WO2015002287A1 - Electrode for fuel cell and method for manufacturing same, membrane electrode assembly, and solid polymer fuel cell - Google Patents
Electrode for fuel cell and method for manufacturing same, membrane electrode assembly, and solid polymer fuel cell Download PDFInfo
- Publication number
- WO2015002287A1 WO2015002287A1 PCT/JP2014/067876 JP2014067876W WO2015002287A1 WO 2015002287 A1 WO2015002287 A1 WO 2015002287A1 JP 2014067876 W JP2014067876 W JP 2014067876W WO 2015002287 A1 WO2015002287 A1 WO 2015002287A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- fuel cell
- layer
- conductive oxide
- gas diffusion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0236—Glass; Ceramics; Cermets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a fuel cell electrode suitably used as an electrode of a polymer electrolyte fuel cell, a method for producing the same, a membrane electrode assembly, and a polymer electrolyte fuel cell.
- PEFC polymer electrolyte fuel cell
- a membrane electrode assembly (Membrane Electrode Assembly; hereinafter, sometimes referred to as “MEA”) in which a pair of electrodes are arranged on both surfaces of a solid polymer electrolyte membrane is generally used as a gas flow path. It has a structure sandwiched between the formed separators.
- An electrode for a fuel cell (especially an electrode for PEFC) is generally composed of an electrode catalyst layer composed of an electrode material having an electrocatalytic activity and a polymer electrolyte, and a gas diffusion layer having both gas permeability and electronic conductivity.
- an electrode material for PEFC a material in which noble metal particles are dispersed and supported on the surface of a carrier made of a particulate or fibrous carbon-based material is widely used (for example, Patent Documents 1 and 2).
- the electrode material of PEFC is used in an acidic atmosphere.
- the cell voltage during normal operation is 0.4 to 1.0 V, but it is known that the cell voltage rises to 1.5 V when starting and stopping.
- the state of the cathode and the anode under such PEFC operating conditions is a region in which the carbon-based material as a carrier is decomposed as carbon dioxide (CO 2 ) at the cathode. Therefore, a reaction occurs in which the carbon-based material used as the carrier is electrochemically oxidized and decomposed into CO 2 at the cathode (see Non-Patent Document 1).
- the carbon-based material used as a support for the electrode catalyst particles is electrochemically oxidatively corroded as described above, and becomes a problem particularly when the PEFC is started and stopped or operated for a long time.
- the durability against oxidation there is a method of increasing the crystallization by heat treatment at a high temperature, but the durability against oxidation is still insufficient. Therefore, it is desired to develop a fuel cell electrode using a non-carbon material that is stable under PEFC operating conditions.
- the inventors of the present application disclose an electrocatalyst material in which noble metal particles are dispersed in a tin oxide support instead of a carbon-based material, and production thereof. Since this electrocatalyst material is thermodynamically stable under PEFC operating conditions, it can be operated for a long time without oxidative corrosion.
- a wet method is employed as in the case of a conventional carbon-based support.
- an oxide carrier is prepared by a coprecipitation method or the like, and noble metal particles are supported on the oxide carrier by a method such as a colloid method, and a solid polymer electrolyte membrane is formed by a method such as a spray printing method.
- the electrode catalyst layer is formed by coating on the top.
- a fuel cell electrode having an electrode catalyst layer produced by a wet method can exhibit sufficient cell performance when using a carbon-based support, but when using an oxide support, it is not necessarily reproducible, It could not be said that sufficient cell performance could be demonstrated.
- the present invention provides a fuel cell electrode using an electron conductive oxide having excellent durability to electrochemical oxidation and having excellent output characteristics, and a method for producing the same. With the goal. Furthermore, it aims at providing the membrane electrode composite and solid polymer fuel cell which have the said electrode for fuel cells.
- the electron conductive oxide carrier particles formed by a wet method are secondary particles in which primary particles having an average particle size of about 10 to 500 nm are aggregated.
- the contact between the carrier particles tends to be insufficient because there is no process of firing at a high temperature, resulting in an increase in electrical resistance at the grain boundary and insufficient electron conductivity of the entire electrode. I thought. As a result of intensive studies, the inventors have found that the following invention can solve such problems and have reached the present invention.
- a fuel cell electrode having a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on or inside the gas diffusion layer, An electrode for a fuel cell, wherein the electrode catalyst layer includes an electron conductive oxide layer having gas diffusibility formed by physical vapor deposition and electrode catalyst particles supported on the electron conductive oxide layer.
- the gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is formed on or inside the microporous layer.
- ⁇ 3> The fuel cell electrode according to ⁇ 1> or ⁇ 2>, wherein the electron conductive oxide layer is made of an oxide mainly composed of tin oxide.
- the electron conductive oxide layer is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
- the electrode catalyst layer further contains a proton conductive material.
- ⁇ 6> A method for producing a fuel cell electrode comprising a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on or inside the gas diffusion layer, A step of forming an electron conductive oxide layer having gas diffusivity on the surface or inside of the gas diffusion layer by a physical vapor deposition method using a vapor deposition source comprising an electron conductive oxide; A step of supporting electrode catalyst particles on the electron conductive oxide layer; The manufacturing method of the electrode for fuel cells containing this.
- the gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is formed on the surface of the microporous layer.
- the manufacturing method of the electrode for fuel cells as described in said ⁇ 6>.
- ⁇ 8> The method for producing a fuel cell electrode according to ⁇ 6> or ⁇ 7>, wherein the vapor deposition source is made of an oxide mainly composed of tin oxide.
- the vapor deposition source is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
- PLD pulse laser deposition method
- ⁇ 11> The method for producing an electrode for a fuel cell according to any one of ⁇ 6> to ⁇ 10>, wherein the supporting method in the step of supporting the electrode catalyst particles is a physical vapor deposition method or a chemical vapor deposition method.
- ⁇ 12> A membrane / electrode assembly having a solid polymer electrolyte membrane, a cathode bonded to one surface of the solid polymer electrolyte membrane, and an anode bonded to the other surface of the solid polymer electrolyte membrane. And At least one of the cathode and the anode is the fuel cell electrode according to any one of ⁇ 1> to ⁇ 5>.
- a polymer electrolyte fuel cell comprising the membrane electrode assembly according to ⁇ 12>.
- ⁇ 14> Manufacture of a membrane / electrode assembly having a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane
- a process for producing a membrane electrode assembly comprising the step of sandwiching and crimping.
- an electrode for a fuel cell that provides both high power generation performance and durability.
- a polymer electrolyte fuel cell comprising a membrane electrode assembly using the fuel cell electrode has high cycle durability and can generate power for a long period of time.
- the fuel cell electrode of the present invention is a fuel cell electrode having a gas diffusion layer having electronic conductivity and an electrode catalyst layer formed on the surface and / or inside of the gas diffusion layer,
- the electrode catalyst layer includes an electron conductive oxide layer having gas diffusibility formed by physical vapor deposition, and electrode catalyst particles supported on the electron conductive oxide layer.
- the electrode catalyst layer of the fuel cell electrode needs to have sufficient electronic conductivity along with a gap that allows gas diffusion such as hydrogen and oxygen and water (steam) to be discharged smoothly.
- gas diffusion such as hydrogen and oxygen and water (steam)
- the electrode catalyst layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the electrical resistance at the grain boundary is increased, and the electron conductivity of the electrode catalyst layer is insufficient. Become. As a result, the electronic conductivity of the entire electrode composed of the electrode catalyst layer and the gas diffusion layer becomes insufficient.
- the electron conductive oxide layer functioning as a conductive support in the electrode catalyst layer is formed by physical vapor deposition.
- the fuel cell electrode of the present invention has a gap having gas diffusibility. Even in this state, since the electrode catalyst layer has excellent electron conductivity, the entire electrode composed of the electrode catalyst layer and the gas diffusion layer is excellent in electron conductivity.
- the gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is the micro layer.
- a gas diffusion layer formed on the surface of the porous layer is preferred.
- FIG. 1 is a schematic sectional view of a fuel cell electrode according to the present embodiment.
- the fuel cell electrode 1 was formed on the surface of the microporous layer 2b in the gas diffusion layer 2 and the gas diffusion layer 2 having the base layer 2a and the microporous layer 2b formed on one side of the base layer.
- an electrode catalyst layer 3 3.
- the gas diffusion layer 2 includes a base layer 2a and a microporous layer 2b formed on one side of the base layer 2a.
- the gas diffusion layer 2 has gas diffusibility (gas permeability) for providing fuel gas and air to the electrode catalyst layer 3, water repellency to water generated by power generation, and current generated by the separator. It has the conductivity of.
- the base material layer 2a a sheet-like member having gas diffusibility and electron conductivity can be used.
- conductive carbon-based sheet-like members having a pore size distribution of about 100 nm to 90 ⁇ m, which are conventionally used as a gas diffusion layer of PEFC, can be mentioned.
- Cloth, carbon paper, carbon non-woven fabric, etc. can be used.
- the base material layer 2a may be a sheet-like member other than a carbon-based material such as stainless steel.
- the thickness of the base material layer 2a is not particularly limited, but is usually about 50 ⁇ m to 1 mm.
- the microporous layer 2b is a layer made of an aggregate of carbon fine particles having an average particle diameter of about 10 to 100 nm and a water repellent provided on one surface of the base material layer 2a.
- the carbon fine particles may be subjected to a water repellent treatment.
- the microporous layer 2b has an average pore size smaller than that of the base material layer 2a (high density and excellent surface flatness.
- the microporous layer 2b preferably has a pore size distribution of 1 nm to 900 nm.
- the porous layer 2b is suitable for forming an electron conductive oxide layer on its surface by physical vapor deposition as will be described later.
- the microporous layer 2b is, for example, a coating containing carbon fine particles and a water repellent fluororesin. It can be manufactured by coating and drying the working liquid on the base material layer 2a to make it adhere to the base material layer 2a.
- a gas diffusion layer having a microporous layer is used as the gas diffusion layer, but the present invention is not limited to this.
- the gas diffusion layer it is possible to use only the gas diffusion layer of the base material layer conventionally used in PEFC. However, it is difficult to form the electron conductive oxide layer on the surface, and the electron conductive oxidation is inside. Since the physical layer may be formed discontinuously, a gas diffusion layer having a microporous layer is more preferable for forming the electron conductive oxide layer on the surface of the gas diffusion layer.
- gas diffusion layer 2 a known gas diffusion layer with a microporous layer may be used.
- GDL25 series made from SIGRACT Gas Diffusion Media can be mentioned, for example.
- the electrode catalyst layer 3 includes an electron conductive oxide layer 3a and electrode catalyst particles (not shown) supported on the electron conductive oxide layer 3a, and is formed on the surface of the microporous layer 2b.
- the thickness of the electrode catalyst layer 3 may be within a range that has gas permeability and can provide a sufficient electrode catalyst action in a fuel cell.
- the thickness is appropriately determined in consideration of the porosity of the electron conductive oxide layer 3a constituting the film, and is usually about 0.1 to 50 ⁇ m.
- the electron conductive oxide layer 3a is formed on the surface (and part of the inside) of the microporous layer 2b by a physical vapor deposition method, and has an electron conductivity and does not impair the electrode reaction of the electrode catalyst layer 3. Has diffusivity.
- the conditions for physical vapor deposition are appropriately selected under the conditions that the electron conductivity and the gas diffusibility are compatible. The details of the physical vapor deposition method will be described in the fuel cell electrode manufacturing method of the present invention described later.
- the electrode catalyst layer 3 may be composed of only the electron conductive oxide layer and the electrode catalyst particles, but preferably contains a proton conductive material from the viewpoint that the electrode performance can be further improved.
- the proton conductive material the same material as the electrolyte membrane is used, and it is mainly used for fluorine-based electrolyte materials containing fluorine atoms in all or part of the polymer skeleton and hydrocarbon-based electrolyte materials not containing fluorine atoms in the polymer skeleton. They can be used separately as electrolyte materials.
- fluorine-based electrolyte material examples include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. It is done.
- hydrocarbon electrolyte material examples include polysulfonic acid, polystyrene sulfonic acid, polyaryl ether ketone sulfonic acid, polyphenyl sulfonic acid, polybenzimidazole alkyl sulfonic acid, and polybenzimidazole alkyl phosphonic acid. Can be mentioned.
- the electron conductive oxide constituting the electron conductive oxide layer 3a may be any material that has both sufficient durability and electron conductivity under the operating conditions of a fuel cell (particularly a polymer electrolyte fuel cell). .
- an electron conductive oxide mainly composed of one selected from tin oxide, molybdenum oxide, niobium oxide, tantalum oxide, titanium oxide, and tungsten oxide can be given.
- the “mainly electron-conducting oxide” means (A) an oxide composed only of a base oxide and (B) an oxide doped with other elements, wherein the base oxide is It means that contained at 80 mol% or more.
- the element to be doped examples include Sn, Ti, Sb, Nb, Ta, W, In, V, Cr, Mn, and Mo (however, they are elements different from the base oxide).
- the element to be doped is an element having a higher valence than the base oxide.
- the base oxide is titanium oxide
- an element other than Ti for example, Nb is selected from the above doped seed elements. Is done.
- the electron conductive oxide layer 3a is preferably made of an oxide mainly composed of titanium oxide, tungsten oxide or tin oxide, and particularly preferably an oxide mainly composed of tin oxide.
- the “main oxide” refers to an oxide containing 50 mol% or more of the target oxide.
- the fuel cell electrode of the present invention is preferably used as a cathode.
- tin (Sn) is an oxide of SnO 2 which is thermodynamically stable and does not undergo oxidative decomposition under PEFC cathode conditions. Further, tin oxide has a sufficient electronic conductivity and becomes a carrier capable of supporting electrode catalyst particles (particularly noble metal particles) with high dispersion.
- niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium (Nb) is particularly preferable in that a fuel cell electrode having better electrode performance can be formed.
- an oxide mainly composed of titanium oxide which is thermodynamically stable under the anode conditions is a suitable example.
- the PEFC cathode condition is a condition at the cathode during normal operation of the PEFC, which means a temperature (room temperature to about 150 ° C.) and a condition in which a gas containing oxygen such as air is supplied (oxidizing atmosphere).
- the condition is a condition in the anode during normal operation of PEFC, and means a condition (reducing atmosphere) in which a temperature of room temperature to about 150 ° C. and a fuel gas containing hydrogen is supplied.
- the electrode catalyst particles may have any electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation) and can be supported on the electron conductive oxide layer.
- the electrocatalyst particles may be either a noble metal catalyst or a non-noble metal catalyst, but preferably from noble metals such as Pt, Ru, Ir, Pd, Rh, Os, Au, and Ag, and alloys containing these noble metals. Selected.
- the “alloy containing a noble metal” includes “an alloy consisting only of the noble metal” and “an alloy consisting of the noble metal and another metal and containing 10% by mass or more of the noble metal”.
- the “other metals” to be alloyed with the noble metal are not particularly limited, but Co, Ni, W, Ta, Nb, and Sn can be cited as suitable examples, and one or more of these may be used. May be. Moreover, you may use the alloy containing two or more types of said noble metals and noble metals in the state which carried out phase separation.
- the method for supporting the electrode catalyst particles may be a wet method or a dry method.
- the entire electrode catalyst layer can be manufactured by the dry method by using the dry method as the method for supporting the electrode catalyst particles together with the manufacture of the electron conductive oxide layer.
- Pt and an alloy containing Pt have high electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation) in the temperature range around 80 ° C., which is the operating temperature of the polymer electrolyte fuel cell.
- it since it can be easily supported on the electron conductive oxide layer by vapor deposition which is a dry method, it can be used particularly suitably.
- the amount of the electrode catalyst particles supported is appropriately determined in consideration of conditions such as the type of catalyst and the thickness of the electron conductive oxide layer 3a serving as a carrier. If the amount of the catalyst supported is too small, the electrode performance becomes insufficient, and if it is too large, the catalyst particles may be aggregated to deteriorate the performance. When the catalyst particles are Pt particles, for example, the amount is 0.01 to 5.0 mg / cm 2 .
- the fuel cell electrode of the present invention can be used as both a cathode and an anode.
- the cathode is excellent in reducing electrochemical catalytic activity of oxygen as shown in (Reaction 2), and does not cause electrochemical oxidative decomposition of the electron-conductive oxide layer under the fuel cell operating conditions (cathode conditions). It is preferable to use as.
- the fuel cell electrode of the present invention is suitable as a PEFC electrode.
- PEFC can be used as an electrode in various fuel cells such as alkaline fuel cells and phosphoric acid fuel cells. It can also be suitably used as an electrode for a water electrolysis apparatus.
- a water electrolyzer a water electrolyzer using a solid polymer electrolyte membrane similar to the fuel cell electrode of the present invention and PEFC can be cited as a preferred example.
- the above-described fuel cell electrode of the present invention is preferably manufactured by the manufacturing method described below (hereinafter referred to as “the manufacturing method of the present invention”). That is, the method for producing a fuel cell electrode of the present invention is a method for producing a fuel cell electrode having a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on the surface and / or inside of the gas diffusion layer.
- the step of forming the electron-conductive oxide layer having gas diffusivity may be referred to as “step (1)”
- the step of supporting the electrode catalyst particles may be referred to as “step (2)”.
- the production method of the present invention is characterized in that in step (1), an electron conductive oxide layer having gas diffusibility is formed by physical vapor deposition.
- a plurality of electron conductive oxide particles to be formed are deposited on the surface or inside of a gas diffusion layer as connected particles in which a plurality of particles are connected. Since the plurality of electron conductive oxide particles are continuous in the connected particles, the electrical resistance due to the grain boundary is reduced, and the electrical resistance of the entire electron conductive oxide layer is reduced. Therefore, compared with the case where the electron conductive oxide layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the manufacturing method of the present invention provides an electrode having more excellent electron conductivity. Obtainable.
- the carbon-based material widely used as a conductive support of the electrode catalyst layer of the conventional fuel cell electrode has a low crystallinity and a low durability against oxidative corrosion when produced by a vapor deposition method. It cannot be applied to the method for producing a fuel cell electrode of the present invention.
- the electron conductive oxide layer is converted into a surface of the microporous layer.
- the electrode catalyst layer can be formed on the surface of the fuel cell electrode by supporting the electrode catalyst particles on the electron conductive oxide layer formed on the surface of the microporous layer.
- the method for supporting the electrode catalyst particles may be a wet method or a dry method.
- the electrode catalyst particles are supported by an evaporation method on the electron conductive oxide layer formed in the step (1).
- the formation of the conductive oxide layer and the loading of the electrode catalyst particles can all be performed by a dry method (dry process).
- dry method dry process
- each of the steps such as preparation of a liquid material containing the raw material, support of the electrode catalyst particles on the support, coating on the gas diffusion layer, etc. Condition adjustment is difficult, and the performance of the manufactured fuel cell electrode tends to be unstable.
- step (1) an electron conductive oxide layer having gas diffusibility is formed on the gas diffusion layer by a physical vapor deposition method using a vapor deposition source made of an electron conductive oxide.
- the gas diffusion layer is composed of a base layer and a microporous layer formed on the base layer.
- the gas diffusion layer is ⁇ 1.
- the fuel cell electrode of the present invention is as described above, and detailed description thereof is omitted here.
- the fuel cell electrode manufacturing method of the present invention is characterized in that a gas diffusion layer having a microporous layer on the surface is used.
- the gaseous electron conductive oxide that is the vapor deposition species is A gas having a microporous layer that diffuses into the gas diffusion layer and cannot form an electron conductive oxide layer on the surface of the gas diffusion layer, but has a high density and excellent surface flatness compared to the base material layer.
- the electron conductive oxide layer can be formed substantially on the surface of the microporous layer.
- the thickness of the microporous layer is preferably 1 to 100 ⁇ m.
- the electron conductive oxide used for the vapor deposition source is composed of an electron conductive oxide mainly composed of one selected from tin oxide, molybdenum oxide, niobium oxide, tantalum oxide, titanium oxide and tungsten oxide.
- the details of the electron conductive oxide used in step (1) are described in ⁇ 1.
- the fuel cell electrode of the present invention is as described above, and detailed description thereof is omitted here.
- the deposition source is preferably made of an oxide mainly composed of tin oxide, and niobium-doped tin oxide doped with niobium (Nb) in an amount of 0.1 to 20 mol% is particularly preferable.
- the vapor deposition source is used after manufacturing the electron conductive oxide and processing it into a shape suitable for a physical vapor deposition method to be described later (for example, a pellet shape).
- Examples of the physical vapor deposition method include a pulsed laser deposition method (Pulsed Laser Deposition (PLD method)), a sputtering vapor deposition method, an electron beam vapor deposition method, and a thermal heating vapor deposition method.
- PLD method Pulsed Laser Deposition
- the electron conductive oxide layer serves as the skeleton of the electrode catalyst layer of the fuel cell electrode, it must have gas diffusivity.
- the electron conductivity has a porous structure and gas diffusibility.
- the conditions under which the oxide is formed are selected as appropriate.
- the thickness of the electron conductive oxide layer can be prepared by controlling various conditions of the physical vapor deposition method (particularly, the film forming time).
- the sputtering vapor deposition method is suitable in terms of productivity.
- the sputtering deposition method is a method in which a deposition source (target) is irradiated with accelerated ions, and atoms or molecules on the surface of the target are emitted into the space to form a thin film.
- the electron-conductive oxide that is the evaporation source in the production method of the present invention is often an oxide having a high melting point, and the thermal heating vapor deposition method may be difficult. There are also advantages that can be applied.
- the sputtering deposition method may be either a bipolar method or a magnetron method.
- the power source applied to the target may be either a DC (direct current) power source or an RF (high frequency) power source.
- Sputtering conditions vary depending on the type of electron-conducting oxide as a target, the sputtering method, and the sputtering apparatus, and are appropriately selected within a range in which the gas diffusibility (porous structure) required for the fuel cell electrode can be obtained.
- a PLD method is exemplified.
- the deposition source (target) is ablated by intermittently irradiating the deposition source in the vacuum chamber with a pulsed laser, and the fragments (ions, clusters, molecules, atoms) to be emitted are transferred to a predetermined substrate. It is a method of depositing on (a gas diffusion layer in the present invention).
- the PLD method can be applied to a case where the evaporation source is an oxide having a high melting point, similarly to the sputtering evaporation method.
- This is a method suitable for forming an oxide film having a more uniform composition.
- the deposition source is an electron conductive oxide doped with other elements such as niobium-doped tin oxide
- the composition is the same as that of the deposition source. It is preferable at the point in which the electron conductive oxide layer which has is formed.
- the type of laser used in the PLD method is not particularly limited, and examples thereof include an excimer laser and a YAG laser.
- the laser output conditions are appropriately determined in consideration of various conditions such as the type of laser and the porosity and thickness of the electron conductive oxide layer to be formed.
- the vapor deposition temperature is determined within a range in which a porous structure capable of obtaining the gas diffusibility required for the fuel cell electrode is formed, and is usually from room temperature to about 200 ° C., preferably from 15 to 40 ° C. If the deposition temperature is too high, a dense thin film may be formed, and the porous structure required for the fuel cell electrode may not be obtained.
- the atmosphere in the vacuum chamber during film formation can include oxygen (O 2 ), for example.
- the pressure in the vacuum chamber during film formation is preferably set to 30 Pa or less, for example.
- step (2) electrode catalyst particles are supported on the electron conductive oxide layer formed in step (1). Since the electron conductive oxide layer formed in the step (1) has a porous structure, the electrode catalyst particles can be supported not only on the surface but also inside the electron conductive oxide layer.
- the loading method is not limited to vapor deposition.
- the electrode catalyst particles to be vapor-deposited may be those having electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation) and can be supported on the electron conductive oxide layer by vapor deposition.
- the details of the electrode catalyst particles used in the step (2) are described in ⁇ 1.
- the fuel cell electrode of the present invention is as described above, and detailed description thereof is omitted here.
- an alloy containing Pt and Pt is preferable in that it can be easily supported by vapor deposition having an electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation).
- the electrode catalyst particles may be deposited by either physical vapor deposition or chemical vapor deposition.
- Examples of the physical vapor deposition method include the sputtering vapor deposition method described in the step (1).
- the target electrode catalyst material is used as a vapor deposition source of the physical vapor deposition method and the electrode catalyst is Pt, for example, a Pt plate may be used.
- a Pt plate may be used.
- chemical vapor deposition generally, a raw material having a high vapor pressure and a low decomposition temperature may be used as a vapor deposition source.
- a Pt compound such as a cyclopentadienyltrimethylplatinum (IV)) complex may be mentioned.
- the loading amount and particle size of the electrode catalyst particles can be appropriately adjusted by controlling the deposition conditions in consideration of the type of the electrode catalyst particles and the intended performance.
- the supported amount of the electrode catalyst particles is, for example, 0.01 to 5.0 mg / cm 2 .
- the membrane electrode assembly of the present invention comprises a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane.
- at least one of the cathode and the anode is the fuel cell electrode of the present invention.
- the fuel cell electrode of the present invention since the fuel cell electrode of the present invention has high electrode performance and durability under the cathode conditions, it is preferable to use the fuel cell electrode of the present invention at least for the cathode.
