesh or less.
  • the mesh size used in the present specification conforms to that defined in JIS G 3555.
  • the bush support 5 and the slurry diffusing member 7 have a portion located inside the outer peripheral portion 36 of the metal bush 31 so that the short fibers and the powdered resin do not enter inside the outer peripheral portion of the metal bush 31.
  • the cylindrical mold 3 is supported by being sandwiched from both sides in the direction in which the center line extends.
  • the metal bush 31 When the metal bush 31 is sandwiched between the bush support 5 and the slurry diffusion member 7, as shown in FIG. 1B, the slurry diffusion member 7 is placed on the bush, and the weight of the slurry diffusion member 7 is set. The metal bush 31 is sandwiched.
  • the slurry formed by dispersing the short fibers and the powdered resin in the dispersion medium is brought into close contact with the peripheral edge of the opening of the cylindrical mold 3, and the slurry injection upper mold 20 is brought into close contact with the slurry. It is supplied from the injection hole 21.
  • the slurry is supplied toward the slurry diffusing member 7 from above, whereby the short fibers and the powdered resin are diffused by the slurry diffusing portion 71 and spread evenly distributed around the slurry diffusing member 7.
  • the same dispersion medium or water as the dispersion medium used in the charging step is poured toward the slurry diffusion member 7 from above, and the short fibers and powder adhering to the slurry diffusion portion 71 of the slurry diffusion member 7 are poured. Drop the resin.
  • the short fibers and the powdered resin remain attached to the upper portion of the slurry diffusion portion 71 of the slurry diffusion member 7.
  • the hollow upper compression mold 4 and the pressing member 8 are compressed in the compression step of compressing the aggregate of the short fibers and the powdery resin during or after the dispersion medium is discharged in the discharge step.
  • the short fiber and the powdered resin are caught between the slurry diffusion member 7 and the slurry diffusion member 7. When such biting occurs, the mold is damaged and continuous production cannot be performed.
  • the same dispersion medium or water as the slurry dispersion medium is injected from the slurry injection hole 21 through the nozzle 22, and the short fibers and powdered resin remaining on the upper surface of the slurry diffusion portion 71 of the slurry diffusion member 7 are injected. Wash away.
  • the injection timing of the dispersion medium or water to wash away the short fibers and the powdered resin is input at the timing when the liquid level of the slurry in the mold reaches the upper surface of the aggregate of the short fibers and the powdered resin accumulated in the mold. It is preferable to do this.
  • the amount of the dispersion medium or water to wash away the short fibers and the powdered resin is introduced in a small amount so that the dispersion medium or water does not overflow from the mold, and the number of injections of the dispersion medium or water is at least twice (multiple times).
  • the short fibers and the powdered resin remaining on the upper portion of the slurry diffusing member 7 can be surely washed away.
  • the interval between the dispersion medium or water injected before the dispersion medium or water is lowered to the upper surface of the aggregate of short fibers and powdered resin accumulated in the mold. preferable.
  • the dispersion medium is discharged from the cylindrical mold 3 to form an aggregate 38 of short fibers and powdered resin in which short fibers and powdered resin are accumulated in the cylindrical mold 3.
  • a step of compressing the aggregate 38 of short fibers and powdered resin is performed.
  • the inside of the cylindrical mold 3 is vacuum-sucked and the liquid component is discharged from a plurality of discharge ports 12 provided in the hollow lower compression mold 2.
  • an aggregate 38 of short fibers and powdered resin surrounding the periphery of the outer periphery of the metal bush 31 is produced.
  • the metal bush 31 can be positioned and supported easily.
  • the shape of the outer peripheral surface of the aggregate 38 of short fibers and powdered resin is determined by the shape of the inner peripheral surface of the cylindrical mold 3.
  • the bush support 5, the slurry diffusion member 7, and the hollow lower compression mold 2 are moved upward as shown in FIG. Moving. Then, first, the slurry diffusing member 7 and the pressing member 8 come into contact with each other, and the metal bush 31 is fixed by the force of the upper elastic body 9 and the lower elastic body 6. In FIG. 1, springs having the same spring constant are used as the upper elastic body 9 and the lower elastic body 6.
  • the bush support 5, the slurry diffusing member 7, and the hollow lower compression mold 2 are raised, and the step 10 provided on the bush support 5 and the hollow lower compression mold 2, the pressing member 8, and the hollow upper compression mold 4 are provided.
  • the step portion 11 is brought into contact with the hollow upper compression mold 2 and the hollow upper compression mold 4 so that the distance is not reduced (see FIG. 1D).
  • the time and temperature at which compression is performed can be arbitrarily changed depending on the type of short fiber and powdered resin to be used.
  • filtration is performed by attaching a heater to the hollow upper compression mold 4 and compressing in a heated state.
  • the time for removing the liquid component contained in the molding material 35 after dehydration can be shortened, and the change with time in the thickness of the molding material 35 after compression can be suppressed.
  • discharging step and the compressing step may be performed simultaneously, or the compressing step may be performed after the discharging step.
  • the dispersion medium and the molding material can be sufficiently separated first, so when the upper mold is heated during compression in the compression process, the molding material is compressed with less temperature drop. Can do. When it is performed simultaneously, the molding material can be manufactured in a shorter time since the process for one process can be reduced.
  • a resin-made rotating body half-finished product 40 provided with a molding material 35 on a bush 31 is placed in a preheated mold 41 and then heated and pressed to cure the powdered resin. Then, the resin rotating body provided with the resin molded body is molded.
  • the mold 41 includes a fixed mold 42, a movable mold 43 that is disposed at the center of the fixed mold 42 and is displaced in the vertical direction, and an upper mold 44 that sandwiches the bush 31 in pairs with the movable mold 43. And.
  • the pressing portion 44 ⁇ / b> A of the upper mold 44 is inserted into the fixed mold 42 and presses the bush 31, the moving mold 43 is displaced downward according to the amount of insertion of the upper mold 44.
  • the resin rotating body including the resin molded body formed with the molding material 35 as the core material is taken out from the mold 41 to complete the production of the resin molded body.
  • Gear cutting is performed on the outer periphery of the resin molded body impregnated and cured with resin.
  • the teeth can be added at the time of mold forming or can be added by cutting after the mold forming. However, since the accuracy can be increased, it is preferable to provide the teeth by cutting.
  • a slurry is made by mixing short fibers, a powdered resin, and water.
  • the viscosity of the slurry is low, for example, the mesh size of the wire mesh used for the bottom member 39 of the hollow lower compression mold 2 shown in FIG. 1 is reduced (the mesh of the wire mesh is increased).
  • the yield of the short fiber and the powdery resin in the molding material 35 is deteriorated. Therefore, for example, when using a wire mesh having a mesh size of 100 ⁇ m on one side, if the particle size of the powdered resin is 10 ⁇ m, the amount of the powdered resin that is discharged together with water due to poor filtration performance Will increase.
  • one or more types of electrostatic attraction aggregation type polymer flocculants are added to a mixed liquid in which short fibers, a powdered resin, and a dispersion medium are mixed.
  • the electrostatic attraction aggregation type polymer flocculant functions not only as an aggregating function but also as a fixing agent.
  • the powdered resin is fixed.
  • the amount of short fibers and powdered resin remaining in the aggregate can be increased. That is, the fixing ratio between the short fibers and the powdered resin can be increased, and the yield can be improved.
  • the electrostatic attraction aggregation type polymer flocculant that can be used may be any one as long as it can increase the fixing rate of short fibers and powdered resin and does not significantly impair dehydration
  • the cationic polymer flocculant for example, a styrene polymer, a polyamine condensate, a dicyandiamide condensate, a cation-modified acrylic copolymer, a polymethacrylate ester, and a polyamidine hydrochloride can be used.
  • the anionic polymer flocculant include acrylic copolymers, sulfonated polyphenols, polyhydric phenol resins, polyacrylate esters, and polyacrylate soda / amide derivatives.
  • a cationic polymer flocculant is added to a mixed solution, and then an anionic polymer flocculant is added.
  • a cationic polymer flocculant is added to the mixed solution, a large number of aggregates called flocs are formed which are formed by collecting some short fibers and some powdered resin.
  • flocs gather to generate larger flocs, and a large number of flocs having large dimensions are formed.
  • an amphoteric polymer flocculant can be used as the polymer flocculant.
  • Amphoteric polymer flocculants are the neutralization effect (cations) of short fibers and powdered particles in the mixture, the formation of entanglement (high molecular weight) by polymer chains, and the entanglement (high molecular weight). It exerts an effect of reinforcing by electrostatic attraction due to charges of anions and cations.
  • an amphoteric polymer flocculant for example, an acrylamide / acrylic acid / alkylamino acrylate quaternary salt copolymer, a polyacrylic acid ester, or a polymethacrylic acid ester can be used.
  • Example 1 In order to manufacture the slurry, a tank filled with water in such an amount that the concentration at the time of charging the short fibers and the powdered resin is 4 g / liter is prepared. And in this tank, the short fiber of the quantity which the fiber total amount of the short fiber in a resin molding becomes 40 volume%, and the powdery resin of the quantity which the total amount of resin in a resin molding becomes 60 volume% are put.
  • a fiber chop used as a short fiber a para-aramid fiber having an aspect ratio of 200 “Technola (trademark)” manufactured by Teijin Limited is 50% by mass, and a meta-aramid fiber having an aspect ratio of 200 “Teijin ( 45% by weight of “Conex (trademark)” manufactured by Co., Ltd., and 5% by weight of fine fiber “Kevlar (trademark)” manufactured by DuPont Co., Ltd., which has been fibrillated to a freeness value of 300 ml.
  • a phenol resin powder “Bellepearl (trademark)” manufactured by Air Water Bellpearl Co., Ltd. having a particle diameter of 20 ⁇ m is introduced as the powdery resin.
  • the water in the tank is stirred with a stirrer to disperse the fiber chop and the phenol resin powder to produce a slurry.
  • the addition amount of the cationic styrenic polymer aqueous solution is 0.2% by mass with respect to the total amount of the short fibers and the powder resin, and the addition amount of the anionic acrylic polymer aqueous solution is the short fibers and the powder resin.
  • the total amount was 0.1% by mass.
  • the metal bush 31 is positioned on the bush support 5 and the slurry diffusion member 7 is placed on the metal bush 31 so as not to be displaced. Then, the metal bush 31 is sandwiched.
  • the central angle of the conical surface of the conical slurry diffusing portion 71 protruding upward from the slurry diffusing member 7 is 90 °.
  • the top part of the slurry diffusion part 71 was made into the curved surface shape of R15mm.
  • the position of the hollow lower compression mold 2 was a position where the distance from the axial center of the metal bush 31 to the upper surface of the bottom member 39 was 50 mm.
  • the slurry injection upper mold 20 and the cylindrical mold 3 shown in FIG. 1B are brought into close contact with each other, and the slurry is put into the filtration dehydration compression apparatus. Then, by sucking the inside of the cylindrical mold by vacuum and draining water from the plurality of outlets 12 provided in the hollow lower compression mold 2, the fiber chop, the phenol resin powder, and the water are separated to form a cylindrical short An aggregate 38 of fibers and powdered resin is obtained. After vacuum suction and separation of the fiber chop, phenol resin powder, and water, water is injected from the slurry injection hole 21, and the fiber chop and phenol resin powder remaining on the upper side of the slurry diffusion member 7 are washed away. The slurry injection hole 21 is disposed immediately above the slurry diffusion member 7.
  • a bottom member 39 is disposed on the hollow lower compression mold 2.
  • a metal: 20 mesh wire mesh was used as the bottom member 39.
  • the metal bush 31 is compressed in order to allow the fiber chop and the phenol resin powder to bite into the non-rotating portion of the metal bush 31 more firmly.
  • the hollow lower compression mold 2, the cylindrical mold 3, and the bush support stand up to a position where the distance from the axial center of the metal bush 31 to the lower surface of the hollow upper compression mold 4 is 50 mm. 5.
  • the bush 31, the slurry diffusing member 7, the short fiber and powder resin aggregate 38 are raised together with the base 1. This position is a position where the metal bush 31 is located in the center between the hollow upper compression mold 4 and the hollow lower compression mold 2.
  • the pedestal 1 is raised at a speed of 1 to 5 mm / s while the bush 31 is located at the center between the hollow upper compression mold 4 and the hollow lower compression mold 2. Compress until the aggregate 38 of the fiber and the powdery resin has a thickness of 20 mm.
  • the said compression compresses in the state vacuum-sucked from the discharge port 12 of the hollow lower compression type
  • the length of the slurry diffusion member 7: L6 70 mm
  • the metal bush 31 Thickness: T1 10 mm
  • Example 2 A molding material was produced in the same manner as in Example 1 except that the top of the slurry diffusion member 7 was not curved.
  • Example 1 A molding material was produced in the same manner as in Example 1 except that the remaining short fibers and powdered resin adhering to the slurry diffusing member 7 were not washed away.
  • the shape of the slurry diffusing member does not need to have a curved surface at the tip as in the slurry diffusing member of the first embodiment, depending on the viscosity of the slurry.
  • the slurry diffusing portion of the slurry diffusing member can be used in the present invention as long as the area of the cross section extending in at least the upper direction and perpendicular to the upper direction becomes smaller in the upward direction.
  • the molding produced by pouring the dispersion medium or water toward the slurry diffusing member, and dropping the short fibers and the powdered resin remaining attached to the slurry diffusing member into the cylindrical mold. It is possible to perform continuous production by making the basis weight (mass) of the material uniform and preventing the base material from biting the short fiber and the powdered resin into the gap between the mold members. In addition, the mold life can be extended.
  • the molding material can be manufactured in a shorter time because the process for one process can be reduced. can do.
  • the dispersion medium When the dispersion medium is discharged in a reduced pressure atmosphere, the dispersion medium can be discharged in a shorter time.
  • the compression step of compressing the aggregate of short fibers and powdered resin is performed at a pressure of 5 to 25 MPa, more dispersion medium contained in the aggregate of short fibers and powdered resin can be discharged. it can.
  • the bond strength between the short fiber and powdered resin aggregate and the anti-rotation portion provided on the metal bush is increased, and the short fiber and powder resin aggregate is also tightly clamped, making the molding material easy to handle. improves.
  • the dispersion medium contained in the aggregate of the short fibers and the powdered resin can be separated in a short time by setting the temperature lower than the melting temperature of the powdered resin.
  • separation can be performed in a shorter time.
  • the resin rotating body of the present invention has a uniform basis weight of the molding material, it has uniform strength, excellent durability, and can withstand high temperature / high load use conditions such as vehicle parts and industrial parts. It can be used as a resin rotating body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Provided is a production method for a molding material that exhibits little variation in the amounts of short fibers and powdered resin in individual products, that does not cause damage to a mold, and that makes continuous production possible. At a loading step, a slurry is supplied toward a slurry dispersion member (7) from above. The slurry dispersion member (7) has a shape in which the area of a cross-section thereof in a direction that extends in the upward direction and that is orthogonal to the upward direction decreases as proximity to the upward direction increases. At a cleaning step, a dispersion medium that is the same as the dispersion medium used in the loading step or water is poured toward the slurry dispersion member (7) from above, thereby causing short fibers and powdered resin that are stuck to the top of the slurry dispersion section (71) of the slurry dispersion member (7) to fall therefrom. The dispersion medium is subsequently discharged from a cylindrical mold (3) and an aggregate (38) of the short fibers and the powdered resin that have accumulated in the cylindrical mold (3) is produced. The aggregate (38) is then compressed.

