WO2015002616A1 - Hydrogen separation tank with liquid cooling system - Google Patents

Hydrogen separation tank with liquid cooling system Download PDF

Info

Publication number
WO2015002616A1
WO2015002616A1 PCT/TH2013/000029 TH2013000029W WO2015002616A1 WO 2015002616 A1 WO2015002616 A1 WO 2015002616A1 TH 2013000029 W TH2013000029 W TH 2013000029W WO 2015002616 A1 WO2015002616 A1 WO 2015002616A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
holes
electrolyte solution
stainless steel
hydrogen separation
Prior art date
Application number
PCT/TH2013/000029
Other languages
French (fr)
Inventor
Sukij Tridsadeerak
Original Assignee
Sukij Tridsadeerak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukij Tridsadeerak filed Critical Sukij Tridsadeerak
Priority to PCT/TH2013/000029 priority Critical patent/WO2015002616A1/en
Publication of WO2015002616A1 publication Critical patent/WO2015002616A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • An apparatus which contains electrolyte solution tank induces electrolysis process, or Brown Gas, in electrolyte solution with water as the main element.
  • electrolysis process or Brown Gas
  • the apparatus will heat up and accumulate heat to the point where it's difficult to control stable hydrogen production.
  • the electrolysis process requires constant temperature control in order to continuously produce hydrogen.
  • Hydrogen Separation Tank needs to have an integrated cooling system.
  • the apparatus is separated into 2 parts.
  • Part A is the electrolysis hydrogen separation system, containing electrolyte solution and supplied with electrical current from a DC power source.
  • Part B is the cooling system, containing cooling liquid, a temperature sensor, and a pump for circulating heat from the hydrogen separation tank to a radiator.
  • Hydrogen Separation Tank with Liquid Cooling System consists of cylinder or oval cylinder tanks with round lids for both parts.
  • the tank has an anode and a cathode installed on it.
  • the anode and cathode allow DC electrical current to flow through the cell plates and the permanent magnet which work together as catalyst for hydrogen production.
  • the temperature inside the hydrogen separation tank is constantly monitored and the cooling system will start once the temperature reaches a given point.
  • Fig. 1 shows Part A of the apparatus.
  • the hydrogen separation tank (1) is made of a round cylinder or oval cylinder stainless steel tank for holding electrolyte solution.
  • the round or oval shape allows electrolyte solution to flow clockwise more smoothly without hitting any corners, resulting in faster hydrogen separation.
  • a L-shaped pipe (5) is installed on the tank, with the short end of the pipe connecting near the bottom of the side of the tank. This pipe is used for measuring the electrolyte solution level.
  • the long end of the pipe is a little higher than the lid (3) and an electrolyte solution meter is installed on it.
  • Another L-shaped pipe is installed similarly to the electrolyte solution level measurement pipe (5), with the short end of the pipe connecting near the bottom of the tank (1) and the long end of the pipe stand a little taller than the lid (3).
  • the pipe is used for refilling the electrolyte solution, and the top of the pipe contains a lid (4.1).
  • a cathode shaft (9) is installed on the lid (3) for supplying negative charge electrical current to the tank (1) and the lid (3), while a stainless steel anode shaft (7) supplies positive charge electrical current to the cell plate set.
  • a hydrogen pipe connector (6) is a stainless steel connector which connects to the lid (3) and allows the produced hydrogen gas to flow along a hydrogen pipe (6) to a combustion chamber.
  • Neutral shaft + temperature sensor shaft (8) is a stainless steel pipe which holds the temperature sensor.
  • the pipe is installed on the lid (3) with one end inside the tank. The inside end of the pipe is sealed to prevent the electrolyte solution from entering, while the top end is connected to the temperature sensor.
  • the neutral shaft (8) balances the electrical current while the DC power supply supplies variable electrical current, depending on the acceleration rate of the vehicle.
  • the pipe also measures the temperature inside the tank when the system is working.
  • Anode shaft (7) is a stainless steel shaft for holding and supplying positive electrical current from a DC power supply to the cell plates and the permanent magnet.
  • Cathode shaft (9) is a stainless steel shaft for supplying negative electrical current from a DC power supply.
  • Hydrogen gas pipe (6) is a Teflon pipe that leads the hydrogen gas produced into the engine combustion chamber.
  • Electrolyte solution refill pipe (4) is a stainless steel pipe for refilling electrolyte solution when the electrolyte solution reaches certain level
  • Electrolyte solution refill pipe lid (4.1) is a stainless steel lid. A hole on the bottom of the tank (1) is made and a valve (1 1) is installed for draining the electrolyte solution which is no longer useable for hydrogen separation. .
  • Fig. 2 shows a Liquid Cooling Tank (2) (Part B) made from a round cylinder or oval cylinder tank.
  • the cooling tank is large enough to hold the hydrogen separation tank (1) with a fair amount of space between the hydrogen separation tank and the inside wall of the cooling tank.
  • the cooling tank has 3 holders (12) for holding the tank to a structure.
  • the lid (3) contains 3 holes.
  • the first hole connects to a connector (16) and a lid (16.1) for refilling the cooling liquid.
  • the second hole allows electrolyte solution refilling pipe (4) to go through the lid.
  • the third hole allows the electrolyte level measuring pipe (5) to go through the lid.
  • a hole is made at the bottom of the cooling tank to install a valve for draining used cooling liquid.
