WO2015003448A1 - 一种永磁式涡流加热装置 - Google Patents

一种永磁式涡流加热装置 Download PDF

Info

Publication number
WO2015003448A1
WO2015003448A1 PCT/CN2013/087648 CN2013087648W WO2015003448A1 WO 2015003448 A1 WO2015003448 A1 WO 2015003448A1 CN 2013087648 W CN2013087648 W CN 2013087648W WO 2015003448 A1 WO2015003448 A1 WO 2015003448A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
heating element
heating device
magnets
mount
Prior art date
Application number
PCT/CN2013/087648
Other languages
English (en)
French (fr)
Inventor
陈立人
Original Assignee
浙江芯特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江芯特科技有限公司 filed Critical 浙江芯特科技有限公司
Publication of WO2015003448A1 publication Critical patent/WO2015003448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid

Definitions

  • the invention relates to the field of electromagnetic applications, and in particular to a permanent magnet eddy current heating device.
  • the induction cooker adopts the principle of magnetic field induced eddy current heating, which uses alternating current to generate an alternating magnetic field through the coil.
  • magnetic field induced eddy current heating uses alternating current to generate an alternating magnetic field through the coil.
  • the magnetic field induced eddy current effect has many advantages: non-contact heating, heat source and heated objects can not be in direct contact; high heating efficiency, high speed, can reduce surface oxidation phenomenon; easy to control temperature; local heating can be realized; automation can be realized Control; reduce floor space, heat radiation, noise and dust.
  • the invention patent application No. 200910130416.4 discloses a permanent magnet type eddy current heating device.
  • the rotor shaft is fixedly connected with the permanent magnet rotor, and is connected with an external wall thickness magnetic conductive stator through a bearing, and the magnetic conductive stator is a magnetic conductive steel.
  • the permanent magnet rotor is a ferrite magnetic material or an alloy magnetic material; according to different power requirements, the height and inner and outer diameter of the magnetic conductive stator and the permanent magnet rotor are adjustable.
  • the device can directly pass the dynamic action of wind energy, so that the magnetic field of the permanent magnet exhibits a periodic high-frequency "on-off” phenomenon, and an electromagnetic induction eddy current is generated in the metal heating body to achieve the purpose of high efficiency and heat.
  • the higher the frequency of the magnetic field transformation the larger the eddy current and the greater the heat generated.
  • the permanent magnets cannot be reasonably distributed, resulting in a low frequency of magnetic field transformation, so that the energy utilization rate cannot be further improved.
  • the technical problem to be solved by the present invention is to provide a permanent magnet eddy current heating device with less energy consumption, high energy utilization rate, simple structure and simple installation.
  • a permanent magnet eddy current heating device of the present invention includes a permanent magnet array composed of a plurality of permanent magnets, a heating element, a driving mechanism for driving the permanent magnet array and the heating element to rotate relative to each other, and A mount for mounting a permanent magnet array; the plurality of permanent magnets are evenly distributed in a star shape in a circumferential direction of the mount.
  • the permanent magnets are strip magnets, and the inner magnetic lines of each strip magnet are directed to the inner magnetic lines of the adjacent strip magnets, and are alternately arranged radially inward and outward along the mounting seat.
  • the mounting seat is evenly disposed with a plurality of outwardly extending mounting arms, and the plurality of strip magnets are respectively fixed to the end of the mounting arm.
  • the heating element is an annular pipe that is wound around the outer circumference of the permanent magnet array in the circumferential direction and that can circulate the medium inside.
  • the driving mechanism is connected to the heating element for driving the heating element to rotate;
  • the heating element includes a plurality of blades, and the blade can cause air to flow around the heating element as the heating element rotates.
  • the drive mechanism is coupled to the mount for driving a permanent magnet array rotation on the mount;
  • the mount includes a plurality of blades, and the blades can cause air around the mount as the mount rotates flow.
  • the openings of the U-shaped magnets in the array of permanent magnets are directed all inward or outward along the radial direction of the mount.
  • the permanent magnets are U-shaped magnets, and each of the U-shaped magnets has N and S poles, and the adjacent U-shaped magnets N and S are alternately arranged up and down.
  • the heating element is located between the N and S poles of the U-shaped magnet.
  • the heating element is an annular pipe of an internal flowable medium.