Description

成形素材の製造方法及び該製造方法で用いる成形金型並びに樹脂製回転体の製造方法Manufacturing method of molding material, molding die used in the manufacturing method, and manufacturing method of resin rotating body
 本発明は、成形素材の製造方法及び前記製法により製造した成形素材を用いる樹脂製回転体の製造方法及び該製造方法に用いる成形金型に関する。 The present invention relates to a method for manufacturing a molding material, a method for manufacturing a resin rotating body using the molding material manufactured by the above-described manufacturing method, and a molding die used for the manufacturing method.
 特開2009-154338号公報(特許文献1)、特開2009-250364号公報(特許文献2)及び特開2011-152729号公報(特許文献3)には、短繊維からなる補強繊維と水とを混合したスラリを用いて、ブッシュの外周部に補強用繊維基材(成形素材)を形成する樹脂製回転体の製造方法が開示されている。これらの公報に記載の方法では、スラリを金属製ブッシュを収納した筒状金型内に入れ、補強繊維が漏出しないようにスラリから脱水を行ってブッシュの周囲に補強繊維を集合させて集合物を作り、その後集合物を圧縮して補強用繊維基材(成形素材)を形成する。特に特開2011-152729号公報(特許文献3)に記載の方法では、筒状金型の中央に、スラリ拡散部材を配置している。このスラリ拡散部材は、円錐状のスラリ拡散部を上端部に備えている。そのため成形金型内に、上方からスラリをスラリ拡散部に向かって投入することにより、筒状金型内にスラリを大きなバラツキなく投入できることが期待できる。 In JP 2009-154338 A (Patent Document 1), JP 2009-250364 A (Patent Document 2) and JP 2011-152729 A (Patent Document 3), there are reinforcing fibers made of short fibers, water and A method for manufacturing a resin rotating body is disclosed in which a reinforcing fiber base material (molding material) is formed on the outer peripheral portion of a bush using a slurry in which is mixed. In the methods described in these publications, the slurry is placed in a cylindrical mold containing a metal bush, and the reinforcing fibers are collected around the bush by dehydrating the slurry so that the reinforcing fibers do not leak out. After that, the aggregate is compressed to form a reinforcing fiber substrate (molding material). In particular, in the method described in Japanese Patent Application Laid-Open No. 2011-152729 (Patent Document 3), a slurry diffusing member is disposed in the center of the cylindrical mold. The slurry diffusing member includes a conical slurry diffusing portion at the upper end. Therefore, it can be expected that the slurry can be put into the cylindrical mold without any large variation by throwing the slurry into the molding die from above toward the slurry diffusion portion.
特開2009-154338号公報JP 2009-154338 A 特開2009-250364号公報JP 2009-250364 A 特開2011-152729号公報JP 2011-152729 A
 特許文献3に記載された方法のように、スラリの粘度が低かったり、短繊維の長さが短い場合には、スラリ拡散部は十分に効果を発揮する。しかしながらスラリの粘度が高くなったり、短繊維の長さが長くなると、スラリ拡散部の上に短繊維を含むスラリが残る可能性が高くなる。スラリ拡散部の上に短繊維が残存した場合には、製品1個当たりの短繊維量がばらつくという問題がある。更には、繊維集合物を圧縮する際、金型部材の隙間に短繊維を噛み込んでしまう材料噛み込みを引き起こし、金型を破損させ、連続生産を行えなくしてしまうという問題もある。 As in the method described in Patent Document 3, when the viscosity of the slurry is low or the length of the short fiber is short, the slurry diffusing portion is sufficiently effective. However, when the viscosity of the slurry is increased or the length of the short fiber is increased, there is a high possibility that the slurry containing the short fiber remains on the slurry diffusion portion. When short fibers remain on the slurry diffusion portion, there is a problem that the amount of short fibers per product varies. Furthermore, when the fiber assembly is compressed, there is a problem that the material is caught by the short fiber in the gap between the mold members, the mold is damaged, and continuous production cannot be performed.
 本発明は、金型損傷が無く、連続生産を行うことが可能な成形素材の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a molding material that can be continuously produced without damage to the mold.
 本発明の他の目的は、製品個々の短繊維と粉末状樹脂の量のばらつきが少なく、金型損傷が無く、連続生産を行うことが可能な成形素材の製造方法及び該製造方法に用いる成型金型を提供することを目的とする。 Another object of the present invention is a method for producing a molding material capable of performing continuous production with little variation in the amount of individual short fibers and powdered resin, no damage to the mold, and molding used in the production method. The purpose is to provide molds.
 また、成形素材を、加熱しながら加圧して粉末状樹脂を溶融・硬化させた、樹脂製回転体の製造方法及びこの製造方法により製造される樹脂製回転体を、提供することを目的とする。 Moreover, it aims at providing the manufacturing method of the resin-made rotary body and the resin-made rotary body manufactured by this manufacturing method which pressed and heated the molding raw material, and melted and hardened the powdery resin. .
 本発明の成形素材の製造方法は、以下の調整工程、投入工程、洗浄工程、排出工程及び圧縮行程を実施する。調整工程では、分散媒に短繊維と粉末状樹脂を分散させたスラリを調製する。投入工程では、上方向に向かって開口する開口部を有する筒状金型と、筒状金型の中央に配置されて上方向に延び且つ上方向と直交する方向の横断面の面積が上方向に向かうに従って小さくなる形状のスラリ拡散部を備えたスラリ拡散部材とを含む成形金型内に、上方からスラリをスラリ拡散部に向かって投入する。 The manufacturing method of the molding material of the present invention performs the following adjustment process, charging process, cleaning process, discharging process and compression process. In the adjustment step, a slurry is prepared in which short fibers and powdered resin are dispersed in a dispersion medium. In the charging step, the cylindrical mold having an opening that opens upward, and the area of the cross section that is arranged in the center of the cylindrical mold and extends upward and is orthogonal to the upward direction is upward. Into a molding die including a slurry diffusing member having a slurry diffusing portion having a shape that becomes smaller as it goes toward, the slurry is thrown from above toward the slurry diffusing portion.
 そして洗浄工程では、投入工程の後に、分散媒と同一の分散媒または水をスラリ拡散部に向かって上方から注いで、スラリ拡散部に付着する短繊維と粉末状樹脂を落下させる。このような洗浄工程を実施すると、スラリ拡散部上に残留するスラリまたは短繊維をスラリ拡散部から確実に落下させることができるので、いわゆる材料噛み込みの発生を防止できる。そのため金型損傷が無く、連続生産を行うことが可能な成形素材の製造方法を提供することができる。短繊維と粉末状樹脂を洗い流す分散媒または水の量は、金型内から分散媒または水が溢れない程度に少量ずつ所定の時間間隔をあけて投入し、分散媒または水の注入回数を2回以上(複数回)とすることで、確実にスラリ拡散部材7の上部に残った短繊維と粉末状樹脂を洗い流すことができる。そして分散媒または水を2回以上注入する場合の所定の時間間隔は、先に注入した分散媒または水の液面が金型内に集積した短繊維と粉末状樹脂の集合物の上面よりも下に下がるのに必要な時間間隔として定める。 In the washing process, after the charging process, the same dispersion medium or water as the dispersion medium is poured from above toward the slurry diffusion part to drop the short fibers and the powdered resin adhering to the slurry diffusion part. When such a cleaning process is performed, the slurry or short fibers remaining on the slurry diffusion portion can be surely dropped from the slurry diffusion portion, so that the occurrence of so-called material biting can be prevented. Therefore, it is possible to provide a manufacturing method of a molding material that can be continuously produced without damage to the mold. The amount of the dispersion medium or water to wash away the short fibers and the powdered resin is added at a predetermined time interval so that the dispersion medium or water does not overflow from the mold, and the number of injections of the dispersion medium or water is 2 By setting the number of times or more (multiple times), the short fibers and the powdered resin remaining on the upper portion of the slurry diffusing member 7 can be surely washed away. And the predetermined time interval when injecting the dispersion medium or water twice or more is more than the upper surface of the aggregate of the short fibers and the powdered resin in which the liquid surface of the dispersion medium or water previously injected is accumulated in the mold. Determined as the time interval required to go down.
 排出工程では、成形金型から分散媒または分散媒及び水を排出し、成形金型内に短繊維と粉末状樹脂を集合させた集合物を形成する。排出工程は、減圧雰囲気下にて行われるのが好ましい。このような金型にスラリを投入し、金型内で排水をする方法を濾過脱水法と言う。濾過脱水法とは、短繊維を含むスラリを所定の容器にいれて、容器内のスラリを濾過しながら脱水することにより、短繊維と粉末状樹脂が集合してなる集合物を形成する方法である。このような方法により短繊維と粉末状樹脂の集合物を製造すれば、成形素材の中央部に剥離の原因となるような境界部が形成されることはない。そして圧縮行程では、排出工程の間または排出工程の後に、集合物を圧縮して成形素材を形成する。圧縮工程は、加圧力5~25MPaで行われるのが好ましい。そして圧縮行程は、粉末状樹脂の溶融温度より低い温度で、熱をかけながら行われるのが好ましい。短繊維と粉末状樹脂の集合物を同一の装置を用いて連続して圧縮まで行った場合は、嵩高く強度が弱い(型崩れしやすい)集合物を取り扱う作業が必要ないため、作業工程が少なくて済む。 In the discharging step, the dispersion medium or the dispersion medium and water are discharged from the molding die to form an aggregate in which short fibers and powdered resin are aggregated in the molding die. The discharging step is preferably performed under a reduced pressure atmosphere. A method of putting slurry into such a mold and draining the mold is called a filtration dehydration method. The filtration dehydration method is a method in which a slurry containing short fibers is placed in a predetermined container and the slurry in the container is dehydrated while being filtered to form an aggregate of short fibers and a powdered resin. is there. When an aggregate of short fibers and powdered resin is produced by such a method, a boundary portion that causes peeling is not formed in the central portion of the molding material. In the compression process, the aggregate is compressed to form a molding material during the discharge process or after the discharge process. The compression step is preferably performed at a pressure of 5 to 25 MPa. The compression process is preferably performed while applying heat at a temperature lower than the melting temperature of the powdered resin. When an assembly of short fibers and a powdered resin is continuously compressed using the same apparatus, it is not necessary to handle an assembly that is bulky and weak (easy to lose shape). Less is enough.
 なお短繊維としては、種々の材質及び種類のものを用いることができる。本願特許請求の範囲において「短繊維」とは、文字通りに長さが短い繊維だけでなく、繊維をフィブリル化処理した微細繊維及び/またはパルプ状繊維を含んでいる場合を包含するものである。 In addition, various materials and types can be used as the short fibers. In the claims of the present application, the term “short fiber” includes not only a fiber having a literally short length but also a case of containing fine fibers and / or pulp-like fibers obtained by fibrillating the fibers.
 粉末状樹脂としては、熱硬化性樹脂、熱可塑性樹脂など種々の材質のものを用いることができる。粉末状樹脂の粒子形状は任意であるが、粒状のものを用いるのが好ましい。また、粒子径は、短繊維の繊維径により異なるが、短繊維の集合物の隙間に均一に分布できるような粒子径が好ましい。粒子径が大きい場合、短繊維の集合物の繊維配向を乱したり、加熱加圧成形して樹脂成形体を形成する際、成形体内部の短繊維と樹脂が均一に分布しない原因となるからである。 As the powdered resin, various materials such as a thermosetting resin and a thermoplastic resin can be used. The particle shape of the powdery resin is arbitrary, but a granular resin is preferably used. The particle diameter varies depending on the fiber diameter of the short fibers, but a particle diameter that can be uniformly distributed in the gaps of the short fiber aggregates is preferable. When the particle diameter is large, the fiber orientation of the aggregate of short fibers is disturbed, or when forming a resin molded body by heat and pressure molding, the short fibers and the resin inside the molded body may not be uniformly distributed. It is.
 また短繊維と粉末状樹脂と水とを混合した混合液に、1種以上の静電引力凝集タイプの高分子凝集剤(polymer flocculating agent)を添加してスラリを調整するようにしてもよい。この場合、スラリ拡散部材としては、スラリ拡散部の先端部に上方向に向かって凸となる湾曲面を有しているものを用いるのが好ましい。静電引力凝集タイプの高分子凝集剤を添加すると、高分子凝集剤が凝集機能だけでなく定着剤(fixing agent)としても機能し、短繊維同士が定着するともとに、短繊維と粉末状樹脂が定着する。その結果、集合物中に残る短繊維及び粉末状樹脂の量を増やすことができる。すなわち短繊維と粉末状樹脂の定着率を高めることができる。なお本発明によれば、先端部に湾曲面を有するスラリ拡散部を備えたスラリ拡散部材を用いた上で、洗浄工程を実施するため、高分子凝集剤を添加してスラリを調整したことにより、スラリの粘度が増加しても、スラリ拡散部上に短繊維や粉末状樹脂が残留することはない。 Also, the slurry may be adjusted by adding one or more types of electrostatic attraction aggregation type polymer flocculant (polymer-flocculating agent) to a mixture of short fibers, powdered resin, and water. In this case, as the slurry diffusing member, it is preferable to use a member having a curved surface that protrudes upward at the tip of the slurry diffusing portion. When an electrostatic attractive aggregation type polymer flocculant is added, the polymer flocculant functions not only as an aggregating function but also as a fixing agent (fixing agent). The resin is fixed. As a result, the amount of short fibers and powdered resin remaining in the aggregate can be increased. That is, the fixing ratio between the short fibers and the powdered resin can be increased. In addition, according to the present invention, the slurry diffusing member provided with the slurry diffusing portion having the curved surface at the tip portion is used, and the slurry is adjusted by adding a polymer flocculant to perform the cleaning step. Even if the viscosity of the slurry increases, short fibers and powdered resin do not remain on the slurry diffusion portion.
 なお成型金型内のスラリ拡散部材のスラリ拡散部の先端に設ける湾曲面の曲率半径は、10mm以上20mm以下であることが好ましい。曲率半径がこの範囲より小さいと、一部の短繊維と一部の粉末状樹脂とが集まってできる多数のフロックと呼ばれる集合物が、スラリ拡散部の先端部に刺さった状態となる可能性が高い。また曲率半径がこの範囲より大きいと、スラリ核酸部の上にフロックが堆積され易くなる。 In addition, it is preferable that the curvature radius of the curved surface provided in the front-end | tip of the slurry diffusion part of the slurry diffusion member in a shaping | molding die is 10 mm or more and 20 mm or less. If the radius of curvature is smaller than this range, there is a possibility that a large number of flocs formed by gathering some short fibers and some powdered resin are stuck in the tip of the slurry diffusion part. high. When the radius of curvature is larger than this range, flocs are likely to be deposited on the slurry nucleic acid part.
 なお1種以上の静電引力凝集タイプの高分子凝集剤として、混合液に、カチオン性高分子凝集剤(cationic polymer flocculating agent)を添加した後、アニオン性高分子凝集剤(anionic polymer flocculating agent)を添加するのが好ましい。混合液にカチオン性高分子凝集剤を添加すると、一部の短繊維と一部の粉末状樹脂とが集まってできる多数のフロックと呼ばれる集合物が形成される。その後アニオン性高分子凝集剤を添加すると、フロック同士が集合して更に大きなフロックの形成が進み、寸法の大きなフロックが多数形成される。このようなフロックが形成されると、脱水性が向上する。その結果、短い時間で脱水をできるとともに、短繊維と粉末状樹脂の定着率が向上する。特に、カチオン性高分子凝集剤としてカチオン性スチレン系高分子水溶液を用い、アニオン性高分子凝集剤としてアニオン性アクリル系高分子水溶液を用いると、高い脱水性を得ることができる。 As one or more types of electrostatic attraction aggregation type polymer flocculant, after adding cationic polymer flocculent agent to the mixture, anionic polymer flocculant agent (anionic polymer floculating agent) Is preferably added. When a cationic polymer flocculant is added to the mixed solution, a large number of aggregates called flocs are formed which are formed by collecting some short fibers and some powdered resin. Thereafter, when an anionic polymer flocculant is added, flocs gather to form a larger floc, and a large number of flocs having larger dimensions are formed. When such a floc is formed, the dewaterability is improved. As a result, dehydration can be performed in a short time, and the fixing rate between the short fibers and the powdered resin is improved. In particular, when a cationic styrene polymer aqueous solution is used as the cationic polymer flocculant and an anionic acrylic polymer aqueous solution is used as the anionic polymer flocculant, high dehydrating properties can be obtained.
 なお1種以上の静電引力凝集タイプの高分子凝集剤として、両性高分子凝集剤(amphoteric polymer flocculating agent)を用いてもよい。両性高分子凝集剤とは、混合液中の短繊維及び粉末状粒子の中和効果(カチオン)と、高分子鎖による絡まり合い(高分子量体)の生成と、絡まり合い(高分子量体)をアニオンとカチオンの電荷による静電引力により補強する作用を発揮するものである。 It should be noted that an amphoteric polymer flocculating agent may be used as the one or more types of electrostatic attraction aggregation type polymer flocculants. Amphoteric polymer flocculants are the neutralization effect (cations) of short fibers and powdered particles in the mixture, the formation of entanglement (high molecular weight) by polymer chains, and the entanglement (high molecular weight). It exerts an effect of reinforcing by electrostatic attraction due to charges of anions and cations.
 筒状金型の開口部は、中央に下方に向かって延びるノズルを備えた蓋部材によって塞いでもよい。この場合、ノズルは、洗浄工程において、分散媒または水を、スラリ拡散部上に集中的に投入するように長さ及び先端形状が定める。このようすると、ノズルから分散媒または水を効果的にスラリ拡散部上に当てることができて、より確実に短繊維及び粉末状樹脂をスラリ拡散部の上から下方に落下させることができる。 The opening of the cylindrical mold may be closed by a lid member having a nozzle extending downward in the center. In this case, the length and the tip shape of the nozzle are determined so that the dispersion medium or water is concentrated on the slurry diffusion portion in the cleaning process. If it does in this way, a dispersion medium or water can be effectively applied on a slurry diffusion part from a nozzle, and a short fiber and powdery resin can be dropped below on a slurry diffusion part more reliably.
 なお本発明の製造方法により製造した成形素材を、加熱しながら加圧して粉末状樹脂を溶融させて生成した溶融樹脂を短繊維からなる補強繊維層に含浸させた後、溶融樹脂を硬化させて樹脂成形体を形成する成形工程を更に行って樹脂製回転体を製造することができる。そして成形工程の後に、樹脂成形体の外周部に歯切り加工工程を行うことにより、樹脂製歯車を製造することができる。 The molding material produced by the production method of the present invention is heated and pressurized to melt the powdered resin, impregnated with a molten resin layer made of short fibers, and then the molten resin is cured. A resin-made rotating body can be manufactured by further performing a molding step for forming the resin-molded body. And a resin-made gear can be manufactured by performing a gear cutting process process to the outer peripheral part of a resin molding after a shaping | molding process.
(A)乃至(D)は、本発明の実施の形態で用いる濾過脱水圧縮装置の動作を示す概略工程図である。(A) thru | or (D) is a schematic process drawing which shows operation | movement of the filtration dehydration compression apparatus used by embodiment of this invention. (A)及び(B)は、スラリ拡散部の変形例を示す図である。(A) And (B) is a figure which shows the modification of a slurry spreading | diffusion part. 本発明の実施の形態で製造される樹脂製歯車の縦断面図である。It is a longitudinal cross-sectional view of the resin-made gear manufactured by embodiment of this invention. 図3に示す樹脂製歯車の金属製ブッシュを示すものであり、(A)は平面図を示し、(B)は縦断面図を示す。FIG. 4 shows a metal bush of the resin gear shown in FIG. 3, (A) shows a plan view, and (B) shows a longitudinal sectional view. (A)はブッシュと一体化した成形素材の縦断面図を示し、(B)は濾過脱水圧縮装置の縦断面図を示す。(A) shows the longitudinal cross-sectional view of the shaping | molding raw material integrated with the bush, (B) shows the longitudinal cross-sectional view of a filtration dehydration compression apparatus. 本発明の一実施例である樹脂製歯車の作製工程を示す概略工程図である。It is a general | schematic process figure which shows the preparation process of the resin gears which are one Example of this invention.
 以下、本発明の成形素材の製造方法を説明する前に、この製造方法に使用される濾過脱水圧縮装置の一例について説明する。 Hereinafter, an example of the filtration dehydration compression apparatus used in this manufacturing method will be described before the method for manufacturing the molding material of the present invention is described.
 <濾過脱水圧縮装置>
 本発明の成形素材の製造方法に用いる濾過脱水圧縮装置13は、例えば図1に示すように、台座1、中空下圧縮型2、筒状金型3、中空上圧縮型4を備える成形金型を用いる。中空下圧縮型2は、その内部にブッシュ支持台5及び下弾性体6を備えている。また筒状金型3は、その内部にスラリ拡散部材7を備えている。さらに中空上圧縮型4は、押下部材8及び上弾性体9を備えている。
<Filtering dehydration compression device>