  • Two holes are made near the bottom of the side of the cooling tank to install a stainless steel connector and a rubber pipe (10).
  • a pump is installed to circulate the cooling liquid from the cooling tank to a radiator and back while the hydrogen separation is in progress.
  • Fig.3 shows the hydrogen separation tank (Part A) inside the cooling tank (Part B) with the lid (3) connecting to both tanks.
  • the lid (3) is a stainless steel lid with a round part in Part A and a flat part in Part B.
  • the lid has 3 holes for installing the anode (7), temperature sensor (8), hydrogen pipe connector (6), and the cathode (9).
  • Fig.4 shows cell plate set installation.
  • the top of the stainless steel anode shaft (7) is connected to the lid (3) while the bottom of the shaft is connected to the cell plates (14), permanent magnet (13), and a z-shaped stainless steel plate (15).
  • the permanent magnet is completely covered in a stainless steel case and it is installed in between the cell plates.
  • the cell plates are made of round stainless steel plates with holes in them.
  • the cell plates (14) are separated into the top and bottom cell plates.
  • the cell plates are round stainless steel plates with holes in them.
  • Fig.5 shows the top cell plate which contains 2 different size circles, inner circle (14.1) and outer circle (14.2).
  • the radius of the circles and the position of the 10 holes on the cell plate are defined by the angle of the triangular pyramid.
  • the first hole (14.3) locates in the center of the cell plate.
  • the center hole defines the position of the other 9 holes on the cell plate and it is used for attaching the cell plate to the shaft (7) (See Fig.5).
  • the second, third, and fourth holes (14.4, 14.5, and 14.6) are on the circumference of the inner circle (14.1). These holes are positioned in the triangular pyramid shape with the center hole (14.3).
  • the third hole (14.5) is smaller than the second and fourth holes (14.4, 14.6).
  • the fifth, sixth, seventh, eighth, ninth, and tenth holes (14.7, 14.8, 14.9, 14.10, 14.1 1 , 14.12) are on the circumference of the outer circle (14.2). These holes are positioned in the triangular pyramid shape with the center hole (14.3) and they help catalyzing the electrolysis process.
  • the cell plate contains 10 holes.
  • the center hole is for connecting the cell plate to the shaft.
  • the other 9 holes are positioned on 2 circles, inner and outer circles.
  • the inner circle contains 3 holes on its circumference, while the outer circle contains 6 holes. These holes are positioned so that they make the tip of the triangular pyramid shape, making the total of 15 triangles.
  • Fig.4 shows Z shaped plate (15) made from a stainless steel rectangle plate shaped into an S or a Z shape.
  • the plate is connected to the anode shaft (7), and acts as the stirrer to increase the speed of the clockwise flow of the electrolyte solution when electrical current passes through the cell plate in the electrolysis process. The increase flow helps catalyzing the gas separation process.
  • EMF electric and magnetic field
  • the electric field occurs around an object with electric current passing through and called magnetic field. In the case where both fields are mentioned, the fields are called EMFs or Electromagnetic Field.
  • the electromagnetic field is very useful in the electrolysis process. It helps the alternator and 12 Volts battery, or the capacitor, to produce adequate amount of hydrogen gas to be used with fossil fuels, including LPG and CNG. In the past, we, the inventor, were not able to produce adequate amount of hydrogen gas. A lot of electrical current had to be supplied in order to get enough hydrogen gas. Electromagnetic field helps double the hydrogen gas produced by acting similarly to the DC power supply in the form of an alternator inside the tank in Part A. (See the magnet installation in Fig.4)
  • the permanent magnet (13) installed inside the tank in Part A helps create electromagnetic field and strengthen electrical current without adding another battery. It is the method to increase hydrogen gas produced which can be said that the electrical energy is transformed into mechanical energy in the form of latent energy.
  • Electrolysis is the process of passing DC current into electrolyte solution and creates a chemical reaction, resulting in water and energy.
  • the equipment which separates the solution with electricity is called electrolyte cell and it consists of electrical nodes, electrolyte solution container, and a DC power supply (alternator, battery, and capacitor).
  • a DC power supply supplies the current through electrolyte solution inside the hydrogen production tank
  • the hydrogen separation equipments and DC power supply i.e. Alternator
  • the electrolysis process is completed. Heat produced from the process is continuously circulated from Part A to Part B. The process continues until the electrolyte solution is no longer useable for hydrogen separation.
  • Figure 1 Shows the picture of the Hydrogen Separation Tank with Liquid Cooling System.
  • Figure 2 Shows how cell plates, magnet, and Z plate are connected to the shaft
  • FIG. 3 Shows the cell plates and the holes positions
  • the Hydrogen Separation Tank with Liquid Cooling System should be manufactured as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The Hydrogen Separation Tank with Liquid Cooling System consists of a Part A tank which includes a cell plate set for producing hydrogen gas. The cell plate set includes round cell plates with holes and a permanent magnet. The cell plate set is attached to a shaft which is connected to the lid. The lid has a hydrogen pipe connected to it which allows hydrogen gas produced to flow through for further use. Part B contains a cooling system which circulates heat from Part A to a radiator when the hydrogen separation process is in progress.