  • the driving mechanism is connected to the heating element for driving the heating element to rotate;
  • the heating element comprises three layers of plates respectively disposed laterally above and below the U-shaped magnet and between the N and S poles, and a plurality of connecting the three
  • the sheet material, the fan blades disposed in the longitudinal direction, and the fan blades can cause air flow around the heat generating body as the heating body rotates.
  • the drive mechanism includes a motor and a transmission coupled to a power takeoff of the motor.
  • the permanent magnet type vortex heating device of the invention adopts a structure in which a permanent magnet array is fixed by a mounting arm axially arranged in a mounting seat, and a star-shaped radial permanent magnet array structure is adopted, and a heat conducting medium can be connected in the heating body pipeline. Therefore, the heat generated by the heating device is smoothly led out; the internal magnetic lines of the adjacent permanent magnets are directed to be alternately arranged radially inward and outward along the mounting seat, so that the mounting seat is in the rotating process, and the heating element is in the same position.
  • the frequency of the cutting magnetic line is high, so that a large heat energy can be generated; the driving motor is connected to the mounting seat through the transmission, and the rotation speed of the mounting seat can be controlled by adjusting the transmission to control the heating temperature; the U-shaped magnet structure and the heating element are used. Located between N and S of the U-shaped magnet to maximize the change in magnetic flux.
  • the permanent magnet type vortex heating device of the invention has the advantages of simple structure, convenient installation and disassembly, and convenient heat dissipation, and can effectively improve energy utilization.
  • Figure 1 is a plan view of a first embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a first embodiment of the present invention
  • FIG. 3 is a schematic perspective structural view of a permanent magnet array according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a heating element according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic perspective structural view of a third embodiment of the present invention.
  • Embodiment 4 of the present invention is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 7 is a schematic structural view of Embodiment 5 of the present invention.
  • Figure 8 is a schematic structural view of Embodiment 6 of the present invention.
  • Embodiment 7 of the present invention is a schematic structural view of Embodiment 7 of the present invention.
  • FIG. 10 is a schematic structural view of Embodiment 8 of the present invention.
  • a permanent magnet eddy current heating device of the present invention comprises a permanent magnet array 1, a heating element 2, a mounting seat 3, a mounting arm 4, and a driving mechanism (not shown) Out).
  • the permanent magnet array 1 is composed of a plurality of strip magnets 101.
  • the permanent magnet array 1 can be rotated relative to the heating element 2 by the driving mechanism, so that the heating element 2 cuts the magnetic lines of force and generates a eddy current effect. Heat is generated.
  • the drive mechanism can also drive the heating element to rotate, and can also generate a vortex effect.
  • the mounting seat 3 is uniformly disposed with a plurality of outwardly extending mounting arms 4 in the circumferential direction. As shown in FIG. 1 , the mounting seat 3 and the plurality of mounting arms 4 are formed in a star-shaped radial shape, and the plurality of permanent magnets 101 are respectively fixedly fixed. At the end of the mounting arm 3.
  • the respective internal magnetic lines of the adjacent permanent magnets 101 are directed to be alternately arranged radially inward and outward along the mounting seat.
  • the S pole of a certain permanent magnet is directed to the axis of the mount 3
  • the other adjacent permanent magnet is directed to the axis of the mount 3.
  • the heating element is an annular pipe wound around the outer side of the permanent magnet array.
  • the star-shaped radial permanent magnet array structure is adopted, and an annular heating element pipeline is arranged around the array, and the heat-conducting medium can be connected in the pipeline, so that the heat generated by the heating device can be smoothly exported.
  • the drive mechanism includes a motor, and a power output of the motor is coupled to the mount through a transmission.
  • the drive motor is connected to the mount through the transmission, and the speed of the mount can be controlled by adjusting the transmission to control the heating temperature.
  • the permanent magnet type vortex heating device of the invention has the advantages of simple structure, convenient installation and disassembly, and convenient heat dissipation, and can effectively improve energy utilization.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the permanent magnets are U-shaped magnets 201, and the U-shaped and S-poles of each U-shaped magnet are alternately arranged up and down with the adjacent U-shaped magnets N and S.
