WO2015003343A1 - Superlubricity basic structure, multi-stage superlubricity structure, device with structure, and forming method therefor - Google Patents

Superlubricity basic structure, multi-stage superlubricity structure, device with structure, and forming method therefor Download PDF

Info

Publication number
WO2015003343A1
WO2015003343A1 PCT/CN2013/079132 CN2013079132W WO2015003343A1 WO 2015003343 A1 WO2015003343 A1 WO 2015003343A1 CN 2013079132 W CN2013079132 W CN 2013079132W WO 2015003343 A1 WO2015003343 A1 WO 2015003343A1
Authority
WO
WIPO (PCT)
Prior art keywords
island
substrate
superslip
basic
superlubricity
Prior art date
Application number
PCT/CN2013/079132
Other languages
French (fr)
Chinese (zh)
Inventor
郑泉水
董华来
刘泽
江博
王稳
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2013/079132 priority Critical patent/WO2015003343A1/en
Publication of WO2015003343A1 publication Critical patent/WO2015003343A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings

Abstract

A superlubricity basic structure comprises a substrate and multiple island structures on the substrate, each island structure is provided with at least one superlubricity shearing surface, and an upper contact surface and a lower contact surface of the superlubricity shearing surface are in an incommensurate contact state. A multi-stage superlubricity structure. The multi-stage superlubricity structure comprises multiple superlubricity basic structures, and the multiple superlubricity basic structures form the multi-stage superlubricity structure in a side-by-side extension mode, an independent stacking mode, a sharing-type stacking mode or a combination thereof. A method for forming the superlubricity basic structure comprises the following steps: proving a substrate; preparing an island structure and making the island structure connected to the substrate; detecting whether the island structure has a superlubricity shearing surface; and removing an island without a superlubricity shearing surface. The superlubricity basic structure breaks the limit of microcosmic superlubricity, and large-scale and large slippage stroke superlubricity is achieved.