Description

INVENTION DETAIL Title of Invention
Hydrogen Separation Tank with Liquid Cooling System
Related Field
Electrical Engineering, Physics
Invention Background
An apparatus which contains electrolyte solution tank induces electrolysis process, or Brown Gas, in electrolyte solution with water as the main element. When electrical current is passed through and the electrolysis begins, the apparatus will heat up and accumulate heat to the point where it's difficult to control stable hydrogen production.
Overall Invention and Aim
Petroleum usage results in the emission of CO and C02 which are greenhouse gases. By combining hydrogen system to petroleum engines, this alternative fuel helps reduce harmful emission from the engine. Hydrogen is produced from electrolyte solution, using electrolysis process.
The electrolysis process requires constant temperature control in order to continuously produce hydrogen.
Hydrogen Separation Tank needs to have an integrated cooling system. The apparatus is separated into 2 parts. Part A is the electrolysis hydrogen separation system, containing electrolyte solution and supplied with electrical current from a DC power source. Part B is the cooling system, containing cooling liquid, a temperature sensor, and a pump for circulating heat from the hydrogen separation tank to a radiator.
Hydrogen Separation Tank with Liquid Cooling System consists of cylinder or oval cylinder tanks with round lids for both parts. The tank has an anode and a cathode installed on it. The anode and cathode allow DC electrical current to flow through the cell plates and the permanent magnet which work together as catalyst for hydrogen production. The temperature inside the hydrogen separation tank is constantly monitored and the cooling system will start once the temperature reaches a given point. Detail Design
Fig. 1 shows Part A of the apparatus. The hydrogen separation tank (1) is made of a round cylinder or oval cylinder stainless steel tank for holding electrolyte solution. The round or oval shape allows electrolyte solution to flow clockwise more smoothly without hitting any corners, resulting in faster hydrogen separation. A L-shaped pipe (5) is installed on the tank, with the short end of the pipe connecting near the bottom of the side of the tank. This pipe is used for measuring the electrolyte solution level. The long end of the pipe is a little higher than the lid (3) and an electrolyte solution meter is installed on it. Another L-shaped pipe is installed similarly to the electrolyte solution level measurement pipe (5), with the short end of the pipe connecting near the bottom of the tank (1) and the long end of the pipe stand a little taller than the lid (3). The pipe is used for refilling the electrolyte solution, and the top of the pipe contains a lid (4.1).
A cathode shaft (9) is installed on the lid (3) for supplying negative charge electrical current to the tank (1) and the lid (3), while a stainless steel anode shaft (7) supplies positive charge electrical current to the cell plate set.
A hydrogen pipe connector (6) is a stainless steel connector which connects to the lid (3) and allows the produced hydrogen gas to flow along a hydrogen pipe (6) to a combustion chamber.
Neutral shaft + temperature sensor shaft (8) is a stainless steel pipe which holds the temperature sensor. The pipe is installed on the lid (3) with one end inside the tank. The inside end of the pipe is sealed to prevent the electrolyte solution from entering, while the top end is connected to the temperature sensor. The neutral shaft (8) balances the electrical current while the DC power supply supplies variable electrical current, depending on the acceleration rate of the vehicle. The pipe also measures the temperature inside the tank when the system is working.
Anode shaft (7) is a stainless steel shaft for holding and supplying positive electrical current from a DC power supply to the cell plates and the permanent magnet.
Cathode shaft (9) is a stainless steel shaft for supplying negative electrical current from a DC power supply.
Hydrogen gas pipe (6) is a Teflon pipe that leads the hydrogen gas produced into the engine combustion chamber.
Electrolyte solution refill pipe (4) is a stainless steel pipe for refilling electrolyte solution when the electrolyte solution reaches certain level
Electrolyte solution refill pipe lid (4.1) is a stainless steel lid. A hole on the bottom of the tank (1) is made and a valve (1 1) is installed for draining the electrolyte solution which is no longer useable for hydrogen separation. .
Fig. 2 shows a Liquid Cooling Tank (2) (Part B) made from a round cylinder or oval cylinder tank. The cooling tank is large enough to hold the hydrogen separation tank (1) with a fair amount of space between the hydrogen separation tank and the inside wall of the cooling tank. The cooling tank has 3 holders (12) for holding the tank to a structure.
The lid (3) contains 3 holes. The first hole connects to a connector (16) and a lid (16.1) for refilling the cooling liquid.
The second hole allows electrolyte solution refilling pipe (4) to go through the lid.
The third hole allows the electrolyte level measuring pipe (5) to go through the lid.
A hole is made at the bottom of the cooling tank to install a valve for draining used cooling liquid.
Two holes are made near the bottom of the side of the cooling tank to install a stainless steel connector and a rubber pipe (10). A pump is installed to circulate the cooling liquid from the cooling tank to a radiator and back while the hydrogen separation is in progress.