- FIG. 2 schematically shows a cross-sectional structure of the membrane electrode assembly according to the embodiment of the present invention.
- the membrane electrode assembly 10 has a structure in which the cathode 4 and the anode 5 are arranged facing the solid polymer electrolyte membrane 6.
- the cathode 4 uses the fuel cell electrode 1 of the present invention, detailed description thereof is omitted.
- the proton conductive material may be applied to the electrode catalyst layer of the cathode 4 by, for example, dropping a solution containing the proton conductive material.
- the fuel cell electrode of the present invention is used as the anode 5
- other known cathodes can be used as the cathode 4.
- the anode 5 includes an electrode catalyst layer 5a and a gas diffusion layer 5b.
- the anode 5 in addition to the fuel cell electrode of the present invention, other known anodes can be used as well.
- coating and drying can be mentioned.
- the gas diffusion layer 5b of the anode 5 can be the same as the gas diffusion layer described in the fuel cell electrode of the present invention.
- the solid polymer electrolyte membrane 6 a known PEFC electrolyte membrane may be used as long as it has proton conductivity and has chemical stability and thermal stability. In FIG. 2, the thickness is emphasized, but the thickness of the solid polymer electrolyte membrane 6 is usually about 0.05 mm in order to reduce the electric resistance.
- Examples of the electrolyte material constituting the solid polymer electrolyte membrane 6 include a fluorine-based electrolyte material and a hydrocarbon-based electrolyte material.
- an electrolyte membrane formed of a fluorine-based electrolyte material is preferable because of its excellent heat resistance, chemical stability, and the like.
- Specific examples include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
- hydrocarbon-based polymer electrolyte material examples include sulfonated polyether ketone, sulfonated polyether, and sulfonated polyether ether sulfone.
- an electrolyte membrane made of an inorganic proton conductor such as phosphate or sulfate can also be used.
- the fuel cell electrode of the present invention is employed only for the cathode, but the fuel cell electrode of the present invention may also be used for the anode.
- the manufacturing method of a membrane electrode assembly is a manufacturing method of a membrane electrode assembly in which the fuel cell electrode of the present invention is used for both the cathode and the anode, and the solid polymer electrolyte membrane is sandwiched between these electrodes and pressure-bonded.
- the manufacturing process of the membrane electrode assembly consists only of the production of the fuel cell electrode by physical vapor deposition and the pressure bonding of the fuel cell electrode and the solid polymer electrolyte membrane, the entire process can be continuously made dry. . As a result, the manufacturing cost of the membrane electrode assembly is greatly reduced. If the proton conductive material is applied to the fuel cell electrode and then subjected to the crimping process, the entire process can be almost entirely dry.
- such a dry integrated manufacturing method has an advantage that the performance of the membrane electrode assembly can be controlled by controlling only the vapor deposition conditions when the fuel cell electrode is manufactured.
- the vapor deposition method can produce only a carbon carrier with low crystallinity that is extremely inferior in oxidation corrosion durability. Therefore, in the electrode catalyst layer of the fuel cell electrode, Only by using the above-mentioned electron conductive oxide that can be produced by vapor deposition, a dry integrated production method of a membrane electrode assembly becomes possible.
- the polymer electrolyte fuel cell (single cell) of the present invention comprises the membrane electrode assembly of the present invention, and usually has a structure in which the membrane electrode assembly is sandwiched between separators having gas flow paths.
- FIG. 3 is a conceptual diagram showing a typical configuration of the polymer electrolyte fuel cell of the present invention.
- hydrogen is supplied to the anode 5
- the supplied electrons are supplied to the cathode 4 through the electrolyte membrane 6, and the generated electrons are supplied to the cathode through the external circuit 21.
- Reaction 2 O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O reacts with oxygen. Produce water.
- a potential difference is generated between the electrodes by the electrochemical reaction between the anode and the cathode.
- the components other than the membrane electrode assembly of the present invention are the same as those of the known polymer electrolyte fuel cell, and thus detailed description thereof is omitted.
- a fuel cell stack in which the polymer electrolyte fuel cells (single cells) of the present invention are stacked in the number corresponding to the power generation performance is formed, and by assembling other accompanying devices such as a gas supply device and a cooling device. used.
- Example 1 Production of Fuel Cell Electrode A fuel cell electrode of Example 1 in which an electrode catalyst layer was formed on one surface of the gas diffusion layer was produced by the following steps (1) and (2).
- Step (1) A carbon paper with a microporous layer (MPL) (manufactured by SIGRACT Gas Diffusion Media, model number: GDL25BC) is used as a gas diffusion layer, 4 mol% niobium-doped tin oxide is used as a deposition source (target), and a PLD apparatus (manufactured by Pascal) , Model number: STD-PLD-11301), an electron conductive oxide layer was formed on the gas diffusion layer under the following conditions.
- MPL microporous layer
- Step (2) A sputtering apparatus (model number E-1010) manufactured by Hitachi High-Technologies Corporation was used as the sputtering apparatus, and a Pt plate was used as the evaporation source (target). Sputtering conditions were set to a current value of 15 mA and a degree of vacuum of 10 Pa, and the sputtering time was set so that the amount of Pt supported on the electron conductive oxide layer was 0.5 mg / cm 2.
- the electrode for fuel cells of Example 1 was obtained as an electrode catalyst layer.
- a membrane electrode assembly (MEA) using the fuel cell electrode of Example 1 as a cathode was produced by the following procedure.
- a dispersion solution for anode formation is prepared by dispersing 46 wt% Pt / C (Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) in a Nafion membrane (thickness: 50 ⁇ m) in a predetermined organic solvent containing a Nafion solution.
- the obtained dispersion solution was spray-printed on the Nafion membrane, and an anode (electrode catalyst layer) having a predetermined thickness was produced on the Nafion membrane.
- anode electrode catalyst layer
- water-repellent carbon paper manufactured by Toray Industries, Inc., model number: EC-TP1-060T
- the Pt amount was adjusted to 0.2 mg / cm 2 .
- the fuel cell electrode of Example 1 was placed on the opposite surface of the Nafion membrane on which the anode was formed, and these were pressure-bonded for 190 seconds under predetermined conditions (0.3 kN, 130 ° C.). Obtained.
- Comparative Example 1 Manufacturing of Fuel Cell Electrode A fuel cell electrode of Comparative Example 1 was obtained in the same manner as in Example 1 except that the film forming time was changed to 5 minutes among the PLD film forming conditions in the step (1).
- MEA of Comparative Example 1 was prepared in the same manner as the MEA production method of Example 1, except that the fuel cell electrode of Comparative Example 1 was used instead of the fuel cell electrode of Example 1 as the cathode. Got.
- SnCl 2 .2H 2 O tin chloride hydrate
- NbCl 5 niobium chloride
- niobium-doped tin oxide particles were prepared, and then Pt was supported on the niobium-doped tin oxide particles by the platinum acetylacetonate method.
- the amount of Pt precursor (Pt (C 5 H 7 O 2 ) 2 ) was such that Pt was 20 wt% and was supported in dichloromethane (CH 2 Cl 2 ).
- the obtained slurry was dried, and then subjected to a reduction treatment at 210 ° C. for 3 hours and at 240 ° C. for 3 hours under an N 2 atmosphere, whereby a fuel cell electrode material of Comparative Example 2 was obtained.
- An MEA was produced using a cathode formed from the fuel cell electrode material of Comparative Example 2.
- an anode was formed on the Nafion membrane by the same method as the MEA manufacturing method of Example 1.
- a cathode-forming dispersion solution was prepared in the same manner as the anode, and the obtained dispersion was spray-printed on the Nafion membrane to produce a cathode (electrode catalyst layer) with a predetermined thickness on the Nafion membrane.
- Carbon paper was placed on each of the anode and the cathode and pressure-bonded under predetermined conditions (0.3 kN, 130 ° C.) to obtain an MEA of Comparative Example 2.
- the Pt amount at the cathode of the MEA of Comparative Example 3 is 0.5 mg / cm 2 .
- the amount of Pt in the anode is 0.2 mg / cm 2 .
- Reference Example 1 Commercially available 46 wt% Pt / C (Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) was used as the fuel cell electrode material of Reference Example 1, and the same method as Comparative Example 2 except that the fuel cell electrode material was used.
- the MEA of Reference Example 1 was obtained.
- the amount of Pt at the cathode of the MEA of Reference Example 1 is 0.5 mg / cm 2 .
- the anode is 0.2 mg / cm 2 .
- FIG. 4 A cross-sectional SEM image of the fuel cell electrode of Comparative Example 1 is shown in FIG.
- the gas diffusion layer has a microporous layer (MPL) of about 20 ⁇ m formed on a carbon paper as a base material layer, and a niobium doped tin oxide layer as an electron conductive oxide layer on the surface of the MPL. It can be seen that is formed.
- MPL microporous layer
- niobium doped tin oxide layer As can be seen from the high-magnification cross-sectional SEM image shown in FIG. 5, the niobium-doped tin oxide layer of the fuel cell electrode of Comparative Example 1 had a dense structure.
- FIG. 6 A cross-sectional SEM image of the fuel cell electrode of Example 1 is shown in FIG. As shown in FIG. 6, it can be seen that a niobium-doped tin oxide layer, which is an electron conductive oxide layer, is formed on the surface of the MPL.
- a niobium-doped tin oxide layer which is an electron conductive oxide layer
- the film thickness of the niobium-doped tin oxide layer was evaluated at 10 locations, it was 15.8 ( ⁇ 6.2) ⁇ m.
- supported by the niobium dope tin oxide layer was evaluated, it was confirmed that it is a particle size of about 30 nm and is distributed not only on the surface of the niobium dope tin oxide layer but also inside.
- Electrode area 0.5 cm 2 Supply gas type: 100% H 2 Gas supply rate: 100 mL / min Supply gas humidification temperature: 79 ° C (Cathode conditions) Electrode area: 0.5 cm 2 Supply gas type: Air Gas supply rate: 100 mL / min Supply gas humidification temperature: 60 ° C
- the MEA using the fuel cell electrode of Example 1 (film formation time of 1 minute) as a cathode was capable of outputting up to a current density of 600 mA / cm 2 . From this, it was confirmed that in the fuel cell electrode of Example 1, an electron conductive oxide layer with high gas diffusibility was formed, and excellent output characteristics were exhibited.
- the performance of the MEA using the fuel cell electrode of Comparative Example 1 (film formation time of 5 minutes) as the cathode is significantly lower than that of Example 1. This is because the film formation time is too long, the electron conductive oxide layer is densified, or the film thickness becomes too large, resulting in insufficient gas diffusibility as an electrode catalyst layer.
- Example 2 uses a fuel cell electrode having an electrode catalyst layer manufactured by a conventional wet method as a cathode. As shown in FIG. 8, in Example 1, the cell voltage was low at a low current density compared to Comparative Example 2, but reversed when exceeding 200 mA / cm 2 , and Example 1 had a higher cell voltage. showed that. From this, it was found that the fuel cell electrode of Example 1 having an electrode catalyst layer produced by a dry method (physical vapor deposition method) showed superior characteristics at a high current density.
- Example 1 in which the support in the electrode catalyst layer is carbon, the voltage was remarkably reduced in about 2000 cycles. As the deterioration factors, the corrosion of the carbon support under the cathode conditions and the desorption of the Pt catalyst particles due to the corrosion of the carbon support are suggested. On the other hand, in Example 1 and Comparative Example 2 in which the carrier in the electrode catalyst layer is an electron conductive oxide layer, the initial performance is inferior to that of Reference Example 1, but power generation is not significantly degraded from the initial performance after 60,000 cycles. It can be seen that the performance is maintained.
- the electron-conductive oxide support is thermodynamically stable under the cathode conditions, so it is not corroded like the carbon support and the Pt catalyst particles are not detached, resulting in performance deterioration. It is considered difficult. And it turned out that it does not originate in the preparation methods (Example 1 (physical vapor deposition method), comparative example 2 (wet method)).
- FIG. 11A is an explanatory diagram of a Cole-Cole plot
- FIG. 11B is a diagram illustrating an assumed equivalent circuit.
- Rs is an ohmic resistance
- Rp is a non-ohmic resistance
- C is an electric double layer capacitance
- the ohmic resistance and the non-ohmic resistance can be separately evaluated.
- FIG. 12 shows the change of the ohmic resistance of the MEA using the fuel cell electrode of Example 1, Comparative Example 2 and Reference Example 1 as the cathode with respect to the number of cycles.
- the MEAs of Example 1, Comparative Example 2, and Reference Example 1 have the same configuration except for the cathode. Therefore, it was determined that the change in ohmic resistance shown in FIG. 12 is mainly caused by the cathode.
- Example 1 in which carbon is used as the cathode support, the ohmic resistance increases rapidly with the number of cycles, and it is considered that the carbon support is significantly deteriorated with the potential cycle.
- Example 1 and Comparative Example 2 in which the cathode carrier is an electron conductive oxide, ohmic with respect to the potential cycle regardless of the physical vapor deposition method (Example 1) or the wet method (Comparative Example 2).
- the resistance hardly changes, and the electron conductive oxide as the carrier is considered to be stable.
- the value of ohmic resistance is smaller in Example 1 manufactured by the physical vapor deposition method than in Comparative Example 2 manufactured by the wet method.
- the fuel cell electrode of Example 1 in which the electron conductive oxide layer was formed by the connected particles in which a plurality of electron conductive oxide particles were connected by physical vapor deposition was formed by a conventional wet method. It was shown that the electric resistance (ohmic resistance) of the whole electrode was small as compared with the fuel cell electrode of Comparative Example 2 using electron conductive oxide carrier particles.
- the fuel cell electrode of the present invention (Example 1) has a power generation performance equivalent to or higher than that of a fuel cell electrode using an electron conductive oxide produced by a conventional wet method as a carrier. It has been found that it has a low electrical resistance (ohmic resistance) and has excellent cycle durability under cathode conditions.
- a fuel cell electrode in which a non-carbon electron conductive oxide having sufficient electron conductivity and excellent durability is used as an electrode catalyst layer.
- the electrode for a fuel cell is particularly suitable for an electrode for a polymer electrolyte fuel cell that requires long-term operation with start and stop.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Provided is a method for manufacturing an electrode for a fuel cell having excellent durability against electrochemical oxidation and having an electronically conductive oxide that has excellent output characteristics used therefor. An electrode for a fuel cell having a gas diffusion layer, which is electronically conductive, and an electrode catalyst layer formed on the surface of or inside the gas diffusion layer, wherein the electrode for a fuel cell is characterized in that the electrode catalyst layer contains an electronically conductive oxide layer having a gas diffusion property formed by physical vapor deposition and electron catalyst particles carried by the electronically conductive oxide layer. In the electrode for a fuel cell, the electronically conductive oxide particles constituting the electronically conductive oxide layer in the electrode catalyst layer are connected particles in which a plurality of particles are linked. Therefore, electrical resistance caused by grain boundaries is reduced and excellent electron conductivity is obtained in the electrode as a whole.
Description
本発明は、固体高分子形燃料電池の電極として好適に用いられる燃料電池用電極及びその製造方法、並びに膜電極接合体及び固体高分子形燃料電池に関する。
The present invention relates to a fuel cell electrode suitably used as an electrode of a polymer electrolyte fuel cell, a method for producing the same, a membrane electrode assembly, and a polymer electrolyte fuel cell.
燃料電池は、水素の持つ化学エネルギーを効率よく電気エネルギーに変換できるため、燃料電池を利用した発電システムの普及が期待されている。燃料電池の中でも、特に電解質に固体高分子膜を使用した固体高分子形燃料電池(Polymer Electrolyte Fuel Cell、以下、「PEFC」と記載する場合がある。)は、作動温度が80℃付近と比較的低温であるため、例えば、車載用電源、家庭用等の小規模な固定電源として導入されている。固体高分子形燃料電池では、以下の電気化学反応によって電力を取り出すことができる。
アノ-ド反応:2H2 → 4H++4e- (反応1)
カソ-ド反応:O2+4H++4e-→2H2O (反応2)
全反応 :2H2+O2→2H2O Since fuel cells can efficiently convert the chemical energy of hydrogen into electrical energy, the spread of power generation systems using fuel cells is expected. Among the fuel cells, in particular, a polymer electrolyte fuel cell (hereinafter, sometimes referred to as “PEFC”) using a solid polymer membrane as an electrolyte has an operating temperature compared with around 80 ° C. Because of its low temperature, it has been introduced as a small-scale fixed power source for in-vehicle use, home use, and the like. In the polymer electrolyte fuel cell, electric power can be taken out by the following electrochemical reaction.
Anodic reaction: 2H 2 → 4H + + 4e − (reaction 1)
Cathode reaction: O 2 + 4H + + 4e − → 2H 2 O (reaction 2)
Total reaction: 2H 2 + O 2 → 2H 2 O
アノ-ド反応:2H2 → 4H++4e- (反応1)
カソ-ド反応:O2+4H++4e-→2H2O (反応2)
全反応 :2H2+O2→2H2O Since fuel cells can efficiently convert the chemical energy of hydrogen into electrical energy, the spread of power generation systems using fuel cells is expected. Among the fuel cells, in particular, a polymer electrolyte fuel cell (hereinafter, sometimes referred to as “PEFC”) using a solid polymer membrane as an electrolyte has an operating temperature compared with around 80 ° C. Because of its low temperature, it has been introduced as a small-scale fixed power source for in-vehicle use, home use, and the like. In the polymer electrolyte fuel cell, electric power can be taken out by the following electrochemical reaction.
Anodic reaction: 2H 2 → 4H + + 4e − (reaction 1)
Cathode reaction: O 2 + 4H + + 4e − → 2H 2 O (reaction 2)
Total reaction: 2H 2 + O 2 → 2H 2 O
PEFCは、一般的に、固体高分子電解質膜の両面に一対の電極を配置させた膜電極接合体(Membrane Electrode Assembly、以下、「MEA」と記載する場合がある。)を、ガス流路が形成されたセパレータで挟持した構造を有する。
燃料電池用電極(特にはPEFC用電極)は、一般に、電極触媒活性を有する電極材料及び高分子電解質からなる電極触媒層と、ガス通気性と電子伝導性を兼ね備えたガス拡散層とから構成される。PEFCの電極材料として、粒子状や繊維状の炭素系材料からなる担体の表面に貴金属粒子を分散させて担持した材料が広く用いられている(例えば、特許文献1,2)。 In PEFC, a membrane electrode assembly (Membrane Electrode Assembly; hereinafter, sometimes referred to as “MEA”) in which a pair of electrodes are arranged on both surfaces of a solid polymer electrolyte membrane is generally used as a gas flow path. It has a structure sandwiched between the formed separators.
An electrode for a fuel cell (especially an electrode for PEFC) is generally composed of an electrode catalyst layer composed of an electrode material having an electrocatalytic activity and a polymer electrolyte, and a gas diffusion layer having both gas permeability and electronic conductivity. The As an electrode material for PEFC, a material in which noble metal particles are dispersed and supported on the surface of a carrier made of a particulate or fibrous carbon-based material is widely used (for example,Patent Documents 1 and 2).
燃料電池用電極(特にはPEFC用電極)は、一般に、電極触媒活性を有する電極材料及び高分子電解質からなる電極触媒層と、ガス通気性と電子伝導性を兼ね備えたガス拡散層とから構成される。PEFCの電極材料として、粒子状や繊維状の炭素系材料からなる担体の表面に貴金属粒子を分散させて担持した材料が広く用いられている(例えば、特許文献1,2)。 In PEFC, a membrane electrode assembly (Membrane Electrode Assembly; hereinafter, sometimes referred to as “MEA”) in which a pair of electrodes are arranged on both surfaces of a solid polymer electrolyte membrane is generally used as a gas flow path. It has a structure sandwiched between the formed separators.
An electrode for a fuel cell (especially an electrode for PEFC) is generally composed of an electrode catalyst layer composed of an electrode material having an electrocatalytic activity and a polymer electrolyte, and a gas diffusion layer having both gas permeability and electronic conductivity. The As an electrode material for PEFC, a material in which noble metal particles are dispersed and supported on the surface of a carrier made of a particulate or fibrous carbon-based material is widely used (for example,
ところで、PEFCの電解質膜は酸性(pH=0~3)であるため、PEFCの電極材料は酸性雰囲気下で使用されることになる。また、通常運転しているときのセル電圧は0.4~1.0Vであるが、起動停止時にはセル電圧が1.5Vまで上昇することが知られている。このようなPEFCの運転条件でのカソード及びアノードの状態は、カソードにおいては担体である炭素系材料が二酸化炭素(CO2)として分解する領域である。そのため、カソードでは、担体として使用されている炭素系材料が電気化学的に酸化されてCO2に分解する反応が起こる(非特許文献1参照)。
By the way, since the PEFC electrolyte membrane is acidic (pH = 0 to 3), the electrode material of PEFC is used in an acidic atmosphere. The cell voltage during normal operation is 0.4 to 1.0 V, but it is known that the cell voltage rises to 1.5 V when starting and stopping. The state of the cathode and the anode under such PEFC operating conditions is a region in which the carbon-based material as a carrier is decomposed as carbon dioxide (CO 2 ) at the cathode. Therefore, a reaction occurs in which the carbon-based material used as the carrier is electrochemically oxidized and decomposed into CO 2 at the cathode (see Non-Patent Document 1).
また、カソードだけでなく、アノードにおいても起動時などに燃料ガスが不足すると、その部分での電圧低下、あるいは濃度分極が生じて局部的に通常と反対の電位となり、炭素の電気化学的酸化分解反応が起こることがある。
In addition, not only the cathode, but also the anode, when fuel gas is insufficient at the time of start-up, etc., a voltage drop or concentration polarization occurs at that part and locally becomes a potential opposite to normal, and electrochemical oxidative decomposition of carbon A reaction may occur.
電極触媒粒子の担体として用いられている炭素系材料は、上述のように電気化学的に酸化腐食し、PEFCの起動停止時や長時間運転しているときに特に問題となる。炭素系材料の酸化に対する耐久性を向上させるため、高温で熱処理して結晶化を高める方法があるが、それでも酸化に対する耐久性は不十分である。そのため、PEFCの運転条件で安定な、非炭素系材料を使用した燃料電池用電極の開発が望まれている。
このような要望に対し、本願発明者らは、特許文献3において、炭素系材料の代わりに酸化スズ担体に貴金属粒子を分散させた電極触媒材料およびその製造を開示している。この電極触媒材料はPEFCの運転条件で熱力学的に安定であるため、酸化腐食されることなく長期の運転が可能である。 The carbon-based material used as a support for the electrode catalyst particles is electrochemically oxidatively corroded as described above, and becomes a problem particularly when the PEFC is started and stopped or operated for a long time. In order to improve the durability of the carbon-based material against oxidation, there is a method of increasing the crystallization by heat treatment at a high temperature, but the durability against oxidation is still insufficient. Therefore, it is desired to develop a fuel cell electrode using a non-carbon material that is stable under PEFC operating conditions.
In response to such a demand, the inventors of the present application disclose an electrocatalyst material in which noble metal particles are dispersed in a tin oxide support instead of a carbon-based material, and production thereof. Since this electrocatalyst material is thermodynamically stable under PEFC operating conditions, it can be operated for a long time without oxidative corrosion.
このような要望に対し、本願発明者らは、特許文献3において、炭素系材料の代わりに酸化スズ担体に貴金属粒子を分散させた電極触媒材料およびその製造を開示している。この電極触媒材料はPEFCの運転条件で熱力学的に安定であるため、酸化腐食されることなく長期の運転が可能である。 The carbon-based material used as a support for the electrode catalyst particles is electrochemically oxidatively corroded as described above, and becomes a problem particularly when the PEFC is started and stopped or operated for a long time. In order to improve the durability of the carbon-based material against oxidation, there is a method of increasing the crystallization by heat treatment at a high temperature, but the durability against oxidation is still insufficient. Therefore, it is desired to develop a fuel cell electrode using a non-carbon material that is stable under PEFC operating conditions.
In response to such a demand, the inventors of the present application disclose an electrocatalyst material in which noble metal particles are dispersed in a tin oxide support instead of a carbon-based material, and production thereof. Since this electrocatalyst material is thermodynamically stable under PEFC operating conditions, it can be operated for a long time without oxidative corrosion.
特許文献3の酸化物担体を用いた電極触媒材料の製造方法では、従来の炭素系担体の場合と同様に湿式法が採用されている。湿式法では、例えば、酸化物担体を共沈法等で調製し、その上にコロイド法などの方法で酸化物担体に貴金属粒子を担持し、スプレー印刷法等の方法で固体高分子電解質膜の上に塗布して電極触媒層を製膜する。
しかしながら、湿式法で製造した電極触媒層を有する燃料電池用電極は、炭素系担体を用いた場合では十分なセル性能を発揮できるが、酸化物担体を用いた場合には、必ずしも再現性良く、十分なセル性能を発揮できるとはいえなかった。 In the method for producing an electrocatalyst material using an oxide support ofPatent Document 3, a wet method is employed as in the case of a conventional carbon-based support. In the wet method, for example, an oxide carrier is prepared by a coprecipitation method or the like, and noble metal particles are supported on the oxide carrier by a method such as a colloid method, and a solid polymer electrolyte membrane is formed by a method such as a spray printing method. The electrode catalyst layer is formed by coating on the top.