  • N-shaped magnet has the N pole on the upper side and the S pole on the lower side
  • the N pole of the other U-shaped magnet adjacent thereto is on the lower side and the S pole is on the upper side.
  • the outer ends of the N and S poles of all U-shaped magnets are directed outward in the radial direction of the mount.
  • the heat generating body 2' is located between the N and S poles of the U-shaped magnet 201.
  • the heating element 2' directly cuts the magnetic lines of force between the N and S poles, thereby maximizing the rate of change of the magnetic flux passing through the heating element 2'.
  • the heat generating body 2' is an annular pipe having an internal flowable medium.
  • the heat transfer medium can be switched in the pipeline so that the heat generated by the heating device can be smoothly discharged.
  • the drive mechanism includes a motor, and a power output of the motor is coupled to the mount through a transmission.
  • the drive motor is connected to the mount through the transmission, and the speed of the mount can be controlled by adjusting the transmission to control the heating temperature.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • this embodiment differs from the second embodiment in that the outer ends of the N and S poles of the entire U-shaped magnet 201' are directed inward in the radial direction of the mount.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the driving mechanism is connected to the heating element for driving the heating element to rotate, and the heating element includes a plurality of blades 5a.
  • the fan blade 5a is mounted on the rotating shaft 6, and the rotating shaft 6 passes through the blade.
  • the blade 5a cuts the magnetic lines of force to generate heat, and the rotation of the blade 5a can also cause the air around the heating element to flow, thereby heating the flowing air, so that the air carries away and dissipates the heat generated by the heating element.
  • the heat generating body can also be disposed on the upper and lower sides of the permanent magnet array 1a at the same time, and the utility of fully utilizing magnetic energy has been achieved.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the driving mechanism is connected to the mounting seat for driving the permanent magnet array rotation on the mounting seat; and the mounting base includes a plurality of blades 5b, and the permanent magnet array 1b is located at the fan.
  • the blade 5b can cause air to flow around the mount, causing the air to carry away the heat generated by the heat generating body.
  • the structure can avoid heat accumulation around the heat generating body and the permanent magnet array, and is advantageous for rapid heat dissipation.
  • the heat generating body may be located in the axial direction of the permanent magnet array 1b according to specific needs, or may be located in the radial direction of the permanent magnet array 1b.
  • the drive mechanism is connected to the heating element for driving the heating element to rotate.
  • the heat generating body includes a plurality of blades 5c and surrounds the permanent magnet array 1c.
  • the blade 5c can cause the air around the heating element to flow, thereby heating the flowing air so that the air carries away and dissipates the heat generated by the heating element.
  • the permanent magnet array 1d is composed of a U-shaped magnet, and the open end of the U-shaped magnet is directed to the outside.
  • the driving mechanism is connected to the heating element for driving the heating element to rotate;
  • the heating element comprises three layers of sheets 7 respectively disposed laterally above and below the U-shaped magnet and between the N and S poles, and a plurality of connecting bodies Three-layer board 7, vertical fan blade 5d.
  • the blade 5d can cause air to flow around the heating element, causing the air to carry away and dissipate the heat generated by the heating element.
  • the opening of the U-shaped magnet can also point to the inside depending on the needs of the structure.
  • the driving mechanism is connected to the heating element for driving the heating element to rotate, and the heating element includes two layers of the plate 8 above and below the permanent magnet array 1e, and more on the plate 8. Fan blades 5e.
  • the plate 8 cuts the magnetic lines of force to generate heat, and the rotation of the blade 5e can also cause the air around the heating element to flow, thereby heating the flowing air, so that the air carries away and dissipates the heat generated by the heating element.
  • the heat generating body may also be disposed only on one side of the permanent magnet array 1e.
  • the driving mechanism can also drive only the permanent magnet array to rotate, or simultaneously drive the permanent magnet array and the heating element to rotate in the reverse direction, thereby achieving the purpose of improving the frequency of the magnetic field of the heating element.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