The filtration dehydration compression apparatus 13 used in the method for producing a molding material according to the present invention includes, as shown in FIG. 1, for example, a molding die including a pedestal 1, a hollow lower compression mold 2, a cylindrical mold 3, and a hollow upper compression mold 4. Is used. The hollow lower compression mold 2 includes a bush support 5 and a lower elastic body 6 therein. The cylindrical mold 3 is provided with a slurry diffusion member 7 therein. Further, the hollow upper compression mold 4 includes a pressing member 8 and an upper elastic body 9.
 以下、個々の部材に関し、詳細に説明する。 Hereinafter, each member will be described in detail.
 (台座)
 台座1は、濾過脱水圧縮装置全体を支えるもので、直接的には、その上面に中空下圧縮型2が載置されるものであり、荷重による歪みが少なく、水平載置できるものであれば、特に制限されるものではない。
(pedestal)
The pedestal 1 supports the entire filtration dehydration compression apparatus, and the hollow lower compression mold 2 is directly placed on the upper surface of the pedestal 1 as long as it can be placed horizontally with little distortion due to load. There is no particular limitation.
 台座1の材質は、特に限定されるもではないが、ステンレス、炭素鋼、アルミニウム、アルミニウム合金、マグネシウム合金等を用いることができ、耐食性の観点からステンレスを用いることが好ましい。 The material of the pedestal 1 is not particularly limited, but stainless steel, carbon steel, aluminum, aluminum alloy, magnesium alloy and the like can be used, and stainless steel is preferably used from the viewpoint of corrosion resistance.
 台座1の大きさは、特に制限されるものではない。 The size of the pedestal 1 is not particularly limited.
 (中空下圧縮型)
 中空下圧縮型2は、前述した台座1の上面に設置されるものであり、設置方法としては、ボルト固定、溝固定、嵌合固定、溶接等、各種方法を用いることができる。分解の容易性から、複数のボルトで中空下圧縮型2を台座1に固定することが好ましい。
(Hollow compression type)
The hollow lower compression mold 2 is installed on the upper surface of the base 1 described above, and various methods such as bolt fixing, groove fixing, fitting fixing, and welding can be used as the installation method. From the viewpoint of ease of disassembly, it is preferable to fix the hollow lower compression mold 2 to the base 1 with a plurality of bolts.
 中空下圧縮型2は、その内部に、上下方向に開放される中空部分を有している。この中空部分には、ブッシュ31をその上面に載置するブッシュ支持台5を配置する。 The hollow lower compression mold 2 has a hollow part opened in the vertical direction inside. In this hollow portion, a bush support 5 on which the bush 31 is placed is arranged.
 ブッシュ支持台5は、その下面を、台座1に立設した下弾性体6により支持され、下弾性体6の伸縮により、台座1からの高さを変化させることができる。なお、下弾性体6は、直接台座1に立設するばかりでなく、間接的に台座1に立設してもよい。更に、下弾性体6は、複数設置してもよい。 The lower surface of the bush support base 5 is supported by a lower elastic body 6 erected on the base 1, and the height from the base 1 can be changed by the expansion and contraction of the lower elastic body 6. The lower elastic body 6 may be erected not only directly on the pedestal 1 but also indirectly on the pedestal 1. Further, a plurality of lower elastic bodies 6 may be installed.
 下弾性体6は、先に述べたように、伸縮によりブッシュ支持台5の高さを変化させるものであればよく、コイルバネ、皿バネ、板バネ、天然・合成ゴムの成形体等を用いることができる。下弾性体6に高い圧縮力がかかる使用条件では、耐久性の面でバネが好ましい。バネの材質は、特に制限されないが、耐食性に優れるステンレスや防錆処理が施されたバネが好ましい。ゴム製のバネ等を用いることもできる。 As described above, the lower elastic body 6 only needs to change the height of the bush support 5 by expansion and contraction, and a coil spring, a disc spring, a leaf spring, a molded body of natural / synthetic rubber, or the like is used. Can do. In use conditions in which a high compressive force is applied to the lower elastic body 6, a spring is preferable in terms of durability. The material of the spring is not particularly limited, but stainless steel excellent in corrosion resistance and a spring subjected to rust prevention treatment are preferable. A rubber spring or the like can also be used.
 ブッシュ支持台5は、その上面にブッシュ31を載置するものであり、ブッシュ31の位置ずれを防止する溝が掘られているものを、好ましく用いることができる。また、ブッシュ31が磁性体であれば、溝の代わりに磁石を用いることもできる。 The bush support 5 is for mounting the bush 31 on the upper surface thereof, and one having a groove for preventing the displacement of the bush 31 can be preferably used. If the bush 31 is a magnetic body, a magnet can be used instead of the groove.
 また、ブッシュ支持台5と、下弾性体6との接続は、接着または固着により行ってもよい。ブッシュ31の種類に応じてブッシュ支持台を交換できるように、ブッシュ支持台5と下弾性体6とを脱着自在に接続することが好ましい。 Further, the connection between the bush support 5 and the lower elastic body 6 may be performed by adhesion or fixation. It is preferable that the bush support 5 and the lower elastic body 6 are detachably connected so that the bush support can be exchanged according to the type of the bush 31.
 中空下圧縮型2と、ブッシュ支持台5との関係は、少なくともブッシュ支持台5の一部が、水平方向から見て、中空下圧縮型2の中空部分に入り込んでおり、下弾性体6の伸縮により、中空部分へのブッシュ支持台5の挿入量が変化するようになっている。通常の運転時において、ブッシュ支持台5が、下弾性体6の伸張により、水平方向から見て、中空下圧縮型2の中空部分から離れる場合には、下弾性体6の縮みにより、ブッシュ支持台5が中空下圧縮型2内へと戻る際に、位置ずれを起こす可能性があり、実用的ではない。 The relationship between the hollow lower compression mold 2 and the bush support base 5 is that at least a part of the bush support base 5 enters the hollow portion of the hollow lower compression mold 2 when viewed from the horizontal direction. The amount of insertion of the bush support 5 into the hollow portion changes due to expansion and contraction. During normal operation, when the bush support 5 is separated from the hollow portion of the hollow lower compression mold 2 when viewed from the horizontal direction due to the extension of the lower elastic body 6, the bush support is supported by the contraction of the lower elastic body 6. When the table 5 returns to the hollow lower compression mold 2, there is a possibility that a position shift occurs, which is not practical.
 中空部分が内部に形成された中空下圧縮型2の内壁には、段部10を設ける。段部10は、ブッシュ支持台5の下部と当接することにより、下弾性体6の伸縮によるブッシュ支持台5の下降を阻止するものである。段部10は、中空部分の内径を変化させるか、内壁に突起を設けることで形成することが好ましい。 A step 10 is provided on the inner wall of the hollow lower compression mold 2 in which the hollow portion is formed. The step portion 10 is in contact with the lower portion of the bush support base 5 to prevent the bush support base 5 from being lowered due to expansion and contraction of the lower elastic body 6. The step portion 10 is preferably formed by changing the inner diameter of the hollow portion or by providing a protrusion on the inner wall.
 なお、段部10は、必ずしも中空下圧縮型2の内壁の全周にわたって設ける必要はなく、内壁の一部に設けることもできる。内壁の一部に段部10を設ける場合は、ブッシュ支持台5の水平を維持するため、等角度間隔で、三箇所以上に設けることが好ましい。 In addition, the step part 10 does not necessarily need to be provided over the entire circumference of the inner wall of the hollow lower compression mold 2, and may be provided on a part of the inner wall. When providing the step part 10 in a part of inner wall, in order to maintain the level of the bush support stand 5, it is preferable to provide in three or more places at equal angular intervals.
 段部10の位置は、最終的な短繊維と粉末状樹脂の集合物の厚みにより変化させることができる。ブッシュ31の厚み方向の中心から、上下方向に等しい厚みの成形素材層を形成できる位置に段部10を設けることが好ましい。具体的には、中空下圧縮型2の段部10と、後述する中空上圧縮型4の段部11との位置が、中空下圧縮型2の段部10とブッシュ支持台5とが当接した際の、中空下圧縮型2の上端からブッシュ厚み方向中心迄の距離と、中空上圧縮型4の段部11と押下部材8とが接した際の、中空上圧縮型4の下端からブッシュ厚み方向中心迄の距離とを、等しくする位置とすることが好ましい。 The position of the stepped portion 10 can be changed depending on the final thickness of the aggregate of short fibers and powdered resin. The step portion 10 is preferably provided at a position where a molding material layer having a thickness equal to the vertical direction can be formed from the center in the thickness direction of the bush 31. Specifically, the position of the step portion 10 of the hollow lower compression mold 2 and the step portion 11 of the hollow upper compression mold 4 described later are in contact with the step portion 10 of the hollow lower compression mold 2 and the bush support 5. The distance from the upper end of the hollow lower compression mold 2 to the center of the bush thickness direction, and the lower end of the hollow upper compression mold 4 when the stepped portion 11 of the hollow upper compression mold 4 and the pressing member 8 are in contact with each other. It is preferable to make the distance to the center in the thickness direction equal.
 中空下圧縮型2の上面は、中空部分の上部開放箇所を除いた部分が、後述するスラリを投入する底部部分になる。そのため、中空下圧縮型2の上面には、スラリ中の液分を排出する排出口12を設けることが好ましい。この排出口12には、真空吸引するポンプを接続することが、更に好ましい。このような中空下圧縮型2を用いた場合には、濾過脱水時間をより短縮することが可能となる。 The upper surface of the hollow lower compression mold 2 is a bottom portion into which a slurry to be described later is introduced, except for the upper open portion of the hollow portion. Therefore, it is preferable to provide a discharge port 12 for discharging the liquid component in the slurry on the upper surface of the hollow lower compression mold 2. It is more preferable to connect a vacuum suction pump to the discharge port 12. When such a hollow lower compression mold 2 is used, the filtration dehydration time can be further shortened.
 (筒状金型)
 筒状金型3は、上下に開放された開口部を有しており、下側の開口部には、中空下圧縮型2が、その外周と密接するように挿入され、スラリが金型外部に漏れないようにしている。なお、上側の開口部には、後述する中空上圧縮型4が、挿入される。
(Cylindrical mold)
The cylindrical mold 3 has an opening opened up and down, and the hollow lower compression mold 2 is inserted into the lower opening so as to be in close contact with the outer periphery, and the slurry is outside the mold. To prevent leakage. In addition, the hollow upper compression type | mold 4 mentioned later is inserted in an upper opening part.
 筒状金型3の材質は、熱膨張率等を考慮し、更に圧縮歪み率を中空下圧縮型2の圧縮歪み率と同様にする必要があるため、中空下圧縮型2と同じ材質のものを使用することが好ましい。 The cylindrical mold 3 is made of the same material as that of the hollow lower compression mold 2 because it is necessary to consider the coefficient of thermal expansion and the like and further to make the compression strain ratio the same as that of the hollow lower compression mold 2. Is preferably used.
 筒状金型3の上下方向長さは、特に制限されるものではないが、少なくともスラリ投入時に、規定量のスラリを入れて、漏洩しないだけの高さがあればよい。 The vertical length of the cylindrical mold 3 is not particularly limited, but it should be high enough not to leak at least when a predetermined amount of slurry is inserted when the slurry is charged.
 筒状金型3の内部中央には、スラリ拡散部材7が配置されている。スラリ拡散部材7は、ブッシュ支持台5に載置したブッシュ31の上面に位置するもので、その下面は、ブッシュ支持台5の上面にて説明したように、ブッシュの位置ずれを防止する溝が掘られているものを、好ましく用いることができる。また、ブッシュ31が磁性体であれば、溝の代わりに磁石を用いることもできる。 A slurry diffusing member 7 is disposed at the center inside the cylindrical mold 3. The slurry diffusing member 7 is located on the upper surface of the bush 31 placed on the bush support 5, and the lower surface thereof has a groove for preventing the displacement of the bush as described in the upper surface of the bush support 5. What has been dug can be preferably used. If the bush 31 is a magnetic body, a magnet can be used instead of the groove.
 スラリ拡散部材7は、その上方側の端部にスラリ拡散部71を備えている。スラリ拡散部71は、上方向に延び且つ上方向と直交する方向の横断面の面積が上方向に向かうに従って小さくなる形状を有している。図1(B)の例では、スラリ拡散部71は、頂部が上方に位置する円錐形状を有している。そして円錐形状の頂部は曲率半径が10mm以上20mm以下の湾曲面となっている。このスラリ拡散部71に向かって、上方から筒状金型3へスラリを投入した際、凝集した短繊維と粉末状樹脂がスラリ拡散部材の上側先端に引っかかることなく、ブッシュ周囲に均等にスラリ中の短繊維と粉末状樹脂を分散させることができる。またスラリ拡散部71´の表面形状は、図2(A)に示すように、半球面状でもよい。また図2(B)に示すように、先端部は凸状の湾曲面であり、基部は外側に向かって凹状態となる湾曲面71″であってもよい。 The slurry diffusing member 7 includes a slurry diffusing portion 71 at its upper end. The slurry diffusion portion 71 has a shape that extends in the upward direction and becomes smaller as the cross-sectional area in the direction orthogonal to the upward direction becomes upward. In the example of FIG. 1 (B), the slurry diffusion portion 71 has a conical shape with the top portion located above. The cone-shaped top portion has a curved surface with a radius of curvature of 10 mm or more and 20 mm or less. When the slurry is introduced into the cylindrical mold 3 from above toward the slurry diffusion portion 71, the aggregated short fibers and the powdered resin are not even caught by the upper end of the slurry diffusion member, and the slurry is evenly distributed around the bush. The short fibers and the powdered resin can be dispersed. Further, the surface shape of the slurry diffusion portion 71 ′ may be a hemispherical shape as shown in FIG. Further, as shown in FIG. 2B, the tip portion may be a convex curved surface, and the base portion may be a curved surface 71 ″ that becomes concave toward the outside.
 スラリ拡散部材7は、位置ずれを起こさない限り、ブッシュ31の上面に対し、固定する必要はなく、単純に載置するだけでもよい。 The slurry diffusing member 7 does not need to be fixed to the upper surface of the bush 31 as long as it does not shift in position, and may simply be placed.
 (中空上圧縮型)
 中空上圧縮型4は、中空下圧縮型2と、対向配置され、筒状金型3の上側開口部に挿入される。中空上圧縮型4の外周と、筒状金型3の内壁とは、中空上圧縮型4の挿入時に密接し、スラリの漏洩を阻止する。
(Hollow top compression type)
The hollow upper compression mold 4 is disposed opposite to the hollow lower compression mold 2 and is inserted into the upper opening of the cylindrical mold 3. The outer periphery of the hollow upper compression mold 4 and the inner wall of the cylindrical mold 3 are in close contact with each other when the hollow upper compression mold 4 is inserted, and prevent leakage of slurry.
 また、中空上圧縮型4の材質は、熱膨張率等を考慮し、更に圧縮歪み率を中空下圧縮型2及び筒状金型3の圧縮歪み率と同様にする必要があるため、中空下圧縮型2及び筒状金型3の材質と同じものを使用することが好ましい。 In addition, the material of the hollow upper compression mold 4 needs to have the same compressive strain rate as that of the hollow lower compression mold 2 and the cylindrical mold 3 in consideration of the thermal expansion coefficient and the like. It is preferable to use the same material as that of the compression mold 2 and the cylindrical mold 3.
 中空上圧縮型4は、その中空部分に、押下部材8を有しており、この押下部材8が、スラリ拡散部材7のスラリ拡散部71に当接する。押下部材8は、その上面を上弾性体9により支持されており、上弾性体9の伸縮により、押下部材8の位置は変化する。 The hollow upper compression mold 4 has a pressing member 8 in its hollow portion, and this pressing member 8 comes into contact with the slurry diffusion portion 71 of the slurry diffusion member 7. The upper surface of the pressing member 8 is supported by the upper elastic body 9, and the position of the pressing member 8 changes as the upper elastic body 9 expands and contracts.
 上弾性体9は、先に述べた下弾性体6と、同じものを用いても、異なるものを用いてもよい。なお中空下圧縮型2を加熱したり、弾性体に高い圧縮力がかかる使用条件では、上弾性体9は、耐久性の面でバネが好ましい。また、上弾性体9と下弾性体6を、共に同じバネ定数を有するバネとすることが好ましい。このようにすることで、上方からの圧縮と、下方からの圧縮とが、等しい速度でなされ、上下方向における短繊維と粉末状樹脂の密度のばらつきを、低減することができる。 The upper elastic body 9 may be the same as or different from the lower elastic body 6 described above. Note that the upper elastic body 9 is preferably a spring in terms of durability under the use conditions in which the hollow lower compression mold 2 is heated or a high compressive force is applied to the elastic body. Further, it is preferable that the upper elastic body 9 and the lower elastic body 6 are springs having the same spring constant. By doing so, compression from above and compression from below are performed at the same speed, and variations in the density of the short fibers and the powdered resin in the vertical direction can be reduced.
 また、押下部材8と、上弾性体9との接続は、接着または固着により行ってもよい。ブッシュ31の種類に応じて押下部材8を交換できるように、押下部材8と上弾性体9とを脱着自在に接続することが好ましい。 Further, the pressing member 8 and the upper elastic body 9 may be connected by adhesion or fixation. It is preferable that the pressing member 8 and the upper elastic body 9 are detachably connected so that the pressing member 8 can be exchanged according to the type of the bush 31.
 中空上圧縮型4と、押下部材8との関係は、少なくとも押下部材8の一部が、水平方向から見て、中空上圧縮型4の中空部分に入り込んでおり、上弾性体9の伸縮により、中空部分への押下部材8の挿入量が変化するようになっている。通常の運転時において、押下部材8が、上弾性体9の伸張により、水平方向から見て、中空上圧縮型4の中空部分から離れる場合には、上弾性体9の縮みにより、押下部材8が中空上圧縮型4内へと戻る際に、位置ずれを起こす可能性があり、実用的ではない。 The relationship between the hollow upper compression mold 4 and the pressing member 8 is that at least a part of the pressing member 8 enters the hollow portion of the hollow upper compression mold 4 when viewed from the horizontal direction, and the upper elastic body 9 expands and contracts. The insertion amount of the pressing member 8 into the hollow portion changes. During normal operation, when the pressing member 8 moves away from the hollow portion of the hollow upper compression mold 4 as viewed from the horizontal direction due to the extension of the upper elastic body 9, the pressing member 8 is contracted due to the upper elastic body 9 being contracted. Is likely to cause a position shift when returning into the hollow upper compression mold 4 and is not practical.
 中空部分が内部に形成された中空上圧縮型4の内壁には、段部11を設ける。段部11は、押下部材8の上部と当接することにより、上弾性体9の伸縮による押下部材8の上昇を阻止するものである。段部11は、中空上圧縮型4の中空部分の内径を変化させるか、内壁に突起を設けることで形成することが好ましい。 A step portion 11 is provided on the inner wall of the hollow upper compression mold 4 in which the hollow portion is formed. The step portion 11 is in contact with the upper portion of the pressing member 8 to prevent the pressing member 8 from rising due to the expansion and contraction of the upper elastic body 9. The step portion 11 is preferably formed by changing the inner diameter of the hollow portion of the hollow upper compression mold 4 or by providing a protrusion on the inner wall.
 なお、段部11は、必ずしも中空上圧縮型4の内壁の全周にわたって設ける必要はなく、内壁の一部に設けることもできる。内壁の一部に段部11を設ける場合は、押下部材8の水平を維持するため、等角度間隔で、三箇所以上に設けることが好ましい。 In addition, the step part 11 does not necessarily need to be provided over the perimeter of the inner wall of the hollow upper compression mold | type 4, and can also be provided in a part of inner wall. When providing the step part 11 in a part of inner wall, in order to maintain the horizontal of the pressing member 8, it is preferable to provide in three or more places at equal angular intervals.
 段部11の位置は、中空下圧縮型2の段部10にて述べたように、前述した中空下圧縮型2の段部10と、中空上圧縮型4の段部11との位置が、中空下圧縮型2の段部10とブッシュ支持台5とが当接した際の、中空下圧縮型2の上端からブッシュ厚み方向中心迄の距離と、中空上圧縮型4の段部11と押下部材8とが接した際の、中空上圧縮型4の下端からブッシュ厚み方向中心迄の距離とを、等しくする位置とすることが好ましい。 As described in the step 10 of the hollow lower compression mold 2, the position of the step 11 is the position of the step 10 of the hollow lower compression mold 2 and the step 11 of the hollow upper compression mold 4. The distance from the upper end of the hollow lower compression mold 2 to the center of the bush thickness direction when the step 10 of the hollow lower compression mold 2 and the bush support 5 are in contact with each other, and the step 11 of the hollow upper compression mold 4 The distance from the lower end of the hollow upper compression mold 4 to the center of the bush thickness direction when the member 8 is in contact is preferably set to be equal.