However, a fuel cell electrode having an electrode catalyst layer produced by a wet method can exhibit sufficient cell performance when using a carbon-based support, but when using an oxide support, it is not necessarily reproducible, It could not be said that sufficient cell performance could be demonstrated.
しかしながら、湿式法で製造した電極触媒層を有する燃料電池用電極は、炭素系担体を用いた場合では十分なセル性能を発揮できるが、酸化物担体を用いた場合には、必ずしも再現性良く、十分なセル性能を発揮できるとはいえなかった。 In the method for producing an electrocatalyst material using an oxide support of
However, a fuel cell electrode having an electrode catalyst layer produced by a wet method can exhibit sufficient cell performance when using a carbon-based support, but when using an oxide support, it is not necessarily reproducible, It could not be said that sufficient cell performance could be demonstrated.
このような状況下、本発明は、電気化学的酸化への耐久性に優れ、かつ、優れた出力特性を有す電子伝導性酸化物を使用した燃料電池用電極およびその製造方法を提供することを目的とする。さらには、当該燃料電池用電極を有する膜電極複合体及び固体高分子形燃料電池を提供することを目的とする。
Under such circumstances, the present invention provides a fuel cell electrode using an electron conductive oxide having excellent durability to electrochemical oxidation and having excellent output characteristics, and a method for producing the same. With the goal. Furthermore, it aims at providing the membrane electrode composite and solid polymer fuel cell which have the said electrode for fuel cells.
本発明者は、湿式法によって形成される電子伝導性酸化物担体粒子は、平均粒径が10~500nm程度の一次粒子が凝集した二次粒子であり、このような電子伝導性酸化物担体粒子を用いて電極触媒層を形成すると、高温で焼成するプロセスがないために担体粒子同士の接触が不十分となりやすいため、粒界における電気抵抗が大きくなり、電極全体の電子伝導性が不十分になると考えた。そして、鋭意研究を重ねた結果、下記発明がこのような課題を解決することを見出し、本発明に至った。
The present inventor has described that the electron conductive oxide carrier particles formed by a wet method are secondary particles in which primary particles having an average particle size of about 10 to 500 nm are aggregated. When the electrode catalyst layer is formed using the electrode, the contact between the carrier particles tends to be insufficient because there is no process of firing at a high temperature, resulting in an increase in electrical resistance at the grain boundary and insufficient electron conductivity of the entire electrode. I thought. As a result of intensive studies, the inventors have found that the following invention can solve such problems and have reached the present invention.
すなわち、本発明は、以下の発明に係るものである。
<1> 電子伝導性を有するガス拡散層と、前記ガス拡散層の表面又は内部に形成された電極触媒層とを有する燃料電池用電極であって、
前記電極触媒層が、物理蒸着により形成されたガス拡散性を有する電子伝導性酸化物層と、前記電子伝導性酸化物層に担持された電極触媒粒子とを含む燃料電池用電極。
<2> 前記ガス拡散層が、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層であって、前記電極触媒層が前記マイクロポーラス層の表面又は内部に形成されてなる前記<1>に記載の燃料電池用電極。
<3> 前記電子伝導性酸化物層が、酸化スズを主体とする酸化物からなる前記<1>または<2>に記載の燃料電池用電極。
<4> 前記電子伝導性酸化物層が、ニオブを0.1~20mol%ドープしたニオブドープ酸化スズからなる前記<1>から<3>のいずれかに記載の燃料電池用電極。
<5> 前記電極触媒層が、さらにプロトン導電性材料を含有する前記<1>から<4>のいずれかに記載の燃料電池用電極。
<6> 電子伝導性を有するガス拡散層と、前記ガス拡散層の表面又は内部に形成された電極触媒層とを有する燃料電池用電極の製造方法であって、
電子伝導性酸化物からなる蒸着源を使用し、物理蒸着法によってガス拡散層の表面又は内部に、ガス拡散性を有する電子伝導性酸化物層を形成する工程と、
前記電子伝導性酸化物層に対し、電極触媒粒子を担持する工程と、
を含む燃料電池用電極の製造方法。
<7> 前記ガス拡散層が、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層であって、前記電極触媒層が前記マイクロポーラス層の表面に形成されてなる前記<6>に記載の燃料電池用電極の製造方法。
<8> 前記蒸着源が、酸化スズを主体とする酸化物からなる前記<6>または<7>に記載の燃料電池用電極の製造方法。
<9> 前記蒸着源が、ニオブを0.1~20mol%ドープしたニオブドープ酸化スズからなる前記<6>から<8>のいずれかに記載の燃料電池用電極の製造方法。
<10> 前記電子伝導性酸化物層を形成する工程における物理蒸着法が、パルスレーザー蒸着法(PLD)である前記<6>から<9>のいずれかに記載の燃料電池用電極の製造方法。
<11> 前記電極触媒粒子を担持する工程における担持方法が、物理蒸着法または化学蒸着法である前記<6>から<10>のいずれかに記載の燃料電池用電極の製造方法。
<12> 固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体であって、
前記カソードとアノードの少なくとも一方が、前記<1>から<5>のいずれかに記載の燃料電池用電極であることを特徴とする膜電極接合体。
<13> 前記<12>に記載の膜電極接合体を備えてなる固体高分子形燃料電池。
<14> 固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体の製造方法であって、前記<11>に記載の燃料電池用電極の製造方法によって、カソードとアノードのそれぞれの燃料電池用電極を製造する工程と、製造されたカソードとアノードに固体高分子電解質膜を挟み込んで圧着する工程と、を含む膜電極接合体の製造方法。 That is, the present invention relates to the following inventions.
<1> A fuel cell electrode having a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on or inside the gas diffusion layer,
An electrode for a fuel cell, wherein the electrode catalyst layer includes an electron conductive oxide layer having gas diffusibility formed by physical vapor deposition and electrode catalyst particles supported on the electron conductive oxide layer.
<2> The gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is formed on or inside the microporous layer. The fuel cell electrode according to <1>.
<3> The fuel cell electrode according to <1> or <2>, wherein the electron conductive oxide layer is made of an oxide mainly composed of tin oxide.
<4> The fuel cell electrode according to any one of <1> to <3>, wherein the electron conductive oxide layer is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
<5> The fuel cell electrode according to any one of <1> to <4>, wherein the electrode catalyst layer further contains a proton conductive material.
<6> A method for producing a fuel cell electrode comprising a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on or inside the gas diffusion layer,
A step of forming an electron conductive oxide layer having gas diffusivity on the surface or inside of the gas diffusion layer by a physical vapor deposition method using a vapor deposition source comprising an electron conductive oxide;
A step of supporting electrode catalyst particles on the electron conductive oxide layer;
The manufacturing method of the electrode for fuel cells containing this.
<7> The gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is formed on the surface of the microporous layer. The manufacturing method of the electrode for fuel cells as described in said <6>.
<8> The method for producing a fuel cell electrode according to <6> or <7>, wherein the vapor deposition source is made of an oxide mainly composed of tin oxide.
<9> The method for producing a fuel cell electrode according to any one of <6> to <8>, wherein the vapor deposition source is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
<10> The method for producing an electrode for a fuel cell according to any one of <6> to <9>, wherein the physical vapor deposition method in the step of forming the electron conductive oxide layer is a pulse laser deposition method (PLD). .
<11> The method for producing an electrode for a fuel cell according to any one of <6> to <10>, wherein the supporting method in the step of supporting the electrode catalyst particles is a physical vapor deposition method or a chemical vapor deposition method.
<12> A membrane / electrode assembly having a solid polymer electrolyte membrane, a cathode bonded to one surface of the solid polymer electrolyte membrane, and an anode bonded to the other surface of the solid polymer electrolyte membrane. And
At least one of the cathode and the anode is the fuel cell electrode according to any one of <1> to <5>.
<13> A polymer electrolyte fuel cell comprising the membrane electrode assembly according to <12>.
<14> Manufacture of a membrane / electrode assembly having a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane A method for producing a fuel cell electrode for each of a cathode and an anode by the method for producing a fuel cell electrode according to <11>, and a solid polymer electrolyte membrane on the produced cathode and anode. A process for producing a membrane electrode assembly, comprising the step of sandwiching and crimping.
<1> 電子伝導性を有するガス拡散層と、前記ガス拡散層の表面又は内部に形成された電極触媒層とを有する燃料電池用電極であって、
前記電極触媒層が、物理蒸着により形成されたガス拡散性を有する電子伝導性酸化物層と、前記電子伝導性酸化物層に担持された電極触媒粒子とを含む燃料電池用電極。
<2> 前記ガス拡散層が、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層であって、前記電極触媒層が前記マイクロポーラス層の表面又は内部に形成されてなる前記<1>に記載の燃料電池用電極。
<3> 前記電子伝導性酸化物層が、酸化スズを主体とする酸化物からなる前記<1>または<2>に記載の燃料電池用電極。
<4> 前記電子伝導性酸化物層が、ニオブを0.1~20mol%ドープしたニオブドープ酸化スズからなる前記<1>から<3>のいずれかに記載の燃料電池用電極。
<5> 前記電極触媒層が、さらにプロトン導電性材料を含有する前記<1>から<4>のいずれかに記載の燃料電池用電極。
<6> 電子伝導性を有するガス拡散層と、前記ガス拡散層の表面又は内部に形成された電極触媒層とを有する燃料電池用電極の製造方法であって、
電子伝導性酸化物からなる蒸着源を使用し、物理蒸着法によってガス拡散層の表面又は内部に、ガス拡散性を有する電子伝導性酸化物層を形成する工程と、
前記電子伝導性酸化物層に対し、電極触媒粒子を担持する工程と、
を含む燃料電池用電極の製造方法。
<7> 前記ガス拡散層が、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層であって、前記電極触媒層が前記マイクロポーラス層の表面に形成されてなる前記<6>に記載の燃料電池用電極の製造方法。
<8> 前記蒸着源が、酸化スズを主体とする酸化物からなる前記<6>または<7>に記載の燃料電池用電極の製造方法。
<9> 前記蒸着源が、ニオブを0.1~20mol%ドープしたニオブドープ酸化スズからなる前記<6>から<8>のいずれかに記載の燃料電池用電極の製造方法。
<10> 前記電子伝導性酸化物層を形成する工程における物理蒸着法が、パルスレーザー蒸着法(PLD)である前記<6>から<9>のいずれかに記載の燃料電池用電極の製造方法。
<11> 前記電極触媒粒子を担持する工程における担持方法が、物理蒸着法または化学蒸着法である前記<6>から<10>のいずれかに記載の燃料電池用電極の製造方法。
<12> 固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体であって、
前記カソードとアノードの少なくとも一方が、前記<1>から<5>のいずれかに記載の燃料電池用電極であることを特徴とする膜電極接合体。
<13> 前記<12>に記載の膜電極接合体を備えてなる固体高分子形燃料電池。
<14> 固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体の製造方法であって、前記<11>に記載の燃料電池用電極の製造方法によって、カソードとアノードのそれぞれの燃料電池用電極を製造する工程と、製造されたカソードとアノードに固体高分子電解質膜を挟み込んで圧着する工程と、を含む膜電極接合体の製造方法。 That is, the present invention relates to the following inventions.
<1> A fuel cell electrode having a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on or inside the gas diffusion layer,
An electrode for a fuel cell, wherein the electrode catalyst layer includes an electron conductive oxide layer having gas diffusibility formed by physical vapor deposition and electrode catalyst particles supported on the electron conductive oxide layer.
<2> The gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is formed on or inside the microporous layer. The fuel cell electrode according to <1>.
<3> The fuel cell electrode according to <1> or <2>, wherein the electron conductive oxide layer is made of an oxide mainly composed of tin oxide.
<4> The fuel cell electrode according to any one of <1> to <3>, wherein the electron conductive oxide layer is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
<5> The fuel cell electrode according to any one of <1> to <4>, wherein the electrode catalyst layer further contains a proton conductive material.
<6> A method for producing a fuel cell electrode comprising a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on or inside the gas diffusion layer,
A step of forming an electron conductive oxide layer having gas diffusivity on the surface or inside of the gas diffusion layer by a physical vapor deposition method using a vapor deposition source comprising an electron conductive oxide;
A step of supporting electrode catalyst particles on the electron conductive oxide layer;
The manufacturing method of the electrode for fuel cells containing this.
<7> The gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is formed on the surface of the microporous layer. The manufacturing method of the electrode for fuel cells as described in said <6>.
<8> The method for producing a fuel cell electrode according to <6> or <7>, wherein the vapor deposition source is made of an oxide mainly composed of tin oxide.
<9> The method for producing a fuel cell electrode according to any one of <6> to <8>, wherein the vapor deposition source is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
<10> The method for producing an electrode for a fuel cell according to any one of <6> to <9>, wherein the physical vapor deposition method in the step of forming the electron conductive oxide layer is a pulse laser deposition method (PLD). .
<11> The method for producing an electrode for a fuel cell according to any one of <6> to <10>, wherein the supporting method in the step of supporting the electrode catalyst particles is a physical vapor deposition method or a chemical vapor deposition method.
<12> A membrane / electrode assembly having a solid polymer electrolyte membrane, a cathode bonded to one surface of the solid polymer electrolyte membrane, and an anode bonded to the other surface of the solid polymer electrolyte membrane. And
At least one of the cathode and the anode is the fuel cell electrode according to any one of <1> to <5>.
<13> A polymer electrolyte fuel cell comprising the membrane electrode assembly according to <12>.
<14> Manufacture of a membrane / electrode assembly having a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane A method for producing a fuel cell electrode for each of a cathode and an anode by the method for producing a fuel cell electrode according to <11>, and a solid polymer electrolyte membrane on the produced cathode and anode. A process for producing a membrane electrode assembly, comprising the step of sandwiching and crimping.
本発明によれば、高い発電性能と耐久性の両立した燃料電池用電極が提供される。該燃料電池用電極を使用した膜電極接合体を備えてなる固体高分子形燃料電池はサイクル耐久性が高く、長期間発電することができる。
According to the present invention, an electrode for a fuel cell that provides both high power generation performance and durability is provided. A polymer electrolyte fuel cell comprising a membrane electrode assembly using the fuel cell electrode has high cycle durability and can generate power for a long period of time.
1 燃料電池用電極
2 ガス拡散層
2a 基材層
2b マイクロポーラス層
3 電極触媒層
3a 電子伝導性酸化物層
4 カソード
5 アノード
5a 電極触媒層
5b ガス拡散層
6 固体高分子電解質膜
10 膜電極接合体(MEA)
20 固体高分子形燃料電池
21 外部回路 DESCRIPTION OFSYMBOLS 1 Fuel cell electrode 2 Gas diffusion layer 2a Base material layer 2b Microporous layer 3 Electrode catalyst layer 3a Electron conductive oxide layer 4 Cathode 5 Anode 5a Electrode catalyst layer 5b Gas diffusion layer 6 Solid polymer electrolyte membrane 10 Membrane electrode bonding Body (MEA)
20 Polymerelectrolyte fuel cell 21 External circuit
2 ガス拡散層
2a 基材層
2b マイクロポーラス層
3 電極触媒層
3a 電子伝導性酸化物層
4 カソード
5 アノード
5a 電極触媒層
5b ガス拡散層
6 固体高分子電解質膜
10 膜電極接合体(MEA)
20 固体高分子形燃料電池
21 外部回路 DESCRIPTION OF
20 Polymer
以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
Hereinafter, the present invention will be described in detail with reference to examples and the like, but the present invention is not limited to the following examples and the like, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
<1.燃料電池用電極>
本発明の燃料電池用電極は、電子伝導性を有するガス拡散層と、前記ガス拡散層の表面及び/又は内部に形成された電極触媒層とを有する燃料電池用電極であって、
前記電極触媒層が、物理蒸着により形成されたガス拡散性を有する電子伝導性酸化物層と、前記電子伝導性酸化物層に担持された電極触媒粒子とを含むことを特徴とする。 <1. Fuel Cell Electrode>
The fuel cell electrode of the present invention is a fuel cell electrode having a gas diffusion layer having electronic conductivity and an electrode catalyst layer formed on the surface and / or inside of the gas diffusion layer,
The electrode catalyst layer includes an electron conductive oxide layer having gas diffusibility formed by physical vapor deposition, and electrode catalyst particles supported on the electron conductive oxide layer.
本発明の燃料電池用電極は、電子伝導性を有するガス拡散層と、前記ガス拡散層の表面及び/又は内部に形成された電極触媒層とを有する燃料電池用電極であって、
前記電極触媒層が、物理蒸着により形成されたガス拡散性を有する電子伝導性酸化物層と、前記電子伝導性酸化物層に担持された電極触媒粒子とを含むことを特徴とする。 <1. Fuel Cell Electrode>
The fuel cell electrode of the present invention is a fuel cell electrode having a gas diffusion layer having electronic conductivity and an electrode catalyst layer formed on the surface and / or inside of the gas diffusion layer,
The electrode catalyst layer includes an electron conductive oxide layer having gas diffusibility formed by physical vapor deposition, and electrode catalyst particles supported on the electron conductive oxide layer.
燃料電池用電極の電極触媒層には、水素や酸素などのガス拡散及び水(蒸気)の排出がスムーズに行える程度の空隙と共に、十分な電子伝導性が必要となる。しかしながら、従来の湿式法で形成した電子伝導性酸化物担体粒子を用いて電極触媒層を形成した場合には、粒界での電気抵抗が大きくなり、電極触媒層の電子伝導性が不十分となる。その結果、ひいては該電極触媒層とガス拡散層とで構成される電極全体の電子伝導性が不十分となる。
これに対し、本発明の燃料電池用電極は、電極触媒層における導電性担体として機能する電子伝導性酸化物層が、物理蒸着法により形成されている。物理蒸着法では形成される電子伝導性酸化物粒子が複数個連結した連結粒子としてガス拡散層の表面や内部に堆積する。連結粒子内では、複数個の電子伝導性酸化物粒子が連続しているため、粒界に起因する電気抵抗が小さくなる。
そのため、従来の湿式法で形成した電子伝導性酸化物担体粒子を用いて電極触媒層を形成した場合と比較して、本発明の燃料電池用電極は、ガス拡散性を有する程度の空隙がある状態でも、電極触媒層が優れた電子伝導性を有すため、該電極触媒層とガス拡散層とで構成される電極全体の電子伝導性に優れる。 The electrode catalyst layer of the fuel cell electrode needs to have sufficient electronic conductivity along with a gap that allows gas diffusion such as hydrogen and oxygen and water (steam) to be discharged smoothly. However, when the electrode catalyst layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the electrical resistance at the grain boundary is increased, and the electron conductivity of the electrode catalyst layer is insufficient. Become. As a result, the electronic conductivity of the entire electrode composed of the electrode catalyst layer and the gas diffusion layer becomes insufficient.
On the other hand, in the fuel cell electrode of the present invention, the electron conductive oxide layer functioning as a conductive support in the electrode catalyst layer is formed by physical vapor deposition. In the physical vapor deposition method, a plurality of electron-conductive oxide particles to be formed are deposited on the surface or inside of a gas diffusion layer as connected particles in which a plurality of particles are connected. Since the plurality of electron conductive oxide particles are continuous in the connected particles, the electrical resistance due to the grain boundary is reduced.
Therefore, compared with the case where the electrode catalyst layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the fuel cell electrode of the present invention has a gap having gas diffusibility. Even in this state, since the electrode catalyst layer has excellent electron conductivity, the entire electrode composed of the electrode catalyst layer and the gas diffusion layer is excellent in electron conductivity.
これに対し、本発明の燃料電池用電極は、電極触媒層における導電性担体として機能する電子伝導性酸化物層が、物理蒸着法により形成されている。物理蒸着法では形成される電子伝導性酸化物粒子が複数個連結した連結粒子としてガス拡散層の表面や内部に堆積する。連結粒子内では、複数個の電子伝導性酸化物粒子が連続しているため、粒界に起因する電気抵抗が小さくなる。
そのため、従来の湿式法で形成した電子伝導性酸化物担体粒子を用いて電極触媒層を形成した場合と比較して、本発明の燃料電池用電極は、ガス拡散性を有する程度の空隙がある状態でも、電極触媒層が優れた電子伝導性を有すため、該電極触媒層とガス拡散層とで構成される電極全体の電子伝導性に優れる。 The electrode catalyst layer of the fuel cell electrode needs to have sufficient electronic conductivity along with a gap that allows gas diffusion such as hydrogen and oxygen and water (steam) to be discharged smoothly. However, when the electrode catalyst layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the electrical resistance at the grain boundary is increased, and the electron conductivity of the electrode catalyst layer is insufficient. Become. As a result, the electronic conductivity of the entire electrode composed of the electrode catalyst layer and the gas diffusion layer becomes insufficient.
On the other hand, in the fuel cell electrode of the present invention, the electron conductive oxide layer functioning as a conductive support in the electrode catalyst layer is formed by physical vapor deposition. In the physical vapor deposition method, a plurality of electron-conductive oxide particles to be formed are deposited on the surface or inside of a gas diffusion layer as connected particles in which a plurality of particles are connected. Since the plurality of electron conductive oxide particles are continuous in the connected particles, the electrical resistance due to the grain boundary is reduced.
Therefore, compared with the case where the electrode catalyst layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the fuel cell electrode of the present invention has a gap having gas diffusibility. Even in this state, since the electrode catalyst layer has excellent electron conductivity, the entire electrode composed of the electrode catalyst layer and the gas diffusion layer is excellent in electron conductivity.
なお、本発明の燃料電池用電極は、前記ガス拡散層が、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層であって、前記電極触媒層が前記マイクロポーラス層の表面に形成されてなるガス拡散層であることが好ましい。
In the fuel cell electrode of the present invention, the gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is the micro layer. A gas diffusion layer formed on the surface of the porous layer is preferred.
以下、本発明の好適な実施形態を、図面を参照しながら説明する。なお、本実施形態は本発明の好適な一例であり、本発明は以下の実施例に制限されるものではない。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this embodiment is a suitable example of this invention, and this invention is not restrict | limited to the following Examples.
図1に本実施形態の燃料電池用電極の断面模式図を示す。燃料電池用電極1は、基材層2a及び前記基材層の片面に形成されたマイクロポーラス層2bを有するガス拡散層2と、ガス拡散層2におけるマイクロポーラス層2bの表面上に形成された電極触媒層3とを有する。
FIG. 1 is a schematic sectional view of a fuel cell electrode according to the present embodiment. The fuel cell electrode 1 was formed on the surface of the microporous layer 2b in the gas diffusion layer 2 and the gas diffusion layer 2 having the base layer 2a and the microporous layer 2b formed on one side of the base layer. And an electrode catalyst layer 3.
(ガス拡散層)
ガス拡散層2は、基材層2aと基材層2aの片面に形成されたマイクロポーラス層2bとからなる。ガス拡散層2には、電極触媒層3に燃料ガスや空気を提供するためのガス拡散性(ガス透過性)や、発電により生成する水に対する撥水性、発生した電流をセパレータに集電させるための導電性を有する。 (Gas diffusion layer)
Thegas diffusion layer 2 includes a base layer 2a and a microporous layer 2b formed on one side of the base layer 2a. The gas diffusion layer 2 has gas diffusibility (gas permeability) for providing fuel gas and air to the electrode catalyst layer 3, water repellency to water generated by power generation, and current generated by the separator. It has the conductivity of.
ガス拡散層2は、基材層2aと基材層2aの片面に形成されたマイクロポーラス層2bとからなる。ガス拡散層2には、電極触媒層3に燃料ガスや空気を提供するためのガス拡散性(ガス透過性)や、発電により生成する水に対する撥水性、発生した電流をセパレータに集電させるための導電性を有する。 (Gas diffusion layer)
The
基材層2aとしては、ガス拡散性と電子伝導性を有するシート状部材を用いることができる。具体的には、従来PEFCのガス拡散層として使用されている、100nm~90μm程度の細孔径分布を有する導電性の炭素系シート状部材が挙げられ、好適には撥水処理が施されたカーボンクロス、カーボンペーパー、カーボン不織布等を用いることができる。また、基材層2aは、ステンレススチール等の炭素系材料以外のシート状部材でもよい。基材層2aの厚みは特に制限はないが、通常、50μm~1mm程度である。
As the base material layer 2a, a sheet-like member having gas diffusibility and electron conductivity can be used. Specifically, conductive carbon-based sheet-like members having a pore size distribution of about 100 nm to 90 μm, which are conventionally used as a gas diffusion layer of PEFC, can be mentioned. Cloth, carbon paper, carbon non-woven fabric, etc. can be used. The base material layer 2a may be a sheet-like member other than a carbon-based material such as stainless steel. The thickness of the base material layer 2a is not particularly limited, but is usually about 50 μm to 1 mm.