Description

一种超滑基本结构、 多级超滑结构、 具有该结构的器件及其形成方法 技术领域 Ultra-sliding basic structure, multi-stage superslip structure, device having the same and method of forming the same
本发明涉及结构超滑领域, 尤其涉及一种大尺度、 大滑移距离的固体 超滑的结构, 用于需要超低摩擦或超低磨损的领域。 说  The invention relates to the field of structural ultra-slip, in particular to a solid super-sliding structure with large scale and large sliding distance, which is used in the field requiring ultra-low friction or ultra-low wear. Say
背景技术  Background technique
摩擦磨损一直影响着人们的生产与生活。 据统计, 世界上有约三分之 书  Friction and wear have always affected people's production and life. According to statistics, there are about three-thirds of the books in the world.
一的能源消耗在摩擦上, 有约 80%的机械零部件由于磨损而失效, 工业发 达国家因摩擦磨损造成的损失高达 GDP的 5%-7%;人工关节的一个重要难 题就是获得更好的润滑性能以减轻摩擦磨损问题(参见 Unsworth A. Recent developments in the tribology of artificial joints [J]. Tribology International, 1995, 28(7): 485-495. ) 。 因此, 几千年来人类一直在努力控制和减小摩擦, 力图制造出一种极低摩擦且极耐磨损的材料或结构。 大多数材料的摩擦系 数都在 0.1~0.5, 加入润滑剂后, 可以实现更低的摩擦系数 (0.01~0.1 ) , 但还是不能从根本上解决摩擦、 磨损问题。 因此, 制造出一种极低摩擦且 极耐磨损的材料或结构具有非常重要的价值。 The energy consumption of friction is about 80% of mechanical parts failing due to wear and tear. The loss caused by friction and wear in industrial developed countries is as high as 5%-7% of GDP. An important problem of artificial joints is to obtain better Lubrication properties to mitigate friction and wear problems (see Unsworth A. Recent developments in the tribology of artificial joints [J]. Tribology International, 1995, 28(7): 485-495.). As a result, humans have been trying to control and reduce friction for thousands of years in an effort to create a material or structure that is extremely low friction and extremely resistant to wear. Most materials have a friction coefficient of 0.1 to 0.5. After adding a lubricant, a lower coefficient of friction (0.01 to 0.1) can be achieved, but the friction and wear problems cannot be fundamentally solved. Therefore, it is of great value to produce a material or structure that is extremely low friction and extremely resistant to wear.
1991年,研究者理论上提出,当两个单晶晶面以非公度的形式接触(即 两表面的晶格常数不匹配时) , 有可能出现摩擦为零或几乎为零的现象。 这种现象被称为"超滑"(Superlubricity ) (参见 Himno M, Shinjo K, Kaneko R, et al. Anisotropy of frictional forces in muscovite mica[J]. Physical review letters, 1991, 67(19): 2642. ) 。 由于是固体表面直接接触, 超滑的优点除了 摩擦系数几乎为零外, 还有很大可能极耐磨损, 因此其应用范围将会更加 广阔。但直到 2011年,人们只是在超高真空环境下实现了纳米尺度的超滑, 并怀疑是否能够实现大尺度的超滑。 2012年, 人们首次观察到了室内环境 下微米尺度的超滑 (参见 Liu Z, Yang J, Grey F, et al. Observation of Microscale Superlubricity in Graphite [J]. Physical Review Letters, 2012, 108(20): 205503. ) 。 In 1991, the researchers theoretically proposed that when two single crystal faces are contacted in a non-common form (ie, when the lattice constants of the two surfaces do not match), there is a possibility that the friction is zero or almost zero. This phenomenon is called "superlubricity" (see Himno M, Shinjo K, Kaneko R, et al. Anisotropy of frictional forces in muscovite mica [J]. Physical review letters, 1991, 67(19): 2642 . ) Due to the direct contact of the solid surface, the advantage of ultra-slip, in addition to the friction coefficient is almost zero, there is a high possibility of extreme wear resistance, so its application range will be more extensive. But until 2011, people only achieved nano-scale superslip in an ultra-high vacuum environment, and doubted whether large-scale ultra-slip can be achieved. In 2012, the micro-scale superslip in the indoor environment was observed for the first time (see Liu Z, Yang J, Grey F, et al. Observation of Microscale Superlubricity in Graphite [J]. Physical Review Letters, 2012, 108(20): 205503. ).
另一方面, 从 1994年开始, 多个研究组相继实现了摩擦系数低达千分之 一量级的超低摩擦,并且是毫米以上尺度(Donnet C, Martin J M, Le Mogne T, et al. Super-low friction of MoS2 coatings in various environments [J]. Tribology International, 1996, 29(2): 123-128. )0 由于长期未能实现大尺度的超滑, 近十多 年来文献上常常将摩擦系数为千分之一量级或更低的现象, 称作为 "超滑"; 而 将最初的由于非公度接触导致的摩擦磨损几乎为零的现象,改称为 "结构润滑" ( Structural Lubricity ) (参见 Miiser M H. Structural lubricity: Role of dimension and symmetry [J]. EPL (Europhysics Letters), 2004, 66(1): 97. )。本发明所指超滑, 特指由于非公度接触导致的摩擦磨损几乎为零的现象。 On the other hand, since 1994, several research groups have achieved ultra-low friction with a friction coefficient as low as one thousandth, and are above the millimeter scale (Donnet C, Martin JM, Le Mogne T, et al. Super-low friction of MoS2 coatings in various environments [J]. Tribology International, 1996, 29(2): 123-128. ) 0 Due to the long-term failure to achieve large-scale superslip, it has been common in the literature for more than a decade. A phenomenon in which the coefficient of friction is on the order of one thousandth or less, called "super-slip"; and the phenomenon that the initial frictional wear due to incommensurate contact is almost zero is called "structural lubrication" ( Structural Lubricity) (See Miiser M H. Structural lubricity: Role of dimension and symmetry [J]. EPL (Europhysics Letters), 2004, 66(1): 97.). The term "superslip" as used in the present invention refers to a phenomenon in which frictional wear is almost zero due to non-common contact.
由于制备大尺度单晶材料困难等原因, 目前能够在实验上实现的固体 结构润滑仅限于微米或更小的尺度, 制备大尺度的结构超滑器件仍未能有 人实现。 因此, 需要一种可以实现大尺度 (可达厘米、 甚至更大的尺度) 的固体超滑器件, 而且可以实现较大的滑动位移。 发明内容  Due to the difficulty in preparing large-scale single crystal materials, the solid structural lubrication that can be experimentally achieved is limited to micrometers or smaller scales, and the preparation of large-scale structural ultraslip devices has not been realized. Therefore, there is a need for a solid superslip device that can achieve large scales (up to centimeters, or even larger scales), and can achieve large sliding displacements. Summary of the invention
为了解决上述问题, 根据本发明的第一实施例, 提供了一种超滑基本 结构, 包括基底, 和位于基底上的多个岛状结构, 其中每个岛状结构均具 有至少一个超滑剪切面, 所述超滑剪切面的上下接触面处于非公度接触状 态。  In order to solve the above problems, according to a first embodiment of the present invention, there is provided an ultraslip basic structure including a substrate, and a plurality of island-like structures on the substrate, wherein each of the island structures has at least one ultra-slipper The cut surface, the upper and lower contact faces of the super-slip shear surface are in a non-common contact state.
特别地,所述单个岛状结构的直径为 1μιη~30μιη、高度为 10ηιη~10μιη。 相邻岛状结构之间的平均间隔为 1μιη~100μιη。  Specifically, the single island-like structure has a diameter of 1 μm to 30 μm and a height of 10 nm to 10 μm. The average spacing between adjacent island structures is 1 μιη to 100 μιη.
此外, 每个岛状结构可以包括在其端部的保护层。 多个岛状结构与基 底可以为一体式结构或者分体式结构连接而成。  Furthermore, each island structure may include a protective layer at its ends. The plurality of island structures and the base may be connected in a one-piece structure or a split structure.
所述岛状结构可以为石墨材料, 或者岛状结构材料内部原子有局部存 在层间非公度接触的可能;或者所述岛状结构在剪切面铺有石墨或石墨烯。  The island structure may be a graphite material, or the atoms inside the island structure material may have localized non-common contact between layers; or the island structure may be coated with graphite or graphene on the shear plane.
岛状结构的超滑剪切面的上下接触面的面积可以相同或不同。  The area of the upper and lower contact faces of the superslip shear plane of the island structure may be the same or different.
此外, 还可以包括覆盖所述岛状结构的支撑层。 所述基底和支撑层可 以为平面、 曲面或柔性可变形的片状固体材料。 根据本发明的第二实施例, 提供了一种多级超滑结构, 所述多级超滑 结构包括所述多个超滑基本结构, 所述多个超滑基本结构通过并排扩展、 独立式叠加、 共用式叠加或其组合的方式形成多级超滑结构, 其中, In addition, a support layer covering the island-like structure may also be included. The substrate and support layer can be planar, curved or flexible deformable sheet-like solid materials. According to a second embodiment of the present invention, there is provided a multi-stage superslip structure comprising the plurality of superslip basic structures, the plurality of superslip basic structures being expanded side by side, independent Superimposed, shared superimposed or a combination thereof forms a multi-stage superslip structure, wherein
所述并排扩展式组成方式为将多个所述超滑基本结构并排分布在一个 全局基底和一个全局支撑层之间,所述全局基底和所述全局支撑层为平面、 曲面或柔性可变形的片状固体材料, 所述全局基底连接到所有的所述超滑 基本结构的所述基底, 所述全局支撑层连接到所有的所述超滑基本结构的 所述支撑层;  The side-by-side extended configuration is to distribute a plurality of the superslip basic structures side by side between a global base and a global support layer, the global base and the global support layer being flat, curved or flexible deformable a sheet-like solid material, the global substrate being connected to all of the substrates of the ultraslip basic structure, the global support layer being connected to all of the support layers of the superslip basic structure;