 中空上圧縮型4の下面は、温度調整可能とすることができる。加圧圧縮時に加熱することで、短繊維と粉末状樹脂に付着した液分を素早く乾燥させることができる。このとき、加熱温度は、使用する粉末状樹脂の溶融温度以下とする。なぜならば粉末状樹脂の溶融温度を超えた温度で加熱すると、樹脂が中空上圧縮型4の下面、筒状金型3の内周面に付着し、連続生産が困難になる。 The temperature of the lower surface of the hollow upper compression mold 4 can be adjusted. By heating at the time of pressure compression, the liquid component adhering to the short fiber and the powdered resin can be quickly dried. At this time, heating temperature shall be below the melting temperature of the powdery resin to be used. This is because if the resin is heated at a temperature exceeding the melting temperature of the powdery resin, the resin adheres to the lower surface of the hollow upper compression mold 4 and the inner peripheral surface of the cylindrical mold 3, making continuous production difficult.
 温度調整は、可変抵抗を用いたヒータの抵抗値を変化させるか、単純にヒータのON-OFFによる制御を行うものであってもよい。 The temperature adjustment may be performed by changing the resistance value of the heater using a variable resistor, or simply by controlling the heater on and off.
 (スラリ注入上型)
 濾過脱水圧縮装置は、必要に応じてスラリを注入する蓋部材を構成するスラリ注入上型20を備えることができる(図1(B)参照)。スラリ注入上型20のスラリ注入孔21は、ブッシュ31の周囲に集積させた短繊維と粉末状樹脂の目付量が均一となる成形素材を作製するため、スラリ拡散部材7の上方に位置する。本実施の形態のように、スラリ拡散部材7の真上にスラリ注入孔21を配置するのが好ましい。
(Slurry injection upper mold)
The filtration dehydration compression apparatus can include a slurry injection upper mold 20 that constitutes a lid member for injecting slurry as required (see FIG. 1B). The slurry injection hole 21 of the slurry injection upper mold 20 is located above the slurry diffusion member 7 in order to produce a molding material in which the basis weight of the short fibers and the powdery resin accumulated around the bush 31 is uniform. As in the present embodiment, it is preferable to dispose the slurry injection hole 21 immediately above the slurry diffusion member 7.
 本実施の形態では、スラリ注入孔21に連通する貫通孔23を備えたノズル22が、スラリ注入上型20の裏面に固定されている。ノズル22の先端は、スラリ拡散部材7に向かって延びて、後述する洗浄工程において、分散媒または水を、スラリ拡散部71上に集中的に投入するように長さ及び先端形状が定められている。具体的には、ノズル22の先端部の端面が、スラリ拡散部71に近づくに従って広がる(上下方向と直交する方向の横断面積がスラリ拡散部71に近づくに従って大きくなる)形状を有している。ノズル22の先端部の端面とスラリ拡散部71の表面との間の距離は、スラリの粘度や短繊維の長さ等に応じて、任意に定められる。 In the present embodiment, a nozzle 22 having a through hole 23 communicating with the slurry injection hole 21 is fixed to the back surface of the slurry injection upper mold 20. The tip of the nozzle 22 extends toward the slurry diffusing member 7, and the length and the tip shape are determined so that a dispersion medium or water is intensively introduced onto the slurry diffusing portion 71 in a cleaning process described later. Yes. Specifically, the end surface of the tip portion of the nozzle 22 has a shape that widens as it approaches the slurry diffusion portion 71 (the cross-sectional area in the direction perpendicular to the vertical direction increases as it approaches the slurry diffusion portion 71). The distance between the end face of the tip of the nozzle 22 and the surface of the slurry diffusion part 71 is arbitrarily determined according to the viscosity of the slurry, the length of the short fibers, and the like.
 ノズル22を設けるのは、スラリ投入後、スラリ拡散部材7のスラリ拡散部71上に短繊維と粉末状樹脂が付着して残ると、後の圧縮工程(短繊維と粉末状樹脂の集合物を圧縮する工程)時において、短繊維と粉末状樹脂が金型間に噛み込まれ、金型が破損することを防止するために、分散媒または水をスラリ拡散部71に集中的に且つ効率的に投入することを実現するためである。すなわちノズル22を設けると、スラリ投入後、分散媒または水をノズル22から注入する際に、少量で効率よくスラリ拡散部材7に付着した短繊維と粉末状樹脂を落とすことが可能になる。 The nozzle 22 is provided when the short fibers and the powdery resin remain attached to the slurry diffusion portion 71 of the slurry diffusion member 7 after the slurry is charged. In order to prevent the short fibers and the powdered resin from being caught between the molds and damaging the molds during the compression step), the dispersion medium or water is concentrated and efficiently in the slurry diffusion part 71. This is to realize that it is put into the system. That is, when the nozzle 22 is provided, the short fibers and the powdered resin attached to the slurry diffusion member 7 can be efficiently dropped in a small amount when the dispersion medium or water is injected from the nozzle 22 after the slurry is charged.
 また、スラリ注入上型20は、スラリ投入時、筒状金型3の開口部の周縁部と密着した状態になる構造であることが好ましい。これにより、筒状金型3からスラリが溢れてこぼれることがなくなる。 Further, it is preferable that the slurry injection upper mold 20 has a structure in which the slurry injection upper mold 20 is in close contact with the peripheral edge of the opening of the cylindrical mold 3 when the slurry is charged. This prevents slurry from overflowing from the cylindrical mold 3.
 <ブッシュ>
 ブッシュ31は、ブッシュ支持台5とスラリ拡散部材7との間に挟持される。以下、ブッシュ31について詳細に述べる。
<Bush>
The bush 31 is sandwiched between the bush support 5 and the slurry diffusion member 7. Hereinafter, the bush 31 will be described in detail.
 ブッシュは、成形素材の径方向中心に位置し、最終的に所望するものが樹脂製歯車であれば、回転軸に固定されて、使用される。なお、ブッシュの材質は、特に限定されるものではないが、強度を考えると、金属製のものが好ましい。 The bush is positioned at the center in the radial direction of the molding material. If the final desired one is a resin gear, it is fixed to the rotating shaft and used. The material of the bush is not particularly limited, but a metal is preferable in view of strength.
 図3は、模式的に示した樹脂製歯車30の縦断面図である。この樹脂製歯車30は、図示を省略する回転軸に固定されて回転する、金属製ブッシュ31を備えている。金属製ブッシュ31の中央部には、図示を省略する回転軸が嵌合される貫通孔32が形成されている。 FIG. 3 is a longitudinal sectional view of the resin gear 30 schematically shown. The resin gear 30 includes a metal bush 31 that is fixed to a rotating shaft (not shown) and rotates. A through hole 32 into which a rotating shaft (not shown) is fitted is formed at the center of the metal bush 31.
 また、金属製ブッシュ31の外周部には、複数の回り止め部を構成する突出部33が、周方向に所定の間隔をあけて一体に形成されている。 Further, on the outer peripheral portion of the metal bush 31, protrusions 33 constituting a plurality of detent portions are integrally formed with a predetermined interval in the circumferential direction.
 金属製ブッシュ31について、具体的な一例を挙げて説明すると、複数の突出部33の軸線方向に測った厚み寸法:L2は、金属製ブッシュ31の軸線方向に測った厚み寸法:L1よりも小さい。そして回り止め部を構成する突出部33は、頂部の厚さが厚く基部の厚さが薄いアンダーカット形状である。このアンダーカットは、周囲の樹脂成形部分との界面にて、界面破壊が生じ、金属製ブッシュ31のみが空回りするのを阻止するもので、金属製ブッシュ31の回転軸方向断面での角度θが、5~40°のものを用いている。 The metal bush 31 will be described with a specific example. The thickness dimension L2 measured in the axial direction of the plurality of protrusions 33 is smaller than the thickness dimension L1 measured in the axial direction of the metal bush 31. . And the protrusion part 33 which comprises a rotation prevention part is an undercut shape with a thick top part and a thin base part. This undercut prevents interface breakage from occurring at the interface with the surrounding resin molding part and prevents only the metal bush 31 from spinning around. The angle θ of the metal bush 31 in the cross section in the rotation axis direction is The one of 5 to 40 ° is used.
 回転方向への負荷に耐える回り止め部の作用を高めるためには、図4に示すように、回り止め部となる突出部33は、少なくとも高さh1の突出部33と、二つの突出部33間に形成されて高さh2の底部を有する凹部34とが、交互に配列されたものが好ましい。このようなアンダーカットの形状を持ち、角度θが、5~40°、好ましくは、10~35°の突出部33を用いると、成形素材内に、回り止め部としての複数の突出部33が完全に埋まった状態となり、両者間の機械的結合の強度を充分なものとすることができる。 In order to enhance the action of the anti-rotation portion that can withstand the load in the rotation direction, as shown in FIG. 4, the protrusion 33 serving as the anti-rotation portion includes at least a protrusion 33 having a height h 1 and two protrusions 33. It is preferable that the recesses 34 formed between them and having a bottom portion having a height h2 are alternately arranged. When the projecting portion 33 having such an undercut shape and an angle θ of 5 to 40 °, preferably 10 to 35 ° is used, a plurality of projecting portions 33 as rotation preventing portions are formed in the molding material. It becomes a completely filled state, and the strength of the mechanical bond between them can be made sufficient.
 <スラリ>
 次に、本実施の形態に用いるスラリについて説明する。なお、本発明は、本実施の形態に用いるスラリを用いることに限定されるものではない。
<Slurry>
Next, the slurry used in this embodiment will be described. Note that the present invention is not limited to using the slurry used in the present embodiment.
 (スラリの分散液)
 スラリに用いる分散媒は、短繊維と粉末状樹脂を分散可能であり、使用する短繊維と粉末状樹脂に対して、性状を悪化させないものであれば、特に限定されるものではない。例えば、分散媒としては、有機溶媒、有機溶媒と水との混合物、水等を用いることができ、特に経済的で、環境への負荷が少ない、水を使用することが好ましい。
(Slurry dispersion)
The dispersion medium used for the slurry is not particularly limited as long as it can disperse the short fibers and the powdered resin and does not deteriorate the properties of the short fibers and the powdered resin used. For example, as the dispersion medium, an organic solvent, a mixture of an organic solvent and water, water, or the like can be used. It is particularly preferable to use water that is economical and has a low environmental impact.
 有機溶媒を用いる場合には、安全面に充分注意し、メタノール、エタノール、アセトン、トルエン、ジエチルエーテル等の有機溶媒を使用することも可能である。 When using an organic solvent, it is possible to use an organic solvent such as methanol, ethanol, acetone, toluene, diethyl ether, etc. with careful attention to safety.
 短繊維と粉末状樹脂と分散媒とを混合した混合液に、1種以上の静電引力凝集タイプの高分子凝集剤を添加してスラリを調整するようにしてもよい。 The slurry may be adjusted by adding one or more types of electrostatic attraction aggregation type polymer flocculants to a mixed liquid obtained by mixing short fibers, powdered resin, and a dispersion medium.
 (短繊維)
 分散媒中に分散させる短繊維は、融点、または分解温度が、250℃以上の短繊維からなるものが好ましい。このような短繊維を用いることで、成形時の成形温度や加工温度、実使用時の雰囲気温度において、短繊維が熱劣化を起こすことなく、耐熱性に優れた成形素材または樹脂製歯車とすることができる。
(Short fiber)
The short fibers dispersed in the dispersion medium are preferably made of short fibers having a melting point or decomposition temperature of 250 ° C. or higher. By using such short fibers, a molding material or resin gear having excellent heat resistance can be obtained without causing thermal deterioration of the short fibers at the molding temperature and processing temperature during molding and the ambient temperature during actual use. be able to.
 このような短繊維としては、パラ系アラミド繊維、メタ系アラミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、超高強力ポリエチレン繊維、ポリケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、全芳香族ポリエステル繊維、ポリイミド繊維、及びポリビニルアルコール系繊維から選ばれた、少なくとも1種以上の短繊維を使用することが好ましく、特に、パラ系アラミド繊維と、メタ系アラミド繊維との混合繊維を用いた場合には、耐熱性、強度、樹脂成形後の加工性のバランスが優れている。 Such short fibers include para-aramid fibers, meta-aramid fibers, carbon fibers, glass fibers, boron fibers, ceramic fibers, ultra-high strength polyethylene fibers, polyketone fibers, polyparaphenylene benzobisoxazole fibers, wholly aromatic. It is preferable to use at least one kind of short fiber selected from polyester fiber, polyimide fiber, and polyvinyl alcohol fiber, especially when a mixed fiber of para aramid fiber and meta aramid fiber is used. Has an excellent balance of heat resistance, strength, and workability after resin molding.
 また、短繊維は、引張強度:15cN/dtex以上、引張弾性率:350cN/dtex以上の高強度高弾性率繊維を、少なくとも20体積%以上含むことが好ましい。 The short fiber preferably contains at least 20% by volume or more of high-strength and high-modulus fiber having a tensile strength of 15 cN / dtex or more and a tensile modulus of 350 cN / dtex or more.
 短繊維の単繊維繊度(太さ)は、好ましくは、0.1~5.5dtex、より好ましくは、0.3~2.5dtexの範囲である。 The single fiber fineness (thickness) of the short fiber is preferably in the range of 0.1 to 5.5 dtex, more preferably in the range of 0.3 to 2.5 dtex.
 短繊維の長さは、特に限定されるものではないが、好ましくは、1~12mm、より好ましくは、2~6mmである。繊維長が1mm未満の場合、繊維強化樹脂成形体の機械特性が、徐々に低下する。繊維長さが、12mmを越えると、短繊維の絡み合いが大きすぎて、均一な地合形成が困難になるだけでなく、分散液に分散させた短繊維を、濾過脱水圧縮装置に移送する配管内で、徐々に短繊維による詰まりが発生し易くなり好ましくない。 The length of the short fiber is not particularly limited, but is preferably 1 to 12 mm, and more preferably 2 to 6 mm. When the fiber length is less than 1 mm, the mechanical properties of the fiber reinforced resin molded product are gradually lowered. When the fiber length exceeds 12 mm, the short fibers are too entangled, making it difficult to form a uniform formation, and also piping for transferring the short fibers dispersed in the dispersion to the filtration dehydration compression device Of these, clogging due to short fibers tends to occur gradually, which is not preferable.
 樹脂成形体に含まれる短繊維の割合は、強度があり、短繊維が確実に充填され、しかも樹脂の含浸を阻害しない範囲を選択することが好ましく、35~45体積%が、特に好ましい。 The ratio of the short fibers contained in the resin molding is preferably selected so that the short fibers are strong, the short fibers are surely filled, and the impregnation of the resin is not inhibited, and 35 to 45% by volume is particularly preferable.
 図1に示す濾過脱水圧縮装置を用いて成形素材35を金属製ブッシュ31と一体化して形成したものを次工程に移動または搬送する際に、形状を維持するための強度を付与するためには、短繊維がアラミド繊維をフィブリル化処理した微細繊維を含み、微細繊維のフリーネスが100~400mlであって、微細繊維の含有量が、短繊維中の30質量%以下になるように配合することが望ましい。 In order to give strength to maintain the shape when moving or transporting the molding material 35 integrally formed with the metal bush 31 to the next process using the filtration dehydration compression apparatus shown in FIG. In addition, the short fibers include fine fibers obtained by fibrillating aramid fibers, the fineness of the fine fibers is 100 to 400 ml, and the fine fiber content is 30% by mass or less in the short fibers. Is desirable.
 (粉末状樹脂)
 粉末状樹脂としては、熱硬化性樹脂、熱可塑性樹脂など種々の材質のものを用いることができる。例えば、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選ばれた1以上の樹脂を組み合わせたものが使用できる。これらの中でも樹脂硬化物の強度、耐熱性等の点からフェノール樹脂が好ましい。
(Powder resin)
As the powdered resin, various materials such as a thermosetting resin and a thermoplastic resin can be used. For example, epoxy resin, polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyethersulfone resin, polyetheretherketone resin, polyamideimide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, polypropylene A combination of one or more resins selected from resins can be used. Among these, a phenol resin is preferable from the viewpoints of the strength and heat resistance of the cured resin.
 粉末状樹脂の粒子形状は任意であるが、粒状のものを用いるのが好ましい。また、粒子径は、短繊維の繊維径により異なるが、50μm以下が好ましい。なお粒子径は、JIS-Z8801-1で規定されている金属製網ふるい分け法によって測定した。これにより、短繊維の集合物の隙間に粉末状樹脂を均一に分布させることができる。 The particle shape of the powdered resin is arbitrary, but it is preferable to use a granular one. Moreover, although a particle diameter changes with fiber diameters of a short fiber, 50 micrometers or less are preferable. The particle diameter was measured by a metal mesh sieving method defined in JIS-Z8801-1. Thereby, powdery resin can be uniformly distributed in the gaps between the aggregates of short fibers.
 (短繊維と粉末状樹脂の分散濃度)
 分散媒中の短繊維と粉末状樹脂の分散濃度は、0.3g/リットル以上20g/リットル以下であることが好ましい。
(Dispersion concentration of short fiber and powdered resin)
The dispersion concentration of the short fibers and the powdered resin in the dispersion medium is preferably 0.3 g / liter or more and 20 g / liter or less.
 <樹脂製回転体>
 以下、本実施の形態で製造した成形素材を用いて、好適に製造される樹脂製歯車について説明する。
<Resin rotating body>
Hereinafter, a resin gear that is suitably manufactured using the molding material manufactured in the present embodiment will be described.
 樹脂製回転体は、成形素材を、加熱しながら加圧して粉末状樹脂を溶融させて生成した溶融樹脂を短繊維からなる補強繊維層に含浸させた後、溶融樹脂を硬化させて樹脂成形体を形成したものである。また、前記樹脂成形体の外周部に歯切り加工工程を行い、歯車形状に成形することができる。より具体的には、歯車を回転させる回転軸に嵌合する金属製ブッシュ31と、この金属製ブッシュの周囲に配置される歯部とを有するものを、好適に使用することができる。 The resin rotating body is a resin molded body obtained by impregnating a reinforcing fiber layer made of short fibers with a molten resin produced by pressurizing a molding material while heating to melt a powdered resin, and then curing the molten resin. Is formed. Further, a gear cutting process can be performed on the outer peripheral portion of the resin molded body to form a gear shape. More specifically, one having a metal bush 31 fitted to a rotating shaft for rotating a gear and a tooth portion arranged around the metal bush can be preferably used.
 歯部は、先に述べた金属製ブッシュの外周に配置される。先に説明した図3を用いて、より具体的に述べると、1つの成形素材35が、金属製ブッシュ31の外周部36の外側の位置に、外周部36に嵌った状態で配置されている。そして、成形素材35は、樹脂が含浸され且つ樹脂が硬化して形成された樹脂成形体37となる。歯部は、この樹脂成形体37の外周に形成される。 The tooth portion is arranged on the outer periphery of the metal bush described above. More specifically, with reference to FIG. 3 described above, one molding material 35 is arranged at a position outside the outer peripheral portion 36 of the metal bush 31 in a state of being fitted to the outer peripheral portion 36. . The molding material 35 becomes a resin molding 37 formed by being impregnated with resin and cured. The tooth portion is formed on the outer periphery of the resin molded body 37.
 <濾過脱水圧縮装置の駆動>
 濾過脱水圧縮装置13は、先に述べた中空下圧縮型2及び中空上圧縮型4の離間距離を変化させることができる駆動装置を有する。駆動源としては特に限定されるものではなく、移動速度、加圧力が制御可能な電動プレス機を駆動源として使用することができる。
<Drive of filtration dehydration compression device>
The filtration dehydration compression apparatus 13 has a drive device that can change the separation distance between the hollow lower compression mold 2 and the hollow upper compression mold 4 described above. The drive source is not particularly limited, and an electric press machine capable of controlling the moving speed and the applied pressure can be used as the drive source.
 また、駆動すべきものは、中空下圧縮型2及び中空上圧縮型4の何れでもよいが、分解清掃が行い易いことから、中空上圧縮型4を上下駆動させることが好ましい。 Further, although the hollow lower compression mold 2 and the hollow upper compression mold 4 may be driven, it is preferable to drive the hollow upper compression mold 4 up and down because it is easy to disassemble and clean.
 <第1の実施の形態の成形素材の製造方法>
 以下、本発明の成形素材の製造方法の第1の実施の形態について説明をする。
<Method for Producing Molding Material of First Embodiment>
Hereinafter, a first embodiment of a method for producing a molding material according to the present invention will be described.
 図1及び図3に概略的に示すように、成形素材35は、濾過脱水圧縮装置13を用いて、金属製ブッシュ31の外周部36の外側位置に短繊維と粉末状樹脂の集合物38を形成し、この短繊維と粉末状樹脂の集合物38を、金属製ブッシュ31を回転させる回転軸(図示省略)の軸線方向に圧縮することにより形成される。 As schematically shown in FIG. 1 and FIG. 3, the molding material 35 uses a filtration dehydration compression device 13 to place a collection 38 of short fibers and powdered resin on the outer position of the outer peripheral portion 36 of the metal bush 31. It is formed by compressing the aggregate 38 of the short fibers and the powdered resin in the axial direction of a rotating shaft (not shown) for rotating the metal bush 31.