マイクロポーラス層2bは、基材層2aの片面に設けられた、平均粒径10~100nm程度の炭素微粒子の集合体及び撥水剤からなる層である。炭素微粒子は撥水処理されていてもよい。マイクロポーラス層2bは、基材層2aよりも平均細孔径が小さく(、高密度で表面平坦性に優れる。マイクロポーラス層2bは、好適には1nm~900nmの細孔径分布を有する。そのため、マイクロポーラス層2bは、後述するように物理蒸着によって、その表面に電子伝導性酸化物層の形成することに適している。マイクロポーラス層2bは、例えば、炭素微粒子と撥水性のフッ素樹脂を含む塗工液を基材層2aに塗工・乾燥して基材層2aと密着化させることで製造できる。
The microporous layer 2b is a layer made of an aggregate of carbon fine particles having an average particle diameter of about 10 to 100 nm and a water repellent provided on one surface of the base material layer 2a. The carbon fine particles may be subjected to a water repellent treatment. The microporous layer 2b has an average pore size smaller than that of the base material layer 2a (high density and excellent surface flatness. The microporous layer 2b preferably has a pore size distribution of 1 nm to 900 nm. The porous layer 2b is suitable for forming an electron conductive oxide layer on its surface by physical vapor deposition as will be described later.The microporous layer 2b is, for example, a coating containing carbon fine particles and a water repellent fluororesin. It can be manufactured by coating and drying the working liquid on the base material layer 2a to make it adhere to the base material layer 2a.
なお、本実施形態では、ガス拡散層として、マイクロポーラス層を有するガス拡散層を使用しているがこれに限定されない。ガス拡散層として従来PEFCに使用されている基材層のみのガス拡散層を使用してもよいが、電子伝導性酸化物層を表面に形成させることが困難であり、内部に電子伝導性酸化物層が不連続に形成されるおそれがあるため、電子伝導性酸化物層をガス拡散層の表面に形成するにはマイクロポーラス層を有するガス拡散層がより好ましい。
In this embodiment, a gas diffusion layer having a microporous layer is used as the gas diffusion layer, but the present invention is not limited to this. As the gas diffusion layer, it is possible to use only the gas diffusion layer of the base material layer conventionally used in PEFC. However, it is difficult to form the electron conductive oxide layer on the surface, and the electron conductive oxidation is inside. Since the physical layer may be formed discontinuously, a gas diffusion layer having a microporous layer is more preferable for forming the electron conductive oxide layer on the surface of the gas diffusion layer.
ガス拡散層2としては、公知のマイクロポーラス層付のガス拡散層を使用してもよい。好適な市販品としては、例えば、SIGRACT Gas Diffusion Media社製、GDL25シリーズを挙げることができる。
As the gas diffusion layer 2, a known gas diffusion layer with a microporous layer may be used. As a suitable commercial item, the GDL25 series made from SIGRACT Gas Diffusion Media can be mentioned, for example.
(電極触媒層)
電極触媒層3は、電子伝導性酸化物層3aと、電子伝導性酸化物層3aに担持された電極触媒粒子(図示せず)とを含み、マイクロポーラス層2bの表面に形成されている。 (Electrode catalyst layer)
Theelectrode catalyst layer 3 includes an electron conductive oxide layer 3a and electrode catalyst particles (not shown) supported on the electron conductive oxide layer 3a, and is formed on the surface of the microporous layer 2b.
電極触媒層3は、電子伝導性酸化物層3aと、電子伝導性酸化物層3aに担持された電極触媒粒子(図示せず)とを含み、マイクロポーラス層2bの表面に形成されている。 (Electrode catalyst layer)
The
電極触媒層3の厚み(電子伝導性酸化物層3aの厚み)は、ガス透過性を有し、かつ、燃料電池して十分な電極触媒作用が得られる範囲であればよく、電極触媒層3を構成する電子伝導性酸化物層3aの多孔性等を考慮して適宜決定され、通常、0.1~50μm程度である。
The thickness of the electrode catalyst layer 3 (thickness of the electron conductive oxide layer 3a) may be within a range that has gas permeability and can provide a sufficient electrode catalyst action in a fuel cell. The thickness is appropriately determined in consideration of the porosity of the electron conductive oxide layer 3a constituting the film, and is usually about 0.1 to 50 μm.
電子伝導性酸化物層3aは、マイクロポーラス層2bの表面(及び一部内部)に物理蒸着法で形成され、電子伝導性を有する共に、電極触媒層3の電極反応が損なわれない程度のガス拡散性を有する。電子伝導性酸化物層3aを形成する際には、電子伝導性とガス拡散性とが両立するような条件で、物理蒸着の条件を適宜選択される。
なお、物理蒸着法の詳細については、後述する本発明の燃料電池用電極の製造方法にて説明する。 The electron conductive oxide layer 3a is formed on the surface (and part of the inside) of themicroporous layer 2b by a physical vapor deposition method, and has an electron conductivity and does not impair the electrode reaction of the electrode catalyst layer 3. Has diffusivity. When forming the electron conductive oxide layer 3a, the conditions for physical vapor deposition are appropriately selected under the conditions that the electron conductivity and the gas diffusibility are compatible.
The details of the physical vapor deposition method will be described in the fuel cell electrode manufacturing method of the present invention described later.
なお、物理蒸着法の詳細については、後述する本発明の燃料電池用電極の製造方法にて説明する。 The electron conductive oxide layer 3a is formed on the surface (and part of the inside) of the
The details of the physical vapor deposition method will be described in the fuel cell electrode manufacturing method of the present invention described later.
電極触媒層3は、電子伝導性酸化物層及び電極触媒粒子のみから構成されていてもよいが、より電極性能を高めることができる点で、プロトン導電性材料を含んでいることが好ましい。プロトン導電性材料としては、電解質膜と同様の材料が用いられ、ポリマー骨格の全部または一部にフッ素原子を含むフッ素系電解質材料と、ポリマー骨格にフッ素原子を含まない炭化水素系電解質材料に大別され、この両者を電解質材料として使用することができる。
The electrode catalyst layer 3 may be composed of only the electron conductive oxide layer and the electrode catalyst particles, but preferably contains a proton conductive material from the viewpoint that the electrode performance can be further improved. As the proton conductive material, the same material as the electrolyte membrane is used, and it is mainly used for fluorine-based electrolyte materials containing fluorine atoms in all or part of the polymer skeleton and hydrocarbon-based electrolyte materials not containing fluorine atoms in the polymer skeleton. They can be used separately as electrolyte materials.
フッ素系電解質材料としては、具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会
社製)などが好適例として挙げられる。 Specific examples of the fluorine-based electrolyte material include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. It is done.
社製)などが好適例として挙げられる。 Specific examples of the fluorine-based electrolyte material include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. It is done.
炭化水素系電解質材料としては、具体的には、ポリスルホン酸、ポリスチレンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリフェニルスルホン酸、ポリベンズイミダゾールアルキルスルホン酸、ポリベンズイミダゾールアルキルホスホン酸などが好適一例として挙げられる。
Specific examples of the hydrocarbon electrolyte material include polysulfonic acid, polystyrene sulfonic acid, polyaryl ether ketone sulfonic acid, polyphenyl sulfonic acid, polybenzimidazole alkyl sulfonic acid, and polybenzimidazole alkyl phosphonic acid. Can be mentioned.
電子伝導性酸化物層3aを構成する電子伝導性酸化物としては、燃料電池(特には固体高分子形燃料電池)の運転条件において、十分な耐久性と電子伝導性を併せ持つ材料であればよい。具体的には、酸化スズ、酸化モリブデン、酸化ニオブ、酸化タンタル、酸化チタン及び酸化タングステンから選択される1種を主体とする電子伝導性酸化物が挙げられる。ここで、本発明において「主体とする電子伝導性酸化物」とは、(A)母体酸化物のみからなるもの、及び(B)他元素をドープされた酸化物であって、母体酸化物が80mol%以上含まれるもの、を意味する。
The electron conductive oxide constituting the electron conductive oxide layer 3a may be any material that has both sufficient durability and electron conductivity under the operating conditions of a fuel cell (particularly a polymer electrolyte fuel cell). . Specifically, an electron conductive oxide mainly composed of one selected from tin oxide, molybdenum oxide, niobium oxide, tantalum oxide, titanium oxide, and tungsten oxide can be given. Here, in the present invention, the “mainly electron-conducting oxide” means (A) an oxide composed only of a base oxide and (B) an oxide doped with other elements, wherein the base oxide is It means that contained at 80 mol% or more.
ドープされる元素として、具体的には、Sn,Ti,Sb,Nb,Ta,W,In,V,Cr,Mn,Moなどが挙げられる(但し、母体酸化物と異なる元素である。)。ドープされる元素は、母体酸化物より価数が高い元素であり、例えば、母体酸化物が酸化チタンの場合で例示すると、上記ドープ種元素のうち、Ti以外の元素(例えば、Nb)が選択される。
Specific examples of the element to be doped include Sn, Ti, Sb, Nb, Ta, W, In, V, Cr, Mn, and Mo (however, they are elements different from the base oxide). The element to be doped is an element having a higher valence than the base oxide. For example, when the base oxide is titanium oxide, an element other than Ti (for example, Nb) is selected from the above doped seed elements. Is done.
この中でも、電子伝導性酸化物層3aが、酸化チタン、酸化タングステン又は酸化スズを主体とする酸化物からなることが好ましく、特に酸化スズを主体とする酸化物が好ましい。ここで、「主体とする酸化物」とは、対象となる酸化物を50モル%以上含む酸化物をいう。
Among these, the electron conductive oxide layer 3a is preferably made of an oxide mainly composed of titanium oxide, tungsten oxide or tin oxide, and particularly preferably an oxide mainly composed of tin oxide. Here, the “main oxide” refers to an oxide containing 50 mol% or more of the target oxide.
電子伝導性酸化物が、酸化スズを主体とする酸化物である場合には、本発明の燃料電池用電極をカソードとして使用することが好ましい。
元素としてスズ(Sn)は、PEFCのカソード条件で、酸化物であるSnO2が熱力学的に安定であり酸化分解が起こらない。また、酸化スズは、十分な電子伝導性を有し、電極触媒粒子(特には貴金属粒子)を高分散で担持が可能な担体となる。 When the electron conductive oxide is an oxide mainly composed of tin oxide, the fuel cell electrode of the present invention is preferably used as a cathode.
As an element, tin (Sn) is an oxide of SnO 2 which is thermodynamically stable and does not undergo oxidative decomposition under PEFC cathode conditions. Further, tin oxide has a sufficient electronic conductivity and becomes a carrier capable of supporting electrode catalyst particles (particularly noble metal particles) with high dispersion.
元素としてスズ(Sn)は、PEFCのカソード条件で、酸化物であるSnO2が熱力学的に安定であり酸化分解が起こらない。また、酸化スズは、十分な電子伝導性を有し、電極触媒粒子(特には貴金属粒子)を高分散で担持が可能な担体となる。 When the electron conductive oxide is an oxide mainly composed of tin oxide, the fuel cell electrode of the present invention is preferably used as a cathode.
As an element, tin (Sn) is an oxide of SnO 2 which is thermodynamically stable and does not undergo oxidative decomposition under PEFC cathode conditions. Further, tin oxide has a sufficient electronic conductivity and becomes a carrier capable of supporting electrode catalyst particles (particularly noble metal particles) with high dispersion.
酸化スズを主体とする酸化物の中でも、より優れた電極性能を有する燃料電池用電極が形成できる点で、ニオブ(Nb)を0.1~20mol%ドープしたニオブドープ酸化スズが特に好ましい。
Among oxides mainly composed of tin oxide, niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium (Nb) is particularly preferable in that a fuel cell electrode having better electrode performance can be formed.
また、PEFCのアノードとして用いる場合には、アノード条件において熱力学的に安定な酸化チタンを主体とする酸化物が好適な一例である。
Further, when used as an anode of PEFC, an oxide mainly composed of titanium oxide which is thermodynamically stable under the anode conditions is a suitable example.
なお、PEFCのカソード条件とは、PEFCの通常運転時のカソードにおける条件であり、温度が室温~150℃程度、空気等の酸素を含むガスが供給される条件(酸化雰囲気)を意味し、アノード条件とは、PEFCの通常運転時のアノードにおける条件であり、温度が室温~150℃程度、水素を含む燃料ガスが供給される条件(還元雰囲気)を意味する。
The PEFC cathode condition is a condition at the cathode during normal operation of the PEFC, which means a temperature (room temperature to about 150 ° C.) and a condition in which a gas containing oxygen such as air is supplied (oxidizing atmosphere). The condition is a condition in the anode during normal operation of PEFC, and means a condition (reducing atmosphere) in which a temperature of room temperature to about 150 ° C. and a fuel gas containing hydrogen is supplied.
電極触媒粒子は、酸素の還元(及び水素の酸化)に対する電気化学的触媒活性を有するものであり、かつ、電子伝導性酸化物層に担持できるものであればよい。電極触媒粒子は、貴金属系触媒、非貴金属系触媒のいずれでもよいが、好適には、Pt,Ru,Ir,Pd,Rh,Os,Au,Ag等の貴金属、及びこれらの貴金属を含む合金から選択される。なお、「貴金属を含む合金」とは「上記の貴金属のみからなる合金」と、「上記の貴金属とそれ以外の金属からなる合金で上記の貴金属を10質量%以上含む合金」を含む。貴金属と合金化させる上記「それ以外の金属」は、特に限定されないが、Co,Ni,W,Ta,Nb,Snを好適な例として挙げることができ、これらを1種類あるいは2種類以上を使用してもよい。また、分相した状態で2種類以上の上記貴金属及び貴金属を含む合金を使用してもよい。
The electrode catalyst particles may have any electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation) and can be supported on the electron conductive oxide layer. The electrocatalyst particles may be either a noble metal catalyst or a non-noble metal catalyst, but preferably from noble metals such as Pt, Ru, Ir, Pd, Rh, Os, Au, and Ag, and alloys containing these noble metals. Selected. The “alloy containing a noble metal” includes “an alloy consisting only of the noble metal” and “an alloy consisting of the noble metal and another metal and containing 10% by mass or more of the noble metal”. The “other metals” to be alloyed with the noble metal are not particularly limited, but Co, Ni, W, Ta, Nb, and Sn can be cited as suitable examples, and one or more of these may be used. May be. Moreover, you may use the alloy containing two or more types of said noble metals and noble metals in the state which carried out phase separation.
電極触媒粒子の担持方法は湿式法でも乾式法でもよい。但し、電子伝導性酸化物層の製造と併せて、電極触媒粒子の担持方法を乾式法とすることにより、電極触媒層全体を乾式法で製造できるという利点がある。
上記電極触媒の中でも、Pt及びPtを含む合金は、固体高分子形燃料電池の作動温度である80℃付近の温度域において、酸素の還元(及び水素の酸化)に対する電気化学的触媒活性が高いことに加え、乾式法である蒸着によって容易に電子伝導性酸化物層に担持することができるため、特に好適に使用することができる。 The method for supporting the electrode catalyst particles may be a wet method or a dry method. However, there is an advantage that the entire electrode catalyst layer can be manufactured by the dry method by using the dry method as the method for supporting the electrode catalyst particles together with the manufacture of the electron conductive oxide layer.
Among the above electrode catalysts, Pt and an alloy containing Pt have high electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation) in the temperature range around 80 ° C., which is the operating temperature of the polymer electrolyte fuel cell. In addition, since it can be easily supported on the electron conductive oxide layer by vapor deposition which is a dry method, it can be used particularly suitably.
上記電極触媒の中でも、Pt及びPtを含む合金は、固体高分子形燃料電池の作動温度である80℃付近の温度域において、酸素の還元(及び水素の酸化)に対する電気化学的触媒活性が高いことに加え、乾式法である蒸着によって容易に電子伝導性酸化物層に担持することができるため、特に好適に使用することができる。 The method for supporting the electrode catalyst particles may be a wet method or a dry method. However, there is an advantage that the entire electrode catalyst layer can be manufactured by the dry method by using the dry method as the method for supporting the electrode catalyst particles together with the manufacture of the electron conductive oxide layer.
Among the above electrode catalysts, Pt and an alloy containing Pt have high electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation) in the temperature range around 80 ° C., which is the operating temperature of the polymer electrolyte fuel cell. In addition, since it can be easily supported on the electron conductive oxide layer by vapor deposition which is a dry method, it can be used particularly suitably.
電極触媒粒子の担持量は、触媒の種類、担体である電子伝導性酸化物層3aの厚み等の条件を考慮して適宜決定される。触媒担持量が少なすぎると電極性能が不十分となり、多すぎると触媒粒子が凝集して性能が低下する場合がある。触媒粒子がPt粒子の場合は、例えば、0.01~5.0mg/cm2である。
The amount of the electrode catalyst particles supported is appropriately determined in consideration of conditions such as the type of catalyst and the thickness of the electron conductive oxide layer 3a serving as a carrier. If the amount of the catalyst supported is too small, the electrode performance becomes insufficient, and if it is too large, the catalyst particles may be aggregated to deteriorate the performance. When the catalyst particles are Pt particles, for example, the amount is 0.01 to 5.0 mg / cm 2 .
(燃料電池用電極の用途)
本発明の燃料電池用電極は、カソードとしても、アノードとしても用いることができる。特に上記(反応2)で示される酸素の還元電気化学的触媒活性に優れ、燃料電池の運転条件(カソード条件)で、電子伝導性酸化物層の電気化学的酸化分解が起こらない点で、カソードとして用いることが好ましい。 (Applications for fuel cell electrodes)
The fuel cell electrode of the present invention can be used as both a cathode and an anode. In particular, the cathode is excellent in reducing electrochemical catalytic activity of oxygen as shown in (Reaction 2), and does not cause electrochemical oxidative decomposition of the electron-conductive oxide layer under the fuel cell operating conditions (cathode conditions). It is preferable to use as.
本発明の燃料電池用電極は、カソードとしても、アノードとしても用いることができる。特に上記(反応2)で示される酸素の還元電気化学的触媒活性に優れ、燃料電池の運転条件(カソード条件)で、電子伝導性酸化物層の電気化学的酸化分解が起こらない点で、カソードとして用いることが好ましい。 (Applications for fuel cell electrodes)
The fuel cell electrode of the present invention can be used as both a cathode and an anode. In particular, the cathode is excellent in reducing electrochemical catalytic activity of oxygen as shown in (Reaction 2), and does not cause electrochemical oxidative decomposition of the electron-conductive oxide layer under the fuel cell operating conditions (cathode conditions). It is preferable to use as.
なお、本発明の燃料電池用電極は、PEFCの電極として好適である。また、PEFC以外にもアルカリ型燃料電池、リン酸型燃料電池などの各種燃料電池における電極として用いることができる。また、水の電解装置用の電極としても好適に使用することができる。水の電解装置としては、本発明の燃料電池用電極とPEFCと同様な固体高分子電解質膜を使用した水の電解装置が好適な一例として挙げられる。
The fuel cell electrode of the present invention is suitable as a PEFC electrode. In addition to PEFC, it can be used as an electrode in various fuel cells such as alkaline fuel cells and phosphoric acid fuel cells. It can also be suitably used as an electrode for a water electrolysis apparatus. As a water electrolyzer, a water electrolyzer using a solid polymer electrolyte membrane similar to the fuel cell electrode of the present invention and PEFC can be cited as a preferred example.
<2.燃料電池用電極の製造方法>
上述した本発明の燃料電池用電極は、以下に説明する製造方法(以下、「本発明の製造方法」と称す。)によって製造することが好適である。
すなわち、本発明の燃料電池用電極の製造方法は、電子伝導性を有するガス拡散層と、前記ガス拡散層の表面及び/又は内部に形成された電極触媒層とを有する燃料電池用電極の製造方法であって、電子伝導性酸化物からなる蒸着源を使用し、物理蒸着法によってガス拡散層の表面及び/又は内部に、ガス拡散性を有する電子伝導性酸化物層を形成する工程と、前記電子伝導性酸化物層に対し、電極触媒粒子を担持する工程と、を含む。
また、以下、上記ガス拡散性を有する電子伝導性酸化物層を形成する工程を「工程(1)」、電極触媒粒子を担持する工程を「工程(2)」と記載する場合がある。 <2. Manufacturing Method of Fuel Cell Electrode>
The above-described fuel cell electrode of the present invention is preferably manufactured by the manufacturing method described below (hereinafter referred to as “the manufacturing method of the present invention”).
That is, the method for producing a fuel cell electrode of the present invention is a method for producing a fuel cell electrode having a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on the surface and / or inside of the gas diffusion layer. A method of forming an electron conductive oxide layer having gas diffusibility on the surface and / or inside of a gas diffusion layer by a physical vapor deposition method using a vapor deposition source comprising an electron conductive oxide; And supporting the electrode catalyst particles on the electron conductive oxide layer.
Hereinafter, the step of forming the electron-conductive oxide layer having gas diffusivity may be referred to as “step (1)”, and the step of supporting the electrode catalyst particles may be referred to as “step (2)”.
上述した本発明の燃料電池用電極は、以下に説明する製造方法(以下、「本発明の製造方法」と称す。)によって製造することが好適である。
すなわち、本発明の燃料電池用電極の製造方法は、電子伝導性を有するガス拡散層と、前記ガス拡散層の表面及び/又は内部に形成された電極触媒層とを有する燃料電池用電極の製造方法であって、電子伝導性酸化物からなる蒸着源を使用し、物理蒸着法によってガス拡散層の表面及び/又は内部に、ガス拡散性を有する電子伝導性酸化物層を形成する工程と、前記電子伝導性酸化物層に対し、電極触媒粒子を担持する工程と、を含む。
また、以下、上記ガス拡散性を有する電子伝導性酸化物層を形成する工程を「工程(1)」、電極触媒粒子を担持する工程を「工程(2)」と記載する場合がある。 <2. Manufacturing Method of Fuel Cell Electrode>
The above-described fuel cell electrode of the present invention is preferably manufactured by the manufacturing method described below (hereinafter referred to as “the manufacturing method of the present invention”).
That is, the method for producing a fuel cell electrode of the present invention is a method for producing a fuel cell electrode having a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on the surface and / or inside of the gas diffusion layer. A method of forming an electron conductive oxide layer having gas diffusibility on the surface and / or inside of a gas diffusion layer by a physical vapor deposition method using a vapor deposition source comprising an electron conductive oxide; And supporting the electrode catalyst particles on the electron conductive oxide layer.
Hereinafter, the step of forming the electron-conductive oxide layer having gas diffusivity may be referred to as “step (1)”, and the step of supporting the electrode catalyst particles may be referred to as “step (2)”.
本発明の製造方法の特徴は、工程(1)において、ガス拡散性を有する電子伝導性酸化物層を物理蒸着により形成することにある。
物理蒸着法では形成される電子伝導性酸化物粒子が複数個連結した連結粒子としてガス拡散層の表面または内部に堆積する。連結粒子内では複数個の電子伝導性酸化物粒子が連続しているため、粒界に起因する電気抵抗が小さくなり、電子伝導性酸化物層全体の電気抵抗が小さくなる。そのため、従来の湿式法で形成した電子伝導性酸化物担体粒子を用いて電子伝導性酸化物層を形成した場合と比較して、本発明の製造方法では、より電子伝導性に優れた電極を得ることができる。 The production method of the present invention is characterized in that in step (1), an electron conductive oxide layer having gas diffusibility is formed by physical vapor deposition.
In the physical vapor deposition method, a plurality of electron conductive oxide particles to be formed are deposited on the surface or inside of a gas diffusion layer as connected particles in which a plurality of particles are connected. Since the plurality of electron conductive oxide particles are continuous in the connected particles, the electrical resistance due to the grain boundary is reduced, and the electrical resistance of the entire electron conductive oxide layer is reduced. Therefore, compared with the case where the electron conductive oxide layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the manufacturing method of the present invention provides an electrode having more excellent electron conductivity. Obtainable.
物理蒸着法では形成される電子伝導性酸化物粒子が複数個連結した連結粒子としてガス拡散層の表面または内部に堆積する。連結粒子内では複数個の電子伝導性酸化物粒子が連続しているため、粒界に起因する電気抵抗が小さくなり、電子伝導性酸化物層全体の電気抵抗が小さくなる。そのため、従来の湿式法で形成した電子伝導性酸化物担体粒子を用いて電子伝導性酸化物層を形成した場合と比較して、本発明の製造方法では、より電子伝導性に優れた電極を得ることができる。 The production method of the present invention is characterized in that in step (1), an electron conductive oxide layer having gas diffusibility is formed by physical vapor deposition.
In the physical vapor deposition method, a plurality of electron conductive oxide particles to be formed are deposited on the surface or inside of a gas diffusion layer as connected particles in which a plurality of particles are connected. Since the plurality of electron conductive oxide particles are continuous in the connected particles, the electrical resistance due to the grain boundary is reduced, and the electrical resistance of the entire electron conductive oxide layer is reduced. Therefore, compared with the case where the electron conductive oxide layer is formed using the electron conductive oxide carrier particles formed by the conventional wet method, the manufacturing method of the present invention provides an electrode having more excellent electron conductivity. Obtainable.