一种永磁式涡流加热装置,包括由多个永磁体组成的永磁体列阵(1)、发热体(2)、驱动永磁体列阵(1)与发热体(2)相对旋转的驱动机构以及用于安装永磁体列阵(1)的安装座(3),永磁体呈星状均匀分布在安装座(3)的周向上。该永磁式涡流加热装置具有能耗少、能源利用率高等优点,同时结构简单,安装简易。

Description

一种永磁式涡流加热装置 技术领域
本发明涉及电磁应用领域,尤其涉及一种永磁式涡流加热装置。
背景技术
目前的电加热器通常是利用电流的热效应进行加热,即控制电流通过电阻率较大的发热体,从而将电能转化成热能。然而这种电加热器的缺点是自身能耗高,导致能源的浪费。
鉴于此,市面上出现了利用磁场感应涡流效应进行加热的设备,能够避免通过电阻加热所造成的高能耗缺陷。例如电磁炉采用了磁场感应涡流加热原理,它利用交变电流通过线圈产生交变磁场,当磁场内的磁感线传到导磁性锅的底部时,即会产生无数强大的小涡流,使锅本身自行迅速发热,然后再加热锅内的食物。磁场感应涡流效应进行加热具有较多优点:非接触式加热,热源和受热物件可以不直接接触;加热效率高,速度快,可以减少表面氧化现象;容易控制温度;可实现局部加热;可实现自动化控制;可减少占地、热辐射、噪声和灰尘。申请号为200910130416.4的发明专利申请公开了一种永磁式涡流加热装置,转子轴与永磁转子固连接,并通过轴承与外部的等壁厚导磁性定子相连接,导磁性定子为导磁钢材,永磁转子为铁氧体磁性材料或合金磁性材料;根据不同功率要求,导磁性定子和永磁转子的高度、内外径尺寸可调。该装置可以直接通过风能的动力作用,使永磁体的磁场呈现周期性高频率“通断”现象,在金属加热体中产生电磁感应涡流,达到高效能如热的目的。
技术问题
磁场变换的频率越高,涡流就越大,产生的热就越大。然而,现有技术中的永磁式涡流加热装置,永磁体不能合理分布,导致磁场变换频率不高,从而使能源利用率不能进一步提高。
本发明要解决的技术问题是提供一种能耗少、能源利用率高,同时结构简单,安装简易的永磁式涡流加热装置。
技术解决方案
为解决上述问题,本发明的一种永磁式涡流加热装置,包括由多个永磁体组成的永磁式列阵、发热体、驱动永磁体列阵与发热体相对旋转的驱动机构以及用于安装永磁体列阵的安装座;所述多个永磁体呈星状均匀分布在所述安装座的周向上。
所述永磁体为条形磁铁,每个条形磁铁其内部磁力线的指向,与相邻的条形磁铁内部磁力线指向,为沿着安装座径向向内、向外交替设置。
所述安装座向上均匀设置有向外延伸的多个安装臂,所述多个条形磁铁分别对应固定于所述安装臂端部。
所述发热体为周向上缠绕在永磁体列阵外侧,并且内部可流通介质的环状管路。
所述驱动机构与发热体相连,用于驱动发热体旋转;所述发热体包括多个扇叶,并且随着发热体的旋转,所述扇叶能够引起发热体周围空气流动。
所述驱动机构与安装座相连,用于驱动安装座上的永磁体列阵旋转;所述安装座包括多个扇叶,并且随着安装座的旋转,所述扇叶能够引起安装座周围空气流动。
所述永磁体列阵中U形磁铁的开口指向为全部沿着安装座的径向向内或向外。
所述永磁体为U形磁铁,每个U形磁铁其N、S两极,与相邻的U形磁铁N、S两极,为上下交替设置。
所述发热体位于U形磁铁的N、S两极之间。