 先ず、濾過脱水法により金属製ブッシュ31の外周部の周囲に短繊維と粉末状樹脂を集積させる、投入工程について説明を行う。 First, a charging process in which short fibers and powdered resin are accumulated around the outer periphery of the metal bush 31 by a filtration dehydration method will be described.
 <投入工程>
 投入工程では、スラリ拡散部材7に向かって、筒状金型3へ上方からスラリを投入する。このスラリは、筒状金型に一旦貯留するか、投入と並行して分散媒を筒状金型外へ排出する。
<Input process>
In the charging step, the slurry is charged from above into the cylindrical mold 3 toward the slurry diffusing member 7. This slurry is temporarily stored in the cylindrical mold, or the dispersion medium is discharged out of the cylindrical mold in parallel with the addition.
 中空下圧縮型2は、図1(B)に示すように、短繊維と粉末状樹脂の集合物38に含まれる分散媒の透液性を付与するために、分散媒の排出を行う排出口12を有している。この排出口12には、図示を省略する真空吸引ポンプが取付けられ、分散媒の排出を短時間で完了することができる。なお、この例では、排出口12からの分散媒の排出時に、短繊維が流出するのを防止するため、中空下圧縮型2の上面に、底部材39が配置されている。 As shown in FIG. 1B, the hollow lower compression mold 2 has a discharge port for discharging the dispersion medium in order to impart the liquid permeability of the dispersion medium contained in the aggregate 38 of short fibers and powdered resin. 12. A vacuum suction pump (not shown) is attached to the discharge port 12, and the discharge of the dispersion medium can be completed in a short time. In this example, a bottom member 39 is disposed on the upper surface of the hollow lower compression mold 2 in order to prevent short fibers from flowing out when the dispersion medium is discharged from the discharge port 12.
 この底部材39には、金網を使用できる。金網のメッシュサイズは、10メッシュ以上100メッシュ以下が好ましい。なお、本明細書にて用いるメッシュサイズは、JIS G 3555に規定されるものに順ずる。 A metal mesh can be used for the bottom member 39. The mesh size of the wire mesh is preferably 10 mesh or more and 100 mesh or less. In addition, the mesh size used in the present specification conforms to that defined in JIS G 3555.
 ブッシュ支持台5及びスラリ拡散部材7は、金属製ブッシュ31の外周部よりも内側に短繊維と粉末状樹脂が入り込まないように、金属製ブッシュ31の外周部36よりも内側に位置する部分を、筒状金型3の中心線が延びる方向の両側から挟んで支持する。 The bush support 5 and the slurry diffusing member 7 have a portion located inside the outer peripheral portion 36 of the metal bush 31 so that the short fibers and the powdered resin do not enter inside the outer peripheral portion of the metal bush 31. The cylindrical mold 3 is supported by being sandwiched from both sides in the direction in which the center line extends.
 金属製ブッシュ31をブッシュ支持台5及びスラリ拡散部材7の間に挟む場合には、図1(B)に示すように、スラリ拡散部材7をブッシュの上に載せ、スラリ拡散部材7の重みで、金属製ブッシュ31を挟持する。 When the metal bush 31 is sandwiched between the bush support 5 and the slurry diffusion member 7, as shown in FIG. 1B, the slurry diffusion member 7 is placed on the bush, and the weight of the slurry diffusion member 7 is set. The metal bush 31 is sandwiched.
 短繊維と粉末状樹脂を分散媒に分散して形成したスラリは、図1(B)に示すように、筒状金型3の開口部の周縁部にスラリ注入上型20を密着させ、スラリ注入孔21から供給される。 As shown in FIG. 1B, the slurry formed by dispersing the short fibers and the powdered resin in the dispersion medium is brought into close contact with the peripheral edge of the opening of the cylindrical mold 3, and the slurry injection upper mold 20 is brought into close contact with the slurry. It is supplied from the injection hole 21.
 スラリは、スラリ拡散部材7に向かってその上方から供給し、これにより短繊維と粉末状樹脂が、スラリ拡散部71で拡散されて、スラリ拡散部材7の周囲に均等配分されて広がる。 The slurry is supplied toward the slurry diffusing member 7 from above, whereby the short fibers and the powdered resin are diffused by the slurry diffusing portion 71 and spread evenly distributed around the slurry diffusing member 7.
 <洗浄工程>
 洗浄工程では、スラリ拡散部材7に向かってその上方から、投入工程にて用いた分散媒と同一の分散媒または水を注ぎ、スラリ拡散部材7のスラリ拡散部71に付着する短繊維と粉末状樹脂を落下させる。
<Washing process>
In the cleaning step, the same dispersion medium or water as the dispersion medium used in the charging step is poured toward the slurry diffusion member 7 from above, and the short fibers and powder adhering to the slurry diffusion portion 71 of the slurry diffusion member 7 are poured. Drop the resin.
 投入工程にてスラリ投入後、スラリ拡散部材7のスラリ拡散部71の上部に短繊維と粉末状樹脂が付着して残る。スラリ拡散部材7に短繊維と粉末状樹脂が残ると、排出工程における分散媒排出中または排出後に短繊維と粉末状樹脂の集合物を圧縮する圧縮工程において、中空上圧縮型4及び押下部材8とスラリ拡散部材7の間に短繊維と粉末状樹脂を噛み込んでしまう。このような噛み込みが発生すると、金型が損傷し、連続生産できなくなる。そこでスラリ投入後、スラリ注入孔21よりノズル22を介してスラリの分散媒と同じ分散媒または水を注入し、スラリ拡散部材7のスラリ拡散部71の上面に残った短繊維と粉末状樹脂を洗い流す。 After the slurry is charged in the charging process, the short fibers and the powdered resin remain attached to the upper portion of the slurry diffusion portion 71 of the slurry diffusion member 7. When the short fibers and the powdery resin remain in the slurry diffusion member 7, the hollow upper compression mold 4 and the pressing member 8 are compressed in the compression step of compressing the aggregate of the short fibers and the powdery resin during or after the dispersion medium is discharged in the discharge step. In short, the short fiber and the powdered resin are caught between the slurry diffusion member 7 and the slurry diffusion member 7. When such biting occurs, the mold is damaged and continuous production cannot be performed. Therefore, after the slurry is introduced, the same dispersion medium or water as the slurry dispersion medium is injected from the slurry injection hole 21 through the nozzle 22, and the short fibers and powdered resin remaining on the upper surface of the slurry diffusion portion 71 of the slurry diffusion member 7 are injected. Wash away.
 短繊維と粉末状樹脂を洗い流す分散媒または水の注入開始タイミングは、金型内のスラリの液面が金型内に集積した短繊維と粉末状樹脂の集合物の上面に到達するタイミングで投入するのが好ましい。 The injection timing of the dispersion medium or water to wash away the short fibers and the powdered resin is input at the timing when the liquid level of the slurry in the mold reaches the upper surface of the aggregate of the short fibers and the powdered resin accumulated in the mold. It is preferable to do this.
 短繊維と粉末状樹脂を洗い流す分散媒または水の量は、金型内から分散媒または水が溢れない程度に少量投入し、分散媒または水の注入回数を2回以上(複数回)とすることで、確実にスラリ拡散部材7の上部に残った短繊維と粉末状樹脂を洗い流すことができる。 The amount of the dispersion medium or water to wash away the short fibers and the powdered resin is introduced in a small amount so that the dispersion medium or water does not overflow from the mold, and the number of injections of the dispersion medium or water is at least twice (multiple times). Thus, the short fibers and the powdered resin remaining on the upper portion of the slurry diffusing member 7 can be surely washed away.
 分散媒または水を2回以上注入する場合の間隔は、先に注入した分散媒または水の液面が金型内に集積した短繊維と粉末状樹脂の集合物の上面に下がるまであけるのが好ましい。 In the case where the dispersion medium or water is injected more than once, the interval between the dispersion medium or water injected before the dispersion medium or water is lowered to the upper surface of the aggregate of short fibers and powdered resin accumulated in the mold. preferable.
 <排出工程及び圧縮行程>
 排出工程では、筒状金型3から分散媒を排出し、筒状金型3内に短繊維と粉末状樹脂を集積した短繊維と粉末状樹脂の集合物38となす。
<Discharge process and compression process>
In the discharging step, the dispersion medium is discharged from the cylindrical mold 3 to form an aggregate 38 of short fibers and powdered resin in which short fibers and powdered resin are accumulated in the cylindrical mold 3.
 圧縮工程では、短繊維と粉末状樹脂の集合物38を圧縮する工程を行う。 In the compression step, a step of compressing the aggregate 38 of short fibers and powdered resin is performed.
 より具体的に一例を述べると、図1(B)に示すように、筒状金型3内を真空吸引して、中空下圧縮型2に設けた複数の排出口12から液分を排出することにより、金属製ブッシュ31の外周部の周囲を囲む短繊維と粉末状樹脂の集合物38を作製する。 More specifically, as shown in FIG. 1 (B), the inside of the cylindrical mold 3 is vacuum-sucked and the liquid component is discharged from a plurality of discharge ports 12 provided in the hollow lower compression mold 2. Thus, an aggregate 38 of short fibers and powdered resin surrounding the periphery of the outer periphery of the metal bush 31 is produced.
 このようにブッシュ支持台5及びスラリ拡散部材7を用いると、金属製ブッシュ31の位置決め及び支持を、簡単に行うことができる。 If the bush support 5 and the slurry diffusion member 7 are used in this way, the metal bush 31 can be positioned and supported easily.
 また、短繊維と粉末状樹脂の集合物38の外周面の形状は、筒状金型3の内周面の形状によって定まる。 Further, the shape of the outer peripheral surface of the aggregate 38 of short fibers and powdered resin is determined by the shape of the inner peripheral surface of the cylindrical mold 3.
 中空下圧縮型2に設けた複数の排出口12から液分を排出した後、図1(C)に示すように、ブッシュ支持台5、スラリ拡散部材7、中空下圧縮型2が上方向に移動する。すると、先ず始めにスラリ拡散部材7と押下部材8とが接触し、上弾性体9及び下弾性体6の力で金属製ブッシュ31を固定する。なお、図1に示すものでは、上弾性体9及び下弾性体6として、バネ定数の等しいバネを用いている。 After the liquid is discharged from the plurality of discharge ports 12 provided in the hollow lower compression mold 2, the bush support 5, the slurry diffusion member 7, and the hollow lower compression mold 2 are moved upward as shown in FIG. Moving. Then, first, the slurry diffusing member 7 and the pressing member 8 come into contact with each other, and the metal bush 31 is fixed by the force of the upper elastic body 9 and the lower elastic body 6. In FIG. 1, springs having the same spring constant are used as the upper elastic body 9 and the lower elastic body 6.
 更に、ブッシュ支持台5、スラリ拡散部材7、中空下圧縮型2を上昇させ、ブッシュ支持台5と中空下圧縮型2に設けた段部10、押下部材8と中空上圧縮型4に設けた段部11とが当接し、中空下圧縮型2と中空上圧縮型4との距離が縮まらない位置(図1(D)参照)まで上昇させる。 Further, the bush support 5, the slurry diffusing member 7, and the hollow lower compression mold 2 are raised, and the step 10 provided on the bush support 5 and the hollow lower compression mold 2, the pressing member 8, and the hollow upper compression mold 4 are provided. The step portion 11 is brought into contact with the hollow upper compression mold 2 and the hollow upper compression mold 4 so that the distance is not reduced (see FIG. 1D).
 ここで、図5を用いて、成形素材の厚みについて、詳細に説明する。 Here, the thickness of the molding material will be described in detail with reference to FIG.
 図5(A)に示すように、金属製ブッシュ31の厚みT1と、段部10、11(図1参照)により決定される成形素材35の厚み(圧縮時の厚み)T2との関係は、(A)T1=T2、(B)T1>T2、(C)T1<T2の3パターンから、任意に選択することが可能である。 As shown in FIG. 5 (A), the relationship between the thickness T1 of the metal bush 31 and the thickness (thickness during compression) T2 of the molding material 35 determined by the stepped portions 10 and 11 (see FIG. 1) is: It is possible to arbitrarily select from three patterns (A) T1 = T2, (B) T1> T2, and (C) T1 <T2.
 また、金属製ブッシュ31の下面から圧縮時の成形素材35下面迄の距離T3と、金属製ブッシュ31の上面から圧縮時の成形素材35上面迄の距離T4との関係は、(D)T3=T4、(E)T3>T4、(F)T3<T4の3パターンから、任意に選択することができ、これは段部10、11の高さL3、L4(図5(B)参照)を変更することで可能となる。 Further, the relationship between the distance T3 from the lower surface of the metal bush 31 to the lower surface of the molding material 35 during compression and the distance T4 from the upper surface of the metal bush 31 to the upper surface of the molding material 35 during compression is (D) T3 = T4, (E) T3> T4, and (F) T3 <T4 can be arbitrarily selected from the three patterns, and the heights L3 and L4 of the stepped portions 10 and 11 (see FIG. 5B). It becomes possible by changing.
 更に、前述した(A)~(C)、(D)~(F)を組合せた仕様にすることもできる。 Furthermore, it is also possible to make a specification combining (A) to (C) and (D) to (F) described above.
 圧縮を行う時間及び温度は、使用する短繊維と粉末状樹脂の種類によって任意に変更できるが、前記圧縮の際、中空上圧縮型4にヒータを取り付け、加熱した状態で圧縮することにより、濾過脱水後の成形素材35に含まれる液分を取り除く時間を短縮することができると共に、圧縮後の成形素材35の厚みの経時変化を抑えることができる。 The time and temperature at which compression is performed can be arbitrarily changed depending on the type of short fiber and powdered resin to be used. At the time of compression, filtration is performed by attaching a heater to the hollow upper compression mold 4 and compressing in a heated state. The time for removing the liquid component contained in the molding material 35 after dehydration can be shortened, and the change with time in the thickness of the molding material 35 after compression can be suppressed.
 また、前記圧縮の際、中空下圧縮型2の排出口12から真空吸引した状態で圧縮することにより、濾過脱水後の成形素材35に含まれる液分を取り除く時間を短縮することができる。 Further, during the compression, by compressing in the vacuum suction state from the discharge port 12 of the hollow lower compression mold 2, it is possible to shorten the time for removing the liquid component contained in the molding material 35 after filtration and dehydration.
 なお、排出工程と、圧縮工程とは、同時に行っても、排出工程を行った後、圧縮工程を行ってもよい。 Note that the discharging step and the compressing step may be performed simultaneously, or the compressing step may be performed after the discharging step.
 順番に行った場合は、先に分散媒と成形素材を十分に分離することができるので、圧縮工程の圧縮時に上型を加熱した場合、上型の温度低下幅を少なく成形素材を圧縮することができる。同時に行った場合は、1工程分の工程を削減できるのでより短時間に成形素材を製造することができる。 If performed in order, the dispersion medium and the molding material can be sufficiently separated first, so when the upper mold is heated during compression in the compression process, the molding material is compressed with less temperature drop. Can do. When it is performed simultaneously, the molding material can be manufactured in a shorter time since the process for one process can be reduced.
 <成形工程>
 成形素材35を、加熱しながら加圧して粉末状樹脂を溶融させて生成した溶融樹脂を短繊維からなる補強繊維層に含浸させた後、溶融樹脂を硬化させて樹脂成形体を形成する工程について、以下に説明する。
<Molding process>
Regarding the step of forming a resin molding by curing the molten resin after impregnating the reinforcing fiber layer made of short fibers with the molten resin generated by pressurizing the molding material 35 while heating and melting the powdered resin. This will be described below.
 図6に示すように、ブッシュ31に成形素材35を備えた樹脂製回転体成形用半加工品40を、予め加熱した金型41内に配置した後に加熱加圧成形して粉末状樹脂を硬化させて、樹脂成形体を備えた樹脂製回転体を成形する。金型41は固定金型42と、固定金型42の中心に配置されて上下方向に変位する移動金型43と、この移動金型43と対になってブッシュ31を挟持する上金型44とを備えている。上金型44の押圧部44Aが、固定金型42内に挿入されて、ブッシュ31を押圧すると、移動金型43は、上金型44の挿入量に応じて下方に変位する。樹脂が硬化したら、成形素材35を芯材として成形された樹脂成形体を備えた樹脂製回転体を金型41から取り出して、樹脂成形体の製造を完了する。 As shown in FIG. 6, a resin-made rotating body half-finished product 40 provided with a molding material 35 on a bush 31 is placed in a preheated mold 41 and then heated and pressed to cure the powdered resin. Then, the resin rotating body provided with the resin molded body is molded. The mold 41 includes a fixed mold 42, a movable mold 43 that is disposed at the center of the fixed mold 42 and is displaced in the vertical direction, and an upper mold 44 that sandwiches the bush 31 in pairs with the movable mold 43. And. When the pressing portion 44 </ b> A of the upper mold 44 is inserted into the fixed mold 42 and presses the bush 31, the moving mold 43 is displaced downward according to the amount of insertion of the upper mold 44. When the resin is cured, the resin rotating body including the resin molded body formed with the molding material 35 as the core material is taken out from the mold 41 to complete the production of the resin molded body.
 <加工工程>
 樹脂を含浸硬化させた樹脂成形体の外周部に歯切加工をする。歯は、型成形時に付加することも、型成形の後に切削加工により付加することもできるが、精度を高くすることができることから、切削加工により設けることが好ましい。
<Processing process>
Gear cutting is performed on the outer periphery of the resin molded body impregnated and cured with resin. The teeth can be added at the time of mold forming or can be added by cutting after the mold forming. However, since the accuracy can be increased, it is preferable to provide the teeth by cutting.
<第2の実施の形態>
 第1の実施の形態では、短繊維と粉末状樹脂と水とを混合してスラリを作っている。このようなスラリを用いる場合には、スラリの粘度が低いために、例えば図1に示した中空下圧縮型2の底部材39に用いる金網のメッシュサイズが小さくなる(金網の編み目が大きくなる)と、成形素材35中の短繊維及び粉末状樹脂の歩留まりが悪くなる。そこで例えば、一辺が100μmのメッシュサイズの金網を使用する場合に、粉末状樹脂の粒子径が10μmであったとすると、濾過性能が悪いために、水と一緒に排出されてしまう粉末状樹脂の量が多くなる。このような事態を防ぐために、メッシュサイズを大きくする(金網の編み目を小さくする)と、濾過性能は上がるものの、脱水時間が長くなる。そこで第2の実施の形態では、このような問題に対応するために、短繊維と粉末状樹脂と分散媒とを混合した混合液に、1種以上の静電引力凝集タイプの高分子凝集剤を添加してスラリを調整する。静電引力凝集タイプの高分子凝集剤を添加すると、静電引力凝集タイプの高分子凝集剤が凝集機能だけでなく定着剤としても機能し、短繊維同士が定着するともとに、短繊維と粉末状樹脂が定着する。その結果、集合物中に残る短繊維及び粉末状樹脂の量を増やすことができる。すなわち短繊維と粉末状樹脂の定着率を高め、歩留りを向上することができる。
<Second Embodiment>
In the first embodiment, a slurry is made by mixing short fibers, a powdered resin, and water. When such a slurry is used, since the viscosity of the slurry is low, for example, the mesh size of the wire mesh used for the bottom member 39 of the hollow lower compression mold 2 shown in FIG. 1 is reduced (the mesh of the wire mesh is increased). And the yield of the short fiber and the powdery resin in the molding material 35 is deteriorated. Therefore, for example, when using a wire mesh having a mesh size of 100 μm on one side, if the particle size of the powdered resin is 10 μm, the amount of the powdered resin that is discharged together with water due to poor filtration performance Will increase. To prevent such a situation, increasing the mesh size (decreasing the mesh of the wire mesh) increases the filtration performance but increases the dehydration time. Therefore, in the second embodiment, in order to cope with such a problem, one or more types of electrostatic attraction aggregation type polymer flocculants are added to a mixed liquid in which short fibers, a powdered resin, and a dispersion medium are mixed. To adjust the slurry. When an electrostatic attraction aggregation type polymer flocculant is added, the electrostatic attraction aggregation type polymer flocculant functions not only as an aggregating function but also as a fixing agent. The powdered resin is fixed. As a result, the amount of short fibers and powdered resin remaining in the aggregate can be increased. That is, the fixing ratio between the short fibers and the powdered resin can be increased, and the yield can be improved.
 使用可能な静電引力凝集タイプの高分子凝集剤は、短繊維と粉末状樹脂の定着率を高めることができて、しかも脱水性を著しく阻害しないものであれば、どのようなものでもよく、カチオン性高分子凝集剤としては、例えば、スチレン系高分子、ポリアミン縮合物、ジシアンジアミド縮合物、カチオン変性アクリル系共重合体、ポリメタアクリル酸エステル系、ポリアミジン塩酸塩を用いることができる。また、アニオン性高分子凝集剤としては、例えば、アクリル系共重合物、スルホン化ポリフェノール、多価フェノール系樹脂、ポリアクリル酸エステル系、ポリアクリル酸ソーダ・アミド誘導体を用いることができる。 The electrostatic attraction aggregation type polymer flocculant that can be used may be any one as long as it can increase the fixing rate of short fibers and powdered resin and does not significantly impair dehydration, As the cationic polymer flocculant, for example, a styrene polymer, a polyamine condensate, a dicyandiamide condensate, a cation-modified acrylic copolymer, a polymethacrylate ester, and a polyamidine hydrochloride can be used. Examples of the anionic polymer flocculant include acrylic copolymers, sulfonated polyphenols, polyhydric phenol resins, polyacrylate esters, and polyacrylate soda / amide derivatives.