なお、従来の燃料電池用電極の電極触媒層の導電性担体として広く使用されている炭素系材料は、蒸着法で製造すると結晶化度が低くなり、酸化腐食への耐久性が低下するため、本発明の燃料電池用電極の製造方法には適用できない。
In addition, the carbon-based material widely used as a conductive support of the electrode catalyst layer of the conventional fuel cell electrode has a low crystallinity and a low durability against oxidative corrosion when produced by a vapor deposition method. It cannot be applied to the method for producing a fuel cell electrode of the present invention.
本発明の製造方法において、ガス拡散層として、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層を使用すると、電子伝導性酸化物層をマイクロポーラス層の表面に形成することができる。そして、マイクロポーラス層の表面に形成された電子伝導性酸化物層に電極触媒粒子を担持することにより、燃料電池用電極の表面に電極触媒層を形成できる。
In the production method of the present invention, when a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer is used as the gas diffusion layer, the electron conductive oxide layer is converted into a surface of the microporous layer. Can be formed. The electrode catalyst layer can be formed on the surface of the fuel cell electrode by supporting the electrode catalyst particles on the electron conductive oxide layer formed on the surface of the microporous layer.
工程(2)において、電極触媒粒子の担持方法は湿式法でも乾式法でもよいが、工程(1)で形成した電子伝導性酸化物層に対し、電極触媒粒子を蒸着法により担持すれば、電子伝導性酸化物層の形成、電極触媒粒子の担持をすべて乾式法(ドライプロセス)で行うことができる。
本発明の燃料電池用電極において、電極触媒粒子の担持を湿式法で行うと、原料を含む液状物の調製、担体への電極触媒粒子の担持、ガス拡散層への塗布等の工程におけるそれぞれについて条件調整が難しく、製造される燃料電池用電極の性能が安定しない傾向にある、これに対し、電子伝導性酸化物層の形成、電極触媒粒子の担持をすべて乾式法(ドライプロセス)で行うと、湿式法における原料液状物を調整したり、塗布後に熱処理を行ったりする複雑なプロセスが不要となり、製造される燃料電池用電極の歩留まりが高くなるという利点がある。
そして、乾式法における蒸着の製造条件の制御は、湿式条件に比べて容易であるため、蒸着の製造条件のみを制御することで、燃料電池用電極の性能、ひいては該燃料電池用電極を用いた膜電極接合体の性能を制御することができる。 In the step (2), the method for supporting the electrode catalyst particles may be a wet method or a dry method. However, if the electrode catalyst particles are supported by an evaporation method on the electron conductive oxide layer formed in the step (1), The formation of the conductive oxide layer and the loading of the electrode catalyst particles can all be performed by a dry method (dry process).
In the fuel cell electrode of the present invention, when the electrode catalyst particles are supported by a wet method, each of the steps such as preparation of a liquid material containing the raw material, support of the electrode catalyst particles on the support, coating on the gas diffusion layer, etc. Condition adjustment is difficult, and the performance of the manufactured fuel cell electrode tends to be unstable. On the other hand, when the formation of the electron conductive oxide layer and the loading of the electrode catalyst particles are all performed by the dry method (dry process) There is an advantage that a complicated process of adjusting the raw material liquid material in the wet method or performing a heat treatment after coating is unnecessary, and the yield of the manufactured fuel cell electrode is increased.
And since the control of the vapor deposition production conditions in the dry method is easier than the wet conditions, the performance of the fuel cell electrode, and thus the fuel cell electrode, was used by controlling only the vapor deposition production conditions. The performance of the membrane electrode assembly can be controlled.
本発明の燃料電池用電極において、電極触媒粒子の担持を湿式法で行うと、原料を含む液状物の調製、担体への電極触媒粒子の担持、ガス拡散層への塗布等の工程におけるそれぞれについて条件調整が難しく、製造される燃料電池用電極の性能が安定しない傾向にある、これに対し、電子伝導性酸化物層の形成、電極触媒粒子の担持をすべて乾式法(ドライプロセス)で行うと、湿式法における原料液状物を調整したり、塗布後に熱処理を行ったりする複雑なプロセスが不要となり、製造される燃料電池用電極の歩留まりが高くなるという利点がある。
そして、乾式法における蒸着の製造条件の制御は、湿式条件に比べて容易であるため、蒸着の製造条件のみを制御することで、燃料電池用電極の性能、ひいては該燃料電池用電極を用いた膜電極接合体の性能を制御することができる。 In the step (2), the method for supporting the electrode catalyst particles may be a wet method or a dry method. However, if the electrode catalyst particles are supported by an evaporation method on the electron conductive oxide layer formed in the step (1), The formation of the conductive oxide layer and the loading of the electrode catalyst particles can all be performed by a dry method (dry process).
In the fuel cell electrode of the present invention, when the electrode catalyst particles are supported by a wet method, each of the steps such as preparation of a liquid material containing the raw material, support of the electrode catalyst particles on the support, coating on the gas diffusion layer, etc. Condition adjustment is difficult, and the performance of the manufactured fuel cell electrode tends to be unstable. On the other hand, when the formation of the electron conductive oxide layer and the loading of the electrode catalyst particles are all performed by the dry method (dry process) There is an advantage that a complicated process of adjusting the raw material liquid material in the wet method or performing a heat treatment after coating is unnecessary, and the yield of the manufactured fuel cell electrode is increased.
And since the control of the vapor deposition production conditions in the dry method is easier than the wet conditions, the performance of the fuel cell electrode, and thus the fuel cell electrode, was used by controlling only the vapor deposition production conditions. The performance of the membrane electrode assembly can be controlled.
以下、本発明の燃料電池用電極の製造方法における各工程について詳細に説明する。
まず、工程(1)では、電子伝導性酸化物からなる蒸着源を使用し、物理蒸着法によってガス拡散層の上に、ガス拡散性を有する電子伝導性酸化物層を形成する。 Hereafter, each process in the manufacturing method of the electrode for fuel cells of this invention is demonstrated in detail.
First, in step (1), an electron conductive oxide layer having gas diffusibility is formed on the gas diffusion layer by a physical vapor deposition method using a vapor deposition source made of an electron conductive oxide.
まず、工程(1)では、電子伝導性酸化物からなる蒸着源を使用し、物理蒸着法によってガス拡散層の上に、ガス拡散性を有する電子伝導性酸化物層を形成する。 Hereafter, each process in the manufacturing method of the electrode for fuel cells of this invention is demonstrated in detail.
First, in step (1), an electron conductive oxide layer having gas diffusibility is formed on the gas diffusion layer by a physical vapor deposition method using a vapor deposition source made of an electron conductive oxide.
ガス拡散層は、基材層と基材層上に形成されたマイクロポーラス層とからなる。ガス拡散層は、<1.本発明の燃料電池用電極>で上述した通りであり、ここでは詳しい説明を省略する。
本発明の燃料電池用電極の製造方法では、表面にマイクロポーラス層を有するガス拡散層を使用していることに特徴のひとつがある。ガス拡散層表面に電子伝導性酸化物層を物理蒸着で形成する場合、マイクロポーラス層を有さないガス拡散層(基材層のみ)では、蒸着種である気体状の電子伝導性酸化物がガス拡散層内部にまで拡散し、ガス拡散層表面に電子伝導性酸化物層を形成することができないが、基材層と比較して高密度で、表面平坦性に優れるマイクロポーラス層を有するガス拡散層では、マイクロポーラス層へ気体状の電子伝導性酸化物が拡散しづらいため、実質的にマイクロポーラス層の表面上に電子伝導性酸化物層を形成することができる。なお、マイクロポーラス層の厚みは、好適には1~100μmである。 The gas diffusion layer is composed of a base layer and a microporous layer formed on the base layer. The gas diffusion layer is <1. The fuel cell electrode of the present invention is as described above, and detailed description thereof is omitted here.
The fuel cell electrode manufacturing method of the present invention is characterized in that a gas diffusion layer having a microporous layer on the surface is used. When the electron conductive oxide layer is formed on the surface of the gas diffusion layer by physical vapor deposition, in the gas diffusion layer (base material layer only) that does not have a microporous layer, the gaseous electron conductive oxide that is the vapor deposition species is A gas having a microporous layer that diffuses into the gas diffusion layer and cannot form an electron conductive oxide layer on the surface of the gas diffusion layer, but has a high density and excellent surface flatness compared to the base material layer. In the diffusion layer, since the gaseous electron conductive oxide is difficult to diffuse into the microporous layer, the electron conductive oxide layer can be formed substantially on the surface of the microporous layer. The thickness of the microporous layer is preferably 1 to 100 μm.
本発明の燃料電池用電極の製造方法では、表面にマイクロポーラス層を有するガス拡散層を使用していることに特徴のひとつがある。ガス拡散層表面に電子伝導性酸化物層を物理蒸着で形成する場合、マイクロポーラス層を有さないガス拡散層(基材層のみ)では、蒸着種である気体状の電子伝導性酸化物がガス拡散層内部にまで拡散し、ガス拡散層表面に電子伝導性酸化物層を形成することができないが、基材層と比較して高密度で、表面平坦性に優れるマイクロポーラス層を有するガス拡散層では、マイクロポーラス層へ気体状の電子伝導性酸化物が拡散しづらいため、実質的にマイクロポーラス層の表面上に電子伝導性酸化物層を形成することができる。なお、マイクロポーラス層の厚みは、好適には1~100μmである。 The gas diffusion layer is composed of a base layer and a microporous layer formed on the base layer. The gas diffusion layer is <1. The fuel cell electrode of the present invention is as described above, and detailed description thereof is omitted here.
The fuel cell electrode manufacturing method of the present invention is characterized in that a gas diffusion layer having a microporous layer on the surface is used. When the electron conductive oxide layer is formed on the surface of the gas diffusion layer by physical vapor deposition, in the gas diffusion layer (base material layer only) that does not have a microporous layer, the gaseous electron conductive oxide that is the vapor deposition species is A gas having a microporous layer that diffuses into the gas diffusion layer and cannot form an electron conductive oxide layer on the surface of the gas diffusion layer, but has a high density and excellent surface flatness compared to the base material layer. In the diffusion layer, since the gaseous electron conductive oxide is difficult to diffuse into the microporous layer, the electron conductive oxide layer can be formed substantially on the surface of the microporous layer. The thickness of the microporous layer is preferably 1 to 100 μm.
蒸着源に使用される電子伝導性酸化物は、酸化スズ、酸化モリブデン、酸化ニオブ、酸化タンタル、酸化チタン及び酸化タングステンから選択される1種を主体とする電子伝導性酸化物からなる。なお、工程(1)で使用される電子伝導性酸化物の詳細は、<1.本発明の燃料電池用電極>で上述した通りであり、ここでは詳しい説明を省略する。
The electron conductive oxide used for the vapor deposition source is composed of an electron conductive oxide mainly composed of one selected from tin oxide, molybdenum oxide, niobium oxide, tantalum oxide, titanium oxide and tungsten oxide. The details of the electron conductive oxide used in step (1) are described in <1. The fuel cell electrode of the present invention is as described above, and detailed description thereof is omitted here.
この中でも、蒸着源が酸化スズを主体とする酸化物からなることが好ましく、特にニオブ(Nb)を0.1~20mol%ドープしたニオブドープ酸化スズが特に好ましい。
Among these, the deposition source is preferably made of an oxide mainly composed of tin oxide, and niobium-doped tin oxide doped with niobium (Nb) in an amount of 0.1 to 20 mol% is particularly preferable.
蒸着源は、上記電子伝導性酸化物を製造したのちに後述する物理蒸着方法に適した形状(例えば、ペレット状)に加工して使用される。
The vapor deposition source is used after manufacturing the electron conductive oxide and processing it into a shape suitable for a physical vapor deposition method to be described later (for example, a pellet shape).
物理蒸着法としては、パルスレーザー蒸着法(Pulsed Laser Deposition(PLD法))、スパッタリング蒸着法、電子線蒸着法、熱加熱蒸着法などが挙げられる。
電子伝導性酸化物層は、燃料電池用電極の電極触媒層の骨格となるため、ガス拡散性を有することが必要であり、上記物理蒸着法において、多孔構造でガス拡散性を有する電子伝導性酸化物が形成される条件を適宜選択する。電子伝導性酸化物層の厚さは、物理蒸着法の諸条件(特に製膜時間)を制御することで調製することができる。 Examples of the physical vapor deposition method include a pulsed laser deposition method (Pulsed Laser Deposition (PLD method)), a sputtering vapor deposition method, an electron beam vapor deposition method, and a thermal heating vapor deposition method.
Since the electron conductive oxide layer serves as the skeleton of the electrode catalyst layer of the fuel cell electrode, it must have gas diffusivity. In the physical vapor deposition method, the electron conductivity has a porous structure and gas diffusibility. The conditions under which the oxide is formed are selected as appropriate. The thickness of the electron conductive oxide layer can be prepared by controlling various conditions of the physical vapor deposition method (particularly, the film forming time).
電子伝導性酸化物層は、燃料電池用電極の電極触媒層の骨格となるため、ガス拡散性を有することが必要であり、上記物理蒸着法において、多孔構造でガス拡散性を有する電子伝導性酸化物が形成される条件を適宜選択する。電子伝導性酸化物層の厚さは、物理蒸着法の諸条件(特に製膜時間)を制御することで調製することができる。 Examples of the physical vapor deposition method include a pulsed laser deposition method (Pulsed Laser Deposition (PLD method)), a sputtering vapor deposition method, an electron beam vapor deposition method, and a thermal heating vapor deposition method.
Since the electron conductive oxide layer serves as the skeleton of the electrode catalyst layer of the fuel cell electrode, it must have gas diffusivity. In the physical vapor deposition method, the electron conductivity has a porous structure and gas diffusibility. The conditions under which the oxide is formed are selected as appropriate. The thickness of the electron conductive oxide layer can be prepared by controlling various conditions of the physical vapor deposition method (particularly, the film forming time).
本発明の製造方法において好ましい物理蒸着方法として、生産性の面ではスパッタリング蒸着法が好適である。スパッタリング蒸着法は、加速されたイオンを蒸着源(ターゲット)に照射して、ターゲットの表面の原子または分子を空間内に放出して薄膜を形成する方法である。
本発明の製造方法における蒸着源である電子伝導性酸化物は、高融点である酸化物が多く、熱加熱蒸着法が困難な場合があるが、スパッタリング蒸着法では高融点である酸化物にも適用できる利点もある。 As a preferable physical vapor deposition method in the production method of the present invention, the sputtering vapor deposition method is suitable in terms of productivity. The sputtering deposition method is a method in which a deposition source (target) is irradiated with accelerated ions, and atoms or molecules on the surface of the target are emitted into the space to form a thin film.
The electron-conductive oxide that is the evaporation source in the production method of the present invention is often an oxide having a high melting point, and the thermal heating vapor deposition method may be difficult. There are also advantages that can be applied.
本発明の製造方法における蒸着源である電子伝導性酸化物は、高融点である酸化物が多く、熱加熱蒸着法が困難な場合があるが、スパッタリング蒸着法では高融点である酸化物にも適用できる利点もある。 As a preferable physical vapor deposition method in the production method of the present invention, the sputtering vapor deposition method is suitable in terms of productivity. The sputtering deposition method is a method in which a deposition source (target) is irradiated with accelerated ions, and atoms or molecules on the surface of the target are emitted into the space to form a thin film.
The electron-conductive oxide that is the evaporation source in the production method of the present invention is often an oxide having a high melting point, and the thermal heating vapor deposition method may be difficult. There are also advantages that can be applied.
スパッタリング蒸着方法は、2極法、マグネトロン法のいずれもでもよい。また、ターゲットが電子伝導性を有すため、ターゲットに印加する電源は、DC(直流)電源、RF(高周波)電源のいずれでもよい。
スパッタリング条件は、ターゲットである電子伝導性酸化物の種類や、スパッタリング方式、スパッタリング装置によって異なり、燃料電池用電極に要求されるガス拡散性(多孔構造)が得られる範囲で適宜選択される。 The sputtering deposition method may be either a bipolar method or a magnetron method. Further, since the target has electronic conductivity, the power source applied to the target may be either a DC (direct current) power source or an RF (high frequency) power source.
Sputtering conditions vary depending on the type of electron-conducting oxide as a target, the sputtering method, and the sputtering apparatus, and are appropriately selected within a range in which the gas diffusibility (porous structure) required for the fuel cell electrode can be obtained.
スパッタリング条件は、ターゲットである電子伝導性酸化物の種類や、スパッタリング方式、スパッタリング装置によって異なり、燃料電池用電極に要求されるガス拡散性(多孔構造)が得られる範囲で適宜選択される。 The sputtering deposition method may be either a bipolar method or a magnetron method. Further, since the target has electronic conductivity, the power source applied to the target may be either a DC (direct current) power source or an RF (high frequency) power source.
Sputtering conditions vary depending on the type of electron-conducting oxide as a target, the sputtering method, and the sputtering apparatus, and are appropriately selected within a range in which the gas diffusibility (porous structure) required for the fuel cell electrode can be obtained.
また、本発明の製造方法において好ましい物理蒸着方法として、PLD法が挙げられる。PLD法は、真空チャンバー内の蒸着源にパルスレーザーを断続的に照射することにより、蒸着源(ターゲット)をアブレーションして、放出されるフラグメント(イオン、クラスタ、分子、原子)を、所定の基板(本発明ではガス拡散層)上に堆積させる方法である。
In addition, as a preferable physical vapor deposition method in the production method of the present invention, a PLD method is exemplified. In the PLD method, the deposition source (target) is ablated by intermittently irradiating the deposition source in the vacuum chamber with a pulsed laser, and the fragments (ions, clusters, molecules, atoms) to be emitted are transferred to a predetermined substrate. It is a method of depositing on (a gas diffusion layer in the present invention).
PLD法は、スパッタリング蒸着法と同様に、蒸着源が高融点の酸化物である場合にも適用できる。さらに均一な組成の酸化物膜を製膜するのに適した方法であり、特に蒸着源がニオブドープ酸化スズなど他元素をドープした電子伝導性酸化物の場合には、蒸着源と同等の組成を有する電子伝導性酸化物層が形成される点で好ましい。
The PLD method can be applied to a case where the evaporation source is an oxide having a high melting point, similarly to the sputtering evaporation method. This is a method suitable for forming an oxide film having a more uniform composition. In particular, when the deposition source is an electron conductive oxide doped with other elements such as niobium-doped tin oxide, the composition is the same as that of the deposition source. It is preferable at the point in which the electron conductive oxide layer which has is formed.
PLD法で用いられるレーザーの種類としては、特に限定されるものではないが、例えば、エキシマレーザー、YAGレーザーを挙げることができる。
レーザーの出力条件は、レーザーの種類、形成対象となる電子伝導性酸化物層の多孔性、厚み等の諸条件を考慮して、適宜決定される。 The type of laser used in the PLD method is not particularly limited, and examples thereof include an excimer laser and a YAG laser.
The laser output conditions are appropriately determined in consideration of various conditions such as the type of laser and the porosity and thickness of the electron conductive oxide layer to be formed.
レーザーの出力条件は、レーザーの種類、形成対象となる電子伝導性酸化物層の多孔性、厚み等の諸条件を考慮して、適宜決定される。 The type of laser used in the PLD method is not particularly limited, and examples thereof include an excimer laser and a YAG laser.
The laser output conditions are appropriately determined in consideration of various conditions such as the type of laser and the porosity and thickness of the electron conductive oxide layer to be formed.
また、蒸着温度は、燃料電池用電極に要求されるガス拡散性が得られる多孔構造が形成される範囲で決定され、通常、常温~200℃程度であり、好ましくは15~40℃である。蒸着温度が高すぎると、緻密な薄膜が形成されて、燃料電池用電極に要求される多孔構造を得ることができない場合がある。
The vapor deposition temperature is determined within a range in which a porous structure capable of obtaining the gas diffusibility required for the fuel cell electrode is formed, and is usually from room temperature to about 200 ° C., preferably from 15 to 40 ° C. If the deposition temperature is too high, a dense thin film may be formed, and the porous structure required for the fuel cell electrode may not be obtained.
製膜時における真空チャンバーの雰囲気は、例えば酸素(O2)等を挙げることができる。さらに、製膜時における真空チャンバーの圧力は、例えば30Pa以下にすることが好ましい。
The atmosphere in the vacuum chamber during film formation can include oxygen (O 2 ), for example. Furthermore, the pressure in the vacuum chamber during film formation is preferably set to 30 Pa or less, for example.
工程(2)では、工程(1)で形成した電子伝導性酸化物層に対し、電極触媒粒子を担持する。工程(1)で形成した電子伝導性酸化物層は、多孔構造であるため、電子伝導性酸化物層の表面のみならず内部まで、電極触媒粒子を担持することができる。
以下、蒸着により電子伝導性酸化物層に電極触媒粒子を担持する場合について説明するが、上述のように担持方法は蒸着に限定されるものではない。 In step (2), electrode catalyst particles are supported on the electron conductive oxide layer formed in step (1). Since the electron conductive oxide layer formed in the step (1) has a porous structure, the electrode catalyst particles can be supported not only on the surface but also inside the electron conductive oxide layer.
Hereinafter, the case where the electrode catalyst particles are supported on the electron conductive oxide layer by vapor deposition will be described. However, as described above, the loading method is not limited to vapor deposition.
以下、蒸着により電子伝導性酸化物層に電極触媒粒子を担持する場合について説明するが、上述のように担持方法は蒸着に限定されるものではない。 In step (2), electrode catalyst particles are supported on the electron conductive oxide layer formed in step (1). Since the electron conductive oxide layer formed in the step (1) has a porous structure, the electrode catalyst particles can be supported not only on the surface but also inside the electron conductive oxide layer.
Hereinafter, the case where the electrode catalyst particles are supported on the electron conductive oxide layer by vapor deposition will be described. However, as described above, the loading method is not limited to vapor deposition.
蒸着される電極触媒粒子としては、酸素の還元(及び水素の酸化)に対する電気化学的触媒活性を有するものであり、蒸着によって電子伝導性酸化物層に担持できるものであればよい。なお、工程(2)で使用される電極触媒粒子の詳細は、<1.本発明の燃料電池用電極>で上述した通りであり、ここでは詳しい説明を省略する。
The electrode catalyst particles to be vapor-deposited may be those having electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation) and can be supported on the electron conductive oxide layer by vapor deposition. The details of the electrode catalyst particles used in the step (2) are described in <1. The fuel cell electrode of the present invention is as described above, and detailed description thereof is omitted here.
電極触媒粒子として、Pt及びPtを含む合金は、酸素の還元(及び水素の酸化)に対する電気化学的触媒活性を有する蒸着によって容易に担持することができる点で好ましい。
As an electrode catalyst particle, an alloy containing Pt and Pt is preferable in that it can be easily supported by vapor deposition having an electrochemical catalytic activity for oxygen reduction (and hydrogen oxidation).
電極触媒粒子の蒸着方法としては、物理蒸着法、化学蒸着法のいずれでもよい。
物理蒸着法としては、工程(1)で説明したスパッタリング蒸着法等が挙げられる。物理蒸着法の蒸着源として、目的とする電極触媒材料が使用され、電極触媒がPtの場合には例えば、Pt板を用いればよい。
化学蒸着法の場合、一般に、蒸気圧が高く、かつ、分解温度が低い原料を蒸着源として用いればよい。例えば、Pt触媒の場合、シクロペンタジエニルトリメチル白金(IV))錯体等のPt化合物が挙げられる。 The electrode catalyst particles may be deposited by either physical vapor deposition or chemical vapor deposition.
Examples of the physical vapor deposition method include the sputtering vapor deposition method described in the step (1). When the target electrode catalyst material is used as a vapor deposition source of the physical vapor deposition method and the electrode catalyst is Pt, for example, a Pt plate may be used.
In the case of chemical vapor deposition, generally, a raw material having a high vapor pressure and a low decomposition temperature may be used as a vapor deposition source. For example, in the case of a Pt catalyst, a Pt compound such as a cyclopentadienyltrimethylplatinum (IV)) complex may be mentioned.
物理蒸着法としては、工程(1)で説明したスパッタリング蒸着法等が挙げられる。物理蒸着法の蒸着源として、目的とする電極触媒材料が使用され、電極触媒がPtの場合には例えば、Pt板を用いればよい。
化学蒸着法の場合、一般に、蒸気圧が高く、かつ、分解温度が低い原料を蒸着源として用いればよい。例えば、Pt触媒の場合、シクロペンタジエニルトリメチル白金(IV))錯体等のPt化合物が挙げられる。 The electrode catalyst particles may be deposited by either physical vapor deposition or chemical vapor deposition.
Examples of the physical vapor deposition method include the sputtering vapor deposition method described in the step (1). When the target electrode catalyst material is used as a vapor deposition source of the physical vapor deposition method and the electrode catalyst is Pt, for example, a Pt plate may be used.
In the case of chemical vapor deposition, generally, a raw material having a high vapor pressure and a low decomposition temperature may be used as a vapor deposition source. For example, in the case of a Pt catalyst, a Pt compound such as a cyclopentadienyltrimethylplatinum (IV)) complex may be mentioned.