所述发热体为内部可流通介质的环状管路。
所述驱动机构与发热体相连,用于驱动发热体旋转;所述发热体包括分别横向设置于U形磁铁上方、下方以及N、S两极之间的三层板材,以及多个连接所述三层板材、纵向设置的扇叶,并且随着发热体的旋转,所述扇叶能够引起发热体周围空气流动。
所述驱动机构包括电机以及连接在电机的动力输出端的变速器。
有益效果
本发明的永磁式涡流加热装置,采用永磁体列阵通过安装座轴向设置的安装臂相固定的结构,采用星形放射状的永磁体列阵结构,发热体管路内可以接通导热介质,从而使加热装置所产生的热顺利导出;采用相邻永磁体各自内部磁力线指向为沿着安装座径向向内、向外交替设置的结构,使安装座在旋转过程中,发热体同一位置切割磁力线的频率较高,从而能够产生较大的热能;驱动电机通过变速器与安装座相连,能够通过调节变速器来控制安装座的转速,从而控制加热温度的高低;采用U形磁铁结构,发热体位于U形磁铁的N、S之间,使磁通量变化最大化。本发明的永磁式涡流加热装置,结构较为简单,安装拆卸比较方便,同时便于散热,能够有效提高能源利用率。
附图说明
图1为本发明实施例一的俯视图;
图2为本发明实施例一的立体结构示意图;
图3为本发明实施例二中永磁体列阵的立体结构示意图;
图4为本发明实施例二中发热体的结构示意图;
图5为本发明实施例三的立体结构示意图;
图6为本发明实施例四的结构示意图;
图7为本发明实施例五的结构示意图;
图8为本发明实施例六的结构示意图;
图9为本发明实施例七的结构示意图;
图10为本发明实施例八的结构示意图。
本发明的最佳实施方式
本发明的实施方式
为了使本技术领域的人员更好地理解本发明技术方案,下面结合附图和实施方式对本发明作进一步的详细说明。
实施例一:如图1、2所示,本发明的一种永磁式涡流加热装置,包括永磁体列阵1、发热体2、安装座3、安装臂4以及驱动机构(图中未示出)。
其中永磁体列阵1由多个条形磁铁101排列组成,通过驱动机构的驱动,永磁体列阵1能够与发热体2之间发生相对转动,使发热体2切割磁力线,产生涡流效应,从而发生热量。当然,所述驱动机构也可以驱动发热体转动,同样能够产生涡流效应。
所述安装座3周向上均匀设置有向外延伸的多个安装臂4,如图1所示,安装座3以及多个安装臂4形成星形放射状,所述多个永磁体101分别对应固定于所述安装臂3端部。
同时,所述相邻永磁体101各自内部磁力线指向为沿着安装座径向向内、向外交替设置。如图1所示,当某个永磁体的S极指向安装座3的轴线时,其相邻的另一个永磁体则N极指向安装座3的轴线。当安装座在旋转过程中,发热体同一位置切割磁力线的频率较高,从而能够产生较大的热能。
所述发热体为缠绕在永磁体列阵外侧的环状管路。采用星形放射状的永磁体列阵结构,并在列阵周围设置环状的发热体管路,管路内可以接通导热介质,从而使加热装置所产生的热顺利导出。
所述驱动机构包括电机,电机的动力输出端通过变速器与安装座相连。
驱动电机通过变速器与安装座相连,能够通过调节变速器来控制安装座的转速,从而控制加热温度的高低。
本发明的永磁式涡流加热装置,结构较为简单,安装拆卸比较方便,同时便于散热,能够有效提高能源利用率。
实施例二:
如图3、4所示,所述永磁体为U形磁铁201,每个U形磁铁其N、S两极,与相邻的U形磁铁N、S两极,为上下交替设置。