 代表的な高分子凝集剤を用いた凝集方法では、混合液に、カチオン性高分子凝集剤を添加した後、アニオン性高分子凝集剤を添加する。混合液にカチオン性高分子凝集剤を添加すると、一部の短繊維と一部の粉末状樹脂とが集まってできる多数のフロックと呼ばれる集合物が形成される。その後アニオン性高分子凝集剤を添加すると、フロック同士が集合して更に大きなフロックの生成が進み、寸法の大きなフロックが多数形成される。このようなフロックが形成されると、脱水性が向上する。その結果、短い時間で脱水をできるとともに、短繊維と粉末状樹脂の定着率が向上する。特に、カチオン性高分子凝集剤としてカチオン性スチレン系高分子水溶液を用い、アニオン性高分子凝集剤としてアニオン性アクリル系高分子水溶液を用いると、高い脱水性を得ることができる。 In a flocculation method using a typical polymer flocculant, a cationic polymer flocculant is added to a mixed solution, and then an anionic polymer flocculant is added. When a cationic polymer flocculant is added to the mixed solution, a large number of aggregates called flocs are formed which are formed by collecting some short fibers and some powdered resin. Thereafter, when an anionic polymer flocculant is added, flocs gather to generate larger flocs, and a large number of flocs having large dimensions are formed. When such a floc is formed, the dewaterability is improved. As a result, dehydration can be performed in a short time, and the fixing rate between the short fibers and the powdered resin is improved. In particular, when a cationic styrene polymer aqueous solution is used as the cationic polymer flocculant and an anionic acrylic polymer aqueous solution is used as the anionic polymer flocculant, high dehydrating properties can be obtained.
 また高分子凝集剤として、両性高分子凝集剤を用いることができる。両性高分子凝集剤とは、混合液中の短繊維及び粉末状粒子の中和効果(カチオン)と、高分子鎖による絡まり合い(高分子量体)の生成と、絡まり合い(高分子量体)をアニオンとカチオンの電荷による静電引力により補強する作用を発揮するものである。このような、両性高分子凝集剤としては、例えば、アクリルアミド・アクリル酸・アルキルアミノアクリレート4級塩共重合物、ポリアクリル酸エステル系、ポリメタクリル酸エステル系を用いることができる。 Moreover, an amphoteric polymer flocculant can be used as the polymer flocculant. Amphoteric polymer flocculants are the neutralization effect (cations) of short fibers and powdered particles in the mixture, the formation of entanglement (high molecular weight) by polymer chains, and the entanglement (high molecular weight). It exerts an effect of reinforcing by electrostatic attraction due to charges of anions and cations. As such an amphoteric polymer flocculant, for example, an acrylamide / acrylic acid / alkylamino acrylate quaternary salt copolymer, a polyacrylic acid ester, or a polymethacrylic acid ester can be used.
 以下、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.
 [実施例1]
 スラリを製造するために、短繊維と粉末状樹脂投入時の濃度が4g/リットルとなる量の水を満たしたタンクを用意する。そしてこのタンク内に、樹脂成形体中の短繊維の繊維総量が40体積%となる量の短繊維と、樹脂成形体中の樹脂の総量が60体積%となる量の粉末状樹脂を入れる。具体的には、短繊維として用いる繊維チョップとして、アスペクト比200のパラ系アラミド繊維“帝人(株)製「テクノーラ(商標)」”を50質量%、アスペクト比200のメタ系アラミド繊維“帝人(株)製「コーネックス(商標)」”を45質量%、そしてフリーネス値300mlまでフィブリル化処理した微細繊維“デュポン(株)製「ケブラー(商標)」”を5質量%となる量をそれぞれ投入する。また、粉末状樹脂として、粒子径20μmのフェノール樹脂粉末“エア・ウォーター・ベルパール(株)製「ベルパール(商標)」を投入する。次に攪拌機でタンク内の水を攪拌し繊維チョップとフェノール樹脂粉末を分散させてスラリを製造する。
[Example 1]
In order to manufacture the slurry, a tank filled with water in such an amount that the concentration at the time of charging the short fibers and the powdered resin is 4 g / liter is prepared. And in this tank, the short fiber of the quantity which the fiber total amount of the short fiber in a resin molding becomes 40 volume%, and the powdery resin of the quantity which the total amount of resin in a resin molding becomes 60 volume% are put. Specifically, as a fiber chop used as a short fiber, a para-aramid fiber having an aspect ratio of 200 “Technola (trademark)” manufactured by Teijin Limited is 50% by mass, and a meta-aramid fiber having an aspect ratio of 200 “Teijin ( 45% by weight of “Conex (trademark)” manufactured by Co., Ltd., and 5% by weight of fine fiber “Kevlar (trademark)” manufactured by DuPont Co., Ltd., which has been fibrillated to a freeness value of 300 ml. Also, a phenol resin powder “Bellepearl (trademark)” manufactured by Air Water Bellpearl Co., Ltd. having a particle diameter of 20 μm is introduced as the powdery resin. Next, the water in the tank is stirred with a stirrer to disperse the fiber chop and the phenol resin powder to produce a slurry.
 このとき、カチオン性高分子凝集剤として明成化学工業株式会社が「セラフィックスST」(商標)の名称で販売するカチオン性スチレン系高分子水溶液を添加して撹拌した後、アニオン性高分子凝集剤として明成化学工業株式会社が「ファイレックスM」(商標)の名称で販売するアニオン性アクリル系高分子水溶液を添加して撹拌して、本実施例で用いるスラリとした。カチオン性スチレン系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.2質量%であり、アニオン性アクリル系高分子水溶液の添加量は、短繊維と粉末状樹脂の総量に対して、0.1質量%であった。 At this time, after adding and stirring a cationic styrene-based polymer aqueous solution marketed by Meisei Chemical Industry Co., Ltd. under the name of “Cerafix ST” (trademark) as a cationic polymer flocculant, an anionic polymer flocculant As a slurry used in this example, an anionic acrylic polymer aqueous solution marketed by Meisei Chemical Industry Co., Ltd. under the name of “FIREX M” (trademark) was added and stirred. The addition amount of the cationic styrenic polymer aqueous solution is 0.2% by mass with respect to the total amount of the short fibers and the powder resin, and the addition amount of the anionic acrylic polymer aqueous solution is the short fibers and the powder resin. The total amount was 0.1% by mass.
 次に、図1(A)に示す濾過脱水圧縮装置を用いて、ブッシュ支持台5上に金属製ブッシュ31を位置決めし、スラリ拡散部材7を金属製ブッシュ31上に位置ズレしないように載置し、金属製ブッシュ31を挟持する。なお、スラリ拡散部材7の上側に凸となる円錐形状のスラリ拡散部71の円錐面の中心角は90°である。また、スラリ拡散部71の頂部は、R15mmの曲面形状とした。 Next, using the filtration dehydration compression apparatus shown in FIG. 1 (A), the metal bush 31 is positioned on the bush support 5 and the slurry diffusion member 7 is placed on the metal bush 31 so as not to be displaced. Then, the metal bush 31 is sandwiched. In addition, the central angle of the conical surface of the conical slurry diffusing portion 71 protruding upward from the slurry diffusing member 7 is 90 °. Moreover, the top part of the slurry diffusion part 71 was made into the curved surface shape of R15mm.
 使用する金属製ブッシュ31の突出部33及び凹部34の形状(図4参照)は、h1=2mm、h2=0.5mmであり、アンダーカット形状で、金属製ブッシュ31の仮想中心横断面と側面との間の角度θが20°である。 The shape of the protrusion 33 and the recess 34 of the metal bush 31 to be used (see FIG. 4) is h1 = 2 mm and h2 = 0.5 mm, and is an undercut shape. Is 20 °.
 ここで、中空下圧縮型2の位置は、金属製ブッシュ31の軸方向中央から底部材39上面までの距離が50mmとなる位置とした。 Here, the position of the hollow lower compression mold 2 was a position where the distance from the axial center of the metal bush 31 to the upper surface of the bottom member 39 was 50 mm.
 図1(B)に示すスラリ注入上型20と筒状金型3を密着させ濾過脱水圧縮装置内に、上記スラリを投入する。そして、筒状金型内を真空吸引して中空下圧縮型2に設けた複数の排出口12から水を排水することにより、繊維チョップとフェノール樹脂粉末と、水を分離して円筒状の短繊維と粉末状樹脂の集合物38を得る。真空吸引し繊維チョップとフェノール樹脂粉末と、水を分離後、スラリ注入孔21より水を注入し、スラリ拡散部材7の上側に残った繊維チョップとフェノール樹脂粉末を洗い流す。スラリ注入孔21は、スラリ拡散部材7の直上に配置する。 1) The slurry injection upper mold 20 and the cylindrical mold 3 shown in FIG. 1B are brought into close contact with each other, and the slurry is put into the filtration dehydration compression apparatus. Then, by sucking the inside of the cylindrical mold by vacuum and draining water from the plurality of outlets 12 provided in the hollow lower compression mold 2, the fiber chop, the phenol resin powder, and the water are separated to form a cylindrical short An aggregate 38 of fibers and powdered resin is obtained. After vacuum suction and separation of the fiber chop, phenol resin powder, and water, water is injected from the slurry injection hole 21, and the fiber chop and phenol resin powder remaining on the upper side of the slurry diffusion member 7 are washed away. The slurry injection hole 21 is disposed immediately above the slurry diffusion member 7.
 なお、排水時に排出口12より繊維チョップとフェノール樹脂粉末が流出するのを防止するために、中空下圧縮型2上には底部材39を配置した。この底部材39としては金属製:20メッシュの金網を用いた。 In addition, in order to prevent the fiber chop and the phenol resin powder from flowing out from the discharge port 12 during drainage, a bottom member 39 is disposed on the hollow lower compression mold 2. As the bottom member 39, a metal: 20 mesh wire mesh was used.
 次に金属製ブッシュ31の回り止め部に、更に強固に繊維チョップとフェノール樹脂粉末を喰い込ませるために圧縮を行う。図1(C)に示すように、金属製ブッシュ31の軸方向中央から中空上圧縮型4下面までの距離が50mmとなる位置まで、中空下圧縮型2、筒状金型3、ブッシュ支持台5、ブッシュ31、スラリ拡散部材7、短繊維と粉末状樹脂の集合物38を、台座1ごと上昇させる。この位置は、金属製ブッシュ31が、中空上圧縮型4と中空下圧縮型2の間の、中央に位置する状態となる位置である。 Next, the metal bush 31 is compressed in order to allow the fiber chop and the phenol resin powder to bite into the non-rotating portion of the metal bush 31 more firmly. As shown in FIG. 1C, the hollow lower compression mold 2, the cylindrical mold 3, and the bush support stand up to a position where the distance from the axial center of the metal bush 31 to the lower surface of the hollow upper compression mold 4 is 50 mm. 5. The bush 31, the slurry diffusing member 7, the short fiber and powder resin aggregate 38 are raised together with the base 1. This position is a position where the metal bush 31 is located in the center between the hollow upper compression mold 4 and the hollow lower compression mold 2.
 図1(D)に示すように、ブッシュ31が、中空上圧縮型4と中空下圧縮型2の間の中央に位置する状態で、台座1を速度:1~5mm/sで上昇させ、短繊維と粉末状樹脂の集合物38が厚み:20mmとなるまで圧縮する。 As shown in FIG. 1D, the pedestal 1 is raised at a speed of 1 to 5 mm / s while the bush 31 is located at the center between the hollow upper compression mold 4 and the hollow lower compression mold 2. Compress until the aggregate 38 of the fiber and the powdery resin has a thickness of 20 mm.
 そして、この状態で2分間圧縮することにより、金属製ブッシュ31と一体化した樹脂製回転体成形用半加工品を得た。 And by compressing for 2 minutes in this state, a semi-finished product for molding a resin rotating body integrated with the metal bush 31 was obtained.
 なお、前記圧縮の際、中空下圧縮型2の排出口12から真空吸引した状態で圧縮している。また、図5(B)に示す、ブッシュ支持台5の長さ:L7=100mm、スラリ拡散部材7の長さ:L6=70mm、押下部材8の長さ:L5=30mm、金属製ブッシュ31の厚み:T1=10mm、中空上圧縮型4と中空下圧縮型2の段部の高さL3及びL4:L3=L4=100mmとした。 In addition, at the time of the said compression, it compresses in the state vacuum-sucked from the discharge port 12 of the hollow lower compression type | mold 2. 5B, the length of the bush support base 5: L7 = 100 mm, the length of the slurry diffusion member 7: L6 = 70 mm, the length of the pressing member 8: L5 = 30 mm, the metal bush 31 Thickness: T1 = 10 mm, height L3 and L4: L3 = L4 = 100 mm of the step portions of the hollow upper compression mold 4 and the hollow lower compression mold 2.
 [実施例2]
 スラリ拡散部材7の頂部が曲面形状でないこと以外は、実施例1と同じ方法で成形素材を作製した。
[Example 2]
A molding material was produced in the same manner as in Example 1 except that the top of the slurry diffusion member 7 was not curved.
 [比較例1]
 スラリ拡散部材7に付着し残留する短繊維と粉末状樹脂を洗い流すことをしない以外は、実施例1と同じ方法で成形素材を作製した。
[Comparative Example 1]
A molding material was produced in the same manner as in Example 1 except that the remaining short fibers and powdered resin adhering to the slurry diffusing member 7 were not washed away.
 前述した実施例1~2及び比較例1に示す方法でスラリ注入後、スラリ拡散部材7上に短繊維と粉末状樹脂が残る回数を測定(10回の成形素材作製中の短繊維と粉末状樹脂の残り回数を測定)した。測定結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
After slurry injection by the methods shown in Examples 1 and 2 and Comparative Example 1 described above, the number of remaining short fibers and powdered resin on the slurry diffusing member 7 is measured (short fibers and powder during 10 molding material preparations). The remaining number of resin was measured). The measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 表1より、短繊維と粉末状樹脂を洗い流すことをしなかった比較例1は、10回中10回スラリ拡散部材7上に短繊維と粉末状樹脂が残った。また、洗浄水を投入した場合でも、スラリ拡散部材7の頂部が曲面形状でない実施例2は、10回中5回スラリ拡散部材7上に短繊維と粉末状樹脂が残った。これに対し、スラリ拡散部材7の頂部を曲面形状とした実施例1では、スラリ拡散部材7上に短繊維と粉末状樹脂が残ったのは10回中0回であった。そのため比較例1と比べ、投入工程にてスラリ拡散部材に付着し残留する短繊維と粉末状樹脂を洗い流す洗浄工程を含む本発明では、スラリ拡散部材7上に短繊維と粉末状樹脂が残らないため製品個々の短繊維と粉末状樹脂の量のばらつきが少なく、また金型損傷が発生しないため連続生産を行うことが可能である。 From Table 1, in Comparative Example 1 in which the short fibers and the powdered resin were not washed away, the short fibers and the powdered resin remained on the slurry diffusion member 7 out of 10 times. In addition, even in the case where the cleaning water was added, in Example 2 where the top of the slurry diffusing member 7 was not curved, the short fibers and the powdered resin remained on the slurry diffusing member 7 five times out of ten times. In contrast, in Example 1 in which the top portion of the slurry diffusion member 7 was curved, the short fibers and the powdered resin remained on the slurry diffusion member 7 only 0 times. Therefore, compared with the comparative example 1, in this invention including the washing | cleaning process which wash | cleans the short fiber and powdery resin which adhere and remain | survive to a slurry diffusion member at a charging process, a short fiber and powdery resin do not remain on the slurry diffusion member 7. Therefore, there is little variation in the amount of individual short fibers and powdered resin, and there is no mold damage, so continuous production can be performed.
 上記実施例では、高分子凝集剤をスラリに添加しているために、凝集性が高く、実施例1の場合にだけ、十分な洗浄効果が得られている。しかしながら第1の実施の形態のように、スラリに高分子凝集剤を添加しない場合には、上記実施例1で用いたスラリ拡散部材のように先端部に湾曲面を有するスラリ拡散部を用いる場合だけでなく、上記実施例2で用いたスラリ拡散部材のように先端部に湾曲面を有しないスラリ拡散部を用いる場合にも、十分な洗浄効果が得られることが実験により確認されている。したがってスラリ拡散部材の形状は、スラリの粘度等によっては、実施例1のスラリ拡散部材のように先端部に湾曲面を備えている必要はない。スラリ拡散部材のスラリ拡散部は、少なくとも上方向に延び且つ上方向と直交する方向の横断面の面積が上方向に向かうに従って小さくなるものであれば、本発明で使用することができる。 In the above example, since the polymer flocculant is added to the slurry, the coagulability is high, and only in the case of Example 1, a sufficient cleaning effect is obtained. However, in the case where the polymer flocculant is not added to the slurry as in the first embodiment, a slurry diffusing portion having a curved surface at the tip portion is used like the slurry diffusing member used in Example 1 above. In addition, it has been confirmed by experiments that a sufficient cleaning effect can be obtained even when a slurry diffusing portion having no curved surface at the tip portion, such as the slurry diffusing member used in Example 2 above, is used. Therefore, the shape of the slurry diffusing member does not need to have a curved surface at the tip as in the slurry diffusing member of the first embodiment, depending on the viscosity of the slurry. The slurry diffusing portion of the slurry diffusing member can be used in the present invention as long as the area of the cross section extending in at least the upper direction and perpendicular to the upper direction becomes smaller in the upward direction.
 本発明によれば、分散媒または水をスラリ拡散部材に向かって注ぎ、スラリ拡散部材に付着して残存する短繊維と粉末状樹脂を筒状金型内へ落下させることで、製造される成形素材の目付量(質量)を均一にすると共に、短繊維と粉末状樹脂を金型部材の隙間に噛み込んでしまう基材ガミを防止して、連続生産を行うことが可能となる。また、金型寿命を延ばすこともできる。 According to the present invention, the molding produced by pouring the dispersion medium or water toward the slurry diffusing member, and dropping the short fibers and the powdered resin remaining attached to the slurry diffusing member into the cylindrical mold. It is possible to perform continuous production by making the basis weight (mass) of the material uniform and preventing the base material from biting the short fiber and the powdered resin into the gap between the mold members. In addition, the mold life can be extended.
 また分散媒を筒状金型から排出する排出工程と短繊維と粉末状樹脂の集合物を圧縮する工程を同時に行う場合は、1工程分工程を削減できるので、より短時間に成形素材を製造することができる。 In addition, when the discharging process for discharging the dispersion medium from the cylindrical mold and the process for compressing the aggregate of short fibers and powdered resin are performed at the same time, the molding material can be manufactured in a shorter time because the process for one process can be reduced. can do.
 分散媒の排出が、減圧雰囲気下にて行われる場合は、より短時間に分散媒の排出を行うことができる。 When the dispersion medium is discharged in a reduced pressure atmosphere, the dispersion medium can be discharged in a shorter time.
 短繊維と粉末状樹脂の集合物を圧縮する圧縮工程が、加圧力5~25MPaで行われる場合は、短繊維と粉末状樹脂の集合物が含有する、より多くの分散媒を排出することができる。また短繊維と粉末状樹脂の集合物と金属製ブッシュに設けた回り止め部との結合強度が高くなり、短繊維と粉末状樹脂の集合物も硬く締まった状態となり、成形素材の取扱い性が向上する。 When the compression step of compressing the aggregate of short fibers and powdered resin is performed at a pressure of 5 to 25 MPa, more dispersion medium contained in the aggregate of short fibers and powdered resin can be discharged. it can. In addition, the bond strength between the short fiber and powdered resin aggregate and the anti-rotation portion provided on the metal bush is increased, and the short fiber and powder resin aggregate is also tightly clamped, making the molding material easy to handle. improves.
 また、熱をかけながら行われる場合は、粉末状樹脂の溶融温度より低い温度にすることで、短時間で短繊維と粉末状樹脂の集合物に含まれる分散媒の分離を行うことができ、減圧雰囲気下にて更に加熱を行うと、より一層短時間で分離できる。 In addition, when carried out while applying heat, the dispersion medium contained in the aggregate of the short fibers and the powdered resin can be separated in a short time by setting the temperature lower than the melting temperature of the powdered resin. When further heating is performed in a reduced-pressure atmosphere, separation can be performed in a shorter time.
 短繊維と粉末状樹脂の集合物が、筒状金型内で歯車の形状を付与される場合は、最終的に歯車を作製する場合に、後の切削工程を簡略化することができ、材料歩留りを向上することができる。 When the aggregate of short fibers and powdered resin is given the shape of a gear in a cylindrical mold, the final cutting process can be simplified when the gear is finally produced. Yield can be improved.
 本発明の樹脂製回転体は、成形素材の目付量が均一であることから、強度も均一となり、耐久性能に優れ、車輌用部品、産業用部品等の高温・高負荷の使用条件に耐え得る樹脂製回転体として使用することができる。 Since the resin rotating body of the present invention has a uniform basis weight of the molding material, it has uniform strength, excellent durability, and can withstand high temperature / high load use conditions such as vehicle parts and industrial parts. It can be used as a resin rotating body.
 1 台座
 2 中空下圧縮型
 3 筒状金型
 4 中空上圧縮型
 5 ブッシュ支持台
 6 下弾性体
 7 スラリ拡散部材
 8 押下部材
 9 上弾性体
10 段部
11 段部
12 排出口
13 濾過脱水圧縮装置
20 スラリ注入上型
21 スラリ注入孔
30 樹脂製歯車
31 金属製ブッシュ
32 貫通孔
33 突出部
34 凹部
35 成形素材
36 外周部
37 樹脂成形体
38 短繊維と粉末状樹脂の集合物
39 底部材
40 樹脂製回転体成形用半加工品
41 金型
42 固定金型
43 移動金型
44 上金型
44A 押圧部
DESCRIPTION OF SYMBOLS 1 Base 2 Hollow lower compression type 3 Cylindrical die 4 Hollow upper compression type 5 Bush support stand 6 Lower elastic body 7 Slurry diffusion member 8 Pressing member 9 Upper elastic body 10 Step part 11 Step part 12 Discharge port 13 Filtration dehydration compression apparatus 20 Slurry injection upper mold 21 Slurry injection hole 30 Resin gear 31 Metal bush 32 Through hole 33 Protrusion 34 Recess 35 Molding material 36 Outer part 37 Resin molded body 38 Aggregate of short fibers and powdered resin 39 Bottom member 40 Resin Semi-finished product 41 for forming a rotating body 41 Mold 42 Fixed mold 43 Moving mold 44 Upper mold 44A Pressing part