電極触媒粒子の担持量や粒径は、電極触媒粒子の種類、目的とする性能を考慮して、蒸着条件を制御して適宜調節することができる。電極触媒粒子の担持量は、例えば、0.01~5.0mg/cm2である。
The loading amount and particle size of the electrode catalyst particles can be appropriately adjusted by controlling the deposition conditions in consideration of the type of the electrode catalyst particles and the intended performance. The supported amount of the electrode catalyst particles is, for example, 0.01 to 5.0 mg / cm 2 .
<3.膜電極接合体(MEA)>
本発明の膜電極接合体は、固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体であって、前記カソードとアノードの少なくとも一方が、上記本発明の燃料電池用電極であることを特徴とする。上述のように、本発明の燃料電池用電極は、カソード条件での電極性能、耐久性が高いため、少なくともカソードに本発明の燃料電池用電極を使用することが好ましい。 <3. Membrane electrode assembly (MEA)>
The membrane electrode assembly of the present invention comprises a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane. In the membrane electrode assembly, at least one of the cathode and the anode is the fuel cell electrode of the present invention. As described above, since the fuel cell electrode of the present invention has high electrode performance and durability under the cathode conditions, it is preferable to use the fuel cell electrode of the present invention at least for the cathode.
本発明の膜電極接合体は、固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体であって、前記カソードとアノードの少なくとも一方が、上記本発明の燃料電池用電極であることを特徴とする。上述のように、本発明の燃料電池用電極は、カソード条件での電極性能、耐久性が高いため、少なくともカソードに本発明の燃料電池用電極を使用することが好ましい。 <3. Membrane electrode assembly (MEA)>
The membrane electrode assembly of the present invention comprises a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane. In the membrane electrode assembly, at least one of the cathode and the anode is the fuel cell electrode of the present invention. As described above, since the fuel cell electrode of the present invention has high electrode performance and durability under the cathode conditions, it is preferable to use the fuel cell electrode of the present invention at least for the cathode.
本発明の好適な実施形態として、カソードに本発明の燃料電池用電極をカソードに使用した膜電極接合体について説明する。
図2は本発明の実施形態に係る膜電極接合体の断面構造を模式的に示したものである。図2に示すように膜電極接合体10は、カソード4及びアノード5が固体高分子電解質膜6に対面して配置された構造を有する。 As a preferred embodiment of the present invention, a membrane electrode assembly using the fuel cell electrode of the present invention as a cathode will be described.
FIG. 2 schematically shows a cross-sectional structure of the membrane electrode assembly according to the embodiment of the present invention. As shown in FIG. 2, themembrane electrode assembly 10 has a structure in which the cathode 4 and the anode 5 are arranged facing the solid polymer electrolyte membrane 6.
図2は本発明の実施形態に係る膜電極接合体の断面構造を模式的に示したものである。図2に示すように膜電極接合体10は、カソード4及びアノード5が固体高分子電解質膜6に対面して配置された構造を有する。 As a preferred embodiment of the present invention, a membrane electrode assembly using the fuel cell electrode of the present invention as a cathode will be described.
FIG. 2 schematically shows a cross-sectional structure of the membrane electrode assembly according to the embodiment of the present invention. As shown in FIG. 2, the
本実施形態において、カソード4は、本発明の燃料電池用電極1を用いているため、詳細な説明は省略する。より電極性能を高めるため、例えば、プロトン導電性材料を含む溶液を滴下する等の方法で、カソード4の電極触媒層にプロトン導電性材料を付与してもよい。なお、アノード5として本発明の燃料電池用電極を使用した場合には、カソード4としてその他の公知のカソードも使用できる。
In this embodiment, since the cathode 4 uses the fuel cell electrode 1 of the present invention, detailed description thereof is omitted. In order to further improve the electrode performance, the proton conductive material may be applied to the electrode catalyst layer of the cathode 4 by, for example, dropping a solution containing the proton conductive material. When the fuel cell electrode of the present invention is used as the anode 5, other known cathodes can be used as the cathode 4.
アノード5は、電極触媒層5aとガス拡散層5bで構成される。アノード5としては、本発明の燃料電池用電極のほか、その他の公知のアノードも同様に使用できる。例えば、グラファイト、カーボンブラック、活性炭、カーボンナノチューブ、グラッシーカーボンなどの炭素系材料からなる導電性担体の表面上に、触媒である貴金属粒子を担持した電極材料と、燃料電池の電解質材料との分散液を塗布・乾燥して製造された電極触媒層5aを、ガス拡散層5b上に形成した電極が挙げられる。アノード5のガス拡散層5bは、本発明の燃料電池用電極で説明したガス拡散層と同様のものが使用できる。
The anode 5 includes an electrode catalyst layer 5a and a gas diffusion layer 5b. As the anode 5, in addition to the fuel cell electrode of the present invention, other known anodes can be used as well. For example, a dispersion of an electrode material carrying noble metal particles as a catalyst on the surface of a conductive support made of a carbon-based material such as graphite, carbon black, activated carbon, carbon nanotube, and glassy carbon, and an electrolyte material for a fuel cell The electrode which formed on the gas diffusion layer 5b the electrode catalyst layer 5a manufactured by apply | coating and drying can be mentioned. The gas diffusion layer 5b of the anode 5 can be the same as the gas diffusion layer described in the fuel cell electrode of the present invention.
固体高分子電解質膜6としては、プロトン導電性を有し、化学的安定性及び熱的安定性を有するものであれば公知のPEFC用電解質膜を用いればよい。なお、図2では厚みを強調して図示しているが、電気抵抗を小さくするため固体高分子電解質膜6の厚みは通常0.05mm程度である。
As the solid polymer electrolyte membrane 6, a known PEFC electrolyte membrane may be used as long as it has proton conductivity and has chemical stability and thermal stability. In FIG. 2, the thickness is emphasized, but the thickness of the solid polymer electrolyte membrane 6 is usually about 0.05 mm in order to reduce the electric resistance.
固体高分子電解質膜6を構成する電解質材料としては、フッ素系電解質材料、炭化水素系電解質材料が挙げられる。特にフッ素系電解質材料で形成されている電解質膜が、耐熱性、化学的安定性などに優れているため好ましい。具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)などが好適例として挙げられる。
炭化水素系高分子電解質材料としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテル、スルホン化ポリエーテルエーテルスルホン等が挙げられる。また、電解質膜として、無機系プロトン導電体であるリン酸塩、硫酸塩などからなる電解質膜を使用することもできる。 Examples of the electrolyte material constituting the solidpolymer electrolyte membrane 6 include a fluorine-based electrolyte material and a hydrocarbon-based electrolyte material. In particular, an electrolyte membrane formed of a fluorine-based electrolyte material is preferable because of its excellent heat resistance, chemical stability, and the like. Specific examples include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
Examples of the hydrocarbon-based polymer electrolyte material include sulfonated polyether ketone, sulfonated polyether, and sulfonated polyether ether sulfone. Further, as the electrolyte membrane, an electrolyte membrane made of an inorganic proton conductor such as phosphate or sulfate can also be used.
炭化水素系高分子電解質材料としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテル、スルホン化ポリエーテルエーテルスルホン等が挙げられる。また、電解質膜として、無機系プロトン導電体であるリン酸塩、硫酸塩などからなる電解質膜を使用することもできる。 Examples of the electrolyte material constituting the solid
Examples of the hydrocarbon-based polymer electrolyte material include sulfonated polyether ketone, sulfonated polyether, and sulfonated polyether ether sulfone. Further, as the electrolyte membrane, an electrolyte membrane made of an inorganic proton conductor such as phosphate or sulfate can also be used.
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
例えば、上記実施の形態ではカソードのみに本発明の燃料電池用電極を採用しているが、アノードにも本発明の燃料電池用電極を用いてもよい。 As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
For example, in the above embodiment, the fuel cell electrode of the present invention is employed only for the cathode, but the fuel cell electrode of the present invention may also be used for the anode.
例えば、上記実施の形態ではカソードのみに本発明の燃料電池用電極を採用しているが、アノードにも本発明の燃料電池用電極を用いてもよい。 As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
For example, in the above embodiment, the fuel cell electrode of the present invention is employed only for the cathode, but the fuel cell electrode of the present invention may also be used for the anode.
ここで、カソードとアノードの両方に本発明の燃料電池用電極を使用し、これらに固体高分子電解質膜を挟み込んで圧着する膜電極接合体の製造方法であると、膜電極接合体の製造プロセスをすべて乾式にすることができるという利点がある。
膜電極接合体の製造工程が、物理蒸着による燃料電池用電極の製造と、燃料電池用電極と固体高分子電解質膜との圧着のみとなるので、全行程を連続して乾式とすることができる。その結果、膜電極接合体の製造コストの大幅な低減に寄与する。なお、燃料電池用電極にプロトン導電性材料を塗布した後に圧着工程に供すれば、全行程をほぼすべて乾式とすることが可能となる。
また、このような乾式一貫製法であると、実質的には燃料電池用電極を製造する際の蒸着条件のみを制御することで、膜電極接合体の性能を制御できるという利点がある。 Here, the manufacturing method of a membrane electrode assembly is a manufacturing method of a membrane electrode assembly in which the fuel cell electrode of the present invention is used for both the cathode and the anode, and the solid polymer electrolyte membrane is sandwiched between these electrodes and pressure-bonded. There is an advantage that all can be made dry.
Since the manufacturing process of the membrane electrode assembly consists only of the production of the fuel cell electrode by physical vapor deposition and the pressure bonding of the fuel cell electrode and the solid polymer electrolyte membrane, the entire process can be continuously made dry. . As a result, the manufacturing cost of the membrane electrode assembly is greatly reduced. If the proton conductive material is applied to the fuel cell electrode and then subjected to the crimping process, the entire process can be almost entirely dry.
In addition, such a dry integrated manufacturing method has an advantage that the performance of the membrane electrode assembly can be controlled by controlling only the vapor deposition conditions when the fuel cell electrode is manufactured.
膜電極接合体の製造工程が、物理蒸着による燃料電池用電極の製造と、燃料電池用電極と固体高分子電解質膜との圧着のみとなるので、全行程を連続して乾式とすることができる。その結果、膜電極接合体の製造コストの大幅な低減に寄与する。なお、燃料電池用電極にプロトン導電性材料を塗布した後に圧着工程に供すれば、全行程をほぼすべて乾式とすることが可能となる。
また、このような乾式一貫製法であると、実質的には燃料電池用電極を製造する際の蒸着条件のみを制御することで、膜電極接合体の性能を制御できるという利点がある。 Here, the manufacturing method of a membrane electrode assembly is a manufacturing method of a membrane electrode assembly in which the fuel cell electrode of the present invention is used for both the cathode and the anode, and the solid polymer electrolyte membrane is sandwiched between these electrodes and pressure-bonded. There is an advantage that all can be made dry.
Since the manufacturing process of the membrane electrode assembly consists only of the production of the fuel cell electrode by physical vapor deposition and the pressure bonding of the fuel cell electrode and the solid polymer electrolyte membrane, the entire process can be continuously made dry. . As a result, the manufacturing cost of the membrane electrode assembly is greatly reduced. If the proton conductive material is applied to the fuel cell electrode and then subjected to the crimping process, the entire process can be almost entirely dry.
In addition, such a dry integrated manufacturing method has an advantage that the performance of the membrane electrode assembly can be controlled by controlling only the vapor deposition conditions when the fuel cell electrode is manufactured.
なお、炭素担体を燃料電池用電極に用いる場合、上述のように蒸着法では、酸化腐食の耐久性が著しく劣る結晶性の低い炭素担体しか製造できないので、燃料電池用電極の電極触媒層に、蒸着法で製造できる上述の電子伝導性酸化物を用いて初めて、膜電極接合体の乾式一貫製法が可能になる。
In the case of using a carbon carrier for a fuel cell electrode, as described above, the vapor deposition method can produce only a carbon carrier with low crystallinity that is extremely inferior in oxidation corrosion durability. Therefore, in the electrode catalyst layer of the fuel cell electrode, Only by using the above-mentioned electron conductive oxide that can be produced by vapor deposition, a dry integrated production method of a membrane electrode assembly becomes possible.
<4.固体高分子形燃料電池>
本発明の固体高分子形燃料電池(単セル)は、本発明の膜電極接合体を備えてなり、通常、膜電極接合体をガス流路が形成されたセパレータで挟持した構造を有する。 <4. Polymer electrolyte fuel cell>
The polymer electrolyte fuel cell (single cell) of the present invention comprises the membrane electrode assembly of the present invention, and usually has a structure in which the membrane electrode assembly is sandwiched between separators having gas flow paths.
本発明の固体高分子形燃料電池(単セル)は、本発明の膜電極接合体を備えてなり、通常、膜電極接合体をガス流路が形成されたセパレータで挟持した構造を有する。 <4. Polymer electrolyte fuel cell>
The polymer electrolyte fuel cell (single cell) of the present invention comprises the membrane electrode assembly of the present invention, and usually has a structure in which the membrane electrode assembly is sandwiched between separators having gas flow paths.
図3は本発明の固体高分子形燃料電池の代表的な構成を示す概念図である。図3に示すように、固体高分子形燃料電池20においてアノード5には水素が供給され、上述した(反応1)2H2 → 4H++4e-によって、生成したプロトン(H+)は固体高分子電解質膜6を介してカソード4に供給され、また、生成した電子は外部回路21を介してカソードへ供給され、(反応2)O2+4H++4e-→2H2Oによって、酸素と反応して水を生成する。このアノードとカソードの電気化学反応によって両電極間に電位差を発生させる。本発明の固体高分子形燃料電池において、本発明の膜電極接合体以外の構成要素は、公知の固体高分子形燃料電池と同様であるため、詳細な説明を省略する。
実際には、本発明の固体高分子形燃料電池(単セル)が発電性能に応じた基数だけ積層された燃料電池スタックが形成され、ガス供給装置、冷却装置などその他付随する装置を組み立てることにより使用される。 FIG. 3 is a conceptual diagram showing a typical configuration of the polymer electrolyte fuel cell of the present invention. As shown in FIG. 3, in the polymerelectrolyte fuel cell 20, hydrogen is supplied to the anode 5, and the proton (H + ) generated by the above-described (reaction 1) 2H 2 → 4H + + 4e − is solid polymer. The supplied electrons are supplied to the cathode 4 through the electrolyte membrane 6, and the generated electrons are supplied to the cathode through the external circuit 21. (Reaction 2) O 2 + 4H + + 4e − → 2H 2 O reacts with oxygen. Produce water. A potential difference is generated between the electrodes by the electrochemical reaction between the anode and the cathode. In the polymer electrolyte fuel cell of the present invention, the components other than the membrane electrode assembly of the present invention are the same as those of the known polymer electrolyte fuel cell, and thus detailed description thereof is omitted.
Actually, a fuel cell stack in which the polymer electrolyte fuel cells (single cells) of the present invention are stacked in the number corresponding to the power generation performance is formed, and by assembling other accompanying devices such as a gas supply device and a cooling device. used.
実際には、本発明の固体高分子形燃料電池(単セル)が発電性能に応じた基数だけ積層された燃料電池スタックが形成され、ガス供給装置、冷却装置などその他付随する装置を組み立てることにより使用される。 FIG. 3 is a conceptual diagram showing a typical configuration of the polymer electrolyte fuel cell of the present invention. As shown in FIG. 3, in the polymer
Actually, a fuel cell stack in which the polymer electrolyte fuel cells (single cells) of the present invention are stacked in the number corresponding to the power generation performance is formed, and by assembling other accompanying devices such as a gas supply device and a cooling device. used.
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless the gist thereof is changed.
(実施例1)
1.燃料電池用電極の製造
下記工程(1)、(2)により、ガス拡散層の一方面に電極触媒層形成された実施例1の燃料電池用電極を製造した。
工程(1):
ガス拡散層としてマイクロポーラス層(MPL)付きのカーボンペーパー(SIGRACT Gas Diffusion Media社製、型番:GDL25BC)を用い、蒸着源(ターゲット)として4mol%ニオブドープ酸化スズを用いて、PLD装置(パスカル社製、型番:STD-PLD-11301)により、下記条件でガス拡散層上に、電子伝導性酸化物層を製膜した。
(PLD製膜条件)
・ターゲット:Sn0.96Nb0.04O2 (20mmφペレット)
・レーザー:エキシマレーザー(Coherent社製、型番:COMPeXPro50、波長193nm、出力100mJ、電圧22V、周波数10Hz)
・雰囲気:O2、2Pa
・製膜温度:25℃
・製膜時間:1分 Example 1
1. Production of Fuel Cell Electrode A fuel cell electrode of Example 1 in which an electrode catalyst layer was formed on one surface of the gas diffusion layer was produced by the following steps (1) and (2).
Step (1):
A carbon paper with a microporous layer (MPL) (manufactured by SIGRACT Gas Diffusion Media, model number: GDL25BC) is used as a gas diffusion layer, 4 mol% niobium-doped tin oxide is used as a deposition source (target), and a PLD apparatus (manufactured by Pascal) , Model number: STD-PLD-11301), an electron conductive oxide layer was formed on the gas diffusion layer under the following conditions.
(PLD film forming conditions)
・ Target: Sn 0.96 Nb 0.04 O 2 (20mmφ pellet)
・ Laser: Excimer laser (manufactured by Coherent, model number: COMPeXPro50, wavelength 193 nm,output 100 mJ, voltage 22 V, frequency 10 Hz)
Atmosphere: O 2, 2Pa
・ Film forming temperature: 25 ℃
・ Film formation time: 1 minute
1.燃料電池用電極の製造
下記工程(1)、(2)により、ガス拡散層の一方面に電極触媒層形成された実施例1の燃料電池用電極を製造した。
工程(1):
ガス拡散層としてマイクロポーラス層(MPL)付きのカーボンペーパー(SIGRACT Gas Diffusion Media社製、型番:GDL25BC)を用い、蒸着源(ターゲット)として4mol%ニオブドープ酸化スズを用いて、PLD装置(パスカル社製、型番:STD-PLD-11301)により、下記条件でガス拡散層上に、電子伝導性酸化物層を製膜した。
(PLD製膜条件)
・ターゲット:Sn0.96Nb0.04O2 (20mmφペレット)
・レーザー:エキシマレーザー(Coherent社製、型番:COMPeXPro50、波長193nm、出力100mJ、電圧22V、周波数10Hz)
・雰囲気:O2、2Pa
・製膜温度:25℃
・製膜時間:1分 Example 1
1. Production of Fuel Cell Electrode A fuel cell electrode of Example 1 in which an electrode catalyst layer was formed on one surface of the gas diffusion layer was produced by the following steps (1) and (2).
Step (1):
A carbon paper with a microporous layer (MPL) (manufactured by SIGRACT Gas Diffusion Media, model number: GDL25BC) is used as a gas diffusion layer, 4 mol% niobium-doped tin oxide is used as a deposition source (target), and a PLD apparatus (manufactured by Pascal) , Model number: STD-PLD-11301), an electron conductive oxide layer was formed on the gas diffusion layer under the following conditions.
(PLD film forming conditions)
・ Target: Sn 0.96 Nb 0.04 O 2 (20mmφ pellet)
・ Laser: Excimer laser (manufactured by Coherent, model number: COMPeXPro50, wavelength 193 nm,
Atmosphere: O 2, 2Pa
・ Film forming temperature: 25 ℃
・ Film formation time: 1 minute
工程(2):
スパッタリング装置として、日立ハイテクノロジーズ社製、スパッタリング装置(型番E-1010)を使用し、蒸着源(ターゲット)としてPt板を使用した。スパッタリング条件を電流値15mA、真空度10Paとし、電子伝導性酸化物層へのPt担持量が0.5mg/cm2となるようにスパッタリング時間を設定して、電子伝導性酸化物層にPt粒子を担持させて電極触媒層として実施例1の燃料電池用電極を得た。 Step (2):
A sputtering apparatus (model number E-1010) manufactured by Hitachi High-Technologies Corporation was used as the sputtering apparatus, and a Pt plate was used as the evaporation source (target). Sputtering conditions were set to a current value of 15 mA and a degree of vacuum of 10 Pa, and the sputtering time was set so that the amount of Pt supported on the electron conductive oxide layer was 0.5 mg / cm 2. The electrode for fuel cells of Example 1 was obtained as an electrode catalyst layer.
スパッタリング装置として、日立ハイテクノロジーズ社製、スパッタリング装置(型番E-1010)を使用し、蒸着源(ターゲット)としてPt板を使用した。スパッタリング条件を電流値15mA、真空度10Paとし、電子伝導性酸化物層へのPt担持量が0.5mg/cm2となるようにスパッタリング時間を設定して、電子伝導性酸化物層にPt粒子を担持させて電極触媒層として実施例1の燃料電池用電極を得た。 Step (2):
A sputtering apparatus (model number E-1010) manufactured by Hitachi High-Technologies Corporation was used as the sputtering apparatus, and a Pt plate was used as the evaporation source (target). Sputtering conditions were set to a current value of 15 mA and a degree of vacuum of 10 Pa, and the sputtering time was set so that the amount of Pt supported on the electron conductive oxide layer was 0.5 mg / cm 2. The electrode for fuel cells of Example 1 was obtained as an electrode catalyst layer.
2.膜電極接合体(MEA)の製造
カソードとして、実施例1の燃料電池用電極を使用した膜電極接合体(MEA)を以下の手順で作製した。
まず、電解質膜として、ナフィオン膜(厚み:50μm)に、46wt%Pt/C(田中貴金属工業株式会社、TEC10E50E)を、ナフィオン溶液を含む所定の有機溶媒に分散させて、アノード形成用の分散溶液を調合した。得られた分散溶液をナフィオン膜上にスプレー印刷して、所定の厚みのアノード(電極触媒層)をナフィオン膜上に作製した。アノード(電極触媒層)の上には、ガス拡散層として撥水性カーボンペーパー(東レ社製,型番:EC-TP1-060T)を配置した。なお、アノードの形成において、Pt量が0.2mg/cm2になるように調整した。
次いで、アノードを形成したナフィオン膜の反対面に実施例1の燃料電池用電極を配置し、これらを所定の条件(0.3kN、130℃)で190秒間圧着して、実施例1のMEAを得た。 2. Production of Membrane Electrode Assembly (MEA) A membrane electrode assembly (MEA) using the fuel cell electrode of Example 1 as a cathode was produced by the following procedure.
First, as an electrolyte membrane, a dispersion solution for anode formation is prepared by dispersing 46 wt% Pt / C (Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) in a Nafion membrane (thickness: 50 μm) in a predetermined organic solvent containing a Nafion solution. Was formulated. The obtained dispersion solution was spray-printed on the Nafion membrane, and an anode (electrode catalyst layer) having a predetermined thickness was produced on the Nafion membrane. On the anode (electrode catalyst layer), water-repellent carbon paper (manufactured by Toray Industries, Inc., model number: EC-TP1-060T) was disposed as a gas diffusion layer. In the formation of the anode, the Pt amount was adjusted to 0.2 mg / cm 2 .
Next, the fuel cell electrode of Example 1 was placed on the opposite surface of the Nafion membrane on which the anode was formed, and these were pressure-bonded for 190 seconds under predetermined conditions (0.3 kN, 130 ° C.). Obtained.
カソードとして、実施例1の燃料電池用電極を使用した膜電極接合体(MEA)を以下の手順で作製した。
まず、電解質膜として、ナフィオン膜(厚み:50μm)に、46wt%Pt/C(田中貴金属工業株式会社、TEC10E50E)を、ナフィオン溶液を含む所定の有機溶媒に分散させて、アノード形成用の分散溶液を調合した。得られた分散溶液をナフィオン膜上にスプレー印刷して、所定の厚みのアノード(電極触媒層)をナフィオン膜上に作製した。アノード(電極触媒層)の上には、ガス拡散層として撥水性カーボンペーパー(東レ社製,型番:EC-TP1-060T)を配置した。なお、アノードの形成において、Pt量が0.2mg/cm2になるように調整した。
次いで、アノードを形成したナフィオン膜の反対面に実施例1の燃料電池用電極を配置し、これらを所定の条件(0.3kN、130℃)で190秒間圧着して、実施例1のMEAを得た。 2. Production of Membrane Electrode Assembly (MEA) A membrane electrode assembly (MEA) using the fuel cell electrode of Example 1 as a cathode was produced by the following procedure.
First, as an electrolyte membrane, a dispersion solution for anode formation is prepared by dispersing 46 wt% Pt / C (Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) in a Nafion membrane (thickness: 50 μm) in a predetermined organic solvent containing a Nafion solution. Was formulated. The obtained dispersion solution was spray-printed on the Nafion membrane, and an anode (electrode catalyst layer) having a predetermined thickness was produced on the Nafion membrane. On the anode (electrode catalyst layer), water-repellent carbon paper (manufactured by Toray Industries, Inc., model number: EC-TP1-060T) was disposed as a gas diffusion layer. In the formation of the anode, the Pt amount was adjusted to 0.2 mg / cm 2 .
Next, the fuel cell electrode of Example 1 was placed on the opposite surface of the Nafion membrane on which the anode was formed, and these were pressure-bonded for 190 seconds under predetermined conditions (0.3 kN, 130 ° C.). Obtained.