所述独立式叠加组成方式为将第 N个所述超滑基本结构的所述支撑层 和第 N+1个所述超滑基本结构的所述基底相连接;  The independent superposition composition is formed by connecting the support layer of the Nth superslip basic structure and the substrate of the (N+1)th superslip basic structure;
所述共用式叠加组成方式为将第 N个所述超滑基本结构的所述支撑层 同时作为第 N+1个所述超滑基本结构的所述基底。  The shared superposition is composed by using the support layer of the Nth superslip basic structure as the substrate of the N+1th superslip basic structure at the same time.
根据本发明的第三实施例, 提供了一种具有超滑结构的器件, 包括前 述的超滑基本结构或者多级超滑结构, 还包括位于最底层基底下方的第一 部件, 和位于最顶层岛状结构或岛状结构的支撑层上的第二部件。  According to a third embodiment of the present invention, there is provided a device having an ultraslip structure comprising the aforementioned ultraslip basic structure or a multi-stage superslip structure, further comprising a first component located below the bottommost substrate, and at the topmost A second component on the support layer of the island or island structure.
根据本发明的第四实施例, 提供了一种制造超滑基本结构的方法, 包 括如下步骤: 步骤 1, 提供基底; 步骤 2, 制备岛状结构并使所述岛状结构 达到与基底连接的状态; 步骤 3, 检测所述岛状结构是否具有超滑剪切面; 步骤 4, 去除不具有超滑剪切面的岛。  According to a fourth embodiment of the present invention, there is provided a method of fabricating an ultraslip basic structure comprising the steps of: Step 1, providing a substrate; Step 2, preparing an island structure and bringing the island structure to a substrate State; Step 3, detecting whether the island structure has an ultra-slip shear surface; Step 4, removing the island without the super-slip shear plane.
其中, 所述步骤 2包括: 步骤 2-1, 在所述基底上依次覆盖光刻胶; 步 骤 2-2, 构图所述光刻胶, 保留多个光刻胶岛; 步骤 2-3, 刻蚀所述基底, 以去除未被光刻胶保护的部分基底, 从而形成多个岛状结构。  The step 2 includes: Step 2-1, sequentially covering the photoresist on the substrate; Step 2-2, patterning the photoresist to retain a plurality of photoresist islands; Step 2-3, engraving The substrate is etched to remove a portion of the substrate that is not protected by the photoresist, thereby forming a plurality of island structures.
其中所述步骤 2-1 包括: 依次在所述基底上覆盖保护层和光刻胶; 所 述步骤 2-3 包括: 刻蚀所述基底, 以去除未被光刻胶保护的保护层和部分 基底, 从而形成多个岛状结构。  The step 2-1 includes: sequentially covering the substrate with a protective layer and a photoresist; and the step 2-3 includes: etching the substrate to remove the protective layer and the portion not protected by the photoresist. The substrate forms a plurality of island structures.
所述步骤 2-1 包括利用等离子体化学气相沉积法在所述基底上沉积 Si02保护层, 以及利用旋转涂布法进行光刻胶涂布; 所述步骤 2-2包括利 用电子束刻蚀构图所述光刻胶; 所述步骤 2-3 包括利用反应离子刻蚀法刻 蚀所述基底。 此外, 所述方法还包括在所述岛状结构上设置支撑层的步骤。 The step 2-1 includes depositing a SiO 2 protective layer on the substrate by plasma chemical vapor deposition, and performing photoresist coating by a spin coating method; the step 2-2 includes patterning by electron beam etching The photoresist; the step 2-3 includes etching the substrate by reactive ion etching. Furthermore, the method further comprises the step of providing a support layer on the island structure.
其中所述岛状结构为石墨材料, 或者所述岛状结构材料内部原子有局 部存在层间非公度接触的可能; 或者所述岛状结构在剪切面铺有石墨或石 墨烯。  Wherein the island-like structure is a graphite material, or the atoms in the island-shaped structural material have local possibility of inter-layer non-common contact; or the island-like structure is coated with graphite or graphene on the shear plane.
本发明突破了仅在微观范畴存在超滑现象的局限, 可以达到大尺度、 大滑移行程的超滑。  The invention breaks through the limitation of super-slip phenomenon only in the microscopic category, and can achieve super-slip of large-scale and large-slip stroke.
本发明附加的方面和优点将在下面的描述中部分给出, 部分将从下面 的描述中变得明显, 或通过本发明的实践了解到。 附图说明  The additional aspects and advantages of the invention will be set forth in part in the description which follows. DRAWINGS
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描 述中将变得明显和容易理解, 其中:  The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from
图 1示出了根据本发明第一实施例的超滑基本结构的主视图; 图 2示出了根据本发明第一实施例的超滑基本结构的俯视图; 图 3示出了根据本发明第一实施例的超滑基本结构的一个岛状结构滑 移时的示意图;  1 is a front elevational view showing a superslip basic structure according to a first embodiment of the present invention; FIG. 2 is a plan view showing a superslip basic structure according to a first embodiment of the present invention; Schematic diagram of an island structure of an ultraslip basic structure of an embodiment when it is slipped;
图 4示出了根据本发明第二实施例的并排扩展方式组成的多级超滑结 构的示意图;  4 is a schematic view showing a multi-stage superslip structure composed of side-by-side expansion modes according to a second embodiment of the present invention;
图 5示出了根据本发明第二实施例的独立式叠加方式组成的多级超滑 结构的示意图;  Figure 5 is a schematic view showing a multi-stage superslip structure composed of a freestanding superposition method according to a second embodiment of the present invention;
图 6示出了根据本发明第二实施例的共用式叠加方式组成的多级超滑 结构的示意图;  6 is a schematic view showing a multi-stage superslip structure composed of a shared superposition method according to a second embodiment of the present invention;
图 7示出了根据本发明第一实施例的岛状结构在超滑剪切面上发生滑 移的示意图;  Figure 7 is a view showing the slippage of the island-like structure on the superslip shear plane according to the first embodiment of the present invention;
图 8示出了根据本发明实施例的基底和支撑层为曲面或柔性材料的示 意图;  Figure 8 illustrates a schematic view of a substrate and support layer being curved or flexible material in accordance with an embodiment of the present invention;
图 9示出了根据本发明实施例的在机械臂 /探针推动下岛状结构发生滑 移时的示意图;  Figure 9 is a schematic view showing the slippage of an island structure under the push of a robot arm/probe according to an embodiment of the present invention;
图 10-15 示出了根据本发明第四实施例的超滑基本结构的形成方法的 各阶段示意图。 具体实施方式 10-15 illustrate a method of forming an ultraslip basic structure in accordance with a fourth embodiment of the present invention. Schematic diagram of each stage. detailed description
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发 明, 而不能解释为对本发明的限制。 下文的公开提供了许多不同的实施例 或例子用来实现本发明的不同结构。 为了简化本发明的公开, 下文中对特 定例子的部件和设置进行描述。 当然, 它们仅仅为示例, 并且目的不在于 限制本发明。 此外, 本发明可以在不同例子中重复参考数字和 /或字母。 这 种重复是为了简化和清楚的目的, 其本身不指示所讨论各种实施例和 /或设 置之间的关系。 此外, 本发明提供了的各种特定的工艺和材料的例子, 但 是本领域普通技术人员可以意识到其他工艺的可应用于性和 /或其他材料 的使用。 另外, 以下描述的第一特征在第二特征之 "上"的结构可以包括第 一和第二特征形成为直接接触的实施例, 也可以包括另外的特征形成在第 一和第二特征之间的实施例, 这样第一和第二特征可能不是直接接触。  The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative only and not to be construed as limiting. The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the disclosure of the present invention, the components and settings of specific examples are described below. Of course, they are merely examples and are not intended to limit the invention. Furthermore, the present invention may repeat reference numerals and/or letters in different examples. This repetition is for the purpose of simplification and clarity, and does not in itself indicate the relationship between the various embodiments and/or arrangements discussed. Moreover, the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials. Additionally, the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. The embodiment, such that the first and second features may not be in direct contact.
根据本发明的第一实施例, 参考图 1~3所示, 提供了一种超滑基本结 构, 包括基底 103, 和位于基底上的多个岛状结构 102, 其中每个岛状结构 均具有至少一个超滑剪切面, 所述超滑剪切面的上下接触面处于非公度接 触状态。 图 3为岛状结构剪切面发生滑移时上下接触面 102-201、 102-202 之间的状态。 图 4右侧为岛状结构 102中的一个岛状结构 102-1的放大图, 102-2为该岛状结构在剪切面发生滑移时的状态。  According to a first embodiment of the present invention, with reference to Figures 1-3, an ultraslip basic structure is provided, comprising a substrate 103, and a plurality of island structures 102 on the substrate, wherein each island structure has At least one super-slip shearing surface, the upper and lower contact surfaces of the super-slip shearing surface are in a non-common contact state. Fig. 3 shows the state between the upper and lower contact faces 102-1, 102-202 when the shearing surface of the island structure slips. The right side of Fig. 4 is an enlarged view of an island-like structure 102-1 in the island-like structure 102, and 102-2 is a state in which the island-like structure is slipped on the shear plane.