例如某一个U形磁铁的N极在上、S极在下,则其相邻的另一U形磁铁的N极在下、S极在上。
全部U形磁铁的N、S极外端部指向为沿着安装座的径向向外。
所述发热体2’位于U形磁铁201的N、S两极之间。当发热体2’与U形磁铁组成的永磁体列阵之间发生相对旋转时,发热体2’直接切割N、S两极之间的磁力线,从而使穿过发热体2’的磁通量变化率最大化。
所述发热体2’为内部可流通介质的环状管路。管路内可以接通导热介质,从而使加热装置所产生的热顺利导出。
所述驱动机构包括电机,电机的动力输出端通过变速器与安装座相连。
驱动电机通过变速器与安装座相连,能够通过调节变速器来控制安装座的转速,从而控制加热温度的高低。
实施例三:
如图5所示,本实施例与实施例二的不同之处在于,所述全部U形磁铁201’的N、S极外端部指向为沿着安装座的径向向内。
实施例四:
如图6所示,所述驱动机构与发热体相连,用于驱动发热体旋转,同时所述发热体包括多个扇叶5a,扇叶5a安装在转轴6上,转轴6穿过位于扇叶5a上方的永磁体列阵1a。
随着发热体的旋转,扇叶5a切割磁力线产生热量,同时扇叶5a的旋转也能够引起发热体周围空气流动,从而将流动的空气加热,使空气将发热体产生的热量带走、散发。
所述发热体还可以同时设置在永磁体列阵1a的上下两侧,已达到充分利用磁能的效用。
实施例五:
如图7所示,所述驱动机构与安装座相连,用于驱动安装座上的永磁体列阵旋转;同时所述安装座包括多个扇叶5b,永磁体列阵1b位于在所述扇叶上,并且随着安装座的旋转,所述扇叶5b能够引起安装座周围空气流动,使空气将发热体产生的热量带走。该结构能够避免热量在发热体及永磁体列阵周围聚集,并且有利于快速散热。
所述发热体根据具体需要可以位于永磁体列阵1b的轴向上,也可以位于永磁体列阵1b的径向上。
实施例六:
如图8所示,所述驱动机构与发热体相连,用于驱动发热体旋转。所述发热体包括多个扇叶5c,并且围绕在永磁体列阵1c的周围。
随着发热体的旋转,扇叶5c能够引起发热体周围空气流动,从而将流动的空气加热,使空气将发热体产生的热量带走、散发。
实施例七:
如图9所示,所述永磁体列阵1d由U形磁铁组成,所述U形磁铁开口端指向外侧。
所述驱动机构与发热体相连,用于驱动发热体旋转;所述发热体包括分别横向设置于U形磁铁上方、下方以及N、S两极之间的三层板材7,以及多个连接所述三层板材7、纵向设置的扇叶5d。随着发热体的旋转,所述扇叶5d能够引起发热体周围空气流动,使空气将发热体产生的热量带走、散发。
根据不同的结构需要,所述U形磁铁的开口也可以指向内侧。
实施例八:
如图10所示,所述驱动机构与发热体相连,用于驱动发热体旋转,同时所述发热体包括位于永磁体列阵1e上方和下方的两层板材8,以及位于板材8上的多个扇叶5e。
随着发热体的旋转,板材8切割磁力线产生热量,同时扇叶5e的旋转也能够引起发热体周围空气流动,从而将流动的空气加热,使空气将发热体产生的热量带走、散发。
所述发热体还可以只设置在永磁体列阵1e的一侧。同时所述驱动机构也可以只驱动永磁体列阵旋转,或者同时驱动永磁体列阵以及发热体反向旋转,从而达到提高发热体切割磁力线频率的目的。
工业实用性
序列表自由内容