(比較例1)
1.燃料電池用電極の製造
工程(1)におけるPLD製膜条件のうち、製膜時間を5分に変更した以外は、実施例1と同様にして、比較例1の燃料電池用電極を得た。 (Comparative Example 1)
1. Manufacturing of Fuel Cell Electrode A fuel cell electrode of Comparative Example 1 was obtained in the same manner as in Example 1 except that the film forming time was changed to 5 minutes among the PLD film forming conditions in the step (1).
1.燃料電池用電極の製造
工程(1)におけるPLD製膜条件のうち、製膜時間を5分に変更した以外は、実施例1と同様にして、比較例1の燃料電池用電極を得た。 (Comparative Example 1)
1. Manufacturing of Fuel Cell Electrode A fuel cell electrode of Comparative Example 1 was obtained in the same manner as in Example 1 except that the film forming time was changed to 5 minutes among the PLD film forming conditions in the step (1).
2.MEAの製造
カソードとして、実施例1の燃料電池用電極に代えて、比較例1の燃料電池用電極を使用した以外は、実施例1のMEAの製造方法と同様にして、比較例1のMEAを得た。 2. Production of MEA The MEA of Comparative Example 1 was prepared in the same manner as the MEA production method of Example 1, except that the fuel cell electrode of Comparative Example 1 was used instead of the fuel cell electrode of Example 1 as the cathode. Got.
カソードとして、実施例1の燃料電池用電極に代えて、比較例1の燃料電池用電極を使用した以外は、実施例1のMEAの製造方法と同様にして、比較例1のMEAを得た。 2. Production of MEA The MEA of Comparative Example 1 was prepared in the same manner as the MEA production method of Example 1, except that the fuel cell electrode of Comparative Example 1 was used instead of the fuel cell electrode of Example 1 as the cathode. Got.
(比較例2)
1.比較例2の燃料電池用電極材料
比較例2として、湿式法によるPt担持ニオブドープ酸化スズ粒子を、上記特許文献3で開示された方法に準じる方法で製造した。
まず、Sn:Nb=96:4(mol比)の割合となるように塩化スズ水和物(SnCl2・2H2O)及び塩化ニオブ(NbCl5)を純水に溶解させ、アンモニア共沈法でニオブドープ酸化スズ粒子を作製し、次いで、ニオブドープ酸化スズ粒子に、白金アセチルアセトナート法によりPt担持した。Pt前駆体(Pt(C5H7O2)2)の量は、Ptが20wt%になるようにし、ジクロロメタン(CH2Cl2)中で担持した。
得られたスラリーを乾燥後、N2雰囲気下で、210℃で3時間、240℃で3時間還元処理を施すことで、比較例2の燃料電池用電極材料を得た。 (Comparative Example 2)
1. Fuel Cell Electrode Material of Comparative Example 2 As Comparative Example 2, Pt-supported niobium-doped tin oxide particles by a wet method were produced by a method according to the method disclosed inPatent Document 3 above.
First, tin chloride hydrate (SnCl 2 .2H 2 O) and niobium chloride (NbCl 5 ) are dissolved in pure water so as to have a ratio of Sn: Nb = 96: 4 (mol ratio), and then coprecipitation with ammonia. Then, niobium-doped tin oxide particles were prepared, and then Pt was supported on the niobium-doped tin oxide particles by the platinum acetylacetonate method. The amount of Pt precursor (Pt (C 5 H 7 O 2 ) 2 ) was such that Pt was 20 wt% and was supported in dichloromethane (CH 2 Cl 2 ).
The obtained slurry was dried, and then subjected to a reduction treatment at 210 ° C. for 3 hours and at 240 ° C. for 3 hours under an N 2 atmosphere, whereby a fuel cell electrode material of Comparative Example 2 was obtained.
1.比較例2の燃料電池用電極材料
比較例2として、湿式法によるPt担持ニオブドープ酸化スズ粒子を、上記特許文献3で開示された方法に準じる方法で製造した。
まず、Sn:Nb=96:4(mol比)の割合となるように塩化スズ水和物(SnCl2・2H2O)及び塩化ニオブ(NbCl5)を純水に溶解させ、アンモニア共沈法でニオブドープ酸化スズ粒子を作製し、次いで、ニオブドープ酸化スズ粒子に、白金アセチルアセトナート法によりPt担持した。Pt前駆体(Pt(C5H7O2)2)の量は、Ptが20wt%になるようにし、ジクロロメタン(CH2Cl2)中で担持した。
得られたスラリーを乾燥後、N2雰囲気下で、210℃で3時間、240℃で3時間還元処理を施すことで、比較例2の燃料電池用電極材料を得た。 (Comparative Example 2)
1. Fuel Cell Electrode Material of Comparative Example 2 As Comparative Example 2, Pt-supported niobium-doped tin oxide particles by a wet method were produced by a method according to the method disclosed in
First, tin chloride hydrate (SnCl 2 .2H 2 O) and niobium chloride (NbCl 5 ) are dissolved in pure water so as to have a ratio of Sn: Nb = 96: 4 (mol ratio), and then coprecipitation with ammonia. Then, niobium-doped tin oxide particles were prepared, and then Pt was supported on the niobium-doped tin oxide particles by the platinum acetylacetonate method. The amount of Pt precursor (Pt (C 5 H 7 O 2 ) 2 ) was such that Pt was 20 wt% and was supported in dichloromethane (CH 2 Cl 2 ).
The obtained slurry was dried, and then subjected to a reduction treatment at 210 ° C. for 3 hours and at 240 ° C. for 3 hours under an N 2 atmosphere, whereby a fuel cell electrode material of Comparative Example 2 was obtained.
2.MEAの製造
比較例2の燃料電池用電極材料から形成されるカソードを使用してMEAを作製した。まず、実施例1のMEAの製造方法と同様の方法で、ナフィオン膜上にアノードを形成した。次いで、アノードと同様の方法でカソード形成用の分散溶液を調合し、得られた分散液をナフィオン膜上にスプレー印刷して、ナフィオン膜上に所定の厚みのカソード(電極触媒層)を作製した。アノード、カソードそれぞれの上にカーボンペーパーを配置して、所定の条件(0.3kN、130℃)で圧着して、比較例2のMEAを得た。なお、比較例3のMEAのカソードにおけるPt量は0.5mg/cm2である。アノードのPt量は0.2mg/cm2である。 2. Production of MEA An MEA was produced using a cathode formed from the fuel cell electrode material of Comparative Example 2. First, an anode was formed on the Nafion membrane by the same method as the MEA manufacturing method of Example 1. Next, a cathode-forming dispersion solution was prepared in the same manner as the anode, and the obtained dispersion was spray-printed on the Nafion membrane to produce a cathode (electrode catalyst layer) with a predetermined thickness on the Nafion membrane. . Carbon paper was placed on each of the anode and the cathode and pressure-bonded under predetermined conditions (0.3 kN, 130 ° C.) to obtain an MEA of Comparative Example 2. Note that the Pt amount at the cathode of the MEA of Comparative Example 3 is 0.5 mg / cm 2 . The amount of Pt in the anode is 0.2 mg / cm 2 .
比較例2の燃料電池用電極材料から形成されるカソードを使用してMEAを作製した。まず、実施例1のMEAの製造方法と同様の方法で、ナフィオン膜上にアノードを形成した。次いで、アノードと同様の方法でカソード形成用の分散溶液を調合し、得られた分散液をナフィオン膜上にスプレー印刷して、ナフィオン膜上に所定の厚みのカソード(電極触媒層)を作製した。アノード、カソードそれぞれの上にカーボンペーパーを配置して、所定の条件(0.3kN、130℃)で圧着して、比較例2のMEAを得た。なお、比較例3のMEAのカソードにおけるPt量は0.5mg/cm2である。アノードのPt量は0.2mg/cm2である。 2. Production of MEA An MEA was produced using a cathode formed from the fuel cell electrode material of Comparative Example 2. First, an anode was formed on the Nafion membrane by the same method as the MEA manufacturing method of Example 1. Next, a cathode-forming dispersion solution was prepared in the same manner as the anode, and the obtained dispersion was spray-printed on the Nafion membrane to produce a cathode (electrode catalyst layer) with a predetermined thickness on the Nafion membrane. . Carbon paper was placed on each of the anode and the cathode and pressure-bonded under predetermined conditions (0.3 kN, 130 ° C.) to obtain an MEA of Comparative Example 2. Note that the Pt amount at the cathode of the MEA of Comparative Example 3 is 0.5 mg / cm 2 . The amount of Pt in the anode is 0.2 mg / cm 2 .
(参考例1)
市販の46wt%Pt/C(田中貴金属工業株式会社、TEC10E50E)を、参考例1の燃料電池用電極材料として使用し、該燃料電池用電極材料を使用した以外は、比較例2と同様の方法にて、参考例1のMEAを得た。なお、参考例1のMEAのカソードにおけるPt量は0.5mg/cm2である。アノードは0.2mg/cm2である。 (Reference Example 1)
Commercially available 46 wt% Pt / C (Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) was used as the fuel cell electrode material of Reference Example 1, and the same method as Comparative Example 2 except that the fuel cell electrode material was used. The MEA of Reference Example 1 was obtained. In addition, the amount of Pt at the cathode of the MEA of Reference Example 1 is 0.5 mg / cm 2 . The anode is 0.2 mg / cm 2 .
市販の46wt%Pt/C(田中貴金属工業株式会社、TEC10E50E)を、参考例1の燃料電池用電極材料として使用し、該燃料電池用電極材料を使用した以外は、比較例2と同様の方法にて、参考例1のMEAを得た。なお、参考例1のMEAのカソードにおけるPt量は0.5mg/cm2である。アノードは0.2mg/cm2である。 (Reference Example 1)
Commercially available 46 wt% Pt / C (Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) was used as the fuel cell electrode material of Reference Example 1, and the same method as Comparative Example 2 except that the fuel cell electrode material was used. The MEA of Reference Example 1 was obtained. In addition, the amount of Pt at the cathode of the MEA of Reference Example 1 is 0.5 mg / cm 2 . The anode is 0.2 mg / cm 2 .
[評価1:微細構造観察]
比較例1の燃料電池用電極の断面SEM像を図4に示す。図4に示すようにガス拡散層は基材層であるカーボンペーパー上に20μm程度のマイクロポーラス層(MPL)が形成されており、MPLの表面に電子伝導性酸化物層であるニオブドープ酸化スズ層が形成されていることが分かる。10箇所でニオブドープ酸化スズ層の膜厚を評価したところ、54.3(±13.4)μmであった。図5に示す高倍率の断面SEM像からわかるように比較例1の燃料電池用電極のニオブドープ酸化スズ層は緻密な構造をしていた。 [Evaluation 1: Microstructure observation]
A cross-sectional SEM image of the fuel cell electrode of Comparative Example 1 is shown in FIG. As shown in FIG. 4, the gas diffusion layer has a microporous layer (MPL) of about 20 μm formed on a carbon paper as a base material layer, and a niobium doped tin oxide layer as an electron conductive oxide layer on the surface of the MPL. It can be seen that is formed. When the film thickness of the niobium-doped tin oxide layer was evaluated at 10 locations, it was 54.3 (± 13.4) μm. As can be seen from the high-magnification cross-sectional SEM image shown in FIG. 5, the niobium-doped tin oxide layer of the fuel cell electrode of Comparative Example 1 had a dense structure.
比較例1の燃料電池用電極の断面SEM像を図4に示す。図4に示すようにガス拡散層は基材層であるカーボンペーパー上に20μm程度のマイクロポーラス層(MPL)が形成されており、MPLの表面に電子伝導性酸化物層であるニオブドープ酸化スズ層が形成されていることが分かる。10箇所でニオブドープ酸化スズ層の膜厚を評価したところ、54.3(±13.4)μmであった。図5に示す高倍率の断面SEM像からわかるように比較例1の燃料電池用電極のニオブドープ酸化スズ層は緻密な構造をしていた。 [Evaluation 1: Microstructure observation]
A cross-sectional SEM image of the fuel cell electrode of Comparative Example 1 is shown in FIG. As shown in FIG. 4, the gas diffusion layer has a microporous layer (MPL) of about 20 μm formed on a carbon paper as a base material layer, and a niobium doped tin oxide layer as an electron conductive oxide layer on the surface of the MPL. It can be seen that is formed. When the film thickness of the niobium-doped tin oxide layer was evaluated at 10 locations, it was 54.3 (± 13.4) μm. As can be seen from the high-magnification cross-sectional SEM image shown in FIG. 5, the niobium-doped tin oxide layer of the fuel cell electrode of Comparative Example 1 had a dense structure.
実施例1の燃料電池用電極の断面SEM像を図6に示す。図6に示すようにMPLの表面に電子伝導性酸化物層であるニオブドープ酸化スズ層が形成されていることが分かる。10箇所でニオブドープ酸化スズ層の膜厚を評価したところ、15.8(±6.2)μmであった。また、ニオブドープ酸化スズ層に担持されたPt粒子の大きさを評価したところ、粒径30nm程度であり、ニオブドープ酸化スズ層の表面のみならず内部にも分布していることが確認された。
A cross-sectional SEM image of the fuel cell electrode of Example 1 is shown in FIG. As shown in FIG. 6, it can be seen that a niobium-doped tin oxide layer, which is an electron conductive oxide layer, is formed on the surface of the MPL. When the film thickness of the niobium-doped tin oxide layer was evaluated at 10 locations, it was 15.8 (± 6.2) μm. Moreover, when the magnitude | size of the Pt particle | grains carry | supported by the niobium dope tin oxide layer was evaluated, it was confirmed that it is a particle size of about 30 nm and is distributed not only on the surface of the niobium dope tin oxide layer but also inside.
[評価2:電気化学的評価]
実施例1、比較例1,2及び参考例1の燃料電池用電極を有するMEAを用いて、IV特性とサイクル耐久性の評価を行った。 [Evaluation 2: Electrochemical evaluation]
Using the MEA having the fuel cell electrode of Example 1, Comparative Examples 1 and 2 and Reference Example 1, the IV characteristics and cycle durability were evaluated.
実施例1、比較例1,2及び参考例1の燃料電池用電極を有するMEAを用いて、IV特性とサイクル耐久性の評価を行った。 [Evaluation 2: Electrochemical evaluation]
Using the MEA having the fuel cell electrode of Example 1, Comparative Examples 1 and 2 and Reference Example 1, the IV characteristics and cycle durability were evaluated.
[評価2-1]
実施例1、比較例1のMEAを組み込んだ単セル発電評価用治具(自作)を80℃に設定した恒温槽内に設置し、以下の条件でIV特性の評価を行った。その際、燃料電池評価装置(東陽テクニカ社製、型番:PE-8900K)およびポテンショ/ガルバノスタット(Solatron社製、型番:SI1287)を用いた。図7に結果を示す。
(アノード条件)
電極面積:0.5cm2
供給ガス種 :100% H2
ガス供給速度 :100mL/min
供給ガス加湿温度 :79℃
(カソード条件)
電極面積:0.5cm2
供給ガス種 :Air
ガス供給速度 :100mL/min
供給ガス加湿温度 :60℃ [Evaluation 2-1]
A single cell power generation evaluation jig (self-made) incorporating the MEA of Example 1 and Comparative Example 1 was installed in a thermostat set at 80 ° C., and IV characteristics were evaluated under the following conditions. At that time, a fuel cell evaluation apparatus (manufactured by Toyo Technica, model number: PE-8900K) and potentio / galvanostat (manufactured by Solatron, model number: SI1287) were used. The results are shown in FIG.
(Anode condition)
Electrode area: 0.5 cm 2
Supply gas type: 100% H 2
Gas supply rate: 100 mL / min
Supply gas humidification temperature: 79 ° C
(Cathode conditions)
Electrode area: 0.5 cm 2
Supply gas type: Air
Gas supply rate: 100 mL / min
Supply gas humidification temperature: 60 ° C
実施例1、比較例1のMEAを組み込んだ単セル発電評価用治具(自作)を80℃に設定した恒温槽内に設置し、以下の条件でIV特性の評価を行った。その際、燃料電池評価装置(東陽テクニカ社製、型番:PE-8900K)およびポテンショ/ガルバノスタット(Solatron社製、型番:SI1287)を用いた。図7に結果を示す。
(アノード条件)
電極面積:0.5cm2
供給ガス種 :100% H2
ガス供給速度 :100mL/min
供給ガス加湿温度 :79℃
(カソード条件)
電極面積:0.5cm2
供給ガス種 :Air
ガス供給速度 :100mL/min
供給ガス加湿温度 :60℃ [Evaluation 2-1]
A single cell power generation evaluation jig (self-made) incorporating the MEA of Example 1 and Comparative Example 1 was installed in a thermostat set at 80 ° C., and IV characteristics were evaluated under the following conditions. At that time, a fuel cell evaluation apparatus (manufactured by Toyo Technica, model number: PE-8900K) and potentio / galvanostat (manufactured by Solatron, model number: SI1287) were used. The results are shown in FIG.
(Anode condition)
Electrode area: 0.5 cm 2
Supply gas type: 100% H 2
Gas supply rate: 100 mL / min
Supply gas humidification temperature: 79 ° C
(Cathode conditions)
Electrode area: 0.5 cm 2
Supply gas type: Air
Gas supply rate: 100 mL / min
Supply gas humidification temperature: 60 ° C
図7に示すように、実施例1の燃料電池用電極(製膜時間1分)をカソードとして用いたMEAでは、電流密度600mA/cm2まで出力可能であった。このことから、実施例1の燃料電池用電極では、ガス拡散性の高い電子伝導性酸化物層が形成され、優れた出力特性を示すことが確認された。
一方、比較例1の燃料電池用電極(製膜時間5分)をカソードとして用いたMEAでは、実施例1と比較して著しく性能が低下している。これは製膜時間が長すぎて、電子伝導性酸化物層が緻密化、あるいは膜厚が大きくなりすぎて、電極触媒層としてのガス拡散性が不十分になったことに起因する。 As shown in FIG. 7, the MEA using the fuel cell electrode of Example 1 (film formation time of 1 minute) as a cathode was capable of outputting up to a current density of 600 mA / cm 2 . From this, it was confirmed that in the fuel cell electrode of Example 1, an electron conductive oxide layer with high gas diffusibility was formed, and excellent output characteristics were exhibited.
On the other hand, the performance of the MEA using the fuel cell electrode of Comparative Example 1 (film formation time of 5 minutes) as the cathode is significantly lower than that of Example 1. This is because the film formation time is too long, the electron conductive oxide layer is densified, or the film thickness becomes too large, resulting in insufficient gas diffusibility as an electrode catalyst layer.
一方、比較例1の燃料電池用電極(製膜時間5分)をカソードとして用いたMEAでは、実施例1と比較して著しく性能が低下している。これは製膜時間が長すぎて、電子伝導性酸化物層が緻密化、あるいは膜厚が大きくなりすぎて、電極触媒層としてのガス拡散性が不十分になったことに起因する。 As shown in FIG. 7, the MEA using the fuel cell electrode of Example 1 (film formation time of 1 minute) as a cathode was capable of outputting up to a current density of 600 mA / cm 2 . From this, it was confirmed that in the fuel cell electrode of Example 1, an electron conductive oxide layer with high gas diffusibility was formed, and excellent output characteristics were exhibited.
On the other hand, the performance of the MEA using the fuel cell electrode of Comparative Example 1 (film formation time of 5 minutes) as the cathode is significantly lower than that of Example 1. This is because the film formation time is too long, the electron conductive oxide layer is densified, or the film thickness becomes too large, resulting in insufficient gas diffusibility as an electrode catalyst layer.
[評価2-2]
また、比較例2のMEAを用いて、[評価2-1]と同様の装置、条件にて、IV特性の評価を行い、実施例1の結果と比較した。なお、比較例2のMEAは、従来の湿式法で製造した電極触媒層を有する燃料電池電極をカソードとして用いている。
図8に示すように、実施例1では、比較例2と比較して低電流密度ではセル電圧が低かったが、200mA/cm2を超えると逆転し、実施例1の方がより高いセル電圧を示した。このことから、乾式法(物理蒸着法)で製造した電極触媒層を有する実施例1の燃料電池用電極の方が高電流密度において優れた特性を示すことが分かった。 [Evaluation 2-2]
Further, using the MEA of Comparative Example 2, the IV characteristics were evaluated using the same apparatus and conditions as in [Evaluation 2-1], and compared with the results of Example 1. The MEA of Comparative Example 2 uses a fuel cell electrode having an electrode catalyst layer manufactured by a conventional wet method as a cathode.
As shown in FIG. 8, in Example 1, the cell voltage was low at a low current density compared to Comparative Example 2, but reversed when exceeding 200 mA / cm 2 , and Example 1 had a higher cell voltage. showed that. From this, it was found that the fuel cell electrode of Example 1 having an electrode catalyst layer produced by a dry method (physical vapor deposition method) showed superior characteristics at a high current density.
また、比較例2のMEAを用いて、[評価2-1]と同様の装置、条件にて、IV特性の評価を行い、実施例1の結果と比較した。なお、比較例2のMEAは、従来の湿式法で製造した電極触媒層を有する燃料電池電極をカソードとして用いている。
図8に示すように、実施例1では、比較例2と比較して低電流密度ではセル電圧が低かったが、200mA/cm2を超えると逆転し、実施例1の方がより高いセル電圧を示した。このことから、乾式法(物理蒸着法)で製造した電極触媒層を有する実施例1の燃料電池用電極の方が高電流密度において優れた特性を示すことが分かった。 [Evaluation 2-2]
Further, using the MEA of Comparative Example 2, the IV characteristics were evaluated using the same apparatus and conditions as in [Evaluation 2-1], and compared with the results of Example 1. The MEA of Comparative Example 2 uses a fuel cell electrode having an electrode catalyst layer manufactured by a conventional wet method as a cathode.
As shown in FIG. 8, in Example 1, the cell voltage was low at a low current density compared to Comparative Example 2, but reversed when exceeding 200 mA / cm 2 , and Example 1 had a higher cell voltage. showed that. From this, it was found that the fuel cell electrode of Example 1 having an electrode catalyst layer produced by a dry method (physical vapor deposition method) showed superior characteristics at a high current density.
[評価3]サイクル耐久性試験
[評価3-1] 初期圧保持率の評価
実施例1、比較例2および参考例1の燃料電池用電極をカソードとして用いたMEAを用いて、燃料電池実用化推進審議会「固体高分子形燃料電池の目標・研究開発課題と評価方法の提案(平成23年度改訂版)」における「III-3-3 試験名:電位サイクル試験法1/2」(起動停止模擬電位サイクル)に準じる方法でサイクル耐久性試験評価を行った。図9に起動停止模擬電位サイクルの説明図を示す。
まず、実施例1、比較例2および参考例のMEAを使用して、上記評価2と同じ装置を使用して、初期IV特性を測定した。次いで、起動停止模擬電位サイクルとして、電位を1.0Vから1.5Vまで0.5V/secで走査させて、三角波で加速試験を行い、所定回数サイクル後、IV測定を行う。この操作を繰り返し、燃料電池自動車(FCV)で10年間の使用に相当する60,000サイクルまで実施した。結果を図10に結果を示す。 [Evaluation 3] Cycle durability test
[Evaluation 3-1] Evaluation of Initial Pressure Retention Rate Using MEA using the fuel cell electrode of Example 1, Comparative Example 2 and Reference Example 1 as a cathode, the Fuel Cell Practical Use Promotion Council “Solid Polymer Type” In accordance with “III-3-3 Test Name: PotentialCycle Test Method 1/2” (Start / Stop Simulated Potential Cycle) in “Proposal of Fuel Cell Targets / R & D Issues and Evaluation Methods (FY2011 Revised Edition)” The cycle durability test was evaluated. FIG. 9 shows an explanatory diagram of the start / stop simulation potential cycle.
First, using the MEAs of Example 1, Comparative Example 2 and Reference Example, initial IV characteristics were measured using the same apparatus as in theabove Evaluation 2. Next, as a start / stop simulation potential cycle, the potential is scanned from 1.0 V to 1.5 V at 0.5 V / sec, an acceleration test is performed with a triangular wave, and IV measurement is performed after a predetermined number of cycles. This operation was repeated and carried out up to 60,000 cycles corresponding to 10 years of use in a fuel cell vehicle (FCV). The results are shown in FIG.