优选地, 所述基底优选为石墨: 例如高定向热解石墨(HOPG)基底或 者天然石墨, 或者所述基底的材料内部原子有局部存在层间非公度接触的 可能即可。所述岛状结构的材料优选为石墨:例如高定向热解石墨(HOPG) 基底或者天然石墨, 或者所述基底的材料内部原子有局部存在层间非公度 接触的可能即可, 或者所述岛状结构在剪切面铺有石墨或石墨烯。 所述超 滑剪切面是该结构可以进行超滑有限运动的关键因素, 如果岛状结构具有 一个非公度接触面, 其便具有一个超滑剪切面, 当岛状结构具有多个非公 度接触面时, 其具有多个超滑剪切面, 从而使整个结构处于结构超滑状态。 优选地, 所述多个岛状结构与基底为一体式结构, 当然也可为分体式结构, 所述岛状结构通过原子间的范德华吸附力或微型胶粘技术设置在基底上 方。 研究发现即使是在正常环境下 (非高真空) , 一个利用 HOPG基底加 工的边长约为 20μιη、 高为 200nm-400nm的石墨岛也可发生自回复现象。 当利用微机械臂推动石墨岛可以造成石墨岛的分层, 当释放微机械臂, 在 表面能的推动下被推出的石墨岛会自动回缩。 而石墨岛的自缩回现象正是 超滑的直接体现。 Preferably, the substrate is preferably graphite: for example, a highly oriented pyrolytic graphite (HOPG) substrate or natural graphite, or the internal atoms of the material of the substrate may have localized non-common contact between layers. The material of the island structure is preferably graphite: for example, a highly oriented pyrolytic graphite (HOPG) substrate or natural graphite, or the internal atoms of the material of the substrate may have localized non-common contact between layers, or The island structure is coated with graphite or graphene on the shear plane. The ultra-slip shear plane is a key factor for the structure to perform super-sliding limited motion. If the island-like structure has an incomparable contact surface, it has an ultra-slip shear plane, and when the island-like structure has multiple non- Public When the contact surface is in contact, it has a plurality of super-slip shear faces, so that the entire structure is in a super-sliding state. Preferably, the plurality of island-like structures and the substrate are a unitary structure, and may of course also be a split structure, and the island-like structure is disposed above the substrate by van der Waals adsorption or micro-adhesive technology between atoms. It has been found that even in a normal environment (non-high vacuum), a self-recovery phenomenon can occur in a graphite island having a side length of about 20 μm and a height of 200 nm to 400 nm processed by a HOPG substrate. When the graphite island is driven by the micro-mechanical arm, the stratification of the graphite island can be caused. When the micro-mechanical arm is released, the graphite island pushed out by the surface energy will automatically retract. The self-shrinking phenomenon of the graphite island is directly reflected by the ultra-slip.
优选地, 所述单个岛状结构的直径为 1μιη~30μιη, 所述直径是指岛状 结构与基底平行的方向上的截面上两点之间的最大距离、 岛状结构的高度 为 10ηιη~10μιη, 相邻岛状结构之间的平均间隔为 1μιη~100μιη, 相邻岛状 结构之间的平均间隔为与基底平行的方向上相邻岛状结构之间的距离。 一 般来说, 如图 7所示, 在相同高度下, 岛状结构的直径越大, 其具有非公 度界面的几率越小, 因此, 岛状结构的直径与高度之间应具有正相关关系, 即岛状结构的直径越大, 应该在刻蚀深度上更深, 以便使岛状结构具有更 高的高度。 当岛状结构具有更高的高度时, 其非公度接触面出现的概率也 更大。  Preferably, the diameter of the single island structure is 1 μm to 30 μm, and the diameter refers to a maximum distance between two points on a section in a direction parallel to the base of the island structure, and the height of the island structure is 10ηιη~10μιη The average spacing between adjacent island-like structures is 1 μm to 100 μm, and the average spacing between adjacent island-like structures is the distance between adjacent island-like structures in a direction parallel to the substrate. In general, as shown in Figure 7, at the same height, the larger the diameter of the island structure, the smaller the probability of having an incommensurate interface. Therefore, there should be a positive correlation between the diameter and height of the island structure. That is, the larger the diameter of the island structure, the deeper the etching depth, so that the island structure has a higher height. When the island structure has a higher height, the probability of its non-common contact surface is also greater.
特别地, 每个岛状结构的端部还具有一保护层 102-201。所述保护层可 以是 Si02, 在加工过程中为构图并刻蚀岛状结构而在基底上利用等离子体 化学气相沉积法沉积 Si02保护层, 例如 50nm~500nm。 另外, 还可以在所 述岛状结构上方设置一固体材料的支撑层 101, 如图 1 所示, 例如玻璃薄 片或金属薄片等, 所述支撑层可以通过原子间的范德华吸附力或微型胶粘 技术设置在岛状结构上方, 以便对超滑结构起到保护支撑作用。  In particular, the end of each island structure also has a protective layer 102-201. The protective layer may be SiO 2 , and the SiO 2 protective layer is deposited on the substrate by plasma chemical vapor deposition, for example, 50 nm to 500 nm, during the processing to pattern and etch the island structure. In addition, a support layer 101 of a solid material may be disposed above the island structure, as shown in FIG. 1, such as a glass flake or a metal foil, etc., and the support layer may pass van der Waals adsorption force or micro-adhesive between atoms. The technology is placed above the island structure to provide a protective support for the ultra-slip structure.
特别地, 如图 8所示, 所述基底和支撑层可以为平面、 曲面或柔性可 变形的片状固体材料。 所述岛状结构的超滑剪切面的上下接触面的面积可 以相同或不同。  In particular, as shown in Figure 8, the substrate and support layer can be planar, curved or flexible, deformable sheet-like solid materials. The area of the upper and lower contact faces of the superslip shear plane of the island structure may be the same or different.
此外, 根据本发明的第二实施例, 如图 4~6所示, 还提供了一种多级 超滑结构, 所述多级超滑结构包括前述的多个超滑基本结构, 所述多个超 滑基本结构通过并排扩展、 独立式叠加、 共用式叠加或其组合的方式形成 多级超滑结构。 In addition, according to the second embodiment of the present invention, as shown in FIGS. 4-6, a multi-stage superslip structure is further provided, and the multi-stage supersliding structure includes the foregoing plurality of ultra-slip basic structures, The ultra-slip basic structure is formed by side-by-side expansion, independent superposition, shared superposition or a combination thereof. Multi-stage superslip structure.
其中, 所述并排扩展式组成方式, 如图 4所示, 为将多个所述超滑基 本结构并排分布在一个全局基底和一个全局支撑层之间, 所述全局基底和 所述全局支撑层为平面、 曲面或柔性可变形的片状固体材料, 所述全局基 底连接到所有的所述超滑基本结构的所述基底, 所述全局支撑层连接到所 有的所述超滑基本结构的所述支撑层。 所述独立式叠加组成方式, 如图 5 所示,为将第 N个所述超滑基本结构的所述支撑层 101、 201、 301和第 N+1 个所述超滑基本结构的所述基底 103、 203、 303相连接。 所述共用式叠加 组成方式, 如图 6所示, 为将第 N个所述超滑基本结构的所述支撑层同时 作为第 N+1个所述超滑基本结构的所述基底 103、 203、 303 ο  The side-by-side extended composition manner, as shown in FIG. 4, is to distribute a plurality of the superslip basic structures side by side between a global base and a global support layer, the global base and the global support layer. a planar, curved or flexible deformable sheet-like solid material, the global substrate being attached to all of the substrates of the ultraslip basic structure, the global support layer being connected to all of the superslip basic structures Said support layer. The independent superposition composition manner, as shown in FIG. 5, is the said support layer 101, 201, 301 and the N+1th superslip basic structure of the Nth superslip basic structure The substrates 103, 203, 303 are connected. The common superposition composition manner, as shown in FIG. 6, is to simultaneously use the support layer of the Nth superslip basic structure as the substrate 103, 203 of the N+1th superslip basic structure. , 303 ο
所述复合组成方式指多个所述超滑基本结构组成所述多级超滑结构的 方式综合使用所述并排扩展式组成方式、 所述独立式叠加组成方式和所述 共用式叠加组成方式中的两项或三项或同一项多次使用, 例如通过独立式 叠加组成方式把 3个超滑基本结构叠加在一起得到一个二级超滑结构, 再 把 25个这样的二级超滑结构按 5x5的阵列排布成所述的并排扩展式组成方 式得到一个三级超滑结构,再把 10个这样的三级超滑结构按共用式叠加组 成方式叠加成一个四级超滑结构, 这样一个四级超滑结构就总共包括 3x25x10=750个超滑基本结构。  The composite composition manner refers to a manner in which a plurality of the superslip basic structures constitute the multi-stage superslip structure, and the side-by-side extended composition manner, the independent superposition composition manner, and the shared superposition composition manner are comprehensively used. Two or three items or the same item are used multiple times. For example, three super-sliding basic structures are superimposed by a superposition superposition method to obtain a two-stage super-slip structure, and then 25 such two-stage super-sliding structures are pressed. The 5x5 array is arranged in the side-by-side extended form to obtain a three-stage superslip structure, and then 10 such three-stage super-sliding structures are superimposed into a four-stage super-sliding structure according to a common superposition structure, such a The four-stage superslip structure includes a total of 3x25x10=750 ultra-slip basic structures.
此外根据本发明的第三实施例, 还提供了一种具有超滑结构的器件, 在上述结构的基础上还包括位于最底层基底下方的第一部件 (未示出) , 和位于最顶层岛状结构或岛状结构的支撑层上的第二部件 (未示出) 。 所 述第一部件和第二部件可以是常规尺寸的所需器件, 例如二维精密定位平 台、 高频振荡器等。  Further in accordance with a third embodiment of the present invention, there is provided a device having an ultraslip structure, further comprising a first component (not shown) located below the bottommost substrate, and at the topmost island, based on the structure A second component (not shown) on the support layer of the island or island structure. The first component and the second component may be required devices of a conventional size, such as a two-dimensional precision positioning platform, a high frequency oscillator, or the like.