Claims (1)

1、一种永磁式涡流加热装置,其特征在于:包括由多个永磁体组成的永磁体列阵、发热体、驱动永磁体列阵与发热体相对旋转的驱动机构以及用于安装永磁体列阵的安装座;所述多个永磁体呈星状均匀分布在所述安装座的周向上。
2、如权利要求1所述的永磁式涡流加热装置,其特征在于:所述驱动机构与发热体相连,用于驱动发热体旋转;所述发热体包括多个扇叶,并且随着发热体的旋转,所述扇叶能够引起发热体周围空气流动。
3、如权利要求1所述的永磁式涡流加热装置,其特征在于:所述驱动机构与安装座相连,用于驱动安装座上的永磁体列阵旋转;所述安装座包括多个扇叶,并且随着安装座的旋转,所述扇叶能够引起安装座周围空气流动。
4、如权利要求1所述的永磁式涡流加热装置,其特征在于:所述永磁体为条形磁铁,每个条形磁铁其内部磁力线的指向,与相邻的条形磁铁内部磁力线指向,为沿着安装座径向向内、向外交替设置。
5、如权利要求1所述的永磁式涡流加热装置,其特征在于:所述发热体为内部可流通介质的环状管路。
6、如权利要求1所述的永磁式涡流加热装置,其特征在于:所述永磁体列阵中U形磁铁的开口端指向为全部沿着安装座的径向向内或向外。
7、如权利要求6所述的永磁式涡流加热装置,其特征在于:所述永磁体为U形磁铁,每个U形磁铁其N、S两极,与相邻的U形磁铁U、S两极,为上下交替设置。
8、如权利要求6所述的永磁式涡流加热装置,其特征在于:所述发热体位于U形磁铁的N、S两极之间。
9、如权利要求6所述的永磁式涡流加热装置,其特征在于:所述发热体为内部可流通介质的环状管路。
10、如权利要求6所述的永磁式涡流加热装置,其特征在于:所述驱动机构与发热体相连,用于驱动发热体旋转;所述发热体包括分别横向设置于U形磁铁上方、下方以及N、S两极之间的三层板材,以及多个连接所述三层板材、纵向设置的扇叶,并且随着发热体的旋转,所述扇叶能够引起发热体周围空气流动。
PCT/CN2013/087648 2013-07-09 2013-11-22 一种永磁式涡流加热装置 WO2015003448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310289078.5 2013-07-09
CN201310289078.5A CN103369752B (zh) 2013-07-09 2013-07-09 一种永磁式涡流加热装置

Publications (1)

Publication Number Publication Date
WO2015003448A1 true WO2015003448A1 (zh) 2015-01-15

Family

ID=49369999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087648 WO2015003448A1 (zh) 2013-07-09 2013-11-22 一种永磁式涡流加热装置

Country Status (2)