Fig.3 shows the hydrogen separation tank (Part A) inside the cooling tank (Part B) with the lid (3) connecting to both tanks. The lid (3) is a stainless steel lid with a round part in Part A and a flat part in Part B. The lid has 3 holes for installing the anode (7), temperature sensor (8), hydrogen pipe connector (6), and the cathode (9).
Fig.4 shows cell plate set installation. The top of the stainless steel anode shaft (7) is connected to the lid (3) while the bottom of the shaft is connected to the cell plates (14), permanent magnet (13), and a z-shaped stainless steel plate (15). The permanent magnet is completely covered in a stainless steel case and it is installed in between the cell plates. The cell plates are made of round stainless steel plates with holes in them.
The cell plates (14) are separated into the top and bottom cell plates. The cell plates are round stainless steel plates with holes in them.
Fig.5 shows the top cell plate which contains 2 different size circles, inner circle (14.1) and outer circle (14.2). The radius of the circles and the position of the 10 holes on the cell plate are defined by the angle of the triangular pyramid.
The first hole (14.3) locates in the center of the cell plate. The center hole defines the position of the other 9 holes on the cell plate and it is used for attaching the cell plate to the shaft (7) (See Fig.5). The second, third, and fourth holes (14.4, 14.5, and 14.6) are on the circumference of the inner circle (14.1). These holes are positioned in the triangular pyramid shape with the center hole (14.3). The third hole (14.5) is smaller than the second and fourth holes (14.4, 14.6). These holes on the inner circle help catalyzing the electrolysis process and balance the electrolysis process when the electrical current changes.
The fifth, sixth, seventh, eighth, ninth, and tenth holes (14.7, 14.8, 14.9, 14.10, 14.1 1 , 14.12) are on the circumference of the outer circle (14.2). These holes are positioned in the triangular pyramid shape with the center hole (14.3) and they help catalyzing the electrolysis process.
The cell plate contains 10 holes. The center hole is for connecting the cell plate to the shaft. The other 9 holes are positioned on 2 circles, inner and outer circles. The inner circle contains 3 holes on its circumference, while the outer circle contains 6 holes. These holes are positioned so that they make the tip of the triangular pyramid shape, making the total of 15 triangles.
Fig.4 shows Z shaped plate (15) made from a stainless steel rectangle plate shaped into an S or a Z shape. The plate is connected to the anode shaft (7), and acts as the stirrer to increase the speed of the clockwise flow of the electrolyte solution when electrical current passes through the cell plate in the electrolysis process. The increase flow helps catalyzing the gas separation process.
The electric and magnetic field (EMF) is the imaginary line drawn to show the area and intensity of the force between objects with different voltage, this field is called electric field. The electric field occurs around an object with electric current passing through and called magnetic field. In the case where both fields are mentioned, the fields are called EMFs or Electromagnetic Field.
The electromagnetic field is very useful in the electrolysis process. It helps the alternator and 12 Volts battery, or the capacitor, to produce adequate amount of hydrogen gas to be used with fossil fuels, including LPG and CNG. In the past, we, the inventor, were not able to produce adequate amount of hydrogen gas. A lot of electrical current had to be supplied in order to get enough hydrogen gas. Electromagnetic field helps double the hydrogen gas produced by acting similarly to the DC power supply in the form of an alternator inside the tank in Part A. (See the magnet installation in Fig.4)
The permanent magnet (13) installed inside the tank in Part A helps create electromagnetic field and strengthen electrical current without adding another battery. It is the method to increase hydrogen gas produced which can be said that the electrical energy is transformed into mechanical energy in the form of latent energy.
Electrolysis is the process of passing DC current into electrolyte solution and creates a chemical reaction, resulting in water and energy. The equipment which separates the solution with electricity is called electrolyte cell and it consists of electrical nodes, electrolyte solution container, and a DC power supply (alternator, battery, and capacitor). When a DC power supply supplies the current through electrolyte solution inside the hydrogen production tank, the hydrogen separation equipments and DC power supply (i.e. Alternator) will create a reaction that causes hydrogen to separate from electrolyte solution. Once the hydrogen gas is produced, the electrolysis process is completed. Heat produced from the process is continuously circulated from Part A to Part B. The process continues until the electrolyte solution is no longer useable for hydrogen separation.
Brief Description of Figure 1, 2, 3
Figure 1 Shows the picture of the Hydrogen Separation Tank with Liquid Cooling System. Figure 2 Shows how cell plates, magnet, and Z plate are connected to the shaft
Figure 3 Shows the cell plates and the holes positions
Best Manufacturing Method
The Hydrogen Separation Tank with Liquid Cooling System should be manufactured as described above.