以上已经根据本发明的实施例阐述了本发明的大尺寸超滑器件的结构 以及基于此结构的器件。  The structure of the large-sized ultraslip device of the present invention and the device based thereon have been explained above in accordance with an embodiment of the present invention.
如图 9所示, 当一个岛状结构上存在多个超滑剪切面时, 通常在机械 臂或探针的推动下多个超滑剪切面中最容易被推开的层会被机械臂 /探针 推开, 当一个剪切面被推开后该岛状结构上存在的其他超滑剪切面可能就 不会被推开。 因此, 当每一个岛状结构均具有至少一个超滑剪切面时, 可 以保证每个岛状结构都有一个超滑剪切面被推开, 从而确保位于其上下的 第一、 第二器件能够有相对一致的运动幅度。 As shown in FIG. 9, when there are a plurality of super-slip shear faces on an island structure, the layer which is most easily pushed away by a plurality of super-slip shear faces under the push of a robot arm or a probe is mechanically The arm/probe pushes open, and other superslip shear faces present on the island structure may not be pushed open when a shear plane is pushed open. Therefore, when each island structure has at least one super-slip shear surface, In order to ensure that each island structure has an ultra-slip shear plane pushed away, to ensure that the first and second devices located above and below can have a relatively uniform amplitude of motion.
优选地, 每个岛状结构具有相对一致的尺寸 /横截面积 /直径, 这样保证 每个岛状结构被推开的位移基本一致, 从而使第一器件、 第二器件的相对 位移最大化。 当然, 也可以合理布局岛状结构的尺寸 /横截面积 /直径, 使不 同的岛 /岛群具有不同的尺寸 /横截面积 /直径, 或者合理布局岛状结构之间 的间距, 从而符合各种不同的器件应用。  Preferably, each island structure has a relatively uniform size/cross-sectional area/diameter, such that the displacement of each island structure is substantially uniform, thereby maximizing the relative displacement of the first device and the second device. Of course, it is also possible to rationally arrange the size/cross-sectional area/diameter of the island-like structure so that different islands/island groups have different sizes/cross-sectional areas/diameters, or rationally arrange the spacing between the island-like structures, thereby conforming to each Different device applications.
更优选地, 所述每个岛状结构都存在两个以上的超滑剪切面, 这样通 过多个超滑剪切面的剪切位移累加可以使得第一第二部件之间达到较大的 相对位移。 上述这些变化均在本发明的保护范围中。  More preferably, each of the island-like structures has more than two super-slip shear faces, so that the shear displacement accumulation of the plurality of super-slip shear faces can make the first and second components reach a larger Relative displacement. All of the above changes are within the scope of the present invention.
根据本发明的第四实施例,下面将详细阐述制造超滑基本结构的方法。 如图 10-15所述, 包括如下步骤:  According to a fourth embodiment of the present invention, a method of manufacturing an ultraslip basic structure will be described in detail below. As shown in Figure 10-15, the following steps are included:
步骤 1, 提供基底 103, 所述基底可以是石墨, 例如高定向热解石墨 ( HOPG )基底或者天然石墨, 或者基底材料的内部原子有局部存在层间非 公度接触的可能。 优选地, 还应对石墨基底剥落表皮, 例如利用胶带粘在 石墨表面然后揭开胶带从而剥落表皮, 或用薄刀片从侧面切开石墨。  Step 1, providing a substrate 103, which may be graphite, such as a highly oriented pyrolytic graphite (HOPG) substrate or natural graphite, or the internal atoms of the substrate material may have localized non-common contact between layers. Preferably, the graphite substrate is also peeled off from the skin, such as by tape bonding to the surface of the graphite and then peeling off the tape to peel off the skin, or cutting the graphite from the side with a thin blade.
而后, 在步骤 2, 制备岛状结构并使所述岛状结构达到与基底连接的 状态。 具体来说, 可以包括如下步骤: 步骤 2-1, 在所述基底上依次覆盖保 护层 105 和光刻胶 104, 所述保护层 105 可以是 Si02, 厚度可以是例如 50nm~500nm, 可以利用等离子体化学气相沉积法沉积所述 Si02保护层。 所述光刻胶 104可以通过旋转涂布的方式进行覆盖。而后在步骤 2-2, 构图 所述光刻胶 104, 保留多个光刻胶岛 104。 构图光刻胶的步骤即确定了后续 步骤中所形成的岛状结构的布局, 例如可以利用电子束刻蚀方法构图所述 光刻胶, 所形成的光刻胶岛可以是, 例如平均直径为 1μιη~30μιη, 光刻胶 岛之间的平均间隔为 1μιη~100μιη, 这样刻蚀后的岛状结构也具有相应的平 均直径和平均间隔。 此后在步骤 2-3, 刻蚀所述基底, 以便去除未被光刻胶 保护的保护层和部分基底, 从而形成多个岛状结构 102。 所述刻蚀可以是 例如反应离子刻蚀。 一般来说, 如图 7所示, 在相同高度下, 岛状结构的 直径越大, 其具有非公度界面的几率越小, 因此, 岛状结构的直径与高度 之间应具有正相关关系, 即岛状结构的直径越大, 应该在刻蚀深度上更深, 以便使岛状结构具有更高的高度。 当岛状结构具有更高的高度时, 其非公 度接触面出现的概率也更大。 Then, in step 2, an island-like structure is prepared and the island-like structure is brought into a state of being connected to the substrate. Specifically, the method may include the following steps: Step 2-1, sequentially covering the protective layer 105 and the photoresist 104 on the substrate, the protective layer 105 may be SiO 2 , and the thickness may be, for example, 50 nm to 500 nm, and the plasma may be utilized. The SiO 2 protective layer is deposited by bulk chemical vapor deposition. The photoresist 104 can be covered by spin coating. The photoresist 104 is then patterned in step 2-2 to retain a plurality of photoresist islands 104. The step of patterning the photoresist determines the layout of the island structure formed in the subsequent step. For example, the photoresist may be patterned by an electron beam etching method, and the formed photoresist island may be, for example, an average diameter of 1μιη~30μιη, the average interval between the photoresist islands is 1μηη~100μιη, so that the etched island structure also has a corresponding average diameter and average interval. Thereafter, in step 2-3, the substrate is etched to remove the protective layer and a portion of the substrate that are not protected by the photoresist, thereby forming a plurality of island structures 102. The etching may be, for example, reactive ion etching. In general, as shown in Fig. 7, at the same height, the larger the diameter of the island structure, the smaller the probability of having an incommensurate interface, and therefore the diameter and height of the island structure. There should be a positive correlation between the two, that is, the larger the diameter of the island structure, the deeper the etching depth, so that the island structure has a higher height. When the island structure has a higher height, the probability of its non-common contact surface is also greater.
当然也可以不覆盖所述保护层 105, 而直接在基底上覆盖光刻胶 104 并进行岛状结构的刻蚀, 从而形成不带保护层的岛状结构。  Of course, the protective layer 105 may not be covered, and the photoresist 104 may be directly coated on the substrate and etched by the island structure to form an island-like structure without a protective layer.
步骤 3, 检测所述岛状结构是否具有超滑剪切面, 当刻蚀获得的岛状 结构不存在超滑剪切面时, 意味着该岛状结构不能被机械臂推开, 因此无 法使用。 需要利用机械臂逐个推开所述岛状结构, 检测该岛状结构是否具 有超滑剪切面, 并且标记不具有超滑剪切面的岛状结构, 以便后续工序中 去除该岛。  Step 3: detecting whether the island structure has an ultra-slip shear surface. When the island structure obtained by etching does not have an ultra-slip shear plane, it means that the island structure cannot be pushed away by the robot arm, and thus cannot be used. . It is necessary to use the robot arm to push open the island-like structure one by one, to detect whether the island-like structure has an ultra-slip shear surface, and to mark an island-like structure having no super-slip shear surface, so as to remove the island in a subsequent process.
此后, 在步骤 4, 去除不具有超滑剪切面的岛状结构。 去除岛状结构 的方法可以是例如利用反应离子刻蚀、 或其他物理化学手段。  Thereafter, in step 4, the island-like structure without the superslip shear plane is removed. The method of removing the island structure may be, for example, using reactive ion etching, or other physical chemical means.
优选地, 可以在所述岛状结构上方设置一固体材料的支撑层 101, 例 如玻璃薄片或金属薄片, 所述支撑层可以通过原子间的范德华吸附力或微 型胶粘技术设置在岛上方, 以便对超滑结构起到保护支撑作用。  Preferably, a support layer 101 of solid material, such as a glass flake or a metal foil, may be disposed above the island structure, and the support layer may be disposed above the island by van der Waals adsorption or micro-adhesive technology between atoms, so that Provides protective support for the ultra-slip structure.