Claims (17)

  1.  分散媒に短繊維と粉末状樹脂を分散させたスラリを調製する調整工程と、
     上方向に向かって開口する開口部を有する筒状金型と、前記筒状金型の中央に配置されて前記上方向に延び且つ前記上方向と直交する方向の横断面の面積が前記上方向に向かうに従って小さくなる形状のスラリ拡散部を備えたスラリ拡散部材とを含む成形金型内に、前記上方向から前記スラリを前記スラリ拡散部に向かって投入する投入工程と、
     前記投入工程の後に、前記分散媒と同一の分散媒または水をスラリ拡散部に向かって上方から注いで、前記スラリ拡散部に付着する前記短繊維と前記粉末状樹脂を落下させる洗浄工程と、
     前記成形金型から前記分散媒または前記分散媒及び前記水を排出し、前記成形金型内に前記短繊維と前記粉末状樹脂を集合させた集合物を形成する排出工程と行うことを特徴とする成形素材の製造方法。
    An adjustment step of preparing a slurry in which short fibers and powdered resin are dispersed in a dispersion medium;
    A cylindrical mold having an opening that opens upward, and an area of a cross section that is disposed at the center of the cylindrical mold and extends in the upward direction and perpendicular to the upward direction is the upward direction. In a molding die including a slurry diffusing member having a slurry diffusing portion having a shape that decreases as it goes to, a charging step of charging the slurry from the upper direction toward the slurry diffusing portion;
    After the charging step, the same dispersion medium or water as the dispersion medium is poured from above toward the slurry diffusion part, and the short fiber adhering to the slurry diffusion part and the powdery resin are dropped, and
    Discharging the dispersion medium or the dispersion medium and the water from the molding die to form an aggregate in which the short fibers and the powdery resin are aggregated in the molding die. The manufacturing method of the molding material to do.
  2.  前記排出工程の間または前記排出工程の後に、前記集合物を圧縮して成形素材を形成する圧縮工程を行うことを特徴とする請求項1に記載の成形素材の製造方法。 The method for manufacturing a molding material according to claim 1, wherein a compression step is performed in which the aggregate is compressed to form a molding material during or after the discharging step.
  3.  前記調整工程では、前記短繊維と前記粉末状樹脂と水とを混合した混合液に、1種以上の静電引力凝集タイプの高分子凝集剤を添加して前記スラリを調整し、
     前記スラリ拡散部材の前記スラリ拡散部が先端部に上方向に向かって凸となる湾曲面を有していることを特徴とする請求項1に記載の成形素材の製造方法。
    In the adjustment step, the slurry is adjusted by adding one or more kinds of electrostatic attraction aggregation type polymer flocculants to a mixed liquid obtained by mixing the short fibers, the powdered resin, and water,
    The method for producing a molding material according to claim 1, wherein the slurry diffusing portion of the slurry diffusing member has a curved surface that protrudes upward at a tip portion.
  4.  前記1種以上の静電引力凝集タイプの高分子凝集剤として、前記混合液に、カチオン性高分子凝集剤を添加した後、アニオン性高分子凝集剤を添加する請求項3に記載の成形素材の製造方法。 The molding material according to claim 3, wherein a cationic polymer flocculant is added to the mixed liquid and then an anionic polymer flocculant is added to the mixed liquid as the one or more types of electrostatic attraction aggregation type polymer flocculants. Manufacturing method.
  5.  前記1種以上の静電引力凝集タイプの高分子凝集剤として、前記混合液に両性高分子凝集剤を添加することを特徴とする請求項3に記載の成形素材の製造方法。 4. The method for producing a molding material according to claim 3, wherein an amphoteric polymer flocculant is added to the mixed solution as the one or more types of electrostatic attraction aggregation type polymer flocculants.
  6.  前記カチオン性高分子凝集剤はカチオン性スチレン系高分子水溶液であり、アニオン性高分子凝集剤はアニオン性アクリル系高分子水溶液である請求項4に記載の成形素材の製造方法。 The method for producing a molding material according to claim 4, wherein the cationic polymer flocculant is a cationic styrene polymer aqueous solution, and the anionic polymer flocculant is an anionic acrylic polymer aqueous solution.
  7.  前記洗浄工程では、所定量の前記分散媒または水の注入を所定の時間間隔を開けて複数回実施する請求項1に記載の成形素材の製造方法。 The method for producing a molding material according to claim 1, wherein in the cleaning step, a predetermined amount of the dispersion medium or water is injected a plurality of times at predetermined time intervals.
  8.  前記所定の時間間隔は、先に注入した前記分散媒または水の液面が、すでに落下している前記短繊維と前記粉末状樹脂の層の上面よりも下に下がるのに要する時間間隔である請求項7に記載の成形素材の製造方法。 The predetermined time interval is a time interval required for the level of the previously injected dispersion medium or water to fall below the top surfaces of the short fibers and the powdery resin layer that have already dropped. The manufacturing method of the shaping | molding raw material of Claim 7.
  9.  前記筒状金型の前記開口部は、前記投入工程と洗浄工程においては、中央に下方に向かって延びるノズルを備えた蓋部材によって塞がれており、
     前記ノズルは、前記洗浄工程において、前記分散媒または前記水を、前記スラリ拡散部上に集中的に投入するように長さ及び先端形状が定められている請求項1に記載の成形素材の製造方法。
    The opening of the cylindrical mold is closed by a lid member having a nozzle extending downward in the center in the charging step and the cleaning step,
    2. The manufacturing of a molding material according to claim 1, wherein the nozzle has a length and a tip shape so that the dispersion medium or the water is intensively charged onto the slurry diffusion portion in the cleaning step. Method.
  10.  前記排出工程は、その排出口内を減圧雰囲気にして行われる請求項1に記載の成形素材の製造方法。 The method for producing a molding material according to claim 1, wherein the discharging step is performed under a reduced pressure atmosphere in the discharge port.
  11.  前記圧縮工程が、加圧力5~25MPaで行われる請求項2に記載の成形素材の製造方法。 The method for producing a molding material according to claim 2, wherein the compression step is performed at a pressure of 5 to 25 MPa.
  12.  前記圧縮行程が、前記粉末状樹脂の溶融温度より低い温度で、熱をかけながら行われる請求項2または11に記載の成形素材の製造方法。 The method for producing a molding material according to claim 2 or 11, wherein the compression step is performed while applying heat at a temperature lower than a melting temperature of the powdered resin.
  13.  請求項1の成形素材の製造方法で用いる成形金型であって、
     上方向に向かって開口する開口部を有する筒状金型と、前記筒状金型の中央に配置されて前記上方向に延び且つ前記上方向と直交する方向の横断面の面積が前記上方向に向かうに従って小さくなる形状のスラリ拡散部を備えたスラリ拡散部材とを含み、
     前記スラリ拡散部材の前記スラリ拡散部が、その先端部に上方向に向かって凸となる湾曲面を有していることを特徴とする成形金型。
    A molding die used in the method for producing a molding material according to claim 1,
    A cylindrical mold having an opening that opens upward, and an area of a cross section that is disposed at the center of the cylindrical mold and extends in the upward direction and perpendicular to the upward direction is the upward direction. Including a slurry diffusion member having a slurry diffusion portion having a shape that decreases as it goes to
    The molding die, wherein the slurry diffusing portion of the slurry diffusing member has a curved surface that protrudes upward at the tip thereof.
  14.  前記湾曲面の曲率半径が10mm以上20mm以下である請求項13に記載の成形金型。 The molding die according to claim 13, wherein a radius of curvature of the curved surface is 10 mm or more and 20 mm or less.
  15.  前記請求項1~12の何れか一つの方法により製造した成形素材を、加熱しながら加圧して前記粉末状樹脂を溶融させて生成した溶融樹脂を前記短繊維からなる補強繊維層に含浸させた後、前記溶融樹脂を硬化させて樹脂成形体を形成する成形工程を更に行って樹脂製回転体を製造する方法。 A molding material produced by the method of any one of claims 1 to 12 is impregnated in a reinforcing fiber layer made of short fibers with a molten resin produced by applying pressure while heating to melt the powdered resin. Thereafter, a method of manufacturing a resin rotating body by further performing a molding step of curing the molten resin to form a resin molded body.
  16.  前記成形工程の後に、前記樹脂成形体の外周部に歯切り加工工程を行う、請求項15に記載の樹脂製回転体の製造方法。 The method for producing a resin rotating body according to claim 15, wherein a gear cutting process is performed on an outer peripheral portion of the resin molded body after the molding step.
  17.  請求項15または16に記載された樹脂製回転体の製造方法により製造される樹脂製回転体。 A resin rotating body manufactured by the resin rotating body manufacturing method according to claim 15 or 16.
PCT/JP2013/068877 2013-07-10 2013-07-10 Production method for molding material, molding die used in said production method, and production method for rotating resin body WO2015004752A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/901,756 US10265886B2 (en) 2013-07-10 2013-07-10 Method of manufacturing molding material, molding die for use in the manufacturing method, and method of manufacturing resin rotator
JP2013548510A JP5621941B1 (en) 2013-07-10 2013-07-10 Manufacturing method of molding material, molding die used in the manufacturing method, and manufacturing method of resin rotating body
CN201380077901.4A CN105339146B (en) 2013-07-10 2013-07-10 The molding die and the manufacturing method of resin rotary body used in the manufacturing method of moulding material and the manufacturing method
PCT/JP2013/068877 WO2015004752A1 (en) 2013-07-10 2013-07-10 Production method for molding material, molding die used in said production method, and production method for rotating resin body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068877 WO2015004752A1 (en) 2013-07-10 2013-07-10 Production method for molding material, molding die used in said production method, and production method for rotating resin body