[評価3-1] 初期圧保持率の評価
実施例1、比較例2および参考例1の燃料電池用電極をカソードとして用いたMEAを用いて、燃料電池実用化推進審議会「固体高分子形燃料電池の目標・研究開発課題と評価方法の提案(平成23年度改訂版)」における「III-3-3 試験名:電位サイクル試験法1/2」(起動停止模擬電位サイクル)に準じる方法でサイクル耐久性試験評価を行った。図9に起動停止模擬電位サイクルの説明図を示す。
まず、実施例1、比較例2および参考例のMEAを使用して、上記評価2と同じ装置を使用して、初期IV特性を測定した。次いで、起動停止模擬電位サイクルとして、電位を1.0Vから1.5Vまで0.5V/secで走査させて、三角波で加速試験を行い、所定回数サイクル後、IV測定を行う。この操作を繰り返し、燃料電池自動車(FCV)で10年間の使用に相当する60,000サイクルまで実施した。結果を図10に結果を示す。 [Evaluation 3] Cycle durability test
[Evaluation 3-1] Evaluation of Initial Pressure Retention Rate Using MEA using the fuel cell electrode of Example 1, Comparative Example 2 and Reference Example 1 as a cathode, the Fuel Cell Practical Use Promotion Council “Solid Polymer Type” In accordance with “III-3-3 Test Name: Potential
First, using the MEAs of Example 1, Comparative Example 2 and Reference Example, initial IV characteristics were measured using the same apparatus as in the
図10に示すように、電極触媒層における担体が炭素である参考例1では、2000サイクル程度で著しく電圧が低下した。この劣化要因として、カソード条件下における炭素担体の腐食と、炭素担体の腐食によるPt触媒粒子の脱離が示唆される。
一方、電極触媒層における担体が電子伝導性酸化物層である実施例1および比較例2では、初期性能は参考例1に劣るものの、60,000サイクル後も初期性能からそれほど劣化せずに発電性能を維持していることがわかる。このことから、電子伝導性酸化物の担体は、カソード条件下で熱力学的に安定であるため、炭素担体のように腐食されず、Pt触媒粒子の脱離が生じないため、性能劣化が起こりづらいと考えられる。そして、その作製方法(実施例1(物理蒸着法)、比較例2(湿式法))に起因するものではないことがわかった。 As shown in FIG. 10, in Reference Example 1 in which the support in the electrode catalyst layer is carbon, the voltage was remarkably reduced in about 2000 cycles. As the deterioration factors, the corrosion of the carbon support under the cathode conditions and the desorption of the Pt catalyst particles due to the corrosion of the carbon support are suggested.
On the other hand, in Example 1 and Comparative Example 2 in which the carrier in the electrode catalyst layer is an electron conductive oxide layer, the initial performance is inferior to that of Reference Example 1, but power generation is not significantly degraded from the initial performance after 60,000 cycles. It can be seen that the performance is maintained. From this, the electron-conductive oxide support is thermodynamically stable under the cathode conditions, so it is not corroded like the carbon support and the Pt catalyst particles are not detached, resulting in performance deterioration. It is considered difficult. And it turned out that it does not originate in the preparation methods (Example 1 (physical vapor deposition method), comparative example 2 (wet method)).
一方、電極触媒層における担体が電子伝導性酸化物層である実施例1および比較例2では、初期性能は参考例1に劣るものの、60,000サイクル後も初期性能からそれほど劣化せずに発電性能を維持していることがわかる。このことから、電子伝導性酸化物の担体は、カソード条件下で熱力学的に安定であるため、炭素担体のように腐食されず、Pt触媒粒子の脱離が生じないため、性能劣化が起こりづらいと考えられる。そして、その作製方法(実施例1(物理蒸着法)、比較例2(湿式法))に起因するものではないことがわかった。 As shown in FIG. 10, in Reference Example 1 in which the support in the electrode catalyst layer is carbon, the voltage was remarkably reduced in about 2000 cycles. As the deterioration factors, the corrosion of the carbon support under the cathode conditions and the desorption of the Pt catalyst particles due to the corrosion of the carbon support are suggested.
On the other hand, in Example 1 and Comparative Example 2 in which the carrier in the electrode catalyst layer is an electron conductive oxide layer, the initial performance is inferior to that of Reference Example 1, but power generation is not significantly degraded from the initial performance after 60,000 cycles. It can be seen that the performance is maintained. From this, the electron-conductive oxide support is thermodynamically stable under the cathode conditions, so it is not corroded like the carbon support and the Pt catalyst particles are not detached, resulting in performance deterioration. It is considered difficult. And it turned out that it does not originate in the preparation methods (Example 1 (physical vapor deposition method), comparative example 2 (wet method)).
[評価3-2] 交流インピーダンス測定
実施例1、比較例2及び参考例1の燃料電池用電極をカソードとして用いたMEAを用いて、交流インピーダンス法により、それぞれの燃料電池用電極のオーミック抵抗の評価を行った。
[評価2-1]で記載した評価装置、及びFrequency response analyzer (Solartron社製)を用い、周波数100kHzから0.1Hzの範囲で変化させ、Cole-Coleプロットを得た。なお、アノード条件およびカソード条件は、[評価2-1]と同様である。図11(a)にCole-Coleプロットの説明図、図11(b)は想定する等価回路を示す図を示す。図11(b)において、Rsがオーミック抵抗,Rpが非オーミック抵抗,Cが電気二重層容量となり、オーミック抵抗及び非オーミック抵抗を分離して評価できる。 [Evaluation 3-2] AC Impedance Measurement Using the MEA using the fuel cell electrode of Example 1, Comparative Example 2 and Reference Example 1 as a cathode, the ohmic resistance of each fuel cell electrode was measured by the AC impedance method. Evaluation was performed.
Using the evaluation apparatus described in [Evaluation 2-1] and the Frequency response analyzer (manufactured by Solartron), the frequency was changed in the range of 100 kHz to 0.1 Hz to obtain a Cole-Cole plot. The anode condition and cathode condition are the same as those in [Evaluation 2-1]. FIG. 11A is an explanatory diagram of a Cole-Cole plot, and FIG. 11B is a diagram illustrating an assumed equivalent circuit. In FIG. 11B, Rs is an ohmic resistance, Rp is a non-ohmic resistance, C is an electric double layer capacitance, and the ohmic resistance and the non-ohmic resistance can be separately evaluated.
実施例1、比較例2及び参考例1の燃料電池用電極をカソードとして用いたMEAを用いて、交流インピーダンス法により、それぞれの燃料電池用電極のオーミック抵抗の評価を行った。
[評価2-1]で記載した評価装置、及びFrequency response analyzer (Solartron社製)を用い、周波数100kHzから0.1Hzの範囲で変化させ、Cole-Coleプロットを得た。なお、アノード条件およびカソード条件は、[評価2-1]と同様である。図11(a)にCole-Coleプロットの説明図、図11(b)は想定する等価回路を示す図を示す。図11(b)において、Rsがオーミック抵抗,Rpが非オーミック抵抗,Cが電気二重層容量となり、オーミック抵抗及び非オーミック抵抗を分離して評価できる。 [Evaluation 3-2] AC Impedance Measurement Using the MEA using the fuel cell electrode of Example 1, Comparative Example 2 and Reference Example 1 as a cathode, the ohmic resistance of each fuel cell electrode was measured by the AC impedance method. Evaluation was performed.
Using the evaluation apparatus described in [Evaluation 2-1] and the Frequency response analyzer (manufactured by Solartron), the frequency was changed in the range of 100 kHz to 0.1 Hz to obtain a Cole-Cole plot. The anode condition and cathode condition are the same as those in [Evaluation 2-1]. FIG. 11A is an explanatory diagram of a Cole-Cole plot, and FIG. 11B is a diagram illustrating an assumed equivalent circuit. In FIG. 11B, Rs is an ohmic resistance, Rp is a non-ohmic resistance, C is an electric double layer capacitance, and the ohmic resistance and the non-ohmic resistance can be separately evaluated.
図12に実施例1、比較例2及び参考例1の燃料電池用電極をカソードに使用したMEAのオーミック抵抗のサイクル数に対する変化を示す。なお、実施例1、比較例2及び参考例1のMEAは、カソード以外の構成が同じである。そのため、図12に示すオーミック抵抗の変化は主にカソードに起因すると判断した。
FIG. 12 shows the change of the ohmic resistance of the MEA using the fuel cell electrode of Example 1, Comparative Example 2 and Reference Example 1 as the cathode with respect to the number of cycles. The MEAs of Example 1, Comparative Example 2, and Reference Example 1 have the same configuration except for the cathode. Therefore, it was determined that the change in ohmic resistance shown in FIG. 12 is mainly caused by the cathode.
カソードの担体に炭素を使用した参考例1では、サイクル数に伴ってオーミック抵抗が急激に増大しており、炭素担体が電位サイクルに伴い著しく劣化していると考えられる。これに対し、カソードの担体に電子伝導性酸化物である実施例1および比較例2では、物理蒸着法(実施例1)、湿式法(比較例2)にかかわらず、電位サイクルに対してオーミック抵抗がほとんど変化しておらず、担体である電子伝導性酸化物が安定であると考えられる。一方、オーミック抵抗の値は、物理蒸着法で製造した実施例1の方が、湿式法で製造した比較例2より小さいことがわかる。
このことから、物理蒸着法により電子伝導性酸化物粒子が複数個連結した連結粒子により電子伝導性酸化物層が形成されている実施例1の燃料電池用電極は、従来の湿式法で形成した電子伝導性酸化物担体粒子を用いた比較例2の燃料電池用電極と比較して、電極全体の電気抵抗(オーミック抵抗)が小さいことが示された。 In Reference Example 1 in which carbon is used as the cathode support, the ohmic resistance increases rapidly with the number of cycles, and it is considered that the carbon support is significantly deteriorated with the potential cycle. On the other hand, in Example 1 and Comparative Example 2 in which the cathode carrier is an electron conductive oxide, ohmic with respect to the potential cycle regardless of the physical vapor deposition method (Example 1) or the wet method (Comparative Example 2). The resistance hardly changes, and the electron conductive oxide as the carrier is considered to be stable. On the other hand, it can be seen that the value of ohmic resistance is smaller in Example 1 manufactured by the physical vapor deposition method than in Comparative Example 2 manufactured by the wet method.
From this, the fuel cell electrode of Example 1 in which the electron conductive oxide layer was formed by the connected particles in which a plurality of electron conductive oxide particles were connected by physical vapor deposition was formed by a conventional wet method. It was shown that the electric resistance (ohmic resistance) of the whole electrode was small as compared with the fuel cell electrode of Comparative Example 2 using electron conductive oxide carrier particles.
このことから、物理蒸着法により電子伝導性酸化物粒子が複数個連結した連結粒子により電子伝導性酸化物層が形成されている実施例1の燃料電池用電極は、従来の湿式法で形成した電子伝導性酸化物担体粒子を用いた比較例2の燃料電池用電極と比較して、電極全体の電気抵抗(オーミック抵抗)が小さいことが示された。 In Reference Example 1 in which carbon is used as the cathode support, the ohmic resistance increases rapidly with the number of cycles, and it is considered that the carbon support is significantly deteriorated with the potential cycle. On the other hand, in Example 1 and Comparative Example 2 in which the cathode carrier is an electron conductive oxide, ohmic with respect to the potential cycle regardless of the physical vapor deposition method (Example 1) or the wet method (Comparative Example 2). The resistance hardly changes, and the electron conductive oxide as the carrier is considered to be stable. On the other hand, it can be seen that the value of ohmic resistance is smaller in Example 1 manufactured by the physical vapor deposition method than in Comparative Example 2 manufactured by the wet method.
From this, the fuel cell electrode of Example 1 in which the electron conductive oxide layer was formed by the connected particles in which a plurality of electron conductive oxide particles were connected by physical vapor deposition was formed by a conventional wet method. It was shown that the electric resistance (ohmic resistance) of the whole electrode was small as compared with the fuel cell electrode of Comparative Example 2 using electron conductive oxide carrier particles.
以上の結果より、本発明の燃料電池用電極(実施例1)は、従来の湿式法で製造した電子伝導性酸化物を担体とした燃料電池用電極と比較して、同等以上の発電性能を有し、かつ、電気抵抗(オーミック抵抗)が小さく、カソード条件下において優れたサイクル耐久性を有していることがわかった。
From the above results, the fuel cell electrode of the present invention (Example 1) has a power generation performance equivalent to or higher than that of a fuel cell electrode using an electron conductive oxide produced by a conventional wet method as a carrier. It has been found that it has a low electrical resistance (ohmic resistance) and has excellent cycle durability under cathode conditions.
本発明によれば、十分な電子伝導性と、優れた耐久性を有する非炭素系の電子伝導性酸化物を電極触媒層に使用した燃料電池用電極が提供される。当該燃料電池用電極は、特に起動停止を伴う長期運転が必要である固体高分子形燃料電池用の電極に好適である。
According to the present invention, there is provided a fuel cell electrode in which a non-carbon electron conductive oxide having sufficient electron conductivity and excellent durability is used as an electrode catalyst layer. The electrode for a fuel cell is particularly suitable for an electrode for a polymer electrolyte fuel cell that requires long-term operation with start and stop.
Claims (14)
- 電子伝導性を有するガス拡散層と、前記ガス拡散層の表面及び/又は内部に形成された電極触媒層とを有する燃料電池用電極であって、
前記電極触媒層が、物理蒸着により形成されたガス拡散性を有する電子伝導性酸化物層と、前記電子伝導性酸化物層に担持された電極触媒粒子とを含むことを特徴とする燃料電池用電極。 A fuel cell electrode comprising a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on and / or inside the gas diffusion layer,
The electrode catalyst layer includes an electron conductive oxide layer having gas diffusibility formed by physical vapor deposition, and electrode catalyst particles supported on the electron conductive oxide layer. electrode. - 前記ガス拡散層が、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層であって、前記電極触媒層が前記マイクロポーラス層の表面に形成されてなる請求項1に記載の燃料電池用電極。 The gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electrode catalyst layer is formed on the surface of the microporous layer. 2. The fuel cell electrode according to 1.
- 前記電子伝導性酸化物層が、酸化スズを主体とする酸化物からなる請求項1または2に記載の燃料電池用電極。 The fuel cell electrode according to claim 1 or 2, wherein the electron conductive oxide layer is made of an oxide mainly composed of tin oxide.
- 前記電子伝導性酸化物層が、ニオブを0.1~20mol%ドープしたニオブドープ酸化スズからなる請求項1から3のいずれかに記載の燃料電池用電極。 4. The fuel cell electrode according to claim 1, wherein the electron conductive oxide layer is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
- 前記電極触媒層が、さらにプロトン導電性材料を含有する請求項1から4のいずれかに記載の燃料電池用電極。 The electrode for a fuel cell according to any one of claims 1 to 4, wherein the electrode catalyst layer further contains a proton conductive material.
- 電子伝導性を有するガス拡散層と、前記ガス拡散層の表面及び/又は内部に形成された電極触媒層とを有する燃料電池用電極の製造方法であって、
電子伝導性酸化物からなる蒸着源を使用し、物理蒸着法によってガス拡散層の表面及び/又は内部に、ガス拡散性を有する電子伝導性酸化物層を形成する工程と、
前記電子伝導性酸化物層に対し、電極触媒粒子を担持する工程と、
を含むことを特徴とする燃料電池用電極の製造方法。 A method for producing a fuel cell electrode comprising a gas diffusion layer having electron conductivity and an electrode catalyst layer formed on and / or inside the gas diffusion layer,
A step of forming an electron conductive oxide layer having gas diffusibility on the surface and / or inside of the gas diffusion layer by a physical vapor deposition method using a vapor deposition source comprising an electron conductive oxide;
A step of supporting electrode catalyst particles on the electron conductive oxide layer;
The manufacturing method of the electrode for fuel cells characterized by including these. - 前記ガス拡散層が、基材層及び前記基材層の片面に形成されたマイクロポーラス層を有するガス拡散層であって、前記電子伝導性酸化物層を前記マイクロポーラス層の表面に形成する請求項6に記載の燃料電池用電極の製造方法。 The gas diffusion layer is a gas diffusion layer having a base layer and a microporous layer formed on one side of the base layer, and the electron conductive oxide layer is formed on a surface of the microporous layer. Item 7. A method for producing a fuel cell electrode according to Item 6.
- 前記蒸着源が、酸化スズを主体とする酸化物からなる請求項6または7に記載の燃料電池用電極の製造方法。 The method for producing an electrode for a fuel cell according to claim 6 or 7, wherein the vapor deposition source is made of an oxide mainly composed of tin oxide.
- 前記蒸着源が、ニオブを0.1~20mol%ドープしたニオブドープ酸化スズからなる請求項6から8のいずれかに記載の燃料電池用電極の製造方法。 The method for producing an electrode for a fuel cell according to any one of claims 6 to 8, wherein the vapor deposition source is made of niobium-doped tin oxide doped with 0.1 to 20 mol% of niobium.
- 前記電子伝導性酸化物層を形成する工程における物理蒸着法が、パルスレーザー蒸着法(PLD)である請求項6から9のいずれかに記載の燃料電池用電極の製造方法。 The method for producing an electrode for a fuel cell according to any one of claims 6 to 9, wherein the physical vapor deposition method in the step of forming the electron conductive oxide layer is a pulse laser vapor deposition method (PLD).
- 前記電極触媒粒子を担持する工程における担持方法が、物理蒸着法または化学蒸着法である請求項6から10のいずれかに記載の燃料電池用電極の製造方法。 The method for producing a fuel cell electrode according to any one of claims 6 to 10, wherein the supporting method in the step of supporting the electrode catalyst particles is a physical vapor deposition method or a chemical vapor deposition method.
- 固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体であって、
前記カソードとアノードの少なくとも一方が、請求項1から5のいずれかに記載の燃料電池用電極であることを特徴とする膜電極接合体。 A membrane electrode assembly comprising: a solid polymer electrolyte membrane; a cathode joined to one surface of the solid polymer electrolyte membrane; and an anode joined to the other surface of the solid polymer electrolyte membrane,
6. A membrane electrode assembly, wherein at least one of the cathode and the anode is a fuel cell electrode according to any one of claims 1 to 5. - 請求項12に記載の膜電極接合体を備えてなることを特徴とする固体高分子形燃料電池。 A solid polymer fuel cell comprising the membrane electrode assembly according to claim 12.
- 固体高分子電解質膜と、前記固体高分子電解質膜の一方面に接合されたカソードと、前記固体高分子電解質膜の他方面に接合されたアノードと、を有する膜電極接合体の製造方法であって、
請求項11に記載の燃料電池用電極の製造方法によって、カソードとアノードのそれぞれの燃料電池用電極を製造する工程と、
製造されたカソードとアノードに固体高分子電解質膜を挟み込んで圧着する工程と、を含むことを特徴とする膜電極接合体の製造方法。 A method for producing a membrane electrode assembly comprising a solid polymer electrolyte membrane, a cathode joined to one surface of the solid polymer electrolyte membrane, and an anode joined to the other surface of the solid polymer electrolyte membrane. And
A process for producing each of the cathode and anode fuel cell electrodes by the method for producing a fuel cell electrode according to claim 11;
And a step of sandwiching a solid polymer electrolyte membrane between the manufactured cathode and anode and press-bonding the membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015525286A JP6345663B2 (en) | 2013-07-05 | 2014-07-04 | ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013142060 | 2013-07-05 | ||
JP2013-142060 | 2013-07-05 | ||
JP2014-030949 | 2014-02-20 | ||
JP2014030949 | 2014-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015002287A1 true WO2015002287A1 (en) | 2015-01-08 |
Family
ID=52143856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067876 WO2015002287A1 (en) | 2013-07-05 | 2014-07-04 | Electrode for fuel cell and method for manufacturing same, membrane electrode assembly, and solid polymer fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6345663B2 (en) |
WO (1) | WO2015002287A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015141595A1 (en) * | 2014-03-20 | 2015-09-24 | 国立大学法人九州大学 | Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell |
WO2016203679A1 (en) * | 2015-06-16 | 2016-12-22 | パナソニック株式会社 | Cell, fuel cell stack, fuel cell system and membrane-electrode joined body |
JP2019160444A (en) * | 2018-03-08 | 2019-09-19 | 国立大学法人九州大学 | Electrode catalyst layer/gas diffusion layer integration type electrode structure, method for manufacturing the same, membrane-electrode assembly and solid polymer fuel cell |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH087897A (en) * | 1994-06-21 | 1996-01-12 | Toyota Motor Corp | Fuel cell junction body and manufacture thereof |
JP2000048833A (en) * | 1998-07-29 | 2000-02-18 | Toyota Motor Corp | Fuel cell |
WO2001022510A1 (en) * | 1999-09-20 | 2001-03-29 | Asahi Glass Company, Limited | Bonded electrode/film for solid polymer fuel cell and method for producing the same |
JP2008077999A (en) * | 2006-09-22 | 2008-04-03 | Matsushita Electric Ind Co Ltd | Catalyst used for electrochemical electrode and its manufacturing method |
WO2009060582A1 (en) * | 2007-11-09 | 2009-05-14 | Kyusyu University, National University Corporation | Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell |
JP2010221090A (en) * | 2009-03-19 | 2010-10-07 | Toshiba Corp | Method of producing catalyst layer-supporting substrate and fuel cell |
-
2014
- 2014-07-04 JP JP2015525286A patent/JP6345663B2/en active Active
- 2014-07-04 WO PCT/JP2014/067876 patent/WO2015002287A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH087897A (en) * | 1994-06-21 | 1996-01-12 | Toyota Motor Corp | Fuel cell junction body and manufacture thereof |
JP2000048833A (en) * | 1998-07-29 | 2000-02-18 | Toyota Motor Corp | Fuel cell |
WO2001022510A1 (en) * | 1999-09-20 | 2001-03-29 | Asahi Glass Company, Limited | Bonded electrode/film for solid polymer fuel cell and method for producing the same |
JP2008077999A (en) * | 2006-09-22 | 2008-04-03 | Matsushita Electric Ind Co Ltd | Catalyst used for electrochemical electrode and its manufacturing method |
WO2009060582A1 (en) * | 2007-11-09 | 2009-05-14 | Kyusyu University, National University Corporation | Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell |
JP2010221090A (en) * | 2009-03-19 | 2010-10-07 | Toshiba Corp | Method of producing catalyst layer-supporting substrate and fuel cell |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015141595A1 (en) * | 2014-03-20 | 2015-09-24 | 国立大学法人九州大学 | Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell |
JPWO2015141595A1 (en) * | 2014-03-20 | 2017-04-06 | 国立大学法人九州大学 | ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL |
WO2016203679A1 (en) * | 2015-06-16 | 2016-12-22 | パナソニック株式会社 | Cell, fuel cell stack, fuel cell system and membrane-electrode joined body |
JPWO2016203679A1 (en) * | 2015-06-16 | 2017-06-29 | パナソニック株式会社 | Cell, fuel cell stack, fuel cell system and membrane-electrode assembly |
US20180175397A1 (en) * | 2015-06-16 | 2018-06-21 | Panasonic Corporation | Cell, fuel cell stack, fuel cell system, and membrane electrode assembly |
JP2019160444A (en) * | 2018-03-08 | 2019-09-19 | 国立大学法人九州大学 | Electrode catalyst layer/gas diffusion layer integration type electrode structure, method for manufacturing the same, membrane-electrode assembly and solid polymer fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015002287A1 (en) | 2017-02-23 |
JP6345663B2 (en) | 2018-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102323487B1 (en) | Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same | |
EP1873849B1 (en) | Catalyst for a fuel cell, method of preparing the same, and membrane-electrode assembly and fuel cell system including the same | |
JP5322110B2 (en) | Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material | |
KR100669456B1 (en) | Electrode for fuel cell, fuel cell comprising the same, and method for preparing the smme | |
KR100658675B1 (en) | Electrode for fuel cell, fuel cell comprising the same, and method for preparing the smme | |
JP4772741B2 (en) | Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same | |
JP6598159B2 (en) | ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL | |
KR102407694B1 (en) | Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same | |
KR102189064B1 (en) | Method for manufacturing electrode, electrode manufactured by using the same, membrane-electrode assembly comprising the electrode, and fuel cell comprising the membrane-electrode assembly | |
JP2015512782A (en) | Thin film catalyst materials for use in fuel cells | |
JP2015525675A (en) | Method for preparing a catalyst material | |
JP2006252967A (en) | Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same | |
JP2007188768A (en) | Polymer electrolyte fuel cell | |
JP6345663B2 (en) | ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL | |
JP4693442B2 (en) | Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate | |
JP6963811B2 (en) | Electrode structure integrated with electrode catalyst layer / gas diffusion layer and its manufacturing method, membrane electrode assembly and polymer electrolyte fuel cell | |
US20100227251A1 (en) | Catalyst layer, membrane electrode assembly, fuel cell, and method of producing the catalyst layer | |
JP6862792B2 (en) | Method of manufacturing electrode catalyst | |
KR101492431B1 (en) | Anode catalyst for fuel cell, method of manufacturing the same, anode including the same for fuel cell, assembly for fuel cell and fuel cell system comprising the same | |
JP7570124B2 (en) | Electrode material and its manufacturing method | |
JP2010198801A (en) | Electrode for polymer electrolyte fuel cell, method for manufacturing calcined film of polymer electrolyte fuel cell, method for using electrode of polymer electrolyte fuel cell, and polymer electrolyte fuel cell | |
JP2009016308A (en) | Solid polymer fuel cell | |
KR20070105700A (en) | Catalyst for cathode of fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system comprising same | |
JP2010182617A (en) | Electrode for polymer electrolyte fuel cell, method for manufacturing baking membrane for polymer electrolyte fuel cell, and polymer electrolyte fuel cell | |
KR20070092877A (en) | Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14819580 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015525286 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14819580 Country of ref document: EP Kind code of ref document: A1 |