本实施例所述的超滑基本结构的制备方法主要是通过对材料进行微加 工刻蚀获得一些岛状结构, 再选择性消除部分岛状结构, 仅保留存在至少 一个超滑剪切面的岛状结构, 再在岛状结构上粘贴一层支撑层, 由此封装 成一个可达较大尺度的超滑基本结构。 当然也可以采用其他方式形成所述 超滑基本结构, 例如通过独立刻蚀单独形成多个岛状结构, 然后再在基底 上连接所述岛状结构, 例如将岛状结构通过原子间的范德华吸附力或微型 胶粘技术设置在基底上方。 或者对于一般的内部原子没有局部存在层间非 公度接触的可能的材料, 可以在制备岛状结构后, 在其表面铺上石墨或石 墨烯。 例如可以用单晶硅材料作为基底, 在其上面刻蚀出岛状结构后, 铺 上几层非公度接触的单晶石墨烯, 再通过在岛状结构内部空隙抽真空的方 式使石墨烯薄膜包裹住单晶硅的岛状结构。 这样使得虽然单晶硅本身不能 超滑, 但经石墨烯的修饰后也可达到超滑的效果, 从而使得本发明的具体 实施例可以利用单晶硅晶粒尺寸大、 工艺成熟等优点。  The preparation method of the superslip basic structure described in this embodiment mainly obtains some island-like structures by micro-machining and etching the materials, and then selectively removes some island-like structures, and only retains islands having at least one super-slip shear plane. The structure is attached to the island structure and a layer of support layer is attached to form a superslip basic structure up to a larger scale. Of course, the superslip basic structure may also be formed by other means, for example, by separately forming a plurality of island-like structures by independent etching, and then connecting the island-like structures on the substrate, for example, passing the island-like structure through the van der Waals adsorption between atoms. A force or micro-adhesive technique is placed over the substrate. Or, for a general internal atom, there is no possibility of localized inhomogeneous contact between the layers, and after the island structure is prepared, graphite or graphene may be laid on the surface thereof. For example, a single crystal silicon material can be used as a substrate, and after the island structure is etched thereon, several layers of non-commonly contacted single crystal graphene are laid, and then graphene is vacuumed in a space inside the island structure. The film encloses the island structure of the single crystal silicon. Thus, although the single crystal silicon itself cannot be ultra-slip, the superslip effect can be achieved by the modification of the graphene, so that the specific embodiment of the present invention can utilize the advantages of large crystal grain size and mature process of the single crystal silicon.
在通过以上制备方法获得所述超滑基本结构后, 通过所述并排扩展式 组成方式、 所述独立叠加组成方式、 所述共用式叠加组成方式或复合组成 方式把多个所述超滑基本结构连接起来, 组成所述多级超滑结构, 具体连 接方法可以根据具体实施例的尺寸采用常见的胶粘或机械连接等方法。 After the superslip basic structure is obtained by the above preparation method, by the side-by-side extension The composition mode, the independent superimposed composition mode, the shared superimposed composition mode or the composite composition mode connects a plurality of the superslip basic structures to form the multi-stage superslip structure, and the specific connection method may be according to a specific embodiment. The dimensions are based on common glue or mechanical connections.
举例来说, 本发明的一个具体实施例描述如下: 在横截面积为 lmmxlmm、厚度为 50μιη的高定向热解石墨块上沉积 200nm厚的二氧化硅 保护层, 通过电子束曝光和反应离子刻蚀的方法在石墨块上刻蚀出 50x50=2500 个石墨岛状结构, 每个岛状结构横截面积为 5μιηχ5μιη, 厚度 为 300nm的石墨层以及 200nm的二氧化硅保护层, 合计 500nm, 相邻石墨 岛状结构的中心距离为 20μιη。石墨块剩下的高度部分作为超润基本结构的 基底, 即石墨下方基底和石墨岛状结构是一体式的。 通过用微探针拨动各 个石墨岛状结构, 使其发生层间剪切滑移, 然后释放微探针观察滑移的岛 状结构上层能否自发地回复到原来的位置。 把所有不能自回复的石墨岛状 结构标记下来, 然后利用光刻技术把这些不能自回复的石墨岛状结构全部 刻蚀掉, 仅保留能自回复的石墨岛状结构。 取一个横截面积为 lmmxlmm、 厚度为 50μιη 的玻璃薄片, 在玻璃薄片的一面涂上环氧树脂胶水, 然后粘 贴到石墨岛状结构上。 由此得到了一个横截面积为 lmmxlmm、 厚度为 0.1mm的超滑基本结构, 其滑移行程 <5μιη。  For example, one embodiment of the present invention is described as follows: A 200 nm thick silicon dioxide protective layer is deposited on a highly oriented pyrolytic graphite block having a cross-sectional area of 1 mm x 1 mm and a thickness of 50 μm, by electron beam exposure and reactive ion etching. The etch method etches 50x50=2500 graphite island structures on the graphite block, each island structure has a cross-sectional area of 5μηηχ5μιη, a thickness of 300nm graphite layer and a 200nm silicon dioxide protective layer, totaling 500nm, adjacent The center distance of the graphite island structure is 20 μm. The remaining height portion of the graphite block serves as a base for the ultra-wet basic structure, that is, the underlying graphite and the graphite island structure are integrated. By using the microprobe to move each of the graphite island structures, the interlaminar shear slip occurs, and then the microprobe is released to observe whether the upper layer of the slipped island structure spontaneously returns to its original position. All the graphite island structures that cannot be self-recovering are marked, and then these non-recoverable graphite island structures are etched away by photolithography, leaving only the graphite island structure capable of self-recovery. A glass sheet having a cross-sectional area of lmmxlmm and a thickness of 50 μm was taken, and epoxy resin glue was applied to one side of the glass sheet, and then adhered to the graphite island structure. Thus, an ultra-slip basic structure having a cross-sectional area of lmmxlmm and a thickness of 0.1 mm was obtained, and the slip stroke was <5 μιη.
如此制造 10x10=100个这样的超滑基本结构, 把它们按照并排扩展式 组合方式排布成 10x10 的方形阵列, 相邻超滑基本结构的中心距离为 10mm。 再取两块横截面积为 10cmxl0cm、 厚度为 0.5mm 的 PDMS ( Polydimethylsiloxane , 一种高分子有机硅化合物, 具有光学透明、 弹性 良好、 无毒、 不易燃的特性) 薄片作为全局基底和全局盖子, 把它们的一 面涂上环氧树脂胶水, 然后把两块 PDMS薄片分别粘贴到超滑基本结构组 成的方形阵列的上下表面。 由此得到了一个横截面积为 10cmxl0cm、 厚度 为 1.1mm的二级超滑结构, 其滑移行程 <5μιη, 且它是透光、 柔性可弯曲的 薄片状。  Thus, 10x10=100 such ultra-slip basic structures are fabricated, and they are arranged in a side-by-side expansion combination into a 10x10 square array, and the center distance of the adjacent ultra-slip basic structure is 10 mm. Two pieces of PDMS (Polydimethylsiloxane, a high molecular silicone compound with optically transparent, good elasticity, non-toxic, non-flammable properties) with a cross-sectional area of 10 cm x 10 cm and a thickness of 0.5 mm were taken as the global substrate and the global cover. One side of them was coated with epoxy glue, and then two pieces of PDMS sheets were respectively attached to the upper and lower surfaces of a square array of ultra-smooth basic structures. Thus, a two-stage superslip structure having a cross-sectional area of 10 cm x 10 cm and a thickness of 1.1 mm was obtained, which had a slip stroke of <5 μm, and which was a light-transmissive, flexible and bendable sheet.
再如此制造 20个上述二级超滑结构,把它们按照共用式叠加组成方式 叠加起来, 把第一个二级超滑结构的全局盖子同时作为第二个二级超滑结 构的全局基底, 如此类推叠加起来, 就得到一个三级超滑结构, 其横截面 积为 lOcmxlOcm, 厚度为 1.25cm, 滑移行程<0.1111111, 且它是透光、 柔性 可弯曲的薄片状。 Then, 20 second-level super-slip structures are fabricated in this way, and they are superimposed in a common superposition composition, and the global cover of the first two-stage super-slip structure is simultaneously used as the global base of the second two-stage superslip structure. By analogy, a three-stage superslip structure with a cross section is obtained. The product is lOcmxlOcm, the thickness is 1.25cm, the slip stroke is <0.1111111, and it is a light-transmissive, flexible and flexible sheet.
通过上面所述的本发明的一个具体实施例可以直观地看到本发明可以 达到大尺度、 大滑移行程的超滑, 这将大大突破以往超滑只能在微观尺度 实现的局限性。  Through the specific embodiment of the present invention described above, it can be intuitively seen that the present invention can achieve super-slip of large-scale, large-slip stroke, which will greatly overcome the limitations that the ultra-slip can only achieve at the microscopic scale.
以上所述实施例仅为本发明的几个较优化的实施例, 本发明不局限于 这几个实施例, 还应允许其它的变化。 凡在本发明独立权要求范围内变化 的, 或本领域一般技术人员可以依据本发明轻易想到的变化, 均属于本发 明的保护范围。  The above described embodiments are only a few more preferred embodiments of the present invention, and the present invention is not limited to the embodiments, and other variations are also allowed. Variations that are readily conceivable by one of ordinary skill in the art in light of the scope of the appended claims are intended to be within the scope of the invention.
此外, 本发明的应用范围不局限于说明书中描述的特定实施例的工艺、 机构、 制造、 物质组成、 手段、 方法及步骤。 从本发明的公开内容, 作为本领域的普 通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、 制造、 物质组成、 手段、 方法或步骤, 其中它们执行与本发明描述的对应实施 例大体相同的功能或者获得大体相同的结果, 依照本发明可以对它们进行应 用。 因此, 本发明所附权利要求旨在将这些工艺、 机构、 制造、 物质组成、 手 段、 方法或步骤包含在其保护范围内。 Further, the scope of application of the present invention is not limited to the process, mechanism, manufacture, material composition, means, methods and steps of the specific embodiments described in the specification. From the disclosure of the present invention, it will be readily understood by those skilled in the art that the processes, mechanisms, manufactures, compositions, means, methods, or steps that are presently present or later, wherein they are performed with the present invention The corresponding embodiments described are substantially identical in function or obtain substantially the same results, which can be applied in accordance with the present invention. Therefore, the appended claims are intended to cover such modifications, such structures, structures, compositions, compositions, components, methods, or steps.