Claims

Claims
1. The Hydrogen Separation Tank with Liquid Cooling System consists of:
1.1 Part A tank is a round cylinder or oval cylinder stainless steel tank for holding electrolyte solution.
1.2 Part B tank a round cylinder or oval cylinder stainless steel tank large enough to hold Part A with a fair amount of space between the hydrogen separation tank and the inside wall of the cooling tank. The space between 2 tanks is for the circulation of cooling liquid.
1.3 Two holes are made near the bottom, on the side of of Part A tank. The holes are for the electrolyte solution level meter pipe and the refilling pipe.
1.4 A hole is made on the side of Part B tank for rubber pipe installation. A water pump is installed to circulate the cooling liquid from Part B to a radiator and back.
1.5 Valves are installed on the bottom of Part A and B for draining the used electrolyte solution and cooling liquid out.
1.6 The cell plates contains 10 holes on 2 different size circles, inner and outer circles. The center holes are for attaching the cell plates to the shaft. The inner circle has 3 holes on its circumference with 1 hole smaller than the other 2. The 3 holes are positioned so that they make the tips of a triangle. The outer circle has 6 holes on its circumference, with all 6 holes positioned so that they make the tips of a triangle, making 3 triangles. Each hole on the circles is evenly spaced.
1.7 The permanent magnet is completely covered in stainless steel case. It is positioned in between the middle and the bottom cell plates and it is connected to shaft with the Z plate in between. The magnet helps creating electromagnetic field while DC current is passing through the electrolyte solution.
1.8 The stirrer is an S or Z shaped stainless steel plate. It is attached to the shaft that also holds the cell plates and the permanent magnet. It helps increase the flow speed of electrolyte solution, thus increases the reaction to produce hydrogen gas when electrical current passes through the electrolyte solution.
PCT/TH2013/000029 2013-07-03 2013-07-03 Hydrogen separation tank with liquid cooling system WO2015002616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/TH2013/000029 WO2015002616A1 (en) 2013-07-03 2013-07-03 Hydrogen separation tank with liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/TH2013/000029 WO2015002616A1 (en) 2013-07-03 2013-07-03 Hydrogen separation tank with liquid cooling system