Publications (1)

Publication Number Publication Date
WO2015004752A1 true WO2015004752A1 (en) 2015-01-15

Family

ID=52279477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068877 WO2015004752A1 (en) 2013-07-10 2013-07-10 Production method for molding material, molding die used in said production method, and production method for rotating resin body

Country Status (4)

Country Link
US (1) US10265886B2 (en)
JP (1) JP5621941B1 (en)
CN (1) CN105339146B (en)
WO (1) WO2015004752A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339146B (en) 2013-07-10 2018-06-12 日立化成株式会社 The molding die and the manufacturing method of resin rotary body used in the manufacturing method of moulding material and the manufacturing method
CN105531090B (en) * 2013-12-27 2018-02-02 日立化成株式会社 The manufacture method of the manufacture method of moulding material, moulding material manufacture device and resin gears
GB2527576B (en) * 2014-06-26 2017-10-11 Meltprep Gmbh Vacuum compression molding
USD856260S1 (en) * 2016-04-21 2019-08-13 Sanko Gosei Co., Ltd Gas discharge member of the die
CN108462918B (en) * 2018-03-21 2019-09-10 歌尔股份有限公司 A kind of loudspeaker mould group and electronic equipment
US20200088284A1 (en) * 2018-09-17 2020-03-19 Borgwarner Inc. Gear assembly having a gear comprising a first polymer and a bushing comprising a second polymer
DE102018125537A1 (en) * 2018-10-15 2020-04-16 Trw Automotive Gmbh Multi-part gear and gear for a steering system
CN113580457B (en) * 2021-08-09 2022-11-22 上海泓济环保科技股份有限公司 Mould of multi-point water distribution system for treating wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211343A (en) * 1985-03-04 1986-09-19 ザ ダウ ケミカル カンパニ− Manufacture of random fiber reinforced thermosettable polymer composite matter
JPH04113829A (en) * 1990-09-04 1992-04-15 Unitika Ltd Manufacture of phenol resin composite
JPH09188767A (en) * 1995-08-03 1997-07-22 Nippon Aramido Kk Fluororesin-based sheet, sheet laminate, production and use thereof
WO2006126627A1 (en) * 2005-05-25 2006-11-30 Asahi Organic Chemicals Industry Co., Ltd. Resin gear for electric power steering system and electric power steering system comprising same
JP2013141826A (en) * 2012-01-13 2013-07-22 Shin Kobe Electric Mach Co Ltd Method of manufacturing fiber substrate and method of manufacturing resin rotor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947356A (en) * 1957-03-11 1960-08-02 Beloit Iron Works Paper machine dandy roll construction
DE3784300T2 (en) * 1986-10-14 1993-07-15 Mitsubishi Chem Ind SHAPED CALCIUM SILICATE PRODUCT.
ATE199385T1 (en) 1995-08-03 2001-03-15 Akzo Nobel Nv FLUOROUS RESIN FILM, METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF
US8778140B2 (en) * 2007-09-12 2014-07-15 Nalco Company Preflocculation of fillers used in papermaking
JP5163104B2 (en) 2007-12-25 2013-03-13 新神戸電機株式会社 Manufacturing method of resin rotating body and manufacturing method of semi-finished product for resin rotating body molding
JP5062009B2 (en) 2008-04-08 2012-10-31 新神戸電機株式会社 Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear
JP5445175B2 (en) * 2010-01-28 2014-03-19 新神戸電機株式会社 Paper compressor
CN105339146B (en) 2013-07-10 2018-06-12 日立化成株式会社 The molding die and the manufacturing method of resin rotary body used in the manufacturing method of moulding material and the manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211343A (en) * 1985-03-04 1986-09-19 ザ ダウ ケミカル カンパニ− Manufacture of random fiber reinforced thermosettable polymer composite matter
JPH04113829A (en) * 1990-09-04 1992-04-15 Unitika Ltd Manufacture of phenol resin composite
JPH09188767A (en) * 1995-08-03 1997-07-22 Nippon Aramido Kk Fluororesin-based sheet, sheet laminate, production and use thereof
WO2006126627A1 (en) * 2005-05-25 2006-11-30 Asahi Organic Chemicals Industry Co., Ltd. Resin gear for electric power steering system and electric power steering system comprising same
JP2013141826A (en) * 2012-01-13 2013-07-22 Shin Kobe Electric Mach Co Ltd Method of manufacturing fiber substrate and method of manufacturing resin rotor

Also Published As

Publication number Publication date
JP5621941B1 (en) 2014-11-12
US10265886B2 (en) 2019-04-23
CN105339146B (en) 2018-06-12
CN105339146A (en) 2016-02-17
US20160200004A1 (en) 2016-07-14
JPWO2015004752A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5621941B1 (en) Manufacturing method of molding material, molding die used in the manufacturing method, and manufacturing method of resin rotating body
JP6007979B2 (en) Molding material manufacturing method, molding material manufacturing apparatus, and resin gear manufacturing method
JP5445175B2 (en) Paper compressor
EP1870150B1 (en) Filter and process to prepare the same
JP6065004B2 (en) Molding material manufacturing apparatus and resin gear manufacturing method
TW201228809A (en) Compatible carrier for secondary toughening
JP5769027B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin rotating body
CA3014638C (en) Thermoplastic bonded preforms and thermoset matrices formed therewith
US9962887B2 (en) Method of manufacturing fiber substrate and method of manufacturing resin rotator
WO2016023755A1 (en) Plastic molded part and method for producing the same
CN104755787B (en) Backboard composition, backboard, brake(-holder) block and caliper arrangement
CN103978693A (en) Manufacturing method for long-fiber-reinforced MC nylon composite material product
CN107189340B (en) Husky jar head divides hydrofoil structure
JP2011099171A (en) Fiber base material and resin gear using the fiber base material
KR20130090449A (en) Gear pump
CN104499066B (en) A kind of composite spinning filters and sands flat sand device
EP0181396B1 (en) Fiber-reinforced composite and method of making same
JP2012000979A (en) Method of manufacturing molding material for resin rotating body, method of manufacturing resin rotating body, and resin rotating body manufactured thereby
KR102132922B1 (en) Apparatus for Manufacturing Wet-Laid Non-Woven Pre-form

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077901.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013548510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14901756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888992

Country of ref document: EP

Kind code of ref document: A1