Claims

权 利 要 求 书 Claim
1.一种超滑基本结构, 包括基底, 和位于基底上的多个岛状结构, 其 中每个岛状结构均具有至少一个超滑剪切面, 所述超滑剪切面的上下接触 面处于非公度接触状态。 What is claimed is: 1. A superslip basic structure comprising a substrate, and a plurality of island structures on the substrate, wherein each island structure has at least one superslip shear surface, upper and lower contact surfaces of the superslip shear surface In a state of non-common contact.
2.根据权利要求 1 所述的结构, 其中所述单个岛状结构的直径为 1μιη~30μιη、 高度为 10ηιη~10μιη。  The structure according to claim 1, wherein the single island-like structure has a diameter of 1 μm to 30 μm and a height of 10 nm to 10 μm.
3.根据权利要求 1 所述的结构, 其特征在于, 相邻岛状结构之间的平 均间隔为 1μηι~100μιη。  The structure according to claim 1, wherein the average spacing between adjacent island-like structures is 1 μηι to 100 μιη.
4.根据权利要求 1 所述的结构, 其中每个岛状结构包括在其端部的保 护层。  4. The structure of claim 1 wherein each island structure comprises a protective layer at an end thereof.
5.根据权利要求 1 所述的结构, 其中所述多个岛状结构与基底为一体  The structure according to claim 1, wherein the plurality of island-like structures are integrated with a substrate
6.根据权利要求 1所述的结构, 其中所述岛状结构为石墨材料。 6. The structure of claim 1 wherein the island structure is a graphite material.
7.根据权利要求 1 所述的结构, 其中所述岛状结构材料内部原子有局 部存在层间非公度接触的可能; 或者所述岛状结构在剪切面铺有石墨或石 墨烯。  The structure according to claim 1, wherein the internal atoms of the island-shaped structural material have a possibility of localized incompatibility between layers; or the island-like structure is coated with graphite or graphene on the shear plane.
8. 根据权利要求 1所述的结构, 其中所述岛状结构的超滑剪切面的上 下接触面的面积可以相同或不同。  8. The structure according to claim 1, wherein an area of the upper and lower contact faces of the superslip shear plane of the island structure may be the same or different.
9.根据权利要求 1所述的结构, 还包括覆盖所述岛状结构的支撑层。 9. The structure of claim 1 further comprising a support layer covering the island structure.
10.根据权利要求 1至 9所述的结构,其中,所述基底和支撑层为平面、 曲面或柔性可变形的片状固体材料。 10. A structure according to claims 1 to 9, wherein the substrate and support layer are planar, curved or flexible deformable sheet-like solid materials.
11.一种多级超滑结构, 其特征在于: 所述多级超滑结构包括多个权利 要求 1~10任一项所述的超滑基本结构,所述多个超滑基本结构通过并排扩 展、 独立式叠加、 共用式叠加或其组合的方式形成多级超滑结构, 其中, 所述并排扩展式组成方式为将多个所述超滑基本结构并排分布在一个 全局基底和一个全局支撑层之间,所述全局基底和所述全局支撑层为平面、 曲面或柔性可变形的片状固体材料, 所述全局基底连接到所有的所述超滑 基本结构的所述基底, 所述全局支撑层连接到所有的所述超滑基本结构的 所述支撑层; A multi-stage superslip structure, comprising: the multi-stage superslip structure comprising the plurality of ultra-slip basic structures according to any one of claims 1 to 10, wherein the plurality of superslip basic structures are side by side The method of expanding, independent superimposing, sharing superimposing or a combination thereof forms a multi-stage superslip structure, wherein the side-by-side extended composition is to distribute a plurality of the supersliding basic structures side by side on a global base and a global support Between the layers, the global substrate and the global support layer are planar, curved or flexible deformable sheet-like solid materials, the global substrate being connected to all of the substrates of the superslip basic structure, the global a support layer connected to all of the superslip basic structures The support layer;
所述独立式叠加组成方式为将第 N个所述超滑基本结构的所述支撑层 和第 N+1个所述超滑基本结构的所述基底相连接;  The independent superposition composition is formed by connecting the support layer of the Nth superslip basic structure and the substrate of the (N+1)th superslip basic structure;
所述共用式叠加组成方式为将第 N个所述超滑基本结构的所述支撑层 同时作为第 N+1个所述超滑基本结构的所述基底。  The shared superposition is composed by using the support layer of the Nth superslip basic structure as the substrate of the N+1th superslip basic structure at the same time.
12.—种具有超滑结构的器件, 包括根据权利要求 1至 11任意之一所 述的结构, 还包括位于最底层基底下方的第一部件, 和位于最顶层岛状结 构或岛状结构的支撑层上的第二部件。  12. A device having an ultraslip structure, comprising the structure according to any one of claims 1 to 11, further comprising a first component located below the bottommost substrate, and a topmost island or island structure a second component on the support layer.
13.—种制造超滑基本结构的方法, 包括如下步骤:  13. A method of manufacturing an ultraslip basic structure comprising the steps of:
步骤 1, 提供基底;  Step 1, providing a substrate;
步骤 2, 制备岛状结构并使所述岛状结构达到与基底连接的状态; 步骤 3, 检测所述岛状结构是否具有超滑剪切面;  Step 2, preparing an island structure and bringing the island structure into a state of being connected to the substrate; Step 3, detecting whether the island structure has an ultra-slip shear surface;
步骤 4, 去除不具有超滑剪切面的岛。  Step 4. Remove islands that do not have an ultra-slip shear plane.
14. 根据权利要求 13所述的方法, 其中,  14. The method according to claim 13, wherein
所述步骤 2包括:  The step 2 includes:
步骤 2-1, 在所述基底上依次覆盖光刻胶;  Step 2-1, sequentially covering the photoresist on the substrate;
步骤 2-2, 构图所述光刻胶, 保留多个光刻胶岛;  Step 2-2, patterning the photoresist to retain a plurality of photoresist islands;
步骤 2-3, 刻蚀所述基底, 以去除未被光刻胶保护的部分基底, 从而形 成多个岛状结构。  Step 2-3, etching the substrate to remove a portion of the substrate not protected by the photoresist, thereby forming a plurality of island structures.
15.根据权利要求 14所述的方法, 其中  15. The method of claim 14, wherein
所述步骤 2-1包括: 依次在所述基底上覆盖保护层和光刻胶; 所述步骤 2-3 包括: 刻蚀所述基底, 以去除未被光刻胶保护的保护层 和部分基底, 从而形成多个岛状结构。  The step 2-1 includes: sequentially covering the substrate with a protective layer and a photoresist; the step 2-3 includes: etching the substrate to remove the protective layer and a portion of the substrate not protected by the photoresist Thereby forming a plurality of island structures.
16. 根据权利要求 15所述的方法, 所述步骤 2-1包括利用等离子体化 学气相沉积法在所述基底上沉积 Si02保护层, 以及利用旋转涂布法进行光 刻胶涂布;  16. The method according to claim 15, wherein the step 2-1 comprises depositing a SiO 2 protective layer on the substrate by a plasma chemical vapor deposition method, and performing a photoresist coating by a spin coating method;
所述步骤 2-2包括利用电子束刻蚀构图所述光刻胶;  The step 2-2 includes patterning the photoresist by electron beam etching;
所述步骤 2-3包括利用反应离子刻蚀法刻蚀所述基底。  The step 2-3 includes etching the substrate by reactive ion etching.
17. 根据权利要求 13所述的方法, 还包括在所述岛状结构上设置支撑 层的步骤。 17. The method of claim 13 further comprising providing support on the island structure The steps of the layer.
18.根据权利要求 13所述的方法, 其中所述岛状结构为石墨材料。 18. The method of claim 13, wherein the island structure is a graphite material.
19.根据权利要求 13所述的方法, 其中所述岛状结构材料内部原子有 局部存在层间非公度接触的可能; 或者所述岛状结构在剪切面铺有石墨或 石墨烯。 The method according to claim 13, wherein the atoms in the island-like structural material have a possibility of localized in-situ non-common contact; or the island-like structure is coated with graphite or graphene on the shear plane.
PCT/CN2013/079132 2013-07-10 2013-07-10 Superlubricity basic structure, multi-stage superlubricity structure, device with structure, and forming method therefor WO2015003343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079132 WO2015003343A1 (en) 2013-07-10 2013-07-10 Superlubricity basic structure, multi-stage superlubricity structure, device with structure, and forming method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079132 WO2015003343A1 (en) 2013-07-10 2013-07-10 Superlubricity basic structure, multi-stage superlubricity structure, device with structure, and forming method therefor