Publications (1)

Publication Number Publication Date
WO2015002616A1 true WO2015002616A1 (en) 2015-01-08

Family

ID=52144076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TH2013/000029 WO2015002616A1 (en) 2013-07-03 2013-07-03 Hydrogen separation tank with liquid cooling system

Country Status (1)

Country Link
WO (1) WO2015002616A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201618438U (en) * 2010-03-23 2010-11-03 四川路加四通科技发展有限公司 Recovery purifying tower
CN201921684U (en) * 2010-12-07 2011-08-10 郑国兴 Automatic cooling system of reaction kettle
WO2012169976A1 (en) * 2011-06-10 2012-12-13 Sukij Tridsadeerak Invention detail
WO2012169977A1 (en) * 2011-06-10 2012-12-13 Sukij Tridsadeerak Wdh3 hydrogen separation tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201618438U (en) * 2010-03-23 2010-11-03 四川路加四通科技发展有限公司 Recovery purifying tower
CN201921684U (en) * 2010-12-07 2011-08-10 郑国兴 Automatic cooling system of reaction kettle
WO2012169976A1 (en) * 2011-06-10 2012-12-13 Sukij Tridsadeerak Invention detail
WO2012169977A1 (en) * 2011-06-10 2012-12-13 Sukij Tridsadeerak Wdh3 hydrogen separation tank

Similar Documents

Publication Publication Date Title
ES2728901T3 (en) Electrochemical reactor for the production of oxyhydrogen gas
WO2013177414A1 (en) Electrochemical balance in a vanadium flow battery
Kotowicz et al. Analysis of hydrogen production in alkaline electrolyzers
BR102015030045A2 (en) gas power system, method and device for clean energy production
CN203602727U (en) Hydrogen-oxygen generator
EP2762613A1 (en) A fuel system
JP7169674B2 (en) hydrogen generator
CN105020062B (en) Vehicle-mounted pressure flow controllable type diesel engine oxy-hydrogen gas generator
CN204348815U (en) Reduction generating battery
WO2014021792A1 (en) Electrolyte solution hydrogen separation tank
Göllei Measuring and optimisation of HHO dry cell for energy efficiency
ES2877454T3 (en) Ionic Power Station
WO2015002616A1 (en) Hydrogen separation tank with liquid cooling system
JP5893637B2 (en) Hydrogen-oxygen gas generator
WO2012169976A1 (en) Invention detail
JP2006225685A (en) Combustion gas generator
WO2011123075A1 (en) Detail of the invention
WO2012169977A1 (en) Wdh3 hydrogen separation tank
WO2013165322A1 (en) Wdh7 hydrogen separation tank
WO2014035350A1 (en) Hydrogen separation tank 1
WO2012169979A1 (en) Electrolysis cell for the preparation of hydrogen
WO2012169978A1 (en) Electrolysis cell for the preparation of hydrogen
CN104733747B (en) A kind of fast automatic warning device of flow battery system leakage
CN109913888A (en) The preparation method and device of a kind of active water ion-gas and active water ion-gas
WO2012144961A1 (en) Catalytic converter for hydrogen powered engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888906

Country of ref document: EP

Kind code of ref document: A1