Country Link
CN (1) CN103369752B (zh)
WO (1) WO2015003448A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369752B (zh) * 2013-07-09 2017-04-12 浙江芯特科技有限公司 一种永磁式涡流加热装置
CN104376957A (zh) * 2014-03-28 2015-02-25 九阳股份有限公司 一种电磁加热用导磁体及其制作工艺
CN108720634A (zh) * 2017-04-14 2018-11-02 广东美控电子科技有限公司 电磁蒸烤箱
CN107514818A (zh) * 2017-09-05 2017-12-26 徐英杰 加热泵及加热系统
CN107682947A (zh) * 2017-11-02 2018-02-09 成都金川田农机制造有限公司 一种多级永磁液体加热装置
CN107941855A (zh) * 2017-11-22 2018-04-20 四川大学 一种基于永磁体旋转加热的钢管管端热成像检测装置
CN107975828A (zh) * 2017-12-28 2018-05-01 李守卫 磁电式灶具
CN108895652B (zh) * 2018-07-27 2021-03-02 安徽达信龙新材料科技有限公司 节能减排管道发热器
CN111780404B (zh) * 2020-07-02 2021-11-30 石家庄爱迪尔电气有限公司 一种智能变频节能环保采暖炉
CN114052614A (zh) * 2020-07-31 2022-02-18 宁波方太厨具有限公司 一种干燥装置及应用有该装置的清洗机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153591A (zh) * 1995-03-17 1997-07-02 恩维罗Ec公司 加热介质的加热设备
JP2005174801A (ja) * 2003-12-12 2005-06-30 Tok Engineering Kk 永久磁石式渦電流加熱装置
CN201699560U (zh) * 2010-06-13 2011-01-05 张国光 积木式风力发电机
CN202340164U (zh) * 2011-08-17 2012-07-18 柳峰 一种风扇散热分隔转子及爪子式定子抗阻力发电机
CN103369752A (zh) * 2013-07-09 2013-10-23 浙江芯特科技有限公司 一种永磁式涡流加热装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778040A (zh) * 2011-05-12 2012-11-14 宏远创建有限公司 磁热加温装置
CN203368793U (zh) * 2013-07-09 2013-12-25 浙江芯特科技有限公司 一种永磁式涡流加热装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153591A (zh) * 1995-03-17 1997-07-02 恩维罗Ec公司 加热介质的加热设备
JP2005174801A (ja) * 2003-12-12 2005-06-30 Tok Engineering Kk 永久磁石式渦電流加熱装置
CN201699560U (zh) * 2010-06-13 2011-01-05 张国光 积木式风力发电机
CN202340164U (zh) * 2011-08-17 2012-07-18 柳峰 一种风扇散热分隔转子及爪子式定子抗阻力发电机
CN103369752A (zh) * 2013-07-09 2013-10-23 浙江芯特科技有限公司 一种永磁式涡流加热装置

Also Published As

Publication number Publication date
CN103369752A (zh) 2013-10-23
CN103369752B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2015003448A1 (zh) 一种永磁式涡流加热装置
EP2209349B1 (en) Electromagnetic induction type hot air generating device
WO2016086795A1 (zh) 一种电磁发热装置
WO2015003450A1 (zh) 一种柱式永磁涡流加热装置
WO2011094909A1 (zh) 用于大功率垂直轴风力发电机的散热装置
CN203368793U (zh) 一种永磁式涡流加热装置
CN1152606C (zh) 电磁致热器
CN104065221A (zh) 一种yvf3系列超高效变频调速专用三相异步电机
CN203368792U (zh) 一种柱式永磁涡流加热装置
CN209659100U (zh) 开关磁阻电机
CN105226856B (zh) 全节能动力机
WO2018052191A1 (ko) 영구자석을 이용한 발열장치
WO2012113159A1 (zh) 稀土永磁无铁芯发电机组
KR20110103637A (ko) 자석을 이용한 유도 발열장치
CN202566790U (zh) 无碳刷节能电吹风
CN1204366C (zh) 电磁自热器
CN202019245U (zh) 导体转子及其散热元件
CN205051463U (zh) 全节能动力机
CN102263476A (zh) 一种多组电磁调速系统
JP5527685B2 (ja) 電磁誘導式熱風発生及び発電装置
CN110518738A (zh) 一种基于丁胞的电机通风冷却结构及风冷电机
CN204145787U (zh) 滚筒式永磁加热系统
CN109818475A (zh) 多层小绕组三维永磁电机
CN207922544U (zh) 一种新能源加热装置
CN213585475U (zh) 一种高效散热的永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889344

Country of ref document: EP

Kind code of ref document: A1