Publications (1)

Publication Number Publication Date
WO2015003343A1 true WO2015003343A1 (en) 2015-01-15

Family

ID=52279306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079132 WO2015003343A1 (en) 2013-07-10 2013-07-10 Superlubricity basic structure, multi-stage superlubricity structure, device with structure, and forming method therefor

Country Status (1)

Country Link
WO (1) WO2015003343A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174017A4 (en) * 2020-06-28 2024-03-06 Univ Tsinghua Res Inst Shenzhen Structural superlubricity device capable of reducing edge friction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148761A (en) * 2006-09-22 2008-03-26 王海斗 Fe/MoS2 nano multilayer film and preparation method thereof
CN101941005A (en) * 2010-07-27 2011-01-12 清华大学 Eraser device and processing method thereof as well as method for cleaning by using device
WO2012029191A1 (en) * 2010-09-03 2012-03-08 Nanocarbon Research Institute, Ltd. Nanospacer lubrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148761A (en) * 2006-09-22 2008-03-26 王海斗 Fe/MoS2 nano multilayer film and preparation method thereof
CN101941005A (en) * 2010-07-27 2011-01-12 清华大学 Eraser device and processing method thereof as well as method for cleaning by using device
WO2012029191A1 (en) * 2010-09-03 2012-03-08 Nanocarbon Research Institute, Ltd. Nanospacer lubrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZE;: "Experimental Study on the Graphite/Graphene Nanomechanics and Nanodevice", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, March 2013 (2013-03-01), pages 48 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174017A4 (en) * 2020-06-28 2024-03-06 Univ Tsinghua Res Inst Shenzhen Structural superlubricity device capable of reducing edge friction

Similar Documents

Publication Publication Date Title
CN103438348B (en) A kind of multistage superslide structure, the device with the structure and forming method thereof
Bunch et al. Adhesion mechanics of graphene membranes
US11939672B2 (en) Ultralight robust plate materials
Kim et al. Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films
Cha et al. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness
CN110155961B (en) Method for preparing laminar material folds
Hou et al. Preparation of twisted bilayer graphene via the wetting transfer method
Humood et al. Fabrication and deformation of 3D multilayered kirigami microstructures
Yi et al. Bio-inspired adhesive systems for next-generation green manufacturing
US20210251318A1 (en) Device for Dynamic Fluid Pinning
CN112996945B (en) Heat conduction and protective coating for electronic equipment
Sun et al. Biomimetic multiwalled carbon nanotube/polydimethylsiloxane nanocomposites with temperature-controlled, hydrophobic, and icephobic properties
Chen et al. Adhesive contact between a graphene sheet and a nano-scale corrugated surface
Ratnayake et al. Engineering stress in thin films for the field of bistable MEMS
Wang et al. Study of dynamic contacts for graphene nano-electromechanical switches
CN111747371B (en) Structural ultra-smooth device and preparation method thereof
Kang et al. Role of crack deflection on rate dependent mechanical transfer of multilayer graphene and its application to transparent electrodes
WO2015003343A1 (en) Superlubricity basic structure, multi-stage superlubricity structure, device with structure, and forming method therefor
Nguyen et al. Epitaxial Pb (Zr, Ti) O 3 thin films for a MEMS application
Guo et al. Fabrication and adhesion of a bio-inspired microarray: capillarity-induced casting using porous silicon mold
Kim et al. Developing nanoscale inertial sensor based on graphite-flake with self-retracting motion
CN111217359B (en) Preparation method of Si-based substrate heterogeneous integrated graphene
Mousavi et al. Mode II adhesion energy analysis of stiction-failed poly-Si cantilevers using a MEMS load cell
Peng et al. Measurements of residual stresses in the Parylene C film/silicon substrate using a microcantilever beam
Berdova et al. Exceptionally strong and robust millimeter-scale graphene–alumina composite membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889242

Country of ref document: EP

Kind code of ref document: A1